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Abstract:

This paper develops a two stage procedure to test for correct dynamic conditional
specification. It exploits nonparametric likelihood for an exponential series density
estimator applied to the in-sample Probability Integral Transforms obtained from a
fitted conditional model. The test is shown to be asymptotically pivotal, without
modification. Numerical experiments illustrate both this and also that it can have
significantly more power than equivalent tests based on the empirical distribution
function, when applied to a number of simple time series specifications. In the event
of rejection, the second stage nonparametric estimator can both consistently estimate
quantiles of the data, under empirically relevant conditions, as well as correct the
predictive log-scores of mis-specified models. Both test and estimator are applied to
monthly S&P500 returns data. The estimator leads to narrower predictive confidence
bands which also enjoy better coverage and contributes positively to the predictive
log-score of Gaussian fitted models. Additional application involves risk evaluation,
such as Value at Risk calculations or estimation of the probability of a negative
return. The contribution of the nonparametric estimator is particularly clear during
the financial crisis of 2007/8 and highlights the usefulness of a specification procedure

which offers the possibility of partially correcting rejected specifications.

Keywords: Conditional specification, series density estimator, nonparametric like-

lihood ratio, predictive quantiles for returns, log-score.



1 Introduction

Testing for the correctness of a particular distributional specification is a fundamen-
tal step in determining the adequacy of fitted models for Economic and Financial
variables. Conditional specification tests generally involve goodness-of-fit type tests
applied to the in-sample Probability Integral Transforms (PIT), see Diebold, Gun-
ther and Tay (1998). Corradi and Swanson (2006b, 2012) provides a thorough review
of such procedures as well as related tests of predictive densities. The latter being
based on the out of sample PITs, obtained either recursively or via a rolling estimation
window.

This paper provides a test of conditional specification based upon a consistent
nonparametric density estimator, applied to the sequence of in-sample PITs. It is a
direct generalization of the procedures developed in Marsh (2007, 2018) for indepen-
dent and identically distributed (IID) data. These apply Portnoy’s (1988) test in the
context of Barron and Sheu’s (1988) density estimator for the standard goodness-of-
fit problems with independent sampling. The procedure is two-stage. In the first a
standard dynamic conditional econometric model is specified and estimated via any
quasi-likelihood approach that yields appropriately consistent nuisance parameter es-
timates. Allied to a probability specification a second stage consistently estimates
the density function of the PITs. A likelihood ratio test applied to this density yields
the specification test.

The approach is related to the smooth moment tests of Ledwina (1994), Kallenberg
and Ledwina (1997) and Bontemps and Meddahi (2012) and is analogous to the
generalization of Claeskens and Hjort (2004) to the evaluation of predictive densities
by Lin and Wu (2017). It differs, significantly, in that the test statistic is a likelihood
ratio based on a density estimator obtained from the moments, rather than on the
moments themselves.

Typically tests for conditional specification (and predictive densities) have been
based upon the empirical distribution function (EDF) of the PIT. Specifically, a

correctly specified distribution will generate independent and uniform PITs, which



may be tested via (adaptation of) standard EDF based tests, such as the Kolmogorov-
Smirnov (KS) or Cramer-von Mises (CvM). Andrews (1997), Bai (2003) and Corradi
and Swanson (2006b) have all proposed variants of such tests. Those tests based on
the EDF can suffer from three potential shortcomings.

First, standard applications of KS or CvM tests are not asymptotically pivotal,
in general. Simply testing for the simplest independent and identically distributed
Gaussian formulation requires four sets of asymptotic critical values depending on
what combination of mean and/or variance needs to be estimated, see Stephens
(1976). In the predictive evaluation context this lack of pivotal-ness is termed ‘esti-
mation bias’, Rossi and Sekhposyan (2015). Bai’s (2003) marginalization approach is
not generally applicable, and the bootstrap of Corradi and Swanson (2006b) requires
strict stationarity, ruling out recursive estimation schemes, for instance. Second, tests
based on the EDF tend to have low power compared to parametric procedures. This
is exacerbated in the context of tests based on the out-of-sample PITs since a signif-
icant fraction of the sample must be dedicated to estimation. Thirdly, in the event
of rejection, such tests do not offer any insight into how either the specification or
predictive ability of the model can be improved. Indeed, such tests are only applied,
if they are applied, after a battery of standard diagnostic tests. If the latter are not
rejected, but goodness-of-fit is, then the applied researcher is left with no obvious
avenue down which to proceed.

To address those three shortcomings, the proposed test is first shown to be as-
ymptotically pivotal, without modification, and does not require strict stationarity.
Numerical experiments involving some simple distributional specifications clearly in-
dicate the pivotal nature of the procedures. Secondly, it has both theoretical and
numerical power advantages. It is applied to in-sample PITs, and thus all the sample
is available to test, it does not have to be split to first cover parameter estimation.
Numerical power superiority is demonstrated over even the unfeasible variants of the
in-sample EDF tests - i.e. when size corrected critical values are used. Experiments

demonstrate such against empirically relevant alternatives such as mis-specification



of unconditional skewness or kurtosis or of the dynamic structure of the conditional
mean or variance.

Thirdly, the test is based upon the likelihood ratio of a nonparametric density
estimator in the second stage. In the event of rejection this estimator can itself be
used to correct probability or interval predictions. That is, we can consistently correct
the quantile function of the in-sample PITs generated from a mis-specified conditional
distribution. These quantiles then can be mapped back to the original sample space to
correct the quantile function of the original fitted conditional distribution. Additional
numerical experiments illustrate the accuracy of these corrected quantiles. Applying
a proper score function, see Gneiting and Raftery (2007), to the corrected predictive
density, the log-score is decomposable into the sum of two components. The first is
the log-score from the initial fitted model. The second is the log-score of the non-
parametric density estimator. Numerical experiments show the contribution of the
latter is small, but positive. This analysis also highlights a desirable interpretation
for the test itself. It may be viewed as a test of conditional predictive ability, in the
spirit of Giacomini and White (2006) comparing the original fitted model with that
of the two-stage procedure.

The tests and quantile estimator are applied to monthly data (adjusted for splits
and dividends) on the S&P500 index, from December 1997 on. A number of simple
time series models (from IID to AR-GARCH specifications) are estimated across
the full sample as well as various sub-samples either side of the onset of the Global
Financial Crisis of 2007/8. Each model’s specification is checked via the proposed
test. Then, exploiting the consistent quantile estimator, predictive confidence bands
can be generated via both recursive and rolling estimation schemes. The quantiles
from the density estimator are shown to be both narrower and have better empirical
coverage than Gaussian quantiles, and those based on a rolling scheme more accurate
than those from the recursive. Value at Risk calculations, as well as predictions for
the probability of a negative return, based on both estimated and fitted Gaussian

quantiles can be directly compared, with significant divergence observed beginning



early in 2008.

The plan for the rest of the paper is as follows. In the next section a simpler,
unfeasible, goodness-of-fit procedure is presented, in preparation for generalization
to the conditional, dynamic framework with nuisance parameters. Section 3, proves
that the density estimator introduced by Barron and Sheu (1989) remains consistent
in this context, and that the likelihood ratio test is asymptotically standard normal
and consistent against fixed alternatives. The test has power against the same rate of
local alternatives as the original test of Marsh (2007). Section 4 simulates the finite
sample size and power, and compares the latter to that of size-corrected KS and CvM
tests. A corollary to Theorem 1 demonstrates that the quantiles of the data can be
consistently estimated via this nonparametric procedure, further numerical experi-
ments demonstrate this All of the properties of these procedures are demonstrated in
an extended application to monthly S&P500 in Section 5. Section 6 concludes while
all proofs, the tables for the numerical experiments as well as the graphs and further

tables used in the application are in the appendix.

2 Preliminaries

2.1 Perfect Specification

Suppose that {Y;} , is a sequence of random variables having conditional density
functions f; = f; (Y;|F:; 5), where [ is a k x 1 vector of parameters and F; represents
the information set available at point ¢ in the sample, typically F; will consist of
both past values of Y as well as past and current values of any predictors. When
[ is known, testing the specification of f; trivially collapses to the distribution free
goodness-of-fit (GoF) problem. Marsh (2007) introduced a test for such, via an
exponential series density estimator. Here we first simplify that procedure prior to
subsequent generalization to conditional specifications with unknown parameters.
According to Lemma 1 of Bai (2003) evaluating the conditional cumulative dis-

tribution functions of {Y;};_; at those outcomes generates a sequence of IID Uniform



random variables. That is we can test whether f; is perfectly specified (i.e. the density

family, parameter and conditioning set are all known) via,
Yi
Hys = B (F0) = [ flFsf)dy ~ DU 0.1). 1)

To proceed, construct a sequence {X;}], where X; = h (F;) for some user-chosen
monotone function A (.). Under H, the X; are I1D copies of a variable X, having
known distribution and density,

dUy ()

U(z) =Pr[X <z] & wo(z)= Iz

for x€(0,1).

The density u (z) is first approximated via the exponential family,

= eXp{ Orop(@) — ¥y, (9)} U (0) = ln/o €xp {Z 9k¢k($)} dz, (2)

where the ¢, (z) are linearly independent functions spanning R™ and ,, (0) is the
cumulant function, such that p, (f) integrates to one over x.

