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INTRODUCTION

The field of nonlinear optics has developed rapidly since its beginning in 1961. This
development is in both the theory of nonlinear effects and the theory of nonlinear
interactions in solids, and in the applications of nonlinear devices. This review
discusses nonlinear interactions in solids and the resultant nonlinear coupling of
electromagnetic waves that leads to second harmonic generation, optical mixing, and
optical parametric oscillation. Material requirements for device applications are
considered, and important nonlinear material properties summarized. At the outset,
a brief review of the development of nonlinear optics and devices is in order to provide
perspective of this rapidly growing field.

Historical Review

In 1961, shortly after the demonstration of the laser, Franken et al (1) generated the
second harmonic of a Ruby laser in crystal quartz. The success of this experiment
relied directly on the enormous increase of power spectral brightness provided by
a laser source compared to incoherent sources. Power densities greater than
109 W/cm2 became available; these correspond to an electric field strength of
106 V cm- 1. This field strength is comparable to atomic field strengths and, there-
fore, it was not too surprising that materials responded in a nonlinear manner to
the applied fields.

The early work in nonlinear optics concentrated on second harmonic generation.
Harmonic generation in the optical region is similar to the more familiar harmonic
generation at radio frequencies, with one important exception. In the radio frequency
range the wavelength is usually much larger than the harmonic generator, so that
the interaction is localized in a volume much smaller than the dimensions of a
wavelength. In the optical region the situation is usually reversed and the nonlinear
medium extends over many wavelengths. This leads to the consideration of propa-
gation effects since the electromagnetic wave interacts over an extended distance
with the generated nonlinear polarization. The situation is similar to a propagating
wave interacting with a phased linear dipole array. If this interaction is to be efficient,
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the phase of the propagating wave and the generated polarization must be proper. In
nonlinear optics this is referred to as phasematching. For second harmonic genera-
tion, phasematching implies that the phase velocity of the fundamental and second
harmonic waves are equal in the nonlinear material. Since optical materials are
dispersive, it is not possible to achieve equal phase velocities in isotropic materials.
Shortly after Franken et al’s first relatively inefficient nonphasematched second
harmonic generation experiment, Kleinman (2), Giordmaine (3), and Maker et 
(4), and later Akhmanov et al (5) showed that phase velocity matching could 
achieved in birefringent crystals by using the crystal birefringence to offset the
dispersion.

Along with the important concept of phasematching, other effects leading to
efficient second harmonic generation were studied. These included focusing (6, 7),
double refraction (8-10), and operation of second harmonic generators with 
external resonator (i 1, 12) and within a laser cavity (13, 14).

An important extension of nonlinear interactions occurred in 1965 when Wang
& Racette (15) observed significant gain in a three-frequency mixing experiment. The
possibility of optical parametric gain had been previously considered theoretically
¯ by Kingston (16), Kroll (17), Akhmanov & Khokhlov (18), and Armstrong et al 
It remained for Giordmaine & Miller (20) in 1965 to achieve adequate parametric
gain in LiNbO3 to overcome losses and reach threshold for coherent oscillation.
This early work led to considerable activity in the study of parametric oscillators
as tunable coherent light sources.

Simultaneously with the activity in nonlinear devices, the theory of nonlinear
interactions received increased attention. It was re.cognized quite early that progress
in the field depended critically upon the availability of quality nonlinear materials.
Initially, the number of phasematchable nonlinear crystals with accurately measured
nonlinear coefficients was limited to a handful of previously known piezoelectric,
ferroelectric, or electro-optic materials. An important step in the problem of
searching for new nonlinear materials was made., when Miller (21) recognized that
the nonlinear susceptibility was related to the third power of the linear susceptibility
by a factor now known as Miller’s delta. Whereas nonlinear coefficients of materials
span over four orders of magnitude, Miller’s delta is constant to within 50~. To
the crystal grower and nonlinear materials scientist, this simple rule allows the
prediction of nonlinear coefficients based on known crystal indices of refraction and
symmetry, without having to carry out the expensive and time-consuming tasks of
crystal growth, accurate measurement of the birefringence to predict phasematching,
orientation, and finally second harmonic generation.

The early progress in nonlinear optics has been the subject of a number of
monographs [Akhmanov & Khokhlov (22), Bloembergen (23), Butcher (24), Franken
& Ward (25)] and review articles [Ovander (26), Bonch-Bruevich & Khodovoi
(27), Minck et al (28), Pershan (28a), Akhmanov et al (29), Terhune & Maker 
Akhmanov & Khokhlov (31), and Kielich (32)]. hi addition, nonlinear materials 
been reviewed by Suvorov & Sonin (33), Rez (34), and Hulme (34a), 
compilation of nonlinear materials is provided by Singh (35). Two books have
appeared, one a brief introduction by Baldwin (36), and the second a clearly written
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NONLINEAR OPTICAL PHENOMENA AND MATERIALS 149

text by Zernike & Midwinter (37). Finally, a text covering all aspects of nonlinear
optics is to appear soon (38).

Nonlinear Devices

The primary application of nonlinear materials is the generation of new frequencies
not available with existing laser sources. The variety of applications for nonlinear
optical devices is so large that I will touch only the highlights here.

Second harmonic generation (SHG) received early attention primarily because 
early theoretical understanding and its use for measuring and testing the nonlinear
properties of crystals. Efficient SHG has been demonstrated using a number of
materials and laser sources. In 1968 Geusic et al (39) obtained efficient doubling 
a continuous wave (cw) Nd : YAG laser using the crystal Ba2NaNbsO 1 s. That same
year, Dowley (40) reported efficient SHG of an argon ion laser operating 
0.5145/~m in ADP. Later Hagen et al (41) reported 70~ doubling efficiency of 
high energy Nd: glass laser in KDP (potassium dihydrogen phosphate), and Chesler
et al (42) reported efficient SHG of a Q-switch Nd:YA(~ laser using LilOa. 
efficiently doubled Q-switched Nd : YAG laser is now available as a commercial laser
source (43). In addition, LiIOa has been used to efficiently double a Ruby laser (44).
Recently the 10.6 pm CO2 laser has been dot~bled in Tellurium with .5~o efficiency
(43) and in a ternary semiconductor CdGeAs~ with 15~ efficiency (46).

Three-frequency nonlinear interactions include sum generation, difference fre-
quency generation or mixing, and parametric generation and oscillation. An
interesting application of sum generation is infrared up-conversion and image up-
conversion. For example, Smith & Mahr (47) report achieving a detector noise
equivalent power of 10-1, W at 3.5 pm by up-converting to 0.447 l*m in LiNbOa
using an argon ion laser pump source. This detection method is being used for
infrared astronomy. Numerous workers have efficiently up-converted 10.6 #m to the
visible range (48-52) for detection by a photomultiplier. An extension of single beam
up-conversion is image up-conversion (37, 53, 54). Resolution to 300 lines has been
achieved, but at a cost in up-conversion efficiency.

Combining two frequencies to generate the difl’erence frequency by mixing was
first demonstrated by Wang & Racette (15). Zernike & Berman (55) used 
approach to generate tunable far infrared radiation. Recently a number of workers
have utilized mixing in proustite (36, 57), CdSe (58), ZnGeP2 (52, 52a), Ag(3aS2
(59), and recently AgGaSe2 (60, 61) to generate tunable coherent infrared output
from near infrared or visible sources.

Perhaps the most unique aspect of nonlinear interactions is the generation of
coherent continuously-tunable laser-like radiation by parametric oscillation in a
nonlinear crystal. Parametric oscillators were well known in the microwave region
(62, 63) prior to their demonstration in the optical range. To date, parametric
oscillators have been tuned across the visible and near infrared in KDP (29, 64,
65) and ADP (66) when pumped at the second harmonic and fourth harmonic 
the 1.06 ~tm Nd : YAG laser, and they have been tuned over the infrared range from
0.6 /~m to 3.7 #m in LiNbO3 (67-72). The above parametric oscillators were
pumped by Q-switched, high peak power, laser sources. Parametric oscillators have
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also been operated in a cw manner in Ba2NaNbsOl5 (73-76) and in LiNbO3 (77,
78). However, the low gains inherent in cw pumping have held back research in
this area.

In 1969 Harris (79) reviewed the theory and devices aspects of parametric
oscillators. Up to that time oscillation had been achieved in only three materials:
KDP, LiNbO~, and Ba2NaNbsO~. Since 1969 parametric oscillation has been
extended to four new materials: ADP (80), LilO3 (8,1, 82), proustite (Ag3AsS3) (227),
and CdSe (83). The new materials have extended the available tuning range. However,
the development of oscillator devices still has remained materials limited. At this time
LiNbO3 is the only nonlinear crystal used in a commercially available parametric
oscillatorJ Smith (84) and recently Byer (85) have discussed parametric oscillators
in review papers and Byer (86) has reviewed their application to infrared spectroscopy.

Nonlinear interactions allow the extension of coherent radiation by second
harmonic generation, sum generation, and difference frequency mixing over a wave-
length range from 2200/~ to beyond 1 mm in the far infrared, In addition, tunable
coherent radiation can be efficiently generated from a fixed frequency pump laser
source by parametric oscillation. The very wide spectral range and eff~ciency of
nonlinear interactions assures that they will become increasingly important as
coherent sources.

NONLINEAR PHENOMENA

Introduction

When a medium is subjected to an electric field the electrons in the medium are
polarized. For weak electric fields the polarization is linearly proportional to the
applied field

P = ~o)~lE

where Z1 is the linear optical susceptibility and % is the permittivity of free space
with the value 8.85 x 10- ~2 F/m in inks units. The linear susceptibility is related to

the medium’s index of refraction n by ;El ~ n2_ 1.
In a crystalline medium the linear susceptibility is a tensor that obeys the

symmetry properties of the crystal. Thus for isotropic media there is only one value
of the index, and for uniaxial crystals two values, no the ordinary and ne the
extraordinary indices of refraction, and for biaxial crystals three values n~, n~, and

A linear polarizability is an approximation to the complete constitutive relation
which can be written as an expansion in powers of the applied field, as

P = ~o[X~ +X2 "E+x3 "E2+...]E

where Z~ is the second order nonlinear susceptibility and )~3 is the third order
nonlinear susceptibility. A number of interesting optical phenomena arise from the
second and third order susceptibilities. For example, )C" gives rise to second harmonic

a Chromatix Inc., Mountain View, California.
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NONLINEAR OPTICAL PHENOMENA AND MATERIALS 151

generation (1), dc rectification (87), the linear electro-optic effect or Pockels effect
(25), parametric oscillation (20), and three-frequency processes such as mixing 
and sum generation. The third order susceptibility is responsible for third harmonic
generation (88), the quadratic electro-optic effect or Kerr effect (28), two-photon
absorption (89), and Raman (90), Brillouin (91), and Rayleigh (92) scattering.

We are primarily interested in effects that arise from Z2. For a review of the
nonlinear susceptibility :Z2 and the resulting interactions in a nonlinear medium see
Wemple & DiDomenico (93) and Ducuing & Flytzanis (93a).

