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SUMMARY

Kernel models for classification and regression have emerged as widely applied

tools in statistics and machine learning. We discuss a Bayesian framework and

theory for kernel methods, providing a new rationalisationof kernel regression

based on nonparametric Bayesian models. Functional analytic results ensure that

such a nonparametric prior specification induces a class of functions that span the

reproducing kernel Hilbert space corresponding to the selected kernel. Bayesian

analysis of the model allows for direct and formal inferenceon the uncertain re-

gression or classification functions. Augmenting the modelwith Bayesian vari-

able selection priors over kernel bandwidth parameters extends the framework

to automatically address the key practical questions of kernel feature selection.

Novel, customised MCMC methods are detailed and used in example analyses.

The practical benefits and modelling flexibility of the Bayesian kernel framework

are illustrated in both simulated and real data examples that address prediction

and classification inference with high-dimensional data.

Some Key Words:Dirichlet process priors; Kernel parameter estimation; Kernel prin-

cipal component regression; Reproducing kernel Hilbert space; Semi-supervised learning;

Nonparametric Bayesian analysis.
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1 INTRODUCTION

Kernel models for regression have a long history in statistics and applied mathe-

matics (Schoenberg, 1942; Parzen, 1963; de Boor and Lynch, 1966; Michelli and

Wahba, 1981; Wahba, 1990) and have been used extensively in machine learn-

ing for classification and regression problems (Poggio and Girosi, 1990; Vapnik,

1998; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004). The ap-

peal of these models includes their flexibility and resulting capacity for predic-

tive accuracy if well-calibrated, and simple extension of the underlying ideas to

higher-dimensional data analysis. Some widely used statistical models or ma-

chine learning algorithms are examples of kernel models, including spline models

(Wahba, 1990), regularized logistic regression (O’Sullivan et al., 1986), and sup-

port vector machines (SVMs) (Cortes and Vapnik, 1995).

The univariate response regression problem is summarized by the model

y = f(x) + error,

wherey is the measured response,f is an unknown function andx ∈ X ⊆ R
p

is the value of thep-dimensional covariate vector corresponding to outcomey.

Given data from this model, our objective is to estimate the underlying function

f for prediction of future responses. For kernel models the estimate is selected

from functions contained in the reproducing kernel Hilbertspace (RKHS)Hk

induced by the kernelk. Regularization methods (Tikhonov and Arsenin, 1977)

are frequently used to justify the estimate

f̂ = arg min
f∈Hk

L(f, data) + λ‖f‖2

Hk
(1)

where the first termL is a loss function induced from the log-likelihood derived

from the assumed form of the error density, the second term isa smoothness

penalty on the RKHS norm of the function, andλ is a tuning parameter that

balances the trade-off between minimizing the fitting errors and the smoothness.

Although the optimization in (1) may be over an infinite dimensional space the

optimal solution has the following finite dimensional representation due to the

representer theorem (Kimeldorf and Wahba, 1971)

f̂(x) =

n
∑

i=1

wi k(x, xi), (2)
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wherek(·, ·) is the kernel function corresponding to the RKHS. This reduces an

infinite dimensional optimization problem to one inn variables, which is very

attractive for high-dimensional analysis since the optimization is overn ≪ p

variables and independent of the dimensionp.

Access to fully Bayesian formulations of kernel methods would provide a nat-

ural framework to further the richness and interpretability of kernel models – a

program driving much research in data mining and machine learning. A Bayesian

approach would allow for the immediate relaxation of two limitations inherent in

classical RKHS models: constraining the smoothness penalty to monotonic func-

tions of the RKHS norm, and requiring additional methods such as bootstrapping

or cross-validation to provide confidence intervals and sethyper-parameters. The

restriction of the penalty to be monotonic function of the RKHS norm precludes

methods based onℓ1 penalties such as LASSO (Tibshirani, 1996) since the finite

representation of (2) does not hold. Using priors to provideregularization affords

greater flexibility.

Bayesian kernel methods have been developed in the context of Gaussian Pro-

cess (GP) models (Neal, 1997; Bishop and Tipping, 2003; Bishop, 2006; Ras-

mussen and Williams, 2006) and Bayesian formulations of SVMs have been pro-

posed (Tipping, 2001; Sollich, 2002; Chakraborty et al., 2005). In all these models

Bayesian inference is applied directly to the finite representation from equation

(2). We propose a more general model that does not start with this finite repre-

sentation and can result in models with knots at arbitrary points. We develop in

detail a particular prior specification under this framework that results in computa-

tionally efficient inference that is similar to GP models (Neal, 1997; Chakraborty

et al., 2005).