Let the density u (z) on (0, 1), satisfy log[u(x)] € W3, the Sobolev space of func-
tions on (0,1) for which d" 'u (z) /dz""! is absolutely continuous and d"u (z) /dz"
is square-integrable. According to Crain (1974) and Barron and Sheu (1991) there

exists a unique 60,y = (01, ..,0,,)" satisfying

1
/ O (2)ps (Om)) da —/ Op(x)u(x)de for k=1,2,. (3)
0

and, as m — 00, P, (G(m)) and u (z) converge in relative entropy, with

Ce@) V()Y Ly de = 0 (e
ln<Pz(9(m>)>]_/ol (pw(9<m>)) (@) dz =0 (m™)

That 6,,) is unique implies that H, can be tested instead via a simple hypothesis

Ey

on H(m),

Hy: Fy ~ IIDU[0,1] < Hy : Oy = 60, (4)

where Q?m) solves (3) with u (z) = ug (x) = dUy (x) /dz. A nonparametric likelihood

ratio test in the exponential family (2) is,

< Px; (é(m))
Am = 2 In | —————1,
; ' [va: ¢ )
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where 6, is the unique maximum likelihood estimator (MLE) for 6,,) satisfying
/ o, (x px é )d Z’ 1¢k( ;) for k=1,2,...,m. (5)

Suppose that m,n — oo with m3/n — 0, then according to Theorem 1 of Barron

and Sheu (1991), p, (f(m)) converges in relative entropy to u (z)

u(2) N aRIC) ) mo
Ey |In| ———~ :/ln ——~ |u(z)de =0, (—+m™"),
<px (9(m))>] 0 (px (H(m)) P ( n )
while Theorem 1 of Marsh (2007) proves,
A =2 = N(0,1). (6)

V2m

Additionally, A,, diverges under any fixed (IID) alternative (i.e. the test is consistent)
and it has power against local alternatives parametrized by Q%m) —Om) = c \/Tm
with dc = 1 and H%m) satisfies (3) but with u (z) = g (x), the density of X under
the alternative. Note that if we allow m to grow arbitrarily slowly then the local
alternative rate approaches that of EDF based tests, O (n'/?) .

Application of this procedure can become overly complicated, even in the sim-
plest of GoF problems as in Marsh (2007), through the choices of both the monotone
function h (F) and on the basis ¢, (z). Although different choices may be worth
pursuing on computational or numerical grounds, to simplify as much as is pos-

sible, here we impose h(F) = F and choose the trigonometric basis, ¢, (x) =

{cos [2kxx] , sin [2kmx] )72 |

2.2 Correct Specification

Assume now that 5 in (1) is unknown and must be estimated as a preliminary step
prior to application of the likelihood ratio test described above. That is we test that
the conditional density f; is correctly specified, i.e. we know everything about f;
except (3. Let Bn denote a (quasi) maximum likelihood estimator of 5 obtained from
the sample {Y;};_, using the specified likelihood L =[], f (Y;|Fi; 5) -

Typically the alternative will be the (unspecified) negation of Hy. Under such an

alternative, suppose that the observations are instead outcomes of random variables
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having (unspecified) density and distribution functions g; = ¢; (y|G;) and G; (y|G;),
for some information set G;, such that either f; # ¢; and/or F; ¢ G; for some i.
Denote this alternative via;
Y;
H, :G; = /Oogl- (y|Gi)dy ~ IIDU [0,1].
We require the following assumptions on both F;(y|F;; 5), G; (y|G;) and the re-
spective densities f (y|Fi; 8) and ¢; (y|G;), to ensure the existence of 3, and under

which the asymptotic distribution of the proposed test will be derived.

Assumption 1 For all i € Z*:
(i) The densities f; (y|Fi; B) are measurable in y for every 5 € B, a compact
subset of p—dimensional Euclidean space, and are continuous in 3 for every y.
(ii) The G; (y|G;) are absolutely continuous distribution functions and such that
sup; Ex, [loglg; (y|G:)] exists and sup;, log fi (yi|Fi, B)| < v (y) for all B where
v (.) is integrable with respect to G (.).
(iii) Let

L3) = B, [ | 2B | = 1| S0 g 1)

such that I (8) =lim, . n 2 >"1" | I; () has a unique minimum at 3, € B.
(iv) F; (Y;|F;, ) is continuously differentiable with respect to 5 and H; () =
dF; (Y;|F;, B) /dB is finite for all B in a closed ball of radius n=*/? around B,.
(v) Both log[g; (y|G;)] and log |f; (vi|Fi, B)] have r > 2 derivatives in y which

are absolutely continuous and square integrable.

Note that, under Hy, together Assumption 1(i), (ii) and (v) and monotonicity of
F;(y|F;; B) are sufficient for assumption A1l of Bai (2003) to hold. In addition assump-
tion (iii) implies that, for the log-likelihood criterion, the conditions of Theorems 2.2

and 2.3 of Domowitz and White (1982) are met, and therefore 3, exists and

Bn =B, + Op(nilﬂ)'



That is, Bn is a y/n consistent Quasi maximum likelihood estimator for the pseudo-
true value (3,. Note that under Hy we have 3, = 3, while under H; we will have

B.# b
To derive the test, first denote X, =F (Y} | F, Bn> , with the mean value expansion

A~ ~ /
K= R (8 + (B, - 8.) H (5,
where 37 lies on a line segment joining Bn and (3,. As a consequence, we can write
Xi=X;+e, (7)

where, although unobserved, under Hy, X; = F; (Y;, ) ~ IID U |0, 1], while under
Hy, X; = F;(Y;,5,) =~ IIDU[0,1]. Both by construction and as a consequence of
Assumption 1 (iv),

e €(—=1,1) & e=0,(n'?). (8)

In general, in (7) e; will be both heterogeneous and dependent. However, for what
follows it is only necessary that it is both bounded and degenerate.

The modification required to deal with the fact that 8 must be estimated is as
follows. We are still testing on the distribution Uy(x) (here the Uniform distribution)
however we do not observe outcomes on X;, but instead those on X;. Trivially, the
uniform density satisfies log [u (z)] € Ws°.

The maximum likelihood estimator for the parameter in the exponential family

(2), say @(m), based on the likelihood L (Omy) = TTi—1 P, (Om)) satisfies

/01 Oy () P (é(m)) dr = m for k =1,2, ..., m, )

which follows from (5) and using (7).

In the presence of nuisance parameters, testing the specification of f; (Y;|Fi; 8),
will entail testing Hy : X; ~ IIDU|0,1] (equivalently, Hy : 0,y = Oy, similar to
(4)) but using the likelihood ratio

N ¢ ) A



since the X; are not observed. The following section details the asymptotic properties

of ;\m.

3 Asymptotic Properties

3.1 Density estimator under H,

First it is required that the density estimator still converges in relative entropy to
the (in this case Uniform) density of X;. If not then Hy : X; ~ IIDU(0,1) is not
equivalent to Hy : 0(n) = ().

Key to the required generalization is that, in (7), we do not observe directly a
sample from the random variable upon which the hypothesis is being tested. If we
knew (8 we could observe X; directly and obtain the maximum likelihood estimator
é(m) via (5). Instead, in the nuisance parameter case, we only observe X; and obtain
é(m) via (9) and apply Portnoy’s (1988) test, (10), using that.

For a given m, this test is just an application of a likelihood-ratio test in a linear
exponential family. For the given choice of basis ¢,,) (¥) = (¢ (7) ,..¢,, (z))", define
the m dimensional statistics () and Z(,,), by

x and i(m) =

k=1 n

— Doy O (X)) \™ 2.iz1 <Xl>
(m) n
k=1
Asymptotic properties will be driven by the difference between the observed sufficient
statistic Z(,,) in the correctly specified case with the unobserved Z(,,), pertaining to
perfect specification.

The respective maximum likelihood estimators, @(m) and @(m) then satisfy

1 1
/0 ¢(m) (I) Pz (Q(m)) dCL‘ = f(m) and /0 Qb(m) (.I‘) Pz (9(m)> d:E = Zi‘(m). (11)

Standard properties of the linear exponential family still apply, specifically the duality
between the (sufficient statistic) sample space, say 7,,, and the parameter space, say

©,,. As in Barndorff-Nielsen (1978), consider arbitrary points in both 7, and O,,,
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(m) =

Wimy = {W1, -y Wi} € Fp and 0 (01, ..,0,,) € O,, then the system of m equations

1
/0 b0 (@) ps (B1) dz = wp, k=1,.m, (12)

has a unique solution. Denote this solution <9>{m) : w(m)> , where w(m) = (w1, .., W) .
That is solving (12) generates a one-to-one mapping between 7, and ©,,.

Here we will be interested in three pairs of points in each space and the map-
ping between them. As well as the statistics Z(,) and Z(,) in 7, we have p,,, =

Ey (@(m) (x)) . The three solutions to (12) we are interested in are:

Oy )+ By T} and (Dny 2 ) ) - (13)
where the latter two are the unfeasible and feasible MLEs defined in (11) and the
first represents the population exponential parameter and mean vectors. Note that
although these points in (13) depend on the choice of basis ¢, here we will suppress
the dependence for notational brevity, and that under Ho, fi(,,) = O(m).-

In summary, 6, in ©,, maps from the expectation of the (unobserved) statistic
T(my, Moy = E [f(m)]. The (unfeasible) MLE for (), if Z(,) were observed, is
é(m), while for the observed sufficient statistic Z(,,), the (feasible) MLE is é(m). By
exploiting these dualities, we first show that the estimated density p, (9(m)) converges

in relative entropy at exactly the same rate as p, (9(m)). The proof of the following

theorem is proved in Appendix A.