To see how Z2 gives rise to second harmonic generation and other nonlinear
effects, consider an applied field

E = E1 cos(klX-69t)+E 2 cos(k2x-o)t)

incident on the nonlinear medium. The nonlinear polarization is proportional to
z2E2, giving

plus a similar term for frequency m2. This term describes both de r~tification and
second harmonic generation. In addition, there are sum and mixing terms of the form

z2E~ E2[cos {(k~ - k2)x- (~, m2)t} +c os {( k~ + k~)x- (~ m2)t}

present in the expansion. These terms describe difference frequency and sum
frequency generation. All of the above processes take place simultaneously in the
nonlinear medium. The question that naturally occurs is how one process is singled
out to proceed efficiently relative to the competing processes. In nonlinear inter-
actions phasematching selects the process of interest to the exclusion of the other
possible processes. Thus, i~ the crystal birefringence is adjusted (by temperature or
angle of propagation) such that second harmonic generation is the phasematched
process, then it proceeds with relatively high efficiency compared to the remaining
processes involving sum and difference frequency generation.

CRYSTAL SYmmETrY Like the linear susceptibility, the second order nonlinear
susceptibility must display the symmetry properties of the crystal medium. An
immediate consequence of this fact is that in centrosymmetric media the second
order nonlinear coefficients must vanish. Thus nonlinear optical effects are restricted
to acentric materials. This is the same symmetry requirement for the piezoelectric
] tensors (94) and therefore the nonzero components of the second order
susceptibility can be found by reference to the listed ] tensors. However, the
nonlinear coefficient tensors have been listed in a number of references (24, 35, 37,
95).

The tensor property of ~2 can be displayed by writing the nonlinear polarization
in the form

P~(oa) = eo ~ X~ E~(mz)E~(oO l.
jk

where Zi~k(-- ma, ~o2, e)~) is the nonlinear susceptibility tensor.
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In addition to crystal symmetry restrictions, ;~i)~ satisfies two additional symmetry

relations. The first is an intrinsic symmetry relation which can be derived for a
lossless medium from general energy considerations (23, 96). This relation states
that Zi~k(-- co3, c°2, c°1) is invariant under any permutation of the three pairs of indices
(-c%, i); (co2,j); (col, k) as was first shown by Armstrong et al (19). The 
symmetry relation is based on a conjecture by Kleinman (2) that in a lossless medium
the permutation of the frequencies is irrelevant and therefore ;(i~k is symmetri.c under
any permutation of its indices.

Finally, it is customary to use reduced notation and to write the nonlinear
susceptibility in terms of a nonlinear coefficient di~g = di, n where m runs from 1-6
with the correspondence

(jk)=(ll) (22) (33) (23) 
m= 1 2 3 4 5 6

and
6

Pi(O)3)-----gO 2dir,(EE)r, 2.
m=l

The 3 x 6 di~ matrix operates on the column vector (EE)r, given by
2. 2.(EE)~ = E2~; (EE)2 = (EE) 3=Ez,

(EE),, = rEz; (E E)5=2ExEz; (E E)6 = xEr
As an example, the nonlinear ~1 tensor for the 7~2rn point group to which KDP

and the chalcopyrite semiconductor crystals belong has the components

Px = 2dt,*ErEz; Pr = 2dta, ExEz; Pz =: 2d36ExEr 3.

However, Kleinman’s symmetry conjecture states that d~,~ = d~ equals d~6 =
d~a~ since any permutation of indices is allowed. This is experimentally verified.
Equation 1 and 2 show that

Zim( -- 093’ 0)1’ 092) 2dira( -- 0)3" 0)1, 0)2 4,

This defines the relation between the nonlinear susceptibility and the ~1 coefficient
used to describe second harmonic generation. The definition of the nonlinear
susceptibility has been discussed in detail by Boyd & Kleinman (97) and 
Bechmann & Kurtz (95).

MILLER’S RULE We have not yet made an estimate of the magnitude of the nonlinear
susceptibility. An important step in estimating the magnitude of il was taken by
Miller (21) when he proposed that the field could be written in terms of the
polarization as

E( - (.%) = 1__~ 2Ai~k(_ C03, cot, o)2)p.i(ot)e~(a)2) 5.
80 jk

Comparing Equations 5 and 2 shows that the tensor ~l and A are related by

dijk = eO ~ Zil(f.o3)Z.im(0)2))(,kn(fol)Atran(--C93, 0)2, 0)1) 6.
Iron

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. M

at
er

. S
ci

. 1
97

4.
4:

14
7-

19
0.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 R
ob

er
t C

ro
w

n 
L

aw
 L

ib
. o

n 
12

/2
1/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


NONLINEAR OPTICAL PHENOMENA AND MATERIALS 153

where glj = (n~- l) relates the linear susceptibility to the index of refraction. Miller
noted that A is remarkably constant for nonlinear materials even though ~1 varies
over four orders of magnitude.

Some insight into the physical significance of A can be gained by considering a
simple anharmonic oscillator model representation of a crystal similar to the Drude-
Lorentz model for valence electrons. This model has been previously discussed by
Lax et al (98), Bloembergen (23), Garrett & Robinson (99), and Kurtz & Robinson
(100). For simplicity we neglect the tensor character of the nonlinear effect and
consider a scalar model. The anharmonic oscillator satisfies an equation

£+F~+~ooEx+~x2 = _e E(a), 
m

where F is a damping constant, ~ is the resonant frequency in the harmonic
approximation, and ~ is the anharmonic force constant. Here E(~, t) is considered
to be the local field in the medium. The linear approximation to the above equation
has the well known solution

Z(~) z- 1z z 2= = ~/(~0- ~ - iF~)
2 -- Ne2/m% is the plasma frequency. Substituting th~ linear solution backwhere wp

into the anharmonic oscillator equation and solving for the nonlinear coefficient d
in terms of the linear susceptibilities gives

Ne3~ 1
d=

60 m2 D(~I)D(~E)D(~3)

where D(~) is the resonant denomina.tor term in the linear susceptibility. Finally,
using the relation between A and d given by Equation 6 we find that

[ m~o~A = ~NEea/ 7.

On physical grounds we expect that the linear and nonlinear restoring forces are
roughly equal when the displacement x is on the order of the internuclear distance
a, or when w~a ~ ~a2. In addition, if we make the approximation that Naa ~ 1 the
expression for A simplifies to

A = aE/e 8.

For a = 2 A the value for Miller’s delta predicted by our simple model is 0.25 m2/C.
This compares very well with the mean value of 0.45 ~ 0.07 m2/C given by Bechmann
& Kurtz (95).

Equation 6 shows that the second order susceptibility to a good approximation
is given by

d ~ eoZ(C~)a)Z(C~)E)Z(c~h)A

~ eo(n2- 1)3A ~ eon6A

In nonlinear processes d2/na is the material nonlinear figure of merit. Figure 1 shows
this figure of merit and the transparvncy range for a number of nonlinear materials.
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Figure I Figure of merit and transparency range: for selected nonlinear crystals.
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Although dZ/n3 varies over four- orders of magnitude, the intuitive physical picture
inherent in the anharmonic oscillator model gives a remarkably accurate account
of the magnitude of a material’s nonlinear response.

Tt-IEORETICAL MODELS Although the anharmonic oscillator model gives insight into
the origin of the nonlinear susceptibility, it does not account for the tensor character
of ] or allow the calculation of the nonlinear force constant a.

The theory of the nonlinear susceptibility has been the subject of increased
consideration. Historically, a quantum treatment based on a perturbation expansion
of the susceptibility was the first description put forth for the nonlinear susceptibility
(19, 23, 24, 101-104). Unfortunately, in solids, approximations to the quantum result
are required to obtain numerical results. In gases, where the wavefunctions are
better known, the quantum expressions for the third order susceptibility (second
order processes are not allowed by symmetry) do allow predictions of the magnitude
of Z3 which agree very well with measured values (105).

Robinson (106) was the first to attempt to simplify the complete quantum
expression for the nonlinear susceptibility. He approached the problem by letting
the octapole moment of the ground state charge density serve as the eccentricity
of the electronic cloud. Flytzanis & Ducuing (107, 108) and Jha & Bloembergen
(109) applied this approach to the III-V compounds.

In the late 1960s Phillips & Van Vechten developed a theory for the dielectric
properties of tetrahedrally coordinated compounds (110, 111). This theory, based 
Penn’s (112) earlier theory of the dielectric susceptibility, is the basis for several
models describing the nonlinear susceptibility of crystals (107, 110, 113-119).

Briefly, the theory is based on a single energy gap description of the material
which is related to the dielectric constant by

e(0)- 2 2= ~p/E0
2 hNe2/m% is the plasma energy of the valence (ground state) electrons.where f~ =

Phillips & Van Vechten (110) have shown that the average energy gap Eo can be
decomposed into a covalent and ionic part Es and C by the relation E~2 = Es2 + Cz,

and that the ionicity of the bond is described by f~ = C2/E~. For the ionic or
antisymmetric part of the bond, Phillips & Van Vechten (110) have shown that 
is described well by

where b is a constant, Z,~ and Z~ are the valence of elements A and B which form
the bond, and k~ is the Thomas-Fermi screening constant.

There are two approaches to calculating the nonlinear susceptibility based on the
above theory. The first is to interpret the theory as a two-band model and evaluate
the matrix elements appearing in the expansion for the second order susceptibility.
This approach has been taken by Flytzanis (107), Phillips & Van Vechten (110),
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and Kleinman (ll6). Using the method, Kleinman shows that the nonlinear
coefficient for zincblende compounds is

2

d,4=0.245~[ "a’~IC [" e2

where ao is the Bohr radius and Z is the linear susceptibility. The values of d~4
predicted by Equation 9 are in good agreement wi~h experiment.

The second approach (113, 114) calculates the nonlinear susceptibility from
variations in the linear susceptibility under an applied field. In this approach the
position of the bond charge can vary (the bond charge model) (113, 120) or a transfer
of charge along the bond axis can occur (the charge transfer model) (118, 119). 
approaches give good descriptions of the second order susceptibility. The extension
to the third order nonlinear coefficient has been considered recently by Chemla et
al (121).

Levine (115) has modified and extended the bond charge model of Phillips 
Van Vechten (110). In summary, the bond charge theory does accurately account
for both the magnitude and the si~ of the nonlinear susceptibility of most nonlinear
materials. However, for the purpose of searching for new nonlinear materials or
estimating the nonlinear coefficient of a potential nonlinear material, Miller’s rule is
far simpler to apply.

Second Harmonic Generation

We are now in a position to evaluate the nonlinear interaction in a crystal and to
calculate the conversion efficiency and its dependence on phase~natching and
focusing. Conceptually, it is easier to treat the special case of second harmonic
generation and then to extend the principal results to three-frequency interactions.

The starting point for the analysis is Maxwell’s equations from which the traveling
wave equation is derived in the usual manner. The traveling equation

V~E- ~oa~- ~ = ~o~ 10.

describes the electric field in the medium with a linear dielectric constant ~ driven
by the nonlinear driving polarization O2p/&~. It is customary to define the fields
by the Fourier relations

E(r, t) = ~[E(r, o) exp {i(k" ot)} + c .c.]

and-

P(r, t) = kiP(r, o) exp {i(k" or)) + c .c

Substituting into Equation 10 making the usual slowly varying amplitude approxi-
mations that o~P ~ ~oP ~ ~, k OE/& ~ O~E/Oz~, and ~E ~ E, and letting ~ = ~g~c
be the electric field loss per length, gives

1 ~E _ i~ocoP
~ + eE + c & 2

for the equation relating the envelope quantities of the fields. Neglecting loss,
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assuming a steady state solution, and using the definition given by Equation 3 for
the driving polarization, the above equation reduces to a pair of coupled nonlinear
equations for the fundamental and second harmonic waves

dE(09)
- i~E(2r~)E*ffo) exp(iAkz) 1 la.

dz

dE(2~0)
dz - i~:E(~)E(09) exp (- 1lb.

where ~ = ~d/nc and Ak = k(2~)-2k(~) is the wavevector mismatch. At phase-
matching Ak = 0 and n(~) = n(2~) since 2~n/2 where n isthe indexof refraction.
Here we have introduced the interaction constant ~ which includes the nonlinear
coe~cient d.