The conceptual novelty and theoretical motivation of this work is to provide

priors that do not change with respect to observed covariates and are on the en-

tire RKHS to obtain posterior samples from the RKHS. The practical innovations

are efficient procedures to obtain posterior samples from the RKHS. The direct

adoption of the finite representation does not provide us with a theoretical frame-

work to satisfy these modelling criteria. For point estimates the direct adoption of

equation (2) in a Bayesian analysis is based on the fact that the finite representa-

tion is a MAP estimator (Wahba, 1990; Poggio and Girosi, 1990). This argument
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does not extend to drawing posterior samples from the RKHS. In addition this

justification does not hold for priors that are not a functionof the RKHS norm.

The Gaussian process approach does not satisfy our modelling criteria either. The

duality between RKHS and Gaussian processes suggests placing priors directly

on a space of functions by sampling from the paths of the Gaussian process with

covariance structure defined byk. The mean of this process is in the RKHS but

random functions drawn from the GP are almost surely outsidethe RKHS induced

by k (Kallianpur, 1970; Wahba, 1990). For this reason the GP perspective is natu-

ral for point estimates such as the posterior mean but is problematic for posterior

samples from the RKHS. There does exist a larger RKHSHR induced by a kernel

R that contains these functions (Lukić and Beder, 2001; Pillai et al., 2007) and

posterior samples from the GP with covariance structure defined byk would be

from the RKHSHR.

We also formulate a procedure for simultaneous dimension reduction in the

original input space and in the kernel feature space. Inference of which covariates

are most relevant in modelling the response variable for kernel models have been

developed in the machine learning literature (Chapelle et al., 2002; Jebara and

Jaakkola, 2000; Krishnapuram et al., 2004; Tipping, 2001).Most Bayesian meth-

ods for joint inference of variable relevance and the kernelmodel parameters have

been based on variational methods or MAP estimates (Jebara and Jaakkola, 2000;

Krishnapuram et al., 2004; Tipping, 2001). We provide an efficient procedure to

sample from the posterior distribution of parameters that model the relevance of

the covariates. This allows us to obtain estimates of the uncertainty in the rele-

vance of variables.

In summary our approach results in a novel, fully Bayesian framework and

theory for kernel regression and classification. Unlike previous approaches we

specify priors on the entire RKHS. Our prior specification induces a class of func-

tions that span the RKHS, providing an equivalence between the nonparametric

Bayesian model and kernel models used in the penalized loss framework. This im-

plies a Bayesian representer form that results in the finite representation in equa-

tion (2) derived from a Bayesian formulation, and that is coherent across samples

and sample sizes. This formal model then easily and coherently addresses prob-

lems of inference on hyper-parameters, variable selection, and ancillary issues
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such as unlabeled data (in semi-supervised learning).

The paper is arranged as follows. Section 2 describes the nonparametric

Bayesian approach that allows us to place a coherent prior onthe RKHS and

recover the parametrisation of the representer theorem as an approximation of the

posterior mean. Section 3 provides one approach to completeprior specification

over model hyper-parameters and a corresponding MCMC approach to posterior

evaluation and inference for both regression and classification settings. Section

4 extends the definition of kernels to allow for variable selection. Examples and

discussion are given in Section 5, with summary comments in Section 6.

2 A CLASS OF NON-PARAMETRIC BAYESIAN KERNEL MODELS AND A

BAYESIAN REPRESENTERFORM

The kernel models are based on integral operators placing priors on signed mea-

sures rather than directly on the regression function space. We first show why we

do not elicit priors directly on the function space.

2.1 Direct Prior Elicitation

Besides Gaussian processes, another natural way to directly elicit priors on a

RKHS is based on orthogonal expansions of the RKHS.

Kernel functionsk : X×X → R that are continuous and positive semi-definite

on a compact spaceX are Mercer kernels for which the RKHS is characterized

(Mercer, 1909; König, 1986) as

Hk =

{

f | f(x) =

∞
∑

j=1

ajφj(x) such that
∞
∑

j=1

a2

j/λj < ∞
}

,

where{λj} and{φj(x)} are the eigenvalues and eigenfunctions of the integral

operator defined by the kernel function

λjφj(x) =

∫

X

k(x, u) φj(u) dµ(u),

whereµ is a measure. The eigenvalues and RKHS do not depend on the mea-

sure (König, 1986) so a prior over the spaceA = {(aj)
∞
j=1|

∑

∞

j=1
a2

j/λj < ∞}
implies a prior onHk. There are serious computational and conceptual problems
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with specifying a prior on the parameterA; it is in general infinite-dimensional,

and it is subject to challenging constraints. The crux of theproblem is that in

this orthonormal expansion model we are working explicitlywith eigenfunctions

and eigenvalues, and they are inherently challenging to manipulate; many popular

kernels do not even lead to eigenfunctions with closed forms, and others are not

even computable.

