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SUMMARY

Kernel models for classification and regression have erdeagevidely applied

tools in statistics and machine learning. We discuss a Baydsamework and

theory for kernel methods, providing a new rationalisatddérkernel regression
based on nonparametric Bayesian models. Functional anedgults ensure that
such a nonparametric prior specification induces a classntibns that span the
reproducing kernel Hilbert space corresponding to thectediekernel. Bayesian
analysis of the model allows for direct and formal inferenoethe uncertain re-
gression or classification functions. Augmenting the madéh Bayesian vari-

able selection priors over kernel bandwidth parametersnelst the framework
to automatically address the key practical questions afiddefleature selection.
Novel, customised MCMC methods are detailed and used in pbeaamalyses.
The practical benefits and modelling flexibility of the Baigeskernel framework
are illustrated in both simulated and real data examplesaitbdress prediction

and classification inference with high-dimensional data.

Some Key WorddDirichlet process priors; Kernel parameter estimation;ri€éprin-
cipal component regression; Reproducing kernel HilbeatepSemi-supervised learning;

Nonparametric Bayesian analysis.



1 INTRODUCTION

Kernel models for regression have a long history in stagsind applied mathe-
matics (Schoenberg, 1942; Parzen, 1963; de Boor and Ly8€éi%,; Michelli and
Wahba, 1981; Wahba, 1990) and have been used extensivelgchime learn-
ing for classification and regression problems (Poggio amdsi; 1990; Vapnik,
1998; Scholkopf and Smola, 2001; Shawe-Taylor and Cnigtia2004). The ap-
peal of these models includes their flexibility and resgltcapacity for predic-
tive accuracy if well-calibrated, and simple extensionhasd tinderlying ideas to
higher-dimensional data analysis. Some widely used 8taisnodels or ma-
chine learning algorithms are examples of kernel modetfyding spline models
(Wahba, 1990), regularized logistic regression (O’Satiet al., 1986), and sup-
port vector machines (SVMs) (Cortes and Vapnik, 1995).
The univariate response regression problem is summarizédtelmodel

y = f(x) + error,

wherey is the measured responsgéjs an unknown function and € X C R?

is the value of the»-dimensional covariate vector corresponding to outcgme
Given data from this model, our objective is to estimate théeulying function

f for prediction of future responses. For kernel models thignase is selected
from functions contained in the reproducing kernel Hilbgpace (RKHS)H,
induced by the kernet. Regularization methods (Tikhonov and Arsenin, 1977)
are frequently used to justify the estimate

. ' )
f=arg min L(f,datg + A|| f]|7, (1)

where the first terni is a loss function induced from the log-likelihood derived
from the assumed form of the error density, the second terengmoothness
penalty on the RKHS norm of the function, andis a tuning parameter that
balances the trade-off between minimizing the fitting exrand the smoothness.
Although the optimization in (1) may be over an infinite dirsgmal space the
optimal solution has the following finite dimensional regggtation due to the
representer theorem (Kimeldorf and Wahba, 1971)

flz) = Zwik(x,xi), (2)
i=1
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wherek(-, -) is the kernel function corresponding to the RKHS. This reduan
infinite dimensional optimization problem to one #nvariables, which is very
attractive for high-dimensional analysis since the optation is overn < p
variables and independent of the dimensgion

Access to fully Bayesian formulations of kernel methods Mquovide a nat-
ural framework to further the richness and interpretapitit kernel models — a
program driving much research in data mining and machirraileg. A Bayesian
approach would allow for the immediate relaxation of twoitations inherent in
classical RKHS models: constraining the smoothness petwathonotonic func-
tions of the RKHS norm, and requiring additional methodshsas bootstrapping
or cross-validation to provide confidence intervals anchgper-parameters. The
restriction of the penalty to be monotonic function of theHR&Knorm precludes
methods based ofy penalties such as LASSO (Tibshirani, 1996) since the finite
representation of (2) does not hold. Using priors to provedgilarization affords
greater flexibility.

Bayesian kernel methods have been developed in the corfitégiLssian Pro-
cess (GP) models (Neal, 1997; Bishop and Tipping, 2003; dgisB006; Ras-
mussen and Williams, 2006) and Bayesian formulations of SVislve been pro-
posed (Tipping, 2001; Sollich, 2002; Chakraborty et alQ2)0In all these models
Bayesian inference is applied directly to the finite repmésigon from equation
(2). We propose a more general model that does not start igHinite repre-
sentation and can result in models with knots at arbitraiptgo We develop in
detail a particular prior specification under this framekbiat results in computa-
tionally efficient inference that is similar to GP models @ye1997; Chakraborty
et al., 2005).