The above coupled equations for second harmonic generation have been
solved exactly (19). It is useful to discuss the solution for second harmonic generation
since the results can be extended to three-frequency interactions. We proceed by
considering the low conversion e~ciency case for a nonzero Ak, and then the high
conversion e~dency case.

In the low conversion limit, the fundamental wave is constant with distance.
Therefore, we set dE(~)/dz = 0 and integrate Equation 1 

~~(z ~ ~)

~1/2
dE(2~) i~E2(~) exp (- iAkz) 

gO g-l/2

which gives

E(2o9) [~_, = i~E2 (~) [exp (iAkl/2)- exp (iAkl/2)]
- iAk

-2, ,, sin(Akl/2)= ~r~ ~099t ~

If we denote (sin x)/x by sinc x, note that the intensity is given by

/~/C~0I = ~-let2

then in the low conversion limit, the conversion efficiency is

I(2g°) -- 1~2/2 sine2 (~)

where

r:l:. = IE(09)I
_ 2092

12.

13.
n3¢3£o

This example shows that phasematching enters into the nonlinear conversion
process through the phase synchronism 2factor sinc (Akl/2) which is unity at Akl = O.
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Also, the second harmonic conversion efficiency is proportional to Idl 2 and I ~, as
expected, and varies as the fundamental intensity. The above result holds in the
plane wave focusing limit where I = P/A and the area A = nW~o/2 with Wo the
gaussian beam electric field radius.

For high conversion efficiencies, Equations lla and llb can be solved by
invoking energy conservation such that E2(co)+E2(2co)--EiZnc where Einc is 
incident electric field at z ~ 0. The solution for perfect phasematching is the well
known result

I(2co) _ tanh2 (~Ei,c z)

1(co)
which for small ~:Eincz reduces to the low conversion efficiency result. In theory,
second harmonic generation should approa6h 100~o as a tanh2x function. In
practice, conversion efficiencies of 40-50~ are reached under optimum focusing
conditions.

The solutions for second harmonic generation suggest that phasematching and
focusing are important if maximum conversion efficiency is to be achieved. The
important aspects of phasematching and focusing are discussed next.

PHASEMATCHING It immediately follows from Equation t2 that for second har-
monic generation to be efficient, Ak must be zero. As stated earlier, this is
accomplished in birefringent crystals by utilizing the birefringence to overcome the
crystal dispersion between the fundamental and second harmonic waves. As a
specific example, consider phasematching in the negative (ne < no) uniaxial crystal
KDP.

For a beam propagating at an angle 0m to the crystal optic axis, the extraordinary
inde~ is given by

[ 1 ]2 coS20m sin2Or"

where no and n~ are the ordinary and extraordinary indices of refraction at the
wavelength of interest. Two types of phasematching are possible for negative uniaxial
KDP :

Type I n2eW.(Om)
Type II n~,o(Or") = ~[,,~ (Or.) + ~o 

For positive uniaxial crystals (n~ > no) the extraordinary and ordinary indices are
reversed in the Type I and II phasematching expressions (35).

Type I phasematching uses the full birefringence to offset dispersion and Type
II phasematching averages the birefringence to use’. effectively half of it in offsetting
the dispersion. A more important factor in choosing the type of phasematching
to be used is the nonlinear coefficient tensor. It must be evaluated to see that the
effective nonlinear coefficient remains nonzero. Thus for KDP where the 712m non-
linear tensor has components given by Equation 3, Type I phasematehing requires
that the second harmonic wave be extraordinary or polarized along the crystallo-
graphic z axis. To generate this polarization, the fundamental waves ~nust be
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polarized in the Ex and Ey direction arid thus be.ordinary waves. In addition, the
product ExEr should be maximized. Therefore, the propagation direction in the
crystal should be in the (110) plane at 0m to the crystal optic or z axis. For this
case, the effective nonlinear coefficient becomes deff= d sin 0,, and it is this coefficient
that is used in the SHG conversion efficiency expression. The effective nonlinear
coefficients for other crystal point groups have been calculated and listed (37, 97).
In addition, the phasematching angles for a number of nonlinear crystals and
pump lasers have been listed by Kurtz (1.22).

The above discussion for uniaxial crystals can be extended to biaxial crystals.
As one might expect, the generalization becomes complicated. However, Hobden
(123) has given a complete description of the process including a careful definition
of the three principle indices n~, n~, and n~.

One other aspect of phasematching is important in limiting SHG conversion
efficiency. As the extraordinary wave propagates in the crystal, its power flow
direction differs by the double refraction angle p from its phase velocity direction.
This walk-off of energy at the doubled refraction angle leads to a decrease in
SHG efficiency due to the separation of the ordinary fundamental wave and the
extraordinary second harmonic wave. The double refraction angle is given by

p ~ tan p = n~z(2m) no2(~o~) sin 20,.

Note that p = 0 at 0 = 0 and 0 = ~/2. The latter angle corresponds to a propagation
direction 90° to the crystal optic axis. Phasematching in this direction is referred to
a 90° phasematching and has the advantage of not inducing Poynting vector walk-off.
As shown in the next section, when p :# 0, the effective interaction length in the
crystal may be considerably reduced, thus reducing the conversion efficiency.
Therefore, 90° phasematching is desirable when possible.

FOCUSING Up to this point we have assumed that the interacting waves are plane
waves of infinite extent. In fact, the beams are usually focused into the nonlinear
crystal to maximize the intensity and interaction length. In addition, the waves are
usually generated by laser sources and thus have a Gaussian amplitude profile with
electric field radius w. Gaussian beam propagation theory and laser resonators have
been treated by a number of authors and will not be considered here. For the
present discussion, the important factors of interest are (a) the form of the Gaussian
beam

E = Eo exp(- rZ/w2)

(b) the relation between the peak power and intensity

and (c) twice the distance over which the beam area doubles

2~n 2
b = kw2 = ~-w

which is called the confocal distance.

14.
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TO include focusing, the SHG efficiency can be written in the form

I(co) - \rcn~0 n2~o c0c3: Eo lko h(B, ¢)
15.

where I is the crystal length, k~ the wavevector in the crystal at the fundamental
frequency, and h(B, ~) is the Boyd & Kleinman (97) focusing factor. The focusing
factor h(B, ~) is a functioffof the double refraction parameter

and the focusing parameter

where b is the confocal distance given by Equation 14.
In general, h(B, ~) is an integral expression involving B and ~. However, it

reduces to simplified expressions in the proper limits. If we introduce the aperture
length 1, given by

and an effective focal length ly given by

If -- 7~W2k -- 2 b
2

then the second harmonic conversion efficiency takes the limiting forms

I
t for (Ia, 1: >> l)

ll a for (lf>>l>>la)
I(2co__~) KP,~. I: I,

for (l
I(co) - 2

41.~ for (l~>la>>l:)
4.75/} for (la>>l>>lf)

The first limit corresponds to the plane wave focusing case where h(~, B) ~ lib.
This case holds until lib ~ 1, which is called the eonfocal focusing limit. The second
harmonic conversion efficient is optimum at lib = 2.84 where h(2.84, 0) = 1.06 (97).

If p ~a 0, then the aperture length may limit the interaction length to the second
and third cases. In practice, even a small walk-off angle may reduce the second
harmonic efficie/acy by 30 times for a given crystal length and focusing. It is there-
fore very desirable to adjust the crystal indices of refraction to achieve 90° phase-
matching if possible, In general, the last three of the above limits are not encountered
experimentally. This discussion on focusing is intended to serve as a general intro-
duction. A more detailed presentation is given by Boyd & Kleinman (97).

Three-Frequency Interactions

Three-frequency interactions include sum generation and difference frequency
generation or mixing in which two waves are incident on the nonlinear crystal and
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interact to generate a third wave, and parametric generation in which a high power
pump frequency interacts in a nonlinear crystal to generate two tunable frequencies.

We denote the three frequencies by (oI, ~o2, and ~o3 such that (o3 = (DE"~(D 1 is
the energy conservation condition and k3 = k2+ki+Ak is the momentum con-
servation condition with Ak the momentum mismatch.

If we consider LiNbO3 as an example, the generated polarization now has three
components given by

P(o)I) = eo2d31E(~°3)E*(°~2)

P(c°2) = eo2d31E(°93)E*(col)
P(~o3) eo2d3 ~ E(~o2)E(09x)

Substituting the polarization and electric field expressions at ~o~, co2, and o)3 into
the wave equation given by Equation 10 gives three coupled equations similar to
the two coupled equations previously derived for the SHG case :

dE1
dz ~- cqE1 = tclE3E~exp(iAkz)

16a.

dE2
d~- + ~2Ez = it~2E3E~’ exp(iAkz) 16b.

dE3
d-~- + ~3 E3 = it¢3 E1 E2 exp (- iAkz) 16c.

where E(~oa) is now written El, ~:i = ~oi d/ni c, and ~i is the loss.
We next investigate the solution of the above coupled equations for the three

frequency processes of interest. The coupled equations have been solved exactly
(19, 124); however, we ~onsider only the simplified case of interacting plane waves
and weak interactions such that the pump wave is not depleted.

SUM GENERATION (UP-CONVERSION) For the case of sum generation ~o~ is a weak
infrared wave that sums with a strong pump wave at 092 to generate a high frequency
(visible) wave at (03. Negligible pump depletion implies that dEz/dz = 0 so that 
three coupled equations reduce to a pair of Equations (16a and 16c). If we assume
no loss, Ak = 0, and a solution of the form erz with input boundary conditions that
E3(z = 0) = 0 and Ea(z = 0) = E~(0), the solution of the coupled equations 

Ex(z) = El(0) cos

=X/~3 Et(0) sin E3(z)

where

Thus sum generation has an oscillatory solution with no net gain and a 100~o
conversion for Fz = n/2. In the low conversion limit, sin Fz ~ Fz so that the up-
conversion efficiency becomes
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162 r~V~R

I~ _ (~o3/F2/2 sinc2 17.
11(0)

where F2l2 --(2~o~o3d21212)/(nln2n3c3%) is equal to the previously derived 
conversion eNciency factor given by Equation 13. In the low conversion e~ciency
limit the sum generation e~ciency ~uals the SHG e~ciency as one expects from
physical arguments. However, at high conversion e~ciencies the sum generation
conversion oscillates while the SHG conversion approaches 1~ as tanh~ Fz.

Sum generation has been used to generate new frequencies in the same way as
SHG. For example, 10.6 gm has been summed with 5.3 gm in CdGeAsa (125) 
generate the third harmonic of 10.6 ~ at 3.5 ~m. :Similar summing has been used
to generate the third harmonic frequency of a 1.~36 ~m Nd:YAG laser in KDP
with 60~ e~ciency (126).

Sum generation also allows infrared waves to be up-converted to the visible for
detection by a photomultiplier. Infrared up-conversion has been extensively studied
(127-129) and applied to astronomical uses (47).

