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Abstract

In this paper, we consider a partially linear panel data model with cross–sectional

dependence and non–stationarity. Meanwhile, we allow fixed effects to be correlated

with the regressors to capture unobservable heterogeneity. Under a general spatial

error dependence structure, we then establish some consistent closed–form estimates

for both the unknown parameters and the unknown function for the case where N

and T go jointly to infinity. Rates of convergence and asymptotic normality results

are established for the proposed estimators. Both the finite–sample performance

and the empirical applications show that the proposed estimation method works

well when the cross–sectional dependence exists in the data set.
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1 Introduction

Nonlinear and nonstationary time series models have received considerable attention during the

last thirty years. Nonlinearity and nonstationarity are dominant characteristics of many eco-

nomic and financial data sets, for example, exchange rates and inflation rates. Many datasets,

such as aggregate disposable income and consumption, are found to be integrated processes.

With the development of asymptotic theory in recent years, researchers are able to construct

econometric models using original data rather than a differenced version, while in the past

one might need to use a differenced version to satisfy stationarity requirements. In a recent

publication, Gao and Phillips (2013) consider a partially liner time series data model of the

form:

Yt = AXt + g(Vt) + et,

Xt = H(Vt) + Ut, t = 1, . . . , T,

which extend existing partially linear models given in Härdle et al. (2000) and allow the inte-

grated time series Vt = Vt−1 + εt to be the driving force of the data set. Moreover, a semipara-

metric estimation method is provided in Gao and Phillips (2013) to recover the parameter A

of interest and unknown function g(·) based on a kernel estimation technique. As a result, the

relationship of some vital integrated economic and financial variables, like the impact of interest

rates on private consumption, may be depicted directly in modelling. While the literature on

nonstationary time series grows, very few nonlinear and nonstationary panel data models have

been provided to accommodate nonstationarity.

Recent studies by Robinson (2012) and Chen et al. (2012b) involve the time trend to capture

nonstationarity and extend the time series model in Gao and Phillips (2013) to the panel data

setting:

yit = x′itβ0 + g(t/T ) + ωi + eit,

xit = φ(t/T ) + λi + vit,

for i = 1, . . . , N and t = 1, . . . , T , where the relations
∑N

i=1 ωi = 0 and
∑N

i=1 λi = 0 are

stipulated for the purpose of identification. Recently, Bai et al. (2009) and Kapetanios et al.

(2011) extend the linear panel data models considered by Bai (2009) and Pesaran (2006) by

allowing the factors (also often known as macro shocks in some basic economic concepts) to

follow nonstationary time series processes. Meanwhile, Bai and Carrion-I-Silvestre (2009) study

the problem of unit root testing in the presence of multiple structural changes and common

dynamic factors, and Bai and Ng (2010) extend their earlier work in Bai and Ng (2004) to
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investigate the panel data unit root test with cross–sectional dependence.

Following the literature, it is necessary to establish some relevant asymptotic theory for

panel data models when unit root processes are involved in the system. In this paper, one of

our aims is to provide some new asymptotic theory for panel data models with the presence

of integrated processes when N and T diverge jointly. These results can easily be employed

to further studies on the panel data models. Due to the use of Hermite orthogonal functions,

some results are also very useful to sieve–estimate–based studies. Moreover, taking into account

the correlation among individuals has become an important topic when modelling panel data

sets. One popular method is using a factor structure to mimic the strong correlation between

individuals. Since Pesaran (2006) and Bai (2009), many extensions have been made. Another

popular approach is measuring the correlation between individuals by geographical locations

with a spatial error structure on the cross–section dimension. Many papers have adopted this

approach, see, for example Pesaran and Tosetti (2011), Chen et al. (2012b) and Chen et al.

(2012a). In this paper, the latter one is employed.

Based on the literature given above, we consider a partially linear panel data model with

integrated time series. Specifically, the model is formulated as follows:

yit = x′itβ0 + g(uit) + ωi + eit,

xit = φ(uit) + λi + vit, (1.1)

uit = ui,t−1 + ηit, i = 1, . . . , N and t = 1, . . . , T,

where xit and uit are observable explanatory variables, uit follows an integrated process on time

dimension, g(w) is an unknown function in L2(R), φ(w) = (φ1(w), . . . , φd(w))′ is a vector of

unknown integrable functions. Note that, under the current set–up, φj(w) for j = 1, . . . , d and

g(w) will not be constants and all the constant terms are absorbed in fixed effects ωi and λi.

Since we shall use the within transformation later on, all the fixed effects simply disappear

from the system. Thereby, we do not require extra conditions on identifiability, which is similar

to (3.2.5) on page 32 of Hsiao (2003). Accordingly, the fixed effects can capture unobservable

heterogeneity and be correlated with the regressors. More detailed discussions and examples

can be seen in Hsiao (2003). Note also that model (1.1) extends some time series models

discussed in Härdle et al. (2000) to the panel data case.

One interesting finding is that for model (1.1), the within transformation does not affect

the asymptotic theory to be established. This is different from those for panel data models

with stationarity on the time dimension. A short explanation is that, for a stationary panel

data set µit,
1
T

∑T
t=1 g(µit) = E[g(µit)] + OP

(
1√
T

)
under regular restrictions. However, for an

integrated panel data regressor uit, we have 1
T

∑T
t=1 g(uit) = OP

(
1√
T

)
due to the integrability
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of g(·). As a result, within transformation helps to remove the fixed effects without any cost.

The detailed discussion will be seen in the rest of this paper.

Another crucial finding is that the joint divergence of (N, T )→ (∞,∞) makes the asymp-

totic theory drastically different from that of the integrated time series case. As stated in

Lemma B.5 below, when (N, T )→ (∞,∞) jointly

LNT − E[LNT ]→P 0, where LNT =
1

N
√
T

N∑
i=1

T∑
t=1

g(uit). (1.2)

However, if µt is a unit root process, we have lT = 1
ρ
√
T

∑T
t=1 g(µt)→D LB(1, 0)

∫
g(x)dx given

some conditions on g(x), where ρ > 0 is a constant, B stands for a standard Brownian motion

generated by µt and LB(1, 0) is the local process of B that measures the sojourning time of B

at zero over the period [0, 1]. To obtain the limit of LNT , one naive thought would be that for

each i,

1√
T

T∑
t=1

g(uit)→D ρ · LBi
(1, 0)

∫
g(x)dx, (1.3)

as T →∞, where Bi is a standard Brownian motion generated by uit, then by the law of large

numbers, LNT →D ρE[LB(1, 0)]
∫
g(x)dx. Although E[LB(1, 0)] does exist, this derivation

contradicts the joint divergence of N and T , because (1.3) might not be true for i = N when

(N, T ) → (∞,∞) jointly. On the other hand, the establishment of (1.2) does not need an

expansion of probability space, while usually researchers have to do so in order to obtain a

convergence in probability in the nonstationary context. See, for example, Park and Phillips

(2001). This is extremely convenient for the establishment of our asymptotic theory.

In summary, we make the following contributions in this paper.

1. We extend the partially linear models given in Gao and Phillips (2013) and Chen et al.

(2012b) and allow for the presence of nonstationarity processes on the time dimension.

2. The difference in asymptotic theory with the presence of nonstationarity for time series

as T →∞ and for panel data as (N, T )→ (∞,∞) jointly is phenomenal.

3. The sieve estimation method employed produces some simple closed–form estimators and

the results in some new asymptotic properties for the estimators.

4. The results obtained under panel data setting are stronger than those achieved in the

integrated time series setting due to the new limit of the type (1.2) that avoids the

expansion of the original probability space in order to obtain a limit in probability.

The structure of this paper is as follows. Section 2 proposes the sieve–based estimation

method and introduces the necessary assumptions for the establishment of an asymptotic theory
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in Section 3. Section 4 discusses some related extensions and limitations of our model. Section

5 evaluates the finite–sample performance by Monte Carlo simulation and a case study on

Balassa–Samuelson model. Section 6 concludes. The proofs of the main results are given in

Appendices A and B, while some proofs of the secondary results are provided in Appendix C

of a supplementary document of this paper.

Throughout the paper, 1d = (1, · · · , 1)′ is a d×1 vector; MP = In−P (P ′P )−1P ′ denotes the

projection matrix generated by full column matrix Pn×m; ‖·‖ denotes Euclidean norm;→P and

→D stand for converging in probability and in distribution, respectively; λmin(A) and λmax(A)

denote minimum and maximum eigenvalues of a n× n matrix A, respectively; bac ≤ a means

the largest integer part of a;
∫
g(w)dw represents

∫∞
−∞ g(w)dw and similar notation applies to

multiple integration.

2 Estimation method and assumptions

Let {Hi(w), i = 0, 1, 2, . . .} be the Hermite polynomial system orthogonal with respect to

exp(−w2), which is complete in the Hilbert space L2(R, exp(−w2)). The orthogonality of the

system reads
∫
Hi(w)Hj(w) exp(−w2)dw =

√
π2ii!δij, where δij is the Kronecker delta. Corre-

spondingly, the so–called Hermite functions are defined by Hi(w) = 1
4√π
√

2ii!
Hi(w) exp(−w2/2)

for i ≥ 0, which is an orthonormal basis in the Hilbert space L2(R). Thus, the unknown

function g(w) ∈ L2(R) can be expanded into the following orthogonal series:

g(w) =
∞∑
j=0

cjHj(w) = Zk(w)′C + γk(w), cj =

∫
g(w)Hj(w)dw, (2.1)

where Zk(w) = (H0(w), . . . ,Hk−1(w))′, C = (c0, . . . , ck−1)′ and γk(w) =
∑∞

j=k cjHj(w).

Additionally, in order to remove fixed effects from the system, we take the within transfor-

mation and write the model as

yit − ȳi = (xit − x̄i)′β0 + (Zk(uit)− Z̄k,i)′C + γk(uit)− γ̄k,i + eit − ēi,

where ȳi = 1
T

∑T
t=1 yit, x̄i = 1

T

∑T
t=1 xit, Z̄k,i = 1

T

∑T
t=1 Zk(uit), γ̄k,i = 1

T

∑T
t=1 γk(uit) and

ēi = 1
T

∑T
t=1 eit. For simplicity, let ỹit = yit − ȳi and x̃it, Z̃k(uit), γ̃k(uit) and ẽit be defined in

the same fashion for 1 ≤ i ≤ N and 1 ≤ t ≤ T . Then we rewrite (1.1) in matrix notation as

Y = Xβ0 + ZC + γ + E , (2.2)
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where

Y
NT×1

= (ỹ11, . . . , ỹ1T , . . . , ỹN1, . . . , ỹNT )′,

X
NT×d

= (x̃11, . . . , x̃1T , . . . , x̃N1, . . . , x̃NT )′,

Z
NT×k

= (Z̃k(u11), . . . , Z̃k(u1T ), . . . , Z̃k(uN1), . . . , Z̃k(uNT ))′,

γ
NT×1

= (γ̃k(u11), . . . , γ̃k(u1T ), . . . , γ̃k(uN1), . . . , γ̃k(uNT ))′,

E
NT×1

= (ẽ11, . . . , ẽ1T , . . . , ẽN1, . . . , ẽNT )′.

To simplify the proof and facilitate the discussion, we project out ZC and Xβ0 respectively

and focus on the next two equations in turn in the following sections:

MZY = MZXβ0 +MZγ +MZE and MXY = MXZC +MXγ +MXE ,

where MZ = INT − Z(Z ′Z)−1Z ′ and MX = INT − X(X ′X)−1X ′, giving the within OLS

estimators of β0 and C:

β̂ = (X ′MZX)−1X ′MZY and Ĉ = (Z ′MXZ)−1Z ′MXY. (2.3)

The following assumptions are necessary for the theoretical development and their detailed

discussion and some examples are provided in Appendix A.

Assumption 1

1. Let {εij, i ∈ Z+, j ∈ Z} be a sequence of independent and identically distributed (i.i.d.)

random variables across i and j. Moreover, E[ε11] = 0, E[ε2
11] = 1 and E[|ε11|p] < ∞

for some p > 4. In addition, ε11 has distribution absolutely continuous with respect to

Lebesgue measure and characteristic function c(r) satisfying
∫
|rc(r)|dr <∞.

2. For 1 ≤ i ≤ N and 1 ≤ t ≤ T , let uit = ui,t−1 + ηit with ui0 = OP (1), where ηit is a

linear process of the form: ηit =
∑∞

j=0 ρjεi,t−j, where {ρj} is a scalar sequence, ρ0 = 1,∑∞
j=0 j|ρj| <∞ and ρ :=

∑∞
j=0 ρj 6= 0.

3. (a) Let vt = (v1t, . . . , vNt)
′ be strictly stationary and α–mixing. Also, E[vit] = 0 and

E[vitv
′
it] = Σv for all 1 ≤ i ≤ N and 1 ≤ t ≤ T , where Σv is a positive definite

matrix. Let αij(|t − s|) denote the α–mixing coefficient between vit and vjs, such

that for some δ > 0,
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1(αij(|t − s|))δ/(4+δ) = O(NT ), and for

the same δ, E[‖vit‖4+δ] <∞ uniformly in i and t.

(b) Let et = (e1t, . . . , eNt)
′ be a martingale difference sequence. More precisely, with
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filtration FN,t = σ(e1, . . . , et; v1, . . . , vt+1), suppose that E[et|FN,t−1] = 0 almost

surely (a.s.) and E[ete
′
t|FN,t−1] = (σe(i, j))NN =: Σe a.s., where Σe is a constant

matrix independent of t,
∑N

i=1

∑N
j=1 |σe(i, j)| = O(N) and σe(i, i) = σ2

e . Meanwhile,

sup1≤i≤N,1≤t≤T E[e4
it|FN,t−1] < ∞. Let Σv,e = limN→∞

1
N

∑N
i=1

∑N
j=1 E[vi1v

′
j1]σe(i, j)

and Σv,e is positive definite.

(c) i.
∑N

i=1

∑N
j=1

∑T
t1=1

∑T
t2=1

∑T
t3=1

∑T
t4=1E[vit1 ⊗ vit2 ⊗ vjt3 ⊗ vjt4 ] = O(NT 2).

ii.
∑N

i=1

∑N
j=1

∑T
t1=1

∑T
t2=1

∑T
t3=1

∑T
t4=1E[v′it1eit2vjt3ejt4 ] = O(NT 2).

4. {εij, i ∈ Z+, j ∈ Z} is independent of {(vi1t1 , ei1t1), 1 ≤ i1 ≤ N, 1 ≤ t1 ≤ T}.

Assumption 2

1. There exists an integer m > 1, such that xm−sg(s)(w) ∈ L2(R) for s = 0, 1, . . . ,m.

Moreover, for j = 1, . . . , d, φj(w) ∈ L(R) ∩ L2(R).

2. Let k = baT ϑc with a constant a > 0 and 0 < ϑ < 1
4
. Also, k/N → 0 as (N, T )→ (∞,∞).

3 Asymptotic theory

We start from investigating β̂. It follows from (2.3) that

β̂ − β0 = (X ′MZX)
−1
X ′MZE + (X ′MZX)

−1
X ′MZγ. (3.1)

Observe that

1

NT
X ′MZX =

1

NT
X ′X − 1

N
√
T
X ′Z

(
1

N
√
T
Z ′Z

)−1
1

NT
Z ′X, (3.2)

1

NT
X ′MZE =

1

NT
X ′E − 1

N
√
T
X ′Z

(
1

N
√
T
Z ′Z

)−1
1

NT
Z ′E , (3.3)

1

NT
X ′MZγ =

1

NT
X ′γ − 1

N
√
T
X ′Z

(
1

N
√
T
Z ′Z

)−1
1

NT
Z ′γ. (3.4)

The consistency of β̂ − β0 follows from Lemmas B.4–B.5 listed in Appendix B immediately

and the normality can be achieved by further investigation on (3.2)–(3.4). We now state the

first theorem of this paper.

Theorem 3.1. Under Assumptions 1 and 2, as (N, T ) → (∞,∞) jointly, β̂ is consistent. If,

in addition, N/km−1 → 0, then
√
NT (β̂ − β0) →D N(0,Σ−1

v Σv,eΣ
−1
v ), where Σv,e is defined in

Assumption 1.3.b.

Note that Σv,e is the same as that in Theorem 1 of Chen et al. (2012b) and the discussion on

the existence of Σv,e can be found therein. Since our model is an extension of Gao and Phillips
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(2013) to the panel data case, the rate of convergence given in Theorem 3.1 matches what

Gao and Phillips (2013) obtain for the time series case. On the cross–sectional dimension,

the optimal rate of convergence, N−1/2, is also achieved. Thus, replacing the time trend in

Chen et al. (2012b) with non–stationary time series processes do not affect the optimal rate

of convergence of β̂. Some other studies and discussions on panel data models including non–

stationary time series (but not directly related to our model) can be seen in Bai et al. (2009)

and Kapetanios et al. (2011). The condition N/km−1 is similar to the one given in Theorem

2 of Newey (1997), Assumption 4.ii of Su and Jin (2012) and Assumption A5 of Chen et al.

(2012b). The purpose of this restriction is to remove the truncation residual for us to establish

the asymptotic normality. Since nonstationary times series regressors are introduced to our

model, the proof of the asymptotic theory involves some new techniques, which are different

from those used in the literature.

Before giving a consistent estimator for the asymptotic covariance matrix in Theorem 3.1,

we show the consistency of Ĉ given in (2.3). Note that

Ĉ − C = (Z ′MXZ)
−1Z ′MXγ + (Z ′MXZ)

−1Z ′MXE . (3.5)

In connection with Lemmas B.4–B.5 provided in the Appendix, we have the following lemma.

Lemma 3.1. Under Assumptions 1 and 2, as (N, T )→ (∞,∞) jointly

‖Ĉ − C‖ = OP

( √
k√

N 4
√
T

)
+OP

(
k−

m−1
2

)
.

The proof is given in Appendix B. We now turn to consistent estimation on asymptotic

covariance matrix in Theorem 3.1 in order to establish the confidence interval for β̂. By (6)

of Lemma B.4 below, Σ̂v = 1
NT
X ′X →P Σv. Thus, we need only to focus on obtaining a

consistent estimator for Σv,e. To do so, we have to impose some stronger assumptions, e.g. eit

is independent across i, which is in the same spirit as Corollary 3.1.ii and Theorem 3.3 of Gao

and Phillips (2013) and will reduce Σv,e to σ2
eΣ
−1
v . Define the estimator of σ2

e as

σ̂2
e =

1

NT

N∑
i=1

T∑
t=1

(Ỹit − X̃ ′itβ̂ − Z̃k(uit)′Ĉ)2. (3.6)

Corollary 3.1. Suppose that Assumptions 1 and 2 hold. (1) As (N, T ) → (∞,∞) jointly,

σ̂2
e →P σ2

e , where σ̂2
e is denoted by (3.6). (2) Let eit be independent across i. As (N, T ) →

(∞,∞) jointly, Σ̂v,e →P Σv,e, where Σ̂v,e = σ̂2
eΣ̂
−1
v and Σ̂v = 1

NT
X ′X.

The proof of Corollary 3.1 is given in Appendix C of the supplementary document. More-

over, for ∀w ∈ R, define the estimator of g(w) as ĝ(w) = Zk(w)′Ĉ. After imposing some extra
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restrictions, the normality of ĝ(w) can be achieved.

Theorem 3.2. Under Assumptions 1 and 2,

1.
∫

(ĝ(w)− g(w))2dw = OP

(
k

N
√
T

)
+OP (k−m+1).

2. Additionally, let

(1)
∑N

i1=1

∑N
i2=1

∑N
i3=1

∑N
i4=1 |E [ei1tei2tei3tei4t|FNt−1]| = OP (N2) uniformly in t, and

(2) k2/N → 0 and N1/2T 1/4k−(m−1)/2 → 0.

Then as (N, T ) → (∞,∞) jointly,
√
Nσ−1

k (w) 4
√
T (ĝ(w) − g(w)) →D N(0, 1), where

σk(w) = a−1
0 σ2

e‖Zk(w)‖2 and a0 =
√

2/(πρ2)(1 + o(1)) with ρ =
∑∞

j=0 ρj 6= 0.

In the first result of Theorem 3.2, we establish a rate of convergence for the integrated

mean squared error. For the second result of Theorem 3.2, two stronger restrictions are needed:

Condition (1) is in the same spirit of (3.3) and (3.4) in Chen et al. (2012a), wherein all the

relevant discussions and examples can be found; Condition (2) on the sharper bound for k is

due to the development of (B.15) (see Appendix B for details). It is interesting to see that the

cross–sectional dependence of the error terms does not play a role in the asymptotic variance

(c.f. σk(w) = a−1
0 σ2

e‖Zk(w)‖2). A short explanation is that in the derivation of the variance for

the term on RHS of equation (B.15), E[Zk(w)′Zk(uit)Zk(ujt)
′Zk(w)] will attenuate at rate t−1

for i 6= j.

Moreover, notice that ‖Zk(w)‖2 = O(k) uniformly by Lemma B.1. Thus, the rate of conver-

gence for the normality is essentially
√
k−1N

√
T , which is equivalent to the rate obtained by

using kernel estimation method
√
hN
√
T , where h is the bandwidth parameter. The condition

N1/2T 1/4k−(m−1)/2 is in line with the same spirit of N/km−1 provided in Theorem 3.1. The

higher–order smoothness required here is due to the development of (B.15).

Notice based on the convergence that 1
N
√
T

∑N
i=1

∑T
t=1 H 2

0 (xit) →P a0 in Lemma B.5 and

σ̂2
e →P σ2

e in Corollary 3.1, σ̂k(w), the estimator of σk(w), is easily obtained and thus the

hypothesis test on ĝ(w) for ∀w ∈ R can be conducted from the second result of Theorem 3.2.

In the next section, we provide some related discussion before presenting the finite sample

studies using both simulated and real data examples.

4 Some extensions and discussions

In the above study, we have completely ruled out the cases where φj(w) for j = 1, . . . , d and

g(w) are non–integrable. The study on (1.1) is fundamental and can provide many basic results
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for the cases where g(w) includes a non–integrable term. For example, let g(w) = w + g1(w),

where g1(w) is an integrable function on R. In this case, the model becomes

yit =x′itβ0 + uit + g1(uit) + ωi + eit,

xit =φ(uit) + λi + vit.
(4.1)

Then simple transformation shows that we can rewrite (4.1) as

y1,it =x′itβ0 + g1(uit) + ωi + eit,

xit =φ(uit) + λi + vit,
(4.2)

where y1,it = yit − uit. Since both yit and uit are observable, y1,it can be treated as given. In

this case, model (4.1) is reduced to (1.1).

We now turn to the structure of xit. Consider a simple partially linear model of the form:

yit =x′itβ0 + g(uit) + ωi + eit,

xit =uit + λi + vit.
(4.3)

After taking first difference, it is easy to obtain that

∆yit = (∆xit)
′β0 + g(uit)− g(ui,t−1) + ∆eit

= (∆xit)
′β0 + (Zk(uit)− Zk(ui,t−1))′C + ẽit (4.4)

where ẽit = γk(uit)− γk(ui,t−1) + ∆eit. Notice that (4.4) does not include fixed effects, so it is

a simpler version of (1.1). In order to obtain consistent estimators for β0 and C, we can carry

out the similar procedure as the previous sections without using within transformation.

There are also some limitations in this study. Assumption 1.3.b has excluded the case where

E[eitvit] 6= 0. For example, we cannot allow the error term to have a form like eit = ψ(vit) + εit.

This is in the same spirit as Assumptions 2 and 4 of Pesaran (2006), Assumption D of Bai

(2009) and Assumption A.4 of Chen et al. (2012b). To introduce some endogeneity between eit

and vit, new techniques similar to those developed by Dong and Gao (2014) may be needed.

When E[eitvit] = 0, we can allow eit = ψ(vit) · εit, where εit is independent of vit. In this sense,

vit can partially be the driving force of eit by having an impact on its variance. A detailed

example is given in the Monte Carlo study below.
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5 Numerical Study

This section provides the results of a simple Monte Carlo study and an empirical case study by

looking into Balassa–Samuelson model. In the simulation study, the biases and root of mean

squared errors (RMSEs) are reported. As we can see, biases are quite small and RMSEs decrease

as both N and T increase. The empirical case study suggests that model (1.1) outperforms the

traditional panel data model used for investigating Balassa–Samuelson model.

5.1 Monte Carlo simulation

In Monte Carlo study, the data generating process (DGP) is as follows.

yit = x′itβ0 + (1 + u2
it) exp(−u2

it) + ωi + eit,

xit =
(
(1 + uit + u2

it) exp(−u2
it)
)
⊗ 1d + λi + vit,

eit = γift(1 + ft−1) + v′itβ0εit

where β0 = (1, 2)′ and d = 2. In this DGP, the error term eit depends on the information from

the past, ft−1, and the information from the current time period, vit.

For each i, ui1 ∼ i.i.d. N(0, 1) and uit = ui,t−1 + i.i.d. N(0, 1) for t = 2, . . . , T . For the

factor loadings, (γ1, . . . , γN)′ ∼ N(0,Σγ), where the (i, j)th element of Σγ is 0.5|i−j|. For the

factors, ft ∼ i.i.d. N(0, 1) for each t. The error terms εit ∼ i.i.d. N(0, 1). For each t,

(v1t, . . . , vNt)
′ = 0.5(v1,t−1, . . . , vN,t−1)′ +N(0,Σv),

where the (i, j)th element of Σv is 0.3|i−j|. For the fixed effects, ωi ∼ N((1 + ui1 + u2
i1), 1) and

λi ∼ N(1d, Id), so wi is certainly correlated with the regressor xit.

