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Abstract:

This paper develops a two stage procedure to test for correct dynamic conditional

specification. It exploits nonparametric likelihood for an exponential series density

estimator applied to the in-sample Probability Integral Transforms obtained from a

fitted conditional model. The test is shown to be asymptotically pivotal, without

modification. Numerical experiments illustrate both this and also that it can have

significantly more power than equivalent tests based on the empirical distribution

function, when applied to a number of simple time series specifications. In the event

of rejection, the second stage nonparametric estimator can both consistently estimate

quantiles of the data, under empirically relevant conditions, as well as correct the

predictive log-scores of mis-specified models. Both test and estimator are applied to

monthly S&P500 returns data. The estimator leads to narrower predictive confidence

bands which also enjoy better coverage and contributes positively to the predictive

log-score of Gaussian fitted models. Additional application involves risk evaluation,

such as Value at Risk calculations or estimation of the probability of a negative

return. The contribution of the nonparametric estimator is particularly clear during

the financial crisis of 2007/8 and highlights the usefulness of a specification procedure

which offers the possibility of partially correcting rejected specifications.

Keywords: Conditional specification, series density estimator, nonparametric like-

lihood ratio, predictive quantiles for returns, log-score.
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1 Introduction

Testing for the correctness of a particular distributional specification is a fundamen-

tal step in determining the adequacy of fitted models for Economic and Financial

variables. Conditional specification tests generally involve goodness-of-fit type tests

applied to the in-sample Probability Integral Transforms (PIT), see Diebold, Gun-

ther and Tay (1998). Corradi and Swanson (2006b, 2012) provides a thorough review

of such procedures as well as related tests of predictive densities. The latter being

based on the out of sample PITs, obtained either recursively or via a rolling estimation

window.

This paper provides a test of conditional specification based upon a consistent

nonparametric density estimator, applied to the sequence of in-sample PITs. It is a

direct generalization of the procedures developed in Marsh (2007, 2018) for indepen-

dent and identically distributed (IID) data. These apply Portnoy’s (1988) test in the

context of Barron and Sheu’s (1988) density estimator for the standard goodness-of-

fit problems with independent sampling. The procedure is two-stage. In the first a

standard dynamic conditional econometric model is specified and estimated via any

quasi-likelihood approach that yields appropriately consistent nuisance parameter es-

timates. Allied to a probability specification a second stage consistently estimates

the density function of the PITs. A likelihood ratio test applied to this density yields

the specification test.

The approach is related to the smooth moment tests of Ledwina (1994), Kallenberg

and Ledwina (1997) and Bontemps and Meddahi (2012) and is analogous to the

generalization of Claeskens and Hjort (2004) to the evaluation of predictive densities

by Lin and Wu (2017). It differs, significantly, in that the test statistic is a likelihood

ratio based on a density estimator obtained from the moments, rather than on the

moments themselves.

Typically tests for conditional specification (and predictive densities) have been

based upon the empirical distribution function (EDF) of the PIT. Specifically, a

correctly specified distribution will generate independent and uniform PITs, which
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may be tested via (adaptation of) standard EDF based tests, such as the Kolmogorov-

Smirnov (KS) or Cramer-von Mises (CvM). Andrews (1997), Bai (2003) and Corradi

and Swanson (2006b) have all proposed variants of such tests. Those tests based on

the EDF can suffer from three potential shortcomings.

First, standard applications of KS or CvM tests are not asymptotically pivotal,

in general. Simply testing for the simplest independent and identically distributed

Gaussian formulation requires four sets of asymptotic critical values depending on

what combination of mean and/or variance needs to be estimated, see Stephens

(1976). In the predictive evaluation context this lack of pivotal-ness is termed ‘esti-

mation bias’, Rossi and Sekhposyan (2015). Bai’s (2003) marginalization approach is

not generally applicable, and the bootstrap of Corradi and Swanson (2006b) requires

strict stationarity, ruling out recursive estimation schemes, for instance. Second, tests

based on the EDF tend to have low power compared to parametric procedures. This

is exacerbated in the context of tests based on the out-of-sample PITs since a signif-

icant fraction of the sample must be dedicated to estimation. Thirdly, in the event

of rejection, such tests do not offer any insight into how either the specification or

predictive ability of the model can be improved. Indeed, such tests are only applied,

if they are applied, after a battery of standard diagnostic tests. If the latter are not

rejected, but goodness-of-fit is, then the applied researcher is left with no obvious

avenue down which to proceed.