DIFFERENCE FREQUENCY GEN~ATION. For difference frequency generation or mix-
ing the pump is the high frequency field at ~3. Therefore, lack of pump depletion
implies dE3/dz = 0 so that the coupled equations reduce to Equations 16a and 16b.
Again assuming a solution of the form er~ and boundary conditions that E~(z = 0) 
E~(0) and Ez(0) = 0 results in the solution

E~(z) = E~(0) cosh 

~(~) = ~(0) sinh Fz

Now we notice that exponential functions have replaced the sin and cos functions
which occurred in the sum generation case. This implies that both the input field
at ~ and the generated difference field at ~z grow during the nonlinear interaction
at the expense of the pump field. Again in the limit of low conversion efficiency
where sinh FI ~ Fl the mixing efficiency becomes

where F~l~ = (2m~m~dZl~I~)/(n~n~n~c~o) is the conversion eNciency which ~uals
’ the SHG and sum generation e~ciency. However, now both waves grow and have

net gain. This suggests the possibility of parametric oscillation once the gain
exceeds the losses.

Difference frequency generation or mixing has been used to measure parametric
gain (130) and to generate new frequencies. Of particular interest is the generation
of infrared and far infrared radiation by mixing in nonlinear crystals. A number
experiments have recently been carried out using visible dye laser sources (56, 57)
and near infrared sources (59, 61) to generate tunable infrared output.

PARAMETRIC GgNERATION For this case we assume a strong pump wave at ~ and
equal input fields at ~ and ~. Again the three coupled equations reduce to
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Equations 16a and 16b in the absence of pump depletion. The remaining pair of
equations are the same as for mixing; however, now the boundary conditions that
El(z -- 0) -- El(0) and E2(z z 0) = E2(0) are inputs into the system. In fact, the input
fields need be only the quantum noise field associated with the gain of the parametric
amplifier.

The general solution of Equations 16a and 16b for the above boundary conditions
has been given by Harris (79) and by Byer (85) in their review articles on parametric
oscillators and is too long to reproduce here. However, for a single frequency
incident on a parametric amplifier, the gain defined by G2(/) I12( II2/IE2/01121- 1
simplifies to

G2(/) ---- [’2/2 sinh2 ~]l 19.
.ol

where F2/2 ~ (2colCOEd21Ela)/(nln2n3C3eo) and g = [FE-(Ak/2)2]~. In the low gain
limit Equation 19 reduces to

G2(l) = F212 sinc2 (~/) 

which shows that the parametric gain equals the SHG conversion efficiency in this
limit. In the high gain limit Equation 19 reduces to

G2(l) = (1/4) exp(2F/) 
for Ak/2 ~ g. In practice high gains have been reported (65, 86, 131) such that super-
radiant operation is possible (126, 132).

Parametric amplifiers, like all linear amplifiers, have inherent noise. Since the
parametric frequencies can be in the visible range and are on the order of 10- lo W
per watt of pump power, the noise emission is intense enough to be easily visible
as parametric fluorescence (133, 134). A striking color photograph of parametric
fluorescence generated in LiNbO3 (135) is reproduced in a review article 
Giordmaine (136). Parametric noise emission can be considered generated by the
amplified zero point fluctuations of the electromagnetic field (137-139). It can 
shown that the fluorescence noise power is given simply by Pnoise = (energy per
photon) x gain x bandwidth or approximately by Fnoise z hO) × [.2/2 X (c/2Anl) where
An is the crystal birefringence and I the crystal length. For LiNbO3 the emitted
noise power per watt is approximately 10-10 W, or one order of magnitude larger
than the spontaneous Raman scattering power. The noise power can be used to
measure the gain, bandwidth, and tuning characteristics of a parameter oscillator prior
to ever achieving threshold (133, 134). Parametric fluorescence also provides a very
accurate method of measuring the nonlinear coefficient of a crystal since only a power
ratio need be measured and not an absolute power as for SHG measurements (137).
However, one of the most interesting applications of parametric generation is the
achievement of coherent tunable laser-like output from an optical parametric
oscillator.

Parametric Oscillators

A parametric oscillator is schematically represented by a nonlinear crystal within
an optical cavity. The nonlinear crystal when pumped provides gain at the two
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frequencies 12o2 and 81 (the signal and idler fields). When the gain exceeds the loss
the device reaches threshold and oscillates. At threshold the output power increases
dramatically, similar to the behavior of a laser. The generated output is coherent and
collinear with the pump laser beam. Once above threshold, the parametric oscillator
efficiently converts the pump radiation to continuously tunable signal and idler
frequencies.

There are a number of configurations for an optical parametric oscillator (OPO),.
The first distinction is between cw and pulsed operation. Due to the much higher
gains, we consider only pulsed operation where the pump is typically generated
by a Q-switched laser source. Parametric oscillators have also operated internal to
the pump laser cavity, but the external configuration is more common. Finally, there
are different parametric oscillator cavity configurations. The two most important
are the doubly resonant oscillator (DRO), where both the signal and idler waves
are resonated by the cavity mirrors, and the singly resonant oscillator (SRO), where
only one wave is resonant. The operation characteristics of parametric oscillators
with these cavity configurations have been discussed in detail in the review articles
by Harris (79), Smith (84), and Byer (85).

The important differences between DRO and SRO operation include threshold,
frequency stability, and pump laser frequency requirements. The threshold of a
DRO occurs when the gain equals the product of the signal and idler losses or

F2lZ sinc2 (~1) -- = ala2 22.

where F2/2 given by Equation 19 is the single pass parametric gain and a2, a1 are the
single pass power losses at the signal and idler. The SRO threshold is greater than
that of the DRO. If the idler wave at ~ is not resonated, then the SRO threshold
becomes

F212 sine2 (-~) = 2a2 23.

which is 2/al times greater than the DRO threshold. As an example consider a
5 cm long 90° phasematched LiNbO3 crystal pumped by the second harmonic of
a Nd:YAG laser at 0.532/tm. The DRO pump power threshold for 2~ losses at
091 and o92 is only 38 mW. The SRO threshold is increased to 3.8 W. For cw pump
lasers the DRO is required in order to achieve threshold. However, for pulsed
parametric oscillator operation where kilowatts of pump power is available, the
higher SRO threshold is not a disadvantage and singly resonant offers significant
advantages over doubly resonant operation.

One obvious advantage of the SRO is the much simpler mirror coating require-
ment since only one wave is resonated. The DRO also requires a single frequency
pump wave (79), whereas the SRO can be pumped by a multiple axial mode source
which more closely approximates typical laser characteristics. Finally, the DRO
operates with large frequency fluctuations since tl~e condition ~op = 09,+~01 must
hold for each parametric oscillator cavity mode and pump frequency. This leads to
mode jumping and the so-called "cluster effect" (67) in output frequencies where
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only a cluster of a few adjacent axial modes oscillate within the gain lincwidth of
the parametric oscillator. Since the SRO has only a singlc cavity none of these
frequency competition effects occur. In fact, the SRO can be pumped with a multiple
axial mode pump laser source and still operate at a single frequency for the
resonated wave. These factors make singly resonant operation desirable whenever
possible.

The conversion efficiency of parametric oscillators has been studied in detail and
is discussed in the previously mentioned review papers. Briefly, the DRO theoretically
should be 50~o eff~cient and the SRO near 100~ efficient. In practice the DRO
efficiency approaches 50~ and the SRO efficiency is near 40~o although 60-70~
conversion efficiencies have been obtained.

The tuning and bandwidth of a parametric oscillator are determined by the

phasematching condition k3 = k2 + k1 and the sinc (Ak//2) phase synchronism factor.
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Fi.qure 2 LiNbO3 parametric oscillator tuning curves for various doubled Nd : YAG laser
pump wavelengths.
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In general, a parametric oscillator is tuned by altering the crystal birefringence. This
is usually done by crystal rotation, thus changing the extraordinary index of
refraction, or by controlling the crystal temperature and thus the birefringence. As
an example Figure 2 shows the temperature tuning curves ofa LiNbOs parametric
oscillator pumped by various doubled wavelengths of a Q-switched Nd : YAG laser.
The tuning range extends from 0.55 to 3.7 #m. Tuning curves for a number of non-
linear crystals have been given in the review article: by Byer (85).

The gain bandwidth of a parametric oscillator is found by analyzing the
sinc2 (Ak//2) function. Letting Ak//2 = n define the bandwidth gives

~co = 2~/fll

where

~ = [(~3k~/~309~)-(¢3k2/6q¢02)]

is the crystal dispersion factor. Expanding fl in terms of the crystal index of
refraction shows that fl ~ 2An/c so that the parametric oscillator gain bandwidth
in wavenumbers is approximately

1
24.Ibv (cm- 1)I -- 2Ant

where An is the birefringence and l the crystal length. A 5 cm long LiNbOs
parametric oscillator has approximately a 1 em- ~ gain bandwidth.

Like laser sources, the parametric oscillator can oscillate over a narrower
frequency range than the full gain bandwidth. In this regard, the parametric
oscillator acts like a homogeneously saturated laser and can operate in a single
axial mode without a reduction of the conversion efficiency, Linewidths as narrow
as 0.001 cm- 1 or 30 MHz have been achieved wifh LiNbO3 parametric oscillators
(for further discussion see Byer, 85).

More than any other device the optical parametric oscillator requires a uniform
high optical quality, low loss nonlinear crystal. In addition, the crystal must have
adequate birefringence to phasematch and be able to withstand the high laser
intensities needed to reach threshold without damaging. These linear and nonlinear
optical material requirements are discussed in detail in the following section.

NONLINEAR MATERIALS

Material Requirements

Nonlinear crystals must satisfy four criteria if they are to be useful for nonlinear
optical applications. These criteria are adequate nonlinearity and optical trans-
parency, proper birefringence for phasematching, and sufficient resistance to optical
damage by intense optical irradiation. These properties are briefly discussed in the
next four sections. They are then illustrated by descriptions of useful nonlinear
crystals.

NONLINEARITY In the early days of nonlinear optics adequate laser power was not
always available to take full advantage of the potential conversion efficiency of a
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nonlinear crystal. Under those circumstances, the highest crystal nonlinearity was a
very important factor. Since the late 1960s the situation has changed chiefly due to
the availability of well controlled high peak power laser sources at many wave-
lengths across the ultraviolet, visible, and infrared spectral regions. Under present
circumstances, the crystal nonlinearity becomes only one factor in determining the
crystal’s potential for nonlinear applications. For example, if more than adequate
laser power is available, then the nonlinear conversion efficiency is determined by
the maximum incident intensity the crystal can withstand without damaging. In
addition, the nonlinear conversion efficiency is then more usefully expressed at a
given intensity rather than power level. Finally, in comparing nonlinear crystals with
more than five orders of magnitude range in their figures of merit as illustrated
by Figure 1, one finds that most crystals have very nearly the same conversion
efficiency at a fixed intensity. This remarkable fact is illustrated by Figure 3 which

1.0

0.10

0.01

0.001

I
LiNbO3 (5 cm)

ZnC~P~(I)

~ Te I ZnGeP2(Tr)
I ADP (Scn

CdSe (2cm)
AgGaSez

A GoS 
I TI3AsSe3

I AgaAsS3

LIT03

TRANSPARENCY RANGE (p.m)

Figure 3 Nonlinear conversion efficiency (parametric gain) at 1 MW/cm2 pump intensity
and transparency raiage of nonlinear crystals. The pump wavelength for parametric con-
version (second harmonic wavelength for SHG) is shown by the vertical tick mark. The
nonlinear efficiency varies as the square of the pump wavelength and crystal length. The
crystal lengths are taken to be 1 cm unless specified.

20 I0 5 2 I 0.5 0.2
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shows the parametric gain for a number of nonlinear materials. Under the present
circumstances, the magnitude of a crystal’s nonlinear coefficient is not of paramount
importance, but must be taken into account along with the other material parameters.

