
Chapter 9 

 

 

 
 

© 2012 Kubiak, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Nonlinear Plate Theory  
for Postbuckling Behaviour of Thin-Walled 
Structures Under Static and Dynamic Load 

Tomasz Kubiak 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48961 

1. Introduction 

A thin plate or thin-walled constructions are used in the sports industry, automotive, 
aerospace and civil engineering. As an example of such structural elements snowboard, skis, 
poles may be mentioned, as well as all kinds of crane girders, structural components of 
automobiles (car body sheathing or all longitudinal members), aircraft fuselages and wings, 
supporting structures of the walls and roofs of large halls and warehouses. All the above 
structures, as well as many others which can be regarded as a thin, exhaust carrying 
capacity not by exceeding the allowable stresses but by the stability loss. Therefore, not only 
critical load but also the postbuckling behaviour of thin-walled structures subjected to static 
and dynamic load is essential knowledge for designers. The use of more accurate 
mathematical models allows to explore the phenomena occurring after the loss of stability 
and to describe more precisely their behaviour. Engineers and designers need guidelines to 
construct as well as quick and easy software to use for analyse the behaviour of thin-walled 
structures. Therefore, the author of this chapter decided to explore this issue, propose a 
mathematical model and the method of analysis of orthotropic thin-walled structures 
subjected to static and dynamic load.  

1.1. Static buckling 

The buckling and postbuckling of thin-walled structures subjected to static load have been 
investigated by many authors for more than one hundred years. To the group of precursors 
of the investigation on the stability of thin-walled structures problem should be included 
following scientists: Euler [1], Timoshenko [2] and Volmir [3].  
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This chapter considered the thin plate or thin-walled structures composed of flat plates. 
Such structures have a various of buckling modes which can differ from one another both in 
quantitative (e.g., by the number of half-waves) and in qualitative (e.g., by global and local 
buckling) way.  

The stability loss or buckling is a system transition from one equilibrium to another (the 
bifurcation point), or jump from the stable to the unstable equilibrium path (the limit point). 
Load resulting in the loss of stability is called the critical load. The behaviour of the structure 
subjected to load higher than the critical one can be described by a stable (the grow of 
displacement is caused by increased load) or unstable (displacements grow with decreasing 
load) postbuckling equilibrium path. 

The postbuckling behaviour of the structures depends on their type. For example, the 
cylindrical shells subjected to axial compression change their equilibrium stage (buckling) by 
unstable bifurcation point or limit point. Long rods or columns subjected to axial compression 
have usually a sudden global buckling (bifurcation point of passage to the unstable 
postbuckling equilibrium path). Thin plates supported on all edges lose their stability having 
the local buckling mode and the stable postbuckling equilibrium path. Mentioned above type 
of buckling and postbuckling behaviour for given thin-walled structures are the same for ideal 
structures as for structures with geometrical imperfection. Columns made of thin prismatic 
plates could have the local buckling mode, global (flexural, torsional or distorsional) one or 
coupled. The structures after local buckling are able to sustain further load, because increasing 
the displacement is only possible by increasing the load value (stable postbuckling equilibrium 
path), further increasing the load leads to plasticity or reaching the new, this time unstable 
bifurcation point (global buckling). The dangerous form of stability loss is the interactive 
buckling (coupled buckling), which usually causes the structure transition to the unstable 
equilibrium path what leads to the destruction of the structure with load lower than the critical 
load corresponding to each mode separately. The interaction of different buckling modes occurs 
when the critical loads corresponding to the different buckling modes are close to each other. 

A more comprehensive review of the literature concerning the interactive buckling analysis 
of an isotropic structure can be found for example in Ali and Sridharan [3], Benito and 
Sridharan [5], Byskov [6], Koiter and Pignataro [7], Kolakowski [8–10], Manevich [11], 
Moellmann and Goltermann [12], Pignataro et al. [13], Pignataro and Luongo [14, 15], 
Sridharan and Ali [16, 17]. The interactive buckling of orthotropic structures can be found 
for example in [18, 19]. 

1.2. Dynamic buckling 

In literature a quantity of ‘‘pulse intensity’’ [20] or ‘‘pulse velocity’’ [21] is introduced. The 
analysis of dynamic stability of plates under in-plane pulse loading can be divided into 
three categories depending on pulse duration and magnitude of its amplitude. For pulses of 
high intensity the impact phenomenon is observed whereas for pulses of low intensity the 
problem becomes quasi-static. The phenomenon of dynamic stability and dynamic buckling 
are often confused with each other. In this chapter the dynamic buckling phenomenon is 
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examined but the concept of dynamic stability is broader and applies also to the stability of 
motion, which for thin-walled structures can be found for example in [22, 23]. The dynamic 
buckling occurs when the loading process is of intermediate amplitude and the pulse 
duration is close to the period of fundamental natural flexural vibrations (in range of 
milliseconds). In such case the effects of dumping are neglected [24]. Damping neglecting is 
only possible for problem solved in elastic range [25].  

It should be noted that dynamic stability loss may occur only for structures with initial 
geometric imperfections; therefore the dynamic bifurcation load does not exist. For the ideal 
structures (without geometrical imperfection) the critical buckling amplitude of pulse 
loading tends to infinity [26]. The dynamic buckling load should be defined on the basis of 
the assumed buckling criterion. 

The precise mathematical criteria were formulated for structures having unstable 
postcritical equilibrium path or having limit point [26, 27]. But for the structures having 
stable postbuckling equilibrium path (thin plate, thin-walled beam-columns with minimal 
critical load corresponding to local buckling) the precise mathematical criterion have not 
been defined till now.  