To address those three shortcomings, the proposed test is first shown to be as-

ymptotically pivotal, without modification, and does not require strict stationarity.

Numerical experiments involving some simple distributional specifications clearly in-

dicate the pivotal nature of the procedures. Secondly, it has both theoretical and

numerical power advantages. It is applied to in-sample PITs, and thus all the sample

is available to test, it does not have to be split to first cover parameter estimation.

Numerical power superiority is demonstrated over even the unfeasible variants of the

in-sample EDF tests - i.e. when size corrected critical values are used. Experiments

demonstrate such against empirically relevant alternatives such as mis-specification
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of unconditional skewness or kurtosis or of the dynamic structure of the conditional

mean or variance.

Thirdly, the test is based upon the likelihood ratio of a nonparametric density

estimator in the second stage. In the event of rejection this estimator can itself be

used to correct probability or interval predictions. That is, we can consistently correct

the quantile function of the in-sample PITs generated from a mis-specified conditional

distribution. These quantiles then can be mapped back to the original sample space to

correct the quantile function of the original fitted conditional distribution. Additional

numerical experiments illustrate the accuracy of these corrected quantiles. Applying

a proper score function, see Gneiting and Raftery (2007), to the corrected predictive

density, the log-score is decomposable into the sum of two components. The first is

the log-score from the initial fitted model. The second is the log-score of the non-

parametric density estimator. Numerical experiments show the contribution of the

latter is small, but positive. This analysis also highlights a desirable interpretation

for the test itself. It may be viewed as a test of conditional predictive ability, in the

spirit of Giacomini and White (2006) comparing the original fitted model with that

of the two-stage procedure.

The tests and quantile estimator are applied to monthly data (adjusted for splits

and dividends) on the S&P500 index, from December 1997 on. A number of simple

time series models (from IID to AR-GARCH specifications) are estimated across

the full sample as well as various sub-samples either side of the onset of the Global

Financial Crisis of 2007/8. Each model’s specification is checked via the proposed

test. Then, exploiting the consistent quantile estimator, predictive confidence bands

can be generated via both recursive and rolling estimation schemes. The quantiles

from the density estimator are shown to be both narrower and have better empirical

coverage than Gaussian quantiles, and those based on a rolling scheme more accurate

than those from the recursive. Value at Risk calculations, as well as predictions for

the probability of a negative return, based on both estimated and fitted Gaussian

quantiles can be directly compared, with significant divergence observed beginning
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early in 2008.

The plan for the rest of the paper is as follows. In the next section a simpler,

unfeasible, goodness-of-fit procedure is presented, in preparation for generalization

to the conditional, dynamic framework with nuisance parameters. Section 3, proves

that the density estimator introduced by Barron and Sheu (1989) remains consistent

in this context, and that the likelihood ratio test is asymptotically standard normal

and consistent against fixed alternatives. The test has power against the same rate of

local alternatives as the original test of Marsh (2007). Section 4 simulates the finite

sample size and power, and compares the latter to that of size-corrected KS and CvM

tests. A corollary to Theorem 1 demonstrates that the quantiles of the data can be

consistently estimated via this nonparametric procedure, further numerical experi-

ments demonstrate this All of the properties of these procedures are demonstrated in

an extended application to monthly S&P500 in Section 5. Section 6 concludes while

all proofs, the tables for the numerical experiments as well as the graphs and further

tables used in the application are in the appendix.