The measurement of crystal nonlinear coefficients has continued at a rapid pace
so that there are extended tables available listing nonlinear coefficients (35, 85, 95,
122). The measurement of absolute nonlinear coefficients has been carried out by 
number of methods including second harmonic generation (140, 141), mixing (58),
and parametric fluorescence (137). The latter method has the advantage of being 
relative power measurement and not requiring the absolute measurement of power
as for SHG. Relative nonlinear coefficient measurements have also been made by
three methods: the powder technique (142), the Maker fringe method (4, 143), 
the wedge technique (144-146). The latter method is particularly useful in that 
gives, in addition to the relative magnitude of the nonlinear coefficient, the relative
sign and the coherence length of the interaction. At this time, absolute nonlinear
coefficients have been measured for a number of’ crystals including ADP, KDP,
LilO3, LiNbO3, Ag3SbS3, CdSe, and AgGaSe2. In tlhe visible LilO3 and KDP and in
the infrared GaAs are used as standard nonlinear crystals. There is interest in
improving the accuracy of measurement for nonlinear coefficients and work is in
progress toward that goal.

TRANSPARENCY Known nonlinear materials have transparency ranges that extend
from 2200 A in ADP through the infrared in a number of semiconductor compounds
and. beyond the reststrahl band into the far inti’ared in both oxide and semi-
conductor crystals. In general, the transparency range in a single material is limited
by the band edge absorption at high frequencies and by two-phonon absorption
at twice the reststrahlen frequency at low frequencies. Materials are also transparent
in the very low frequency range between dc and the first crystal vibrational mode.
Thus nonlinear interactions may extend from the ultraviolet through the visible and
infrared to the far infrared. In fact, only a few crystals having the proper bire-
fringence and overlapping transparency ranges are needed to cover the entire
extended frequency range. This is important because the growth of high optical
quality nonlinear crystals is, in general, a difficult task. In addition, nonlinear
crystals that can be grown well, are transparent, and have proper birefringence for
phasematching are very rare among all known acentric crystals (147). For example,
among 13,000 surveyed crystals only 684, or 5.25~o, are uniaxial and phasematchable,
and of these less than half have a nonlinearity greater than KDP and far fewer are
amenable to crystal growth in high optical quality centimeter sizes.

The transmission loss in a nonlinear crystal reduces the SHG conversion
efficiency by e-t~2/2+~1)l where ~2 and ~1 are the loss per length at the second
harmonic and fundamental waves. Thus a 0.05 cm-- ~ and 0.025 cm- ~ loss at 209 and
09 in a 1 cm long crystal reduces the SHG efficiency by 0.95, which is negligible.
However, in a 5 cm crystal the same losses reduce the efficiency by a factor of
0.77, which is significant. High optical quality oxide materials have losses in the
10- 3 to 10- 5 cm - 1 range, whereas semiconductor rnaterials show much higher losses
in the 1 cm-~ to 10-~ cm-~ range. The reduction of optical loss in nonlinear
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crystals is important if the nonlinear interaction is to proceed efficiently. It becomes
even more important for operation of a parametric oscillator where the threshold
pumping power and operating efficiency directly depend on the crystal and cavity
losses.

Recently intensity-dependent losses have been recognized as important factors in
the transparency of a crystal. At the short wavelength end of a material’s trans-
parency range, two-photon absorption may become the dominant loss mechanism
even in a frequency range that is normally transparent to low intensity radiation.
For example, at 10 MW/cm2 the two-photon absorption in GaAs at 1.32 #m is
0.3 cm 1, which is significant compared to the 0.05 cm-1 normal absorption loss
(148). This nonlinear absorption mechanism has also been observed in oxide non-
linear materials for intense pump radiation within the two-photon frequency range
of the band edge. Thus for maximum efficiency, pump wavelengths must be longer
than the two-photon absorption edge of the nonlinear crystal, although operation
near the band edge is possible at lower efficiencies and pump intensities. Gandrud
& Abrams (45) have reported an additional loss mechanism in tellurium due 
two-photon induced free carrier absorption. This mechanism reduced the SHG
conversion efficiency from 15 to 5~o for doubling a CO2 laser source.

The two-photon absorption limit was in mind when pump wavelengths for the
parametric gain calculations shown in Figure 3 were chosen. Figure 3 does illustrate
that with a few nonlinear materials, nonlinear interactions are possible over the
entire 2200 A to 30/~m spectral region. Thus there is the possibility of generating
continuously tunable coherent radiation in nonlinear crystals over this extended
spectral range.

BIREFRINGENCE AND PHASEMATCHING For efficient nonlinear interactions phase-
matching must be achieved in the nonlinear crystal. As an example, SHG in cubic
crystals that lack birefringence and thus are not phasematchable occurs only over
a distance of one coherence length between 10-100/~m. By using birefringence to
offset dispersion, the phasematched interaction may proceed over the full crystal
length, or approximately I cm. Since the SHG efficiency varies as 12, phasematching
increases the efficiency by at least 10’~. The enormous improvement in nonlinear
conversion efficiency due to phasematching makes phasematching essential in non-
linear crystals. Thus if a crystal is nonlinear and transparent, it must still phasematch
to be useful. Adequate birefringence for phasematching is the most restrictive
requirement placed on a crystal and reduces the number of potential crystals to only
a few hundred out of over 13,000 known crystals.

In conducting surveys for new nonlinear crystals, the crystal symmetry is deter-
mined by X-ray methods or by reference to existing tables (149). If the crystal 
acentric and belongs to a point group that gives nonzero nonlinear coefficients for
phasematching (see Kurtz, 122, for further discussion) then the crystal indices 
refraction and birefringence must be determined. Fortunately, mineralogy texts and
data collections are available (150) which list indices of refraction and birefringence
for a large number of crystals. A comparison of the crystal birefringence against its
index of refraction and similar quantities for known phasematchable crystals gives
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a quick indication of whether the potential nonlinear crystal has adequate bire-
fringence for phasematching. Wemple (151), Wemple & DiDomenico (152), and 
(147) have plotted birefringence vs index of refraction for known nonlinear crystals
to determine the minimum required birefringence for phasematching. Such plots are
useful since birefringence of a particular crystal cannot accurately be determined
theoretically at this time.

Of course the above preliminary indications of possible phasematching in a new
material must be carried a step further to determine the actual phasematching
properties of a crystal. This is usually done by accurately measuring the crystal
indices of refraction and fitting the results to an analytical expression which is useful
for phasematching calculations. The measurement of crystal indices of refraction is
tedious experimentally, especially in the infrared, so that complete measurements
have been made on only a few crystals (35, 95). The measurements must be accurate
to 0.01~ for phasematching calculations to be made. For calculation purposes, the
index values vs wavelength are usually expressed by a Sellmeier equation or
modified Sellmeier equation. Once in this form, the phasematching expression for
SHG n~ = nZe~(O) can be solved directly for the phasematching angle 0. For three-
frequency phasematching conditions, a small computer program is usually written to
solve simultaneously the two equations coa = ~oz + o~a and ka = k2 + k1 where k =
2~zn(2)/2. Care must be taken in solving these equations since they may be double
valued. The LiNbO~ parametric oscillator tuning curves, shown in Figure 2, were
calculated in this manner using analytical expressions for the index of refraction
given by Hobden & Warner (153).

Nonlinear crystals must also have a very uniform birefringence over the crystal
length for efficient nonlinear conversion. Birefringence uniformity places one of the
most stringent requirements on the growth of quality nonlinear crystals. Nash et
al (154) have discussed the reduction in conversion efficiency due to birefringent
nonuniformities.

Another limitation to nonlinear conversion efficiency is the breaking of phase-
matching due to thermally induced birefringence changes. This problem has been
treated in detail for SHG by Okada & Ieiri (155). They show that the optimum
phasematching temperature shifts with increasing average laser power. In crystals
with a large birefringence change with temperature, such as ADP and LiNbOa,
thermal breaking of phasematching becomes serious at average power levels near
1 W. On the other hand, crystals such as LiIOa which have a small temperature
variation of birefringence can handle much higher average powers.

DAMAGE INTENSITY An important limitation to the maximum nonlinear conversion
eff~ciency is crystal damage due to the input laser intensity. Laser induced damage
may be the result of a number of interactions in the material. Ready (156) discusses
possible damage mechanisms in a monograph on the effects of high-power laser
radiation. Among the mechanisms considered are thermal heating, induced ab-
sorption due to multiphoton absorption which leads to heating or to breakdown,
stimulated Brillouin scattering, self-focusing, surlhce preparation, and dielectric
breakdown. Thermal heating, in which the temperature rise of the material is
proportional to the input pulse duration or deposited energy is a common damage
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mechanism in metals and highly absorbing materials. Semiconductors behave more
like metals than dielectrics for this form of damage. Ready (156) lists semiconductor
damage thresholds (see p. 305 of ref. 156) as energy dependent near 5-10 J/cm2. For
a 100 nsec laser pulse the damage intensity is thus 5~100 MW/cm2 which agrees
with reported values for silicon and germanium (157). For 1 nsec pulses the power
density increases by 100 to greater than 1 GW/cm2 if thermal damage remains the
dominant mechanism. There is experimental evidence in GaAs that such high damage
thresholds are reached for pulses near 1 nsec. This has important implications for
infrared nonlinear optics since, in general, parametric gains are limited by the much
lower 20-60 MW/cm2 damage threshold for long pulses. In the limit of cw pumping,
semiconductor materials have damage thresholds as low as 1 kW/cm2 due to surface
heating and melting.

Damage thresholds for dielectric materials are generally much higher than for
semiconductors. For example, sapphire damages near 25 GW/cm2 for Q-switch pulse
irradiation. Glass & Guenther (158) have reviewed damage studies in dielectrics. They
point out that nonlinear materials show a marked decrease in damage threshold
for phasematched second harmonic generation. For example, LilO3 shows surface
damage at 400 MW/cmz for 10 nsec pulses. When phasematched it damages at
30 MW/cm2 for the fundamental and 15 MW/cm2 for the second harmonic. Similar
results have been noted in LiNbO3 and Ba2NaNbsO15.

In a series of very careful studies, Ammann (159) measured LiNbO3 surface
damage thresholds with various quarter wave coatings. He found that uncoated
LiNbO3 damages at 40 MW/cm2 at 1.08 ~m for a 0.5 W, 4 kHz, 140 nsec
repetitively Q-switch laser source. The damage threshold was increased to 150
MW/cm2 for a 2/4 layer ofA1203-coated LiNbO3 crystal. Additional measurements
on thin ZnS films showed the importance of overcoating and the lowering of the
damage threshold with time upon exposure to air (160). Similar lowering of damage
threshold for ThF2 overcoated CdSe crystals used in an infrared parametric oscillator
has been noted (161). In that case the damage threshold decreased from 60 MW/cm2

to 10 MW/cm2 over a period of a few days. In addition, damage occurred much
more readily along surface scratches, indicating that surface preparation is important.

Bass & Barrett (162) proposed a probabilistic model for laser induced damage
based on an avalanche breakdown model. For this damage mechanism, the laser
field acts as an ac analog to dc dielectric breakdown. A laser power density of
10 GW/cm2 corresponds to 4 x 106 V/cm, which is close to the measured dc dielectric
breakdown fields near 30 x 106 V/cm. Bass & Barrett (162) have presented the laser
damage threshold in a probabilistic way such that the probability to induce surface
damage is proportional to exp(-K/E) where K is a constant and E is the root
mean square (rms) optical field strength. Measured dielectric breakdown intensities
lie near 25 GW/cm2 for glasses and fused silica and between 24 GW/cm2 for non-
linear crystals. It appears that if other damage mechanisms to not limit the laser
intensity at lower levels, then laser induced dielectric breakdown determines the
maximum incident intensity. Efforts to understand the mechanisms of laser induced
damage have been increasing (163, 164). Hopefully these studies will lead to a better
understanding of the material’s damage intensity limits.