Therefore Simitses [27] suggested not to define the dynamic buckling for the structures with 
stable postbuckling behaviour, but rather it should be defined as a dynamic response to 
pulse loads. 

It is a reason why in world literature a lot of criteria can be found. In the sixties of the 
twenty century Volmir [28] proposed a criterion for plates subjected to in-plane pulse 
loading. The Volmir criterion - considered the easiest to use - states that the dynamic critical 
load corresponds to the amplitude of pulse force (of constant duration) at which the maximum plate 
deflection is equal to some constant value k (k - one half or one plate thickness) [28]. 

In many publications the dynamic buckling load is determined on the basis of stability 
criterion of Budiansky and Hutchinson [26, 29, 30]. However, this criterion was formulated 
for shell structures but also it can be used for the plate structures [31-34]. Budiansky and 
Hutchinson noticed that in some range of the amplitude value, the deflection of structures 
grows more rapidly than in other. Budiansky and Hutchinson formulated the following 
criterion: Dynamic stability loss occurs when the maximum deflection grows rapidly with the small 
variation of the load amplitude [26]. 

In the end of 90’s Ari-Gur and Simonetta [20] analysed laminated plates behaviour under 
impulse loading and formulated four own criteria of dynamic buckling, two of them of 
collapse-type conditions. One of them states: Dynamic buckling occurs when a small increase in 
the pulse intensity causes a decrease in the peak lateral deflection [20]. 

The failure criterion was proposed by Petry and Fahlbush [34], who suggest that for 
structures with stable postbuckling equilibrium path the Budiansky-Hutchinson criterion is 
conservative because it does not take into account load carrying- capacity of the structure. 

Based on examples [35] it was noticed that for the thin-walled structures subjected to pulse 
loading, which lose their stability according to Budiansky-Hutchinson criterion or Volmir 
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criterion, the maximal radius rmax calculated from characteristic root =a+jb (where j= 1 ) 
of Jacoby matrix is equal or greater than unity in complex plane.  

Therefore the criterion for thin-walled structures proposed by author [35] can be formulated 
as follows: Thin-walled structures subjected to pulse loading of finite duration lose their stability 
even if one characteristic root =a+jb of Jacoby matrix find for every time moment from 0 to 1.5Tp lies 
in the complex plane outside the circle with radius equal to unity.  

Teter [36, 37] in his works analysed the long columns with longitudinal stiffeners and basing 
on the phase portrait for dynamic response of these structures defined the following 
criterion: The dynamic buckling load for the tracing time of solutions has been defined as the 
minimum value of the pulse load such that phase portrait is an open curve. 

The dynamic buckling problem has been well known in the literature for over 50 years and 
was the subject of numerous works [20, 24, 26-34]. The extensive list of work dealing with 
dynamic buckling can be found for example in the book edited by Kowal-Michalska [38] or 
written by Simitses [39] or Grybos [40]. It seems that the analysis of dynamic buckling of 
thin-walled structures, especially structures with flat walls is not sufficiently investigated. 
There is a lack of both single-and multimodal analysis of dynamic buckling of columns with 
complex cross-sections made of thin flat walls. The author of this paper decided to fill this 
gap presenting a method for the analysis of the local (single mode) and interactive (coupled 
mode – local and global) buckling of thin-walled structures subjected to pulse loading.  

It should be mentioned that the presented method can be used only if the structures are in 
the elastic range. The case of dynamic buckling in elasto-plastic range including the 
viscoplastic effect has been investigated by Mania and Kowal-Michalska [25, 41-43]. In 
world literature it is also possible to find the paper dealing with the dynamic buckling of 
thin-walled structures subjected to combined load [44]. Czechowski [45] modelled the girder 
subjected to twist and bending considering only one plate subjected to shear and 
compression. The general summary showing which parameters have an influence on 
dynamic buckling of plated structures can be found in [46, 47]. 

2. Thin orthotropic plate theory 

The thin isotropic or orthotropic plates with constant or widthwise variable material 
properties are considered. The thin-walled beam-columns or girders composed of 
mentioned above plates are also analysed. In order to taken into account all buckling modes 
(global, local and their interaction) the plate model was adopted to the analysed structures.  

2.1. Basic assumptions 

The basic assumption for thin plate are given by Kirchhoff for linear and by von Kármán 
and Marquerre for nonlinear thin plate theory. They made their assumption for isotropic 
material; lots of authors extended these assumptions for orthotropic or even for orthotropic 
multilayer thin plate [18, 48]. The assumptions are as follows: 
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 the plate is homogeneous (for example orthotropic homogenisation is made for fibre 
composite – resin matrix and fibre-reinforcement)  

 the plate is thin – other dimensions (length and width) are at least 10 times higher than 
plate thickness; 

 the material of the plate subjects to Hooke’s law; 
 the plane stress state is considered for the plate – stress acting in the plate plane 

dominates the plate behaviour, stress acting in normal to plate plane direction are 
assumed to be zero; 

 all strains (normal and shear) in plate plane are small compared to unity and they are 
linear; 

 the strains of the plate to its normal direction are neglected (thickness of the plate do 
not change after deformation) – this assumption are made according to the Kirchhoff-
Love hypothesis; 

 straight lines normal to the mid-surface of the plate remain straight and normal to the 
mid-surface after deformation 

 there is no interaction in normal direction between layers parallel to middle surface; 
 deflections of the plate can be considerable in terms of nonlinear geometrical relations; 

Additionally, it is assumed that principal axes of orthotropy are parallel to the edges of 
analysed structures (plate, beam, column, beam-column or girder). 