Theorem 1 Let @(m) denote the estimated exponential parameter determined by (9)

then under Assumption 1 and for m,n — oo with m®/n — 0,

1 ! 1
— = / ln —

According to Theorem 1, in terms of the density estimator, at least, the effect

Ey {In dz:0p<@>. [ |

n

of observing {Xl, v Xn} rather than {X7,.., X,} is asymptotically negligible under
Assumption 1. It should not be surprising that the rate of convergence is unaffected

when parameters are replaced by /n consistent estimators.
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3.2 Properties of the Likelihood Ratio Test

Full implementation proceeds as follows. Let XZ = F (Y;, 571) and X; = F (Y;,5)
where X; has uniform distribution and density u (z) = 1, then testing Hy as in (1) is
equivalent to testing

Hy - H(m) = O(m),

in the exponential family (2). The likelihood ratio test of Portnoy (1988) applied via
the density estimator of Crain (1974) and Barron and Sheu (1991) obtained from the
sample {Xl, ,Xn} is

A 2&1 pXi( (m)) 2 [é' Bm) — U (0
m = og|——— | =42n (m T(m) — m< (m)>] >
where @(m) solves (9). The null hypothesis is rejected for large values of Am.

Consider the fixed alternative
Hy : G (yG:) # Fi (yil Fi; B) (14)

such that the sequence X; = F; (Y;;3,) is not uniform, identical or independent, in

general, and satisfies;
lim n~! Zil by (Xi) = pj, # 0 for some value(s) of k € Z*. (15)

For every such alternative distribution for Y, then via the unique duality implied by
(12) there will be a unique alternative distribution for X on (0,1). Associated with
that distribution will be another consistent density estimator given, say pz(Q%m)). In
practice, of course, H%m) will be neither specified nor known. The following Theorem,
also proved in Appendix A, gives the asymptotic distribution of the likelihood ratio
test statistic under (4) and demonstrates consistency against any fixed alternative,

as defined by (14).

Theorem 2 Suppose that we construct {Xl} as described above, that the condi-
i=1

tions required in Assumption 1 are met and that m,n — oo with m3/n — 0, then:

13



(i) Under the null hypothesis (1),

(11) Under a fized alternative (14), and for any finite s,
Pr[/A\mZﬁ} —1. N

Theorem 2 demonstrates that for any fixed alternative that leads to the PITs
being non-uniform on (0, 1) the test will consistently reject. Since these asymptotic
results arise via convergence to what pertains in the (unfeasible) perfect specification
case, the test will have power against the same rate of local alternatives. This implies
that O (n!/?) can be attained when m is grown arbitrarily slowly.

Alternatives which imply that the sequence {X;}| remains marginally uniform
- i.e. (15) does not hold- cannot be altogether dismissed. Consequently, a test for
independence might also be applied in the event of non-rejection by A,,. Such a test
is, for instance, detailed in Lin and Wu (2017). Here, however, we will wish to pursue
the option of exploiting the density estimator upon which A, is based, to instead
provide corrected (conditional) quantiles for the data. The conditions under which

such is possible will then negate the need to test for independence among the {X;}] .

4 Numerical Properties

The purpose of this section is to illustrate the properties of the nonparametric likeli-
hood tests and estimators described above. First we explore, numerically, the impli-
cation of Theorem 2(i), that as we increase the model dimension m and as the sample
size n increases, critical values from the standard normal distribution apply. Both
unconditional and conditional model specifications are employed to this end.

We then compare the powers of two versions of the test (m = 4,10) against

standard EDF based tests in this field, the Kolmogorov-Smirnov (KS) and Cramer-

14



von Mises (CvM) tests. Le. those that form the basis for the operational procedures
in Andrews (1997) and Bai (2003).

The last set of experiments concern what we may do if the test rejects the null
hypothesis. The tests of this paper are based on a consistent density estimator. We
can simulate mean-square errors for the estimators of the quantiles of the correct
distribution, when an incorrect distribution is used to generate the PITs. Again both
conditional and unconditional model specifications are employed. All experiments
detailed below were performed using Mathematica 8 and are based on 10000 Monte

Carlo replications. All tables of outcomes are presented in Appendix B.

4.1 Numerical properties under the null

Theorem 2 proves that the likelihood ratio test A, is asymptotically pivotal, specif-
ically standard normal, and consistent against fixed alternatives. Competitor tests,
such as KS and CvM these tests are mathematically detailed in Stephens (1976).
Outside of the IID case, such tests require either significant adaptation to be ap-
plicable, or bootstrap schemes need to be both formally justified and applied. The
proposed test requires neither.

Tables B1 and B2, provide rejection frequencies for the test A, for values of
m = 2,..,12, for sample sizes n = 25,50, 100,200 and for three significance levels,
a = 0.01,0.05,0.10.

We are first interested in testing the unconditional null hypotheses
HE .Y ~Exp(B) & H§:Y~N(u,02).

Letting 7 and 6° be the estimated mean and variance (i.e. Bn = g for HY and
Bn = (g, 62)/ for HY) then the tests are constructed from the mapping to (0,1), i.e.
from X; = 1 — e Y/ to test HE and X, = 3 [1 + erf (@)] to test HY'. Table B1
provides rejection frequencies for both cases. Values of =1 for HF and 8 = (0,1)’

for HY were chosen to generate the data.

We also generalize HYY so as to allow for both heterogeneity and dependence. First

15



let F; = (Yi_1,..,Yo) and test that {Y;}] is generated by a simple autoregression;
H ™ Y| Fi ~ N (vg + 1 Yic1, 0%)

with Yy = 0. Second let Z; ~ IIDU|0,1] and F; = (Z;_1, ..., Zo) , and test that {Y;}]

is generated by a simple predictive regression;
HéDR : Y;“E ~ N (PYO + 71Z2'—170—2) )

with Zo = 0. In both cases 8 = (7,7, 02) and we take 3, to be the OLS estimator
for those parameters. To generate the data we set 3 = (0.5,0.5,1)".

Table B2 provides rejection frequencies for H{'(left) and HE® (right). What
is demonstrated in Tables B1 and B2 is that for all four cases the procedures de-
scribed finite sample rejection frequencies do become close to nominal as both n and
m increase. That this happens across a range of significance levels illustrates the

asymptotic pivotal nature of the tests more clearly than if only a single significance

level were chosen.

4.2 Numerical properties under the alternative

No purpose is served by comparing null rejection frequencies with those tests that are
not asymptotically pivotal. Instead, table B3 compares the 5% size corrected powers
of the base KS and CVM tests. For a single sample size of n = 100, tables B3a and
B3b compare (size corrected) rejection frequencies for Ay and Ajy against those for
the KS and CvM tests for testing HJ" under alternatives that the data is instead
drawn from,

HY Y ~ty, HY:Y ~ gy —v.
Tables B3c, B3d and B3e consider alternatives where the moments of the data
are not correctly specified, i.e.
Hi : Yi|Fi~ N (vYiq,1),
Hi : Yi|F ~N(0,1+0vY2)),
Hf & Yi~ N@x1(i> [n/2]),1),

16



where 1 (.) denotes the indicator function. These latter three alternatives represent
simplistic variants of common types of mis-specification in econometric or financial
data, i.e. mis-specification of a conditional mean, variance or the possibility of a break
in the mean (here half way through the sample). Note that these models trivially
satisfy Assumption 1, but X; as defined in (7) will not be IID on (0, 1) . Lastly, table

B3f considers testing H}’ against the alternative
H v ~T(1,0).

Note that for each table the left hand panel corresponds to the case where we
construct the test imposing the parameter values specified in the null rather than
estimating them (i.e. using the test in (6)), whereas the right hand panels do not
impose these values.

The outcomes in Table B3 imply the following broad conclusions. The nonpara-
metric likelihood test based A, is the most powerful almost uniformly, across all
alternatives and whether parameters are estimated or not. The observed lack of
power of the most commonly used test, KS, is particularly evident, it is consistently
the poorest performing test.

Collectively, from these first 3 tables we conclude that A1p has size close to nominal
and power on average superior to that of the EDF based tests. Its prime advantage,

however, is that it is based on an asymptotically pivotal procedure.

4.3 Density estimation under the alternative: location-scale

time series

The final shortcoming of EDF based tests of goodness-of-fit, and diagnostics in gen-
eral, is that rejection of the null hypothesis is not indicative of how the specification
could or should be changed. The tests of this paper, however, are based on the con-
sistent nonparametric density estimator of Barron and Sheu (1991). This consistency
can readily be extended to the current context of the presence of nuisance parameters

in conditional, rather than marginal, densities.
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Suppose that the data are generated according to

Y= pyz (B) +oqyr (B)ei, i=1,..,n, (16)

where p; 7 (8) = E'[Y;|F;] and U?IE- (B)=FE [(Y; — Iy, (5))2 ]E] represent the con-
ditional mean and variance of Y;, respectively. These depend on some unknown £ x 1
dimensional parameter 5. Suppose data is generated according to (16) with 5 = 3,
some fixed value in R”. Let Bn denote any (quasi maximum likelihood) estimator for
B, satisfying,
Vi (B, = Bo) = 0, (1).