2.2 Priors and Integral Operators

Alternatively, consider the space of functions defined as a convolution of the ker-

nel with a signed (Borel) measure

G =

{

f | f(x) =

∫

k(x, u) dγ(u), γ ∈ Γ

}

, (3)

with Γ(·) as a subset of the space of signed Borel measures. Placing a prior on

Γ implies a prior onG. The first nonparametric Bayesian kernel developments to

exploit this idea were introduced in the unpublished PhD thesis of Liao (2005)

using Dirichlet process priors overΓ, and this idea is fully developed here. More

recently, it has become clear that this is an example of a moregeneral framework

that may utilise any prior overΓ, and equivalences betweenG andHk exist for

appropriate choices of priors onΓ (Pillai et al., 2007) including our Dirichlet

process priors.

A variation of the integral operator defined in (3) takes the form

f(x) =

∫

k(x, u) dγ(u) =

∫

k(x, u) w(u) dF (u), (4)

where the random signed measureγ(u) is decomposed into a probability distribu-

tion F (u) and coefficient functionw(u); F (u) andγ(u) share the same support.

In generalF denotes the distribution of the location of kernel knotsu. Here we set

F = FX , the marginal distribution ofX. This is a reasonable assumption as long

asFX andγ share the same support. An appealing property of this dependence

of f onFX is that our estimate off(x) will be locally adaptive in that more knots

are allocated in high density regions.
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2.3 Dirichlet Process Priors

The Dirichlet process (DP) prior is a natural choice to modeluncertainty about

the distribution functionF . For a specified distributionF0 having the same sup-

port as the uncertain distributionF, and a positive scale parameterα, the no-

tation DP(α, F0) implies that for any measurable partition of the sample space

(B1, B2, . . . , Bk), the random vector(F (B1), . . . , F (Bk)) follows a Dirichlet dis-

tribution with parameterα(F0(B1), . . . , F0(Bk)) (Ferguson, 1973, 1974; Sethu-

raman, 1994). DP priors are very popular in practical nonparametric Bayesian

analysis (West, 1992; West et al., 1994; Escobar and West, 1995; Müller et al.,

2004; MacEachern and Müller, 1998) due to modelling flexibility and computa-

tional advantages.

A fundamental characteristic of the DP model is that, given asampleXn =

(x1, ..., xn) drawn independently from (uncertain) distributionF , the posterior is

the DP

F | Xn ∼ DP(α + n, Fn), Fn = (αF0 +

n
∑

i=1

δxi
)/(α + n). (5)

Consider, then, such a prior forF in equation (4), and choose some fixed new

pointx∗ to predict the function valuef(x∗). Based on the sample ofn drawsXn

from F we see that

E[f | Xn] = an

∫

k(x, u) w(u) dF0(u) + n−1(1 − an)

n
∑

i=1

w(xi) k(x, xi) (6)

wherean = α/(α + n). Taking the formal limit ofα → 0 to represent a non-

informative prior leads to the finite-dimensionalBayesian Representerform

f̂n(x) =

n
∑

i=1

wi k(x, xi), (7)

wherewi = w(xi)/n depends on the “knot”xi and sample sizen. The two fi-

nite representations, equations (2) and (7), take the same form although they are

derived from two fundamentally different approaches: the solution of a Tikhonov

regularization functional versus formal process-prior Bayesian modelling.

A result of this prior specification is that we obtain a representation that is used

in both the GP approach to kernel methods as well as the directadoption of the the
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finite representation. However our method is coherent and places a prior on the

entire RKHS. Using another process such as a Lévy process ornot take the lim-

iting case of a non-informative prior we would obtain knots in the expansion not

located at sample points. In addition, the marginalizationin (6) ensures that each

sample is included in the expansion so the order that observations are obtained

does not matter. These choices are fundamentally for computation efficiency.

3 ESTIMATION AND INFERENCE

3.1 Likelihood and Prior Specification for Hyper-Parameters

The Bayesian representer form leads to the usual linear regression on the kernel

values as covariates with regression parameterswi. Adding an intercept and a

normal error model assumption we have the standard form

yi = w0 + f(xi) + εi = w0 +

n
∑

j=1

wj k(xi, xj) + εi, (i = 1, ..., n), (8)

whereεi ∼ N(0, σ2). In vector form, the model is

Y ∼ N(w0ι + Kw, σ2I) (9)

whereι = (1, . . . , 1)′, K is then × n design matrix having entriesk(xi, xj),

Y = (y1, . . . , yn)
′ and the regression parameter vector isw = (w1, . . . , wn)

′.

Sincew0 andw are often treated differently, we orthogonalized the two sets of

parameters by centering the kernel matrix. That is,k(·, ·) is replaced by a centred

kernelk̃(·, ·) with

k̃(xi, xj) = k(xi, xj) − k̄i· − k̄·j + k̄,

wherek̄ =
∑n

i,j=1
k(xi, xj)/n

2, k̄i· =
∑n

j=1
k(xi, xj)/n andk̄·j =

∑n

i=1
k(xi, xj)/n.

