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Abstract 

This paper presents a nonlocal analysis of the dynamic damage accumulation 
processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage 
model is developed and implemented into a transient dynamic finite element computer code. 
The code is then applied to the study of the damage accumulation process ina concrete plate 
with a central hole and subjected to the action of a step tensile pulse applied at opposite edges 
of the plate. Several finite element discretizations are used to examine the mesh size effect. 
Comparisons between calculated results based on local and nonlocal formulations are made 
and nonlocal effects are discussed. 
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1.0 INTRODUCTION 

Continuous demands on safety and efficient design have placed increasing emphases on 
fracture and failure analyses of engineering materials and structures. Continuum damage mechan- 
ics have been applied to study the phenomenon of brittle fracture in solids under dynamic loads 
with varying degrees of success [l-61. Because of the complex geometries and loading conditions 
involved, numerical simulation techniques have become the tools of choice. 73~0 common prob- 
lems associated with damage analyses by classical continuum damage mechanics are softening 
and localization. The consequences of failing to take into account these two problems properly 
usually manifested in solutions which are dependent on the discretization size. A potential rem- 
edy is to cast the field equations in a nonlocal setting such that the high gradients associated with 
the field parameters in these problems can be captured. The nonlocality is usually represented by 
an internal length scale which can be introduced in formulations ranging from the Cosserat and 
micropolar theories [7,8], the gradient theory [9,10], fully nonlocal [11,12] and partially nonlocal 
[13] representations. 

damage models to analyze dynamic brittle fracture. The study is based on the comparisons 
between numerical results obtained from the same damage model with both a nonlocal and a local 
formulation. The damage model selected is the one developed by the author and his coworkers [ 1- 
61 to simulate brittle rock fracturing. A nonlocal version is developed here by utilizing the nonlo- 
cal formulation suggested in [13] in which nonlocality is only applied to those internal state vari- 
ables involved with material damage. The model has been implemented into the transient finite 
element code PRONTO 2D [ 141 for numerical analysis. An example problem has been defined 
and results have been obtained from both local and nonlocal calculations. To examine mesh size 
effect, several discretizations are used in the numerical computations. Comparisons between these 
results have been made. Based on these findings, it is clear that mesh size dependence can be alle- 
viated by adopting a nonlocal damage model formulation. However, the determination of the 
internal length scale associate with the nonlocal formulation is certainly nontrivial. Moreover, 
nonlocality tends to smear out localized deformations and thus may suppress trvly local failure 
modes. This may render the nonlocal models inappropriate for predicting localized failure mecha- 
nisms. 

The purpose of this research is to investigate the appropriateness of applying nonlocal 

2.0 CONTINUUM DAMAGE MODEL DESCRIPTION 

The basic assumption of the damage model is that the material is permeated by an array of 
randomly distributed cracks which grow and interact with one another under tensile loading. The 
model does not attempt to treat each individual crack, but rather treats the growth and interaction 
of cracks as internal state variables which represent damage accumulation in the material. The 
damage is reflected in the degradation of the material stiffness following the equations derived by 
BudiGsky and OYConnell[15] for a random 
medium 

array of penny-shaped cracks in an isotropic elastic 

(1) 
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32(1 - V ) ( 5 - V )  
‘d 

- -  c -  1 - 4 5  
G ( 2 - 9  

E 16(1 -V2)(10-39) 
E - =  l-45 ( 2 4 )  ‘d (3) 

where JS, G, E and v are material bulk modulus, shear modulus, Young modulus and Poisson’s 
ratio, respectively. Barred quantities such as E represent degraded properties and Cd is the crack 
density parameter. Additionally, the crack density parameter is related to the virgin and damaged 
Poisson’s ratio through 

45 (v - V)(2 - V) c d  = - 
16(1 -v2)[lov-v(l +3v)] 