2.2. Geometrical equations for thin plate 

A plate model has been assumed for a thin plates and thin-walled beam-columns or girders. 
For easier explanation the plate (Figure 1a) or each i-th strip (Figure 1b) of the plate (or wall 
of the girder) or each i-th wall of the girder (Figure 1c) are called plate.  

To describe the middle surface strains for each plate the following strain tensor have been 
assumed: 
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where: ui, vi, wi - displacements parallel to the respective axes xi, yi, zi of the local Cartesian 
system of co-ordinates, whose plane xiyi coincides with the middle surface of the i-th plate 
before its buckling (Figure 1). 

In the majority of publications devoted to structure stability, the terms 2 2
, ,( )i x i xu v , 

2 2
, ,( )i y i yu v  and , , , ,( )i x i y i x i yu u v v  are in general neglected for ,  ,   m m m

ix iy ixy    correspondingly, 
in (1) in the strain tensor components. 

The change of the bending and twisting curvatures of the middle surface are assumed 
according to [48, 49] as follows: 
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The geometrical relationship given by equations (1) and (2) allow to consider both out-of-
plane and in-plane bending of the plate. 
 

 
Figure 1. Possible models: plates, strips or wall with assumed dimension, coordinate systems and 
direction of deflections 

2.3. Constitutive equations for orthotropy 

Let’s consider orthotropic plate with principal axes of ortothropy 1 and 2 parallel to plate 
edges (Figure 2).  

As same as in previous paragraph let’s consider i-th plate or strip of structures under analysis. 
The stress – strain relationship for orthotropic plate can be written in following form: 
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where: 
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and Ei1, Ei2 are Young modulus in longitudinal 1 and transverse 2 direction respectively, νi12 
is a Poisson ratio for which strains are in longitudinal direction 1 and stress in transverse 
direction 2,  Gi12 is a shear modulus (Kirchhoff modulus) in 12 plane. 

 
Figure 2. Plates or walls with principal axes of orthotropy 

Young modulus and Poisson ratio occurring in (5) according to Betty-Maxwell theorem or 
according to symmetry condition of stress tensor should fulfil following relation: 

 1 21 2 12i i i iE E  .  (6) 

For isotropic plate (wall of beam-columns) the constitutive equations are as follows: 
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2.4. Generalized sectional forces 

Substituting stress-strain relation from previous subchapter, the sectional moments and 
forces: 

 for i-th isotropic plate or wall of beam-column are expressed by: 
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 for i-th orthotropic strip or wall are: 
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2.5. Dynamic equations of stability for thin plate 

Differential equations of motion of the plate were derived basing on Hamilton’s principle. It 
states that the dynamics of a physical system is determined by a variation problem for a 
functional based on a single function, the Lagrangian, which contains all physical 
information concerning the system and the forces acting on it. In dynamic buckling problem 
the motion should be understand as the time dependent deflection.  

The Hamilton’s principles for conservative systems states that the true evolution 
(compatible with constrains) of the system between two specific states in specific time range 
(t0, t1) is a stationary point (a point where the variation is zero) of the action functional . 
Action functional  for i-th plate is described by following equation: 
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where  is the Lagrangian function for the system, K is a kinetic energy of the system and  
is a total potential energy of the system. 

The subscript i denoting i-th plate or strip in all equations in this subchapter is omitted – all 
equations are presented for one plate, which could be i-th plate, wall or strip of considered 
plate, beam-columns or girder (Figure 1). 

Taking the action functional  in form (9) the Hamilton’s principle can be written as: 

 
1 1

0 0

( ) 0
t t

t t
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The total potential energy variation δ for i-th thin plate (or strip) can be written in form: 

 Q W      (12) 

where δQ is a variation of internal elastic strain energy: 
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and  is the volume of the plate and S is its area, the volume can be expressed as l·b·h or 
S·h. 

The variation of internal elastic strain energy for i-th plate or strip could be expressed by 
strain and sectional forces and moments in a following way: 
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The work W of external forces (neglecting the out-of plane load) done on i-th plate can be 
written as follows: 
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where: p0(x), p0(y), 0xy(x), 0xy(y) are the prebuckling load applied to the middle surface of the 
considered plate (wall or strip) 

For thin plates, it is assumed that the displacements u and v do not depend on rotation w,x 
and w,y and therefore do not depend on the coordinate z. This approach results in exclusion 
of rotational inertia [50] in the equation for kinetic energy, which for the i-th thin plate 
(strip) can be written as: 
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The Hamilton’s principle, it is the variation of the action functional  (10) for i-th thin plate 
(strip or wall) which after taking into consideration equations from (11) to (15) can be 
written as:  
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The Lagrangian function for the whole system is equal to the sum of the Lagrangian 
functions of all n plates of which the system was composed. To determine the variation of 
action  for i-th plate, the following identity: 

 ( )X Y XY Y X     (18) 

was used. 

In the obtained equation, terms with the same variations were grouped, and then each of the 
obtained groups of terms (due to the mutual independence of variations) were equated to 
zero, giving: 

 equilibrium equations: 

 

1

0

1

0

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , ,

{[ ( ) ( ) ( ) ( ) ] } 0

{[ ( ) ( ) ( ) ( ) ] } 0

{[ 2 ( ) ( ) (

..