Traditional priors can be taken for(w0, σ
2). To minimize the number of hyper-

parameters, we use the standard reference prior componentπ(w0, σ
2) ∝ 1/σ2.

Though it is improper, the corresponding posterior is stillproper as long as the

sample sizen ≥ 2 (Berger et al., 1998; Liang and Barron, 2004).

Specifying priors over thewi can be done by defining sample size independent

priors for valuesw(xi) at arbitrary knots. As an alternative, we induce appropriate
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sample size dependence and address key questions of inducing regression shrink-

age appropriately coupled to the structure of the kernel design space by using

ridge regression or g-prior modelling (Zellner, 1986). West (2003) defined and

exemplified the use of a flexible and practically very effective class of generalised

g-priors that allow for different degrees of shrinkage estimation of regression pa-

rameters in different principal component directions on the induced design space

for any regression model, and we adopt that strategy here. This is particularly

relevant when dealing with many covariates, as it provides an ability to “shrink

away” the effects of many irrelevant component dimensions while highlighting

those of predictive value. This class of priors explicitly models the distribution

p(w|K), so that the sample size dependence is directly induced and the class of

priors adapts as the sample size changes.

Specifically, a generalised g-prior is induced by independent normal priors on

the regression parameters of the equivalent principal component regression trans-

formation of the model. The kernel matrixK is symmetric and positive semi-

definite, so has spectral decompositionK = F∆F ′ whereF is then × n orthog-

onal factor matrix, and∆ = diag(λ2
1, . . . , λ

2
n). In the orthogonal representation

the regression maps fromKw to Fβ with w = F∆−1β. Assume conditionally

independent normal priors for the elements ofβ, so thatβ ∼ N(0, T ) for some

T = diag(τ1, . . . , τn). The induced generalised g-prior forw is then

(w | K, T ) ∼ N
(

0, F∆−1T∆−1F ′
)

. (10)

Following West (2003), we further specify hyper-priors over then prior variances

τi – that play roles as shrinkage parameters – as independent inverse gammas,

τi ∼ InvGa(aτ/2, bτ/2), (i = 1, . . . , n),

inducing heavier-tailed t-priors on thewi when we marginalise over theτi.

Viewed as hyper-parameters to be estimated, theτj ’s are the prior variances

for each factor regression parameter and allow for a varyingdegree of shrinkage

in each of the orthogonal factor dimensions, as discussed. It may be tempting to

set hyper-parameter valuesaτ = bτ = 0 to obtain a non-informative prior onτi,

namely,π(τi) ∝ 1/τi, which unfortunately correspond to an improper posterior

distribution (Hill, 1965). In Section 5, we chooseaτ = bτ = 2 which corre-

spond to Cauchy distributions on theβj, a very natural, highly diffuse though
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proper prior specification. In practice, for dimension reduction and also for com-

putational stability, we may choose to truncate the spectral decomposition by re-

jecting factors with very small eigenvaluesλi; that is, in such a case we may

choose to replaceF by its first m columns,∆ by its first m diagonals, and set

T = diag(τ1, . . . , τm), wherem < n and the eigenvaluesλm+1, . . . , λn are less

than some pre-specified threshold.

3.2 Model Fitting and Prediction via MCMC

Given the likelihood and the prior distributions a standardGibbs sampler can be

used to simulate the posteriorp(w0, w, σ2 | data). After initialization, samples of

parameters and hyper-parameters are drawn sequentially from the complete con-

ditional posterior distributions. At each iteration, withall relevant conditioning

parameters fixed at their most recent values in the iterates,we update as follows:

1. Updatew0: w0 is drawn from the normal posterior with meann−1ι′(Y −Fβ)

and varianceσ2/n.

2. Updatew: Simply viaβ, generateβ ∼ N(b, V ) whereV = diag(V1, . . . , Vm)

with Vi = σ2τi/(τi +σ2), andb = V F ′(Y −w0)/σ
2; then setw = F∆−1β.

3. UpdateT : For j = 1, .., m, τ−1

j ∼ Ga((aτ + 1)/2, (bτ + β2
j )/2).

4. Updateσ2: σ−2 ∼ Ga(n/2, s/2) with s = e′e wheree = Y − w0 − Fβ.

For prediction at a specified new pointx∗, any aspect of the predictive distribu-

tion for y∗ can be included for sampling in the MCMC. Given sampled parameter

values at each iterate, we can simply evaluate the mean and variance of the condi-

tional normal distributionp(y∗|x∗, w0, w, σ2) to generate MCMC samples of pos-

terior predictive quantities of interest. This way we compute MC approximations

to predictive meansE(y∗|x∗, data), for example, and can do this across a range of

x∗ values to map out the predicted non-linear regression function for predictive

uses.
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3.3 Binary Regression for Classification

The approach developed above for regression models can of course be easily ex-

tended to a classification setting using probit regression,or other binary regres-

sions. The standard latent variable imputation extensionsof MCMC lead directly

to posterior samplers for probit and other binary link functions that are repre-

sentable as mixtures of normals (Albert and Chib, 1993; Johnson and Albert,

1999). Metropolis-Hastings variants for logistic regression are also trivial modi-

fications. These are practically very relevant extensions for kernel classification

problems.