The damage variable is defined as 

D = -[A) 16 1 - v  
9 1-2v ‘d 

(4) 

such that = K (1 - D). The crack density parameter is assumed to be proportional to the product 
of N, the number of cracks per unit volume, and a3, the cube of the average crack dimension in a 
representative volume. Following Grady and Kipp [16], N is expressed as a Weibull statistical dis- 
tribution function activated by the bulk strain measure E, = (E, + % +a / 3, according to 

m N = k(Ev) 

in which k and m are material constants to be determined from strain rate dependent tensile frac- 
ture stress data. The average crack dimension a, is estimated from the nominal fragment diameter 
for dynamic fragmentation in a brittle material [ 171 as 

2 

where p is the mass density, C is the uniaxial wave speed (E / P)”~, and KIC is the fracture tough- 

ness of the material. Also, kvmax is the maximum volumetric strain rate experienced by the rep- 
resentative volume element. Equations (1) through (5) can also be cast into rate form to relate 
stress and strain rates. When bulk tension occurs in the material, it is possible to calculate, at each 
time step, the crack density parameter Cd by making use of Equations (6) and (7) and then dam- 
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age parameter D through Equation (5). The material stiffness is then degraded according to Equa- 
tions (1) through (5). In compression, the material behaves as an elastic/perfectly plastic solid. 
Details of the model development are given in Taylor, Chen and Kuszmaul [l] and will not be 
repeated here. 

Modifications have been made to the above model to render it a more versatile tool. 
Because the equations derived by Budiansky and O’Connell[15] are limited to dilute crack con- 
centrations, the crack density parameter has a limiting value of 9/16. To extend the range of crack 
densities, an expression [18] 

was used to approximate Equation (4). Equation (8) recovers Budiansky and O’Connell’s expres- 
sion for dilute crack concentrations at small crack density Cd and attains the correct limit of zero 
stiffness for large Cd values. In comparison with the expression in [l], the crack density parameter 

16 
-PC, 

16Cd/9 is effectively replaced by 1 - e .The value of p controls the unloading and reloading 
behavior and relaxes the restriction of elastic unloading in the original model. 

For m y  brittle solids, pressure-dependent inelastic response under compressive loads is 
observed. An improvement is made by extending the elastic/perfectly plastic compressive 
response to one that employs a Drucker-Prager yield surface [19]: 

-2 2 F = B -(c1+c2P) = 0 
(9) 

with 5 the effective stress, P the mean stress and c1 and % material constants determined from 
experimental data. To avoid too much dilation, a von Mises flow rule of the type 

S . .  
E . .  P = * A- V 

s..s.. 
lJ GJ 

is adopted. In Equation (lo), E p .  is the plastic strain rate tensor, k is the plastic loading rate 

parameter, and s . . is the deviatoric stress tensor. 
V 

ZJ 

3.0 CHARACTERISTICS OF THE DAMAGE MODEL 

Characteristics of the continuum damage model described are examined here for the 
same oil shale as in [l]. Nominal material properties such as the mass density, the Young’s 
modulus, the Poisson’s ratio and the fracture toughness are taken to be 2270 kg/m3, 10.8 GPa, 
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0.2 and 1.0 MPa-m'/2, respectively. Shear strength z was approximated by a linear relationship 
of z = 200.0 + 0. 5 P (ma) .  Strain-rate dependent tensile fracture stress data are required to 
determine the constants k and m in Equation (6). In lieu of measured data, it is possible to 
estimate this data using an expression derived in Kipp, Grady and Chen [20] for the tensile 
fracture stress oc: 

00 
80 

60 

40 

30 

20  

where N, is a shape factor (1.12 for penny-shaped cracks) and C, is the shear wave velocity of 
the material. Thus, k and m are really not additional material constants for the model. For the oil 
shale, Kipp and Grady [21] reported fracture stress versus strain rate data and this is shown in 
Fig. 1. Based on these data and the material properties given above, m and k are determined to 
be 7.0 and 5.1 16 10 Im , respectively. 

Using these material properties and 0.5 for p, the response of the oil shale under bulk 
tension can now be examined. Fig. 2 shows the pressure-volumetric strain relationship under 
uniaxial homogeneous straining for three strain rates. In this figure, positive pressure denotes 
bulk tension. Strain-softening is observed as a consequence of the micro-cracking damage 
accumulation. The material's capability to carry bulk tension increases with the strain rate. 