Based on the above, the cross–sectional dependence comes into the system through both

the error terms eit and vit. eit certainly satisfies the martingale condition and slightly violates

the requirements of Assumption 1.3.b on covariances, but it does not affect the accuracy of

the estimators as shown later. In order to make sure that the Assumption 2.2 is satisfied, the

truncation parameter is chosen as k = b3.3 · T 1/7c. For each replication, we record the bias

and squared error as: bias = β̂j − βj0 and se = (β̂j − β0j)
2 for j = 1, 2, where β̂j denotes the

estimate of β0j and β0j is the jth element of β0. After 1000 replications, we report the mean

of these biases and the root of the mean of these squared errors, which are labeled as Bias and

RMSE in Table 1. It is evident that in Table 1 the biases decrease to zero very quick, and the

RMSEs decrease as both N and T increase. Though both N and T start from 10, the sample

size given by the product of NT is sufficient to obtain accurate estimation for the parameters.
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β̂1 β̂2

T \N 10 40 80 10 40 80

Bias 10 0.005 0.003 0.001 0.017 0.002 0.004

40 -0.005 0.004 0.000 -0.010 0.002 -0.002

80 -0.003 0.001 -0.001 0.004 0.000 0.000

RMSE 10 0.334 0.162 0.115 0.404 0.194 0.141

40 0.150 0.077 0.056 0.199 0.099 0.069

80 0.107 0.052 0.037 0.136 0.069 0.049

Table 1: Bias and RMSE

5.2 Empirical study

The Balassa–Samuelson model implies that countries with a relatively low ratio of tradables to

nontradables productivity will have a depreciated real exchange rate, which can be evaluated

by calculating the gap between a purchasing power parity (PPP)–based U.S. dollar exchange

rate and the nominal U.S. dollar exchange rate. The PPP–based exchange rate measures how

many goods the domestic currency buys within the country relative to the U.S. as numéraire

country, while the nominal U.S. dollar exchange rate measures how many U.S. dollars the

domestic currency buys in the foreign exchange market. Specifically, we consider equation (1)

of de Boeck and Slok (2006), i.e. (5.1) provided below. A very detailed description can be

found therein.

ln

(
pppit
neit

)
= β · ln pgpit + γi + εit, (5.1)

where pppit=PPP–based U.S. dollar exchange rate at (i, t), neit=nominal U.S. dollar exchange

rate at (i, t), pgpit=PPP GDP per capita at (i, t).

However, running OLS regression on the above linear model by using the data set provided

below gives a R2 smaller than 15%. A modified form of the linear model (5.1) is given by

ln pppit = β · ln pgpit + α · lnneit + γi + εit. (5.2)

This section proposes a partially linear model of the form:

ln pppit = β · ln pgpit + g(neit) + γi + εit, (5.3)

where g(·) is an unknown function. We therefore compare models (5.1)–(5.3), referred to as

LM1, LM2 and PM, respectively, for brevity.

For this study, the yearly data is collected from Alan Heston, Robert Summers and Bet-
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tina Aten, Penn World Table Version 7.1, Center for International Comparisons of Production,

Income and Prices at the University of Pennsylvania, July 2012. We choose the time period

1950–2010 and focus on OECD countries only. Since not all OECD countries have the data

recorded for the whole period, we simply remove those countries that have the missing data

to ensure a balanced panel data set. Notice that most of the countries left have reasonable

exchange rates during this period, which vary between 0 to 5. However, some countries’ ex-

change rates have dramatic changes and have a clear signal on structural break, for example

the exchange rate of Iceland is always less than 1 before 1975 and increases dramatically to

122 after that. Thus, we also remove some countries, whose exchange rates act as outliers to

rest of the countries. It then leaves us with 17 countries, which are Australia, Austria, Bel-

gium, Canada, Finland, France, Ireland, Israel, Italy, Luxembourg, Mexico, Netherlands, New

Zealand, Portugal, Spain, Switzerland, Turkey and United Kingdom.

Before any further investigation, we examine if the nominal U.S. dollar exchange rates of all

these countries have unit roots. To do so, we carry on the Augmented Dickey–Fuller (ADF) test

for the time series {nei1, · · · , neiT} for i = 1, . . . , 17 and report the p–values of the ADF tests

below. According to the report, except for Switzerland all other 16 countries have unit root

in nominal U.S. dollar exchange rates based on 5% significant level, so we remove Switzerland

from the data set.

Australia Austria Belgium Canada Finland France

p–value 0.61 0.29 0.29 0.53 0.70 0.60

Ireland Israel Italy Luxembourg Netherlands NZ

p–value 0.68 0.97 0.77 0.29 0.11 0.68

Portugal Spain Switzerland Turkey UK

p–value 0.85 0.78 0.02 0.99 0.83

Table 2: P-value of Augmented Dickey-Fuller Test

For the data set used in this study, pppit mainly varies between 2.5 and 5.5; pgpit roughly

varies between 5 and 11; except Israel, neit fluctuates between 0 and 2. Due to the limitation

of space, we use Canada as an example to illustrate how these three variables change across

time.

To get In–MSE, all the data collected above (i = 1, . . . , 16 and t = 1, . . . , 61) are used to

run the regression in order to get β̂In and ĈIn. Then In–MSE is given by

In–MSE =
1

16× 61

16∑
i=1

61∑
t=1

(Ỹit − X̃ ′itβ̂In − Z̃k(uit)′ĈIn)2,

where Ỹit = Yit − 1
61

∑61
t=1 Yit; X̃it and Z̃k(uit) are defined in the same fashion.
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Figure 1: Canada

To get Out–MSE, only part of data collected above (i = 1, . . . , 16, t = 1, . . . , T̃ and T̃ =

56, . . . , 60) are used to estimate β̂Out,T̃ and ĈOut,T̃ in order to forecast Ỹi,T̃+1. Then Out–MSE

is obtained as

Out–MSE =
1

16× (61− 56)

16∑
i=1

60∑
T̃=56

(Ỹi,T̃+1 − X̃
′
i,T̃+1

β̂Out,T̃ − Z̃k(ui,T̃+1)′ĈOut,T̃ )2,

where Ỹi,T̃+1 = Yi,T̃+1 − 1
T̃+1

∑T̃+1
t=1 Yit; X̃it and Z̃k(uit) are defined in the same fashion.

Even though we treat g(w) as an unknown function and have less information for (5.3),
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Table 4 shows that the estimates from partially linear model by taking into account the non–

stationarity of nominal U.S. dollar exchange rates outperform the estimates from linear models.

PM LM1 LM2

β̂ = 0.075 β̂ = -0.484 β̂ = 0.106 α̂ = -0.011

(0.004) (0.044) (0.004) (0.002)

Table 3: Estimation results for models (5.1)–(5.3)

PM (k = 6) LM1 LM2

In–MSE 0.01180 2.49943 0.01449

Out–MSE 0.01273 5.50020 0.01421

Table 4: In–MSE and Out–MSE

For the partially linear panel data model (5.3), our comparisons based on the in sample mean

squared errors (In–MSE) and rolling out sample mean squared errors (Out–MSE) suggest using

k = 6 as the truncation parameter. As a comparison, the estimates of within OLS estimates

for (5.1) and (5.2) are also reported. We now use the partially linear model as an example to

demonstrate how to calculate these two values.

The coefficients of the basis functions are (7.78, -19.58, 26.81, -22.84, 11.85, -3.01), which

imply that the estimated unknown function is

ĝ(w) = 7.78H0(w)− 19.58H1(w) + 26.81H2(w)− 22.84H3(w) + 11.85H4(w)− 3.01H5(w).

Moreover, we plot ĝ(w) and its confidence interval in Figure 2. Since most of neit’s are between

0 and 2, we only report ĝ(w) on the interval [0, 2]. The dash–dot line in the mid represents

the estimated unknown function, ĝ(w), and the two dashed lines represent the 95% confidence

interval curves.

Due to the limit of space, we report the estimated PPP–based U.S. dollar exchange rate

for Belgium only in Figure 3. The dash–dot line includes the observable values and the solid

line includes the estimated values. Figure 3 indicates that including more relevant explana-

tory variables may be necessary for improving the performance of Balassa–Samuelson model.

However, this is beyond the scope of this paper. We will leave this for future research.

6 Conclusions

In this paper, we have established the estimate for a group of partially linear panel data

models with non–stationarity and cross–sectional dependence. Spatial error structure analysis
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Figure 3: Estimated PPP-based U.S. dollar exchange rate (Belgium)

technique has been used to measure the correlation among individuals. An asymptotic theory

has been established for the estimators. Particularly, we do not impose any assumptions on the

fixed effects, so they can be used to deal with the models with unobservable heterogeneity. More

importantly, new findings include the significant difference in asymptotical theory for times

series and panel data sets. The finite sample properties are demonstrated through Monte Carlo

experiment and a real data example of Balassa–Samuelson Model. The possible extensions and

limitations of our model have been discussed in details and they will guide our future research

projects.

Appendix A: Discussion of assumptions

Assumption 1: Assumptions 1.1 and 1.2 are standard in the time series literature and imply that

the non–stationary time series processes {ui1, . . . , uiT }’s are i.i.d. across i (c.f. Assumption 1.i of

Phillips and Moon (1999), where the coefficients of εij are treated as i.i.d. random variables.). Notice

that the coefficients ρj in Assumption 1.2 can also be written in a matrix form if uit is chosen as a

vector.

Assumption 1.3.a is in the same spirit as Assumption C of Bai (2009) and Assumption A2 and A4
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of Chen et al. (2012b). On the cross–section dimension, it is also similar to the set–up on spatial error

structure in Pesaran and Tosetti (2011). Therefore, it certainly allows the cross–sectional dependence

of the error terms to come in the model. On the time dimension, it entails that only the stationary

case is considered. Specifically, the mixing coefficient αij(|t − s|) is used to measure the relationship

between individuals at different time periods, i.e. the relationship between vit and vjs. Two examples

are given below to demonstrate this assumption is reasonable:

• It can easily be seen that Assumption 1.3.a holds if vit is i.i.d. over i and t.

• We now use a factor model structure to show that Assumption 1.3.a is verifiable. Suppose that

vit = γift + εit, where all variables are scalars and εit is i.i.d. sequence over i and t with mean

zero. Simple algebra shows that the coefficient αij(|t − s|) reduces to αij · b(|t − s|), in which

αij = E[γiγj ] and b(|t− s|) is the α–mixing coefficient of the factor time series {f1, . . . , fT }. If

ft is a strictly stationary α–mixing process and γi is a functional coefficient which converges

to 0 at a certain rate as i increases, Assumption 1.3.a can easily be verified. More details and

useful empirical examples can be found under Assumption A2 in Chen et al. (2012b).

Assumption 1.3.b is similar to Assumption 1.3.a, but focuses on the cross–sectional dimension of

the error term eit. It is the same as Assumption A.4 of Chen et al. (2012b) and allows for weak

endogeneity between regressors and error terms through vit and eit.

The Assumption 1.3.c is a simpler version of (A.18) in Chen et al. (2012a). For the first equation

of Assumption 1.3.c, a very detailed proof and relevant discussion can be found on page 17 of Chen

et al. (2012a). The second equation is in line with the spirit of Assumption 3.2.ii of Gao and Phillips

(2013) and can be easily verified if eit is independent of vjs.

Within transformation allows us to relax the identification restrictions (1.3) of Chen et al. (2012b)

and (1.2) of Chen et al. (2013), i.e.
∑N

i=1 ωi = 0 and
∑N

i=1 λi = 0. Notice that we do not impose any

conditions on ωi and λi, so they can be correlated with any variables arbitrarily.

Notice that the results of this paper are not achieved in the richer probability space (c.f. Park and

Phillips (2000) and Park and Phillips (2001) for the discussion on the richer probability space) due

to that we avoid using the local time process in the development of Lemma B.5. In this sense, the

results under the panel data setting are stronger than those achieved in the time series setting.

Assumption 2: Assumption 2.1 (c.f. Dong et al. (2014)) ensures that the approximation of the

unknown functions g(w) by an orthogonal expansion can have a fast rate. Assumption 2.2 puts

restrictions on the truncated parameter k, N and T , so that they go to infinity at appropriate rates.

The requirement of k = baT ϑc for 0 < ϑ < 1
4 is consistent with the set–up for time series data

(c.f. Dong et al. (2014)) and similar to Assumption A3 of Chen et al. (2012a). The requirement of

k/N → 0 is consistent with the case that sieve estimation is used in panel data literature (c.f. Su and

Jin (2012)). These two restrictions further imply that T ϑ/N → 0 for the ϑ given above. The similar

conditions and more discussions under panel data settings can be seen in Su and Jin (2012), Chen

et al. (2012b) and Chen et al. (2012a).
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Appendix B: Proof of the main results

We first give some necessary lemmas for the proofs of the main results before the proofs of the

lemmas are given in Appendix C of the supplementary document.

Lemma B.1. Suppose that g(w) is differentiable on R and xm−jg(j)(w) ∈ L2(R) for j = 0, 1, . . . ,m

and m ≥ 1. For the expansion (2.1), the following results hold:

(1)
∫
w2H 2

n (w)dw = n + 1/2; (2) maxw |γk(w)| = O(1)k−(m−1)/2−1/12; (3)
∫
γ2
k(w)dw = O(1)k−m;

(4)
∫
‖Zk(w)‖dw = O(1)k11/12; (5)

∫
‖Zk(w)‖2dw = k; (6) ‖Zk(w)‖2 = O(1)k uniformly on R;

(7)
∫
|γk(w)|dw = O(1)k−m/2+11/12; (8)

∫
|Hn(w)|dw = O(1)n5/12; (9)

∫
|x|2‖Zk(x)‖2dx = O(1)k2.

The proof of Lemma B.1 is exactly the same as that in Lemma A.1 of Dong et al. (2014).

Lemma B.2. Under Assumptions 1 and 2, as (N,T )→ (∞,∞) jointly,

(1)
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 Zk(uit)γk(uit)

∥∥∥ = OP (k−(m−1)/2); (2)
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 φ(uit)Zk(uit)

′
∥∥∥ =

OP (1); (3)
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 vitZk(uit)

′
∥∥∥ = OP

(√
k
N

)
; (4) 1

NT

∑N
i=1

∑T
t=1 vitv

′
it = Σv +OP

(
1√
NT

)
;

(5) 1
NT

∑N
i=1

∑T
t=1 vitφ(uit)

′ = OP

(
1√
NT

)
; (6) 1

N
√
T

∑N
i=1

∑T
t=1 Zk(uit)eit = OP

( √
k√

N 4√T

)
;

(7) 1
NT

∑N
i=1

∑T
t=1 φ(uit)eit = OP

(
1√

N
4√
T 3

)
; (8) 1

NT

∑N
i=1

∑T
t=1 φ(uit)γk(uit) = OP

(
1√
kmT

)
;

(9) 1
NT

∑N
i=1

∑T
t=1 vitγk(uit) = OP

(
k−m/2+5/12
√
NT

)
.

The proof of Lemma B.2 is provided later in Appendix C.

Lemma B.3. For two non–singular symmetric matrices A,B with same dimensions k × k, where

k tends to ∞. Suppose that their minimum eigenvalues satisfy that λmin(A) > 0 and λmin(B) > 0

uniformly in k. Then
∥∥A−1 −B−1

∥∥2 ≤ λ−2
min (A) · λ−2

min (B) ‖A−B‖2.

The proof of Lemma B.3 is provided later in Appendix C.

Lemma B.4. Let Assumptions 1 and 2 hold. As (N,T ) → (∞,∞) jointly, (1)
∥∥∥ 1
N
√
T
ZE
∥∥∥ =

OP

( √
k√

N 4√T

)
; (2)

∥∥∥ 1
N
√
T
X ′Z

∥∥∥ = OP (1); (3) 1
NTX

′E = OP

(
1√
NT

)
; (4) 1

NTX
′γ = OP

(
1√
kmT

)
;

(5)
∥∥∥ 1
N
√
T
Z ′γ

∥∥∥ = OP (k−(m−1)/2); (6) 1
NTX

′X →P Σv.

The proof of Lemma B.4 is provided later in Appendix C.

Lemma B.5. Suppose that Assumptions 1.1, 1.2 and 2.2 hold. As (N,T ) go to (∞,∞) jointly,

(1)
∥∥∥ 1
N
√
T
Z ′Z − a0Ik

∥∥∥→P 0, where a0 =
√

2
π|ρ|2 (1 + o(1)).

(2) Suppose further that k2

N → 0. Then
∥∥∥ 1
N
√
T
Z ′Z − a0Ik

∥∥∥ = oP (k−1/2).

In the above lemma, the first result is of general interest and can be used in sieve estimation for

panel data models where nonstationary time series are involved, while the second one establishes the

convergence rate with a harsher requirement on k and N , which will be used in the proof of Theorem

3.2. The proof of Lemma B.5 is provided later in Appendix C.
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We are now ready to provide the proofs for the mains results of this paper.

Proof of Theorem 3.1: By Lemma B.5, we have uniformly in k

λmin

(
1

N
√
T
Z ′Z

)
= min
‖µ‖=1

{
µ′a0Ikµ+ µ′

(
1

N
√
T
Z ′Z − a0Ik

)
µ

}
≥ a0 −

∥∥∥∥ 1

N
√
T
Z ′Z − a0Ik

∥∥∥∥ ≥ 1

2
a0(1 + oP (1)). (B.1)

Therefore, by Lemma B.3∥∥∥∥∥
(

1

N
√
T
Z ′Z

)−1

− 1

a0
Ik

∥∥∥∥∥ ≤ 2(1 + oP (1))

a2
0

∥∥∥∥ 1

N
√
T
Z ′Z − a0Ik

∥∥∥∥ = oP (1). (B.2)

For consistency, we consider (3.2)–(3.4) respectively below. Start from (3.2).

1

NT
X ′MZX =

1

NT
X ′X − 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′X

+
1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′X. (B.3)

Notice that ∥∥∥∥∥ 1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′X

∥∥∥∥∥
≤ 1√

T

∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥2
∥∥∥∥∥a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
∥∥∥∥∥ = oP

(
1√
T

)
,

where the last line follows from (B.2) and (2) of Lemma B.4. Similarly, by (2) of Lemma B.4,∥∥∥∥ 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′X

∥∥∥∥ ≤ O(1)

∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥∥∥∥∥ 1

NT
Z ′X

∥∥∥∥ = OP

(
1√
T

)
.

In connection with (6) of Lemma B.4, we can further write

1

NT
X ′MZX =

1

NT
X ′X +OP

(
1√
T

)
→P Σv. (B.4)

For (3.3), write

1

NT
X ′MZE =

1

NT
X ′E − 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′E

+
1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′E . (B.5)

Notice that ∥∥∥∥∥ 1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′E

∥∥∥∥∥
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≤
∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥
∥∥∥∥∥a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
∥∥∥∥∥
∥∥∥∥ 1

NT
Z ′E

∥∥∥∥ = oP

( √
k

√
N

4
√
T 3

)
,

where the last line follows from (B.2) and (1)–(2) of Lemma B.4. Similarly, by (1)–(2) of Lemma B.4,

∥∥∥∥ 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′E

∥∥∥∥ ≤ O(1)

∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥∥∥∥∥ 1

NT
Z ′E

∥∥∥∥ = OP

( √
k

√
N

4
√
T 3

)
.

Then we can further write (B.5) as

1

NT
X ′MZE =

1

NT
X ′E +OP

( √
k

√
N

4
√
T 3

)
= OP

(
1√
NT

)
, (B.6)

where the second equality follows from (3) of Lemma B.4 and Assumption 2.2.

For (3.4), write

1

NT
X ′MZγ =

1

NT
X ′γ − 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′γ

+
1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′γ. (B.7)

Notice that ∥∥∥∥∥ 1

N
√
T
X ′Z

[
a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
]

1

NT
Z ′γ

∥∥∥∥∥
≤
∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥
∥∥∥∥∥a−1

0 Ik −
(

1

N
√
T
Z ′Z

)−1
∥∥∥∥∥
∥∥∥∥ 1

NT
Z ′γ

∥∥∥∥ = oP

(
1√

km−1T

)
,

where the last line follows from (B.2), and (2) and (5) of Lemma B.4. Similarly, by (2) and (5) of

Lemma B.4,∥∥∥∥ 1

N
√
T
X ′Za−1

0 Ik
1

NT
Z ′γ

∥∥∥∥ ≤ O(1)

∥∥∥∥ 1

N
√
T
X ′Z

∥∥∥∥∥∥∥∥ 1

NT
Z ′γ

∥∥∥∥ = OP

(
1√

km−1T

)
.

Then we can further write (B.7) as

1

NT
X ′MZγ =

1

NT
X ′γ +OP

(
1√

km−1T

)
= OP

(
1√

km−1T

)
, (B.8)

where the second equality follows from (4) of Lemma B.4.

The consistency follows from (B.4), (B.6) and (B.8) immediately.

Below, we focus on the normality.

√
NT (β̂ − β0) =

(
1

NT
X ′MZX

)−1 1√
NT

X ′MZ(γ + E) (B.9)
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By (B.4) and (B.8), it is straightforward to obtain that

(
1

NT
X ′MZX

)−1 1√
NT

X ′MZγ = OP

(
N

1
2k−

m−1
2

)
= oP (1),

where the second equality follows from the assumption N/km−1 → 0.

Therefore, we need only to consider the next term

√
NT (β̂ − β0) =

(
1

NT
X ′MZX

)−1 1√
NT

X ′MZE + oP (1).

By (B.4), 1
NTX

′MZX →P Σv. We then focus on 1√
NT

X ′MZE below. Further expand (B.6)

1√
NT

X ′MZE =
1√
NT

N∑
i=1

T∑
t=1

x̃itẽit +OP

(√
k

4
√
T

)

=
1√
NT

N∑
i=1

T∑
t=1

(φ(uit) + vit)eit −
√
NT

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)eis +OP

(√
k

4
√
T

)
.

In the proof for (3) of Lemma B.4, we have shown that 1
NT 2

∑N
i=1

∑T
t=1

∑T
s=1 φ(uit)eis = oP

(
1√
NT

)
and 1

NT 2

∑N
i=1

∑T
t=1

∑T
s=1 viteis = oP

(
1√
NT

)
. Thus, it is straightforward to obtain that

√
NT

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)eis = oP (1).

Hence, we can further write

1√
NT

X ′MZE =
1√
NT

N∑
i=1

T∑
t=1

(φ(uit) + vit)eit + oP (1).

By (7) of Lemma B.2, it is easy to know that 1√
NT

∑N
i=1

∑T
t=1 φ(uit)eit = oP (1). Therefore, we can

write 1√
NT

X ′MZE as

1√
NT

X ′MZE =
1√
NT

N∑
i=1

T∑
t=1

viteit + oP (1).

Chen et al. (2012b) have shown that 1√
NT

∑N
i=1

∑T
t=1 viteit →D N(0,Σv,e) in their formula (A.44). In

connection with 1
NTX

′MZX →P Σv, the normality follows. �

Proof of Lemma 3.1: Note that

Ĉ − C =
(
Z ′MXZ

)−1Z ′MXγ +
(
Z ′MXZ

)−1Z ′MXE ,

20



and we normalize each term as

1

N
√
T
Z ′MXZ =

1

N
√
T
Z ′Z − 1

N
√
T
Z ′X

(
1

NT
X ′X

)−1 1

NT
X ′Z (B.10)

1

N
√
T
Z ′MXγ =

1

N
√
T
Z ′γ − 1

N
√
T
Z ′X

(
1

NT
X ′X

)−1 1

NT
X ′γ (B.11)

1

N
√
T
Z ′MXE =

1

N
√
T
Z ′E − 1

N
√
T
Z ′X

(
1

NT
X ′X

)−1 1

NT
X ′E . (B.12)

We now consider (B.10)–(B.12) respectively. Firstly, notice that∥∥∥∥ 1

N
√
T
Z ′MXZ − a0Ik

∥∥∥∥
≤
∥∥∥∥ 1

N
√
T
Z ′Z − a0Ik

∥∥∥∥+
1√
T

∥∥∥∥ 1

N
√
T
Z ′X

∥∥∥∥2
∥∥∥∥∥
(

1

NT
X ′X

)−1
∥∥∥∥∥ = oP (1),

where the last line follows from Lemma B.5 and (2) and (6) of Lemma B.4 in this paper. Consequently,

we obtain that

λmin

(
1

N
√
T
Z ′MXZ

)
= min
‖µ‖=1

{
µ′a0Ikµ+ µ′

(
1

N
√
T
Z ′MXZ − a0Ik

)
µ

}
≥ a0 −

∥∥∥∥ 1

N
√
T
Z ′MXZ − a0Ik

∥∥∥∥ ≥ 1

2
a0 + oP (1).

For (B.11),

∥∥∥∥ 1

N
√
T
Z ′MXγ

∥∥∥∥ ≤ ∥∥∥∥ 1

N
√
T
Z ′γ

∥∥∥∥+

∥∥∥∥ 1

N
√
T
Z ′X

∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′X

)−1
∥∥∥∥∥
∥∥∥∥ 1

NT
X ′γ

∥∥∥∥ = OP

(
k−(m−1)/2

)
,

where the equality follows from (2), (4), (5) and (6) of Lemma B.4. According to the above, it is easy

to obtain that

∥∥∥(Z ′MXZ
)−1Z ′MXγ

∥∥∥2
≤ λ−2

min

(
1

N
√
T
Z ′MXZ

)
·
∥∥∥∥ 1

N
√
T
Z ′MXγ

∥∥∥∥2

= OP (k−m+1). (B.13)

For (B.12),

∥∥∥∥ 1

N
√
T
Z ′MXE

∥∥∥∥ ≤ ∥∥∥∥ 1

N
√
T
Z ′E

∥∥∥∥+

∥∥∥∥ 1

N
√
T
Z ′X

∥∥∥∥
∥∥∥∥∥
(

1

NT
X ′X

)−1
∥∥∥∥∥
∥∥∥∥ 1

NT
X ′E

∥∥∥∥ = OP

( √
k√

N 4
√
T

)
,

where the equality follows from (1), (2), (3) and (6) of Lemma B.4 in this paper. Similar to (B.13), it

is straightforward to obtain that

∥∥∥(Z ′MXZ
)−1Z ′MXE

∥∥∥2
≤ λ−2

min

(
1

N
√
T
Z ′MXZ

)
·
∥∥∥∥ 1

N
√
T
Z ′MXE

∥∥∥∥2

= OP

(
k

N
√
T

)
. (B.14)

Therefore, the result follows from (B.13) and (B.14) immediately. �
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Proof of Theorem 3.2: 1) It follows from the orthogonality of the Hermite sequence that∫
(ĝ(w)− g(w))2 dw =(Ĉ − C)′

∫
Zk(w)Zk(w)′dw(Ĉ − C) +

∫
γ2
k(w)dw

=‖Ĉ − C‖2 +

∫
γ2
k(w)dw = OP

(
k

N
√
T

)
+OP

(
k−m+1

)
,

where Lemmas 3.1 and B.1 are used.