The conceptual novelty and theoretical motivation of tharkams to provide
priors that do not change with respect to observed covareted are on the en-
tire RKHS to obtain posterior samples from the RKHS. The ficatinnovations
are efficient procedures to obtain posterior samples fraerRKHS. The direct
adoption of the finite representation does not provide uls avtheoretical frame-
work to satisfy these modelling criteria. For point estiasathe direct adoption of
equation (2) in a Bayesian analysis is based on the facthkdirite representa-
tion is a MAP estimator (Wahba, 1990; Poggio and Girosi, 1998is argument



does not extend to drawing posterior samples from the RKHSdUdition this
justification does not hold for priors that are not a functarthe RKHS norm.
The Gaussian process approach does not satisfy our mapeiitaria either. The
duality between RKHS and Gaussian processes suggestaglaaors directly
on a space of functions by sampling from the paths of the Gaugsocess with
covariance structure defined by The mean of this process is in the RKHS but
random functions drawn from the GP are almost surely outhiel RKHS induced
by £ (Kallianpur, 1970; Wahba, 1990). For this reason the GPgaets/e is natu-
ral for point estimates such as the posterior mean but id¢mudtic for posterior
samples from the RKHS. There does exist a larger RKHSnduced by a kernel
R that contains these functions (Luki¢ and Beder, 2001aPdt al., 2007) and
posterior samples from the GP with covariance structurendéfby% would be
from the RKHSH .

We also formulate a procedure for simultaneous dimensidaateon in the
original input space and in the kernel feature space. Int&r®f which covariates
are most relevant in modelling the response variable faredenodels have been
developed in the machine learning literature (Chapellel.e802; Jebara and
Jaakkola, 2000; Krishnapuram et al., 2004; Tipping, 200M)st Bayesian meth-
ods for joint inference of variable relevance and the kemmadiel parameters have
been based on variational methods or MAP estimates (Jebdrdaakkola, 2000;
Krishnapuram et al., 2004; Tipping, 2001). We provide arcedfit procedure to
sample from the posterior distribution of parameters thatiehthe relevance of
the covariates. This allows us to obtain estimates of themainty in the rele-
vance of variables.

In summary our approach results in a novel, fully Bayesiamiwork and
theory for kernel regression and classification. Unlikevimes approaches we
specify priors on the entire RKHS. Our prior specificatiodunes a class of func-
tions that span the RKHS, providing an equivalence betwkembnparametric
Bayesian model and kernel models used in the penalizedrensetvork. This im-
plies a Bayesian representer form that results in the fieppeasentation in equa-
tion (2) derived from a Bayesian formulation, and that iser@nt across samples
and sample sizes. This formal model then easily and coHgrattiresses prob-
lems of inference on hyper-parameters, variable selectiad ancillary issues



such as unlabeled data (in semi-supervised learning).

The paper is arranged as follows. Section 2 describes thpamametric
Bayesian approach that allows us to place a coherent pridh@RRKHS and
recover the parametrisation of the representer theorem ag@oximation of the
posterior mean. Section 3 provides one approach to completespecification
over model hyper-parameters and a corresponding MCMC apprtm posterior
evaluation and inference for both regression and classditgettings. Section
4 extends the definition of kernels to allow for variable seta. Examples and
discussion are given in Section 5, with summary commentgatié 6.

2 A CLASS OFNON-PARAMETRIC BAYESIAN KERNEL MODELS AND A
BAYESIAN REPRESENTERFORM

The kernel models are based on integral operators placiagsn signed mea-
sures rather than directly on the regression function spaledirst show why we
do not elicit priors directly on the function space.

2.1 Direct Prior Elicitation

Besides Gaussian processes, another natural way to diedatit priors on a
RKHS is based on orthogonal expansions of the RKHS.

Kernel functions: : X x X — R that are continuous and positive semi-definite
on a compact spac#& are Mercer kernels for which the RKHS is characterized
(Mercer, 1909; Konig, 1986) as

Hy = {f | f(z) = a;¢;(x) suchthat) —a?/); < oo} :
j=1 i=1
where{);} and{¢;(x)} are the eigenvalues and eigenfunctions of the integral
operator defined by the kernel function

Ay () = /X Bz, u) (1) dps(u),

wherey is a measure. The eigenvalues and RKHS do not depend on the mea
sure (Konig, 1986) so a prior over the spade= {(a;)52,|>"2, a}/)\; < oo}

j=1%j
implies a prior orH,.. There are serious computational and conceptual problems



with specifying a prior on the parametd; it is in general infinite-dimensional,
and it is subject to challenging constraints. The crux of ghgblem is that in

this orthonormal expansion model we are working explicitith eigenfunctions

and eigenvalues, and they are inherently challenging topukate; many popular
kernels do not even lead to eigenfunctions with closed foand others are not
even computable.