22 3 
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Figure 1. Oil Shale tensile fracture stress versus strain rate data. 
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Figure 2. Oil Shale bulk response under tension. 
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Figure 3. Damage versus volumetric strain plot. 
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Figure 4. Cyclic bulk tension response of Oil Shale. 
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Figure 5. Cyclic damage behavior. 
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Damage accumulation as a function of volumetric strain is shown in Fig. 3. The loading/ 
unloadingheloading behavior for lOOO/s strain rate is exhibited in Fig. 4 and 5 in terms of the 
pressure- and damage-volumetric strain plot, respectively. It is seen that the damage evolution is 
an irreversible process. During reloading, no more damage accumulation will take place until 
the strain level have exceeded the previous m w u m .  The value for p controls the unloading 
response. For p=O, elastic unloading along the damaged bulk modulus will result. For p=1, 
unloading is along the original bulk modulus similar to elastic/plastic behavior. For p between 0 
and 1, a combined damage/plastic unloading response results. The effect of p is illustrated in 
Fig. 6. Note that because of the modifications, the numerical values reported here are slightly 
different from those in [l]. Also, the exponential representation in Equation (8) renders better 
numerical convergence and smooth softening responses. 

4.0 NONLOCAL FORMULATION 

Nonlocal formulations involve the introduction of localization limiters, usually an 
internal length scale, into classical continuum field equations. Depending on the degree of 
sophistication, several theories exist in the literature [7-13, 221. The purpose of the present 
investigation is to examine general nonlocal effects and it suffices to consider a simple yet 
efficient formulation. To this end, the nonlocal continuum with local strain model [13] is 
adopted here. Typically, for this model, some of the variables in the constitutive equation are 
defined by spatial averaging while the others retain their local definitions. The spatial average of 
the magnitude of an arbitrary variable y at location may be defined by the equation 

50.0 - - 
Strain Rate = l O O O / s  

- 
n 
0 

- 

- 

- 

.O 5 1 .o 1 5  2.0 2 5  
Volumetric strain (%) 

Figure 6. Effect of p on unloading. 
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in which 

The pointed brackets e > denote the averaging operator, V is the volume of the body, a(5) is 
the weighing function which defines the averaging, and g is the general coordinate vector. The 
selection of the weighing function is based on numerical efficiency. The normal (Gaussian) 
distribution function (error density function) 

- Id’ 
41’ a(4) = e 

was selected in [13] for two-dimensional geometries. In Equation (14), I is the characteristic 
length which is a material property that defines the diameter of the representative volume. 

Judicious choices of the variables which should be subjected to spatial averaging are 
required. In [13], for a nonlocal plasticity model, only the plastic strain was subjected to spatial 
averaging and satisfactory results were obtained. Motivated by the results in [13], the present 
nonlocal formulation will apply spatial averaging to state variables relating to material damage 
while others maintain their local definitions. By analyzing Equations (1) - (8) and replacing the 

-FG 
crack density parameter 16Cd/9 with 1 - e  , a mixed system of algebraic and ordinary 
differential equations can be constructed for the evolution of tensile damage as follows: 

16 

D = - 1-e  1 -2G 

F = K(1-D) 
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P = 3 ~ E V - 3 K ~ , , D  (19) 

where sii and eii are the deviatoric stress and strain tensor, respectively and the dot superscript 
denotes differentiation with respect to time. Together with Equation (8), Equations (15)-(20) can 
be used to calculate the evolution of tensile damage in the material. For a given imposed state of 
deformation in a time or loading step, the crack density increment is calculated from Equation 
(15) and Cd is updated to the end of the time step. The damage increment is obtained by 
differentiating Equation (16) and its value can be updated. It follows fiom Equations (8), (17) 
and (18) that the time rate and the degraded Poisson’s ratio, bulk and shear modulus can be 
evaluated. Then, through Equations (19) and (20), the stress state is obtained. The state variables 
which affect the damage evolution are the crack density parameter c d  and the damage variable 
D. Thus, spatial averaging based on Equations (12)-(14) is applied to c d  and D only while all 
other field variables retain their local defmittions. In compression, local plasticity theory of the 
Prager-Drucker type governs the constitutive behavior of the material. 