2) We now focus on the normality. We can write√
Nσ−1

k (w)
4
√
T (ĝ(w)− g(w))

=
√
Nσ−1

k (w)
4
√
TZk(w)′

(
Ĉ − C

)
−
√
Nσ−1

k (w)
4
√
TZk(w)′γk(w)

=
√
Nσ−1

k (w)
4
√
TZk(w)′(Z ′MXZ)−1Z ′MXE

+
√
Nσ−1

k (w)
4
√
TZk(w)′(Z ′MXZ)−1Z ′MXγ −

√
Nσ−1

k (w)
4
√
TZk(w)′γk(w)

=
√
Nσ−1

k (w)
4
√
TZk(w)′(Z ′MXZ)−1Z ′MXE +OP (N

1
2T

1
4k−

m−1
2 ) +OP (N

1
2T

1
4k−

m
2

+ 5
12 )

=
√
Nσ−1

k (w)
4
√
TZk(w)′

(
1

N
√
T
Z ′MXZ

)−1 1

N
√
T

(
Z ′E − Z ′X(X ′X)−1X ′E

)
+ oP (1)

=
√
Nσ−1

k (w)
4
√
TZk(w)

((
1

N
√
T
Z ′MXZ

)−1

− a−1
0 Ik

)
· 1

N
√
T

(
Z ′E − Z ′X(X ′X)−1X ′E

)
+
√
Nσ−1

k (w)
4
√
TZk(w)′a−1

0 Ik
1

N
√
T

(
Z ′E − Z ′X(X ′X)−1X ′E

)
+ oP (1)

=
1√

Nσk(w)a2
0

4
√
T
Zk(w)′Z ′E + oP (1)

=
1√

Nσk(w)a2
0

4
√
T

N∑
i=1

T∑
t=1

Zk(w)′Zk(uit)eit + oP (1), (B.15)

where the third equality follows from Zk(w) = O(
√
k), (2) of Lemma B.1 and (B.13); the fourth

equality follows from the assumption in the body of this theorem; the sixth equality follows from (2)

of Lemme B.5, (2), (3) and (6) of Lemma B.4 of this paper and Lemma B.3; the last equality follows

from the proof for (1) of Lemma B.4.

For notation simplicity, denote VNk(t;w) = 1√
N‖Zk(w)‖2

∑N
i=1 Zk(w)′Zk(uit)eit and σ̃ =

√
a0σ2

e .

We further write

√
Nσ−1

k (w)
4
√
T (ĝ(w)− g(w)) =

1

σ̃

T∑
t=1

1
4
√
T
VNk(t;w) + oP (1). (B.16)

Notice that VNk(t;w) is a martingale difference array by Assumption 1. We then use the central limit

theorem for martingale difference array to show the normality. See Lemma B.1 of Chen et al. (2012b)

and Corollary 3.1 of Hall and Heyde (1980, p. 58) for reference. Firstly, we verify the conditional
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Lindeberg condition, i.e. as (N,T )→ (∞,∞), for ∀ε > 0,

1√
T

T∑
t=1

E
[
V 2
Nk(t;w)I

(
|VNk(t;w)| ≥ ε 4

√
T
)
|FNt−1

]
= oP (1). (B.17)

To this end, write

1√
T

T∑
t=1

E
[
V 2
Nk(t;w)I

(
|VNk(t;w)| ≥ ε 4

√
T
)
|FNt−1

]
≤ 1

ε2T

T∑
t=1

E
[
V 4
Nk(t;w)|FNt−1

]
≤ 1

ε2T

T∑
t=1

1

N2‖Zk(w)‖4
E[|Zk(w)′Zk(u1t)|4]

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

|E [ei1tei2tei3tei4t|FNt−1]|

≤ 1

ε2T

T∑
t=1

E[‖Zk(u1t)‖4] · 1

N2

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

|E [ei1tei2tei3tei4t|FNt−1]|

≤ OP (1)
1

ε2T

T∑
t=1

1

dt

∫
‖Zk(x)‖4dx = OP (1)

k2

ε2
√
T

= oP (1), (B.18)

due to the independence of uit and ujt for i 6= j, where the first inequality follows from Hölder inequal-

ity; the second inequality follows from Markovs inequality; the last line follows from the assumption

in the body of this theorem, and ‖Zk(·)‖2 = O(k),
∫
‖Zk(x)‖2dx = k as well as the density ft(x) of

d−1
t u1t being bounded uniformly (note that dt = |ρ|

√
t(1 + o(1)) and see the proof of Lemma B.5 in

the supplement of this paper for more details).

Next, we verify the convergence of the conditional variance of VNk(t;w). Again, by the indepen-

dence of uit and ujt for i 6= j,

T∑
t=1

E[V 2
Nk(t;w)|FNt−1]√

T
=

1

‖Zk(w)‖2
1

N
√
T

N∑
i=1

N∑
j=1

T∑
t=1

Zk(w)′E
[
Zk(uit)Zk(ujt)

′]Zk(w)σe(i, j)

=
1

‖Zk(w)‖2
1

N
√
T

N∑
i=1

T∑
t=1

Zk(w)′E
[
Zk(uit)Zk(uit)

′]Zk(w)σ2
e

+
1

‖Zk(w)‖2
1

N
√
T

∑
i 6=j

T∑
t=1

Zk(w)′E [Zk(uit)]E
[
Zk(ujt)

′]Zk(w)σe(i, j)

≡ ANT1 +ANT2.

By (1) of Lemma B.5, we have ANT1 →P a0σ
2
e , and we may show that ANT2 = oP (1). In fact,

|ANT2| ≤
1

N
√
T

∑
i 6=j

T∑
t=1

E [‖Zk(uit)‖]E [‖Zk(ujt)‖] · |σe(i, j)|

=
1

N

∑
i 6=j
|σe(i, j)|

1√
T

T∑
t=1

(∫
‖Zk(dtx)‖ft(x)dx

)2

≤ O(1)
1

N

∑
i 6=j
|σe(i, j)|

1√
T

T∑
t=1

1

d2
t

(∫
‖Zk(x)‖dx

)2
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= O(1)
k11/6

√
T

T∑
t=1

1

t
≤ O(1)

k11/6 ln(T )√
T

= o(1),

where the first inequality follows from that submultiplicativity of Euclidean norm; the second inequal-

ity follows from the uniformly boundedness of ft(x); the last line follows from (4) of Lemma B.1 and

Assumption 1.3.b.

Therefore, in connection with (B.16),
√
Nσ−1

k (w) 4
√
T (ĝ(w)− g(w))→D N(0, 1). �

Appendix C below is a supplementary document for the proofs of the lemmas and corollary.

Appendix C: Proofs of Lemmas and Corollary

We start from the proof of Lemma B.5, which provides some fundamental results and notations

used throughout this document.

Proof of Lemma B.5

1) It suffices to show that as (N,T )→ (∞,∞) jointly,∥∥∥∥ 1

N
√
T
Z ′Z − 1

N
√
T
E[Z ′Z]

∥∥∥∥→P 0 and
1

N
√
T
E[Z ′Z] = a0Ik.

Notice that

1

N
√
T
Z ′Z =

1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)Zk(uit)
′ −
√
T

N

N∑
i=1

Z̄k,iZ̄
′
k,i

=
1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)Zk(uit)
′ − 1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

Zk(uit)Zk(uis)
′ ≡ ANT −BNT . (C.1)

Stage One. Calculate the expectation. Note that {uit} is i.i.d sequence across i. Therefore, the

distribution of uit does not depend on i. Let dt = (E[u2
it])

1/2 = |ρ|
√
t(1 + o(1)), where ρ 6= 0 is given

in Assumption 1. Hence, d−1
t uit has a density ft(x), which is uniformly bounded over x and large t.

Meanwhile, as t → ∞, maxx |ft(x) − ϕ(x)| ≤ Cd−1
t for some C > 0, where ϕ(x) is the density of a

standard normal variable (see Dong and Gao (2014) for more details on the properties of ft(x)). Let

ν = ν(T ) be a function of T such that ν →∞ and kν/
√
T → 0 as T →∞.

E[ANT ] =
1

N
√
T

N∑
i=1

T∑
t=1

E[Zk(uit)Zk(uit)
′]

=
1

N
√
T

N∑
i=1

ν∑
t=1

E[Zk(uit)Zk(uit)
′] +

1

N
√
T

N∑
i=1

T∑
t=ν+1

E[Zk(uit)Zk(uit)
′]

=
1

N
√
T

N∑
i=1

ν∑
t=1

E[Zk(uit)Zk(uit)
′] +

1

N
√
T

N∑
i=1

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′ft(d

−1
t x)dx

=
1√
T

ν∑
t=1

E[Zk(u1t)Zk(u1t)
′] +

1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′ft(d

−1
t x)dx = ANT,1 +ANT,2.
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By the construction, it is easy to obtain that for ANT,1

1√
T

∥∥∥∥∥
ν∑
t=1

E[Zk(u1t)Zk(u1t)
′]

∥∥∥∥∥ ≤ 1√
T

ν∑
t=1

E[‖Zk(u1t)‖2] = O(1)
νk√
T
→ 0,

where the equality follows from (6) of Lemma B.1. We then consider ANT,2

ANT,2 =
1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′ft(d

−1
t x)dx

=
1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′

(
ft(d

−1
t x)− ϕ(d−1

t x)
)
dx+

1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′ϕ(d−1

t x)dx

=o(1) + ϕ(0)
1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′dx+

1√
T

T∑
t=ν+1

d−1
t

∫
Zk(x)Zk(x)′

(
ϕ(d−1

t x)− ϕ(0)
)
dx

=o(1) + 2ϕ(0)/|ρ|(1 + o(1)) · Ik +
1√
T

T∑
t=ν+1

d−1
t

∫
|x|<εdt

Zk(x)Zk(x)′
(
ϕ(d−1

t x)− ϕ(0)
)
dx

+
1√
T

T∑
t=ν+1

d−1
t

∫
|x|≥εdt

Zk(x)Zk(x)′
(
ϕ(d−1

t x)− ϕ(0)
)
dx

where ε > 0 can be as small as we wish; and the second equality follows from

1√
T

∥∥∥∥∥
T∑

t=ν+1

d−1
t

∫
Zk(x)Zk(x)′

(
ft(d

−1
t x)− ϕ(d−1

t x)
)
dx

∥∥∥∥∥
≤ O(1)

1√
T

T∑
t=ν+1

d−2
t

∫
‖Zk(x)‖2dx = O(1)

k lnT√
T

= o(1).

Notice also that

1√
T

∥∥∥∥∥
T∑

t=ν+1

d−1
t

∫
|x|<εdt

Zk(x)Zk(x)′
(
ϕ(d−1

t x)− ϕ(0)
)
dx

∥∥∥∥∥
≤ 1√

T

T∑
t=ν+1

d−1
t

∫
|x|<εdt

‖Zk(x)Zk(x)′‖ · |ϕ(d−1
t x)− ϕ(0)|dx

≤O(1)
1√
T

T∑
t=ν+1

d−2
t

∫
|x|<εdt

‖Zk(x)Zk(x)′‖ · |x|dx

≤O(1)
ln(T )√
T

(∫
|x|2‖Zk(x)‖2dx

∫
‖Zk(x)‖2dx

)1/2

=O(1)
ln(T )√
T

(
k2 · k

)1/2
= O(1)

k3/2 ln(T )√
T

, (C.2)

where the last line follows from (5) and (9) of Lemma B.1. Moreover,

1√
T

∥∥∥∥∥
T∑

t=ν+1

d−1
t

∫
|x|≥εdt

Zk(x)Zk(x)′
(
ϕ(d−1

t x)− ϕ(0)
)
dx

∥∥∥∥∥
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≤O(1)
1√
T

T∑
t=ν+1

d−1
t

∫
|x|≥εdt

∥∥Zk(x)Zk(x)′
∥∥ dx

≤O(1)
1√
T

T∑
t=ν+1

ε−1d−2
t

∫
|x|≥εdt

‖Zk(x)Zk(x)′‖ · |x|dx

≤O(1)ε−1 ln(T )√
T

(∫
|x|2‖Zk(x)‖2dx

∫
‖Zk(x)‖2dx

)1/2

= O(1)
k3/2 ln(T )√

T
. (C.3)

In view of Assumption 2, (C.2) and (C.3), we obtain that E[ANT ] = 2ϕ(0)/|ρ| · Ik(1 + o(1)).

Next, we will show that E[BNT ] = o(1). For t > s and t − s is large, note that, without loss of

generality letting ui0 = 0 a.s.

uit =
t∑

`=1

ηi` =
t∑

`=1

∑̀
j=−∞

ρt−jεij =
t∑

j=−∞
bt,jεij

=

t∑
j=s+1

bt,jεij +

s∑
j=−∞

bt,jεij := ui,ts + u∗i,ts,

where bt,j =
∑t

`=max(1,j) ρ`−j .

Similar to the proof of Lemma A.4 of Dong et al. (2014), 1
dts
ui,ts has uniformly bounded densities

fts(w) over all t and s, where dts = O(1)
√
t− s. Without loss of generality, in what follows we abuse

the density by neglecting the argument on ν = ν(T ) as we did before. Let Ris = σ(. . . , εi,s−1, εis) be

the sigma field generated by εij , j ≤ s. Then,

E[BNT ] =
1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

E
[
Zk(uit)Zk(uis)

′]
=

1

NT 3/2

N∑
i=1

T∑
t=1

E
[
Zk(uit)Zk(uit)

′]+
2

NT 3/2

N∑
i=1

T∑
t=2

t−1∑
s=1

E
[
E[Zk(uit)Zk(uis)

′|Ris]
]

=
1

NT 3/2

N∑
i=1

T∑
t=1

∫
Zk(dtw)Zk(dtw)′ft(w)dw

+
2

NT 3/2

N∑
i=1

T∑
t=2

t−1∑
s=1

E

∫
Zk(dtsw1 + u∗i,ts)Zk(uis)

′fts(w1)dw1

=
1

T 3/2

T∑
t=1

1

dt

∫
Zk(w)Zk(w)′ft(w/dt)dw

+
2

T 3/2

T∑
t=2

t−1∑
s=1

1

dts
E

∫
Zk(w1)Zk(uis)

′fts

(
w1 − u∗i,ts

dts

)
dw1.

The first term is confined by

1

T 3/2

T∑
t=1

1

dt

∫ ∥∥Zk(w)Zk(w)′
∥∥ ft(w/dt)dw ≤ O(1)

1

T 3/2

T∑
t=1

1

dt

∫
‖Zk(w)‖2 dw = O(1)

k

T
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while the second term is bounded by

2

T 3/2

T∑
t=2

t−1∑
s=1

1

dts
E

∫
‖Zk(w1)Zk(uis)

′‖fts
(
w1 − u∗i,ts

dts

)
dw1

≤ O(1)
1

T 3/2

T∑
t=2

t−1∑
s=1

1

dts

∫
‖Zk(w1)‖ dw1E‖Zk(uis)‖

≤ O(1)
1

T 3/2

T∑
t=2

t−1∑
s=1

1

dts

1

ds

(∫
‖Zk(w1)‖ dw1

)2

= O(1)
k11/6

T 1/2
= o(1),

where the last equality follows from (4) of Lemma B.1. The calculation yields 1
N
√
T
E[Z ′Z] = a0Ik(1+

o(1)).

Stage Two. We shall show that as (N,T )→ (∞,∞) jointly, E
∥∥∥ 1
N
√
T
Z ′Z − 1

N
√
T
E[Z ′Z]

∥∥∥2
→ 0.

To do so, N →∞ and uit being independent with respect to (w.r.t.) i are important. By (C.1) again,

E

∥∥∥∥ 1

N
√
T
Z ′Z − 1

N
√
T
E[Z ′Z]

∥∥∥∥2

(C.4)

≤ 2

N2T
E

∥∥∥∥∥
N∑
i=1

T∑
t=1

{Zk(uit)Zk(uit)′ − E[Zk(uit)Zk(uit)
′]}

∥∥∥∥∥
2

+
2

N2T 3
E

∥∥∥∥∥
N∑
i=1

T∑
t=1

T∑
s=1

{Zk(uit)Zk(uis)′ − E[Zk(uit)Zk(uis)
′]}

∥∥∥∥∥
2

≡ ĀNT + B̄NT .

We now consider ĀNT and B̄NT respectively.

ĀNT =
2

N2T
E

∥∥∥∥∥
N∑
i=1

T∑
t=1

{Zk(uit)Zk(uit)′ − E[Zk(uit)Zk(uit)
′]}

∥∥∥∥∥
2

=
2

N2T

N∑
i=1

E

∥∥∥∥∥
T∑
t=1

{Zk(uit)Zk(uit)′ − E[Zk(uit)Zk(uit)
′]}

∥∥∥∥∥
2

≤ 2

N2T

N∑
i=1

E

∥∥∥∥∥
T∑
t=1

Zk(uit)Zk(uit)
′

∥∥∥∥∥
2

=
2

N2T

k−1∑
n=0

k−1∑
m=0

N∑
i=1

T∑
t=1

T∑
s=1

E [Hn(uit)Hm(uit)Hn(uis)Hm(uis)]

=
2

N2T

k−1∑
n=0

k−1∑
m=0

N∑
i=1

T∑
t=1

E
[
H 2
n (uit)H

2
m(uit)

]
+

4

N2T

k−1∑
n=0

k−1∑
m=0

N∑
i=1

T∑
t=2

t−1∑
s=1

E [Hn(uit)Hm(uit)Hn(uis)Hm(uis)]

≡ ĀNT,1 + ĀNT,2.

For ĀNT,1, write

ĀNT,1 =
2

NT

k−1∑
n=0

k−1∑
m=0

T∑
t=1

∫
H 2
n (dtw)H 2

m(dtw)ft(w)dw
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≤ O(1)
1

NT

k−1∑
n=0

k−1∑
m=0

T∑
t=1

1

dt

∫
H 2
n (w)ft(w/dt)dw

≤ O(1)
1

NT

k−1∑
n=0

k−1∑
m=0

T∑
t=1

1

dt

∫
H 2
n (w)dw = O(1)

k2

N
√
T
,

where the first inequality follows from Hn(w) being bounded uniformly.

For ĀNT,2, write

ĀNT,2 =
4

N2T

k−1∑
n=0

N∑
i=1

T∑
t=2

t−1∑
s=1

E
[
H 2
n (uit)H

2
n (uis)

]
+

8

N2T

k−1∑
n=1

n−1∑
m=0

N∑
i=1

T∑
t=2

t−1∑
s=1

E [Hn(uit)Hm(uit)Hn(uis)Hm(uis)] ≡ ĀNT,21 + ĀNT,22.

For ĀNT,21, using conditional argument again we have

ĀNT,21 ≤ O(1)
1

NT

k−1∑
n=0

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫∫
H 2
n (w1)H 2

n (w2)dw1dw2 = O(1)
k

N
.

For ĀNT,22, we use the decomposition uit = ui,ts + u∗i,ts again. Note that for 1 ≤ i ≤ N and s < t,

ui,ts includes all the information between time periods s+1 and t and u∗i,ts includes all the information

up to time period s. As Dong and Gao (2014) show, 1
dts
ui,ts has a density fts(w), which is uniformly

bounded on R and satisfies uniform Lipschitz condition on R, i.e. supw |fts(w + v) − fts(w)| ≤ C|v|

for some absolutely constant C. Then we can write

ĀNT,22 = O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

E [Hn(uit)Hm(uit)Hn(uis)Hm(uis)]

= O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

E
[
E
[
Hn(ui,ts + u∗i,ts)Hm(ui,ts + u∗i,ts)|Ris

]
Hn(uis)Hm(uis)

]
= O(1)

1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

E

[∫
Hn(dtsw + u∗is)Hm(dtsw + u∗is)fts(w)dw ·Hn(uis)Hm(uis)

]

= O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

dts
E

[∫
Hn(w)Hm(w)fts

(
w − u∗is
dts

)
dw ·Hn(uis)Hm(uis)

]

= O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

dts

·E
[∫

Hn(w)Hm(w)

[
fts

(
w − u∗is
dts

)
− fts

(
−u∗is
dts

)]
dw ·Hn(uis)Hm(uis)

]
,

where the last line follows from the truth that
∫

Hn(w)Hm(w)dw = 0 for m 6= n. By the uniform

Lipschitz condition of fts, we then obtain that

|ĀNT,22| ≤ O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

d2
ts

∫
|wHn(w)Hm(w)|dw · E [|Hn(uis)Hm(uis)|]

28



= O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

d2
ts

∫
|wHn(w)Hm(w)|dw ·

∫
|Hn(dsw)Hm(dsw)|fs(w)dw

≤ O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

d2
ts

1

ds

∫
|wHn(w)Hm(w)|dw ·

∫
|Hn(w)Hm(w)|dw

≤ O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

d2
ts

1

ds

{∫
H 2
n (w)dw

∫
w2H 2

m(w)dw

}1/2

·
{∫

H 2
n (w)dw

∫
H 2
m(w)dw

}1/2

≤ O(1)
1

NT

k−1∑
n=1

n−1∑
m=0

T∑
t=2

t−1∑
s=1

1

d2
ts

1

ds

√
m = O

(
k5/2 lnT

N
√
T

)
= o(1).

By the calculation of ĀNT,1 and ĀNT,2, we have shown that ĀNT = o(1).

For B̄NT , by the independence across i of {ui1, . . . , uiT }, write

B̄NT =
2

N2T 3

N∑
i=1

E

∥∥∥∥∥
T∑
t=1

T∑
s=1

{Zk(uit)Zk(uis)′ − E[Zk(uit)Zk(uis)
′]}

∥∥∥∥∥
2

≤ O(1)

N2T 3

N∑
i=1

E

∥∥∥∥∥
T∑
t=1

T∑
s=1

Zk(uit)Zk(uis)
′

∥∥∥∥∥
2

≤ O(1)

N2T 3

N∑
i=1

E

[
T∑
t=1

T∑
s=1

‖Zk(uit)‖‖Zk(uis)‖

]2

= O(1)
1

N2T 3

N∑
i=1

E

[
T∑

t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

‖Zk(uit1)‖‖Zk(uit2)‖‖Zk(uit3)‖‖Zk(uit4)‖

]

= O(1)
1

N2T 3

N∑
i=1

E

 ∑
all t1,t2,t3,t4different

‖Zk(uit1)‖‖Zk(uit2)‖‖Zk(uit3)‖‖Zk(uit4)‖


+O(1)

1

N2T 3

N∑
i=1

E

 ∑
two of t1,t2,t3,t4same

‖Zk(uit1)‖‖Zk(uit2)‖‖Zk(uit3)‖‖Zk(uit4)‖


+O(1)

1

N2T 3

N∑
i=1

E

 ∑
three of t1,t2,t3,t4same

‖Zk(uit1)‖‖Zk(uit2)‖‖Zk(uit3)‖‖Zk(uit4)‖


+O(1)

1

N2T 3

N∑
i=1

E

[
T∑
t=1

‖Zk(uit)‖4
]

≡ B̄NT,1 + B̄NT,2 + B̄NT,3 + B̄NT,4.

For B̄NT,1, without losing generality, assume that t1 > t2 > t3 > t4. Then, by the conditional

argument,

B̄NT,1 =
O(1)

N2T 3

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

E[‖Zk(uit1)‖‖Zk(uit2)‖‖Zk(uit3)‖‖Zk(uit4)‖]

≤ O(1)

N2T 3

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

1

dt1t2

1

dt2t3

1

dt3t4

1

dt4

·
∫∫∫∫

‖Zk(w1)‖‖Zk(w2)‖‖Zk(w3)‖‖Zk(w4)‖dw1dw2dw3dw4
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=
O(1)

NT

(∫
‖Zk(w)‖dw

)4

= O

(
k11/3

NT

)
= o(1),

where the last line follows from (4) of Lemma B.1 and Assumption 2.2.

For B̄NT,2, without losing generality, assume that t1 = t2 > t3 > t4. Then write

B̄NT,2 =
O(1)

N2T 3

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

E[‖Zk(uit1)‖2‖Zk(uit3)‖‖Zk(uit4)‖]

≤ O(1)

N2T 3

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

1

dt1t3

1

dt3d4

1

dt4

·
∫∫∫

‖Zk(w1)‖2‖Zk(w2)‖‖Zk(w3)‖dw1dw2dw3

≤ O(1)

NT 3/2

∫
‖Zk(w)‖2dw

(∫
‖Zk(w)‖dw

)2

= O

(
k17/6

NT 3/2

)
= o(1),

where the last line follows from (4)–(5) of Lemma B.1 and Assumption 2.2.

For B̄NT,3, without losing generality, assume that t1 = t2 = t3 > t4. Then write

B̄NT,3 =
O(1)

N2T 3

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

E[‖Zk(uit1)‖3‖Zk(uit4)‖]

≤ O(1)

N2T 3

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

1

dt1d4

1

dt4

∫∫
‖Zk(w1)‖3‖Zk(w2)‖dw1dw2

≤ O
(

k

NT 2

)(∫
‖Zk(w)‖dw

)2

= O

(
k17/6

NT 2

)
= o(1),

where the last line follows from (4) and (6) of Lemma B.1 and Assumption 2.2.

For B̄NT,4, write

B̄NT,4 =
1

N2T 3

N∑
i=1

T∑
t=1

E‖Zk(w)‖4 =
1

N2T 3

N∑
i=1

T∑
t=1

∫
‖Zk(dtw)‖4ft(w)dw

≤ O
(

1

N2T 3

) N∑
i=1

T∑
t=1

1

dt

∫
‖Zk(w)‖4dw ≤ O

(
k

NT 5/2

)∫
‖Zk(w)‖2dw = O

(
k2

NT 5/2

)
= o(1).

Combining B̄NT,1, B̄NT,2, B̄NT,3 and B̄NT,4 together, we know that B̄NT = o(1).

Therefore, we have shown that
∥∥∥ 1
N
√
T
Z ′Z −

√
2

π|ρ|2 (1 + o(1))Ik

∥∥∥ = oP (1). We now complete the

proof for the first result of this lemma.