That is we require that the estimator for (3, is consistent under both the null (that
the conditional distribution is correctly specified) and the alternative (that the error
distribution is different from that specified under the null). We additionally make

the following assumption:

Assumption 2: (i) In (16) assume that the process {¢;}] is IID, E'[e;] = 0 and
V' [e1] = 0, having density function g., (e), and
(ii) Let B denote a closed ball of radius cn~'/2, for some finite ¢ > 0, centered

on 3, then the conditional mean and variance of Y; satisfy

185116% Haz (B”) — M (50)‘ = O (Tflﬂ) and
l’sﬁue% O’Z‘FL (Bn) - O-Z‘FL (60)‘ — Op (n—1/2) ‘

Assumption 2 is satisfied for a range of parametric and semi-parametric time series
models, such as those generated by ARMA and/or GARCH processes. Under this
assumption define, for any 5 € B the generalized residuals (e.g. see Randles (1984))
by

&; (5) = O-J‘;-‘i (ﬁ) (Y;' — M7, (5)) )
so that ¢; ~ IID ¢y, with density g., (¢). Now suppose that f(¢) and F'(e) are
any density and invertible cumulative distribution function (with f (¢) = dF (¢) /de)
satisfying the conditions of Assumption 1 then we immediately obtain the following

corollary to Theorem 1.
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Corollary 1 Let e, have density g., (¢), and define the variables X; = F <€i <Bn>>
and X; = F (g (3,)), so that X; ~ IIDX on (0,1). Let T,,, € (0,1) be a
random variable having density function p; (@(m)) where 9(m) is defined by (9),
then whether or not ¢, (¢) = f (¢),

Tn,ij,

as n,m — oo,m3/n — 0. Le. T,,,, converges in law to the random variable

X. |

Assumption 2 requires that the model is correctly specified, but only up to the
conditional mean and variance (not the distribution of the errors ¢;) and that the for-
mer may be consistently estimated to order O, (n‘l/ 2) . Note also that under these
conditions the independence of the {X;}] can be assured via standard time series
methods, such as consistent lag-length selection in the specification of both condi-
tional mean and variance.

The accuracy of the resulting consistent quantile estimators is explored in the

following numerical experiments. Suppose {Y;}] is generated by the AR(1) model,

Yi =7 +71Yi-1 + 5, (17)

Yi—Ho+41Yi-1)®
n—2

and define fi; 7 = Yo, + Y1, Yi-1 and 07 = \/Z;L:l( , where %, and

Y1, are OLS estimators. Apply the series density estimator to the sample
1 . . .
XZ:E [1+el"f (O'Z‘]:Z (K_,uz‘]:z))] ) 221,...,71,

and construct quantile estimators, for each Y; (from the resulting density estimator

D <@(m)> , which has quantiles ¢; (7)) via
Gy, () = fuyr, + Gymv/2erf ! (2%” (7) — 1) .

Putting 7, = 1 and 7, = 0.3, the mean square errors of gy, (7) are presented in
Tables B4a (for ¢; ~ (4, standardized t) and Table B4b (for ¢; ~ )’(%4), standardized

x?) for both m = 4 and m = 10. The estimated quantiles converge numerically to
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their population counterparts, albeit slowly in the case of the extreme quantiles in the
very skewed case. In small samples increasing the dimension of m has no significant
impact on the accuracy. That is although a large value of m is required for the test
statistic to be correctly sized, such is not required to accurately estimate (under the
conditions of Corollary 1) the quantiles of the process generating the data.

A final implication of Corollary 1 is that it allows for the nonparametric estimator
e (@(m)> to correct the logarithmic predictive score of the fitted model F (a (Bn>> .
As in the proof of Corollary 1 let p, (Q%m)) be defined as in (A.12), which converges
in relative entropy to wu; (x) the density function of X; = F (g;(8,)). Defining the

inverse mapping ¢; = F'~! (X;; 3,) , then the change of variable formula implies that

e, (€) = P (Q%m)) x f(e1(Bo)),

so that (in sample) predictive log-scores (see for example, Gneiting and Raftery

(2007)) can be corrected, according to
LS; = Inpyg, (@(m)) +1In fy; (Bn) ) (18)

where fy; (Bn) =f <6 il }n (Y; — iy fn)> is the in sample log-score for the original fit-
ted model and Inpy. (9(m)) is the log-score obtained from the second, nonparametric,
stage.

To illustrate, the model in (17) was simulated with standardized ¢, errors, with
v = 4,8. For each case, and for sample sizes from 25 to 200, a (mis-specified) Gaussian
AR(1) was estimated and, from the resulting PITs, p, (9(m)> also estimated, for m =
4,10. Monte-Carlo averages for both components of (18) are reported in Table B4c.
In addition the log-scores for correctly specified Student ¢ models (first assuming v is
known, and second estimating v via profile likelihood) are presented for comparison.

The log-score is not a metric, so for comparative purposes note that a perfectly
specified TID student 4 has a log-score of —1.682. The gains from the second stage
are not huge, however the procedure can recover up to around 15% of the log-score
lost by estimating the mis-specified model. As with quantile estimation there is little

or no gain from increasing m.
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Finally note that (18) offers a useful interpretation of the test, in light of the
predictive ability tests of Giacomini and White (2006). The null hypothesis is that
f(ei(By)), is correctly specified. Under this null £ [ln Px, <9(m)>] = 0, and the
quadratic loss from fitting the model f (¢; (,)) compared to the ‘corrected’ g, (¢)
can be measured by (ln Px, (@(m)>>2 . Applying this to out-of-sample PITs and con-
structing the relevant test of Giacomini and White (2006) would form an alternate
predictive specification test. This would be at the cost of dedicating a portion of the

sample to estimate the unknown parameters, unlike the proposed test.

4.4 Guidance on implementation

According to Theorem 2 to test conditional specification, Gaussian critical values for
the statistic A(m) will be asymptotically correctly sized provided only that m — oo,
while m3/n — 0. Also under this rate, according to Corollary 1, estimated quantiles
for the data based on the statistic 7;, ,,,, having density p; (G(m)), will be consistent.
However, the rate of local-alternative against which A,, has power, declines with m.

This potential trade-off is evident in the numerical results presented above this
Section. Specifically the test is well sized when m is large - for all sample sizes - but has
slightly higher power for smaller values of m. The properties of the density estimator
are however rather insensitive to the value of m. Further, the relative computational
times for the two cases used in Section 4.3 are important. Using Mathematica 8, on
average estimating 9(4) took approximately 14% of the time to estimate é(m), 0.48s
against 3.46s.

Together these findings point to a recommended implementation. For the test,
A, then for the kinds of sample sizes considered here a value, m* = 10 can be chosen

and then m need only grow arbitrarily slowly,
m = |m* xn‘,

for any € > 0. Given the significantly greater computational burden for larger values

of m then a smaller value of m* can be chosen to implement the density estimator, say
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m* = 4. In the following section we exploit this and apply both test and (recursively
through the sample) density estimator to some monthly returns data, in order to

showcase their properties and usefulness as new financial econometric tools.

5 Application: Monthly S&P500 Returns

Let P; denote the end of month price for the S&P500 index, adjusted for both stock
splits and dividends, obtained from https://finance.yahoo.com. The n = 240 obser-
vations, from January 1998 to December 2017, for monthly returns Y; = In (P;/P;_1)
are collated and graphed in Figure C1 in Appendix C, which contains all graphs
pertaining to this application. The standardized correlograms for both returns and
squared returns (scaled by /n) are graphed in Figure C2, along with significance
lines at £2. Over this period there is no significant correlation in returns at any lag,
while only the first five lags are significant for squared returns.

This particular sample has been chosen because it straddles the global financial
crisis of 2007/8. It therefore offers the opportunity to not only apply the procedures
developed here for their own sake, but also explore their usefulness as applied financial

econometric tools in exposing such phenomena.

5.1 Fitting and testing standard models

On the basis of the correlograms described above, the fitted models considered are

all nested within the following (atheoretical) AR(1) — GARCH (1,1) model;

Yi = yotmYiatau 5 u=ois,

2 2 2 -
o, = 604‘515@-,14‘520’@-71, 121,..,71.

Denote the unrestricted model M;. Model M, imposes d; = 0, M3 imposes §; =
02 = 0. Model M, imposes v; = 0, M5 imposes v; = d2 = 0 and, lastly, Mg imposes
71 =01 = 02 = 0. Thus, My is an AR(1) — ARCH (1), M3 is a simple AR(1), M, and
M35 are constant mean GARCH(1,1) and ARC H(1) while Mg implies the data is IID.
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Two assumptions are made for the idiosyncratic error process {¢; }7, 1) &; ~ #idN (0,1)
and ii) g; ~ iid t(,), i.e. the standardized (unit variance) student t distribution, with
v degrees of freedom. Parameters are estimated via the (quasi) likelihood procedures
outlined in Bollerslev (1986, 1987).

We also consider four sub-samples; a) Jan. 1998 to Dec. 2003, b) Jan. 1998 to
Dec. 2007, ¢) Jan. 2008 to Dec. 2017 and d) Jan. 2013 to Dec. 2017 in addition to
the entire data set. First we evaluate Al(] for all six fitted models across all samples.
The asymptotic p-value of the outcome of each test statistic is presented in the tables

below:
Table 5.1: Asymptotic p-value of Ayo across subsamples of S&P500 Returns;
Assumption (i): e; ~ IID N (0,1)
Start End n M1 M2 M3 M4 M5 M@

01/98 12/02 | 60 | .11385 .18462 .12229 .18957 .22602 .16996
01/98 12/07 | 120 || .09947 .01900 .03074 .06776 .01806 .02853
01/98 12/17 | 240 || .28006 .01601 .00018 .28234 .00542 .00025
01/08 12/17 | 120 || .48300 .64644 .30116 .17346 .22931 .20657
01/13 12/17 | 60 | .89109 .89257 .74563 .72437 .70279 .60518

Table 5.2: Asymptotic p-value of A1o across subsamples of S&P500 Returns;
Assumption (ii): g, ~ 11D £,
Start End n Ml M2 M3 M4 M5 M6

01/98 12/02 | 60 | .09788 .10912 .06599 .06788 .15797 .06259
01/98 12/07 | 120 || .08168 .00807 .03791 .08771 .01875 .04226
01/98 12/17 | 240 | .32482 .02057 .00027 .27923 .00994 .00118
01/08 12/17 | 120 || .50373 .60469 .29824 .20443 .18286 .30114
01/13 12/17 | 60 | .91389 .79154 .70613 .74545 .80098 .75838

In small samples, we cannot reject the specification of any of the models at the
5% level. Although none of the estimated values are presented - these are relatively
straight forward to reproduce. In all cases the estimated degrees of freedom for

t, were in line with those reported in the previous study of Bollerslev (1987). The
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standardized t specification does not offer a uniformly better conditional specification,
as measured by the asymptotic p-value. Moreover, in no case does it change the
outcome of the test at any sensible significance level.