..

t

x x xy y x x x y y y xy x y xy y x
t S
t

xy x y y x x x y y y xy x y xy y x
t S

x xx y yy xy xy x x x y y y
S

N N N u N u N u N u h u udSdt

N N N v N v N v N v h v vdSdt

M M M N w N w N

 

 

      

      

    

 

 


1

0

, , , ,) ( ) ]

} 0
..

t

xy x y xy y x
t

w N w

h w wdSdt 

 

 



 (19) 

 boundary conditions for lateral edges of the plate (x = const): 
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 boundary conditions for longitudinal edges of the plate (y = const): 
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 (21) 

 boundary condition for the plate corners (x = const and y = const): 

 
1

0

2 0
t
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M wdt     (22) 

 initial conditions for t = const: 

 

0

0

0

.

.

.

t const
S

t const
S

t const
S

h u udS

h v vdS

h w wdS

 

 

 



















 (23) 

Above conditions are fulfilled for the entire structure, so if one apply the restrictions in 
moment of the initial t0 and in moment of the final t1 that the displacement variations 
are zero at all points of the structure. Then the system of equations (23) vanishes. 

 already used the relationship between deformations and internal forces and moments 
(8) or (9): 
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3. Solution method 

To determine the critical loads, natural frequencies and the coefficients of the equation 
describing the postbuckling equilibrium path, the analytical-numerical method has been 
employed. The proposed method also allows analysing dynamic response of the 
structure subjected to pulse loading. Taking the time courses of deflections and applying 
the relevant dynamic buckling criteria it is possible to determine the dynamic critical 
load. 

3.1. Equilibrium equations 

The differential equations of equilibrium for orthotropic plate or strip directly from the 
equations (19) can be derived and have the form: 
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 (26) 

 

Above equilibrium equations after omitting the inertia forces 
..

h u , 
..

h v  and 
..

h w becomes 
the equilibrium equations for thin plates allowing analysis of both local and global buckling 
mode. 

3.2. Boundary and initial condition 

As the wave propagation effects have been neglected, the boundary conditions referring to 
the simply supported columns at their both ends, i.e. x = 0 and x = l, according to (20), are 
assumed to be: 
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 (27) 

The condition written as a first of equations of (27) is satisfied for the prebuckling state and 
first-order approximation, the condition for deflection v (27) is satisfied for the first and 
second order of approximations, while the other two conditions are met for prebuckling 
state as well as for the first and second order of approximation. The condition of 
displacement in the y direction in the prebuckling state can be found for example in [51]. 
This approach allows to take into account the Poisson effect on the edges of the walls of the 
column. The boundary conditions described by equations (27) assume the lack of 
displacement possibility of points lying at the loaded edges in the transverse v and normal w 
directions to the surface in a wall or column. Furthermore, it is assumed that the moments 
Mix (as a vector parallel to the edge of the plate or end edge of the column walls) are zero. 

For structures with material properties varying widthwise the strip model was adopted 
what forces the boundary conditions modification in the second order approximations [51]. 
Modification consists of changing the first condition of (27) onto the following form: 

 (2)
0;1 0

1 0
ibJ

ix i xi i
N dy

b 
  l

             (28) 

Summation is performed only for the J number of the strips, between which the angle i,i+1  
(Figure 3) is equal to zero. 

To determine the boundary conditions on the longitudinal edges of plates or free edges of 
columns with open cross-sections the equations (20) were used. Whereas, directly from 
equations (23) result the following initial conditions: 
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 (29) 

where the following functions ,  ,  ,   , , 
~ ~ ~

i i i i i iu v w u v w  are given for the initial moment t = t0. 

3.3. Interaction condition between adjacent plates 

Static and kinematic junction conditions on the longitudinal edges of adjacent plates (Figure 
3), according to (21), can be written as: 
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where: 
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Figure 3. The geometrical dimensions and local coordinate systems adjacent plates 

3.4. Buckling and postbuckling equilibrium paths 

A non-linear stability problem has been solved by means of the Koiter’s asymptotic theory. 
The displacement field U , and sectional force field N  have been expanded into the power 
series with respect to the parameter , - the buckling linear eigenvector amplitude 
(normalised with the equality condition between the maximum deflection and the thickness 
of the first plate h1). 
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It was assumed that the dimensionless amplitude of the initial deflections (imperfections) 
correspond to the considered buckling mode (for s-th buckling mode) is: 

 ( )* .i
sU U  (33) 

By substituting expansions (32) into equations of equilibrium (26) with neglected inertia 
terms (static buckling problem), junction conditions (30) and boundary conditions (27), the 
boundary problem of the zero (superscript (0) in Equations (32) and further), first 
(superscript (i)) and second (superscript (ij)) order has been obtained [18, 50, 52, 53]. The zero 
approximation describes the prebuckling state, whereas the first order approximation 
allows for determination of critical loads and the buckling modes corresponding to them, 
taking into account minimisation with respect to the number of half-waves m in the 
lengthwise direction. The second order approximation is reduced to a linear system of 
differential heterogeneous equations, which right-hand sides depend on the force field and 
the first order displacements only.  

The most important advantage of this method is that it enables us to describe a complete 
range of behaviour of thin-walled structures from all global (i.e. flexural, flexural–torsional, 
lateral, distortional buckling and their combinations) to the local dynamic stability. In the 
solution obtained, the shear lag phenomenon, the effect of cross-sectional distortions and 
also the interaction between all the walls of structures are included. 

Having found the solutions to the first and second order of the boundary problem, the 
coefficients aijs, bijks have been determined [18, 50, 52, 53]: 
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 (34) 

where: s – is the critical load corresponding to the s-th mode,  L11 is the bilinear operator, L2 
is the quadratic operator and σ(i), σ(ij) are the stress field tensors in the first and second order.    