By way of notation and basic structure in the probit model, the responsesyi

in the kernel model (9) are now latent and the normal errors are standard, i.e.,

σ2 = 1. We observe binary responsesZ = (z1, z2, ..., zn)′ generated byzi = 1(0)

if yi ≥ 0(< 0). The MCMC extensions simply include the latentY values at

each iterate of the simulation. The traditional Gibbs sampler iterates between

sampling conditional posteriors forY given the regression parameters, and vice-

versa. Though often effective, this vanilla Gibbs sampler can suffer from very

slow mixing due to high correlations between successive draws of latent variables

(Liu, 2001; Nobile, 1998); the problem is of course shared byall binary regression

models. Proposed solutions in these last two references will not, however, apply

in our model (since the kernel matrix, the analog of the design matrix in their

case, changes in each iteration of the chain after we introduce a variable selection

component in the following section) so we have developed a novel and effective

solution. Rather than the Gibbs sampler we use a Metropolis-Hastings method

that samples the kernel model parameters jointly with the latent variableY . This

is summarised in the following section, in an extended modelthat incorporates

additional kernel parameters to address variable and feature selection.

4 VARIABLE AND FEATURE SELECTION

4.1 Kernel Model Extension

Variable selection and feature selection are important problems in high-dimensional

regression. The standard formulation of variable selection is to select a relatively
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small subset of thep covariates without loss of predictive accuracy. In the problem

of feature selection a small subset of combinations of thep covariates are selected.

Principle components regression with a few principle components is an example

of a feature selection method.

Standard practise in kernel regression allows each coordinate ofx to be scaled

(Jebara and Jaakkola, 2000; Chapelle et al., 2002; Krishnapuram et al., 2004)

kν(x, u) = k(
√

ν ⊗ x,
√

ν ⊗ u)

wherea ⊗ b is the element-wise product of two vectors andν = (ν1, ..., νp) is a

p-dimensional vector withνk ∈ [0,∞] as an individual scale parameter for the

k-th dimension. This approach can be applied to most kernels and for the linear,

polynomial, and Gaussian kernels the resulting adaptive kernels are

kν(x, u) =

p
∑

k=1

νk xk uk,

kν(x, u) =

(

1 +

p
∑

k=1

νk xk uk

)d

,

kν(x, u) = exp

(

−
p
∑

k=1

νk(xk − uk)
2

)

.

We will focus on the Gaussian kernel for whichνk can be regarded as the recip-

rocal of the bandwidth for thek-th variable which determines the neighbourhood

size for that dimension. Whenνk = 0, the neighbourhood size is infinity and

the corresponding variable is irrelevant in predicting theresponse variable. Vari-

able/bandwidth selection is then a problem of estimation orselection of the pa-

rameterν, now explicitly in the context of allowing for zero values. This invites

analysis using standard Bayesian variable selection/model uncertainty strategies

based on “point mass, mixture prior” over these parameters.

For eachνk independently, we adopt the prior

νk ∼ (1 − γ)δ0 + γ Ga(aν , aνs), (k = 1, . . . , p),

s ∼ Exp(as), γ ∼ Be(aγ, bγ),

where(aν , as, aγ, bγ) are specified hyperparameters, Be(·, ·) represents the beta

distribution and Exp(·) the exponential.
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4.2 Overall MCMC

The MCMC analysis can now be extended to include theν parameters. These pa-

rameters are treated with appropriate Metropolis-Hastings steps since their com-

plete conditionals are not of standard forms. Our overall MCMC sampler uses a

Metropolis-Hastings step to jointly sample the kernel bandwidth and regression

parameters; in the case of binary outcomes when theyi are latent, this sampling

step is extended to jointly sample these parameters andY together. As mentioned

in the previous section, this novel MCMC – that has been tested successfully in

a number of examples – is designed to mix faster than the traditional Gibbs sam-

pler in binary models, and now also provides an overall approach for the kernel

variable selection extension in both linear and binary outcomes cases.

The full hybrid sampler for the posterior of(w0, ν, β, Y, s, γ, T ) in the case

of binary probit regression is detailed here. The changes tothis to generate the

corresponding MCMC for the linear model simply adds in the sampling of the

residual varianceσ2 at each step and removes the imputation of theyi that are, in

the linear case, known; these details are left to the reader.

