Nonlinear independent component analysis: A principled framework for unsupervised deep learning

Aapo Hyvärinen

[Now:] Parietal Team, INRIA-Saclay, France [Earlier:] Gatsby Unit, University College London, UK [Always:] Dept of Computer Science, University of Helsinki, Finland [Kind of:] CIFAR

Abstract

Short critical introduction to deep learning

Importance of Big Data

ヘロト 人間 とくほど 人間とう

臣

Abstract

Short critical introduction to deep learning

- Importance of Big Data
- Importance of unsupervised learning

イロト イヨト イヨト イヨト

臣

Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors

_∢ ≣ ▶

Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?

Image: A math a math

Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined

Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined
- Solution 1: use temporal structure in time series, in a self-supervised fashion

Abstract

- Short critical introduction to deep learning
 - Importance of Big Data
- Importance of unsupervised learning
- Disentanglement methods try to find independent factors
- In linear case, independent component analysis (ICA) successful, can we extend to a nonlinear method?
- Problem: Nonlinear ICA fundamentally ill-defined
- Solution 1: use temporal structure in time series, in a self-supervised fashion
- Solution 2: use an extra auxiliary variable in a VAE framework

Success of Artificial Intelligence

 Autonomous vehicles, machine translation, game playing, search engines, recommendation machine, etc.

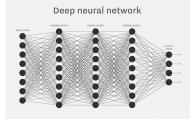
Most modern applications based on deep learning

Neural networks

Layers of "neurons" repeating linear transformations and simple nonlinearities f

$$x_i(L+1) = f(\sum_j w_{ij}(L)x_j(L)), \text{ where } L \text{ is layer } (1)$$
 with e.g. $f(x) = \max(0, x)$

- Can approximate "any" nonlinear input-output mappings
- Learns by nonlinear regression (e.g. least-squares)



イロト イヨト イヨト イヨト

Deep learning

- Deep Learning = learning in neural network with many layers
- With enough data, can learn any input-output relationship: image-category / past-present / friends - political views
- Present boom started by Krizhevsky, Sutskever, Hinton, 2012: Superior recognition success of objects in images

grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
arillo		(173D)	anidan mankau

grille	mushroom	grape		spider monkey
pickup	jelly fungus	elderberry		titi
beach wagon	gill fungus	ffordshire bullterrier		indri
fire engine	dead-man's-fingers	currant	П	howler monkey

Characteristics of deep learning

Nonlinearity: E.g. recognition of a cat is highly nonlinear

 A linear model would use a single prototype But locations, sizes, viewpoints highly variable

Characteristics of deep learning

Nonlinearity: E.g. recognition of a cat is highly nonlinear

 A linear model would use a single prototype But locations, sizes, viewpoints highly variable

Needs big data : E.g. millions of images from the Internet

Because general nonlinear functions have many parameters

Characteristics of deep learning

Nonlinearity: E.g. recognition of a cat is highly nonlinear

 A linear model would use a single prototype But locations, sizes, viewpoints highly variable

Needs big data : E.g. millions of images from the Internet
 Because general nonlinear functions have many parameters
 Needs big computers : Graphics Processing Units (GPU)
 Obvious consequence of need for big data, and nonlinearities

Characteristics of deep learning

Nonlinearity: E.g. recognition of a cat is highly nonlinear

 A linear model would use a single prototype But locations, sizes, viewpoints highly variable

Needs big data : E.g. millions of images from the Internet
 Because general nonlinear functions have many parameters
 Needs big computers : Graphics Processing Units (GPU)
 Obvious consequence of need for big data, and nonlinearities
 Most theory quite old : Nonlinear (logistic) regression
 But earlier we didn't have enough data and "compute"

Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?

Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous

Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous

Importance unsupervised learning

- Success stories in deep learning need category labels
 - Is it a cat or a dog? Liked or not liked?
- Problem: labels may be
 - Difficult to obtain
 - Unrealistic in neural modelling
 - Ambiguous

Unsupervised learning:

- we only observe a data vector x, no label or target y
- E.g. photographs with no labels
- Very difficult, largely unsolved problem

ICA as principled unsupervised learning Difficulty of nonlinear ICA

イロト イヨト イヨト イヨト

ICA as principled unsupervised learning

Linear independent component analysis (ICA)

$$x_i(t) = \sum_{j=1}^n a_{ij} s_j(t) \quad \text{for all } i, j = 1 \dots n \tag{2}$$

x_i(t) is *i*-th observed signal at sample point t (possibly time)
 a_{ij} constant parameters describing "mixing"
 Assuming independent, non-Gaussian latent "sources" s_i

ICA as principled unsupervised learning Difficulty of nonlinear ICA

イロン イヨン イヨン

ICA as principled unsupervised learning

Linear independent component analysis (ICA)

$$x_i(t) = \sum_{j=1}^n a_{ij} s_j(t) \quad \text{for all } i, j = 1 \dots n \tag{2}$$

x_i(t) is i-th observed signal at sample point t (possibly time)
 a_{ij} constant parameters describing "mixing"
 Assuming independent, non-Gaussian latent "sources" s_j
 ICA is identifiable, i.e. well-defined: (Darmois-Skitovich ~1950; Comon, 1994)
 Observing only x_i we can recover both a_{ij} and s_j
 I.e. original sources can be recovered
 As opposed to PCA, factor analysis

ICA as principled unsupervised learning Difficulty of nonlinear ICA

イロト イヨト イヨト イヨト

臣

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Unsupervised learning can have different goals

1) Accurate model of data distribution?

E.g. Variational Autoencoders are good

ICA as principled unsupervised learning Difficulty of nonlinear ICA

- 1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good
- 2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good

ICA as principled unsupervised learning Difficulty of nonlinear ICA

- 1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good
- 2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good
- 3) Useful features for supervised learning?
 - Many methods, "Representation learning"

ICA as principled unsupervised learning Difficulty of nonlinear ICA

- 1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good
- 2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good
- 3) Useful features for supervised learning?
 - Many methods, "Representation learning"
- 4) Reveal underlying structure in data, disentangle latent quantities?
 - Independent Component Analysis! (this talk)

ICA as principled unsupervised learning Difficulty of nonlinear ICA

- 1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good
- 2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good
- 3) Useful features for supervised learning?
 - Many methods, "Representation learning"
- 4) Reveal underlying structure in data, disentangle latent quantities?
 - Independent Component Analysis! (this talk)
- These goals are orthogonal, even contradictory!
 - Probably, no method can accomplish all (Cf. Theis et al 2015)

ICA as principled unsupervised learning Difficulty of nonlinear ICA

< ロ > < 同 > < 三 > < 三 >

Unsupervised learning can have different goals

- 1) Accurate model of data distribution?
 - E.g. Variational Autoencoders are good
- 2) Sampling points from data distribution?
 - E.g. Generative Adversarial Networks are good
- 3) Useful features for supervised learning?
 - Many methods, "Representation learning"
- 4) Reveal underlying structure in data, disentangle latent quantities?

Independent Component Analysis! (this talk)

- These goals are orthogonal, even contradictory!
 - Probably, no method can accomplish all (Cf. Theis et al 2015)

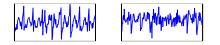
In unsupervised learning research, must specify actual goal

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Identifiability means ICA does blind source separation

Observed signals:

Principal components:

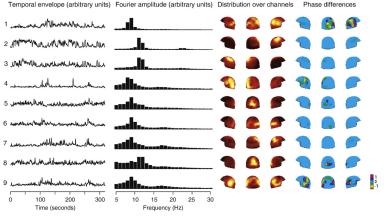


Independent components are original sources:

イロト イヨト イヨト イヨト

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Example of ICA: Brain source separation



(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)

ICA as principled unsupervised learning Difficulty of nonlinear ICA

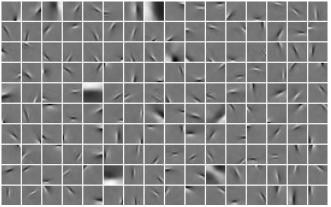
・ロト ・回 ト ・ 回 ト

臣

∢ ≣ ▶

Example of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)



Features similar to wavelets, Gabor functions, simple cells.