2) Noticing that k2/N → 0 and that (C.4) in Stage Two, particularly ĀNT = k/N and B̄NT =

k11/3/(NT ), the second result of this lemma follows immediately. �

Lemma B.2. Under Assumptions 1 and 2, as (N,T )→ (∞,∞) jointly,

1.
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 Zk(uit)γk(uit)

∥∥∥ = OP (k−(m−1)/2);
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2.
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 φ(uit)Zk(uit)

′
∥∥∥ = OP (1);

3.
∥∥∥ 1
N
√
T

∑N
i=1

∑T
t=1 vitZk(uit)

′
∥∥∥ = OP

(√
k
N

)
;

4. 1
NT

∑N
i=1

∑T
t=1 vitv

′
it = Σv +OP

(
1√
NT

)
;

5. 1
NT

∑N
i=1

∑T
t=1 vitφ(uit)

′ = OP

(
1√
NT

)
;

6. 1
N
√
T

∑N
i=1

∑T
t=1 Zk(uit)eit = OP

( √
k√

N 4√T

)
;

7. 1
NT

∑N
i=1

∑T
t=1 φ(uit)eit = OP

(
1√

N
4√
T 3

)
;

8. 1
NT

∑N
i=1

∑T
t=1 φ(uit)γk(uit) = OP

(
1√
kmT

)
;

9. 1
NT

∑N
i=1

∑T
t=1 vitγk(uit) = OP

(
k−m/2+5/12
√
NT

)
.

Proof of Lemma B.2:

1) Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)γk(uit)

∥∥∥∥∥
2

=
1

N2T
E

[
N∑
i=1

(
T∑
t=1

‖Zk(uit)‖2γ2
k(uit) + 2

T∑
t=2

t−1∑
s=1

Zk(uit)
′Zk(uis)γk(uit)γk(uis)

)]

+
2

N2T
E

 N∑
i=2

i−1∑
j=1

T∑
t=1

Zk(uit)
′Zk(ujt)γk(uit)γk(ujt)


+

4

N2T
E

 N∑
i=2

i−1∑
j=1

T∑
t=2

t−1∑
s=1

Zk(uit)
′Zk(ujs)γk(uit)γk(ujs)

 ≡ A1 + 2A2 + 4A3.

Notice that

A1 =
1

N2T

N∑
i=1

T∑
t=1

E
[
‖Zk(uit)‖2γ2

k(uit)
]

+
2

N2T

N∑
i=1

T∑
t=2

t−1∑
s=1

E
[
Zk(uit)

′Zk(uis)γk(uit)γk(uis)
]
. (C.5)

The first term on RHS of (C.5) can be written as

1

N2T

N∑
i=1

T∑
t=1

E[‖Zk(uit)‖2γ2
k(uit)] ≤ O

(
k−m+5/6

N2T

)
N∑
i=1

T∑
t=1

∫
‖Zk(dtw)‖2ft(w)dw

= O

(
k−m+5/6

N2T

)
N∑
i=1

T∑
t=1

∫
1

dt
‖Zk(w)‖2ft(w/dt)dw

≤ O

(
k−m+5/6

N2T

)
N∑
i=1

T∑
t=1

1

dt

∫
‖Zk(w)‖2dw ≤ O

(
k−m+11/6

N
√
T

)
,
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where the first inequality follows from (2) of Lemma B.1 and the second inequality follows from ft(w)

being bounded uniformly.

For the second term on RHS of (C.5),∣∣∣∣∣ 1

N2T

N∑
i=1

T∑
t=2

t−1∑
s=1

E[Zk(uit)
′Zk(uis)γk(uit)γk(uis)]

∣∣∣∣∣
≤ 1

N2T

N∑
i=1

T∑
t=2

t−1∑
s=1

E[‖Zk(uit)‖‖Zk(uis)‖|γk(uit)||γk(uis)|]

≤ O
(

1

N2T

) N∑
i=1

T∑
t=2

t−1∑
s=1

∫∫
1

dts

1

ds
‖Zk(w1)‖‖Zk(w2)‖|γk(w1)||γk(w2)|dw1dw2

≤ O
(

1

NT

) T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫∫
‖Zk(w1)‖‖Zk(w2)‖|γk(w1)||γk(w2)|dw1dw2

≤ O
(

1

N

)(∫
‖Zk(w)‖|γk(w)|dw

)2

≤ O
(

1

N

)∫
‖Zk(w)‖2dw

∫
|γk(w)|2dw = O

(
k−m+1

N

)
.

Therefore, A1 = O
(
k−m+1

N

)
.

For A2, by virtue of Zk(w) = (H0(w), . . . ,Hk−1(w))′

|A2| =

∣∣∣∣∣∣ 1

N2T

N∑
i=2

i−1∑
j=1

T∑
t=1

k−1∑
n=0

E [Hn(uit)γk(uit)] · E [Hn(ujt)γk(ujt)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N2T

N∑
i=2

i−1∑
j=1

T∑
t=1

k−1∑
n=0

∫
Hn(dtw)γk(dtw)ft(w)dw

∫
Hn(dtw)γk(dtw)ft(w)dw

∣∣∣∣∣∣
≤ O

(
1

N2T

) N∑
i=2

i−1∑
j=1

T∑
t=1

1

d2
t

k−1∑
n=0

(∫
|Hn(w)γk(w)|dw

)2

≤ O
(

lnT

T

)∫
‖Zk(w)‖2dw

∫
|γk(w)|2dw = o

(
k−m+1

)
.

Similar to A2, for A3 we write

|A3| =

∣∣∣∣∣∣ 1

N2T

N∑
i=2

i−1∑
j=1

T∑
t=2

t−1∑
s=1

k−1∑
n=0

E [Hn(uit)γk(uit)] · E [Hn(ujs)γk(ujs)]

∣∣∣∣∣∣
≤ O

(
1

T

) T∑
t=2

t−1∑
s=1

1

dt

1

ds

k−1∑
n=0

(∫
|Hn(w)γk(w)|dw

)2

≤ O(1)

∫
‖Zk(w)‖2dw

∫
|γk(w)|2dw = O(k−m+1).

Thus, the result follows. �

2) Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

T∑
t=1

φ(uit)Zk(uit)
′

∥∥∥∥∥
2

=
1

N2T

d∑
m=1

k−1∑
n=0

N∑
i=1

T∑
t=1

E[φ2
m(uit)H

2
n (uit)]
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+
2

N2T

d∑
m=1

k−1∑
n=0

N∑
i=1

T∑
t=2

t−1∑
s=1

E[φm(uit)Hn(uit)φm(uis)Hn(uis)]

+
2

N2T

d∑
m=1

k−1∑
n=0

N∑
i=2

i−1∑
j=1

T∑
t=1

T∑
s=1

E[φm(uit)Hn(uit)]E[φm(ujs)Hn(ujs)]

≤ O
(

1

N2T

) d∑
m=1

k−1∑
n=0

N∑
i=1

T∑
t=1

1

dt

∫
H 2
n (w)dw

+O

(
2

N2T

) d∑
m=1

k−1∑
n=0

N∑
i=1

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫∫
φm(w1)Hn(w1)φm(w2)Hn(w2)dw1dw2

+O

(
2

N2T

) d∑
m=1

k−1∑
n=0

N∑
i=2

i−1∑
j=1

T∑
t=1

T∑
s=1

1

dt

1

ds

(∫
φm(w)Hn(w)dw

)2

≤ O
(

k

N
√
T

)
+

2

N2

d∑
m=1

k−1∑
n=0

N∑
i=1

(∫
φm(w)Hn(w)dw

)2

+
2

N2

d∑
m=1

k−1∑
n=0

N∑
i=2

i−1∑
j=1

(∫
φm(w)Hn(w)dw

)2

= o (1) +
2

N2

d∑
m=1

k−1∑
n=0

N∑
i=1

N∑
j=1

(∫
φm(w)Hn(w)dw

)2

≤ o (1) +
2

N2

d∑
m=1

N∑
i=1

N∑
j=1

∫
φ2
m(w)dw = O(1),

where the first equality is due to Assumption 1.4; the first inequality follows from that ft(w) being

bounded uniformly and φm(w) being bounded uniformly on R for m = 1, . . . , d; the last inequality

follows from that φm(w) ∈ L2(R) (such that φm(w) =
∑∞

n=0 cm,nHn(w) for m = 1, . . . , d, cm,n =∫
φm(w)Hn(w)dw for n = 0, . . . ,∞ and

∑∞
n=0 c

2
m,n =

∫
φ2
m(w)dw).

The proof is then complete. �

3) Let vit,n1 denote the nth1 element of vit. Write

E

∥∥∥∥∥
N∑
i=1

T∑
t=1

vitZk(uit)
′

∥∥∥∥∥
2

=
d∑

n1=1

k−1∑
n2=0

E

[
N∑
i=1

T∑
t=1

vit,n1Hn2(uit)

]2

=

d∑
n1=1

k−1∑
n2=0

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [vit,n1vjs,n1 ]E [Hn2(uit)Hn2(ujs)]

≤ O(k)
d∑

n1=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

cδ(αij(|t− s|))δ/(4+δ)
(
E|vit,n1 |2+δ/2

)2/(4+δ) (
E|vjs,n1 |2+δ/2

)2/(4+δ)

≤ O(k)
N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) = O(kNT ),

where cδ = 2(4+2δ)/(4+δ) ·(4+δ)/δ; the second equality follows from Assumption 1.4; the first inequality

follows from Davydov inequality (c.f. pages 19–20 in Bosq (1996) and supplementary of Su and Jin

(2012)) and the truth that Hn(w) is bounded uniformly (c.f. Nevai (1986)); the second inequality
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follows from Assumption 1.3.a. Thus, the result follows. �

4) Let Σv,n1n2 denote the (n1, n2)th element of Σv. Write

E

∥∥∥∥∥
N∑
i=1

T∑
t=1

(vitv
′
it − Σv)

∥∥∥∥∥
2

=

d∑
n1=1

d∑
n2=1

E

[
N∑
i=1

T∑
t=1

(vit,n1vit,n2 − Σv,n1n2)

]2

≤
d∑

n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

cδ(αij(|t− s|))δ/(4+δ)

·
(
E|vit,n1vit,n2 |2+δ/2

)2/(4+δ) (
E|vjs,n1vjs,n2 |2+δ/2

)2/(4+δ)

≤ cδ
2

d∑
n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) ·
(
E|vit,n1vit,n2 |2+δ/2

)4/(4+δ)

+
cδ
2

d∑
n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) ·
(
E|vjs,n1vjs,n2 |2+δ/2

)4/(4+δ)

≤ O(1)

d∑
n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) ·
(
E|vit,n1 |4+δ · E|vit,n2 |4+δ

)2/(4+δ)

≤ O(1)
N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) = O(NT ),

where cδ = 2(4+2δ)/(4+δ) · (4 + δ)/δ; the first inequality follows from Davydov inequality; the third in-

equality follows from Cauchy–Schwarz inequality; the last line follows from Assumption 1.3.a. There-

fore, the result follows. �

5) Write

E

∥∥∥∥∥
N∑
i=1

T∑
t=1

vitφ(uit)
′

∥∥∥∥∥
2

=
d∑

n1=1

d∑
n2=1

E

[
N∑
i=1

T∑
t=1

vit,n1φn2(uit)

]2

=
d∑

n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [vit,n1vjs,n1 ]E [φn2(uit)φn2(ujs)]

≤ O(1)
d∑

n=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ)
(
E|vit,n|2+δ/2

)2/(4+δ) (
E|vjs,n|2+δ/2

)2/(4+δ)

≤ O(1)

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) = O(NT ),

where the second equality follows from Assumption 1.4; the first inequality follows from Davydov

inequality and the uniform boundedness of φn(w) on R for n = 1, . . . , d. Therefore, the result follows

immediately. �

6) By Assumptions 1.1 and 1.4,

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)eit

∥∥∥∥∥
2

=
1

N2T
E

( N∑
i=1

T∑
t=1

Zk(uit)eit

)′( N∑
i=1

T∑
t=1

Zk(uit)eit

)
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=
1

N2T

N∑
i=1

T∑
t=1

E
[
‖Zk(uit)‖2

]
E
[
e2
it

]
+

2

N2T

N∑
i=2

i−1∑
j=1

T∑
t=1

E
[
Zk(uit)

′]E [Zk(ujt)]E[eitejt]

≡ B1 + 2B2.

For B1, write

B1 =
1

N2T

N∑
i=1

T∑
t=1

∫
‖Zk(dtw)‖2ft(w)dw · σ2

e

≤ O
(

1

NT

) T∑
t=1

1

dt

∫
‖Zk(w)‖2dw = O

(
k

N
√
T

)
,

where the second line follow from that ft(w) being bounded uniformly.

For B2,

|B2| =

∣∣∣∣∣∣ 1

N2T

k−1∑
n=0

N∑
i=2

i−1∑
j=1

T∑
t=1

∫
Hn(dtw)ft(w)dw

∫
Hn(dtw)ft(w)dw · σe(i, j)

∣∣∣∣∣∣
≤ 1

N2T

k−1∑
n=0

N∑
i=2

i−1∑
j=1

T∑
t=1

∫
H 2
n (dtw)dw

∫
f2
t (w)dw |σe(i, j)|

≤ O
(

1

N2T

) k−1∑
n=0

T∑
t=1

1

dt

∫
H 2
n (w)dw

N∑
i=2

i−1∑
j=1

|σe(i, j)| ≤ O
(

k

N
√
T

)
,

where the first inequality follows from Cauchy–Schwarz inequality; the second inequality follows from

ft(w) being bounded uniformly; the third inequality follows from Assumption 1.3.b. In connection

with B1 = O
(

k
N
√
T

)
, we obtain that 1

N
√
T

∑N
i=1

∑T
t=1 Zk(uit)eit = OP

( √
k√

N 4√T

)
. �

7) Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

φ(uit)eit

∥∥∥∥∥
2

=
1

N2T 2

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t=1

E [φn(uit)φn(ujt)]E [eitejt]

=
σ2
e

N2T 2

d∑
n=1

N∑
i=1

T∑
t=1

∫
φ2
n(dtw)ft(w)dw

+
2

N2T 2

d∑
n=1

N∑
i=2

i−1∑
j=1

T∑
t=1

∫
φn(dtw)ft(w)dw

∫
φn(dtw)ft(w)dw · σe(i, j)

≤ O
(

1

NT 2

) d∑
n=1

T∑
t=1

1

dt

∫
φ2
n(w)dw

+O

(
2

N2T 2

) d∑
n=1

N∑
i=2

i−1∑
j=1

T∑
t=1

∫
φ2
n(dtw)dw

∫
f2
t (w)dw|σe(i, j)|

≤ O
(

1

NT 3/2

)
+O

(
1

NT 3/2

)
= O

(
1

NT 3/2

)
,

where the first equality follows from Assumption 1.4; the first inequality follows from ft(w) being

bounded uniformly and φn(w) ∈ L2(R); the second inequality follows from φn(w) being integrable and

Assumption 1.3. Therefore, the result follows. �
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8) Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

φ(uit)γk(uit)

∥∥∥∥∥
2

=
1

N2T 2

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [φn(uit)γk(uit)φn(ujs)γk(ujs)]

=
1

N2T 2

d∑
n=1

N∑
i=1

T∑
t=1

T∑
s=1

E [φn(uit)γk(uit)φn(uis)γk(uis)]

+
2

N2T 2

d∑
n=1

N∑
i=2

i−1∑
j=1

T∑
t=1

T∑
s=1

E [φn(uit)γk(uit)]E [φn(ujs)γk(ujs)]

=
1

N2T 2

d∑
n=1

N∑
i=1

T∑
t=1

E
[
φ2
n(uit)γ

2
k(uit)

]
+

2

N2T 2

d∑
n=1

N∑
i=1

T∑
t=2

t−1∑
s=1

E [φn(uit)γk(uit)φn(uis)γk(uis)]

+
2

N2T

d∑
n=1

N∑
i=2

i−1∑
j=1

1√
T

T∑
t=1

E [φn(uit)γk(uit)]
1√
T

T∑
s=1

E [φn(ujs)γk(ujs)]

≡ C1 + 2C2 + 2C3.

By (2) of Lemma B.1,

C1 = O

(
k−m+5/6

N2T 2

)
d∑

n=1

N∑
i=1

T∑
t=1

∫
φ2
n(dtw)ft(w)dw

≤ O

(
k−m+5/6

N2T 2

)
d∑

n=1

N∑
i=1

T∑
t=1

1

dt

∫
φ2
n(w)dw ≤ O

(
k−m+5/6

NT 3/2

)
.

For C2, write

|C2| =

∣∣∣∣∣ 1

N2T 2

d∑
n=1

N∑
i=1

T∑
t=2

t−1∑
s=1

E [φn(uit)γk(uit)φn(uis)γk(uis)]

∣∣∣∣∣
≤ 1

N2T 2

d∑
n=1

N∑
i=1

T∑
t=2

t−1∑
s=1

∫∫
|φn(dtsw1 + dsw2)γk(dtsw1 + dsw2)φn(dsw2)γk(dsw2)|

·fts(w1)fs(w2)dw1dw2

≤ O
(

1

N2T 2

) d∑
n=1

N∑
i=1

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫∫
|φn(w1)γk(w1)φn(w2)γk(w2)|dw1dw2

≤ O
(

1

NT

) d∑
n=1

(∫
|φn(w)γk(w)|dw

)2

≤ O
(

1

NT

) d∑
n=1

∫
φ2
n(w)dw

∫
γ2
k(w)dw = O

(
k−m

NT

)
.

For C3, write∣∣∣∣∣ 1√
T

T∑
t=1

E [φn(uit)γk(uit)]

∣∣∣∣∣ ≤ 1√
T

T∑
t=1

∫
|φn(dtw)γk(dtw)|ft(w)dw

≤ O(1)
1√
T

T∑
t=1

1

dt

∫
|φn(w)γk(w)|dw ≤ O(1)

{∫
φ2
n(w)dw

∫
γ2
k(w)dw

}1/2

= O(k−m/2).

Thus, |C3| ≤ 1
N2T

∑d
n=1

∑N
i=2

∑i−1
j=1 o(k

−m) = O
(

1
kmT

)
. In connection with the analysis for C1 and

C2, 1
NT

∑N
i=1

∑T
t=1 φ(uit)γk(uit) = OP

(
1√
kmT

)
. Then the proof is complete. �
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9) Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

vitγk(uit)

∥∥∥∥∥
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
v′itvjsγk(uit)γk(ujs)

]
=

1

N2T 2

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [vit,nvjs,n]E [γk(uit)γk(ujs)]

≤ O

(
k−m+5/6

N2T 2

)
d∑

n=1

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ)
(
E
[
|vit,n|2+δ/2

]
· E
[
|vjs,n|2+δ/2

])2/(4+δ)

≤ O

(
k−m+5/6

N2T 2

)
N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))δ/(4+δ) = O

(
k−m+5/6

NT

)
,

where the second equality follows from Assumption 1.4; the first inequality follows from (2) of Lemma

B.1 and Davydov inequality; the last line follows from Assumption 1.3.a. Then the result follows. �

Lemma B.3. For two non–singular symmetric matrices A,B with same dimensions k × k, where

k tends to ∞. Suppose that their minimum eigenvalues satisfy that λmin(A) > 0 and λmin(B) > 0

uniformly in k. Then
∥∥A−1 −B−1

∥∥2 ≤ λ−2
min (A) · λ−2

min (B) ‖A−B‖2.

Proof of Lemma B.3:

For two non-singular symmetric matrices A and B with same dimensions, we observe that

∥∥A−1 −B−1
∥∥2

=
∥∥B−1 (B −A)A−1

∥∥2
=
∥∥vec (B−1 (B −A)A−1

)∥∥2

=
∥∥(A−1 ⊗B−1

)
vec (B −A)

∥∥2 ≤ λ−2
min (A⊗B) ‖vec (B −A)‖2

= λ−2
min (A) · λ−2

min (B) ‖A−B‖2 .

The above calculation is straightforward and all the necessary theorems can be found in Magnus and

Neudecker (2007). �

Lemma B.4. Let Assumptions 1 and 2 hold. As (N,T ) → (∞,∞) jointly, (1)
∥∥∥ 1
N
√
T
ZE
∥∥∥ =

OP

( √
k√

N 4√T

)
; (2)

∥∥∥ 1
N
√
T
X ′Z

∥∥∥ = OP (1); (3) 1
NTX

′E = OP

(
1√
NT

)
; (4) 1

NTX
′γ = OP

(
1√
kmT

)
;

(5)
∥∥∥ 1
N
√
T
Z ′γ

∥∥∥ = OP (k−(m−1)/2); (6) 1
NTX

′X →P Σv.

Proof of Lemma B.4:

1)

1

N
√
T
Z ′E =

1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)eit −
1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

Zk(uit)eis ≡ A1 −A2

We have shown that A1 = OP

( √
k√

N 4√T

)
in (6) of Lemma B.2. We then just focus on A2. By

Assumptions 1.1, 1.3.b and 1.4, write
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E ‖A2‖2 =
1

N2T 3

N∑
i=1

T∑
t1=1

T∑
t2=1

E
[
Zk(uit1)′Zk(uit2)

] T∑
s=1

E[e2
is]

+
2

N2T 3

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

E
[
Zk(uit1)′

]
E [Zk(ujt2)]

T∑
s=1

E[eisejs]

=
σ2
e

N2T 2

N∑
i=1

T∑
t1=1

T∑
t2=1

E
[
Zk(uit1)′Zk(uit2)

]
+

2

N2T 2

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

E
[
Zk(uit1)′

]
E [Zk(ujt2)]σe(i, j) ≡ A21 + 2A22.

For A21, write

|A21| ≤ O
(

1

N2T 2

) N∑
i=1

T∑
t1=1

T∑
t2=1

E [‖Zk(uit1)‖‖Zk(uit2)‖] ≤ O

(
Tk

11
6

NT 2

)
= o

(
k

N
√
T

)
,

where the second inequality has been provided in the proof of Lemma B.5 in this paper and the last

equality follows from Assumption 2.2.

For A22, write

|A22| ≤
1

N2T 2

k−1∑
n=0

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

∣∣∣∣∫ Hn(dt1w)ft1(w)dw

∣∣∣∣ ∣∣∣∣∫ Hn(dt2w)ft2(w)dw

∣∣∣∣ |σe(i, j)|
≤ O

(
1

N2T 2

) k−1∑
n=0

T∑
t1=1

T∑
t2=1

∫
1

dt1
|Hn(w)| dw

∫
1

dt2
|Hn(w)| dw

N∑
i=2

i−1∑
j=1

|σe(i, j)|

≤ O

(∑k−1
n=0 n

5
6

NT

)
≤ O

(
k2

NT

)
= o

(
k

N
√
T

)
,

where the last line follows from (8) of Lemma B.1 and Assumption 2.2.

By the analysis for A21 and A22, we obtain that A2 = oP

( √
k√

N 4√T

)
. In connection with that

A1 = OP

( √
k√

N 4√T

)
, the result follows. �

2)

1

N
√
T
X ′Z =

1

N
√
T

N∑
i=1

T∑
t=1

(φ(uit) + vit)Zk(uit)
′ − 1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)Zk(uis)
′

≡ B1 −B2

‖B1‖ = OP (1) follows from (2) and (3) of Lemma B.2 of this paper immediately. Then we just

need to focus on B2 below.

B2 =
1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

φ(uit)Zk(uis)
′ +

1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

vitZk(uis)
′ ≡ B21 +B22

For B21, write

E‖B21‖2 =
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)Hn2(uit2)φn1(ujt3)Hn2(ujt4)]
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=
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

+
2

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)Hn2(uit2)]E[φn1(ujt3)Hn2(ujt4)]

≡ B211 + 2B212.

For B211, we write

B211 =
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

=
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

∑
all t1,t2,t3,t4 are different

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

+
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

∑
only two of t1,t2,t3,t4 are same

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

+
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

∑
only three of t1,t2,t3,t4 are same

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

+
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

∑
four of t1,t2,t3,t4 are same

E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]

≡ B2111 +B2112 +B2113 +B2114.

For B2111, without losing generality, assume that t1 > t2 > t3 > t4. For other cases, for example

t2 > t3 > t1 > t4, the analysis will be same and the order will remain same. Then

1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

|E[φn1(uit1)Hn2(uit2)φn1(uit3)Hn2(uit4)]|

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

1

dt1t2

1

dt2t3

1

dt3t4

1

dt4

·
∫∫∫∫

|φn1(w1)Hn2(w2)φn1(w3)Hn2(w4)|dw1dw2dw3dw4

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

1

dt1t2

1

dt2t3

1

dt3t4

1

dt4

·
(∫
|φn1(w)|dw

)2(∫
|Hn2(w)|dw

)2

≤ O
(

1

NT

) k−1∑
n2=0

n
5/6
2 ≤ O

(
k2

NT

)
= o(1),

where the last line follows from (8) of Lemma B.1, φn(w) being integrable function on R for n = 1, . . . , d

and Assumption 2.2.

For B2112, without losing generality, assume that t1 = t2 > t3 > t4. For other cases, for example

t1 = t3 > t2 > t4, the analysis will be even simpler and the order will remain same. Then write
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1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

|E[φn1(uit1)Hn2(uit1)φn1(uit3)Hn2(uit4)]|

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

1

dt1t3

1

dt3t4

1

dt4

·
∫∫∫

|φn1(w1)Hn2(w1)φn1(w2)Hn2(w3)|dw1dw2dw3

≤ O
(

1

NT 3/2

) d∑
n1=1

k−1∑
n2=0

{∫
φ2
n1

(w)dw

∫
H 2
n2

(w)dw

}1/2 ∫
|φn1(w)|dw

∫
|Hn2(w)|dw

≤ O
(

1

NT 3/2

) k−1∑
n2=0

n
5/12
2 ≤ O

(
k2

NT 3/2

)
= o(1),

where the last line follows from (8) of Lemma B.1, φn(w) being integrable function on R for n = 1, . . . , d

and Assumption 2.2.

For B2113, without losing generality, assume that t1 = t2 = t3 > t4. For other cases, for example

t1 = t3 = t4 > t2, the analysis will be same and the order will remain same. Then write

1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

|E[φn1(uit1)Hn2(uit1)φn1(uit1)Hn2(uit4)]|

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

1

dt1t4

1

dt4

·
∫∫
|φn1(w1)Hn2(w1)φn1(w1)Hn2(w2)|dw1dw2

≤ O
(

1

NT 2

) d∑
n1=1

k−1∑
n2=0

∫
|φn1(w)|dw

∫
|Hn2(w)|dw = o(1),

where the last line follows from Hj(w) and φj(w) being bounded uniformly, (8) of Lemma B.1 and

Assumption 2.2.