The sequence of steps per iteration in the full binary kernelmodel with feature

selection are as follows:

1. Updatew0 as in section 3.2.

2. Update(ν, β, Y ) jointly, in the following two steps.

2.1. Update(ν, β):

2.1.1. Proposeν∗: Let pg, pl, pu denote the probabilities for aglobal

move, local move, or update moverespectively.

• For theglobal move, drawν∗ from the prior.

• For the local move, set ν∗ = ν then randomly pick a di-

mensionk. If νk 6= 0, set ν∗
k = 0; otherwise drawν∗

k ∼
Ga(aν , aνs), the continuous part of the prior.

• For theupdate move, setν∗ = ν and then, for all dimensions

k whereνk 6= 0, drawν∗
k ∼ Ga(aν , aνs).

Our proposals usepg = .25, pl = .5, pu = .25.
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2.1.2. Proposeβ∗: Compute the proposed kernel matrixK∗ with entries

k̃ν∗(xi, xj) and its spectral factorsF ∗ and∆∗. SetŶ = w0 + F ∗β

and simulateY ∗ via, for eachi = 1, . . . , n,

y∗

i ∼
{

N(ŷi, 1)+, if zi = 1,

N(ŷi, 1)−, if zi = 0.

Then, proposeβ∗ ∼ N(b∗, V ) whereV = diag(V1, . . . , Vm) with

Vi = τi/(1 + τi), andb∗ = V F ∗′(Y ∗ − w0).

2.1.2. Acceptance ratio to compare and test(ν∗, β∗) against the current

values(ν, β): The Metropolis-Hastings acceptance ratio is

r =
p(Z | ν∗, β∗, w0) π(ν∗, β∗ | s, γ)q(ν, β | T, w0, s, γ)

p(Z | ν, β, w0) π(ν, β | s, γ)q(ν∗, β∗ | T, w0, s, γ)

where the termsp(Z| · · · ) are likelihood evaluations from the bi-

nary regression andπ(·), q(·) denote the prior distribution func-

tion and proposal distribution function, respectively. With proba-

bility min{r, 1} accept the proposed values and hence setν = ν∗

andβ = β∗; otherwise, retain the current values.

Denote the accepted or retained values by{ν, β, K, F, ∆}, and setw =

F∆−1β.

2.2. UpdateY : Ŷ = w0 + Fνβ and resampleY via, for eachi = 1, . . . , n,

yi ∼
{

N+(ŷi, 1), if zi = 1,

N−(ŷi, 1), if zi = 0.

whereN+ andN− denote the positive and negative parts of a truncated

normal.

3. Update hyper-parameters:(s, γ, T )

3.1. Updates: s ∼ Ga(aν + 1, as + aν

∑

νk).

3.2 Updateγ: γ ∼ Be(aγ + p1, bγ + p − p1) wherep1 is the number of

nonzero elements inν.

3.3 UpdateT as in section 3.2.
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This MCMC combines variable and feature selection. It is a variable selection

method since only those variables with nonzeroνk will be selected. It is also

a feature selection method since we are weighting each variable that is selected

by νk. The parameterm ≤ n was introduced in Section 3.1 to allow for the

opportunity to truncate the expansion of the kernel matrix for numerical stability.

Reducingm as dimension reduction is often criticised since principalcomponents

of the kernel matrix that dominate variation in the kernel design space may not

necessarily correspond to the factors most relevant in prediction of the response

variable. In the current setting that now includes variableand feature selection

over elements ofν, this problem is obviated: the weight for each dimension is

adjusted in MCMC steps such that the topm kernel principle components are

indeed the ones most relevant to the response variable. Nevertheless, with larger

samples it is still generally desirable to consider restricting tom < n for numerical

and computational reasons.

5 EXAMPLES

5.1 Synthetic Data Sets

A simulated example considers binary classification with variable selection, using

two synthetic data sets to illustrate different aspects of the model. For the MCMC

in this subsection, we used 5000 iterations including an initial 2500 iterations for

burn-in.

The first data set is inR30 but only the first two dimensions influence the

classification. Thex data for two classes are sampled from Gaussian mixture

models with

(x|y = 0) ∼ 0.5N(µ01, Σ) + 0.5N(µ02, Σ)

(x|y = 1) ∼ 0.5N(µ11, Σ) + 0.5N(µ12, Σ)

whereΣ = diag(.38, .38, 1, ...., 1) andµ01 = (1, 1, 0, ..., 0), µ02 = (−1,−1, 0, ..., 0),

µ11 = (−1, 1, 0, ..., 0) andµ12 = (1,−1, 0, ..., 0). We drew30 samples from each

class as training data, and a further100 samples from each class as test data. The

data on the first twox dimensions are plotted in Figure 1.
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To provide an initial, baseline comparison, we fitted a binary model, with a

Gaussian kernel on the first two dimensions andν = (1.5, 1.5), to the test data

alone; no feature selection was used here. The value ofν was chosen to be the one

that produces the smallest test error. In terms of posteriormeans of the resulting

classification probabilities, the resulting test error was.5% (only one sample being

misclassified). The predictive probability of(y∗ = 1 | x∗) with respect to the first

two dimensions ofx∗ is displayed in Figure??(a).