2 Preliminaries

2.1 Perfect Specification

Suppose that {Yi}ni=1 is a sequence of random variables having conditional density

functions fi = fi (Yi|Fi; β), where β is a k× 1 vector of parameters and Fi represents

the information set available at point i in the sample, typically Fi will consist of

both past values of Y as well as past and current values of any predictors. When

β is known, testing the specification of fi trivially collapses to the distribution free

goodness-of-fit (GoF) problem. Marsh (2007) introduced a test for such, via an

exponential series density estimator. Here we first simplify that procedure prior to

subsequent generalization to conditional specifications with unknown parameters.

According to Lemma 1 of Bai (2003) evaluating the conditional cumulative dis-

tribution functions of {Yi}ni=1 at those outcomes generates a sequence of IID Uniform
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random variables. That is we can test whether fi is perfectly specified (i.e. the density

family, parameter and conditioning set are all known) via;

H0 : Fi = Fi (Yi|Fi; β) =

∫ Yi

−∞
fi (y|Fi; β) dy ∼ IID U [0, 1] . (1)

To proceed, construct a sequence {Xi}n1 , where Xi = h (Fi) for some user-chosen

monotone function h (.) . Under H0 the Xi are IID copies of a variable X, having

known distribution and density,

U0(x) = Pr [X < x] & u0 (x) =
dU0 (x)

dx
for x ∈ (0, 1) .

The density u (x) is first approximated via the exponential family,

px(θ) = exp

{
m∑
k=1

θkφk(x)− ψm (θ)

}
, ψm (θ) = ln

∫ 1

0

exp

{
m∑
k=1

θkφk(x)

}
dx, (2)

where the φk(x) are linearly independent functions spanning Rm and ψm (θ) is the

cumulant function, such that px (θ) integrates to one over x.

Let the density u (x) on (0, 1) , satisfy log[u(x)] ∈ W r
2 , the Sobolev space of func-

tions on (0, 1) for which dr−1u (x) /dxr−1 is absolutely continuous and dru (x) /dxr

is square-integrable. According to Crain (1974) and Barron and Sheu (1991) there

exists a unique θ(m) = (θ1, .., θm)′ satisfying

∫ 1

0

φk(x)px
(
θ(m)

)
dx =

∫ 1

0

φk(x)u (x) dx for k = 1, 2, ...,m, (3)

and, as m→∞, px
(
θ(m)

)
and u (x) converge in relative entropy, with

EU

[
ln

(
u (x)

px
(
θ(m)

))] =

∫ 1

0

ln

(
u (x)

px
(
θ(m)

))u (x) dx = O
(
m−2r

)
.

That θ(m) is unique implies that H0 can be tested instead via a simple hypothesis

on θ(m),

H0 : Fi ∼ IID U [0, 1]↔ H0 : θ(m) = θ0
(m), (4)

where θ0
(m) solves (3) with u (x) = u0 (x) = dU0 (x) /dx. A nonparametric likelihood

ratio test in the exponential family (2) is,

λm = 2
n∑
i=1

ln

[
pXi
(
θ̄(m)

)
pXi
(
θ0

(m)

)] ,
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where θ̄(m) is the unique maximum likelihood estimator (MLE) for θ(m) satisfying∫ 1

0

φk (x) px
(
θ̄(m)

)
dx =

∑n
i=1 φk (Xi)

n
for k = 1, 2, ...,m. (5)

Suppose that m,n→∞ with m3/n→ 0, then according to Theorem 1 of Barron

and Sheu (1991), px
(
θ̄(m)

)
converges in relative entropy to u (x)

EU

[
ln

(
u (x)

px
(
θ̄(m)

))] =

∫ 1

0

ln

(
u (x)

px
(
θ̄(m)

))u (x) dx = Op

(m
n

+m−2r
)
,

while Theorem 1 of Marsh (2007) proves,

Λm =
λm −m√

2m
→d N (0, 1) . (6)

Additionally, Λm diverges under any fixed (IID) alternative (i.e. the test is consistent)

and it has power against local alternatives parametrized by θ1
(m) − θ(m) = c

√√
m
n

with c′c = 1 and θ1
(m) satisfies (3) but with u (x) = u1 (x) , the density of X under

the alternative. Note that if we allow m to grow arbitrarily slowly then the local

alternative rate approaches that of EDF based tests, O
(
n1/2

)
.