On the basis of the results presented in Tables 5.1 and 5.2, we will narrow the
focus and consider two Gaussian models, M; which is ‘correctly specified’ across
those (sub)samples, and Mg which is only ‘correct’ in small samples. Note that,
unlike many other predictive or conditional specification tests those of this paper are
asymptotically valid in either a recursive or rolling sampling scheme, provided the
rolling window width is asymptotic.

Extending the analysis in Table 5.1 we can recursively evaluate the asymptotic
p-value for the Ay statistic for the Gaussian versions of M; and Mg based on the
samples obtained for ¢ = 1,..,n; where we allow n; = 60,...,n. These are plotted
in Figure C3. Similarly we can construct rolling five year windows (R = 60) of
observationst =1+ R, ..., R+n; asn; = 1,..,n — R and evaluate the the asymptotic
p-value of Ay applied to each window of observations. These, for M; and Mg are
plotted in Figure C4.

When recursively applied Ay is insignificant for both models in the smallest sam-
ples but becomes significant for both as the sample expands to include the period
prior to the financial crisis. Beyond 2009, however, the GARCH model M; is then
not rejected, while Mg is always subsequently rejected. Under a rolling scheme the
significance of the tests for M; and Mg are more similar, albeit much more volatile,
over the whole sample. They diverge only over the window of observations spanning
the mid-2000s, when Mg is rejected consistently, but M; is not.

Broadly speaking M; does seem to fit the data over most recursive or rolling sam-
ples, while the structureless Mg does not. Here, we will employ the second function of
the nonparametric density estimator to construct both predictive interval and prob-
ability estimates in order to gauge the value that doing so will add, whether the first

stage specification is ‘correct’ or not.
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5.2 Estimated predictive intervals: recursive and rolling sam-

pling schemes

To proceed, take the first 5 years of observations (n; = 60), then for the n; + 1%
observation the estimated conditional mean and standard deviation can be denoted
finy 417, 20d Gpy11)7, .- On the basis of the first 1, observations the series density
estimator applied to the in-sample PITs yields quantiles (on (0,1)) which we can
denote G, 41 (m), for 0 < 7 < 1. An estimator of the predictive quantiles for the

ny + 1" observation is then

qAYn1+1 (ﬂ—) = /tbn1+1|.7:n1+1 + é-’17,14‘1‘.7'—7;14-1\/Eerf - (2q/\7’11+1 (77) - 1) ° (]‘9)

Allowing ny = 60,61, ...,n— 1, then from (19) we can construct the sequence of recur-
sive predictive confidence intervals for Y, 11, of the form {gy, ., (7), Gy, ,, (1 —7)}
having nominal (1 — 27) coverage.

It is to be expected that if the models are mis-specified in accordance with the con-
ditions of Corollary 1 then the resulting predictive intervals should have better cover-
age than intervals formed from the Gaussian distribution, N (,&nl A Fpr 67 U F s 1> .
Denote the average width of the recursive confidence interval obtained by fitting
model M; using quantiles from (19) by Wy, as; and its actual coverage by ¢y, a;, and
the equivalent obtained from Gaussian quantiles by wg s, and &g ;. The realized

coverage and average width of these intervals are presented in Table 5.3, below.

Table 5.3: Coverage (o) and Width (w) of Recursive S&P500 Cls
1 =27 || Gany, Qo | Wan, Qo | Qane QG Mg | WaMs WG, Mg
0.50 5922 .6424 | .0548 .0595 || .6201 .6480 | .0561 .0635
0.60 7150 .7263 | .0692 .0743 || .7460 .7598 | .0712 .0793
0.70 7821 .8045 | .0865 .0914 || .8044 .8268 | .0899 .0977
0.80 8547 .8715 | .1086 .1131 || .8604 .8771 | .1143 .1208
0.90 9217 .9330 | .1413 .1451 || .9106 .9274 | .1501 .1550

The previous analysis was based upon a recursive predictive scheme. However,
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the results in Table 5.1 are suggestive that as the sample size becomes large, simpler
models are not correctly specified. Instead, therefore, we might also consider a rolling
predictive scheme. As above let R = 60 denote a fixed window and let F,,, ;1 denote
the truncated information set at time n; given (here) only the R observations Y, _gi1
denote the rolling estimators for the

to Y,, and let ,&nlm and Gy, 117

fn1+1|R n1+1|R

conditional mean and variance of Y, ;1. Rolling predictive quantiles, say G, +1/r,m (7)
are then formed analogously to the method described above. The realized coverage
and average width of those, and the other intervals, are presented in Table 5.4, where
we employ the additional superscript R to signify the employment of the rolling

estimation scheme in their construction.

Table 5.4: Coverage (o) and Width (w) of Rolling S&P500 CIs

1 —2m &f,Ml dg,Ml @fMl a’ng dz}EMﬁ &g,MG @fM(j a’g,Mﬁ
0.50 5474 5754 | .0555 .0570 | .5698 .5922 | .0493 .0579
0.60 6481 .6481 | .0711 .0714 | .6759 .7430 | .0645 .0724
0.70 7653 7653 | .0891 .0886 | .7709 .7878 | .0825 .0891
0.80 8436 .8492 | .1084 .1106 || .8324 .8547 | .1049 .1102
0.90 8994 .8994 | .1391 .1415 | .8927 .8883 | .1371 .1414

Across tables 5.3 and 5.4, the Gaussian predictive confidence intervals are both
wider and have poorer coverage. This is true even if the Gaussian model is correctly
specified, according to the p-value of A1q. Employing a richer model, i.e. M; rather
than Mg and also employing a rolling rather than recursive estimation scheme both
lead to narrower and more accurate predictive intervals.

This general finding is borne out in the average predictive log-scores for both

the fitted Gaussian model and the non-parametric density estimator applied to the
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recursive, then rolling out-of-sample PITs. These are presented in Table 5.5:

Table 5.5: Realized average log-scores,

Model M, M, M Ms

h’l fYn1+1 <Bn1> lnpf(nlJA (0(4)> lIl fYn1+1 <3n1> lannlJrl (0(4))
Recursive || 1.95807 0.05200 1.78688 0.06486
Rolling 1.96761 0.02895 1.75993 0.03572

Both in terms of the interval prediction and evaluation of the probability forecast
as a whole, the contribution of the second stage series density estimator is positive.
Although it is difficult to draw general conclusions it seems clear that, in practice,
assuming Gaussianity implies less certain inference. This would then have significance

for practitioners using such to evaluate the riskiness of any investment in this index.

5.2.1 Value at Risk and the Probability of Negative Returns

To that end, one obvious application of a method which provides consistent estimation
of the quantiles of the distribution of a financial variable is to calculate the value at
risk. See Duffie and Pan (1999) for an overview. Denoting the m-quantile of returns

for time ny + 1 by ¢, 1 (7), then the VaR at time ny, say VaR, ,, 41, is
VaR 11 = (1 — e ™M) p, |

where P, is the value of the asset at time n.

Here P,, will be the S&P500 price at time n;, and we can estimate the quantiles
via either ¢n, 41,4 (7) O @y, +1)r4 (7) for the recursive and rolling schemes and compare
with that obtained from Gaussian quantiles, ¢n, 41,6 (7) O Gp,41|r,c (7). Figure C4
plots the relative difference between the predictive VaRs obtained from the estimated
and Gaussian quantiles, i.e.

(1 _ etin1+1,4(7r)) 1— e‘jn1+1\R,4(7r))

Upy = & Opr=

(1 _ efin1+1,G(ﬂ)) (1 _ e‘inlﬂ\R,G(ﬂ'))

It is seen above that the second nonparametric stage is able to correct mis-specified

predictive quantiles (as in Table B4) and offers superior predictive intervals (as in
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Tables 5.3 and 5.4). Consequently significant deviation from one of 0,,, implies that
performing VaR calculations using Gaussian quantiles will likely be inaccurate.

In figure C4 the relative quantiles are plotted for M; (solid line) and Mg (dashed)
and both Recursive (Fig. C4a) and Rolling (Fig. C4b) estimation schemes. Naturally
one would expect the relative quantiles (nonparametric to Gaussian), and hence VaR,
to diverge for the simpler, less well-specified model. Although the divergence is
smaller for the better specified Mg it remains present throughout the sample and
correlates well to the p-values of the Ao test, particularly when applied recursively.

Finally, as well as producing predictive quantiles, the density estimator p, (9(4))
can be used to produce predictive probabilities for particular (sets of) outcomes of

the returns. Here we will predict the probability of a negative return. To do so, let

0
~0 _ = A2
7Tn1+1,G’ - / = (/'I’n1+1|.7:n1 ) O-n1+1|.7-—n1 ) y) dy7
—00

where = (1, 0%, y) denotes the CDF of a N (u,0?) random variable, evaluated at y.
Thus #° +1.c represents the Gaussian estimator, at time ny, of the probability of a
negative outcome for Y,,

1+1°

The nonparametric estimator for this quantity is instead,

y Rose
7rn1+1,4 = / Dt (9(4)> dt.
0

Again these probability estimators can be recursively constructed through the sample
as n; = 60,..,239 and are plotted in Figure C5. Figure Cba plots the percentage
(7%2 ) +1,m) / 7%21 11.6> constructed from both M; and Mg. As was done for predictive
VaR, we can also construct two rolling sequences of predicted probabilities of negative
returns. Doing so, then the percentage difference between them, again for both models
M and Mg, is plotted in Figure C5b.