Fortunately the damage intensity for most useful nonlinear materials lies between
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10 MW/cm2 and 1 GW/cm2. Figure 3 then shows that nonlinear conversion
eflicicncies or parametric gains are high for crystal lengths on the order of 1 cm.
The damage intensity does place a limit on the-energy handling capabilities of
nonlinear crystals. Thus Q-switched laser pulse ene:rgies transmitted through 1 cm2

area crystals are limited to 1-10 J. For most applications of nonlinear crystals this
is not a serious limit since the laser host medium and the nonlinear material
damage at similar energy densities.

KDP and its Isomorphs

KDP, ADP, and their isomorphs are ferroelectric crystals (165) belonging to the
742m tetragonal point group above their Curie temperatures. KDP crystals are
transparent from 0.21 to 1.4/~m for the nondeuterated and 0.21 to 1.7 /~m for the
deuterated material (166). ADP has a similar transparency range. KDP and its
isomorphs are negative birefringent and are phasematchable over most of their
transparency range. For a complete reference to crystal indices of refraction see
Milek & Welles (166), Bechmann & Kurtz (95), and Singh (35).

Because of the availability of large, high optical quality crystals, KDP and ADP
were the subject of early nonlinear optical experi~nents by Miller et al (167) and
Miller (21). Later Francois (140) and Bjorkholm & Siegman (141) made accurate
cw measurements of ADP’s nonlinearity. In addition, Bjorkholm (168) has made
comparative nonlinear coefficient measurements of other crystals relative to KDP
and ADP.

KDP and ADP have played a significant role as efficient second harmonic
generators for both cw and pulsed sources. For cw doubling ADP and KDP can
be temperature tuned to the 90° phasematching condition over a limited range of
fundamental wavelengths between 0.54 /~m and 0A9 /~m at temperatures between
+60°C and -80°C (169, 170). In particular, ADP and KDP ° phasematch for
doubling 5145 A at - 9.2°C and - 11.0°C. Other isomorphs of KDP 90° phasematch
over different wavelength regions. For example, Rubidium dihydrogen arsenate
(RDA) ° phasematches for doubling th e 0.694 #~n Ruby laser (171) and Cesium
dihydrogen arsenate (CDA) ° phasematches for doubling 1.06 #m(172).

Using 90° phasematched ADP, Dowley & Hodges (169) obtained up to 100 
of 2573 A in 1 msec pulses and 30-50 mW of cw power. The doubling was
performed internal to an argon ion laser cavity to take advantage of the high
circulating fields. The SHG efficiency was strongly dependent on crystal losses.

The ultraviolet transparency and phasematching characteristics of KDP isomorph
crystals make them useful for ultraviolet generation by sum and second harmonic
generation. Huth et al (173) were the first to demonstrate this capability 
externally doubling a dye laser source. Similarly Yeung & Moore (174) and Sato
(175) have generated tunable ultraviolet between 3()44-3272 A by summing a 
pumped dye laser and a Ruby laser.

Wallace (176) reported an intracavity doubled dye laser that tunes between 2610
and 3150 A. This source uses a Q-switched internai[ly doubled Nd:YAG laser as a
pump source for the rhodamine 6G and sodium ltuorescein dye laser. The ADP
intracavity doubled dye laser produced 32 mW of average power at 2900 A in a
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2 3 cm-~ bandwidth. The conversion efficiency from input doubled Nd:YAG to
ultraviolet power was 4.3~o. At the 65° phasematching angle used for doubling the
rhodamine 6G dye laser, the ADP double refraction angle is/9 = 0.025 rad, which
results in a conversion efficiency to the second harmonic of 1~o per 100 W of
input power.

Using a 1 J per pulse 10 pulse per second Nd:YAG laser source, Yarborough
(177) has obtained high ultraviolet pulse energies and average powers. For the
1.06 ~m source Yarborough uses a flashlamp pumped 1/4" diameter rod Nd : YAG
oscillator followed by 1/4" diameter and 3/8" diameter rod amplifiers. This source is
doubled in a 90° phasematched CD*A crystal at 45~o efficiency yielding 450 mJ,
0.532/~m pulses. The CD*A phasematches at 103°C and the incident 1.06/~m power
is unfocused into the 20 mm CD*A crystal. The green 0.532 #m source is doubled
into the ultraviolet in a 2 cm long 90° phasematched ADP crystal. The conversion
eff~ciency for this step is 22~, yielding 100 mJ pulses at 0.266/~m. The harmonic
generation in both CD*A and ADP takes place without damage to the crystals.
The power levels reported are limited by the laser source becoming unpolarized at
high pumping levels. Simultaneously, thermal heating of the doubling crystals begins
to limit the second harmonic generation efficiency. The ultraviolet source has been
used as a pump for an ADP parametric oscillator (66). In addition, the green
output at ~).532/~m has been used to pump dye lasers with up to 60~o conversion
efficiency.

The high energy, high average power source reported by Yarborough illustrates
the optical quality of KDP and its isomorphs. In addition, the use of 90° phase-
matching for efficient second harmonic generation demonstrates its advantage in
these experiments. Although KDP-type crystals have not been utilized extensively
in parametric oscillator studies, they play an important role in generating tunable
ultraviolet radiation by second harmonic and sum generation of tunable visible
SOUrCes.

LiNbO3 and LilO3
LiNbO3 is a ferroelectric material (178) with a Curie temperature approximately
40°C below its melting point of 1253°C. Since the recognition of the unique
electro-optical (179) and nonlinear optical (180) properties of LiNbO3 in 1964, it has
been extensively studied (181). The growth and physical properties of LiNbO 3 have
been discussed in a series of papers by Nassau et al (182) and by Abrahams et 
(183-185). The electro-optic coefficients for LiNbO3 have been measured by 
number of workers (186-189), as have the indices of refraction (153, 190, 191). 
particularly useful form for the refractive 5ndices, including temperature dependence,
is given by Hobden & Warner (153).

Early work with LiNbO3 showed two potentially troublesome optical properties:
optically induced inhomogeneities in the refractive index (11, 192-196) and growth-
dependent birefringent variations (197-200). The optically induced index inhomo-
geneities were found to be self-annealing for crystal temperatures above approxi-
mately 180°C for visible radiation and 100°C for near infrared radiation. This fact
led to attempts to grow "hot" LiNbO3 by adjusting the composition (198) and 
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doping with MgO to increase the birefringence to achieve phasematching for 1.06 #m
at temperatures approaching 180°C. In addition, new but related crystals such as
BaNaNb5015 (39, 201) were grown in an attempt to overcome the index damage
problem. Unfortunately, these attempts were not successful due to the poor crystal
quality that resulted from doping LiNbO3 and to the striations inherent in
Ba2NaNb5015 crystals.

Although growth striations severely limit the size and quality of BaaNaNb5015
crystals, they have been used to double cw Nd:YAG lasers (39, 202) with good
efficiency. The nonlinear coefficient, which is approximately three times that of
LiNbOs, partially offsets the disadvantage of smaller crystals of less optical quality.
Serious attempts to grow striation-free Ba2NaNb5Ol~ crystals have not been
successful so that the use of this material is not widespread.

The growth-dependent birefringent variations in LiNb.Oa were less difficult to
eliminate. The problem was solved by growth of LiNbO3 from its congruent melting
composition near a lithium to niobium ratio of 0.48 mole ~o (203-205). The growth
of LiNbO3 crystals from a congruent melt plus improved optical quality tests (199,
206) led to uniform high quality single crystals of over 5 cm in length.

Ferroelectric LiNbO3 has a large variation of birefringence with temperature.
This allows SHG at 90° phasematching for fundamental wavelengths between 1 and
3.8 #m at tcmpcratures between 0°C and 550°C. Conversely, LiNbO3 90° phase-
matches for parametric oscillation for a number of pump wavelengths and can be
temperature tuned over a broad spectral region. Figure 2 shows the parametric
oscillator tuning curves for various pump waveleng~ths of an internally doubled Q-
switched Nd : YAG laser. These LiNbOs phasematching curves were calculated by
using the Hobden & Warner (153) index of refi-action expressions. Additional
LiNbO3 tuning curves, including angular dependence, are given by Harris (79, 207)
and Ammann et al (208).

The internally doubled Q-switched Nd:YAG pumped LiNbO3 parametric
oscillator is the best developed parametric oscillator at this time. This system is
described by Wallace (209). The Nd:YAG laser pump source operates with 
internal LilO3 doubling crystal, acousto-optic Q-switch, and two Brewster angle
prisms for wavelength selection. The combination of four doubled Nd: YAG pump
wavelengths and temperature tuning allows the oscillator to cover the 0.54 to

Table 1 LiNbO3 parametric oscillator operating pararneters

Average Pulse Laser Pump
Tuning Range Peak Power Power Length Wavelength

(/~m) (W) (mW) (nsec) (/~m)

3.50-2.50 80-150 5-10 70 0.532
0.975-2.50 250-350 30 80 0.659
0.725-0.975 250 20 200 0.562
0.623-0.760 250 50 150 0.532
0.546-0.593 300 3-5 200 0.473
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3.65 #m spectral region. Table 1 gives the oscillator spectral output wavelengths,
laser pump wavelengths, and output power levels. The values used in this table are
useful for comparative purposes since they reflect the characteristics of the particular
Q-switched Nd : YAG pump laser and are not LiNbO3 oscillator limits.

Threshold for the LiNbO3 SRO with a 5 cm length 90° phasematched crystal is
typically between 300 and 600 W. The peak power conversion efficiency is near
50~o for an oscillator operating a few times above the threshold. Due to the finite
pump pulse width and oscillator build-up time, the energy conversion efficiency is
approximately 30~. However, much higher conversion efficiencies have been
reported.

LiNbO3 is one of the highest quality nonlinear optical materials. Its use in
parametric oscillators to generate tunable radiation over the 0.6 to 3.5/~m spectral
range is a demonstration of its importance as a nonlinear material.

In 1968 Kurtz & Perry (142) applied a technique based on the measurement 
SHG of powders to the search for nonlinear materials. That search led to the
evaluation of ~-iodic acid (~-HIO3) for phasematched second harmonic generation
by Kurtz et al (210). Measurement of the nonlinearity of ~-HIO3 showed that it had
a nonlinear coefficient approximately equal to that of LiNbO3. The favorable non-
linear properties of ~-HIO3 led to consideration of other AIO3 crystals (211). One
of the first crystals considered was lithium iodate, LilO3. Its optical and nonlinear
optical properties were studied by Nath & Haussuhl (212) and Nash et al (213). 
more favorable optical quality of LilO3 compared to ~-HIO3 has led to its use in
a number of nonlinear applications spanning its entire transparency range from
0.35 to 5.5 #m.

LilO3 (point group 6) has a measured nonlinear coefficient slightly greater than
that of LiNbO3 (168, 171,214, 215). Its indices of refraction and large birefringence
(An = 0.15) have been measured as have phasematching angles for various pump
wavelengths. LilO3 phasematches at 52° for doubling 0.6943 /~m of a Ruby laser
(44, 168, 216) and at ° for doubling a 1.06/~m Nd:YAG laser.