2.2 Priors and Integral Operators

Alternatively, consider the space of functions defined asra@lution of the ker-
nel with a signed (Borel) measure

G = {f | flz) = /k(m,u) dy(u), v € F}, 3)

with T'(-) as a subset of the space of signed Borel measures. Placitior pr
I" implies a prior ong. The first nonparametric Bayesian kernel developments to
exploit this idea were introduced in the unpublished Phithef Liao (2005)
using Dirichlet process priors over and this idea is fully developed here. More
recently, it has become clear that this is an example of a gemeral framework
that may utilise any prior over, and equivalences betweéhand H, exist for
appropriate choices of priors dn (Pillai et al., 2007) including our Dirichlet
process priors.

A variation of the integral operator defined in (3) takes terf

f(x) = / Kz, u) dry(u) = / Kz, u) w(u) dF(u), (4)

where the random signed meastife) is decomposed into a probability distribu-
tion F'(u) and coefficient functionv(u); F'(u) andv(u) share the same support.
In generall” denotes the distribution of the location of kernel knat$lere we set

I = Fy, the marginal distribution oK. This is a reasonable assumption as long
as F'y and~ share the same support. An appealing property of this depeed
of f on Fx is that our estimate of (x) will be locally adaptive in that more knots
are allocated in high density regions.



2.3 Dirichlet Process Priors

The Dirichlet process (DP) prior is a natural choice to madatertainty about
the distribution function?’. For a specified distributioh, having the same sup-
port as the uncertain distributiof, and a positive scale parameter the no-
tation DR«, Fy) implies that for any measurable partition of the sample epac
(B1, Ba, ..., By), the random vectotF'(B;), . . ., F/(By)) follows a Dirichlet dis-
tribution with parameter(Fy(B,), ..., Fo(By)) (Ferguson, 1973, 1974; Sethu-
raman, 1994). DP priors are very popular in practical nospatric Bayesian
analysis (West, 1992; West et al., 1994; Escobar and WeS8§g; Milller et al.,
2004; MacEachern and Muller, 1998) due to modelling fldtiband computa-
tional advantages.

A fundamental characteristic of the DP model is that, givesampleX, =
(x1, ..., x,) drawn independently from (uncertain) distributiéi the posterior is
the DP

F|X,~DPa+nF,), F,=(aF+» d,)/(a+n) (5)

Consider, then, such a prior fdf in equation (4), and choose some fixed new
pointz, to predict the function valug(x.). Based on the sample efdrawsX,,
from F' we see that

n

Elf | X.] = an / k(x,u)w(u) dFy(u) +n" (1 — a,) Zw(xz) k(x,z;) (6)

1=1
wherea,, = a/(a + n). Taking the formal limit ofa — 0 to represent a non-
informative prior leads to the finite-dimensiorgdyesian Representésrm

fn<x) = Zwi k(x7$i>7 (7)

wherew; = w(z;)/n depends on the “knot%; and sample size. The two fi-
nite representations, equations (2) and (7), take the samedlthough they are
derived from two fundamentally different approaches: thletsoon of a Tikhonov
regularization functional versus formal process-prioy&aan modelling.

A result of this prior specification is that we obtain a reprgation that is used
in both the GP approach to kernel methods as well as the @idegition of the the
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finite representation. However our method is coherent aadegl a prior on the
entire RKHS. Using another process such as a Lévy procasstdake the lim-
iting case of a non-informative prior we would obtain knotghe expansion not
located at sample points. In addition, the marginalizaitiof®) ensures that each
sample is included in the expansion so the order that obmsengaare obtained
does not matter. These choices are fundamentally for catipntefficiency.

3 ESTIMATION AND INFERENCE
3.1 Likelihood and Prior Specification for Hyper-Parameter

The Bayesian representer form leads to the usual lineagssign on the kernel
values as covariates with regression parameigerAdding an intercept and a
normal error model assumption we have the standard form

yi:w0+f(xi)+€i:w0+zwj k(xiaxj)+€i7 ('L.:]-w“vn)v (8)
j=1

wheres; ~ N(0,?). In vector form, the model is
Y ~ N(wgt + Kw, o*T) 9)

where: = (1,...,1), K is then x n design matrix having entries(z;, z;),
Y = (y1,...,yn)" and the regression parameter vectowis= (wy,...,w,)".
Sincew, andw are often treated differently, we orthogonalized the twis &4
parameters by centering the kernel matrix. That(s,-) is replaced by a centred
kernelk(-, -) with