Taking Figures Cba and C5b together it is clear that there is a divergence of predic-
tive intervals and probabilities obtained from a Gaussian model and those obtained
by correcting via the nonparametric density estimator. This becomes particularly

pronounced around 2008 onwards. That is, uncorrected Gaussian models would im-

ply a significantly different assessment of risk than the corrected predictive model
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would have.

6 Conclusions

This paper has extended the nonparametric likelihood ratio based tests introduced in
Marsh (2007) to cover specifications involving estimated parameters in the context of
conditional, dynamic models. Doing so yields a straight forward two stage process. In
the context of standard time series models this allows fitting of a parametric model,
allied to a specified error distribution, in the first stage, with the nonparametric
estimation of the density function of the PITs, in the second.

The second stage provides tests which help overcome the three potential short-
comings of EDF based tests, i.e. that they are not pivotal, have low power, and
offer little direction in case of rejection. Instead the tests of this paper are shown to
be asymptotically standard normal, there is good evidence that they have a power
advantages, particularly over the basis for the most conditional specification tests,
the Kolmogorov-Smirnov. In the event of rejection these results can be used to im-
prove the predictive ability of the original fitted model, through consistent quantile
estimation or via an improvement of a loss function such as the log-score.

The procedure of this paper is seen to have relevance in empirical financial re-
search. Applied to monthly S&P500 data, the usefulness of being able to correct the
quantiles of a predictive density are manifest. This is particularly true for the man-
agement of risk - both Value at Risk calculations and estimators for the probability of
a negative return - based on the estimator begin to diverge significantly from assumed

Gaussian equivalents, around and from the time of the financial crisis of 2007/8.

Acknowledgements: This work has greatly benefited from comments received
from Francesco Bravo, Giovanni Forchini, Les Godfrey, David Harvey, Lorenzo Tra-
pani and Peter Phillips as participants at seminars given at the Universities of

Southampton, York, Nottingham, Surrey and the Tinbergen Institute, Amsterdam.

29



REFERENCES

Andrews, D.W.K. (1997) A conditional Kolmogorov test. Econometrica 65, 1097-
1128.

Bai, J. (2003) Testing parametric conditional distributions of dynamic Models, Review
of Economics and Statistics 85, 531-549.

Barron, A.R. and C-H. Sheu (1991) Approximation of density functions by sequences
of exponential families. Annals of Statistics 19, 1347-1369.

Barndorff-Nielsen O. (1978) Information and Exponential Families in Statistical The-
ory, Wiley, New York.

Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Jour-
nal of Econometrics 31, 307-327.

Bollerslev, T. (1987) A conditionally heteroskedastic time series model for speculative
prices and rates of return. Review of Economics and Statistics 69, 542-547.
Bontemps, C. and N. Meddahi (2012) Testing distributional assumptions: a GMM
approach. Journal of Applied Econometrics 27, 978-1012.

Chen, Y.-T. (2012) A simple approach to standardized-residuals-based higher-moment
tests. Journal of Empirical Finance 19, 427-453.

Claeskens, G. and N.L. Hjort (2004) Goodness of fit via nonparametric likelihood
ratios. Scandinavian Journal of Statistics 31, 487-513.

Corradi, V. and N. R. Swanson (2006a) Predictive Density Evaluation. In G. Elliott,
C. Granger and A. Timmermann (eds.), Handbook of Economic Forecasting, Vol. 1,
pp- 197-284, Elsevier.

Corradi, V. and N. R. Swanson (2006b) Bootstrap conditional distribution tests in
the presence of dynamic misspecification. Journal of Econometrics 133, 779-806.
Corradi, V. and N. R. Swanson (2012), “A survey of recent advances in forecast accu-
racy comparison testing, with an extension to stochastic dominance,” in X. C. Chen
and N. R. Swanson (eds.), Recent Advances and Future Directions in Causality, Pre-
diction, and Specification Analysis: Essays in Honor of Halbert L. White Jr. Berlin:
Springer.

30



Crain, B.R. (1974), “Estimation of distributions using orthogonal expansions,” An-
nals of Statistics 2, 454-463.

Diebold, F.X., T.A. Gunther and A.S. Tay (1998), “Evaluating density forecasts with
applications to financial risk management,” International Economic Review 39, 863-
83.

Domowitz, I and H. White (1982) Misspecified models with dependent observations.
Journal of Econometrics 20, 35-58.

Duffie, D. and J. Pan (1999) An Overview of Value at Risk. Journal of Derivatives
4, 749.

Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica 50, 987-1007.

Gneiting, T. and A.E. Raftery (2007) Strictly proper scoring rules, prediction and
estimation. Journal of the American Statistical Association 102, 359-378.
Giacomini, R. and H. White (2006) Tests of conditional predictive ability. Econo-
metrica 74, 1545-1578.

Kallenberg, W.C. and T. Ledwina (1997) Data-driven smooth tests when the hypoth-
esis is composite. Journal of the American Statistical Association 92, 1094-1104.
Ledwina, T. (1994) Data-driven version of the Neyman smooth test of fit. Journal of
the American Statistical Association 89, 1000-1005.

Marsh, P. (2007) Goodness of fit tests via exponential series density estimation. Com-
putational Statistics and Data Analysis 51, 2428-2441.

Marsh, P. (2018) Nonparametric series density testing and estimation. Statistical
Methods and Applications, forthcoming,.

Portnoy, S. (1988) Asymptotic behavior of likelihood methods for exponential families
when the number of parameters tends to infinity. Annals of Statistics 16, 356-366.
Randles, R. (1984) On tests applied to residuals. Journal of the American Statistical
Association 79, 349-354.

Rossi, B. and T. Sekhposyan (2015) Alternative tests for correct specification of

conditional predictive densities. Working paper, ICREA - Universitit Pompeu Fabra.

31



Stephens, M.A. (1976) Asymptotic results for goodness of fit statistics with unknown

parameters. Annals of Statistics 4, 357-369.

APPENDIX A (Proofs of theorems and corollary)
In order to avoid any ambiguity throughout this appendix the order of magnitude

symbol O(.) is defined by,

QAn,m

anm = O (bym) = lim

< < 00,
mn—oo ; m3/n—0 bn,m

and analogously for the probabilistic versions O,(.) and o,(.). If the quantity un-
der scrutiny does not depend upon the dimension m then the condition m3/n — 0
becomes redundant.

Proof of Theorem 1:

Convergence of the density estimator is established by showing that the effect of
having to estimate unknown parameters is asymptotically negligible, under Assump-

tion 1. To proceed denote the following two m X 1 vectors;

n ) X ) R /
By = Z (cos (Qﬂle) ,sin (27Tl€Xi> , .., COS (WmXi> , sin (ﬂmXZ-)) and
i=1

Tm)y = nt Z (cos (27kX;) ,sin (27kX;) , .., cos (mmX;) , sin (tmX;))’,

i=1
and let
E (cos 2mkX;]) = . and  E (sin 27k X)) = . g,

for all 7, so that we can write the mean of Z(,,) as
/
fim) = E [m(m)} = <N1,07M1,s7 ----- ’Mm/Q,C’ll’m/ZS) .

Notice that since cos (.) and sin (.) are bounded functions then both p;, » and y, 5 are

bounded for all £,and as k£ — oo.
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The Euclidean distance between #(,,,) and Z(,,) satisfies

k=1 1=1 1=1

|Z(m) = Tm)| = %(%i(cﬁc—%)):%( Z( _Sk,i)>27

where we have denoted, C’kz = cos <27Tl{:f(¢>, C,i = cos (2mkX;), S;H = sin <27rl<:)2,~>
and Sy ; = sin (27kX;)

Since both cos (2mkz) and sin (27kz) are also continuously differentiable in z and

X, —X; = ¢ = 0O, (n*1/2) with |e;] < 1, then eg = 0, (nfj/2) and, for any k,
expansion of CA’;“ (and 5';“) around X; yields,
ék,i —Cri =0, (n’1/2) ;

and similar for S ;. Boundedness of the sin and cosine functions implies

—Zom——zok,—() n '),

also. Defining,

C—SUP_ZO/“__ZC’“ & dS—Sup_ZSkz Zsk,ia
i=1

kez+ T kez+t T

then both df, and df are O, (n~'/?) and so

m/2 m/2

A = * * m

By = Tm)| < \| D dE+D AT =0y (VZ)‘ (A1)
k=1 k=1

Now consider the Euclidean distance between Z ;) and p,,,) which, via the triangle

inequality, satisfies,

| m) = By < |Zm) = Tom| + |Zem) = 1y - (A.2)

The first term in (A.2) is O, (/%) . For the second, we have

m/2 n 2 m/2 n 2
- Zz‘:1 Ck,i Z':1 Sk,i
o =] < |2 (EE ) | Y (e
k=1 k=1
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Again the boundedness of cos(.) and sin (.) implies that both j; » and p; ¢ are

bounded for all £ € Z", and thus a standard Weak Law of Large Numbers applies;

Lial yr 0, & T _ur o () (as)
As a consequence we find, |f(m) — ,u(m)| =0, (\/?) as m,n — 0o, also. Together

these results imply that,

By = Hmy| < [Tm) = fmy| +

~ _ m
By = Z(m)| = Op (\/ g) : (A.4)

which follows from (A.1) and noting the same order of magnitude applies for the first
distance, as in equation 6.5 of Barron and Sheu (1991), so that the order of magnitude
of ‘f:(m) — u(m)‘ is the same as that of ‘i(m) — js(m)| . Thus, asymptotically, the effect
of having to estimate 3 is negligible, under Assumption 1.