Application of this procedure can become overly complicated, even in the sim-

plest of GoF problems as in Marsh (2007), through the choices of both the monotone

function h (F ) and on the basis φk (x) . Although different choices may be worth

pursuing on computational or numerical grounds, to simplify as much as is pos-

sible, here we impose h (F ) = F and choose the trigonometric basis, φk (x) =

{cos [2kπx] , sin [2kπx]}m/2k=1 .

2.2 Correct Specification

Assume now that β in (1) is unknown and must be estimated as a preliminary step

prior to application of the likelihood ratio test described above. That is we test that

the conditional density fi is correctly specified, i.e. we know everything about fi

except β. Let β̂n denote a (quasi) maximum likelihood estimator of β obtained from

the sample {Yi}ni=1 using the specified likelihood L =
∏n

i=1 f (Yi|Fi; β) .

Typically the alternative will be the (unspecified) negation of H0. Under such an

alternative, suppose that the observations are instead outcomes of random variables
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having (unspecified) density and distribution functions gi = gi (y|Gi) and Gi (y|Gi),

for some information set Gi, such that either fi 6= gi and/or Fi * Gi for some i.

Denote this alternative via;

H1 : Gi =

∫ Yi

−∞
gi (y|Gi) dy ∼ IID U [0, 1] .

We require the following assumptions on both Fi(y|Fi; β), Gi (y|Gi) and the re-

spective densities f (y|Fi; β) and gi (y|Gi) , to ensure the existence of β̂n and under

which the asymptotic distribution of the proposed test will be derived.

Assumption 1 For all i ∈ Z+:

(i) The densities fi (y|Fi; β) are measurable in y for every β ∈ B, a compact

subset of p−dimensional Euclidean space, and are continuous in β for every y.

(ii) The Gi (y|Gi) are absolutely continuous distribution functions and such that

supiEFi [log[gi (y|Gi)] exists and supi |log fi (yi|Fi, β)| < v (y) for all β where

v (.) is integrable with respect to G (.) .

(iii) Let

Ii (β) = EFi

[
ln

[
gi (y|Gi)

fi (yi|Fi, β)

]]
=

∫
y

ln

[
gi (y|Gi)

fi (yi|Fi, β)

]
gi (y|Fi) dy,

such that Ī (β) = limn→∞ n
−1
∑n

i=1 Ii (β) has a unique minimum at β∗ ∈ B.

(iv) Fi (Yi|Fi, β) is continuously differentiable with respect to β and Hi (β) =

dFi (Yi|Fi, β) /dβ is finite for all β in a closed ball of radius n−1/2 around β∗.

(v) Both log [gi (y|Gi)] and log [fi (yi|Fi, β)] have r ≥ 2 derivatives in y which

are absolutely continuous and square integrable.

Note that, under H0, together Assumption 1(i), (ii) and (v) and monotonicity of

Fi(y|Fi; β) are suffi cient for assumption A1 of Bai (2003) to hold. In addition assump-

tion (iii) implies that, for the log-likelihood criterion, the conditions of Theorems 2.2

and 2.3 of Domowitz and White (1982) are met, and therefore β̂n exists and

β̂n = β∗ +Op(n
−1/2).
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That is, β̂n is a
√
n consistent Quasi maximum likelihood estimator for the pseudo-

true value β∗. Note that under H0 we have β∗ = β, while under H1 we will have

β∗ 6= β.