For B2114, write

B2114 =
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t=1

E[φ2
n1

(uit)H
2
n2

(uit)]

=
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t=1

∫
φ2
n1

(dtw)H 2
n2

(dtw)ft(w)dw

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t=1

1

dt

∫
φ2
n1

(w)dw ≤ O
(

k

NT 5/2

)
= o(1).

Combining B2111, B2112, B2113 and B2114 together, we obtain that B211 = o(1).

For B212, write∣∣∣∣∣E
[

T∑
t1=1

T∑
t2=1

φn1(uit1)Hn2(uit2)

]∣∣∣∣∣
≤

T∑
t=1

E[|φn1(uit)Hn2(uit)|] +
T∑
t=2

t−1∑
s=1

E[|φn1(uit)Hn2(uis)|] +
T∑
t=2

t−1∑
s=1

E[|Hn2(uit)φn1(uis)|]
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≤ O(1)
T∑
t=1

1

dt

∫
|Hn2(w)|dw +O(1)

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫
|Hn2(w)|dw

≤ O(
√
Tn

5/12
2 ) +O(Tn

5/12
2 ) = O(Tn

5/12
2 ),

where the last line follows from (8) of Lemma B.1. Therefore,

|B212| ≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=2

i−1∑
j=1

T 2n
5/6
2 ≤ O

(
k2

T

)
= o(1).

Since |B211| = o(1) and |B212| = o(1), then B21 = oP (1).

Below, we focus on B22.

E‖B22‖2 = E

∥∥∥∥∥ 1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

vitZk(uis)
′

∥∥∥∥∥
2

=
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[vit1,n1Hn2(uit2)vjt3,n1Hn2(ujt4)]

=
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[vit1,n1vit3,n1 ]E[Hn2(uit2)Hn2(uit4)]

+
2

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[vit1,n1vjt3,n1 ]E[Hn2(uit2)]E[Hn2(ujt4)]

≡ B221 + 2B222.

For B221, write

|B221| ≤
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

|E[vit1,n1vit3,n1 ]E[Hn2(uit2)Hn2(uit4)]|

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t3=1

|E[vit1,n1vit3,n1 ]|
T∑

t2=1

1

dt2

∫
H 2
n2

(w)dw

+O

(
1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=1

T∑
t1=1

T∑
t3=1

|E[vit1,n1vit3,n1 ]|
T∑

t2=2

t2−1∑
t4=1

1

dt2t4

1

dt4

(∫
|Hn2(w)|dw

)2

≤ O
(

k

N2T 3

) N∑
i=1

T 3/2 +O

(
1

N2T 3

) k−1∑
n2=0

N∑
i=1

T 2n
5/6
2 ≤ O

(
k

NT 3/2

)
+O

(
k2

NT

)
= o(1),

where the last line follows from Davydov inequality, Assumption 1.3 and (8) of Lemma B.1.

For B222, write

|B222| ≤
1

N2T 3

d∑
n1=1

k−1∑
n2=0

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t3=1

|E[vit1,n1vjt3,n1 ]|

·
T∑

t2=1

∫
|Hn2(dt2w)|ft2(w)dw

T∑
t4=1

∫
|Hn2(dt4w)|ft4(w)dw

≤ O
(

1

N2T 3

) d∑
n1=1

k−1∑
n2=0

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t3=1

cδ(αij(|t1 − t3|))δ/(4+δ) ·
(
E[|vit1,n1 |2+δ/2]

)2/(4+δ)
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·
(
E[|vjt3,n1 |2+δ/2]

)2/(4+δ)
T∑

t2=1

1

dt2

∫
|Hn2(w)|dw

T∑
t4=1

1

dt4

∫
|Hn2(w)|dw

≤ O
(

1

N2T 2

) k−1∑
n2=0

n
5/6
2

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t3=1

(αij(|t1 − t3|))δ/(4+δ) ≤ O
(
k2

NT

)
= o(1),

where the second inequality follows form Davydov inequality and cδ = 2(4+2δ)/(4+δ) · (4 + δ)/δ; the

third inequality follows from Assumption 1.3 and (8) of Lemma B.1.

Since |B221| = o(1) and |B222| = o(1), we know that B22 = oP (1).

Based on the analysis for B1, B21 and B22, the result follows. �

3)

1

NT
X ′E =

1

NT

N∑
i=1

T∑
t=1

(φ(uit) + vit)eit −
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)eis ≡ C1 − C2

Expand C1 as

C1 =
1

NT

N∑
i=1

T∑
t=1

φ(uit)eit +
1

NT

N∑
i=1

T∑
t=1

viteit ≡ C11 + C12.

We have shown that C11 = OP

(
1√

N
4√
T 3

)
in (7) of Lemma B.2. Moreover, by Assumption 1.3.b

E‖C12‖2 =
1

N2T 2

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t=1

E [vit,nvjt,nE[eitejt|FNt−1]] = O

(
1

NT

)
.

Thus, C12 = OP

(
1√
NT

)
. In connection with C11 = OP

(
1√

N
4√
T 3

)
, we obtain C1 = OP

(
1√
NT

)
.

Then we focus on C2 below and write

C2 =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

φ(uit)eis +
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

viteis = C21 + C22.

For C21,

E ‖C21‖2 =
1

N2T 4

d∑
n=1

N∑
i=1

T∑
t=1

E[φ2
n(uit)]

T∑
s=1

E[e2
is]

+
2

N2T 4

d∑
n=1

N∑
i=1

T∑
t1=2

t1−1∑
t2=1

E[φn(uit1)φn(uit2)]

T∑
s=1

E[e2
is]

+
2

N2T 4

d∑
n=1

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

E[φn(uit1)φn(ujt2)]
T∑
s=1

E[e2
is]

≡ C211 + 2C212 + 2C213.

For C211,

C211 = O

(
1

N2T 3

) d∑
n=1

N∑
i=1

T∑
t=1

∫
φ2
n(dtw)ft(w)dw ≤ O

(
1

NT 3

) d∑
n=1

T∑
t=1

1

dt

∫
φ2
n(w)dw
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= O

(
1

NT 5/2

)
= o

(
1

NT

)
.

Similarly, for C212

|C212| ≤ O
(

1

N2T 3

) d∑
n=1

N∑
i=1

T∑
t1=2

t1−1∑
t2=1

E[|φn(uit1)φn(uit2)|]

≤ O
(

1

N2T 3

) d∑
n=1

N∑
i=1

T∑
t1=2

t1−1∑
t2=1

1

dt1t2

1

dt2

∫
|φn(w)|dw

∫
|φn(w)|dw

≤ O
(

1

NT 2

)
= o

(
1

NT

)
,

where the last inequality follows from ft1t2(w) and ft2(w) being bounded uniformly and φn(w) being

integrable for n = 1, . . . , d.

For C213, note that

|C213| ≤
1

N2T 3

d∑
n=1

T∑
t1=1

T∑
t2=1

N∑
i=2

i−1∑
j=1

|E[φn(uit1)]E[φn(ujt2)]| · |σe(i, j)|

≤ 1

N2T 3

d∑
n=1

T∑
t1=1

T∑
t2=1

N∑
i=2

i−1∑
j=1

1

dt1

∫
|φn(w)|dw · 1

dt2

∫
|φn(w)|dw · |σe(i, j)|

≤ O
(

1

N2T 3

) d∑
n=1

T∑
t1=1

1

dt1

T∑
t2=1

1

dt2

N∑
i=2

i−1∑
j=1

|σe(i, j)| = O

(
1

NT 2

)
= o

(
1

NT

)
,

where the last line follows form ft1 and ft2 being bounded uniformly, φn(w) being integrable for

n = 1, . . . , d and Assumption 1.3.b.

Since |C211| = o
(

1
NT

)
, |C212| = o

(
1
NT

)
and |C213| = o

(
1
NT

)
, we obtain that C21 = oP

(
1√
NT

)
.

By Assumption 1.3.c, it is straightforward to obtain that

E‖C22‖2 =
1

N2T 4

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[v′it1eit2vjt3ejt4 ] = O

(
1

NT 2

)
.

Thus, C22 = oP

(
1√
NT

)
. Since C21 = oP

(
1√
NT

)
and C22 = oP

(
1√
NT

)
, then we have C2 =

oP

(
1√
NT

)
. In connection with that C1 = OP

(
1√
NT

)
, the result follows. �

4)

1

NT
X ′γ =

1

NT

N∑
i=1

T∑
t=1

(φ(uit) + vit)γk(uit)−
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)γk(uis) ≡ D1 −D2

By (8) and (9) of Lemma B.2, D1 = OP

(
1√
kmT

)
follows immediately. D2 can be expanded as

D2 =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

φ(uit)γk(uis) +
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

vitγk(uis) ≡ D21 +D22.

For D21,
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‖D21‖ ≤
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

‖φ(uit)γk(uis)‖ ≤ O(1)
1

NT

N∑
i=1

T∑
t=1

|γk(uit)|,

where the second inequality follows from φn(w) being bounded uniformly for n = 1, . . . , d. For the

summation on RHS above,

E

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

|γk(uit)|

∣∣∣∣∣
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[|γk(uit)||γk(ujs)|]

=
1

N2T 2

N∑
i=1

T∑
t=1

E[γ2
k(uit)] +

2

N2T 2

N∑
i=1

T∑
t=2

t−1∑
s=1

E[|γk(uit)||γk(uis)|]

+
2

N2T 2

N∑
i=2

i−1∑
j=1

T∑
t=1

T∑
s=1

E[|γk(uit)|]E[|γk(ujs)|]

≤ O
(

1

N2T 2

) N∑
i=1

T∑
t=1

1

dt

∫
γ2
k(w)dw

+O

(
1

N2T 2

) N∑
i=1

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫
|γk(w)|2dw

{∫
f2
ts(w)dw

}1/2{∫
f2
s (w)dw

}1/2

+O

(
1

N2T 2

) N∑
i=2

i−1∑
j=1

T∑
t=1

T∑
s=1

1

dt

1

ds

∫
|γk(w)|2dw

{∫
f2
t (w)dw

}1/2{∫
f2
s (w)dw

}1/2

≤ O
(

1

NT 3/2

)
+O

(
k−m

NT

)
+O

(
k−m

T

)
, (C.6)

where the first inequality follows from ft(w) being bounded uniformly and Cauchy–Schwarz inequality;

the second inequality follows from (3) of Lemma B.1 and ft(w) and fts(w) being bounded uniformly.

Then we have shown that D21 = OP

(
1√
kmT

)
.

We now focus on D22.

E‖D22‖2 =
1

N2T 4

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[vit1,nvjt3,n]E[γk(uit2)γk(ujt4)]

≤ O(1)
1

N2T 2

d∑
n=1

N∑
i=1

N∑
j=1

T∑
t2=1

T∑
t4=1

|E[γk(uit2)γk(ujt4)]| ≤ O
(
k−m

T

)
,

where the first equality follows from Assumption 1.4; the first inequality follows from Assumption

1.3.a; the second inequality follows from (C.6). Then D22 = OP

(
1√
kmT

)
.

Based on the above, the result follows. �

5)

1

N
√
T
Z ′γ =

1

N
√
T

N∑
i=1

T∑
t=1

Zk(uit)γk(uit)−
√
T

N

N∑
i=1

Z̄k,iγ̄k,i ≡ E1 − E2

In (1) of Lemma B.2, we have shown that ‖E1‖ = OP (k−(m−1)/2). Then we just need to focus on

E2 below and write
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‖E2‖ ≤
1

NT 3/2

N∑
i=1

T∑
t=1

T∑
s=1

‖Zk(uit)γk(uis)‖ ≤ O(k1/2)
1

N
√
T

N∑
i=1

T∑
t=1

|γk(uit)|,

where the second inequality follows from (6) of Lemma B.1. In (C.6) of this lemma, we have shown that

1
NT

∑N
i=1

∑T
t=1 |γk(uit)| = OP

(
k−m/2
√
T

)
, so we easily obtain 1

N
√
T

∑N
i=1

∑T
t=1 |γk(uit)| = OP

(
k−m/2

)
.

Based on the above, it further implies that ‖E2‖ = OP (k−(m−1)/2). Then the result follows. �

6) For the first result, write

1

NT
X ′X =

1

NT

N∑
i=1

T∑
t=1

(φ(uit) + vit)(φ(uit) + vit)
′

− 1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(φ(uit) + vit)(φ(uis) + vis)
′ ≡ F1 − F2.

By going a procedure similar to (C.6), it is easy to show that

1

NT

N∑
i=1

T∑
t=1

φ(uit)φ(uit)
′ →P 0.

In connection with (4) and (5) of Lemma B.2, we obtain that F1 →P Σv immediately.

We just need to focus on F2 below.

F2 =
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

φ(uit)φ(uis)
′ +

1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

φ(uit)v
′
is

+
1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

vitφ(uis)
′ +

1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

vitv
′
is

≡ F21 + F22 + F23 + F24.

Notice that F24 = oP (1) follows from Assumption 1.3.c straightaway. We then focus on F21 below

and write

E‖F21‖2 =
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)φn2(uit2)φn1(ujt3)φn2(ujt4)]

=
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]

+
2

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=2

i−1∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)φn2(uit2)φn1(ujt3)φn2(ujt4)]

= F211 + 2F212.

For F211, write

F211 =
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]
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=
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

∑
all t1,t2,t3,t4 are different

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]

+
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

∑
only two of t1,t2,t3,t4 are same

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]

+
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

∑
only three of t1,t2,t3,t4 are same

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]

+
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

∑
four of t1,t2,t3,t4 are same

E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]

≡ F2111 + F2112 + F2113 + F2114.

For F2111, without losing generality, assume that t1 > t2 > t3 > t4. For other cases, for example

t2 > t3 > t1 > t4, the analysis will be same and the order will remain same. Then

1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

|E[φn1(uit1)φn2(uit2)φn1(uit3)φn2(uit4)]|

≤ O
(

1

N2T 4

) d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=4

t1−1∑
t2=3

t2−1∑
t3=2

t3−1∑
t4=1

1

dt1t2

1

dt2t3

1

dt3t4

1

dt4

·
∫∫∫∫

|φn1(w1)φn2(w2)φn1(w3)φn2(w4)|dw1dw2dw3dw4

≤ O
(

1

NT 2

) d∑
n1=1

d∑
n2=1

(∫
|φn1(w)|dw

)2(∫
|φn2(w)|dw

)2

≤ O
(

1

NT 2

)
= o(1),

where the last inequality follows from φn(w) being integrable for n = 1, . . . , d.

For F2112, without losing generality, assume that t1 = t2 > t3 > t4. For other cases, for example

t1 = t3 > t2 > t4, the analysis will be even simpler and the order will remain same. Then write

1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

|E[φn1(uit1)φn2(uit1)φn1(uit3)φn2(uit4)]|

≤ O
(

1

N2T 4

) d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=3

t1−1∑
t3=2

t3−1∑
t4=1

1

dt1t3

1

dt3t4

1

dt4

·
∫∫∫

|φn1(w1)φn2(w1)φn1(w2)φn2(w3)|dw1dw2dw3

≤ O
(

1

NT 5/2

) d∑
n1=1

d∑
n2=1

{∫
φ2
n1

(w)dw

∫
φ2
n2

(w)dw

}1/2 ∫
|φn1(w)|dw

∫
|φn2(w)|dw

≤ O
(

1

NT 5/2

)
,

where the last line follows from φn(w) being integrable and φn(w) ∈ L2(R) for n = 1, . . . , d.

For F2113, without losing generality, assume that t1 = t2 = t3 > t4. For other cases, for example

t1 = t3 = t4 > t2, the analysis will be same and the order will remain same. Then write

1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

|E[φn1(uit1)φn2(uit1)φn1(uit1)φn2(uit4)]|
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≤ O
(

1

N2T 4

) d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t1=2

t1−1∑
t4=1

1

dt1t4

1

dt4

·
∫∫
|φn1(w1)φn2(w1)φn1(w1)φn2(w2)|dw1dw2

≤ O
(

1

NT 3

) d∑
n1=1

d∑
n2=1

∫
φ2
n1

(w)dw

∫
|φn2(w)|dw = O

(
1

NT 3

)
,

where the last line follows from φn(w) being integrable and φn(w) ∈ L2(R) for n = 1, . . . , d.

For F2114, write

F2114 =
1

N2T 4

d∑
n1=1

d∑
n2=1

N∑
i=1

T∑
t=1

∫
φ2
n1

(dtw)φ2
n2

(dtw)ft(w)dw

≤ O
(

1

N2T 4

) N∑
i=1

T∑
t=1

1

dt
≤ O

(
1

NT 7/2

)
,

where the first inequality follows from φn(w) being bounded uniformly and φn(w) ∈ L2(R) for n =

1, . . . , d.

Combining F2111, F2112, F2113 and F2114 together, we obtain that F211 = o (1).

We now turn to F212 and write∣∣∣∣∣E
[

T∑
t1=1

T∑
t2=1

φn1(uit1)φn2(uit2)

]∣∣∣∣∣
≤

T∑
t=1

E[|φn1(uit)φn2(uit)|] +
T∑
t=2

t−1∑
s=1

E[|φn1(uit)φn2(uis)|] +
T∑
t=2

t−1∑
s=1

E[|φn2(uit)φn1(uis)|]

≤ O(1)

T∑
t=1

1

dt

∫
|φn1(w)|dw +O(1)

T∑
t=2

t−1∑
s=1

1

dts

1

ds

∫
|φn1(w)|dw

≤ O(1)
√
T +O(1)T = O(T ),

where the last inequality follows from φn(w) being integrable for n = 1, . . . , d. Therefore,

|F212| ≤ O
(

1

N2T 4

) d∑
n=1

N∑
i=2

i−1∑
j=1

T 2 = o(1).

Since F211 = o (1) and F212 = o (1), we have shown that ‖F21‖ = oP (1). Similarly, we can show

that ‖F22‖ = oP (1) and ‖F23‖ = oP (1). Therefore, the result follows. �

Proof of Corollary 3.1:

We need only to verify the first result of this corollary. The second result then follows immediately.

1) By (6) of Lemma B.4, Σ̂v = 1
NTX

′X →P Σv. Thus, we just need to focus on σ̂2
e , where

σ̂2
e =

1

NT

N∑
i=1

T∑
t=1

(X̃ ′it(β0 − β̂) + Z̃k(uit)
′(C − Ĉ) + γ̃k(uit) + ẽit)

2. (C.7)
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Now denote that A1 = 1
NT

∑N
i=1

∑T
t=1(X̃ ′it(β0 − β̂))2, A2 = 1

NT

∑N
i=1

∑T
t=1(Z̃k(uit)

′(C − Ĉ))2,

A3 = 1
NT

∑N
i=1

∑T
t=1 γ̃

2
k(uit) and A4 = 1

NT

∑N
i=1

∑T
t=1 ẽ

2
it.

For A1, write

|A1| ≤
∥∥∥β0 − β̂

∥∥∥2
·

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

X̃itX̃
′
it

∥∥∥∥∥ = oP (1),

where the last equality follows from Theorem 3.1 and (6) of Lemma B.4.

For A2, write

|A2| ≤
∥∥∥C − Ĉ∥∥∥2

· 1√
T

∥∥∥∥∥ 1

N
√
T

N∑
i=1

T∑
t=1

Z̃k(uit)Z̃k(uit)
′

∥∥∥∥∥ = oP (1),

where the last equality follows from Lemma 3.1, Lemma B.5 and Assumption 2.2.

For A3, by (2) of Lemma B.1, 1
NT

∑N
i=1

∑T
t=1 γ̃

2
k(uit) = O(k−m+5/6) = o(1).

For A4, write

A4 =
1

NT

N∑
i=1

T∑
t=1

e2
it −

1

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

eiteis ≡ A41 −A42.

For A41, Assumption 1.3.(b),

E
[
A2

41 − σ2
e

]2
=

1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[(e2
it − σ2

e)(e
2
js − σ2

e)] = o (1) .

For A42

E
[
A2

42

]
=

1

N2T 4

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

E[eit1eit2ejt3ejt4 ] = o (1) ,

where the RHS follows from et being martingale difference sequence (c.f. Assumption 1.3.b).

Therefore, we have shown that A1 →P 0, A2 →P 0, A3 →P 0 and A4 →P σ
2
e . Based on the above,

all the interaction terms generated by X̃ ′it(β0 − β̂), Z̃k(uit)
′(C − Ĉ) and γ̃k(uit) from the expansion of

(C.7) can be shown converging to 0 in probability easily. For example,∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

X̃ ′it(β0 − β̂)Z̃k(uit)
′(C − Ĉ)

∣∣∣∣∣ ≤ 2

NT

N∑
i=1

T∑
t=1

∣∣∣X̃ ′it(β0 − β̂)Z̃k(uit)
′(C − Ĉ)

∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

∣∣∣X̃ ′it(β0 − β̂)
∣∣∣2 +

1

NT

N∑
i=1

T∑
t=1

∣∣∣Z̃k(uit)′(C − Ĉ)
∣∣∣2 = A1 +A2 = oP (1).

We now focus on the interaction terms generated by ẽit.

Firstly, ∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

X̃ ′it(β0 − β̂)ẽit

∣∣∣∣∣ ≤ ∥∥∥β0 − β̂
∥∥∥ · ∥∥∥∥∥ 2

NT

N∑
i=1

T∑
t=1

X̃itẽit

∥∥∥∥∥ = oP (1),

where the last equality follows from Theorem 3.1 and (3) of Lemma B.4.
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Secondly,∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

Z̃k(uit)
′(C − Ĉ)ẽit

∣∣∣∣∣ ≤ ∥∥∥C − Ĉ∥∥∥ ·
∥∥∥∥∥ 2

NT

N∑
i=1

T∑
t=1

Z̃k(uit)ẽit

∥∥∥∥∥ = oP (1),

where the last equality follows from Lemma 3.1 and (1) of Lemma B.4.

Thirdly, by similar approach to (9) of Lemma B.2,
∣∣∣ 2
NT

∑N
i=1

∑T
t=1 γ̃k(uit)ẽit

∣∣∣ = oP (1).

Therefore, based on the above, the result follows. �
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1 Introduction

Single-index models have been studied by both econometricians and statisticians in the past

twenty years. These models include many classic parametric models (e.g. linear model or

logistic model) by using a general function form g (x′β) (see, for example, Chapter 2 of Gao

(2007)). For nonlinear panel data models, the researcher starts introducing single–index

panel data models (cf. Chen et al. (2013a) and Chen et al. (2013b)). For most of the

published work on semiparametric single-index models, the estimation is based on a non-

parametric kernel method, which may be sensitive to initial values due to the multi–modality

or flatness of a curve in practice. Chen et al. (2013b) use this technique to investigate a par-

tially linear panel data model with fixed effects and cross–sectional independence. In their

paper, a consistent parameter estimator is achieved with convergence rate
√
NT , but, due

to the identification requirements, they have to impose extra restrictions on the fixed effects.

Alternatively, one can use sieve estimation techniques to implement a two-step procedure.

Meanwhile, Su and Jin (2012) propose using sieve estimation techniques to a nonparmetric

multi–factor model, which is a nonparametric version of the parametric counterpart proposed

in Pesaran (2006).

To the best of our knowledge, consistent closed–form estimates have not been established

for this type of semiparametric single–index model in the literature. In this paper, we aim at

establishing consistent closed–form estimates for a semiparametric single-index panel data

model with both cross-sectional dependence and stationarity for the case where both N and

T go to∞. The estimation procedure proposed below allows us to avoid some computational

issues and is therefore easy to implement. In this paper, we consider the stationary time

series case. Non-stationary situations are much more complex and will be discussed in a

companion paper. The estimation techniques proposed in this paper can also be extended

to the multi–factor structure model. (Under certain restrictions similar to those of Su and

Jin (2012), a semiparametric single–index extension can be achieved.) Furthermore, we add

fixed effects to the model and do not impose any particular assumptions on them, so they

can be correlated with the regressors to capture unobservable heterogeneity. Compared to

Chen et al. (2013b), our set-up is more flexible on the fixed effects. Moreover, we avoid the

issue about the curse of dimensionality through using a single–index form for the regressors.

In this paper, we assume that all the regressors and error terms can be cross–sectionally

correlated. As covered in Assumption 1 of Section 3 below, we impose a general spatial

correlation structure to link the cross-sectional dependence and stationary mixing condition

together. As a result, some types of spatial error correlation can easily be covered by the
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assumptions given in Section 3 (cf. Chen et al. (2012a) and Chen et al. (2012b)). This

set–up is more flexible than that considered by Chen et al. (2013b). As Andrews (2005) and

Bai (2009) discuss, the common shocks (e.g. global finance crisis) exist in many economic

phenomena and cause serious forecasting biases, and an important characteristic is that they

induce a correlation among individuals. Thus, it is vital for us to have such models that can

capture this type of “global” cross–sectional dependence.

In summary, this paper makes the following contributions:

1. It proposes a semiparametric single–index panel data model to simultaneously accom-

modate cross–sectional dependence, high–dimensionality, stationarity and unobserv-

able heterogeneity;

2. It establishes simple and consistent closed–form estimates for both unknown parame-

ters and link function, and the closed–form estimates are easy to implement in practice;

3. It establishes both rates of convergence and asymptotic normality results for the esti-

mates under a general spatial error dependence structure; and

4. It evaluates the proposed estimation method and through using both simulated and

real data examples.

The structure of this paper is as follows. Section 2 introduces our model and discusses the

main idea. Section 3 constructs a closed–form estimate for a vector of unknown parameters

of interest and introduces assumptions for the establishment of asymptotic consistency and

normality results. In Section 4, we recover the unknown link function and evaluate the

rate of convergence. In Section 5, we provide a simple Monte Carlo experiment and two

empirical case studies by looking into UK’s climate data and US cigarettes demand. Section

6 concludes this paper with some comments. All the proofs are given in an appendix.