Extending the decomposition of the Kullback-Leibler divergence of Barron and

Sheu (1991, eq. 6.9) we have,

oo (55)] - 2 G5 ()

. <px(?<m>))
Pa(Om))

Since here we choose u () = 1 (the X; are IID Uniform under correct specification)
and 0,y = O(;,), then this immediately simplifies to

N _ 5y (P0m) ),
1 (px@(m)))] = {1 (Px(e(m)))}JrEU l (px(é(m))”

By construction loglu (z)] = 0 € Ws® then from Barron and Sheu (1991, Theorem

+Ey (A.5)

Ey

1) the first two terms in (A.5) are, respectively, lim, ..,O(m™2") and O,(m/n). For
the third term, application of the last part of Lemma 5 of Barron and Sheu (1991),
which holds for any two values in 7,,, C R™, here uniquely defined by equations (5)
and (9), implies that

DI

Ey

ﬂ) u(z)dx = O, <

n px(:(m))>] _ [y (pm(
(pw(ﬁ(m)) /0 Pa(Om))

>



and hence

as required. M

Proof of Theorem 2:
Consider the problem of testing Hy : 0(,) = 0, against the alternative H; :
0(m) # O(my when n,m — oo and m*/n — 0.

Part (i): To proceed we have defined,

. . ' . .
Am = 2n {(%) = 00m)) &) = (Y (B ) = 0 (%)))} =20 (D) = Oy ) Fom
where @(m) solves (9), or equivalently,

 ( 0, (Oim
U (9“”)) N waegm() ’

0(m)=0(m)

Since 1,, (.) is the cumulant function then the value G?m) = O(m) can be defined by,

Since the exponential log-likelihood is strictly convex, the mapping

Oy (1) = Ury (Oimy) = Hom)

is one-to-one between the parameter space ©,, C R™ and sample space F,,, C R™

and application of Barron and Sheu (1991, eq. 5.6) and also (A.4) gives,

m

Em) — 1w [) = Op ( —) : (A.6)

n

Oy (‘9<m> - 0<m>D =0y (

As a consequence of both (A.6) and (A.4) we have that,

Op<

and note that the expansions given in the proofs of Theorems 3.1 and 3.2 of Portnoy

9<m>—0<m>D=Op(|9<m>—0<m>\) & 0

Emy = tmy]) = Op (|Zmy = 1y ) »

(1988) apply for any two pairs of values, here (9(m), O(m)) and (f(m), ,u(m)) :

35



To continue, denote expectations under the null hypothesis as Fy,, [.] and let the

m x 1 vector Uy, have density function

pa(m) (ulv - U = €Xp {Z Qkuk Q(m ) } .

Analagous to Portnoy (1988, eq. 3.5 and 3.6), we have the following two expansions;

O — Oml> = (B — O ) i g B my — Oty U o, (™
(m) = Ym)™ = \Cm) = Ym) | Tm) = 5800, | {V0m) (m) + r\ 2 )

and (A.7)

2

i , o, 1 X / .
<9<m>—0(m>> By = |2em]” = 5B (9(m>—0(m)) Uty | &y Utm)

(A.8)
Subtracting (A.8) from (A.7) restates equation (3.7) of Portnoy (1988) and hence
. . m
[Om) = Om) = m)| = Op (;) :
From the definition of the likelihood ratio test we therefore have,
< R - . 0
Am = 2n [(‘)(m) - 0<m>> Tm) — (% (9<m>> ~Vm (Q(m)))}
. 5 R 1 N '\ m?
= n [’x(m)|2 — |0(m) = Om) — x(m)|2 + EEUO ((9(m) — O(m)> U) + 0, (7) ,
(A.9)

as in Portnoy (1988, eq. 3.12). Let € = () — Z(m), then from the proof of Theorem

1, we have
[Fl? = [T + 72 < 7+ 16 = 3P+ 0 (&) (A0)

Note that for the given trigonometric basis we have E [f(m)} = O@m). Now de-
fine the m x 1 random variable Vg, = = . (O(m))fl/2 (), and denote its density
Pay,, (V(my) » so that E[V,,] = 0pny and Var[V,,] = L. Since the likelihood ratio
statistic is parameterization invariant the likelihood ratio test based on observations

on V,,, will be identical to that based on Z(,,.
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Rather than defining a new triple of values, analogous to those in (13), in both
the parameter space O, (note that in particular the hypothesized value would no
longer satisfy H?m) = Ogm)) and sample space F,, we will instead, and without any
loss of generality assume a parameterization in which both E [i’(m)] = 0 and now
also V [a‘:(m)] = I,,. Note, however, that it is the unobserved Z(,,) which is assumed
to be standardized not the observed Z(;).In this parameterization the asymptotic
distribution of first |Z(,,|> and hence |Z¢,|* (via (A.10)) and then via (A.9) for
A = ’\’"T:;" follows exactly as in Portnoy (1988, Theorem 4.1). M

Part (ii): Under any fixed alternative the density of X; = F; (Y;|F;; 5,) is not
uniform, nor even independent or identically distributed. However, since ¢, (x) is
bounded then even under Hy,

lim —Z?:l o (XJ

n—oo n

Consequently, let G%m) be the unique solution to,

1
/ O () ps (H%m)) dr = py, k=1,..,m. (A.11)
0

The uniqueness of solutions to (A.11) imply H%W) # O(m)-

To take the least favorable case, define
1 1 g1 1/
Q(m) — (917927"79771)

and suppose that 6, # 0 for some finite & but that 9;- = 0 for all j # k. The series
density estimator is consistent for 0% under Hy, in that ‘9(,”) - Q%m)‘ =0, (\/?) ,

m)»

analogous to (A.6) above, and so we can write,

. ’ . ' I ;
n (9<m> - 0<m>> Em) =n [(%) - G%m)) By + (01) ~ D 0 <X>] :
=1
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Since also 1y, (Ogmy) = 0, we can write the likelihood ratio as
= 20| (00 = 00 )~ 0 (i) |
o [(@(m) - e%m))’f;(m) ~ (b (D) = 0 010)|
Zm( ) —v (%)]
Zm( ) - m(%)],

where 5\; is the likelihood ratio for testing H; : 0(,,) = H%m)

+2n

:)\+2n

Thus, under H;, we can write

L dem Shm | 20O ) IS0 () — v (Ol

A= S = et N

Immediate from Part (i) of this theorem is that as m,n — oo, with m3/n — 0

a1
)\ _
m ", N(0,1),

V2m

ie. (A - m) /V2m is O, (1) . However, since 9,, (.) is a uniquely defined cumulant

function then

while £ 31 | ¢, (X'z> = 0, (1) and since m*/n — 0,

b= 0,0 +0, (=) =0,

and hence Pr [Am > n] — 1, as required. N

Proof of Corollary 1:

Under Assumptions 1 and 2, we immediately find

s (B,) == (9)] = 0, (0777,

sup
i,8eB

and since F' (e) is continuously differentiable and monotone then, similar to the proof

of Theorem 1, we have
X, =Xi+é,
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where 0 < & < 1 and é; = O, (n""/?) and X; ~ IID X. Let the density of X be

uy () and define the unique m x 1 vector Q%m) by

/0 o, () P (Q%m)) dr = /0 ¢y () uy () dx. (A.12)

~

Similar to the proof of Theorem 1 we can decompose the Kullback-Leibler divergence
between p,(6(,)) and u; (x), with
Pa(O(m)) Pz(0m))

Fu | <px<é<m>>)]
. (px@m)))
Px(0(m))

where @(m) is defined in (13). Notice that the approximation error represented by

Ey

_I_

+FEy

)

the first term does not vanish in this case since, in general u; () # 1. None-the-less,

from Barron and Sheu (1991) and the proof of Theorem 1, we have

1n< ulA(x) )

ie. p, (@(m)) converges in relative entropy to u; (x) which is sufficient for convergence

Ey

0000, (2) 10, (5) =0, (4 %)

in law, so T, , —¢ X, as required. W
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APPENDIX B (Tables of outcomes of Monte Carlo simulations)
Table B1: Sizes of tests for both HE¥ and HY.

n 25 25 o0 50
HE HY HE HY

“ 10 .05 .01 0 .05 .01 10 .05 .01 10 .05 .01

m
2 .053 .033 .017 | .012 .007 .002 | .059 .040 .017 | .012 .005 .001
4 071 .042 .020 | .039 .023 .011 || .067 .044 .021 | .042 .029 .009
6 073 .037 .007 | .046 .026 .011 | .072 .045 .016 | .045 .027 .009
8 .081 .056 .020 | .054 .027 .004 || .077 .047 .020 | .056 .031 .008
10 092 .057 .018 | .058 .030 .005 || .096 .055 .020 |.065 .037 .009
12 .091 .055 .014 | .065 .034 .005 | .094 .055 .018 |.063 .038 .007
n 100 100 200 200

HE HY HE HY

“ 10 .05 .01 0 .05 .01 10 .05 .01 0 .05 .01

m
2 .055 .037 .017 | .013 .006 .001 || .065 .038 .020 |.012 .006 .002
4 .070 .042 .008 | .050 .035 .009 || .070 .041 .015|.049 .031 .010
6 088 .051 .016 | .063 .041 .011 | .085 .047 .017 | .065 .041 .011
8 .093 .055 .016 | .078 .045 .013 | .093 .048 .016 | .077 .043 .010
10 .098 .054 .014 | .080 .047 .015 | .098 .055 .012 |.085 .045 .017
12 .096 .053 .014 | .092 .045 .018 | .096 .052 .013 | .094 .046 .016
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Table B2: Sizes of tests for both HOAR(U and H'H.