To derive the test, first denote X̂i = F
(
Yi|Fi, β̂n

)
, with the mean value expansion

X̂i = Fi (Yi, β∗) +
(
β̂n − β∗

)′
Hi

(
β+
)
,

where β+ lies on a line segment joining β̂n and β∗. As a consequence, we can write

X̂i = Xi + ei, (7)

where, although unobserved, under H0, Xi = Fi (Yi, β) ∼ IID U [0, 1] , while under

H1, Xi = Fi (Yi, β∗) � IID U [0, 1] . Both by construction and as a consequence of

Assumption 1 (iv),

ei ∈ (−1, 1) & ei = Op

(
n−1/2

)
. (8)

In general, in (7) ei will be both heterogeneous and dependent. However, for what

follows it is only necessary that it is both bounded and degenerate.

The modification required to deal with the fact that β must be estimated is as

follows. We are still testing on the distribution U0(x) (here the Uniform distribution)

however we do not observe outcomes on Xi, but instead those on X̂i. Trivially, the

uniform density satisfies log [u (x)] ∈ W∞
2 .

The maximum likelihood estimator for the parameter in the exponential family

(2), say θ̂(m), based on the likelihood L̂
(
θ(m)

)
=
∏n

i=1 pX̂i
(
θ(m)

)
satisfies

∫ 1

0

φk (x) px

(
θ̂(m)

)
dx =

∑n
i=1 φk

(
X̂i

)
n

for k = 1, 2, ...,m, (9)

which follows from (5) and using (7).

In the presence of nuisance parameters, testing the specification of fi (Yi|Fi; β) ,

will entail testing H0 : Xi ∼ IID U [0, 1] (equivalently, H0 : θ(m) = 0(m), similar to

(4)) but using the likelihood ratio

λ̂m = 2

n∑
i=1

ln

pX̂i
(
θ̂(m)

)
pX̂i
(
0(m)

)
 = 2

n∑
i=1

ln pX̂i

(
θ̂(m)

)
, (10)
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since the Xi are not observed. The following section details the asymptotic properties

of λ̂m.

3 Asymptotic Properties

3.1 Density estimator under H0

First it is required that the density estimator still converges in relative entropy to

the (in this case Uniform) density of Xi. If not then H0 : Xi ∼ IIDU(0, 1) is not

equivalent to H0 : θ(m) = 0(m).

Key to the required generalization is that, in (7), we do not observe directly a

sample from the random variable upon which the hypothesis is being tested. If we

knew β we could observe Xi directly and obtain the maximum likelihood estimator

θ̄(m) via (5). Instead, in the nuisance parameter case, we only observe X̂i and obtain

θ̂(m) via (9) and apply Portnoy’s (1988) test, (10), using that.

For a given m, this test is just an application of a likelihood-ratio test in a linear

exponential family. For the given choice of basis φ(m) (x) = (φ1 (x) , ..φm (x))′ , define

the m dimensional statistics x̄(m) and x̂(m), by

x̄(m) =

(∑n
i=1 φk (Xi)

n

)m
k=1

and x̂(m) =

∑n
i=1 φk

(
X̂i

)
n

m

k=1

.

Asymptotic properties will be driven by the difference between the observed suffi cient

statistic x̂(m) in the correctly specified case with the unobserved x̄(m), pertaining to

perfect specification.

The respective maximum likelihood estimators, θ̄(m) and θ̂(m) then satisfy∫ 1

0

φ(m) (x) px
(
θ̄(m)

)
dx = x̄(m) and

∫ 1

0

φ(m) (x) px

(
θ̂(m)

)
dx = x̂(m). (11)

Standard properties of the linear exponential family still apply, specifically the duality

between the (suffi cient statistic) sample space, say Tm, and the parameter space, say

Θm. As in Barndorff-Nielsen (1978), consider arbitrary points in both Tm and Θm,
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ω(m) = {ω1, .., ωm}′ ∈ Fm and θ∗(m) = (θ1, .., θm) ∈ Θm then the system ofm equations∫ 1

0

φk (x) px
(
θ∗(m)

)
dx = ωk, k = 1, ..,m, (12)

has a unique solution. Denote this solution
〈
θ∗(m) : ω(m)

〉
, where ω(m) = (ω1, .., ωm)′ .