We compared the kernel model analysis with and without variable selection to

this baseline kernel model. For the kernel model without variable selection, we

set the bandwidth parameter to be constant in all dimensions, ν = (ν, ..., ν). For

a variety of choices ofν the test error never fell below33.5% and the training

error was0. This poor performance is illustrated in the prediction plot in Figure

??(b), where we plot(y∗ = 1 | x∗) again with respect to the first two dimensions

of x∗. We then applied the kernel model with variable selection tothis data with

hyper-parameters

aτ = bτ = 2, aγ = bγ = 5, aρ = 1, as = 1, m = 5. (11)

The test error of.5% was comparable to the “optimal” model results as in Figure

??(a); the prediction plot in Figure??(c) shows the efficacy of the variable selec-

tion component of the analysis in honing in on the truly predictive variables and

adapting the non-linear predictive model appropriately.

The second synthetic data set is analysed to explore variable selection further

as well as to provides a sense of scale for each of thex variables. The data set is

in R
20 but only the fist two dimensions are relevant. The two classesare sampled

from Gaussian mixture models with

(x|y = 0) ∼ 1

3
N(µ01, Σ) +

1

3
N(µ02, Σ) +

1

3
N(µ03, Σ)

(x|y = 1) ∼ 1

3
N(µ11, Σ) +

1

3
N(µ12, Σ) +

1

3
N(µ13, Σ)

whereΣ = diag(.38, .38, 1, ...., 1) andµ01 = (−1,−1, 0, ..., 0), µ02 = (0, 1, 0, ..., 0),

µ03 = (1,−1, 0, ..., 0), µ11 = (−1, 1, 0, ..., 0) andµ12 = (0,−1, 0, ..., 0), µ13 =

(1, 1, 0, ..., 0). The training data consist of45 points from each class. The first

two dimensions are plotted in Figure??(a). This plot as well as the generative

distributions suggest that the first two dimensions should scale differently and
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this should be reflected in posterior draws of the corresponding bandwidth pa-

rametersν1, ν2. Specifically, we should expectν1/ν2 ≈ 2/3. We applied the

kernel model with variable selection to this data with the same hyper-parameter

values. Figure??(b) displays the predictive probability as a function of thefirst

two relevant variables. Figure??(c) displays the 90% credible interval forνk for

k = 1 : 20. Examining the posterior distribution of the elements ofν we found

thatP (ν1 6= 0 | data) = P (ν2 6= 0 | data) = 1 andP (νk = 0 | data) ≥ 86% for

the irrelevant dimensionsk = 3, .., 20 whereP stands for the empirical posterior

probability estimated from the MCMC outputs. Meanwhile, the posterior mean

and median are3.01, 2.84 for ν1 and1.78, 1.42 for ν2. This illustrates how the

analysis is capable of inferring appropriate scales of variables in addition to their

relative inclusion probabilities.

5.2 Real Data: The MNIST Data Set

A standard data set used in the machine learning community isthe MNIST data

set1. This data set contains60, 000 images of handwritten digits{0, 1, 2, ..., 9},

where each image consists ofp = 28 × 28 = 784 gray-scale pixel intensities.

We considered all pairwise comparisons among the10 different digits result-

ing in 45 binary classification problems. For each classification problem we ran-

domly selected50 training samples from each class as training data and50 sam-

ples from each class as test data. This was repeated5 times and the average test

error was computed.

Since the784 pixels in the image are strongly correlated we pre-processed the

data by projecting the training and test data onto the first50 principle compo-

nents computed on the training data. We then applied the kernel model analysis

twice – with and without variable selection. We used a linearkernel and the same

hyper-parameter values as above with the exception that we restricted tom kernel

principal components and the reported analysis summaries are based on choosing

m to optimise 5-fold cross-validation classification errorswithin the training data

set in each analysis. Note that for linear kernel model without variable selection,

usingν = (ν, ν, . . . , ν) is equivalent to settingν = 1. We ran the MCMC for

1Available athttp://yann.lecun.com/exdb/mnist/
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5000 iterations after an initial 5000 iterations for burn-in for each experiment.

The results for the 45 comparisons are reported in Figure??. The performance of

the kernel model with variable selection is substantially superior to that without

selection for all 45 classification problems.