n 25 25 50 50
HAR HER HAR HER
“ 110 o5 01|10 05 01 [0 05 o1 |20 05 01
m
2 | 044 028 009|028 017 .006| 044 .028 014 |.020 .016 .006
4 | 063 035 .014|.045 .02 .011|.066 .044 017 |.047 031 .013
6 | .079 .053 019 .06 .037 .013|.079 .046 .015|.056 .038 .017
8 | .088 .061 023 .082 .057 .016| .079 .047 .016|.065 .039 .017
10 | .104 066 .026|.121 084 .031|.083 055 .019|.065 .042 .013
12 | 123 081 .030|.128 .087 .038|.083 .055 .017|.074 .044 .014
n 100 100 200 200
HAR HER HAm HIR
“ 110 o5 o1 |10 05 01 |10 05 .01 |10 .05 .01
m
2 | .049 020 011 .03 019 .006| .052 .033 .015|.020 .017 .007
4 | 064 043 015|.049 030 .013.063 .041 .015|.053 .033 .012
6 | .075 .046 020|061 038 015 .069 .044 018 | .060 .033 .010
8 | .072 042 015|.066 036 013 .082 .046 019 | .069 .043 .014
10 | .078 045 .018|.071 042 .014 | .083 045 .014|.082 .046 .013
12 | .087 045 .013|.086 .047 015 .095 049 .013|.093 .048 011
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Table B3: Rejection frequencies under various alternatives.

Table B3a: Power Hy : Y ~ N (0,1) vs. Hy:Y ~t).
v 4 6 8 10 12 4 6 8 10 12
Ay 923 710 388 .260 .118 || .601 .297 .158 .130 .099
[\10 854 569 257 165 .087 || 494 241 .133 .111 .081
KS 614 206 .091 .055 .049 | .217 .114 .075 .059 .052
CvM | .722 309 .165 .092 .061 || .296 .132 .087 .075 .066
Table B3b: Power Hy:Y; ~ N (0,1) vs. H;:Y;~x(, —v.
v 12 20 28 36 44 12 20 28 36 44
Ay 855 .664 571 .469 417 | 574 269 .185 .151 111
Avo 796 .641 546 427 377 | .388 .189 .158 .111 .096
KS 717 568 443 388 .350 || .238 .151 .106 .093 .075
CvM | .837 .663 .563 .463 .403 || .274 .176 .131 .100 .091
Table B3c: Power Hy: Y; ~ N (0,1) vs. H;:Y;~ N (vY;_1,1).
v 09 07 05 03 01 (09 07 05 03 0.1
Ay 701 588 .385 .163 .090 || .912 .736 .507 .274 .099
[\10 688 483 351 .141 .071 || .847 .683 .461 .235 .091
KS 92 458 254 .091 .053 | .79 359 .207 .122 .058
CvM | .690 .585 .362 .140 .066 || .648 .448 .273 .162 .083
Table B3d: Power Hy :Y; ~ N (0,1) vs. Hy:Y; ~N(0,1+0Y2,).
v 09 07 05 03 01 |09 07 05 03 0.1
Ay 730 519 .278 120 079 || 871 739 483 .228 .106
Alo 704 503 263 113 .074 | .864 .740 .460 .225 .094
KS 568 361 161 .063 .052 || .509 .350 .201 .112 .080
CvM | .709 497 .255 .109 .075 || .511 .352 .185 .115 .073
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Table B3e: Power Hy:Y; ~ N (0,1) vs. Hy:Y;~N (U1t>LT/2ja 1) .
v 09 07 05 03 0.1 09 07 05 03 0.1

Ay 754 .b53 346 200 .081 || .655 .491 .277 .143 .081
Aqo 738 .825 311 173 .064 || 992 442 256 139 .066
KS 256 189 127 .088 .052 || .542 .349 .185 .078 .059
CvM | .362 .291 .164 .103 .066 | .601 .445 .260 .130 .078

Table B3f: Power Hy : Y; ~ Exp[l] vs. Hy:Y;~T(v,1).
v 1.10 1.15 1.20 1.25 1.30| 1.10 1.15 1.20 1.25 1.30

Ay 113 125 .226 .302 432 || .189 .302 .595 .770 .886
Ay | 103 106 179 277 398 | .177 285 .550 .712 .825
KS 066 .069 .136 .200 .252 || .096 .193 .404 .616 .747
CvM | .094 .099 .179 .237 .343 | .174 .280 .551 .732 .853
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Table B4: MSEs of estimated quantiles and mean predictive log-scores.

Table B4a: MSE of estimated quantiles, gy, for fitted AR(1) with ¢4 errors

m 4 4 4 4 10 10 10 10
n
25 50 100 200 25 30 100 200
7T
0.05 .0454 .0287 .0191 .0125 | .0837 .0563 .0335 .0216

0.25 0433 .0248 .0131 .0073 || .0503 .0264 .0149 .0080
0.50 0329 .0168 .0079 .0036 || .0397 .0173 .0094 .0045
0.75 0421 .0249 .0132 .0068 | .0512 .0266 .0140 .0076
0.95 0457 .0296 .0198 .0124 | .0819 .0557 .0332 .0218

Table B4b: MSE of estimated quantiles, gy, for fitted AR(1) with )‘(%4) errors

m 4 4 4 4 10 10 10 10
n
25 50 100 200 25 50 100 200
T
0.05 1742 1583 1470 .1416 || .1039 .0711 .0515 .0372
0.25 0337 .0205 .0123 .0087 || .0406 .0227 .0140 .0081
0.50 0434 .0280 .0186 .0141 || .0449 .0251 .0147 .0093

0.75 0748 .0475 .0328 .0252 || .0759 .0475 .0282 .0188
0.95 S1100 .2914 2638  .2491 || .2531 .2070 .1773 .1578

Table B4c: Average in sample Log-Scores for fitted AR(1) with ¢4 and #s) errors.

The mis-specified Gaussian model is f, (3), the correct model is g, (5;v) .

n|2 50 100 200 |25 50 100 200
Log-Score v |4 4 4 4 8 8 8 8
npg., (d) 0935 0801 0714 .0618 | .0799 0492 .0374 .0281
npg,, (Doo) | | 1019 0871 0704 0674 | 0883 0668 0455 0347
In fy,., <n> 2256 -2.39 -2.28 -211 |-2.04 -1.95 -1.90 -1.62
Ingy,., (An;v) 147 143 136 -1.35 | -1.53 -1.42 -1.27 -1.26
Ingy,,, (An;@) 182 -1.61 -1.55 -149 || -1.81 -1.67 -1.50 -1.46
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APPENDIX C (Application graphs)

Figure C1: S&P500 Monthly Returns; Jan 1998 to December 2017
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Figure C2: Correlogram for Returns “4” and for Squared Returns “O”
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Figure C3: Observed p-values for A;g. Solid line for Mg dashed line for M.

Figure C3a: Recursive Sampling Scheme
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Figure C3b: Rolling Sampling Scheme (5 year rolling window)
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Figure C4: Relative Estimates of Predicted Value at Risk, VaR gs;
Jan. 2003 to Nov 2017, M; solid and Mg dashed.

Figure C4a: Recursive Predictive Scheme

/'\
1.00 JI A"l \ ‘
VAl al
"M‘[.\‘ l"l"lI ’.P\ I.'f ‘I’,‘
L HVKJ A
AN
i
0o ||‘
1\
\I
\ A A
" Vaumi
b ,f(.| [ \I\ 1A
Vo A Il\.| L\ | I,/ﬂ, I
[ I I/’ \'Iy | \f | V Il I"‘ /
oss| ‘:.1"\ r/\,‘ \‘,{ | I‘AII I\I 'l: B \\\I \\JI |‘ r\,\/\_\f \j | ‘ ||l.".' ’L“IV r IF\\.N,«\
\ /o N / \ \ '
\ ! \. AN | [ Vs, A ‘ I A
3 IIL«/'( .ff’ .'“'\ V \/‘\\v/\ .,-" | ‘|i|| .ﬂ;l | / . \j |VJ’\'IJ‘I \,I'l.‘{\)‘ lll‘v’ '\‘/ ‘V\
'.‘ "-’; ;' | A W I,‘i‘ || l‘;'éfl\/-\j \JI \
v | |‘ j
osoal ‘. |;-
1\ J
Figure C4b: Rolling Predictive Scheme (5 year rolling window)
_ |
: ||||
\
| | ‘I'II I
a |'ﬂ
11 "ﬁ’ r‘| / | I\ A
‘In\ N\ | lh; \ | | 7\ »fr\\,
[ ) A / " I | \ i‘ ‘
[ . L \ / I| [k \ ‘ | \L-q A
I LAV A . \ | N\
Lof .K‘“ H ‘I""\J" I I ‘I || “’, J/\‘\ |~j I‘"| ll‘ ‘lll ’} I‘|
T \\‘I | ! / \ \/_[\ P [ I'll‘l‘"“/'u‘ ~ . =
-\ r \ ‘I NAY: /. W I W/ AV
. /\j H \Ir 2
Y “ G
ol ||
| |
I/

47




Figure C5: Ratios of the nonparametric to the Gaussian predictors of the
probability of a negative return, Jan. 2003-Nov. 2017. Solid line for M;, dashed for Mg

Figure Cb5a: Recursive sampling scheme.
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