Without going into more details, this nonlocal damage model have been vectorized and 
implemented into the explicit bite element code PRONTO 2D [14] for efficient computations. 

5.0 NUMERICAL CALCULATIONS 

General nonlocal effects are examined based on the comparisons of results between local 
and nonlocal calculations. The example problem selected is the same one used in [6] which 
involves the sudden stretching of a plate with a centrally located hole. Consider the 0.2 m by 
0.4m rectangular plate with a 0.1 m diameter hole in the center in Fig. 7. A step tensile pulse is 

T 0.2 m 

I 
Figure 7. Schematic drawing of the example problem. 
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applied symmetrically to the left i d  right edge of the plate. The plate consists of the same Oil 
Shale material as the one given in the section on the characteristics of the damage model. For 
numerical calculations, the pulse is given a strength of 10.0 MPa. Both the nonlocal and local 
damage models as implemented in the finite element code PRONTO 2D are used to obtain the 
dynamic response of the plate. The plane strain condition is assumed to prevail. Because of 
symmetry, only one quarter of the geometry in Fig. 7 needs to be included in the finite element 
mesh. Four meshes with varying degree of fineness are chosen to investigate mesh size effects. 
Fig. 8 shows the most coarse mesh with 75 elements and 96 nodes. A 90-degree rotation of the 
schematic drawing in Fig. 7 has been made. The boundary of the hole is divided into 10 
elements. The second mesh is constructed by simply doubling the numbers of divisions in both 
the x and y directions in Fig. 8. Thus, the mesh consists of 300 elements and 341 nodes. In a 
similar expansion, the third mesh is constructed with 1,200 elements and 1,281 nodes. To avoid 
an excessive number of elements, the fourth mesh only doubles the number of divisions in the 
third mesh in the lower right part of the plate and consists of 2,800 elements and 2,921 nodes. 
This is justified because with the applied tensile pulse, the high stress gradients are anticipated 
to concentrate around the lower right part of the plate and it is not necessary to place fine mesh 
in other parts of the plate. The finest mesh with 2,800 elements is shown in Fig. 9. 

Calculations were carried out on the Cray YMP computer at Sandia National 
Laboratories. The results of the local continuum model are presented frrst. The evolution of 
damage focused on the lower 0.09-by-0.09 meter area of the plate is depicted at four time 
intervals at 0.175,0.2,0.215 and 0.225 miliseconds after the tensile pulse has been applied. The 
results are given in Figs. 10 - 13, respectively, corresponding to the four meshes. It is clear that 
damage localizes near the lower right edge of the hole and with more refined mesh, damage 
localizes into a narrower band. The fact that damage occurs at a direction deviating from the 
bottom edge of the hole is due to the effect of wave propagation and the strain rate dependence 
of the damage model. A more detailed explanation is given in [6] and will not be repeated here. 

The localization of deformation can also be observed by plotting the distribution of bulk 
strain around the boundary of the hole. These are shown in Figs. 14 -17 for the four meshes at 
four time intervals. Because the actions are concentrated at the lower right part of the plate, only 
the lower 45-degree arc of the hole boundary has been included. The bulk strains are the values 
at integration points of the frrst layer of elements closest to the hole boundary. The distance is 
measured counterclockwise from the bottom edge of the hole. Bulk strain localization is clearly 
observed. Also, the results do not converge with mesh refinement in that the peak strain 
localizes into a narrower band and attain larger values with mesh refinement. 