The postbuckling static equilibrium paths for coupled buckling can be described by the 
equation: 

  *1 ; s  1, , ,s ijs i j ijks i j k s
s s

a b N       
 

 
       

 
 (35) 

which for the uncoupled problem have the form: 
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where cr is the critical load value. 

In a special case, i.e. for the so-called ideal structure without initial imperfections (*=0) and 
when the equilibrium path (a111) is symmetrical, the postbuckling equilibrium path is 
defined by the equation: 

 2
11111

cr
b 


   (37) 

3.5. Natural frequencies 

Determination of the natural frequencies is similar to the determination of critical buckling 
load and the natural frequencies are found by solving the eigenvalue problem. 

Natural frequencies of thin-walled structures were determined by solving a dynamic 
problem, which uses the approach proposed by Koiter in his asymptotic stability theory of 
conservative systems in the first-order approximation [52]. 

To determine the natural frequencies [55] of the structure the adopted equilibrium equations 
(26) contain cross-sectional inertia forces acting in the direction normal to the middle surface 

of the plate (column wall) and in the middle plane of plate (i.e. 
..

h u  0 and 
..

h v  0).  

3.6. Lagrange equations 

In the dynamic analysis (while finding the frequency of natural vibrations [55]), the 
independent non-dimensional displacement  and the load factor  become a function 
dependent on time, and dynamic terms were added to equations describing postbuckling 
equilibrium path. Neglecting the forces associated with the inertia terms of prebuckling 
state and the second-order approximations, and taking into account the orthogonality 
conditions for the displacement field in the first ( )iU and second-order approximation ( )ijU , 
the Lagrange equations can be written as [56]: 

  
..

2
1 1 ; 1,2,  ,s s ijs i j ijks i j k s

s ss

a b s N        
 

 
        
 

 (38) 

where s is a natural frequency with mode corresponding to buckling mode; aijs and bijks are 
the coefficients (34) describing the postbuckling behaviour of the structure (independent of 
time); however the parameters of load  and the displacement  are the functions of time t. 

For the uncoupled buckling, i.e. the single-mode buckling (where index s = N = 1), the 
equations of motion may be written in the form: 
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  (39)  

It is assumed that in the initial moment of time t = 0 the non-dimensional displacement , as 
well as the velocity of displacement are equal to zero, i.e.: 

  0 0 and  ( 0) 0
.

t t     .  (40) 

The Runge-Kutta method [57] for solving the equation (39) requires the following 
substitutions: 
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 (41) 

which lead to the system of two differential equations. ‘‘Complete’’ equations of motion (41) 
are solved with the numerical Runge–Kutta method of order 8 (5,3), thanks to Dormand and 
Price (with step-size control and density output). 

4. Exemplary results of calculations 

The exemplary results of numerical calculation are presented in this sub-chapter. All results 
are obtained using explained above proposed analytical-numerical method (ANM) based on 
the nonlinear orthotropic plate theory.  

The material properties (E – Young modulus, ν – Poisson ratio, G=E/[2(1+ν)] – Kirchhoff 
modulus;   – density) for materials taken into account are presented in Table 1. 

 
 
material type: 

E 
[GPa]  

 
[kg/m3] 

steel 200 0.3 7850 
aluminium 70 0.33 2950 
epoxy resin 3.5 0.33 1249 
glass fibre 71 0.22 2450 

Table 1. Assumed material properties 

The fibre composite material was modelled as orthotropic but for components (resin 
and fibre) the isotropic material properties (Table 1) was assumed. Necessary equations 
for material properties homogenization based on theory of mixture [57, 58] are as 
follows: 
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 (42) 

where Em and Ef are the Young’s modulus of elasticity for matrix and fibre, respectively, Gm 
and Gf are the shear modulus for matrix (subscript m) and fibre (subscript f), νm and νf are 
the Poisson’s ratios for matrix and fibre and f = Vf /(Vm + Vf) is the fibre volume fraction.  

For static buckling the critical buckling load and corresponding modes are presented as well 
as the postbuckling equilibrium paths.  

For dynamic buckling the proposed by Budiansky and Hutchinson parameter called 
Dynamic Load Factor DLF is introduced. The DLF is defined as a ratio of pulse loading 
amplitude to static buckling load. The results are presented of nondimensional deflection ξ 
versus DLF. The critical dynamic load factor DLFcr corresponding to dynamic buckling has 
been estimated using different criteria – the obtained results were compared. 

For the proposed method the validation of the results was made by comparison with the 
other Authors [34] calculations (Figure 4) or with the results obtained with FEM [38]. The 
results presented in Figure 4 were obtained for thin (ratio length to thickness equals 200) 
aluminium square plate simply supported at all edges and subjected to sinusoidal pulse 
load. The time of pulse duration was equal to the period of natural vibration of the plate. 
The considered plate has a geometrical imperfection corresponding to buckling mode with 
amplitude equal to 0.05 of the plate thickness.  

 
Figure 4. The results of different calculation comparison 
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4.1. Plates 

The rectangular thin plates simply supported on loaded edges with different boundary 
conditions along the unloaded ones were considered (Figure 5). On the longitudinal edges 
five different boundary condition cases were taken into account. Following notations is used 
in Figure 5: s – simply supported edge, c – clamped edge, e – free edge.  

