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Abstract 

This paper presents the Generalized Newmark Dual Reciprocity Boundary 
Element Method, GNDRM, for solving nonlinear transient field problems with 
phase change. GNDRM is a combination of the Generalized Newmark family of 
single step time marching schemes and the Dual Reciprocity Boundary Element 
Method. Iterations are performed at each time step using the Newton-Raphson 
method with line searches. Latent heat effects due to phase change are 
incorporated using a fixed-grid apparent heat capacity method. 

1 Introduction 

The Generalized Newmark, or GNpj, method was originally called the Beta-m 
method [l]. The GNpj method is a generalization of the Newmark method and is 
a general family of single step time marching schemes, choice of integration 
parameters controls accuracy and stability. Other well-known methods (e.g. 
Newmark, Wilson, Houbolt, etc.) are contained within the GNpj family. 

An initial restriction of the boundary element method was that the 
fundamental solution to the original partial differential equation was required in 
order to obtain an equivalent boundary integral equation. Another restriction was 
that domain integrals were needed to account for non-homogeneous terms 
arising from initial conditions and body loads. One widely used method to 
overcome both these problems is the dual reciprocity method. The method uses a 
fundamental solution to a much simpler partial differential equation and treats 
the remaining terms using global approximating functions 123. 
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Transient field problems with phase change can be solved numerically by 
either front-tracking methods or fixed-grid methods. In front-tracking methods 
the phase change front is tracked continuously and the latent heat effects are 
treated as moving boundary conditions. Fixed-grid methods can be divided into 
source based methods and apparent heat capacity methods. In source based 
methods latent heat effects of phase change are incorporated by fictitious sources 
and sinks. This paper deals with two-dimensional transient field problems with 
phase change using a fixed-grid apparent heat capacity method. 

2 Generalized Newmark dual reciprocity method - GNDRM 

The GNpj method is a generalization of the Newmark method where p is the 
order of the approximation function and j is the order of differential equation. 
The p integration parameters provide a subfamily of methods, which control 
accuracy and stability as well as options for explicit and implicit algorithms. 

The method can be defined by writing the k  ' derivative of W with respect to 
time as [l] 

where 

and 

b, =- 
( m - k ) !  

A is the forward difference operator 

where subscripts n and n +l refer to time n and n +l  and h is the time step. 
(k) ( m )  

In the above, g, is the Taylor series expansion of w,+t up to the term W, .  

Thus each g, is a known history vector. The last term in equation (l), which 
( m )  

contains the unknown increment A W , may be interpreted as an approximation 
( m + ] )  

to the next Taylor series term W, . The accuracy of the approximation is 

controlled by the choice of the integration parameters, P,,, P,, ... , P,, . BY 

choosing P, = l /(m - k  +l)  the scalar terms bk become the recognizable Taylor 
( m + ] )  

series coefficients for the term W, . However this is not necessarily an optimal 

choice. It is applicable to any system of initial value problems providing we 
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choose m greater than or equal to the highest order differential appearing in the 
system. Table l lists selected methods [l]. 

Case Symbols 

A = Optimal accuracy 
U = Unconditional stability 
E = Explicit 
D = Numerical damping present 

W = Wilson method, 0 = 1.4 
H = Houbolt method 

Trailing digit = m 

Table 1 : Sample GNpj methods. 

The heat conduction equation for two-dimensional problems for isotropic 
materials is 

Where U is the temperature, K is the thermal conductivity, V is the heat 
generated, p is the density, c is the specific heat. Equation (5) can be written as 

Applying the dual reciprocity boundary element method [2] to equation (6) gives 

In general equation (7) is a nonlinear equation. Matrices H, G and S are 
independent of temperature but vectors K, and V may be dependent upon 
temperature. Rearranging equation (7) for the residual, or out of balance, \y 

gives 
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Applying the Newton-Raphson method 

where 

( m )  ( m )  
and W represents the vector of unknowns either u or q depending upon the 
conditions at the node. 

( m )  

If g, is the unknown, then 

for all i . 
( m )  

If U ,  is the unknown 

aF,, 3 4  a ~ , ,  a& 
JY 

~ , , - ' a , b ~  - F,- U ,  + - F,,- K,, - Frj- 
ay JY ay  

no sum on j, for all i, where a and p are the slope of the thermal conductivity, 
K, and heat capacity, pc,  curves respectively. 

                                                             Transactions on Modelling and Simulation vol 35, © 2003 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



For the Dirichlet boundary condition, prescribed temperature, u = u 

- au 
For the Neumann boundary condition, prescribed flux, qf = qf = K- 

an 

au 
For the Convection boundary condition, q, = K- = h, ( U ,  - U ) ,  where h, 

an 

is the convection transfer coefficient and U ,  is the ambient temperature for 

convection. Hence an extra term appears in K, 

no sum on j. 
au 

For the Radiation boundary condition, q, = K - = OE ( U ;  - u 4 ) ,  where a is 
an 

the Stefan-Boltzmann constant = 5.667 X 10-~, E is the surface emissivity and 
U ,  is the ambient temperature for radiation. Hence an extra term appears in K, 

no sum on j .  
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3 Phase change 