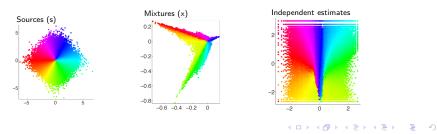
ICA as principled unsupervised learning Difficulty of nonlinear ICA

Nonlinear ICA is an unsolved problem

- Extend ICA to nonlinear case to get general disentanglement?
- Unfortunately, "basic" nonlinear ICA is not identifiable:
- If we define nonlinear ICA model simply as

$$x_i(t) = f_i(s_1(t), \dots, s_n(t)) \quad \text{for all } i, j = 1 \dots n \qquad (3)$$

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)



ICA as principled unsupervised learning Difficulty of nonlinear ICA

Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- For any x₁, x₂, can always construct y = g(x₁, x₂) independent of x₁ as

$$g(\xi_1,\xi_2) = P(x_2 < \xi_2 | x_1 = \xi_1)$$
(4)

・ロト ・回ト ・ヨト ・ヨト

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Darmois construction

- Darmois (1952) showed impossibility of nonlinear ICA:
- ► For any x₁, x₂, can always construct y = g(x₁, x₂) independent of x₁ as

$$g(\xi_1,\xi_2) = P(x_2 < \xi_2 | x_1 = \xi_1)$$
(4)

- Independence alone too weak for identifiability:
 We could take x₁ as independent component which is absurd
- Maximizing non-Gaussianity of components equally absurd: Scalar transform h(x1) can give any distribution

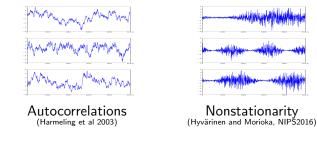


ICA as principled unsupervised learning Difficulty of nonlinear ICA

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Temporal structure helps in nonlinear ICA

Two kinds of temporal structure:



Now, identifiability of nonlinear ICA can be proven (Sprekeler et al, 2014; Hyvärinen and Morioka, NIPS2016 & AISTATS2017): Can find original sources!

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Image: A mathematical states and a mathem

Trick: "Self-supervised" learning

Supervised learning: we have

- "input" x, e.g. images / brain signals
- "output" y, e.g. content (cat or dog) / experimental condition

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Trick: "Self-supervised" learning

Supervised learning: we have

- "input" x, e.g. images / brain signals
- "output" **y**, e.g. content (cat or dog) / experimental condition
- Unsupervised learning: we have

only "input" x

ICA as principled unsupervised learning Difficulty of nonlinear ICA

Trick: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, e.g. images / brain signals
 - "output" **y**, e.g. content (cat or dog) / experimental condition
- Unsupervised learning: we have
 - only "input" x
- Self-supervised learning: we have
 - only "input" x
 - but we invent y somehow, e.g. by creating corrupted data, and use supervised algorithms

ICA as principled unsupervised learning Difficulty of nonlinear ICA

・ロト ・回ト ・ヨト ・ヨト

Trick: "Self-supervised" learning

- Supervised learning: we have
 - "input" x, e.g. images / brain signals
 - "output" **y**, e.g. content (cat or dog) / experimental condition
- Unsupervised learning: we have
 - only "input" x
- Self-supervised learning: we have
 - only "input" x
 - but we invent y somehow, e.g. by creating corrupted data, and use supervised algorithms
- Numerous examples in computer vision:
 - Remove part of photograph, learn to predict missing part (x is original data with part removed, y is missing part)

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

• Observe *n*-dim time series $\mathbf{x}(t)$

1 MMMMMMM MMMMMMM MMMMMMM 1 MMMMMMM 1 MMMMMMMM

イロト イヨト イヨト イヨト

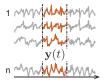
Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

• Observe *n*-dim time series $\mathbf{x}(t)$

Take short time windows as new data

$$\mathbf{y}(t) = (\mathbf{x}(t), \mathbf{x}(t-1))$$



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

• Observe *n*-dim time series $\mathbf{x}(t)$

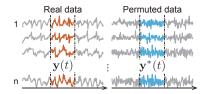
Take short time windows as new data

$$\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$$

Create randomly time-permuted data

$$\mathbf{y}^*(t) = (\mathbf{x}(t), \mathbf{x}(t^*))$$

with t^* a random time point.