k(zi, zj) = k(i 25) — ki — %-j +k,

wherek = > i1 k(s wy) /n?, ki = > i k(@i ) /n andk; = Y | k(xy, x;)/n.
Traditional priors can be taken féwg, o). To minimize the number of hyper-
parameters, we use the standard reference prior compeftepts?) < 1/02.
Though it is improper, the corresponding posterior is gtibper as long as the
sample sizen > 2 (Berger et al., 1998; Liang and Barron, 2004).
Specifying priors over the,; can be done by defining sample size independent

priors for valuesu(z;) at arbitrary knots. As an alternative, we induce approeriat
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sample size dependence and address key questions of igaagmession shrink-
age appropriately coupled to the structure of the kernelgdespace by using
ridge regression or g-prior modelling (Zellner, 1986). YW903) defined and
exemplified the use of a flexible and practically very effeetilass of generalised
g-priors that allow for different degrees of shrinkagerastion of regression pa-
rameters in different principal component directions omitiduced design space
for any regression model, and we adopt that strategy herés iFlparticularly
relevant when dealing with many covariates, as it providealality to “shrink
away” the effects of many irrelevant component dimensioh#eshighlighting
those of predictive value. This class of priors explicitlpaels the distribution
p(w|K), so that the sample size dependence is directly induced ancldbs of
priors adapts as the sample size changes.

Specifically, a generalised g-prior is induced by indepehdermal priors on
the regression parameters of the equivalent principal oot regression trans-
formation of the model. The kernel matriX is symmetric and positive semi-
definite, so has spectral decompositién= F AF’ whereF' is then x n orthog-
onal factor matrix, andA = diag(A\?,...,\2). In the orthogonal representation
the regression maps frofiw to 3 with w = FA~!3. Assume conditionally
independent normal priors for the elementssoko thats ~ N(0,7") for some
T = diag(7i, ..., 7). The induced generalised g-prior feris then

(w|K,T) ~ N(0,FAT'TAT'F'). (10)

Following West (2003), we further specify hyper-priors ptreen prior variances
7; — that play roles as shrinkage parameters — as independengégammas,

7, ~ InvGaa,/2,b,/2), (1=1,...,n),

inducing heavier-tailed t-priors on the when we marginalise over the

Viewed as hyper-parameters to be estimated;rjiseare the prior variances
for each factor regression parameter and allow for a vargiegyee of shrinkage
in each of the orthogonal factor dimensions, as discusseday be tempting to
set hyper-parameter values = b, = 0 to obtain a non-informative prior on,
namely,n(7;) « 1/7;, which unfortunately correspond to an improper posterior
distribution (Hill, 1965). In Section 5, we choose = b. = 2 which corre-
spond to Cauchy distributions on thg, a very natural, highly diffuse though
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proper prior specification. In practice, for dimension retittn and also for com-
putational stability, we may choose to truncate the spkegg@omposition by re-
jecting factors with very small eigenvalues; that is, in such a case we may
choose to replacé’ by its firstm columns,A by its firstm diagonals, and set
T = diag(n,...,7m), Wherem < n and the eigenvalues,, 1, ..., A\, are less
than some pre-specified threshold.

3.2 Model Fitting and Prediction via MCMC

Given the likelihood and the prior distributions a stand@idbs sampler can be
used to simulate the posteripfw,, w, c? | datd. After initialization, samples of
parameters and hyper-parameters are drawn sequentattytfre complete con-
ditional posterior distributions. At each iteration, wah relevant conditioning
parameters fixed at their most recent values in the iteratesipdate as follows:

1. Updatew,: wy is drawn from the normal posterior with mean'/ (Y — F3)
and variance? /n.

2. Updatew: Simply viag, generatel ~ N (b, V') wherel = diag V1, ..., V,,)
with V; = o%7;/(1; + 02), andb = VF'(Y —wy)/o?; then setw = FA™14.

3. Updatel: Forj =1,..m,7; ' ~ Ga(a, +1)/2, (b, + 3?)/2).
4. Updater?: 072 ~ Ga(n/2, s/2) with s = ¢’e wheree = Y — wy — F 3.