 

 
Figure 5. Analysed plates with different boundary conditions 

 
 
 

material: 

boundary 
condition 

Pcr [kN]  [rad/s] 

ANM FEM ANM FEM 

steel 

ss 7.23 7.24 3016 3010 

cc 
15.6 (m = 1) 
13.9 (m = 2) 

15.7 
14.0 

4423 (m = 1) 
8363 (m = 2) 

4423 
8344 

se 2.53 2.54 1784 1784 
ce 2.99 2.99 1935 1935 
sc 10.38 10.41 3613 3607 

composite 
f = 0.5 

ss 0.54 0.54 1703 1709 
cc 0.93 0.95 2231 2237 
se 0.34 0.35 1351 1351 
ce 0.36 0.37 1389 1389 
sc 0.69 0.70 1916 1923 

Table 2. Critical load Pcr and natural frequencies  for analysed plates 

Exemplary results were calculated for steel and epoxy glass composite (fibre volume factor  
f = 0.5) square plates subjected to rectangular compressive pulse loading. The buckling load 
for plate under analysis is presented in Table 2. The pulse duration Tp was equal to the 
period of natural vibration with mode corresponding to the buckling mode.  

The dimensions of analysed plates were assumed as follows: the length (width) a= b= 100 
mm and thickness h = 1 mm.  
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The geometrical imperfection was assumed in the shape corresponding to the buckling mode 
with amplitude * = 0.01, where * is an amplitude of deflection divided by the plate 
thickness. The Figure 6 presents postbuckling equilibrium paths for ideal flat composite plate 
(Figure 6a) and for plate with geometrical imperfection with amplitude * =0.01 (Figure 6b).  

 
Figure 6. Postbuckling equilibrium paths for square ideal plates (a) and plates with imperfection (b) 
with different boundary conditions on non-loaded edges 

In the dynamic buckling case the results are shown as graphs presenting nondimensional 
deflection  or radius r calculated from real and imaginary part of maximal characteristic 
root of Jacoby matrix as a function of dynamic load factor DLF. The graphs mentioned 
above allow to find critical amplitude of pulse loading using the proposed criterion (PC) 
[35] and to compare the obtained results with Budiansky-Hutchinson (B-H) or Volmir (V) 
criteria. In brackets the notation used in Figures and Tables is given. The critical deflection 
according to Volmir criterion was assumed as cr= 1. 

 
Figure 7. Nondimensional deflection  (a)  and maximum radius rmax (b) vs. DLF for square plates with 
different boundary conditions on non-loaded edges [35] 

Basing on curves presented in Figure 7 the critical value of dynamic load factor can be found. 
The comparison of obtained critical DLF values using different criteria is presented in Table 3. 
All critical DLF values except the case denoted as se obtained from the proposed criterion (PC) 
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are in the range obtained from Budiansky-Hutchinson criterion (B-H). For the case denoted as 
se the greatest differences between critical dynamic load factors from the proposed and 
Budiansky-Hutchinson criterion were obtained but these differences are less than 10%.  
 

boundary conditions 
for unloaded edges 

mode B-H V PC 

se m=1 1.51.6 1.55 1.35 
ce m=1 1.31.4 1.58 1.35 
ss m=1 1.51.6 1.43 1.51 
sc m=1 1.41.8 1.46 1.58 
cc m=2 1.41.5 1.51 1.39 

Table 3. Comparison of DLFcr obtained from different criteria for compressed plate 
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Figure 8. Nondimensional deflection  vs. DLF for simply supported square plate  

The comparison for postbuckling behaviour of the rectangular plate simply supported at all 
edges subjected to static and dynamic load are obtained using proposed analytical-
numerical method and presented in Figure 8. 

4.2. Segments of the girders 

As a next example the static and dynamic buckling of composite (epoxy glass composite with 
different volume fibre fraction f) girders with open cross-section (Figure 9) is presented. The 
assumed boundary conditions on loaded edges correspond to simply support. The 
calculation was carried out for short segment of girder with length to web width ratio l/b1 = 1 
and for the following dimensions of the cross-section: b1/h = 50, b2/h = 25 and b3/h = 12.5. 

 
Figure 9. Cross-sections of analysed segment of the girders 
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The geometrical imperfection was assumed in the shape corresponding to the buckling 
mode with amplitude * = 0.01. The static buckling load and fundamental flexural natural 
frequency obtained with analytical-numerical method for girders made of composite with 
different fibre fraction are presented in Tables 4. The static critical buckling loads are 
presented in Table 4 and postbuckling equilibrium paths are presented in Figure 10. 
 

 
 

volume fibre fraction f:
cross-section 

critical load 
Pcr [N] 

natural frequency 
 [rad/s] 

0.4 
 

0.6 
 

0.4 
 

0.6 
 

channel (Figure 9a) 1526 2281 1076 1076 
channel with inner stiffeners (Figure 9c) 2821 4217 1308 1308 
omega (Figure 9b) 2819 4214 1308 1308 

Table 4. Critical load and natural frequencies for analysed girder’s segments 

 
Figure 10. Postbuckling equilibrium paths for segment of girders  

Buckling load and natural frequency for girder segment with omega and stiffened channel 
cross-section are similar – it is true only for local buckling case. For girder with channel 
cross-section the buckling was caused by flanges – this is a reason why for this cross-section 
the buckling load and natural frequency are smaller than for two others analysed cross-
sections. Looking at obtained results (Table 4) it can be seen that increasing the volume fibre 
fraction f leads to an increasing the buckling loads as well as the natural frequencies. The 
postbuckling equilibrium paths for stiffened cross-section (channel with inner stiffeners 
and omega) overlap. The postbuckling path for channel cross-section lies below the 
equilibrium paths of girders with stiffened cross-section – it is obvious because the girders 
with stiffened cross-section have similar stiffness and the girder with channel cross-section 
is more flexible. 