In the apparent heat capacity method equation (5) is replaced by 

where h is the enthalpy defined as 

and U, is the reference temperature and L is the latent heat. The right hand 

side of equation (19) can be rewritten as 

where (pc)(l is termed the apparent heat capacity. Using the apparent heat 

capacity directly leads to numerical problems due to the step like behaviour of 
In order to overcome these problems both space-averaging and time- 

averaging methods have been used in the literature [3,4,5]. It has been reported 
[ S ]  that the space averaging technique [3] can lead to problems in certain 
circumstances. In this work we use the space-averaging technique [4] where, for 
two dimensions, the apparent heat capacity is evaluated using 

Using the Dual Reciprocity Method approximation to a derivative with respect to 
a spatial coordinate, say X ,  the terms of equation (22) are evaluated using 

and 
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4 Line searches 

The direction of the line search is given by the Newton-Raphson iteration 
equation (9) 

( m )  ( m )  

The vector of unknowns W, either U or q depending upon the conditions at 
each node, is then updated according to 

where the superscript refers to iteration number and 17 is a scalar quantity chosen 

to minimise the residual, or out of balance, V . Performing line searches at every 

iteration would be expensive since most iterations would not benefit. Fortunately 
it is easy to check if the current iteration is a good or bad iteration in terms of 
reducing the residual at virtually no cost before deciding if line searches would 
benefit the current iteration. Equation (26) is used to update the vector of 
unknowns W ,  with 17 set to unity. Then if 

is not satisfied then the current iteration is deemed not good and line searches are 
then performed. Defining the scalar @ =lyiv, and subscripts on the scalars 17 
and @ to denote the line search number, then for iteration i +  l we have starting 

conditions q0 = 0 ,  4,, = yiyi and q1 = 1 , q51 obtained from the standard 
iteration. The line search parameter is then continually updated from 

until equation (27) is satisfied. Limits on the line searches have to be imposed in 
order to avoid numerical problems. The first is that Id171 is limited to 25% of v .  
The second is that 0.25 <v < 25. The third is if equation (27) is not satisfied 

within 25 line searches. When iteration stops due to condition two or three then 
q is set to the value that was nearest to satisfying equation (27) during the line 
search procedure. 
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5 Results 

In this example taken for reference [6] a unit square of liquid with an initial 
temperature of 03°C is subjected to a constant temperature of -1" C  on the 
surfaces of the wedge AB and AD, surfaces BC and CD are perfectly insulated, 
as shown in figure 1 .  

A B Enthalpy data 

T = - 1 ° C  

Figure 1 : Problem definition. 

The material properties are K = 1 JIm" c = 1 J/KgIoC, p = 1 ~ ~ l m ~ ,  Latent 

heat = 0.25 ~ l m ~  , Liquidus temperature = O.OOS°C and Solidus temperature = 

-0.005" C .  From these material properties the enthalpy data given in figure 1 is 
derived. The problems associated with corners and discontinuous boundary 
conditions have been handled via the gradient approach [7] .  The boundary was 
divided into 40 elements with 81 equally spaced internal points. Linear radial 
basis functions f = l +  r are used for the dual reciprocity method. Figure 2 

shows the phase front, determined by the 0°C contour, at 0.02, 0.04, 0.06 and 
0.08 seconds obtained using the U1, P = 1 , scheme and very small timesteps, 

dt = 0 . 1 ~  10" seconds. 

Figure 2: Phase front location. 

In order to compare the time-stepping methods we shall concentrate on where 
the 0 C contour crosses the diagonal AC in figure 1. Tables 2 and 3 show the 
phase front location for various timestep lengths for the U1, P = l  , and 
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HD3, P,, = 6 ,  P, = 1 11 3, P,  = 2, time-stepping schemes respectively. The % 
diff columns show the percentage difference to the reference results obtained 
using the U1 scheme with extremely small timesteps, dt = 0 . 1 ~  lo4 seconds, 
with timesteps this small all schemes give the same results or do not converge at 
all. 

1 1 dt = 0.01 seconds I dt = 0.001 seconds I dt = 0.0001 seconds I 

Table 2: Phase front location, U1, = 1, scheme. 

The significance of the line searches in the above is that scheme U1 with 
dt = 0.001 and scheme HD3 with dt = 0.0001 do not converge at all without 
line searches. Tables 2 and 3 show that the third order scheme, HD3,  gives less 
accurate results than the first order scheme, U1, when using large timesteps, 
dt = 0.01 and dt = 0.001 seconds. But the third order scheme, HD3,  gives more 
accurate results than the first order scheme, U1, when using small timesteps, 
dt = 0.0001 seconds. This might be because higher order schemes are less able 
to model the discontinuity in time due to phase change than low order schemes 
when using large timesteps. 
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6 Conclusions 

The generalized Newmark dual reciprocity boundary element method, GNDRM, 
is presented for nonlinear transient field problems with phase change. Since the 
method is a fixed-grid apparent heat capacity method it can easily be extended to 
three dimensions without difficulty, unlike the front tracking methods previously 
used for this type of problem using boundary element methods. Due to the 
complexity of the problem there are very few analytical results available in order 
to verify the results so no comparison of the results presented is made. The 
authors have verified the results presented by comparing the results obtained 
from GNDRM to the results produced from a commercially available finite 
element code and very good agreement was found. The line search technique is 
fundamental to obtaining convergence in some situations when using GNDRM 
for phase change problems. 
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