LilO3 has proved particularly useful as a high optical quality nonlinear crystal
for internal second harmonic generation of a Nd : YAG laser. For this application
the laser mirrors are highly reflecting in the infrared but are transparent at the
second harmonic. To obtain efficient doubling the laser operates Q-switched. In
this mode, the LilO3 acts as a nonlinear output coupler and efficiently doubles the
Nd:YAG. By operating with a prism in the laser cavity any one of 15 Nd:YAG
laser lines can be selected and efficiently doubled by rotating the LilO3 to the phase-
matching angle. In this way wavelengths at 0.473, 0.532, 0.579, and 0.659/~m can be
generated. For example, peak powers of over 10 kW and average powers of greater
than 1 W have been obtained from the internally doubled Nd : YAG laser source (72).

In 1970 Campillo & Tang (217) studied spontaneous parametric scattering 
LilO~ and Dobrzhanskii et al (218) carried out similar measurement in ~-HIOz.
Shortly afterward, Goldberg (81) constructed a LilOa parametric oscillator pumped
with a Ruby laser and Izrailenko et al (82) demonstrated an oscillator using LilO3
and ~-HIO3 pumped by a doubled Nd : Glass laser.

Campillo (219) also externally doubled the LilO3 oscillator using an 8 mm LilO3
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~i03 DOUBLING ANGLE vs WAVELENGTH

HERBST~~__~

I.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8
FUNDAMENTAL WAVELENGTH (~m)

Figure4 Measured LilO3 phasematching angles vs fundamental wavelength. Data between
1.1 and 1.8/~m from Campillo (219) and data between 0.9 and 1.3/~m from Herbst (161).

crystal cut at 21.4°. Figure 4 shows the phasematching angles obtained in that
experiment over a range of fundamental wavelengt]hs between 1.1 and 1.8 ~m. The
second harmonic output at 100 W peak power tuned between 0.560 and 0.915 #m.
Figure 4 also shows phasematching data obtained by Herbst (161) in an internally
doubled LiNbO3 parametric oscillator and illustrates the phasematching properties
of LilO3 for SHG over a broad spectral region.

The infrared transmission of LilO3 allows interactions out to 5.5 #m Parametric
oscillation is possible, but not useful for idler wavelengths this far in the infrared
due to low gain. However, LilO3 does phasematch :for mixing. Meltzer & Goldberg
(220) have demonstrated mixing in LilO3 internal to a Ruby pumped dye laser.
Output powers of 100 W were generated over the 4.1 to 5.2 #m region by mixing
the Ruby source with the wavelengths from a DTTC dye laser. The spectral width
of the dye laser was 6 ,~ in its 0.802 to 0.835 #m region. Although LilO3 is
transparent and phasematchable in the near infrared spectral region, its low effective
nonlinearity due to the 19° phasematching angle reduces its conversion efficiency to
the point that other materials may prove more useful for infrared generation by
mixing.

Semiconductor Nonlinear Materials

LiNbO3 and LilO3 parametric oscillators have been tuned to 3.7 and 4.5 #m in the
infrared. Infrared oscillation is limited to these wavelengths due to the onset of
crystal absorption. Semiconductor nonlinear materials as discussed in this section
means the capability of extended infrared tuning from the two-photon absorption
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limit to beyond 10 pm. All materials that satisfy this extended infrared transparency
range are semiconductors with bandgaps between 2 and 0.5 eV.

Tellurium was an early crystal used for SHG in the infrared (221-223). However,
problems in crystal growth and handling have held back its widespread use.
Tellurium has the largest nonlinear coefficient d11 = 649 x 10-12 m/V of any known
crystal, but its large birefringence of An = - 1.45 and indices of refraction no = 6.25,
ne -- 4.80 make it difficult to use and force phasematching to very small angles. In
spite of these diff~culties, tellurium has been used to double a 10.6 #m CO2 laser
with 5~ efficiency (45). Higher efficiencies were not possible due to induced
absorption loss by free electron generation by the intense fundamental and second
harmonic waves (45). This problem is intensified in tellurium due to its 4.0 
bandgap which permits two-photon absorption, thus generating the free carriers
which lead to free carrier absorption.

Proustite (Ag3AsS3) is an extensively studied infrared nonlinear crystal first
considered by Hulme et al (224). Its large birefringence allows phasematched
nonlinear interactions over its entire 0.6 to 13 #m transparency range. Proustite
has been used to double a 10.6 #m CO2 laser (225) and to up convert 10.6 #m into
the visible using a Ruby laser pump source (49). Its indices of refraction have been
measured by Hobden (226). Proustite’s large birefringence (An = 0.22) allows 
angle phasematching near 0 = 20°. Propagation at such a phasematching angle
results in a reduced effective nonlinear coefficient deg -- d31 sin 0 4- d22 cos 0 that is
approximately twice d31 for LiNbO3. In addition, the large birefringence results in
a large double refraction angle (p = 0.08), giving a short effective interaction length.
In spite of these drawbacks and the low crystal burn density near 25 MW/cm2,

proustite has operated as a parametric oscillator near 2.1 #m pumped by a 1.06 #m
Q-switched source (227, 228). Recently Hanna et al (229) extended the operation
of a proustite parametric oscillator to the singly resonant configuration. They were
able to angle tune the oscillator over an extended 1.22 to 8.5 #m spectral range.
However, operation of the infrared oscillator in proustite is still marginal due to
crystal damage problems and mirror coating problems. These difficulties can be
bypassed by mixing in proustite using a near infrared source (56, 57).

In addition to proustite, two closely related crystals have been investigated for
infrared nonlinear optical applications. These materials are pyrargyrite (Ag~SbS~)
(222, 224, 230) and TI~AsS% described by Feichtner & Roland (231). Pyrargyrite
has properties very similar to proustite. It belongs to the same point group (3m),
is transparent between 0.6 and 13 pm and has a large enough birefringence to
phasematch over its transparency region. The measured phasematching angle for
doubling 10.6 #m is 29°. Its nonlinear coefficient is very close to that of proustite.

The material T13AsSe3 appears useful as an infrared nonlinear material. Its
transparency range extends from 1.26 to 17 #m and the crystal has been grown
in sizes up to 1.2 cm diameter and 3 cm in length. The crystal has large bire-
fringence similar to proustite and phasematches for doubling 10.6 #m at 22°, The
measured nonlinear coefficient is 3.3 times that of proustite and pyrargyrite. In
addition, Feichtner & Roland measured the crystal burn density at 10.6 #m to be
32 MW/cm2 compared to 20 MW/cm2 for proustite and 14 MW/cm2 for pyrargyrite.
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Unlike proustite and its related crystals, cadmium selenide (CdSe) 90" phase- 
matches over an extended infrared region. Wurtzite (6 mm) CdSe does not have 
adequate birefringence for second harmonic generation ; however, it does phase- 
match for mixing and off-degcnerate parametric oscillator operation (79). In addition 
to its high optical quality, CdSe has a nonlineair coefficient three times that of 
LiNbO 3. 

Herbst & Byer (58) performed the first phaseinatched interaction in CdSe by 
mixing 10.6 pm against the 1.833 pm N d :  YAG line (232) to generate 2.2 pm. The 
measured angle for the allowed Type I1 phasematching was 77". The observed 
mixing efficiency was 35% in a 0.6 cm crystal at 48 MW/cm2, which is less than the 
measured crystal burn density of 60 MW/cm*. 

The extended 0.75 to 25 pm transparency range of CdSe makes it useful as a 
tunable mixing source between 8 and 25 pm. In a recent experiment using a 
LiNbO, parametric oscillator source, Herbst & Byer (see 86) generated tunable 
radiation between 10 and 13.5 pm by mixing in CdSe. The measured peak output 
power of 2 W agreed with the expected conversion efficiency. 

In an extension of the mixing experiment in CclSe, Herbst & Byer (83) demon- 
strated the first singly resonant infrared parametrk oscillator in CdSe pumped by 
the 1.833 pm line of Nd:YAG. Davydov et a1 (233) also reported achieving singly 
resonant oscillation in CdSe. The observed threshold for the Herbst-Byer oscillator 
was 550 W and pump depletions of up to 40% were obtained. Figure 5 is a photo- 

Figure 5 Photograph of a CdSe singly resonant parametric oscillator operating at 2.2 and 
10 pm in the infrared. The pump radiation is incident from the right through a lens. The 
2 cm long CdSe crystal within the 5.7 pm confocal cavity is rotated for tuning. 
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graph of the CdSe parametric oscillator showing the 2 cm CdSe crystal within the
5.7 cm confocal cavity. At this time CdSe crystals up to 3 cm in length are
commercially available with longer (74 mm) higher-quality crystals having been
reported (234). CdSe singly resonant oscillators should operate reliably without
crystal burning for 4 cm long crystals.

Considerable effort has gone into growing new nonlinear materials, especially
materials that are useful in the infrared. One group of materials with the chalco-
pyrite (CuFeS2, point group 742m) structure (235) has particularly useful nonlinear
properties.

The chalcopyrite crystals form two groups which are ternary analogs of the
II-VI and III-V binary semiconductors. The first group is the I-III-VI 2 compounds
of which AgGaS2 and AgGaSe2 are examples. The second group is the II-IV-V2
compounds which include CdGeAs2 and ZnGeP2. Goryunova et al (236) were the
first to investigate the semiconducting and nonlinear optical properties of chalco-
pyrite crystals. In 1971 Chemla et al (237) reported on AgGaS2 and later that year
Boyd et al (238) measured the properties of ZnGeP2 and carried out a phasematched
up-conversion experiment of 10.6/~m (52). Byer et al (239) measured the properties
of CdGeAs2. The properties of these chalcopyrites and other potentially useful
crystals of the same class were extensively studied by Boyd et al (146, 240, 241) in 
series of papers. As a result of these and other measurements (125, 242) four crystals

¯ belonging to the chalcopyrite semiconductors have been identified as phasematch-
able and potentially useful for infrared nonlinear optics. These crystals are
CdGeAs2, ZnGeP2, AgGaSe2, and AgGaS2.

AgGaS2 is transparent between 0.6 and 13 #m. It is negative birefringent and
phasematchable over a wide range of the infrared (237, 240, 241). At this time
crystals up to 1 cm in size have been grown, but optical quality is not yet sufficient
for use in parametric oscillators. The material has been used for infrared generation
by mixing and for second harmonic generation (59).

AgGaSe2 is a close analogy to AgGaS2. However, its transparency range (0.73-
17 k~m) and phasematching curves are shifted to longer wavelengths. Figure 6 shows
the calculated AgGaSe2 tuning curves based on the index of refraction data of Boyd
et al (146). Crystals have been recently grown up to 4 cm in length with 0.02 cm-
loss at 10.6/~m. Although AgGaSe2 has not been used in a parametric oscillator,
efficient SHG of 10.6 ktm and 7-15/~m parametric mixing have been demonstrated
(61). AgGaSez single crystals grow readily. This, along with its improved optical
quality, high nonlinearity, and infrared phasematehing, make it a very useful infrared
nonlinear material (60).