We further explored variable selection by focusing on the task of classify-

ing “3” vs “5”, one of the most challenging comparisons. We ordered the vari-

ables by their approximate posterior model inclusion probabilities averaged over

the 5 repeat experiments. Due to the image processing underlying the raw data,

each variable is not precisely a single pixel from the original image; rather, it is

a locally-weighted linear combination of all784 pixels. We visualize each vari-

able by plotting the corresponding784 weights on the28 × 28 grid. In Figure??

we plot a few apparently relevant variables corresponding to νk with high poste-

rior probabilities (upper panel), together with a few apparently irrelevant variables

corresponding toνk with low posterior probabilities (lower panel). Visually,it is

clear that the relevant variables capture geometric differences between “3” and

“5”, while the irrelevant variables do not. Since the training and test data sets vary

in the 5 experiments, we then randomly select a new data set with 100 samples

from each class. Projections of this new data set onto sets oftwo relevant vari-

ables are displayed in Figure??; similar projections onto sets of two irrelevant

variables are in Figure??. It is clear that the two classes show some separation in

the relevant variables but not in the irrelevant variables.

6 SUMMARY COMMENTS

With the growth of interest in statistical classification and prediction methods in

the machine learning communities, and an escalation of interest in applications

among practitioners, there is a consequent need for refined theoretical understand-

ing of the underlying statistical models as well as improvedmethodology and al-

gorithms. We address each of these issues here. The theoretical foundation of our

Bayesian kernel models is based on the equivalence between aclass of functions

induced by a nonparametric prior specification and a reproducing kernel Hilbert

space. This Bayesian framework of the model allows for coherent inference, as-

sessment of uncertainty, and access to the posterior distributions via Markov chain

Monte Carlo sampling. Practical issues such as choice of hyper-parameters and
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variable selection are automatically incorporated into the Bayesian modelling and

inference.

The Bayesian kernel model suggests several interesting future directions as

well as open problems. The computational challenges of searching high-dimensional

parameter space is of utmost importance and for variable selection increasing the

efficiency of the MCMC to be able to handle thousands of variables is an open

problem of great practical importance. The nonparametric Bayesian kernel model

we developed is an example of a more general framework described in Pillai et al.

(2007). Further exploration of other process priors from a theoretical, computa-

tional, and applied data analysis perspective is of interest.

A striking example of the flexibility and coherence of the Bayesian kernel

model is its application to what is referred to as the semi-supervised problem in

the machine learning literature, the incorporation of unlabelled data – an example

of ancillary design data – in classification and regression problems (Joachims,

1999; Blum and Mitchell, 1998; Szummer and Jaakkola, 2001; Zhu et al., 2003;

Belkin et al., 2006). Our Bayesian kernel model incorporates the unlabeled data in

a natural way without having to introduce additional penalties to the loss function

as is the case for regularization approaches, which is discussed in detail in Liang

et al. (2007).
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Appendix B: Software

Matlab software implementing the MCMC analysis for binary and linear kernel

regression models, and with a range of specified kernel functions, is available to

interested readers at the web sitehttp://www.stat.duke.edu/∼km68/bakerintro.htm.

The examples reported in the current paper are available with the code.
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Figure 1: Synthetic data set 1. Scatter plot of the training data (60 observations)

and the test data (200 observations) on the first two dimensions, with casesyi = 0

in blue stars andyi = 1 in red circles.
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Figure 2: Synthetic data set 1. The color images represent the posterior predictive

probabilityPr(y∗ = 1|x∗, data) when the first two dimensions ofx∗ varies, coded

such that the predictive probability ofy∗ = 1 increases from near 0 (blue) to near

1 (red). (a) Only the first two dimensions of the data are used in the classification

model and the hyper-parameters are optimized with respect to the test error. (b)

All 30 dimensions are used in a kernel classification model withoutvariable selec-

tion. (c) All 30 dimensions are used in a kernel classification model with variable

selection.
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Figure 3: Synthetic data set 2. (a) Scatter plot of test data on the first two dimen-

sions with casesyi = 0 in blue stars andyi = 1 in red circles. (b) Plot of the

posterior predictivesPr(y∗ = 1|x∗, data) as the first two dimensions ofx∗ varies.

(c) Credible interval plot forνk for k = 1, . . . , 20. The blue solid line indicates

the posterior median and the red dashed line indicates the posterior mean for each

dimension.
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Figure 4: The MNIST data. Plot of the 45 classification errorsfor the kernel

model with variable selection (solid line with circles) andwithout variable selec-

tion (dashed line with stars).

Figure 5: The MNIST data. Upper panel: plot of relevant variables (the 1st, 2nd,

4th and 5th variables). Lower panel: plot of irrelevant variables (the 3rd, 6th, 10th

and 11th variables).
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Figure 6: The MNIST data. Plot of projections onto sets of tworelevant variables,

where circle represents “3” and square represents “5”. The two classes show some

separation in the relevant variables.
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Figure 7: The MNIST data. Plot of projections onto sets of twoirrelevant vari-

ables, where circle represents “3” and square represents “5”. The two classes are

mixed in the irrelevant variables.
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