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Permutation-contrastive learning (Hyvärinen and Morioka 2017)

• Observe *n*-dim time series $\mathbf{x}(t)$

Take short time windows as new data

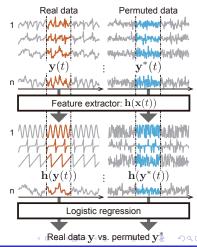
$$\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$$

Create randomly time-permuted data

$$\mathbf{y}^*(t) = ig(\mathbf{x}(t), \mathbf{x}(t^*)ig)$$

with t^* a random time point.

- Train NN to discriminate y from y*
- Could this really do Nonlinear ICA?



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Image: A match the second s

Theorem: PCL estimates nonlinear ICA with time dependencies

- Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - ▶ smooth, invertible nonlinear mixing $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$
 - independent sources s_i(t)
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

イロト イヨト イヨト

Theorem: PCL estimates nonlinear ICA with time dependencies

- ► Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - ▶ smooth, invertible nonlinear mixing $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$
 - independent sources s_i(t)
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)
- ▶ Then, PCL demixes nonlinear ICA: hidden units give $s_i(t)$
 - A constructive proof of identifiability

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

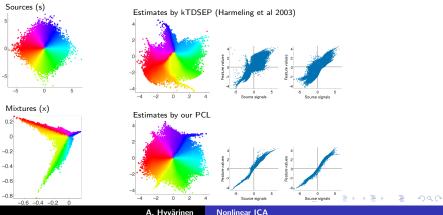
Theorem: PCL estimates nonlinear ICA with time dependencies

- ► Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - ▶ smooth, invertible nonlinear mixing $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$
 - independent sources s_i(t)
 - temporally dependent (strongly enough), stationary
 - non-Gaussian (strongly enough)
- ▶ Then, PCL demixes nonlinear ICA: hidden units give $s_i(t)$
 - A constructive proof of identifiability
- For Gaussian sources, demixes up to linear mixing

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Illustration of demixing capability

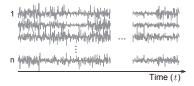
- AR Model with Laplacian innovations, n = 2log $p(s(t)|s(t-1)) = -|s(t) - \rho s(t-1)|$
- Nonlinearity is MLP. Mixing: leaky ReLU's; Demixing: maxout



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Time-contrastive learning: (Hyvärinen and Morioka 2016)

Observe *n*-dim time series x(t)

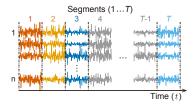


• • • • • • • • • •

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Time-contrastive learning: (Hyvärinen and Morioka 2016)

- Observe *n*-dim time series $\mathbf{x}(t)$
- Divide x(t) into T segments (e.g. bins with equal sizes)

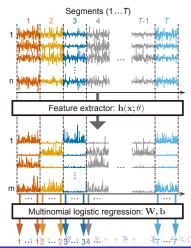


• • • • • • • •

Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Time-contrastive learning: (Hyvärinen and Morioka 2016)

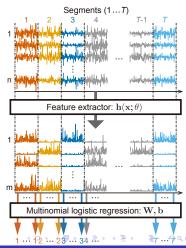
- Observe *n*-dim time series x(t)
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is T, labels given by index of segment
 - Multinomial logistic regression



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Time-contrastive learning: (Hyvärinen and Morioka 2016)

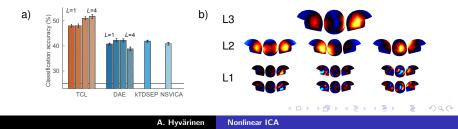
- Observe *n*-dim time series x(t)
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is T, labels given by index of segment
 - Multinomial logistic regression
- In hidden layer h, NN should learn to represent nonstationarity
 - (= differences between segments)
- Nonlinear ICA for nonstationary data!