For prediction at a specified new point, any aspect of the predictive distribu-
tion for y, can be included for sampling in the MCMC. Given sampled patam
values at each iterate, we can simply evaluate the mean aiatie@ of the condi-
tional normal distribution(y.|x., we, w, o?) to generate MCMC samples of pos-
terior predictive quantities of interest. This way we corrgoMC approximations

to predictive meanE(y*|z*, datg, for example, and can do this across a range of
x* values to map out the predicted non-linear regression ilumdor predictive
uses.
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3.3 Binary Regression for Classification

The approach developed above for regression models canutdecbe easily ex-
tended to a classification setting using probit regressiomther binary regres-
sions. The standard latent variable imputation extensddMCMC lead directly
to posterior samplers for probit and other binary link fuoics that are repre-
sentable as mixtures of normals (Albert and Chib, 1993; Sohrand Albert,
1999). Metropolis-Hastings variants for logistic regiessare also trivial modi-
fications. These are practically very relevant extensionkérnel classification
problems.

By way of notation and basic structure in the probit modes, issponses;
in the kernel model (9) are now latent and the normal erroesséandard, i.e.,
o? = 1. We observe binary responsg&s= (21, 2, ..., z,)’ generated by; = 1(0)
if y; > 0(< 0). The MCMC extensions simply include the laténtvalues at
each iterate of the simulation. The traditional Gibbs s&mnpkrates between
sampling conditional posteriors faf given the regression parameters, and vice-
versa. Though often effective, this vanilla Gibbs sampbar suffer from very
slow mixing due to high correlations between successiwsitd latent variables
(Liu, 2001; Nobile, 1998); the problem is of course sharedlblginary regression
models. Proposed solutions in these last two referencésetjlhowever, apply
in our model (since the kernel matrix, the analog of the desiatrix in their
case, changes in each iteration of the chain after we inbeduwariable selection
component in the following section) so we have developedwelrend effective
solution. Rather than the Gibbs sampler we use a Metroptastings method
that samples the kernel model parameters jointly with thentavariableY”. This
is summarised in the following section, in an extended maldad incorporates
additional kernel parameters to address variable andrieaglection.

4 VARIABLE AND FEATURE SELECTION
4.1 Kernel Model Extension
Variable selection and feature selection are importariilpros in high-dimensional

regression. The standard formulation of variable seladdo select a relatively
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small subset of the covariates without loss of predictive accuracy. In the pob
of feature selection a small subset of combinations optb@variates are selected.
Principle components regression with a few principle conguas is an example
of a feature selection method.

Standard practise in kernel regression allows each coatelofx to be scaled
(Jebara and Jaakkola, 2000; Chapelle et al., 2002; Krishiaapet al., 2004)

ky(z,u) = k(Vv ® z,v/v @ u)

wherea ® b is the element-wise product of two vectors ane= (4, ...,v,) is a
p-dimensional vector withy, € [0, oc] as an individual scale parameter for the
k-th dimension. This approach can be applied to most kermelda the linear,
polynomial, and Gaussian kernels the resulting adaptivedte are

p
ky(z,u) = ZVk Tk Uk,
k=1

» d
ky(x,u) = (1 + ka T, Uk) )
k,(r,u) = exp (— Z V(g — uk)2> :

k=1

We will focus on the Gaussian kernel for whigh can be regarded as the recip-
rocal of the bandwidth for thé-th variable which determines the neighbourhood
size for that dimension. When, = 0, the neighbourhood size is infinity and
the corresponding variable is irrelevant in predicting tbgponse variable. Vari-
able/bandwidth selection is then a problem of estimatiosadection of the pa-
rameterv, now explicitly in the context of allowing for zero values. ighnvites
analysis using standard Bayesian variable selection/moaertainty strategies
based on “point mass, mixture prior” over these parameters.

For eachy, independently, we adopt the prior

v ~ (1=79)0+vGaa,,a,s), (k=1,...,p),

s ~ Exp(as), =~ Bela,,b,),

where(a,, a,, a, b,) are specified hyperparameters,(Be represents the beta
distribution and Exp ) the exponential.

13



4.2 Overall MCMC

The MCMC analysis can now be extended to includettiparameters. These pa-
rameters are treated with appropriate Metropolis-Hastsigps since their com-
plete conditionals are not of standard forms. Our overallNWCsampler uses a
Metropolis-Hastings step to jointly sample the kernel baidth and regression
parameters; in the case of binary outcomes whenytlaee latent, this sampling
step is extended to jointly sample these parameterdaogether. As mentioned
in the previous section, this novel MCMC - that has been destecessfully in
a number of examples — is designed to mix faster than theitvadl Gibbs sam-
pler in binary models, and now also provides an overall aggitdor the kernel
variable selection extension in both linear and binary onmes cases.

The full hybrid sampler for the posterior ¢fv,, v, 3,Y,s,v,T) in the case
of binary probit regression is detailed here. The changékisoto generate the
corresponding MCMC for the linear model simply adds in theaging of the
residual variance? at each step and removes the imputation ofitht@at are, in
the linear case, known; these details are left to the reader.