Throughout the paper, we will use the following notation: ⊗ denotes the Kronecker

product; vec(A) defines the vec operator that transforms a matrix A into a vector by stacking

the columns of the matrix one underneath the other; Ik denotes an identity matrix with

dimensions k × k; ik denotes a k × 1 one vector (1, . . . , 1)′; Mp = Ik − P (P ′P )−1P ′ denotes

the project matrix generated by matrix P with dimensions k×h and h ≤ k; A− denotes the

Moore-Penrose inverse of the matrix A;
P−→ denotes converging in probability;

D−→ denotes

converging in distribution; ‖·‖ denots the Euclidean norm; bac ≤ a means the largest integer

part of a.
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2 Semiparametric Single-Index Panel Data Models

A semiparametric single–index panel data model is specified as follows:

yit = g (x′itθ0) + γi + eit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where yit is a scalar process, xit is a (d× 1) explanatory variable, eit is an error process and

the link function g : R → R is unknown. We use γi’s to capture fixed effects in this model,

which are allowed to be correlated with the regressors. Under the current set-up, our main

interests are to consistently estimate the vector of unknown parameters θ0 = (θ01, . . . , θ0d)
′

and link function g(·) for the case where both N and T go to ∞.

To ensure that identification requirements are satisfied (cf. Horowitz (2009) and Ichimura

(1993)), we assume that θ0 belongs to a compact set Θ, ‖θ0‖ = 1 and θ01 > 0. For the

link function g (·), we expand it by Hermite polynomials and approximate it by a linear

combination of a finite number of basis functions from the expansion. As the number of basis

functions increases, the proxy approaches the true function. By doing so, a nonparametric

estimation is practically turned to a parametric one, so we need only to estimate θ0 and the

coefficients of the basis functions simultaneously.

We now introduce the background of Hermite polynomials briefly and explain how to ex-

pand the link function. Hermite polynomial system {Hm (w) , m = 0, 1, 2, . . .} is a complete

orthogonal system in a Hilbert space L2 (R, exp (−w2/2)) and each element is denoted as

Hm (w) = (−1)m · exp
(
w2/2

)
· d

m

dwm
exp

(
−w2/2

)
. (2.2)

Since
∫
RHm (w)Hn (w) exp (−w2/2) dw equals to m!

√
2π for m = n and 0 for m 6=

n respectively, the normalised orthogonal system is denoted as {hm (w) , m = 0, 1, 2, . . .},
where hm (w) = 1√

m!
√
2π
Hm (w).

Thus, for ∀g ∈ L2 (R, exp (−w2/2)), we can express it in terms of hm (w) as follows:

g (w) =
∞∑
m=0

cmhm (w) and cm =

∫
R
g (w) · hm (w) · exp

(
−w2/2

)
dw. (2.3)

Furthermore, hm(w) · exp(−w2/4) is bounded uniformly in w ∈ R and m (cf. Nevai

(1986)).

Based on the above expansion, one is already able to use a profile method or an iterative

estimation method to estimate θ0 and the link function. Since neither of these two methods

results in a closed form estimation method, numerical estimates are often sensitive to the

initial values used in practice due to multi–modality or flatness of a curve. Instead, we
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further expand h (x′itθ0) by Lemma 1 of the appendix as follows:

g (x′itθ0) =
k−1∑
m=0

cmhm (x′itθ0) +
∞∑
m=k

cmhm (x′itθ0) (2.4)

=
k−1∑
m=0

∑
|p|=m

amp (θ0) Hp (xit) + δk (x′itθ0) , (2.5)

where

δk (x′itθ0) =
∞∑
m=k

cmhm (x′itθ0) , amp =

(
m

p

)
cmθ

p
0,

(
m

p

)
=

m!∏d
j=1 pj!

,

θp0 =
d∏
j=1

θ
pj
0j , Hp (xit) =

d∏
j=1

hpj (xit,j) , xit = (xit,1, . . . , xit,d)
′ , p = (p1, . . . , pd)

′ ,

|p| = p1 + . . .+ pd and pj’s for j = 1, . . . , d are non-negative integers.

The expansion (2.5) allows us to separate the covariate xit and the coefficient θ0, so the

closed form estimator can be established from it. The term δk (x′itθ0) can be considered as

a truncated error term, which goes to zero as k increases. Since each hm(w) · exp(−w2/4) is

bounded uniformly in w ∈ R and m, Hp (x) · exp(−‖x‖2 /4) must be bounded uniformly in

x ∈ Rd and p.

To further investigate the model, we now define an ordering relationship with respect to

p in (2.5).

Definition 1 Let Pm = {p : |p| = m}, where m is a non-negative integer. Suppose that

p̂, p̌ ∈ Pm. We say p̂ = (p̂1, . . . , p̂d) < p̌ = (p̌1, . . . , p̌d) if p̂j = p̌j for all j = 1, . . . , l − 1 and

p̂l < p̌l, where 1 < l ≤ d.

Based on Definition 1, we list all the Hp (xit)’s on the descending order with respect to

|p| = m for each m = 0, 1, . . . , k − 1 below.

• As m = 0,

p = (0, 0, . . . , 0)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·h0 (xit,d) = 1,

a0p(θ0) = c0. (2.6)
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• As m = 1,

p = (1, 0, . . . , 0)′ , Hp (xit) = h1 (xit,1)h0 (xit,2) · · ·h0 (xit,d) = xit,1,

a1p(θ0) = c1θ01;

p = (0, 1, . . . , 0)′ , Hp (xit) = h0 (xit,1)h1 (xit,2) · · ·h0 (xit,d) = xit,2,

a1p(θ0) = c1θ02;

...

p = (0, 0, . . . , 1)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·h1 (xit,d) = xit,d,

a1p(θ0) = c1θ0d. (2.7)

• As m = 2, . . . , k − 1,

p = (m, 0, . . . , 0)′ , Hp (xit) = hm (xit,1)h0 (xit,2) · · ·h0 (xit,d) = hm (xit,1) ,

amp(θ0) = cmθ
m
01;

p = (m− 1, 1, 0, . . . , 0)′ , Hp (xit) = hm−1 (xit,1)h1 (xit,2)h0 (xit,3) · · ·h0 (xit,d)

= hm−1 (xit,1)h1 (xit,2) ,

amp(θ0) = mcmθ
m−1
01 θ02;

...

p = (0, 0, . . . ,m)′ , Hp (xit) = h0 (xit,1)h0 (xit,2) · · ·hm (xit,d) = hm (xit,d) ,

amp(θ0) = cmθ
m
0d. (2.8)

Note that, by (2.6), it is easy to know that the first Hp (xit) in (2.5) is constant one and

its coefficient is constant c0. The second to the (d + 1)th Hp (xit)’s in (2.5) are simply xit

with coefficients c1θ0 shown in (2.7) and will be used to recover the interest parameter θ0

later on.

Accordingly, it allows us to denote the next two vectors to shorten notation:

Z (xit) =
(
Z1 (xit)

′ , . . . , Zk−1 (xit)
′)′ and β =

(
A1 (θ0)

′ , . . . , Ak−1 (θ0)
′)′ ,

where, for m = 1, . . . , k−1, Zm (xit)’s are column vectors consisting of all Hp (xit)’s arranged

on descent ordering with respect to |p| = m and Am (θ0) are column vectors consisting of all

corresponding amp (θ0). Notice that we have suppressed the notation θ0 in β for simplicity.

Thus, we can rewrite the model (2.1) as

yit = c0 +H (x′itθ0)
′ C + δk (x′itθ0) + γi + eit

= c0 + Z (xit)
′ β + δk (x′itθ0) + γi + eit,

5



where c0 = a0p(θ0), C = (c1, c2, . . . , ck−1)
′ and H(w) = (h1(w), h2(w), . . . , hk−1(w))′ for

w ∈ R.

Moreover, it is easy to check that the cardinality of Pm is
(
m+d−1
d−1

)
, so the length of the

vector Z (xit) is

K =
k−1∑
m=1

#Pm =
(d+ k − 1)!

d! (k − 1)!
− 1 = O

(
kd
)
. (2.9)

Then, we may write Z (xit) as

Z (xit) =
(
Z1 (xit)

′ , . . . , Zk−1 (xit)
′)′ = (z1 (xit) , . . . , zK (xit))

′ ,

where zu (xit)’s for u = 1, . . . , K are Hp (xit)’s in (2.7) and (2.8) in the exactly same order.

To remove the fixed effects, we introduce the following notation:

ȳi. =
1

T

T∑
t=1

yit, H̄i.(θ0) =
1

T

T∑
t=1

H (x′itθ0) , Z̄i. =
1

T

T∑
t=1

Z (xit) ,

δ̄k,i. (θ0) =
1

T

T∑
t=1

δk (x′itθ0) , ēi. =
1

T

T∑
t=1

eit,

ỹit = yit − ȳi., H̃it(θ0) = H (x′itθ0)− H̄i.(θ0), Z̃it = Z (xit)− Z̄i.,

δ̃k (x′itθ0) = δk (x′itθ0)− δ̄k,i. (θ0) , ẽit = eit − ēi.,

and then eliminate γi’s by the within–transformation. The model now becomes

ỹit = H̃it(θ0)
′C + δ̃k (x′itθ0) + ẽit

= Z̃ ′itβ + δ̃k (x′itθ0) + ẽit.

Alternatively, we can express the model in matrix forms as

(IN ⊗MiT )Y = (IN ⊗MiT )H(θ0)C + (IN ⊗MiT )D(θ0) + (IN ⊗MiT ) E (2.10)

= (IN ⊗MiT )Zβ + (IN ⊗MiT )D(θ0) + (IN ⊗MiT ) E , (2.11)

where

Y
NT×1

= (y11, . . . , y1T , . . . , yN1, . . . , yNT )′ ,

H(θ)
NT×(k−1)

= (H (x′11θ) , . . . , H (x′1T θ) , . . . , H (x′N1θ) , . . . , H (x′NT θ))
′

for ∀θ ∈ Θ,

D(θ)
NT×1

= (δk (x′11θ) , . . . , δk (x′1T θ) , . . . , δk (x′N1θ) , . . . , δk (x′NT θ))
′

for ∀θ ∈ Θ,

Z
NT×K

= (Z (x11) , . . . , Z (x1T ) , . . . , Z (xN1) , . . . , Z (xNT ))′ ,

E
NT×1

= (e11, . . . , e1T , . . . , eN1, . . . , eNT )′ .

6



Notice that c0 is a constant, so it is also removed by the within–transformation. It

indicates that one can only identify the unknown function g (·) up to a constant through

(2.10)-(2.11). To estimate the location, extra assumptions are needed (e.g. Assumption 1.ix

in Su and Jin (2012)). In the next section, we will recover the interest parameter θ0 by

(2.11). After that, we will bring a consistent estimate for θ0 back to (2.10) and recover the

link function in section 4.

3 Estimation of Parameter θ0

We consider a within–ordinary least squares (OLS) estimator of β:

β̂ = [Z ′ (IN ⊗MiT )Z]
−Z ′ (IN ⊗MiT )Y . (3.1)

To simplify the notation, for each time series {xi1, . . . , xiT}, let Q1,i = E
[
Z (xit)Z (xit)

′]
and qi = E [Z (xit)]. Also, denote that Q1 = 1

N

∑N
i=1Q1,i, q̄ = 1

N

∑N
i=1 qi and Q2 =

1
N

∑N
i=1 qiq

′
i. Moreover, for t = 1, . . . , T , let xt = (x1t, . . . , xNt)

′ and et = (e1t, . . . , eNt)
′.

We now are ready to introduce the following assumptions. Specifically, we do not impose

any assumption on the fixed effects in this paper, so they can be correlated with the regressors

to capture unobservable heterogeneity.

Assumption 1 (Covariates and errors):

i. Let E[eit] = 0 for all i ≥ 1 and t ≥ 1. Suppose that {xt, et : t ≥ 1} is strictly stationary

and α-mixing. Let αij(|t− s|) represent the α-mixing coefficient between {xit, eit} and

{xjs, ejs}. Let the α-mixing coefficients satisfy

N∑
i=1

N∑
j=1

∞∑
t=1

(αij(t))
η/(4+η) = O(N) and

N∑
i=1

N∑
j=1

(αij(0))η/(4+η) = O(N),

where η > 0 is chosen such that E [|eit|4+η] <∞ and E [‖xit‖4+η] <∞.

ii. Suppose that xit is independent of ejs for all i, j ≥ 1 and t, s ≥ 1.

Assumption 1.i entails that only the stationary cases are considered in this paper. The

nonstationary cases are more complex and will be discussed in a companion paper. We use

the α-mixing coefficient to measure the relationship between {xit, eit} and {xjs, ejs}. This

set-up is in spirit the same as Assumption A2 of Chen et al. (2012a) and Assumption C

of Bai (2009). Since the mixing properties are hereditary, it allows us to avoid imposing

restrictions on the functions by doing so. Thus, all the cross-sectional dependences and time

7



series properties are captured by the mixing coefficients. Particularly, αij(0) only measures

the cross-sectional dependence between {xit, eit} and {xjt, ejt}.
We now use the factor model structure as an example to show that Assumption 1.i is

verifiable. Suppose that eit = γift + εit, where all variables are scalars and εit is independent

and identically distributed (i.i.d.) across i and t with mean zero. Simple algebra shows that

the coefficient αij(|t−s|) reduces to αij · b(|t−s|), in which αij = E[γiγj] and b(|t−s|) is the

α–mixing coefficient of the factor time series {f1, . . . , fT}. If ft is strictly stationary α-mixing

process and γi is i.i.d. or a m-dependent sequence (cf. Appendix A of Gao (2007)Definition

9.1 and Theorem 9.1 in DasGupta (2008)), Assumption 1.i can easily be verified. More

details and useful empirical examples can be found under Assumption A2 in Chen et al.

(2012a).

Assumption 2 (Identifications):

i. Let Θ be a compact subset of Rd and θ0 ∈ Θ be in the interior of Θ. Moreover, ‖θ0‖ = 1

and θ01 > 0.

ii. E[g (x′itθ0)] = 0 for all i ≥ 1 and t ≥ 1. Moreover, for the same η in Assumption 1, let

E[|g (x′itθ0)|
2+η/2] <∞.

Assumption 2.i is a standard identification requirement. Instead one can follow Ichimura

(1993) to assume θ01 = 1. However, by doing so, it seems to be hard to decide which variable

should be considered as constant one in practice. Assumption 2.ii is not really necessary when

the main interests are only estimating the parameter θ0 and measuring the changes in output

y. Assumption 2.ii kicks in only if the location of a curve needs to be estimated. In practice,

the true expectation of E [g (x′itθ0)] may not be zero, so Assumption 2.ii essentially means

that one is estimating g (x′itθ0) − E [g (x′itθ0)] rather than the true g (x′itθ0) (cf. Su and Jin

(2012)). An example is given in a Monte Carlo study for illustration.

Assumption 3 (Boundaries):

i. Let the smallest eigenvalue of the K×K matrix (Q1 −Q2) be uniformly bounded away

from zero, such that λmin (Q1 −Q2) > 0 uniformly.

ii. (1) There exists r > 0 such that sup0≤ε≤1 sup‖θ−θ0‖≤ε maxi≥1E [δ2k(x
′
i1θ)] = o(k−r).

(2) maxi≥1E
[
|Hp (xi1)|4+η

]
= O

(
|p|d
)

as |p| → ∞, where |p| is given under (2.5).

iii. k3d

NT
→ 0 and k3d/2

T
→ 0 as N, T, k →∞ jointly.
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Assumption 3.i can be verified by carrying on a similar procedure to Lemma A.2 in Gao

et al. (2002) and it is also similar to Assumption 2 in Newey (1997) and Assumption 3.iv in

Su and Jin (2012).

Assumption 3.ii is similar to Assumptions 2.ii and 3 in Newey (1997) and the second

condition of this assumption is more general than Assumption 3.iv in Su and Jin (2012). By

the argument under Assumption 2 in Newey (1997), it is not possible to assume Hp (xi1) is

bounded uniformly. Therefore, we put restrictions on the moments of the basis functions.

Compared to putting the bounds on the basis power series directly of Newey (1997), we be-

lieve our current assumption is more realistic. Also, the second condition in our Assumption

3.ii clearly allows xit to follow the standard multivariate normal distribution, which is ruled

out by Assumption 3.iv in Su and Jin (2012) for the cases where the basis functions are the

hermite polynomials. More relevant discussions will be given under Theorem 1.

We now illustrate that it is verifiable by the following example:

Suppose that we consider the second condition in Assumption 3.ii and {xi1, . . . , xiT} has

the standard multivariate normal density for i ≥ 1. Let η be large enough (say η = 1 without

losing generality) and x = (x1, . . . , xd). Then

E
[
|Hp (xi1)|5

]
=

∫
Rd

|Hp (x)|5 · exp(−‖x‖2/2)dx.

Note |Hp (x)|5 = |hp1 (x1) · · ·hpd (xd)|5, so expand it as
∣∣H 5

p (x)
∣∣ =

∣∣∣∏d
j=1

∑5pj
sj=0 bsjhsj(xj)

∣∣∣,
which gives that∫

R
|Hp (x)|5 · exp(−‖x‖2/2)dx ≤

d∏
j=1

5pj∑
sj=0

∣∣bsj ∣∣ ∫
R

∣∣hsj (xj)
∣∣ exp

(
−x2j/4

)
· exp

(
−x2j/4

)
dx

≤
d∏
j=1

C1

5pj∑
sj=0

∣∣bsj ∣∣ ∫
R

exp
(
−x2j/4

)
dx

≤
d∏
j=1

C2

5pj∑
sj=0

∣∣bsj ∣∣ ≤ C3

d∏
j=1

5pj ≤ C4|p|d,

where we have used that hsj(xj) exp
(
−x2j/4

)
is bounded uniformly in sj and xj, and |bsj |

is bounded over sj. Then, by moments monotonicity, the second condition in Assumption

3.ii has been verified. Analogously, we can show that the condition 1 in Assumption 3.ii is

verifiable.

Assumption 3.iii implies that the rate of k → ∞ needs to be slower than that of

min{(NT )
1
3d , T

2
3d}. In practice, the lengths of the cross-sectional dimension and time se-

ries can be relatively large, so Assumption 3.iii is easy to achieve. Moreover, the researcher

9



normally assumes that N/T → c ∈ (0,∞] as N, T →∞ in the conventional panel data case,

which is also covered by Assumption 3.iii.

We are ready to establish the main results and their proofs are given in the appendix.

Theorem 1 Let Assumptions 1, 2.i and 3 hold. Then, we have∥∥∥β̂ − β∥∥∥2 = Op

(
k3d/2

NT

)
+ op

(
k−r
)
.

The first term of the convergence rate is not the optimal rate Op

(
kd

NT

)
, which is due to

the fact that we can not bound the hermite polynomials uniformly. However, the optimality

is achievable when the fourth order moment is bounded uniformly. This may be done in the

same way as in Su and Jin (2012). By doing so, we will rule out the standard multivariate

normal density for xit at least. The same arguments also apply to the other convergency

rates given below.

Notice that the first d elements of β only involve θ0 and constant c1 by (2.7). Moreover,∥∥∥β̂d − βd∥∥∥2 ≤ ∥∥∥β̂ − β∥∥∥2, where β̂d and βd denote the first d elements of β̂ and β, respectively.

In connection with the identification restriction, it is easy to obtain that
√∑d

i=1 β̂
2
i converges

to |c1|. Then, intuitively, the estimator of θ0 is as follows.

θ̂ =
sgn(β̂1)√∑d

i=1 β̂
2
i

·Q3 · β̂, Q3
d×K

=

(
Id 0

d×(K−d)

)
and Id is a d× d identity matrix.

By Theorem 1, the following corollary follows immediately.

Corollary 1 Under the conditions of Theorem 1, θ̂ is consistent.

Furthermore, we establish the following normality.

Theorem 2 Let Assumptions 1, 2.i and 3 hold. If, in addition, NT
kr
→ σ for 0 ≤ σ <

∞, k4.5d

NT
→ 0 and E

[∥∥∥ 1√
N

∑N
i=1Q3 (Q1 −Q2)

−1 (Z (xi1)− qi) ei1
∥∥∥4] = O(1), as (N, T ) →

(∞,∞) jointly, then

√
NT

(
θ̂ − θ0

)
D−→ N

(
0, c−21 · Ξ0

)
,

10



where

Ξ0 = lim
N→∞

1

N

N∑
i=1

Q3 (Q1 −Q2)
−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)′

]
+
∞∑
t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)′

]
+
∞∑
t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)′

]}
(Q′1 −Q′2)

−
Q′3,

and c1 is denoted in (2.3).

The extra conditions required in the body of this theorem imply that achieving the

asymptotic normality comes with a price such that r > 4.5d, which is caused by the second

decomposition on g(x′itθ0) (see (2.5) for details) and can be considered as a trade-off in order

to achieve the closed form estimator.

The restriction E

[∥∥∥ 1√
N

∑N
i=1Q3 (Q1 −Q2)

−1 (Z (xi1)− qi) ei1
∥∥∥4] = O(1) is in spirit the

same as Assumption ii of Lemma A.1 in Chen et al. (2012b) and can be easily verified for

the i.i.d cases.

Based on Theorems 1 and 2, it is easy to realise that

Ξ̂0 = Q3Q̂
−1
12

(
1

NT

N∑
i=1

T∑
t=1

Z̃itZ̃
′
it

(
ỹit − Z̃ ′itβ̂

)2)
Q̂−112 Q

′
3

P−→ Ξ0,

where Q̂12 = 1
NT

∑N
i=1

∑T
t=1 Z̃itZ̃

′
it. Therefore, the traditional hypothesis tests on θ0 can be

established by (
d∑
i=1

β̂2
i

)1/2

Ξ̂
−1/2
0 ·

√
NT

(
θ̂ − θ0

)
D−→ N (0, Id) .

So far we have fully recovered the interest parameter θ0. We will focus on the link function

in the following section.

4 Estimation of The Link Function

We now can only estimate g(x′θ0) up to a constant by using β̂, because c0 gets cancelled

out by the within–transformation. Therefore, we need to take into account the location of

the link function by Assumption 2.ii and recover c0 by the next theorem. The proofs of the

following results are given in the appendix.

11



Theorem 3 Under Assumptions 1–3, we have

(ĉ0 − c0)2 = Op

(
k3d/2

NT

)
+ op

(
k−r
)
,

where ĉ0 = − 1
NT

∑N
i=1

∑T
t=1 Z (xit)

′ β̂.

In connection with (2.5) and Theorem 1, intuitively, we provide the next estimator for

g(x′θ0).

ĝ
(
x′θ̂
)

= Z (x)′ β̂ + ĉ0 (4.1)

Based on the proof of Theorem 2, achieving the next result is straightforward.

Theorem 4 Let Assumptions 1, 2 and 3 hold. If, in addition, NT
kr
→ σ for r > 4.5d and

0 ≤ σ <∞, k4.5d

NT
→ 0 and E

[∥∥∥ 1√
NK3/2

∑N
i=1 (Z (x)− q̄)′ (Q1 −Q2)

−1 (Z (xi1)− qi) ei1
∥∥∥4] =

O(1), as (N, T )→ (∞,∞) jointly, then√
NT

K3/2

(
ĝ
(
x′θ̂
)
− g(x′θ0)

)
D−→ N (0,Ξ1) ,

where

Ξ1 = lim
N,k→∞

1

N

N∑
i=1

1

K3/2
(Z (x)− q̄)′ (Q1 −Q2)

−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)′

]
+
∞∑
t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)′

]
+
∞∑
t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)′

]}
(Q′1 −Q′2)

−
(Z (x)− q̄) ,

and K is chosen by (2.9).

Again, it is pointed out that while the rate of convergence may not be optimal, the

optimality is achievable when the fourth order moment is bounded uniformly. This may be

done in the same way as in Su and Jin (2012). However, the optimality comes with a price.

For example, xit cannot even follow the standard multivariate normal distribution.

Similar to Theorem 2, it is easy to establish a standardised version of the form:√
NT

K3/2
· Ξ̂−1/21 ·

(
ĝ
(
x′θ̂
)
− g(x′θ0)

)
D−→ N (0, 1) ,

12



where

Ξ̂1 = (Z (x)− q̂)′ Q̂−112

(
1

NTK

N∑
i=1

T∑
t=1

Z̃itZ̃
′
it

(
ỹit − Z̃ ′itβ̂

)2)
Q̂−112 (Z (x)− q̂) ,

Q̂12 =
1

NT

N∑
i=1

T∑
t=1

Z̃itZ̃
′
it and q̂ =

1

NT

N∑
i=1

T∑
t=1

Z(xit).

In practice, the above results are useful to calculate the confidence interval for a point

prediction of g(x′θ0).

Notice that the above two theorems just recover g(x′θ0) rather than g(w) itself. To

estimate the link function g(w) regardless of θ0, we now bring θ̂ in (2.10) and then provide

our estimator on C below.

Ĉ =
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )Y (4.2)

We will proceed as in the previous section to investigate (4.2). To simplify the nota-

tion, for each time series {xi1, . . . , xiT}, let R1,i (θ) = E
[
H (x′itθ)H (x′itθ)

′] and ri (θ) =

E [H (x′itθ)]. Also, denote that R1 (θ) = 1
N

∑N
i=1R1,i (θ), r̄ (θ) = 1

N

∑N
i=1 ri (θ) and R2 (θ) =

1
N

∑N
i=1 ri (θ) ri (θ)

′. Moreover, the next assumption is necessary for achieving the consis-

tency.

Assumption 4:

i. Let the smallest eigenvalue of the (k−1)×(k−1) matrix (R1 (θ)−R2 (θ)) be bounded

away from zero uniformly on a neighbourhood of θ0.

ii. sup0≤ε≤1 sup‖θ−θ0‖≤ε maxi≥1E
[
|hm (x′i1θ)|

4+η] = O (m) as m→∞, where η is given in

Assumption 1.

iii. Suppose that xit has a support X ⊂ Rd. For ∀x ∈ X, g(x′θ) satisfies a Lipschitz

condition on a neighbourhood of θ0, Uθ0 , such that

|g(x′θ1)− g(x′θ0)| ≤M(x) ‖θ1 − θ0‖ ,

where θ1 ∈ Uθ0 . Moreover, 1
NT

∑N
i=1

∑T
t=1 (M(xit))

2 = Op(1).