Unlike the negative birefringent AgGaS~ and AgGaSe2, ZnGeP2 and CdGeAsz
are positive birefringent. Thus the Type II phasematching (n~,
is allowed at 90° where Type I phasematching has a zero effective nonlinear
coefficient. However, the effective nonlinearity is maximum for Type I phasematching
[n°~cop = n~(O)~os+n~(O)coi] at 0 = 45°. Type II phasematching doubles the bire-
fringence needed to achieve phasematching since it averages the birefringence at the
longer wavelengths. ZnGeP2 does not have enough birefringence to Type II phase-
match for SHG. However, it does phasematch for Type I SHG. Complete Type I
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ZO
AgGaSe2 TYPE I PHASEMATCHING

ABSORPTION EDGE
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~.p = 1.50/.t.m
~"~-""~" hp = 1.518/J..m

Xp = 1.06/.t.,m

90 80 70 60 50 40
PHASEMATCHING ANGLE (deg)

Figure 6 Calculated parametric oscillator tuning curves for AgGaSe2 for various pump
wavelengths showing the extended 2-18 ~tm phasematching range.

SHG phasematching curves for ZnGeP2 are given by Boyd et al (146). ZnGeP2
has been used for infrared up-conversion (52).

CdGeAs2 has the highest parametric figure of merit of any known crystal except
Tellurium. In addition, it is particularly useful for SHG of a 10.6 #m CO2 laser
or for parametric oscillation with a 5.3 ~m pump source (239). Recent work (46)
has demonstrated the potential of CdGeAs2 by SHG of a CO2 laser with 15%
efficiency in a 9 mm length crystal. Phasematched third harmonic generation is
also possible in CdGeAs2 (243) and has been extensively studied both theoretically
and experimentally (121). CdGeAs2 crystals have been grown up to 9 mm in length
with a loss near 0.2 cm- 1 at 10.6 #m. Crystal size and optical quality improvements
are required before the full potential of this material can be realized.

At this time the chalcopyrite crystals satisfy all of the requirements for nonlinear
materials except low absorption loss and crystal uniformity. The crystals cannot yet
be grown in adequate sizes of high optical qualitY. However, the very useful
nonlinear properties, especially in the infrared, lend considerable importance to
chalcopyrite crystal growth efforts.
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CONCLUSION

The propertie~ of nonlinear materials are better understood when discussed with
reference to nonlinear devices and the theory of nonlinear interactions. Therefore,
in the first half of this review, I discussed nonlinear phenomena including the
origin of the nonlinear susceptibility and the theoretical models which describe
crystal nonlinearity. Nonlinear interactions which were briefly reviewed included
second harmonic generation and the three-frequency processes of sum and difference
frequency generation and parametric generation and oscillation. The important
aspects of focusing and the concept of phasematching were introduced.

With the above discussion as a frame of reference, the nonlinear material
requirements including crystal nonlinearity, transparcncy, birefringence, and damage
intensity were discussed. These properties were illustrated by describing useful
nonlinear crystals. The properties of KDP and ADP, LiNbO3, LilO3, and semi-
conductor materials including proustite, pyrargyrite, cadmium selenide, and four
chalcopyrite materials were summarized. For reference Table 2 lists the linear and
nonlinear properties of selected nonlinear materials.

The first column of Table 2 gives the presently accepted values for the crystal
nonlinear coefficients. These values are based upon Levine & Bethea’s (244) best
value for GaAs. The parametric gain is proportional to the material parameters
d2/n~n3 where d is the effective nonlinear coefficient at the angle of phasematching
and no and n3 are the indices of refraction for the degenerate and pump waves.
Column 8 of Table 2 lists the material figure of merit which is also shown in
Figure 1 along with the crystal transparency range.

In many applications the pump laser has more than adequate power. In this case
the quantity of interest is the nonlinear conversion efficiency per input intensity and
the crystal burn intensity. The calculated conversion efficiency F212 given in Table 2
assumes a 1 cm length crystal unless stated otherwise. Figure 3 shows the conversion
efficiency at 1 MW/cm2 pump intensity for the crystals listed in Table 2. The four
ehalcopyrite crystals and LiNbO3 and ADP show good efficiencies. An important
limitation to the maximum parametric gain is the material damage. Table 2 lists
approximate values for damage in nonlinear crystals based on reported damage
intensity measurements. Since laser induced damage may be the result of a number
of interactions in the material, the reported values vary widely. However, the listed
values are useful for estimating the conversion efficiency of a nonlinear crystal as
limited by the onset of damage.

The properties of a large number of nonlinear materials have been measured and
useful nonlinear crystals for the ultraviolet, visible, and infrared regions have been
characterized. Although the nonlinear crystals listed in Table 2 allow nonlinear inter-
actions over the spectral range from 0.25 to 25 /~m, there are large classes of
materials that have not been investigated. Among these are organic materials (245)
and crystals potentially useful in the ultraviolet at wavelengths less than 0.2 #m.

There remains considerable work yet to be done for the full theoretical under-
standing of nonlinear crystals and the growth and improvement of presently known
phasematchable crystals. However, progress since the first experiment of Franken
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Table 2 Nonlinear coefficient, figure of merit, conversion efficiency, burn intensity,

!Material d x 1012
(point group (m/V)
pump wavelength) (References)

Te (32) du = 649
2v = 5.3 ,um (222)

CdGeAs2 (/12m) d36 = 236
).v = 5.3 ~m (241,239)

GaAs (~3m) d36 = 90.1
(244)

ZnGeP2 (g2m) d36 = 75
2~ = 1.83/~m (238)

TI3AsSe3 (3m) dr = 40
2v = 1.83 ,am (231)

AgGaSe2 (~12m) d36 = 33
2~, = 1,83 um (146)

CdSe (6 mn) dal = 19
).p = 1.83 pm (238, 58)

AgGaSe2 (~2m) d36 = 12.
2~ = 0.946/~m (240)

Ag3SbSa (3m) d+ = 12
2v = 1.o6 ,um (222)

Ag3AsS3 (3m) d+ = 11.6
).~ = 1,06 ,um (231)

LilOa (6) d3t = 7.5
2v = 0,694 #m . (214)

LiNbOs (3m) da~ = 6.25
2v = 0,532 (137)

ADP (a2m) da6 = 0.57
2p = 0.266 (140, 141)

KDP (/[2m) d36 = 0.50
2~, = 0,266 (143)

SiO~ (32) d~ - 0.33
(143)

n~ %-no O~ p deft:< 1012

6.25 638
4.80 -- 1.4:5 14° 0.10

(dcos20m)

193
II 55° 0.021 (dsin 0)3.51

3.59 + 0.086
212

I 35° 0.021 (dsin 20)

3.30 0 -- -- --

II 90° 0.0 d36
3.11 + 0.0383.15 62.2

1 62° 0.01 (d sin 20)

3.34 --0.182 36° 0.055 dr3.15

27
2.62

- 0.31;’
I 55° 0.01 (d sin 0)

2.58
I 90° 0.0 d36

2.45 +0.019 90° 0.0 da~2.47

10.8
2.42 -0.0:54 1 64° 0.17 (d sin 0)
2.36

1 90° 0.0 d36

2.86 -0.19 -- -- d+2.67

2.76 --0.223 30° 0.078 d~2.54

1.85 3.040.135 23° 0.0711.72 (d sin 0)

2.24 -0.081 90° 0.0 d312.16

1.53 -0.0,158 90° 0.0 d361.48

1.51 - 0.0,117 90° 0.0 da 61.47

1.55
1.56 +0,0095 -- -- d~
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and transmission range for nonlinear crystals

183

de’In’on3 F212 1"212 /burn Transmission
x 102’~ /(,O)eff(cmj (I W) (1 MW/cm2) (MW/cm2) Range (pro)

3634 0.011 0.95 × 10-4 0.18 40-60 4-25

861

1039

226

187

0.34

/cob = 104 pm

I= lcm

3.8 × 10-’~

4.6 × 10-’*

7.1 × 10-3

0.033

0.040

0.21

20-40

60

>4

2.4-17

0.9
17

1.4~ -

0.7 12

127 0.59 1.8 x 10 3 0.05

51 0.019 3.7 x 10-s 0.022 32 1.2-18

0.7142

63.4

24

5.52x 10-4

1.98 × 10-3

1.3 × 10-3

2.3 × 10-4

2.3 x 10-3

8.2 x 10-6

9.0 × 10-6

9.2

11

7.6

0.02

0.07

0.09

0.013

0.045

0.01

0.0118.2

/=lcm

/=2cm

>10

60

12 25

14-50

12-40

0.14

I=lcm

0.007

0.73-17

0.75-25

0.60-13

0.60-14

0.60-13

1.88 0.008 5.6 × 10-6 5.5 × 10-3 125 0.31-5.5

3.88 I -- 5 cm 2.1 × 10-z 1.28 50-140 0.35-4.5

0.100 1=5cm 2.9×10-3 0,131 >1000 0.20-1.1

0.079 I = 5 cm 2.30 × 10- a 0.103 > 1000 0.22-1.I

0.029 leo~ = 14 ,u -- -- > 1000 0.18-3.5
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et al (1) has been rapid. I would like to conclude this review by suggesting what
lies ahead in tunable coherent sources based on nonlinear interactions in crystals.
The parametric oscillator is a unique tunable coherent source because its gain
mechanism due to the crystal nonlinearity is independent of its tuning and band-
width, which depend on the crystal birefringence and dispersion. Where tunable
laser sources typically operate over a 10~o bandwidth (a dye laser for example) the
parametric oscillator tunes over a greater than two to one range. As an example,
Figure 7 shows the tuning curve of a 1.06 ~tm pumped LiNbO3 parametric oscillator
which angle tunes between 1.5 ~m and 4.0 ~tn. This oscillator was recently
demonstrated (246) and is capable of rapid tuning and high output energies.

The LiNbO3 parametric oscillator’s basic tuning range can be extended toward
the infrared by mixing the signal and idler in AgGaSe2 to cover the 3-18 #m range
and by mixing in CdSe to tune over the 10-30 ~m range. Second harmonic generation
in LiNbO3 and in LiIO3 extends the tuning to 0~3-1.5 #m. Finally, sum generation

4 I

~ OSCILLATOR

~ TUNING CURVE

OPTIC AXIS
MIRROR

._~[~
FtEFLECTIO N

RA NGE
LiNbO3 \

T = 126°C

0 I I I I I I I

50° 49° 48° 474=

CRYSTAL ORIENTATION-- 8

Figure 7 Tuning curve for a 1.06 t~m Nd:YAG pumped LiNbO3 parametric oscillator.
The mirror reflectance range for singly resonant operation is indicated.
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~ AgGaSez

I

/iNb03
//PARAMETRIC
I OSCILLATOR

L~ I0 3 ~G////

I I I l I I
90 80 70 60 50 40 50 20

PHASEMATCHING ANGLE (deg)

Figure 8 Spectral range vs crystal phasematching angle for the 1.06 ~m Nd : YAG pumped
LiNbOa parametric oscillator and following nonlinear crystal generators. CdSe and
AgGaSe2 phasematch for infrared generation by mixing the LiNbO3 oscillator’s signal and
idler frequencies. LiNbOa and LiIOa phasematch for doubling the primary oscillator
frequency range into the visible and ultraviolet.

in ADP phasematches for generation of 0.22-0.3 /~m in the ultraviolet. Figure 8
illustrates the phasematching angles and tuning range~ for these nonlinear inter-
actions. A detailed study (247) shows that for 10 mJ pump energies available from 
1.06/~m Q-switched Nd : YAG laser source, the parametric oscillator and all following
nonlinear interactions are 10-30~o efficient. This widely tunable, high energy device
should operate very much like a coherent spectrometer source. The spectrometer
concept illustrates the unique capabilities of nonlinear interactions for generation
of coherent radiation over an extended spectral range. The efficiency and high
power capability of nonlinear interactions assure wider application of nonlinear
devices as future tunable coherent sources.
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