The sequence of steps per iteration in the full binary kemadel with feature

selection are as follows:
1. Updatew, as in section 3.2.
2. Update(v, 3, Y) jointly, in the following two steps.

2.1. Updatgv, (3):
2.1.1. Propose*: Let p,, p;,p, denote the probabilities for global
move local move or update moveespectively.
¢ Fortheglobal movedrawv* from the prior.

e For thelocal move setvx = v then randomly pick a di-
mensionk. If v, # 0, sety; = 0; otherwise draws; ~
Gd&a,, a,s), the continuous part of the prior.

e For theupdate movesetrx = v and then, for all dimensions
k wherev,, # 0, drawv; ~ G&(a,, a,s).

Our proposals usg, = .25, p; = .5, p, = .25.

14



2.1.2. Proposg*: Compute the proposed kernel matfiX with entries
k.~ (x;, ;) and its spectral factors* andA*. SetY” = w, + F*
and simulaté&™ via, foreachi = 1,...,n,

" N(@z; 1)+, |f Zi = 1,
Y N(@Z’,l)_, if Zi =0.
Then, propos&* ~ N(b*, V) whereV = diag(V4, . .., V,,) with
V. = TZ/(l + Ti), andb* = VF*/(Y* — ’(U(])-

2.1.2. Acceptance ratio to compare and test 3*) against the current
values(v, 3): The Metropolis-Hastings acceptance ratio is

_ p<Z | V*7ﬁ*7w0) W(V*aﬁ* ‘ S7V>q<y7ﬁ | T7w07377)
p(Z | v,B,wo) w(v, B | s,7)q(v*, B | T, wo, s,7)

where the termg(Z| - - -) are likelihood evaluations from the bi-

nary regression ang(-), ¢(-) denote the prior distribution func-
tion and proposal distribution function, respectively.th\fproba-
bility min{r, 1} accept the proposed values and hence set*
andj = 3*; otherwise, retain the current values.

Denote the accepted or retained value$hys, K, F, A}, and setv =
FA~1B.

2.2. Updatey”: Y = wy + F,3 and resamplé” via, foreachi = 1,...,n,
N+(gi7 ].), |f Zi = 1,
Yi ~ i
N_(gi,]_), if Zi = 0.

whereN* andN~ denote the positive and negative parts of a truncated
normal.

3. Update hyper-parameters: v, T')

3.1. Updates: s ~ Gala, + 1,as + a, Y vg).

3.2 Updatey: v ~ Be(a, + p1,b, + p — p1) wherep, is the number of
nonzero elements in.

3.3 Updaté€l’ as in section 3.2.
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This MCMC combines variable and feature selection. It isréatéde selection
method since only those variables with nonzegowill be selected. It is also
a feature selection method since we are weighting eachblarihat is selected
by v,. The parametern < n was introduced in Section 3.1 to allow for the
opportunity to truncate the expansion of the kernel matinxiumerical stability.
Reducingn as dimension reduction is often criticised since princguethponents
of the kernel matrix that dominate variation in the kernedige space may not
necessarily correspond to the factors most relevant inigired of the response
variable. In the current setting that now includes variabid feature selection
over elements of, this problem is obviated: the weight for each dimension is
adjusted in MCMC steps such that the tepkernel principle components are
indeed the ones most relevant to the response variable.rtiNeless, with larger
samplesitis still generally desirable to consider resirgctom < n for numerical
and computational reasons.

5 EXAMPLES
5.1 Synthetic Data Sets

A simulated example considers binary classification wittakde selection, using
two synthetic data sets to illustrate different aspectdeihodel. For the MCMC
in this subsection, we used 5000 iterations including amair2500 iterations for
burn-in.

The first data set is ifR3° but only the first two dimensions influence the
classification. Ther data for two classes are sampled from Gaussian mixture
models with

whereX = diag(.38, .38, 1, ...., 1) andug; = (1, 1,0, ...,0), uo2 = (—1,—-1,0,...,0),
i = (=1,1,0,...,0) andus2 = (1, —1,0,...,0). We drew30 samples from each
class as training data, and a furth@d samples from each class as test data. The
data on the first twa: dimensions are plotted in Figure 1.
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To provide an initial, baseline comparison, we fitted a byrmaodel, with a
Gaussian kernel on the first two dimensions ang (1.5, 1.5), to the test data
alone; no feature selection was used here. The valuevafs chosen to be the one
that produces the smallest test error. In terms of postereans of the resulting
classification probabilities, the resulting test error vi&@s (only one sample being
misclassified). The predictive probability @f. = 1 | z..) with respect to the first
two dimensions ok, is displayed in Figur@?(a).