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Experiments on MEG

- Sources estimated from resting data (no stimulation)
- a) Validation by classifying another data set with four stimulation modalities: visual, auditory, tactile, rest.
 - Trained a linear SVM on estimated sources
 - Number of layers in MLP ranging from 1 to 4
- b) Attempt to visualize nonlinear processing



Permutation-contrastive learning Time-contrastive learning Auxiliary variables framework

Auxiliary variables: Alternative to temporal structure (Arandjelovic & Zisserman, 2017; Hyvärinen et al, 2019)

Figure 3. Learnt visual concepts. Each column shows five images that most activate a particular unit of the 512 in pool4 for the vision 🗦 🔗

A. Hyvärinen No

Nonlinear ICA

Deep Latent Variable Models and VAE's

General framework with observed data vector x and latent z:

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}), \quad p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z})d\mathbf{z}$$

where θ is a vector of parameters, e.g. in a neural network Posterior $p(\mathbf{x}|\mathbf{z})$ could model nonlinear mixing

Deep Latent Variable Models and VAE's

General framework with observed data vector x and latent z:

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}), \quad p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z})d\mathbf{z}$$

where heta is a vector of parameters, e.g. in a neural network

• Posterior $p(\mathbf{x}|\mathbf{z})$ could model nonlinear mixing

Variational autoencoders (VAE):

Model:

- Define prior so that z white Gaussian (thus independent z_i)
- Define posterior so that $\mathbf{x} = \mathbf{f}(\mathbf{z}) + \mathbf{n}$

Estimation:

- Approximative maximization of likelihood
- Approximation is "variational lower bound"

Deep Latent Variable Models and VAE's

General framework with observed data vector x and latent z:

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}), \quad p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z})d\mathbf{z}$$

where $\boldsymbol{\theta}$ is a vector of parameters, e.g. in a neural network

Posterior p(x|z) could model nonlinear mixing

Variational autoencoders (VAE):

Model:

Define prior so that z white Gaussian (thus independent z_i)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Define posterior so that $\mathbf{x} = \mathbf{f}(\mathbf{z}) + \mathbf{n}$

Estimation:

- Approximative maximization of likelihood
- Approximation is "variational lower bound"

Is such a model identifiable?

Identifiable VAE

- Original VAE is not identifiable:
 - Latent variables usually white and Gaussian:
 - Any orthogonal rotation is equivalent: z' = Uz has exactly the same distribution.

イロト イヨト イヨト イヨト

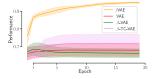
臣

Identifiable VAE

- Original VAE is not identifiable:
 - Latent variables usually white and Gaussian:
 - Any orthogonal rotation is equivalent: z' = Uz has exactly the same distribution.

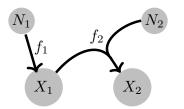
• Our new iVAE (Khemakhem, Kingma, Hyvärinen, 2019):

- Assume we also observe auxiliary variable u, e.g. audio for video, segment label, history
- General framework, not just time structure
- z_i conditionally independent given u
- Variant of our nonlinear ICA, hence identifiable



Application to causal analysis

- Causal discovery: learning causal structure without interventions
- We can use nonlinear ICA to find general non-linear causal relationships (Monti et al, UAI2019)
- Identifiability absolutely necessary



- $S_1: X_1 = f_1(N_1)$
- $S_2: \quad X_2 = f_2(X_1, N_2)$

Conditions for ordinary deep learning:

Big data, big computers, class labels (outputs)

・ロト ・回ト ・ヨト ・ヨト

臣

Conditions for ordinary deep learning:
 Big data, big computers, class labels (outputs)

If no class labels: unsupervised learning

イロト イヨト イヨト イヨト

Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability

Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement

▲御 ▶ ▲ 臣 ▶

Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement
- Connection to VAE's can be made \rightarrow iVAE

Conclusion

- Conditions for ordinary deep learning:
 - Big data, big computers, class labels (outputs)
- If no class labels: unsupervised learning
- Independent component analysis can be made nonlinear
 - Special assumptions needed for identifiability
- Self-supervised methods are easy to implement
- \blacktriangleright Connection to VAE's can be made \rightarrow iVAE
- Principled framework for "disentanglement"