In dynamic buckling case the time of pulse duration Tp was assumed as the period of natural 
fundamental flexural vibration corresponding to the local buckling mode. Considered 
shapes of pulse loading are presented in Figure 11. 
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Figure 11. Shapes of pulse loading: three triangular impulses T1 (a), T2 (b), T3 (c), rectangular R (d) and 
sinusoidal S (e) 
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Figure 12. Dimensionless deflection vs. DLF for channel girder – results comparison obtained with 
analytical-numerical method ANM and finite element method FEM [56] 

The results presented in Figure 12 were obtained with the proposed analytical-numerical 
method (ANM) and compared with FEM computations. They are similar for both assumed 
shapes of pulse loading (Figure 11): rectangular (R) and sinusoidal (S). Nevertheless, for 
rectangular shape pulse loading some small differences in deflection are visible for DLF 
greater than 2. It should be noted that obtained curves (Figure 12) from both methods allow 
to find the same critical dynamic load factor DLFcr using Budiansky-Hutchinson or Volmir 
criterion – for rectangular pulse loading DLFcr ≈1.4 (both criteria) and for sinusoidal pulse 
loading DLFcr ≈2.1 (Budiansky-Hutchinson) or 2.3 (Volmir).  

In Figure 13 the dynamic response comparison of girders made of composite material (f = 
0.5) with different cross-section subjected to triangular T3 pulse was presented. The curves 
for omega cross-section and channel cross-section with inner stiffeners cover each other’s.  

Dynamic responses for girder with channel cross-section with inner stiffeners for different 
pulse loading are presented in Figure 14. The curves denoted by S=R were obtained for 
sinusoidal pulse loading with the same area as rectangular pulse loading (for the same pulse 
duration the amplitude was higher for sinusoidal pulse). The highest deflection was  
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Figure 13. Nondimensional deflection  as a DLF function for girder with different channel cross-
section subjected to T3 pulse loading [56] 

obtained for pulse denoted by S=R because this pulse has the highest amplitude. The rest of 
compared pulses have the same amplitude and the same duration. Analysing the curves 
(DLF) for rectangular, sinusoidal and three triangular impulses it can be seen that the 
highest increment of deflection for the smallest DLF takes place for rectangular pulse loading.  

 
Figure 14. Dimensionless deflection vs. dynamic load factor for different shapes of pulse loading - 
channel with inner stiffeners, composite material f = 0.7 [56] 

The comparison of DLFcr obtained using Budiansky-Hutchinson criterion for girders with 
different cross-section made of composite materials (f = 0.5) are presented in Table 5. Only 
the average values from the obtained critical ranges are presented. The dynamic load factors 
for different cross-sections are in the same relation as buckling loads (Table 4) – the same or 
similar DLFcr for cross-sections with stiffeners (omega and channel with inner stiffeners). 

4.3. Columns 

Next, the exemplary results for the dynamic interactive buckling of channel cross-section the 
columns are presented. The columns subjected to rectangular compressive pulse loading 
were analysed. The calculation was carried out for columns with various length to web 
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width ratio l/ b1 = 4; 6 and 8 and for the following dimensions of the cross-section: width of 
the web to its thickness b1/h = 100, width of the flange to its thickness b2/h = 50. 
 

analysed cross-section:
 
type of pulse 

channel omega channel with inner 
stiffeners 

S 
R 

S=R 
T1 
T2 
T3 

2.0 
1.6 
1.4 
3.1 
2.3 
2.4 

2.1 
1.6 
1.4 
3.1 
2.5 
2.5 

2.1 
1.6 
1.4 
3.1 
2.5 
2.5 

Table 5. The DLFcr value for different shape of applied pulses 

 

 
Figure 15. Nondimensional deflection  (a) and maximum radius rmax (b) as a function of DLF for 
channel beam-columns with different length ratio l/ b1 and pulse duration Tp [35] 
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The interaction between global buckling mode m = 1 and the first local buckling mode m > 1 
was considered. The geometrical imperfection were assumed in the shape corresponding to 
the buckling mode with amplitude * ≡ 2*equals 1/100 wall thickness for local mode and 1* 

equal to length to one thousand wall thickness (l/1000h) for global mode. Time of pulse 
duration Tp was assumed as T1 equal to the period of natural fundamental flexural vibration 
or Tm (where m is a number of half waves of local buckling mode) equal to the period of 
natural vibration with mode corresponding to the local buckling mode. 

Figure 15 presents dimensionless deflection  as a function of dynamic load factor and 
maximal radius rmax calculated for maximal characteristic root of Jacoby matrix as a function 
of DLF.  
From curves presented in Figure 15a the critical value of dynamic load factor based on 
Volmir (V) or Budiansky-Hutchinson (B-H) criterion can be found. The curves presented in 
Figure 15b help to find critical DLF value based on proposed criterion (PC) [35]. The 
obtained critical DLF’s according to mentioned above criteria are presented in Table 6.  
 

columns length 
ratio 

pulse duration
Tp [ms] 

buckling 
modes 

B-H V PC 

l/b1  = 4 T1= 1.6 m=1; 3 local 1.01.15 1.07 1.16 
l/ b1  = 6 T1= 1.9 m=1; 5 local 0.951.0 1.01 1.08 
l/ b1  = 8 T1= 2.7 m=1; 6 local 1.11.15 1.09 1.09 
l/ b1  = 4 T3= 0.8 m=1; 3 local 1.61.75 1.40 1.58 
l/ b1  = 6 T5= 0.7 m=1; 5 local 1.61.75 1.39 1.59 
l/ b1  = 8 T6= 0.8 m=1; 6 local 1.62.05 1.43 1.51 