We compared the kernel model analysis with and without éiselection to
this baseline kernel model. For the kernel model withouiadde selection, we
set the bandwidth parameter to be constant in all dimengsions(v, ...,v). For
a variety of choices of the test error never fell belod3.5% and the training
error was). This poor performance is illustrated in the predictiontphoFigure
??(b), where we ploty. = 1 | z,.) again with respect to the first two dimensions
of z,. We then applied the kernel model with variable selectiothi® data with
hyper-parameters

ar=b-=2,a,=by=5,a,=1,a,=1,m=>5. (11

The test error of5% was comparable to the “optimal” model results as in Figure
??(a); the prediction plot in Figurg?(c) shows the efficacy of the variable selec-
tion component of the analysis in honing in on the truly pcade variables and
adapting the non-linear predictive model appropriately.

The second synthetic data set is analysed to explore varsaiéction further
as well as to provides a sense of scale for each ot thariables. The data set is
in R?° but only the fist two dimensions are relevant. The two claasesampled
from Gaussian mixture models with

1 1 1
(xly =0) ~ gN(MOh X)+ gN(Mom X)+ gN(/ios, ¥)
1 1 1
(ly=1) ~ gN(Mlla ¥) + gN(Mm ¥) + gN(Ml?n ¥)

whereX = diag(.38, .38, 1, ....,1)andug; = (—1,—1,0,...,0), g2 = (0, 1,0, ..., 0),
tos = (1,—1,0,...,0), 11 = (—=1,1,0,...,0) and g, = (0,—1,0,...,0), pty3 =
(1,1,0,...,0). The training data consist @b points from each class. The first
two dimensions are plotted in FiguR®(a). This plot as well as the generative
distributions suggest that the first two dimensions shoualdesdifferently and
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this should be reflected in posterior draws of the correspgndandwidth pa-
rametersv,, v5. Specifically, we should expect /v, ~ 2/3. We applied the
kernel model with variable selection to this data with theneahyper-parameter
values. Figure??(b) displays the predictive probability as a function of tirst
two relevant variables. Figurg?(c) displays the 90% credible interval fog for

k = 1 : 20. Examining the posterior distribution of the elements afie found
that P(1v; # 0 | datd = P(r, # 0 | datg = 1 and P(v,, = 0 | datg > 86% for
the irrelevant dimensions = 3, .., 20 where P stands for the empirical posterior
probability estimated from the MCMC outputs. Meanwhileg thosterior mean
and median arg.01, 2.84 for v, and 1.78,1.42 for v,. This illustrates how the
analysis is capable of inferring appropriate scales ofadeis in addition to their
relative inclusion probabilities.

5.2 Real Data: The MNIST Data Set

A standard data set used in the machine learning communityeiMNIST data
set. This data set containg), 000 images of handwritten digit§0, 1,2, ..., 9},
where each image consistsppf= 28 x 28 = 784 gray-scale pixel intensities.

We considered all pairwise comparisons amonglthdifferent digits result-
ing in 45 binary classification problems. For each classificatiorblam we ran-
domly selected0 training samples from each class as training datasarshm-
ples from each class as test data. This was repédtietes and the average test
error was computed.

Since ther84 pixels in the image are strongly correlated we pre-prockesse
data by projecting the training and test data onto the fiosprinciple compo-
nents computed on the training data. We then applied theekeradel analysis
twice — with and without variable selection. We used a lifeanel and the same
hyper-parameter values as above with the exception thag¢steated tan kernel
principal components and the reported analysis summanedsased on choosing
m to optimise 5-fold cross-validation classification erratighin the training data
set in each analysis. Note that for linear kernel model withariable selection,
usingrv = (v,v,...,v) is equivalent to setting = 1. We ran the MCMC for

LAvailable athttp://yann.lecun.com/exdb/mnist/

18



5000 iterations after an initial 5000 iterations for bumfor each experiment.
The results for the 45 comparisons are reported in Fig@r& he performance of
the kernel model with variable selection is substantialigesior to that without
selection for all 45 classification problems.