Assumption 4.i-ii are in spirit the same as Assumption 3.i-ii. Similar to the arguments

for Assumption 3.ii, we can show that Assumption 4.ii is verifiable. For example, if x′itθ

follows a normal distribution, then we can show that Assumption 4.ii is verifiable by going

through the similar procedure of the example given for Assumption 3.ii. Assumption 4.iii is

13



similar to Assumptions 5.3.1 and 5.5 in Ichimura (1993) and Assumption 3 in Newey and

Powell (2003). We put Lipschitz condition on a neighbour of θ0 rather than assume X is

compact. In this sense, this assumption is more general compared to Ichimura (1993). The

last equation in Assumption 4.iii can be easily verified under certain restriction by following

the similar procedure to the second result of Lemma 2 in the appendix.

Under the extra conditions, we establish the following theorem.

Theorem 5 Under the conditions of Theorem 2 and Assumption 4, as (N, T ) → (∞,∞)

jointly, then ∥∥∥Ĉ − C∥∥∥2 = Op

(
k3/2

NT

)
+ op

(
k−r
)
.

Similar to the discussion under Theorem 1, if we use a stronger assumption to bound the

moments of hm(x′itθ) uniformly, the first term in the convergency rate above will become the

optimal rate Op

(
k
NT

)
.

Notice that the second decomposition (2.5) raises the curse of dimensionality issue when

we estimate β (cf. see the convergence rate in Theorem 1), but this issue does not exist in

the convergency rate given by Theorem 5.

Intuitively, we denote an estimator of g(w) similar to (4.1) as

ĝ1(w) = H(w)′Ĉ + c̃0, (4.3)

where c̃0 = − 1
NT

∑N
i=1

∑T
t=1H

(
x′itθ̂
)′
Ĉ.

The integrated mean squared error of the nonparametric estimate is summarised below.

Corollary 2 Under the conditions of Theorem 5, if in additional Assumption 2.ii holds, as

(N, T )→ (∞,∞) jointly, then∫
R

(ĝ1(w)− g(w))2 · exp
(
−w2/2

)
dw = Op

(
k3/2

NT

)
+ op

(
k−r
)
.

The proofs of Theorem 5 and Corollary 2 are given in the appendix. We will evaluate the

proposed model and the estimation method using both simulated and real data examples in

Section 5 below.
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5 Numerical Study

In this section, we provide a Monte Carlo simulation and two empirical studies. In the

simulation, we consider an exponential functional form, g(w) = exp(w). The expectation

E [exp(x′θ0)] is certainly not zero, but it will not affect us to obtain a consistent estimation

on θ0. It further backs up our argument for Assumption 2.ii. Similar discussion can be found

in the Monte Carlo study section of Su and Jin (2012). In empirical studies, we investigate

UK’s climate data and US cigarettes demand. It clearly shows that our method outperforms

some existing methods in practice.

5.1 Monte Carlo Study

The data generating process (DGP) is as follows.

yit = exp (x1,itθ01 + x2,itθ02) + γi + eit (5.1)

and for j = 1, 2

xj,it = ρxjxji,t−1 + i.i.d. N (0, 1) for t = −99, . . . , 0, . . . , T,

ρx1 = 0.7, ρx2 = 0.3, xji,−100 = 0.

To introduce the cross-sectional dependence to the model, we follow the DGP in Chen

et al. (2012a) and let et = (e1t, . . . , eNt)
′, e−100 = 0N×1 and ρe = 0.2 for 1 ≤ t ≤ T . Then

the error term et is generated as

et = ρeet−1 + i.i.d. N (0N×1,Σe) for t = −99, . . . , 0, . . . , T,

where Σe = (σij)N×N = 0.5|i−j| for 1 ≤ i, j ≤ N . The fixed effects, γi’s, follow from

i.i.d. U (0, 1).

The values of θ01 and θ02 are set to 0.8 and -0.6, and they are estimated by θ̂1 and

θ̂2, respectively. In this Monte Carlo study, we choose N, T = 20, 50, 100, 200 and k as

b1.36 · 3
√

50c = 5, b1.36 · 3
√

100c = 6 and b1.36 · 3
√

200c = 7 respectively. We repeat the

estimation procedure 10000 times.

As Tables 1-3 shows, all the results are very accurate. The biases and the root mean

squared errors (RMSE) of θ̂1 and θ̂2 decrease as both N and T increase. Notice that the

biases for this simulation are quite small, which is due to the next reasons. In (A.11), it

is easy to be seen that the first term on the right hand side (RHS) is unbiased and has

expectation zero. The second term on RHS of (A.11) is biased and its convergence rate is
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op(k
−r), where r is directly related to the smoothness of the link function g(x). We know

that the nth derivative of the exponential function exists for all positive integers n = 1, 2, . . .,

so it is reasonable to expect this term will generate very small bias. Similarly, we do not

expect the second term on RHS of (A.11) contributes too much to RMSE.

θ̂1 θ̂2

k = 5 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0012 0.0005 0.0006 0.0005 0.0000 0.0012 0.0011 0.0009

50 -0.0004 0.0005 0.0005 0.0003 0.0001 0.0009 0.0008 0.0005

100 -0.0005 0.0002 0.0004 0.0004 -0.0002 0.0005 0.0006 0.0004

200 -0.0004 0.0002 0.0002 0.0001 -0.0003 0.0004 0.0003 0.0002

RMSE 20 0.0264 0.0152 0.0109 0.0083 0.0352 0.0204 0.0146 0.0111

50 0.0171 0.0106 0.0078 0.0062 0.0228 0.0162 0.0104 0.0082

100 0.0131 0.0081 0.0061 0.0047 0.0174 0.0108 0.0081 0.0063

200 0.0099 0.0063 0.0048 0.0037 0.0132 0.0084 0.0064 0.0049

Table 1: Bias and RMSE for k = 5

θ̂1 θ̂2

k = 6 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0015 -0.0002 -0.0001 -0.0002 -0.0003 0.0002 0.0001 -0.0001

50 -0.0009 -0.0002 -0.0001 -0.0002 -0.0007 -0.0001 0.0000 -0.0002

100 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0001 -0.0002

200 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0002 -0.0001

RMSE 20 0.0027 0.0138 0.0093 0.0064 0.0374 0.0185 0.0123 0.0086

50 0.0157 0.0087 0.0060 0.0042 0.0209 0.0116 0.0079 0.0055

100 0.0109 0.0061 0.0042 0.0031 0.0145 0.0082 0.0056 0.0041

200 0.0078 0.0045 0.0031 0.0023 0.0103 0.0060 0.0042 0.0031

Table 2: Bias and RMSE for k = 6
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θ̂1 θ̂2

k = 7 N \ T 20 50 100 200 20 50 100 200

Bias 20 -0.0014 -0.0001 -0.0001 -0.0001 0.0008 0.0003 0.0001 -0.0001

50 -0.0009 -0.0002 -0.0001 -0.0002 -0.0006 -0.0001 0.0000 -0.0002

100 -0.0009 -0.0002 -0.0001 -0.0001 -0.0010 -0.0002 -0.0001 -0.0002

200 -0.0009 -0.0002 -0.0002 -0.0001 -0.0010 -0.0002 -0.0002 -0.0001

RMSE 20 0.0333 0.0142 0.0092 0.0063 0.0458 0.0190 0.0123 0.0084

50 0.0161 0.0086 0.0058 0.0040 0.0214 0.0115 0.0077 0.0053

100 0.0109 0.0060 0.0040 0.0028 0.0145 0.0079 0.0054 0.0038

200 0.0076 0.0042 0.0029 0.0020 0.0101 0.0056 0.0039 0.0027

Table 3: Bias and RMSE for k = 7

5.2 Empirical Studies

In this section, we provide two empirical studies to demonstrate how our method performs

in practice. As a comparison, we also run OLS regression on the following linear model after

within transformation for the next two data sets.

yit = x′itθ0 + γi + eit. (5.2)

According to the results on convergence rates in previous sections, it is impossible to tell

what the optimal k should be. To choose the truncation parameter k, we use the extended

version of the generalized cross-validation (GCV) criterion proposed in Gao et al. (2002) at

first. Then select a k according to the other measurements (e.g. R2) in a small range of the

k̂ suggested by GCV. As they mention in the paper, how to select an optimum truncation

parameter has not been completely solved yet.

Below SIM and LIM denote the semiparametric single-index model (2.1) and the lin-

ear model (5.2), respectively. The corresponding standard deviations are reported in the

brackets.

5.2.1 UK’s Climate Data

Firstly, we use the exactly same UK’s climate data as Chen et al. (2013a), which is avail-

able from http://www.metoffice.gov.uk/climate/uk/stationdata/. We investigate how the

average maximum temperature (TMAX) is affected by the number of millimeters of rainfall
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(RAIN) and the number of hours of sunshine (SUN). The data were collected over the decade

of January 1999 to December 2008 from 16 stations across UK, so N = 16 and T = 120.

The results are reported in Table 4 and Figures 1 and 2.

SIM LIM

θ̂1 θ̂2 R2 θ̂1 θ̂2 R2

0.313 0.950 0.685 0.019 0.070 0.655

(0.702) ( 0.953) (0.003) (0.004)

Table 4: Estimated coefficients for UK’s climate data

The R2’s indicate that the semiparametric estimator proposed in this paper generates

more accurate results. Compared to the R2 = 0.6199 in Chen et al. (2013a), our method

performs better. For our model, the number of Hermite Polynomial function is chosen as 6

(such that h0, h1, . . . , h5 are chosen and K = 20 by (2.9)). Due to the similarity, we only

report the temperature plots for one station in Figure 1 and omit the others. The dash-

dot line is the observed TMAX data; the solid line is the estimated temperature by our

approach; and the two dash lines are 95% confidence interval obtained by using Theorem

4. Figure 1 shows that our estimates clearly capture the movement of average maximum

temperature. In Figure 2, the estimated curve is plotted according to (4.3). As one can

see, the linear model tells an unconvincing story. According to Figure 2 and the results

from OLS, one would have concluded that as the amount of rain fall goes up, the average

maximum temperature will increase. However, this seems to be very misleading. On the

other hand, the single-index model tells us that the maximum temperature will decrease as

the amount of rain fall increases, which is more meaningful to us.

5.2.2 US Cigarettes Demand

The data set of the second case study is from Baltagi et al. (2000) for analysing the demand

for cigarettes in the U.S., who use the next linear model of the form

lnCit = β0 + β1 lnCi,t−1 + β2 lnDIit + β3 lnPit + β4 lnPNit + uit, (5.3)

where i = 1, . . . , 46 and t = 1, . . . , 30 represent the states and the years (1963-1992) respec-

tively, Cit is the real per capita sales of cigarettes (measured in packs), DIit is the real per

capita disposable income, Pit is the average retail price of a pack of cigarettes measured in
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Figure 1: Estimated average maximum temperature
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Figure 2: Estimated curve for UK’s climate data

real terms, PNit is the minimum real price of cigarettes in any neighbouring state and uit is

the disturbance term.

We consider fitting the data by a semiparametric single–index model of the form

lnCit = g(x′itθ) + γi + eit, (5.4)

where xit = (lnCi,t−1, lnDIit, lnPit, lnPNit)
′. Due to the lagged dependent value included

in xit, the length of time series used in the regression is 29 (such that t = 2, . . . , 30). γi’s

capture all the state-specific effects. All the errors’ cross-sectional dependences and year-

specific effects are absorbed in eit. Similar to the previous section, we report the estimates

below. The results of several other attempts can be found in Baltagi et al. (2000), Mammen

et al. (2009) and Chen et al. (2013b).

Compared to the R2 = 0.9698 in Chen et al. (2013b), our method provides slightly better

results. For our model, the number of Hermite Polynomial function is chosen as 2 (such that
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θ̂1 θ̂2 θ̂3 θ̂4 R2

SIM 0.942 0.155 -0.288 0.070 0.973

(0.665) (0.412) (0.860) (0.776)

LIM 0.811 0.133 -0.248 0.061 0.753

(0.033) (0.018) (0.029) (0.029)

Table 5: Estimated coefficients for US cigarette demand

h0 and h1 are chosen) so that the link function g is a linear function (with a different slope

compared to the identity function). Due to the similarity, we only report the plots for one

state in Figure 3 and omit the others. The dash-dot line is the real per capita sales of

cigarettes; the solid line is the estimated per capita sales of cigarettes by our approach; the

two dash lines are 95% confidence interval obtained by using Theorem 4. In Figure 4, the

estimated curve is plotted.
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Figure 3: Estimated log real per capita sales of cigarettes

6 Conclusion

In this paper, we have proposed a semiparametric single–index panel data model associated

with cross-sectional dependence, high–dimensionality, stationarity and unobservable hetero-

geneity. Some closed–form estimates have been proposed and the closed–form estimates

have been used to recover the estimates of the parameters of interest and the link function

respectively. The resulting asymptotic theory has been established and illustrated using

both simulated and empirical examples. As both the theory and Monte Carlo study have

suggested, our model and estimation method perform well when cross-sectional dependence
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Figure 4: Estimated curve for US cigarette demand

exists in the system. Moreover, since we have not imposed any specific assumption on the

fixed effects, they can be correlated with the regressors to capture unobservable heterogene-

ity. Two empirical examples have shown that the proposed model and estimation method

outperform some natural competitors.

Appendix

We now provide some useful lemmas before we prove the main results of this paper. Lemma 1 is

in the same spirit as Lemma 12.4.2 of Blower (2009).

Lemma 1 Suppose that u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ Rd and ‖v‖ = 1. Then

Hm(u′v) =
∑
|p|=m

(
m

p

) d∏
j=1

Hpj (uj)
d∏
j=1

v
pj
j ,

where p = (p1, . . . , pd), pj for j = 1, . . . , d are all nonnegative integers, |p| = p1 + · · · + pd and(
m
p

)
= m!∏

pj !
.

Proof of Lemma 1: It is known that Hermite polynomial system has the following generating

function

exp
(
λx− λ2/2

)
=
∞∑
n=0

λn

n!
Hn (x) . (A.1)

For each j = 1, . . . , d, by (A.1) we have exp
(
vjuj − v2j /2

)
=
∑∞

pj=0

v
pj
j

pj !
Hpj (uj).
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Hence, we can take product of j to obtain that

exp
(
u′v − ‖v‖2 /2

)
=

d∏
j=1

∞∑
pj=0

v
pj
j

pj !
Hpj (uj)

=

∞∑
m=0

∑
|p|=m

1∏d
j=1 pj !

d∏
j=1

Hpj (uj)

d∏
j=1

v
pj
j .

Notice that ‖v‖ = 1 and once again the generating function indicates that the term of degree m

on left hand side (LHS) is 1
m!Hm(u′v), which, after matching with the term of degree m on right

hand side (RHS), gives the result. �

Lemma 2 Let Assumptions 1, 2 and 3 hold. Then, we have

1. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit)Z (xit)

′ −Q1

∥∥∥2 = O
(
k3d

NT

)
;

2. E
[

1
NT

∑N
i=1

∑T
t=1 g (x′itθ0)

]2
= O

(
1
NT

)
;

3. E
∥∥∥ 1
T

∑T
t=1 Z (xit)− qi

∥∥∥2 = O
(
k3d/2

T

)
;

4. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit) eit

∥∥∥2 = O
(
k3d/2

NT

)
;

5. λmin
(

1
NT Z

′ (IN ⊗MiT )Z
)
≥ λmin (Q1 −Q2) /2 > 0.

Proof of Lemma 2: 1). Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Z (xit)Z (xit)
′ −Q1

∥∥∥∥∥
2

=
K∑
u=1

K∑
v=1

E

[
1

NT

N∑
i=1

T∑
t=1

zu (xit) zv (xit)−
1

N

N∑
i=1

Q1,iuv

]2
, (A.2)

where zu(·) and zv(·) are the uth and vth elements of Z(·), respectively, and Q1,iuv is the (u, v)th

element of Q1,i.
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Observe that

E

[
1

NT

N∑
i=1

T∑
t=1

zu (xit) zv (xit)−
1

N

N∑
i=1

Q1,iuv

]2

=
1

N2

N∑
i=1

N∑
j=1

E

[
1

T 2

T∑
t1=1

T∑
t2=1

(zu (xit1) zv (xit1)−Q1,iuv) (zu (xjt2) zv (xjt2)−Q1,juv)

]

=
1

N2T

N∑
i=1

N∑
j=1

Cov (zu (xi1) zv (xi1) , zu (xj1) zv (xj1))

+
1

N2T

N∑
i=1

N∑
j=1

T−1∑
t=1

(
1− t

T

)
Cov (zu (xi1) zv (xi1) , zu (xj,1+t) zv (xj,1+t))

+
1

N2T

N∑
i=1

N∑
j=1

T−1∑
t=1

(
1− t

T

)
Cov (zu (xj1) zv (xj1) , zu (xi,1+t) zv (xi,1+t))

=
1

N2T

N∑
i=1

N∑
j=1

(Φijuv,1 + Φijuv,2 + Φijuv,3). (A.3)

We then consider each term on right hand side (RHS) of (A.3) respectively. Due to the Davydov

inequality (cf. pages 19-20 in Bosq (1996) and supplementary of Su and Jin (2012))

|Φijuv,2| =

∣∣∣∣∣
T−1∑
t=1

(
1− t

T

)
Cov (zu (xi1) zv (xi1) , zu (xj,1+t) zv (xj,1+t))

∣∣∣∣∣
≤ cη

T−1∑
t=1

∣∣∣∣1− t

T

∣∣∣∣ · (αij (t))η/(4+η) ·
(
E
[
|zu (xi1) zv (xi1)|2+η/2

])2/(4+η)
·
(
E
[
|zu (xj1) zv (xj1)|2+η/2

])2/(4+η)
≤ cη

2

T−1∑
t=1

∣∣∣∣1− t

T

∣∣∣∣ · (αij (t))η/(4+η) ·
(
E
[
|zu (xi1) zv (xi1)|2+η/2

])4/(4+η)
+
cη
2

T−1∑
t=1

∣∣∣∣1− t

T

∣∣∣∣ · (αij (t))η/(4+η) ·
(
E
[
|zu (xj1) zv (xj1)|2+η/2

])4/(4+η)
≤ cη

2

T−1∑
t=1

(αij (t))η/(4+η) ·
(
E
[
|zu (xi1)|4+η

]
E
[
|zv (xi1)|4+η

])2/(4+η)
+
cη
2

T−1∑
t=1

(αij (t))η/(4+η) ·
(
E
[
|zu (xj1)|4+η

]
E
[
|zv (xj1)|4+η

])2/(4+η)
(A.4)

where cη = 2(4+2η)/(4+η) · (4 + η)/η.
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In connection with Assumption 3.ii,

1

N2T

K∑
u=1

K∑
v=1

N∑
i=1

N∑
j=1

|Φijuv,2|

≤ C

N2T

K∑
u=1

K∑
v=1

N∑
i=1

N∑
j=1

T−1∑
t=1

(αij (t))η/(4+η) ·
(
O
(
|pu|d

)
·O
(
|pv|d

))2/(4+η)
≤ C

N2T

K∑
u=1

K∑
v=1

N∑
i=1

N∑
j=1

T−1∑
t=1

(αij (t))η/(4+η) ·
(
O
(
|pu|d · |pv|d

))1/2
= O

(
k3d

NT

)
,

where the last line is true due to the fact that max1≤u≤K |pu| = k − 1 and K = O
(
kd
)
.

Similarly,

1

N2T

K∑
u=1

K∑
v=1

N∑
i=1

N∑
j=1

|Φijuv,1| = O

(
k3d

NT

)
and

1

N2T

K∑
u=1

K∑
v=1

N∑
i=1

N∑
j=1

|Φijuv,3| = O

(
k3d

NT

)
.

Thus, the result follows. �

2). Write

E

[
1

NT

N∑
i=1

T∑
t=1

g
(
x′itθ0

)]2
=

1

N2

N∑
i=1

N∑
j=1

E

[
1

T 2

T∑
t1=1

T∑
t2=1

g
(
x′it1θ0

)
g
(
x′jt2θ0

)]
. (A.5)

Expanding the RHS of the above equation by the same procedure as (A.3) and (A.4), the result

follows from Assumptions 1.i and 2.ii. �

3). By following the same procedure as the first result of this lemma, the result follows. �

4). Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Z (xit) eit

∥∥∥∥∥
2

=
K∑
u=1

E

[
1

NT

N∑
i=1

T∑
t=1

zu (xit) eit

]2

=

K∑
u=1

1

N2

N∑
i=1

N∑
j=1

E

[
1

T 2

T∑
t1=1

T∑
t2=1

zu (xit1) eit1zu (xjt2) ejt2

]
. (A.6)

Following the same procedure as the first result of this lemma, the result follows. �

5) Write

λmin

(
1

NT
Z ′ (IN ⊗MiT )Z

)
= λmin

(
1

NT

N∑
i=1

T∑
t=1

Z̃itZ̃
′
it

)

= min
‖χ‖=1

{
χ′ (Q1 −Q2)χ+ χ′

(
1

NT

T∑
t=1

N∑
i=1

Z̃itZ̃
′
it − (Q1 −Q2)

)
χ

}

≥ λmin (Q1 −Q2)−

∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

Z̃itZ̃
′
it − (Q1 −Q2)

∥∥∥∥∥ . (A.7)
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We now consider 1
NT

∑T
t=1

∑N
i=1 Z̃itZ̃

′
it − (Q1 −Q2).

1

NT

T∑
t=1

N∑
i=1

Z̃itZ̃
′
it − (Q1 −Q2) =

1

NT

N∑
i=1

T∑
t=1

(
Z (xit)Z (xit)

′ −Q1,i

)
− 1

N

N∑
i=1

(
Z̄i.Z̄

′
i. − qiq′i

)
Similar to the first result of this lemma∥∥∥∥∥ 1

N

N∑
i=1

(
Z̄i.Z̄

′
i. − qiq′i

)∥∥∥∥∥
≤

∥∥∥∥∥ 1

N

N∑
i=1

(
Z̄i. − qi

) (
Z̄i. − qi

)′∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
i=1

(
Z̄i. − qi

)
q′i

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
i=1

qi
(
Z̄i. − qi

)′∥∥∥∥∥ = op (1) .

In connection with the first result of this lemma, we obtain∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Z̃itZ̃
′
it − (Q1 −Q2)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
Z (xit)Z (xit)

′ −Q1,i

)∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
i=1

(
Z̄i.Z̄

′
i. − qiq′i

)∥∥∥∥∥ = op (1) .

Thus, the result follows. �

Lemma 3 Let Assumptions 1–4 hold. Then the following results hold uniformly in a small neigh-

bour of θ0:

1. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1H (x′itθ)H (x′itθ)

′ −R1 (θ)
∥∥∥2 = O

(
k3

NT

)
;

2. E
∥∥∥ 1
T

∑T
t=1H (x′itθ)− ri (θ)

∥∥∥2 = O
(
k3/2

T

)
;

3. E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1H (x′itθ) eit

∥∥∥2 = O
(
k3/2

NT

)
;

4. λmin
(

1
NTH (θ)′ (IN ⊗MiT )H (θ)

)
≥ λmin (R1 (θ)−R2 (θ)) /2 > 0.

Proof of Lemma 3: 1). Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

H
(
x′itθ

)
H
(
x′itθ

)′ −R1 (θ)

∥∥∥∥∥
2

=

k−1∑
u=1

k−1∑
v=1

E

[
1

NT

N∑
i=1

T∑
t=1

hu
(
x′itθ

)
hv
(
x′itθ

)
− 1

N

N∑
i=1

R1,iuv (θ)

]2
, (A.8)

where hu(·) and hv(·) are the uth and vth elements of H(·), respectively, and R1,iuv is the (u, v)th

element of R1,i(θ).
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Observe that

E

[
1

NT

N∑
i=1

T∑
t=1

hu
(
x′itθ

)
hv
(
x′itθ

)
− 1

N

N∑
i=1

R1,iuv (θ)

]2

=
1

N2T

N∑
i=1

N∑
j=1

Cov
(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j1θ

)
hv
(
x′j1θ

))
+

1

N2T

N∑
i=1

N∑
j=1

T−1∑
t=1

(
1− t

T

)
Cov

(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j,1+tθ

)
hv
(
x′j,1+tθ

))
+

1

N2T

N∑
i=1

N∑
j=1

T−1∑
t=1

(
1− t

T

)
Cov

(
hu
(
x′j1θ

)
hv
(
x′j1θ

)
, hu

(
x′i,1+tθ

)
hv
(
x′i,1+tθ

))
=

1

N2T

N∑
i=1

N∑
j=1

(Ψijuv,1(θ) + Ψijuv,2(θ) + Ψijuv,3(θ)). (A.9)

By the similar procedure of (A.4)

|Ψijuv,2(θ)| =

∣∣∣∣∣
T−1∑
t=1

(
1− t

T

)
Cov

(
hu
(
x′i1θ

)
hv
(
x′i1θ

)
, hu

(
x′j,1+tθ

)
hv
(
x′j,1+tθ

))∣∣∣∣∣
≤ cη

2

T−1∑
t=1

(αij (t))η/(4+η) ·
(
E
[∣∣hu (x′i1θ)∣∣4+η]E [∣∣hv (x′i1θ)∣∣4+η])2/(4+η)

+
cη
2

T−1∑
t=1

(αij (t))η/(4+η) ·
(
E
[∣∣hu (x′j1θ)∣∣4+η]E [∣∣hv (x′j1θ)∣∣4+η])2/(4+η) ,

where cη = 2(4+2η)/(4+η) · (4 + η)/η.

In connection with Assumption 4.ii,

1

N2T

k−1∑
u=1

k−1∑
v=1

N∑
i=1

N∑
j=1

|Ψijuv,2| ≤
C

N2T

k−1∑
u=1

k−1∑
v=1

N∑
i=1

N∑
j=1

T−1∑
t=1

(αij (t))η/(4+η) · (O (u) ·O (v))2/(4+η)

≤ C

N2T

k−1∑
u=1

k−1∑
v=1

N∑
i=1

N∑
j=1

T−1∑
t=1

(αij (t))η/(4+η) · (O (u · v))1/2 = O

(
k3

NT

)
.

Similarly,

1

N2T

k−1∑
u=1

k−1∑
v=1

N∑
i=1

N∑
j=1

|Ψijuv,1| = O

(
k3

NT

)
and

1

N2T

k−1∑
u=1

k−1∑
v=1

N∑
i=1

N∑
j=1

|Ψijuv,3| = O

(
k3

NT

)
.