Table 6. Comparison of DLFcr obtained from different criteria for interactive buckling 

The comparison of the obtained results shows that they are in good agreement. In all cases 
with pulse duration equal to the period of natural vibration of the form corresponding to 
local buckling mode the results obtained from the proposed criterion (PC) are between the 
results obtained from Volmir (V) and Budiansky-Hutchinson (B-H) criteria. For loading with 
time of pulse duration equal to the period of natural fundamental vibration T1 the critical 
DLF values obtained using the proposed criterion (PC) are equal or a bit greater (about 6%) 
than the critical dynamic load factors from Budiansky-Hutchinson (B-H) or Volmir (V) 
criteria. 

Should be pointed out that in the dynamic buckling problem also for the short columns the 
multimodal buckling analysis should be carried out. It has been proven on exemplary 
channel columns with following dimensions: b1/h = 100, b2/h = 50, b3/h = 25 and l/b1 = 4.  

The problem has been calculated with the analytical-numerical method and the finite 
element method [56].  

The dimensionless deflection  as a function of dimensionless time (time divided by pulse 
duration) for channel column is presented in Figure 16. The characteristic points are located 
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in the middle cross-section of the columns and in the middle of the web (point 1 – Figure 16) 
and on the edge between the web and the flange (point 2 – Figure 16).  

 
Figure 16. Deflection in time for channel columns subjected to rectangular pulse loading with the DLF 
= 1.6 

Analysing the results presented in Figure 16, it can be said that the global buckling appears 
for channel cross-section columns. The column edge deflections are greater than deflections 
of the middle part of the web. The FEM results of calculations presented in Figure 16 have 
initiated the need for a multimodal buckling analysis also for short columns subjected to 
pulse loading. 

Results for linear buckling and modal analyses obtained with proposed analytical-numerical 
method are presented in Table 7. As it will be presented below (see Figure 17) the four 
modes should take into consideration in ANM to obtain similar results to this obtained with 
FEM. The finite element method gives results (global mode) even in the case when only one 
buckling mode as the initial imperfection (for example, the local buckling mode m=3) has 
been taken into account [56].  
 

Mode cr [MPa] n [Hz] 
local mode m = 3 53 614 
primary local mode m = 1 123 312 
secondary local mode m = 1’ 972 880 
global mode m = 1’’ 5122 2001 

Table 7. Buckling stress and natural vibration for the channel column 

A comparison between the results obtained with the analytical-numerical method and the 
finite element method on plots presenting a dimensionless deflection vs. a dynamic load 
factor for columns with channel cross-sections are shown in Figure 17. Some differences 
appear because the analytical-numerical model has only a few degrees of freedom in 
contrary to FE model, which has thousands DoF. However the curves presented in Figure 17 
are different the critical DLF values estimated using the Budiasky-Hutchinson criterion is 
similar. From the ANM, the DLFcr = 2.7 and from the FEM, the DLFcr = 2.6.  
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Good agreement between the results obtained with ANM and FEM is possible because the 
interactive dynamic buckling problem has been solved in the analytical-numerical method. 
Four modes have been taken into account. The buckling stress and the natural frequency 
obtained with the analytical-numerical method for all the modes assumed in the multimodal 
analysis are listed in Table 7. The buckling modes taken into consideration in the 
multimodal analysis are presented in Figure 18, correspondingly.  

 
Figure 17. Dimensionless edge deflection  vs. the DLF for channel columns subjected to rectangular 
pulse loading Tp = T3 = 1.6 ms [56] 

 
Figure 18. Buckling modes for the channel cross-section column 

5. Conclusion 

Taken into consideration the nonlinear thin plate theory for orthotropic material allows, as 
is presented in exemplary results of calculation, to analyse thin-walled structures composed 
of flat plates and subjected to static and dynamic load. The nonlinear orthotropic plate 
theory is the base for the proposed analytical-numerical method which allows to find 
buckling load with corresponding buckling mode, natural frequencies with corresponding 
modes and to analyse the postbuckling behaviour – drawing the postbuckling equilibrium 
paths for plate, segment of girders or columns made of isotropic, orthotropic or even 

0
1
2
3
4
5
6
7
8
9

10

0.5 1 1.5 2 2.5 3 3.5



DLF

FEM

AN m=3, m=1, m=1', m=1''



 
Nonlinear Plate Theory for Postbuckling Behaviour of Thin-Walled Structures Under Static and Dynamic Load 247 

composite materials. As it was shown not only static load can be considered but also 
dynamic load with intermediate velocity – the dynamic buckling can be analysed using 
assumed plate theory and the proposed method of solution. 

The proposed analytical–numerical method gives almost the same results for eigenvalue 
problem (buckling loads, natural frequencies with corresponding modes) and similar results 
for dynamic buckling as the finite element method. However the dimensionless deflection 
versus dynamic load factor relation obtained with both (proposed and FEM) methods are 
not identical (especially for higher DLF value). These relations allow to find similar critical 
value of DLF taking into consideration one of the well-known criterion. The differences in 
the dimensionless deflection ξ appear because the numerical model in the FEM has more 
degrees of freedom than the model in the analytical–numerical method, but the results from 
the ANM are obtained in a significantly faster way than those from the finite element 
method. 
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