We further explored variable selection by focusing on trek taf classify-
ing “3” vs “5”, one of the most challenging comparisons. Welered the vari-
ables by their approximate posterior model inclusion pbaiiges averaged over
the 5 repeat experiments. Due to the image processing yimdgthe raw data,
each variable is not precisely a single pixel from the oagjimage; rather, it is
a locally-weighted linear combination of alB4 pixels. We visualize each vari-
able by plotting the correspondinng4 weights on the8 x 28 grid. In Figure??
we plot a few apparently relevant variables corresponding, with high poste-
rior probabilities (upper panel), together with a few aggpdlly irrelevant variables
corresponding te; with low posterior probabilities (lower panel). Visuallyis
clear that the relevant variables capture geometric @iffees between “3” and
“5”, while the irrelevant variables do not. Since the traigpand test data sets vary
in the 5 experiments, we then randomly select a new data setl®D samples
from each class. Projections of this new data set onto setgsmfelevant vari-
ables are displayed in Figuf®; similar projections onto sets of two irrelevant
variables are in Figur@?. It is clear that the two classes show some separation in
the relevant variables but not in the irrelevant variables.

6 SUMMARY COMMENTS

With the growth of interest in statistical classificatiordgprediction methods in
the machine learning communities, and an escalation ofasten applications
among practitioners, there is a consequent need for refireeddtical understand-
ing of the underlying statistical models as well as improwegthodology and al-
gorithms. We address each of these issues here. The tlwabfetindation of our
Bayesian kernel models is based on the equivalence betwdassaof functions
induced by a nonparametric prior specification and a repriodukernel Hilbert
space. This Bayesian framework of the model allows for cafieinference, as-
sessment of uncertainty, and access to the posteriotdigtmns via Markov chain
Monte Carlo sampling. Practical issues such as choice aégarameters and
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variable selection are automatically incorporated intoBlayesian modelling and
inference.

The Bayesian kernel model suggests several interestingefulirections as
well as open problems. The computational challenges otkewy high-dimensional
parameter space is of utmost importance and for variabéetseh increasing the
efficiency of the MCMC to be able to handle thousands of véegmks an open
problem of great practical importance. The nonparametigeBian kernel model
we developed is an example of a more general framework descim Pillai et al.
(2007). Further exploration of other process priors frorheotetical, computa-
tional, and applied data analysis perspective is of interes

A striking example of the flexibility and coherence of the Baian kernel
model is its application to what is referred to as the serpesused problem in
the machine learning literature, the incorporation of belked data — an example
of ancillary design data — in classification and regressimblems (Joachims,
1999; Blum and Mitchell, 1998; Szummer and Jaakkola, 200 & al., 2003;
Belkin et al., 2006). Our Bayesian kernel model incorpa #ite unlabeled data in
a natural way without having to introduce additional peealto the loss function
as is the case for regularization approaches, which is skgtlin detail in Liang
et al. (2007).
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Appendix B: Software

Matlab software implementing the MCMC analysis for binangdinear kernel
regression models, and with a range of specified kernel ifumgtis available to
interested readers at the web $itgp://www.stat.duke.edsskm68/bakerintro.htm
The examples reported in the current paper are availabletingtcode.
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Figure 1: Synthetic data set 1. Scatter plot of the trainiag 60 observations)
and the test data (200 observations) on the first two dimaaswith caseg; = 0
in blue stars ang; = 1 in red circles.
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Figure 2. Synthetic data set 1. The color images represenidkterior predictive

probability Pr(y,. = 1|z., datg when the first two dimensions af. varies, coded

such that the predictive probability 9f = 1 increases from near 0 (blue) to near

1 (red). (a) Only the first two dimensions of the data are usehbe classification

model and the hyper-parameters are optimized with respetiettest error. (b)

All 30 dimensions are used in a kernel classification model withatiable selec-

tion. (c) All 30 dimensions are used in a kernel classification model wittakée

selection.

(@)

(b)

L

T

6

8 10 12 14

()

16 18 20

Figure 3: Synthetic data set 2. (a) Scatter plot of test dathe first two dimen-

sions with caseg; = 0 in blue stars and; = 1 in red circles. (b) Plot of the

posterior predictive®r(y,. = 1|z., data as the first two dimensions of, varies.

(c) Credible interval plot for,, for £ = 1,...,20. The blue solid line indicates

the posterior median and the red dashed line indicates stenqar mean for each

dimension.
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Figure 4: The MNIST data. Plot of the 45 classification errfansthe kernel
model with variable selection (solid line with circles) antthout variable selec-

tion (dashed line with stars).

l":"'
h 2

Figure 5: The MNIST data. Upper panel: plot of relevant Valea (the 1st, 2nd,
4th and 5th variables). Lower panel: plot of irrelevant &atés (the 3rd, 6th, 10th

and 11th variables).
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Figure 6: The MNIST data. Plot of projections onto sets of televant variables,
where circle represents “3” and square represents “5”. Woectasses show some

separation in the relevant variables.
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Figure 7: The MNIST data. Plot of projections onto sets of twelevant vari-

ables, where circle represents “3” and square represeht3 le two classes are
mixed in the irrelevant variables.
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