Thus, the result follows. �

2). Using the similar procedure to the first result of this lemma, the result follows. �

3). Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

H
(
x′itθ

)
eit

∥∥∥∥∥
2

=

k−1∑
u=1

E

[
1

NT

N∑
i=1

T∑
t=1

hu
(
x′itθ

)
eit

]2

=
k−1∑
u=1

1

N2

N∑
i=1

N∑
j=1

E

[
1

T 2

T∑
t1=1

T∑
t2=1

hu
(
x′it1θ

)
hu
(
x′jt2θ

)
eit1ejt2

]
. (A.10)
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Similar to the procedure used in proving the first result of this lemma, the result follows. �

4) Similar to (A.7), write

λmin

(
1

NT
H′ (IN ⊗MiT )H

)
≥ λmin (R1 (θ)−R2 (θ))−

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

∥∥∥∥∥ ,
where H̃ (x′itθ) = H (x′itθ)− H̄i. (θ) and H̄i. (θ) = 1

T

∑T
t=1H (x′itθ).

We now consider

1

NT

T∑
t=1

N∑
i=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

=
1

NT

N∑
i=1

T∑
t=1

(
H
(
x′itθ

)
H
(
x′itθ

)′ −R1,i (θ)
)
− 1

N

N∑
i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)′
)
.

In a similar fashion to the proof of the first result of this lemma, we have∥∥∥∥∥ 1

N

N∑
i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)′
)∥∥∥∥∥

≤

∥∥∥∥∥ 1

N

N∑
i=1

(
H̄i. (θ)− ri (θ)

) (
H̄i. (θ)− ri (θ)

)′∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
i=1

(
H̄i. (θ)− ri (θ)

)
ri (θ)′

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
i=1

ri (θ)
(
H̄i. (θ)− ri (θ)

)′∥∥∥∥∥ = op (1) .

In connection with the first result of this lemma, we obtain∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

H̃
(
x′itθ

)
H̃
(
x′itθ

)′ − (R1 (θ)−R2 (θ))

∥∥∥∥∥
≤

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

H
(
x′itθ

)
H
(
x′itθ

)′ −R1 (θ)

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
i=1

(
H̄i. (θ) H̄i. (θ)

′ − ri (θ) ri (θ)′
)∥∥∥∥∥ = op (1) .

Thus, the result follows. �

Proof of Theorem 1: We now start the proof of the consistency. By the uniqueness of the

Moore-Penrose inverse and the fifth result of Lemma 2 of this appendix, the K × K dimensions

matrix [Z ′ (IN ⊗MiT )Z]− is the inverse of Z ′ (IN ⊗MiT )Z for each K. Therefore,

β̂ − β =
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E

+
[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0). (A.11)
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Focusing on 1
NTZ

′ (IN ⊗MiT ) E firstly, we have

E

∥∥∥∥ 1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥2 = E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Z (xit) eit −
1

N

N∑
i=1

Z̄i.ēi.

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Z (xit) eit

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

N

N∑
i=1

Z̄i.ēi.

∥∥∥∥∥
2

. (A.12)

By the fourth result of Lemma 2, we have E
∥∥∥ 1
NT

∑N
i=1

∑T
t=1 Z (xit) eit

∥∥∥2 = O
(
k3d/2

NT

)
. For the

second term on RHS of (A.12), write

E

∥∥∥∥∥ 1

N

N∑
i=1

Z̄i.ēi.

∥∥∥∥∥
2

=
K∑
u=1

E

[
1

NT 2

N∑
i=1

T∑
t1=1

T∑
t2=1

zu (xit1) eit2

]2

=
K∑
u=1

1

N2

N∑
i=1

N∑
j=1

E

[
1

T 4

T∑
t1=1

T∑
t2=1

T∑
t3=1

T∑
t4=1

zu (xit1) eit2zu (xjt3) ejt4

]

=
1

N2

N∑
i=1

N∑
j=1

E

[
1

T 2

T∑
t2=1

T∑
t4=1

eit2ejt4

]
·
K∑
u=1

E

[
1

T 2

T∑
t1=1

T∑
t3=1

zu (xit1) zu (xjt3)

]
,

where the last line follows Assumption 1.ii.

By Cauchy-Schwarz inequality, moment monotonicity and Assumption 3.ii respectively,∣∣∣∣∣
K∑
u=1

E

[
1

T 2

T∑
t1=1

T∑
t3=1

zu (xit1) zu (xjt3)

]∣∣∣∣∣
≤

K∑
u=1

1

T 2

T∑
t1=1

T∑
t3=1

(
E
[
z2u (xit1)

]
E
[
z2u (xjt3)

])1/2
≤

K∑
u=1

1

T 2

T∑
t1=1

T∑
t3=1

(
E
[
z4+ηu (xit1)

]
E
[
z4+ηu (xjt3)

])1/(4+η)
≤

K∑
u=1

1

T 2

T∑
t1=1

T∑
t3=1

(
E
[
z4+ηu (xit1)

]
E
[
z4+ηu (xjt3)

])1/4
= O(k3d/2).

Similar to the proof of the first result of Lemma 2, 1
N2

∑N
i=1

∑N
j=1E

[
1
T 2

∑T
t2=1

∑T
t4=1 eit2ejt4

]
=

O
(

1
NT

)
. Thus, E

∥∥∥ 1
N

∑N
i=1 Z̄i.ēi.

∥∥∥2 = O
(
k3d/2

NT

)
. Based on the above, we have

∥∥∥∥ 1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥2 = Op

(
k3d/2

NT

)
. (A.13)

According to the fifth result of Lemma 2 and (A.13), we obtain∥∥∥[Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT ) E

∥∥∥2
= E ′ (IN ⊗MiT )Z

[
Z ′ (IN ⊗MiT )Z

]− [Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT ) E

≤
[
λmin

(
1

NT
Z ′ (IN ⊗MiT )Z

)]−2
·
∥∥∥∥ 1

NT
Z ′ (IN ⊗MiT ) E

∥∥∥∥2 = Op

(
k3d/2

NT

)
. (A.14)
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We now consider [Z ′ (IN ⊗MiT )Z]−Z ′ (IN ⊗MiT )D(θ0) and write∥∥∥(Z ′ (IN ⊗MiT )Z
)−Z ′ (IN ⊗MiT )D(θ0)

∥∥∥2
= D(θ0)

′ (IN ⊗MiT )Z
(
Z ′ (IN ⊗MiT )Z/(NT )

)−
·
(
Z ′ (IN ⊗MiT )Z

)−Z ′ (IN ⊗MiT )D(θ0)/(NT )

≤
[
λmin

(
Z ′ (IN ⊗MiT )Z/(NT )

)]−1
·D(θ0)

′ (IN ⊗MiT )Z
(
Z ′ (IN ⊗MiT )Z

)−Z ′ (IN ⊗MiT )D(θ0)/(NT )

≤
[
λmin

(
Z ′ (IN ⊗MiT )Z/(NT )

)]−1 · λmax(W ) ·
(
‖D(θ0)‖2 /(NT )

)
. (A.15)

Note that W = (IN ⊗MiT )Z (Z ′ (IN ⊗MiT )Z)−Z ′ (IN ⊗MiT ) is symmetric and idempotent,

so λmax(W ) = 1. According to Assumption 3.ii and the Weak Law of Large Numbers (WLLN), it

is easy to know that ‖D(θ0)‖2 /(NT ) = op (k−r). In connection with the fifth result of Lemma 2 of

this appendix, we obtain that∥∥∥[Z ′ (IN ⊗MiT )Z
]−Z ′ (IN ⊗MiT )D(θ0)

∥∥∥2 = op
(
k−r
)
. (A.16)

Therefore, the theorem follows form (A.14) and (A.16). �

Proof of Theorem 2: It is easy to know that sgn(β̂1) ·
(∑d

i=1 β̂
2
i

)−1/2
converges to |c1|−1 by

(2.7) and Theorem 1, so we only need to consider
√
NT ·Q3

(
β̂ − β

)
and write

√
NT ·Q3

(
β̂ − β

)
=
√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)

+
√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E . (A.17)

Notice that K = O
(
kd
)

and Q3 = O (1). In connection with (A.16) and the assumption in the

body of this theorem, it is straightforward to obtain∥∥∥√NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)
∥∥∥

≤
√
NT ·O(1) · op

(
k−r/2

)
= op(1). (A.18)

Then, to achieve the normality, we need only to consider the second term on RHS of (A.17).

√
NT ·Q3

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E

=
√
NT ·Q3

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−

)(
1

NT
Z ′ (IN ⊗MiT ) E

)
+
√
NT ·Q3 (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
(A.19)

For two non-singular symmetric matrices A,B with same dimensions, we observe that by The-

orem 2 on page 35 of Magnus (2007)∥∥A−1 −B−1∥∥2 =
∥∥B−1 (B −A)A−1

∥∥2 =
∥∥vec (B−1 (B −A)A−1

)∥∥2
=
∥∥(A−1 ⊗B−1) vec (B −A)

∥∥2 ≤ λ−2min (A⊗B) ‖vec (B −A)‖2 = λ−2min (A⊗B) ‖B −A‖2 ,
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where λmin (A⊗B) = λmin (A) · λmin (B) by Theorem 1 on page 28 of Magnus (2007). Therefore,

in connection with the proof of the fifth result of Lemma 2 in this appendix,∥∥∥∥∥
(

1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−

∥∥∥∥∥ = Op

(√
k3d

NT

)
.

Moreover, by (A.13), we can obtain that∥∥∥∥∥√NT ·Q3

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−

)(
1

NT
Z ′ (IN ⊗MiT ) E

)∥∥∥∥∥
≤
√
NT ·Op

(√
k3d

NT

)
·Op

(√
k3d/2

NT

)
= Op

(√
k4.5d

NT

)
= op (1) .

The second term on RHS of (A.19) can be written as follows.

√
NT ·Q3 (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
=
√
NT ·Q3 (Q1 −Q2)

− 1

N

N∑
i=1

(
qi − Z̄i.

)
ēi.

+
√
NT ·Q3 (Q1 −Q2)

− 1

NT

N∑
i=1

T∑
t=1

(Z (xit)− qi) eit (A.20)

For the first term on RHS of (A.20), we have E
∥∥∥ 1
N

∑N
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥2 = O
(
k3d/2

NT 2

)
. Similar

to (A.14),
∥∥∥(Q1 −Q2)

− 1
N

∑N
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥ = Op

(√
k3d/2

NT 2

)
.

Therefore,∥∥∥∥∥√NT ·Q3 (Q1 −Q2)
− 1

N

N∑
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥ ≤ √NT ·O (1) ·Op

(√
k3d/2

NT 2

)
= op (1) .

Since xit and eit are assumed to be stationary and α-mixing, we now use the large-block and

small-block technique (e.g. Theorem 2.21 in Fan and Yao (2003); Lemma A.1 in Gao (2007);

Lemma A.1 in Chen et al. (2012b)) to prove the normality for the second term on RHS of (A.20).

Write

√
NT ·Q3 (Q1 −Q2)

− 1

NT

N∑
i=1

T∑
t=1

(Z (xit)− qi) eit =
T∑
t=1

VNT (t) , (A.21)

where VNT (t) = 1√
NT

∑N
i=1Q3 (Q1 −Q2)

− (Z (xit)− qi) eit.

Notice that Q3 is just a selection matrix that selects the first d elements of β̂, so VNT is a

summation of random vectors with finite dimensions d× 1. Then, the conventional Central Limit

Theory (CLT) applies.

Partition the set {1, . . . , T} into 2κT + 1 subsets with large block with size lT , small block with

size sT and the remaining set with size T − κT (lT + sT ), where

lT = bT (λ−1)/λc, sT = bT 1/λc, κT = bT/ (lT + sT )c for any λ > 2.

30



For ρ = 1, . . . , κT , let V̂ =
∑T

t=κT (lT+sT )+1 VNT (t).

Ṽρ =

ρlT+(ρ−1)sT∑
t=(ρ−1)(lT+sT )+1

VNT (t) and V̄ρ =

ρ(lT+sT )∑
t=ρlT+(ρ−1)sT+1

VNT (t) .

For the small blocks, it can be seen

E

∥∥∥∥∥∥
κT∑
ρ=1

V̄ρ

∥∥∥∥∥∥
2

=
1

d

d∑
u=1


κT∑
ρ=1

E
[
v̄2ρ,u

]
+ 2

κT∑
ρ=2

(κT − ρ+ 1)E [v̄1,uv̄ρ,u]

 ,

where V̄ρ =
∑ρ(lT+sT )

t=ρlT+(ρ−1)sT+1 VNT (t) = (v̄ρ,1, . . . , v̄ρ,d)
′.

By the properties of α-mixing time series and a procedure similar to (A.6) in Chen et al. (2012b),

we obtain

E

 κT∑
ρ=1

∥∥V̄ρ∥∥2
 = O

(κT sT
T

)
= o(1).

Analogously, we have

E
∥∥∥V̂ ∥∥∥2 = O

(
T − κT lT

T

)
= o(1).

Therefore, in order to establish the CLT, we need only to consider
∑κT

ρ=1 Ṽρ. In connection with

Proposition 2.6 in Fan and Yao (2003) and the condition on the α-mixing coefficient, we have∣∣∣∣∣∣E
exp


κT∑
ρ=1

∥∥∥Ṽρ∥∥∥

− κT∏

ρ=1

E
[
exp

{∥∥∥Ṽρ∥∥∥}]
∣∣∣∣∣∣ ≤ C (κT − 1)α(sT )→ 0

for some 0 < C < ∞, which implies that Ṽρ for ρ = 1, . . . , κT are asymptotically independent.

Furthermore, as in the proof of Theorem 2.21.(ii) in Fan and Yao (2003), we have

Cov
[
Ṽ1

]
=
lT
T

Ξ0 (I + o (1)) ,

where

Ξ0 = lim
N→∞

1

N

N∑
i=1

Q3 (Q1 −Q2)
−
{
E
[
e2i1 (Z (xi1)− qi) (Z (xi1)− qi)′

]
+
∞∑
t=2

E
[
ei1eit (Z (xi1)− qi) (Z (xit)− qi)′

]
+

∞∑
t=2

E
[
ei1eit (Z (xit)− qi) (Z (xi1)− qi)′

]} (
Q′1 −Q′2

)−
Q′3.

It further implies that

κT∑
ρ=1

Cov
[
Ṽρ

]
= κT · Cov

[
Ṽ1

]
=
κT lT
T

Ξ0 (I + o (1))→ Ξ0.
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Thus, the Feller condition is satisfied.

Moreover, by Cauchy-Schwarz inequality, we have

E

[∥∥∥Ṽρ∥∥∥2 · I {‖Vρ‖ ≥ ε}] ≤ {E [∥∥∥Ṽρ∥∥∥3]}2/3

·
{
P
(∥∥∥Ṽρ∥∥∥ ≥ ε)}1/3

≤ C
{
E

[∥∥∥Ṽρ∥∥∥3]}2/3

·
{
E

[∥∥∥Ṽρ∥∥∥2]}1/3

and by Lemma B.2 in Chen et al. (2012b),

E

[∥∥∥Ṽρ∥∥∥3] ≤ ( lT
T

)3/2
E

∥∥∥∥∥ 1√
N

N∑
i=1

Q3 (Q1 −Q2)
−1 (Z (xi1)− qi) ei1

∥∥∥∥∥
4


3/4

.

By the assumption in the body of the theorem

E

∥∥∥∥∥ 1√
N

N∑
i=1

Q3 (Q1 −Q2)
−1 (Z (xi1)− qi) ei1

∥∥∥∥∥
4
 = O(1).

Therefore, E

[∥∥∥Ṽρ∥∥∥3] = O

((
lT
T

)3/2)
, which implies that

E

[∥∥∥Ṽρ∥∥∥2 · I {‖Vρ‖ ≥ ε}] ≤ O(( lT
T

)4/3
)

= o

(
lT
T

)
.

Consequently,
κT∑
ρ=1

E

[∥∥∥Ṽρ∥∥∥2 · I {‖Vρ‖ ≥ ε}] = o

(
κT lT
T

)
= o (1) .

Therefore, the Lindeberg condition is satisfied. Therefore, the proof is completed. �

Proof of Theorem 3: By (2.5), we have the following decomposition:

1

NT

N∑
i=1

T∑
t=1

g
(
x′itθ0

)
=

1

NT

N∑
i=1

T∑
t=1

Z (xit)
′ β + c0 +

1

NT

N∑
i=1

T∑
t=1

δk
(
x′itθ0

)
.

Moreover, 1
NT

∑N
i=1

∑T
t=1 g (x′itθ0) = Op

(
1√
NT

)
by the second result of Lemma 2. Plus ĉ0 from

both sides and organize the equation, so we obtain that

ĉ0 − c0 =
1

NT

N∑
i=1

T∑
t=1

Z (xit)
′
(
β − β̂

)
+

1

NT

N∑
i=1

T∑
t=1

δk
(
x′itθ0

)
+Op

(
1√
NT

)
. (A.22)

In view of the fact that
(

1
NT

∑N
i=1

∑T
t=1 Z (xit)

)(
1
NT

∑N
i=1

∑T
t=1 Z (xit)

′
)

has rank one and

using the similar procedure of (A.14), it may be shown(
1

NT

N∑
i=1

T∑
t=1

Z (xit)
′
(
β − β̂

))2

=
(
β̂ − β

)′( 1

NT

N∑
i=1

T∑
t=1

Z (xit)

)(
1

NT

N∑
i=1

T∑
t=1

Z (xit)
′

)(
β̂ − β

)
≤ C ·

∥∥∥β̂ − β∥∥∥2 = Op

(
k3d/2

NT

)
+ op

(
k−r
)
.
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By using Cauchy-Schwarz inequality twice(
1

NT

N∑
i=1

T∑
t=1

δk
(
x′itθ0

))2

≤

 N∑
i=1

(
1√
NT

T∑
t=1

δk
(
x′itθ0

))2
 · [ N∑

i=1

(
1√
N

)2
]

=
1

N

N∑
i=1

(
1

T

T∑
t=1

δk
(
x′itθ0

))2

≤ 1

NT

N∑
i=1

T∑
t=1

(
δk
(
x′itθ0

))2
.

Moreover, we have shown that 1
NT

∑N
i=1

∑T
t=1 (δk (x′itθ0))

2 = op (k−r) in the proof of Theorem

1.

Based on the above, the result has been proved. �

Proof of Theorem 4: By (A.22) and the assumptions in the body of this theorem, it is easy to

obtain the next equation after some algebra.√
NT

K3/2

(
ĝ
(
x′θ̂
)
− g(x′θ0)

)
=

√
NT

K3/2
ZNT (x)′

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)

+

√
NT

K3/2
ZNT (x)′

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E + op(1), (A.23)

where ZNT (x) =
(
Z (x)− 1

NT

∑N
i=1

∑T
t=1 Z (xit)

)
.

In connection with (A.16), it is straightforward to obtain that∥∥∥∥∥
√

NT

K3/2
ZNT (x)′

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT )D(θ0)

∥∥∥∥∥
≤
√

NT

K3/2
·Op(

√
k3d/2) ·Op

(
k−r/2

)
= Op

(√
NT

kr

)
= op(1). (A.24)

Thus, to prove the normality, we need only to consider the second term on RHS of (A.23):√
NT

K3/2
ZNT (x)′

[
Z ′ (IN ⊗MiT )Z

]−Z ′ (IN ⊗MiT ) E

=

√
NT

K3/2
ZNT (x)′

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−

)(
1

NT
Z ′ (IN ⊗MiT ) E

)

+

√
NT

K3/2
ZNT (x)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
. (A.25)

Similar to the proof procedure of Theorem 2, write∥∥∥∥∥
√

NT

K3/2
ZNT (x)′

((
1

NT
Z ′ (IN ⊗MiT )Z

)−
− (Q1 −Q2)

−

)(
1

NT
Z ′ (IN ⊗MiT ) E

)∥∥∥∥∥
≤
√

NT

K3/2
·Op

(√
k3d/2

)
·Op

(√
k3d

NT

)
·Op

(√
k3d/2

NT

)
= Op

(√
k4.5d

NT

)
.
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Similarly, we can show√
NT

K3/2
ZNT (x)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
=

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
+Op

(√
k3d/2

T

)
.

Thus, we just need to focus on the next term:√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

−
(

1

NT
Z ′ (IN ⊗MiT ) E

)
=

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

N

N∑
i=1

(
qi − Z̄i.

)
ēi.

+

√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

NT

N∑
i=1

T∑
t=1

(Z (xit)− qi) eit. (A.26)

In Theorem 2, we have shown that∥∥∥∥∥(Q1 −Q2)
− 1

N

N∑
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥ = O

(√
k3d/2

NT 2

)
.

Hence, we obtain ∥∥∥∥∥
√

NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

N

N∑
i=1

(
qi − Z̄i.

)
ēi.

∥∥∥∥∥
≤
√

NT

K3/2
·O
(√

k3d/2
)
·Op

(√
k3d/2

NT 2

)
= op (1) .

We still use the large-block and small-block technique to prove the normality for the second

term on RHS of (A.26). Write√
NT

K3/2
(Z(x)− q̄)′ (Q1 −Q2)

− 1

NT

N∑
i=1

T∑
t=1

(Z (xit)− qi) eit =

T∑
t=1

VNTK (t) , (A.27)

where

VNTK (t) =
1√

NTK3/2

N∑
i=1

(Z(x)− q̄)′ (Q1 −Q2)
− (Z (xit)− qi) eit.

Notice that

(
(Z(x)− q̄)′ (Q1 −Q2)

− (Z (xit)− qi) eit
)2

≤ λmax
(
(Z(x)− q̄)(Z(x)− q̄)′

)
·
∥∥(Q1 −Q2)

− (Z (xit)− qi) eit
∥∥2

= Op(k
3d/2),

so that VNTK is a summation of random scalar and its absolute value is bounded uniformly in

K with probability one. Then the conventional CLT is applicable. The rest of the proof will be
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exactly the same as that of Theorem 2 of this paper and that of Lemma A.1 in Chen et al. (2012b),

so we omit them there. �

Proof of Theorem 5: By the uniqueness of the Moore-Penrose inverse and the fourth result of

Lemma 3 of this appendix above, the (k−1)×(k−1) dimensions matrix
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
is the inverse of H(θ̂)′ (IN ⊗MiT )H(θ̂) for each k. Therefore,

Ĉ − C =
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )Y

−
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )H(θ̂)C

=
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)
+
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT )D(θ̂)

+
[
H(θ̂)′ (IN ⊗MiT )H(θ̂)

]−
H(θ̂)′ (IN ⊗MiT ) E , (A.28)

where G(θ)NT×1 = (g (x′11θ) , . . . , g (x′1T θ) , . . . , g (x′N1θ) , . . . , g (x′NT θ))
′ for ∀θ ∈ Θ.

Similar to (A.16), we have∥∥∥∥[H(θ̂)′ (IN ⊗MiT )H(θ̂)
]−
H(θ̂)′ (IN ⊗MiT )D(θ̂)

∥∥∥∥2 = op
(
k−r
)
.

By the third and fourth results of Lemma 3 and the similar procedure of (A.14), we obtain∥∥∥∥[H(θ̂)′ (IN ⊗MiT )H(θ̂)
]−
H(θ̂)′ (IN ⊗MiT ) E

∥∥∥∥2 = Op

(
k3/2

NT

)
.

Then, we need only to consider the next term. By the same proof as (A.15) and Assumption

4.iii, we write∥∥∥∥[H(θ̂)′ (IN ⊗MiT )H(θ̂)
]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)∥∥∥∥2
≤
(
λmin

(
H(θ̂)′ (IN ⊗MiT )H(θ̂)/(NT )

))−1
· λmax(W̃ ) ·

(∥∥∥G(θ0)− G(θ̂)
∥∥∥2 /(NT )

)
≤
(
λmin

(
H(θ̂)′ (IN ⊗MiT )H(θ̂)/(NT )

))−1
· λmax(W̃ ) ·

(
‖X‖2 ·

∥∥∥θ0 − θ̂∥∥∥2 /(NT )

)
,

where XNT×1 = (M(x11), . . . ,M(x1T ), . . . ,M(xN1), . . . ,M(xNT ))′ and

W̃ = (IN ⊗MiT )H(θ̂)
(
H(θ̂)′ (IN ⊗MiT )H(θ̂)

)−
H(θ̂)′ (IN ⊗MiT ) .

Since W̃ is symmetric and idempotent, λmax(W̃ ) = 1.

By Assumption 4.iii and Theorem 2, we know that

1

NT
‖X‖2 ·

∥∥∥θ0 − θ̂∥∥∥2 =
1

NT

N∑
i=1

T∑
t=1

(M(xit))
2 ·
∥∥∥θ0 − θ̂∥∥∥2 = Op

(
1

NT

)
.
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Hence, similar with (A.16), we obtain that∥∥∥∥[H(θ̂)′ (IN ⊗MiT )H(θ̂)
]−
H(θ̂)′ (IN ⊗MiT )

(
G(θ0)− G(θ̂)

)∥∥∥∥2 = Op

(
1

NT

)
.

Based on the above, the result has been proved. �

Proof of Corollary 2: Write∫
(ĝ1(w)− g(w))2 · exp

(
−w2/2

)
dw

=

∫ (
H(w)Ĉ + c̃0 − c0 −H(w)C − δk (w)

)2
· exp

(
−w2/2

)
dw

≤ 4

∫ (
Ĉ − C

)′
H(w)H(w)′

(
Ĉ − C

)
· exp

(
−w2/2

)
dw

+4 ‖c̃0 − c0‖2 + 2

∫
δk (w)2 · exp

(
−w2/2

)
dw

= 4
∥∥∥Ĉ − C∥∥∥2 + 4 ‖c̃0 − c0‖2 + 2

∫
δk (w)2 · exp

(
−w2/2

)
dw.

By going through the exactly same procedure as Theorem 3, it is easy to prove that

‖c̃0 − c0‖2 = Op

(
k3/2

NT

)
+ op

(
k−r
)
.

For the truncated residual term, it is easy to verify the standard multivariate normal den-

sity is covered by Assumption 3.ii. Therefore,
∫
δk (w)2 · exp

(
−w2/2

)
dw = o(k−r) by using the

substitution rule of integration and Assumption 3.ii. �
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