An additional parameter, namely the characteristic length, is required for the nonlocal 
calculations. For the present model, the localization limiter is taken to be the radius of the 
minimum crack that will be activated during the loading process. From the local calculation, the 
nominal strain rate attained under the applied tensile pulse is approximately 1000 /s. Thus, from 
Equation (7), the minimum crack radius can be calculated and the value is 0.005 m. This value 
is used for the characteristic length I in Equation (14). This value compares to the minimum 
dimensions of 0.0196, 0.0098, 0.00196, and 0.00098 m, respectively, for the four meshes 
selected in the calculations. 
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Figure 8. Finite element mesh with 75 elements. 
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Figure 9. Finest mesh with 2,800 elements. 
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The corresponding nonlocal. results to those in' Figs. 10 -13 are shown in Figs. 18-21. 
Because the characteristic length is less than the minimum dimension of mesh 1, the nonlocal 
averaging will not take effect, and the results in Fig. 18 are identical to those in Fig. 10. When 
the meshes become progressively finer, the smearing effect of the nonlocal results becomes 
more pronounced. It is observed that the narrow band of localized damage in Fig. 13 is replaced 
by lower damage values spread over a wider area near the same location, Fig. 21. 

Convergence of the numerical results with mesh refinement is observed from the 
distribution of bulk strain along the hole boundary. Again, Figs. 22-25 correspond to those in 
Figs. 14-17. Figs. 24 and 25 show the convergence of bulk strain with mesh refinement. 
However, the magnitude of the bulk strain is much less than that for the corresponding local 
calculation. At 0.215 ms, better convergence is achieved in Fig. 24 than the one in Fig. 25 at 
0.225 ms. This is attributed to the oscillatory nature of the solution due to pulse loads and the 
relatively unsophisticated nonlocal formulation adopted here. 

6.0 SUMMARY AND DISCUSSIONS 

The effect of nonlocal continuum formulation on the dynamic damage accumulation 
process in a brittle solid has been investigated. This study is based on a microcrack based 
continuum damage model. A nonlocal formulation has been added and the resulting model has 
been implemented into the transient dynamic f ~ t e  element code PRONTO 2D for numerical 
computations. Characteristics of the damage model are presented. The mesh size effect has been 
studied through a selected example problem. 

The nonlocal formulation introduces an additional internal length parameter which must 
be determined. For the current damage model, this parameter was taken to be the minimum 
crack dimension which will be activated under the applied pulse load. For other constitutive 
models, the determination of this length scale may be difficult. Results from the numerical 
simulations indicate that the nonlocal formulation can yield mesh size independent solutions. 
However, nonlocality tends to smear out and decrease the magnitude of localized deformation 
patterns. In many physical situations, such as shear banding, localized and concentrated 
deformations are physical realities. These characteristics can potentially be lost in nonlocal 
solutions. 

An additional numerical consideration is the selection of mesh size. Based on the present 
formulation, it is obvious that if the minimum dimension of the finite elements is larger than the 
characteristic internal length scale, then both local and nonlocal calculation will yield the same 
result. This is because the nonlocal spatial averaging is extended only to the reach of the internal 
length scale. Therefore, if the internal length scale can be calculated, then by selecting this 
length scale to coincide with the least dimension of the finite element mesh, one can use a local 
formulation to obtain solutions which exhibit a localized zone of correct size and the correct 
amount of energy dissipation. This may be the reason why many complex local continuum 
based calculations, such as penetration mechanics analyses [23], do yield reasonable solutions 
relative to test data. 
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Figure 10. Damage evolution for mesh 1. 

Figure 11. Damage evolution for mesh 2. 
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Figure 12. Damage evolution for mesh 3. 
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Figure 13. Damage evolution for mesh 4. 
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Figure 14. Bulk strain distribution at 0.175 ms. 
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Figure 15. Bulk strain distribution at 0.2 ms. 
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Figure 16. Bulk strain distribution at 0.215 ms. 
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Figure 17. Bulk strain distribution at 0.225 ms. 
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Figure 18. Nonlocal damage evolution for mesh 1. 

Figure 19. Nonlocal damage evolution for mesh 2. 
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Bulk Strain Distribution Along Hole Boundary at 0.175 ms 

Figure 22. Nonlocal bulk strain distribution at 0.175 ms. 

Figure 23. Nonlocal bulk strain distribution at 0.2 ms. 
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Figure 24. Nonlocal bulk strain distribution at 0.215 ms. 
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