That is solving (12) generates a one-to-one mapping between Tm and Θm.

Here we will be interested in three pairs of points in each space and the map-

ping between them. As well as the statistics x̄(m) and x̂(m) in Tm, we have µ(m) =

EU
(
φ(m) (x)

)
. The three solutions to (12) we are interested in are:

〈
θ(m) : µ(m)

〉
,
〈
θ̄(m) : x̄(m)

〉
and

〈
θ̂(m) : x̂(m)

〉
, (13)

where the latter two are the unfeasible and feasible MLEs defined in (11) and the

first represents the population exponential parameter and mean vectors. Note that

although these points in (13) depend on the choice of basis φ, here we will suppress

the dependence for notational brevity, and that under H0, µ(m) = 0(m).

In summary, θ(m) in Θm maps from the expectation of the (unobserved) statistic

x̄(m), µ(m) = E
[
x̄(m)

]
. The (unfeasible) MLE for θ(m), if x̄(m) were observed, is

θ̄(m), while for the observed suffi cient statistic x̂(m), the (feasible) MLE is θ̂(m). By

exploiting these dualities, we first show that the estimated density px
(
θ̂(m)

)
converges

in relative entropy at exactly the same rate as px
(
θ̄(m)

)
. The proof of the following

theorem is proved in Appendix A.

Theorem 1 Let θ̂(m) denote the estimated exponential parameter determined by (9)

then under Assumption 1 and for m,n→∞ with m3/n→ 0,

EU

ln

 1

px

(
θ̂(m)

)
 =

∫ 1

0

ln

 1

px

(
θ̂(m)

)
 dx = Op

(m
n

)
.

According to Theorem 1, in terms of the density estimator, at least, the effect

of observing
{
X̂1, .., X̂n

}
rather than {X1, .., Xn} is asymptotically negligible under

Assumption 1. It should not be surprising that the rate of convergence is unaffected

when parameters are replaced by
√
n consistent estimators.
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3.2 Properties of the Likelihood Ratio Test

Full implementation proceeds as follows. Let X̂i = F
(
Yi, β̂n

)
and Xi = F (Yi, β)

where Xi has uniform distribution and density u (x) = 1, then testing H0 as in (1) is

equivalent to testing

H0 : θ(m) = 0(m),

in the exponential family (2). The likelihood ratio test of Portnoy (1988) applied via

the density estimator of Crain (1974) and Barron and Sheu (1991) obtained from the

sample
{
X̂1, .., X̂n

}
is

λ̂m = 2
n∑
i=1

log

pX̂i
(
θ̂(m)

)
pX̂i
(
0(m)

)
 = 2n

[
θ̂
′
(m)x̂(m) − ψm

(
θ̂(m)

)]
,

where θ̂(m) solves (9). The null hypothesis is rejected for large values of λ̂m.

Consider the fixed alternative

H1 : Gi (y|Gi) 6= Fi (yi|Fi; β) (14)

such that the sequence Xi = Fi (Yi; β∗) is not uniform, identical or independent, in

general, and satisfies;

lim
n→∞

n−1
∑n

i=1
φk (Xi) = µ1

k 6= 0 for some value(s) of k ∈ Z+. (15)

For every such alternative distribution for Y , then via the unique duality implied by

(12) there will be a unique alternative distribution for X on (0, 1). Associated with

that distribution will be another consistent density estimator given, say px(θ
1
(m)). In

practice, of course, θ1
(m) will be neither specified nor known. The following Theorem,

also proved in Appendix A, gives the asymptotic distribution of the likelihood ratio

test statistic under (4) and demonstrates consistency against any fixed alternative,

as defined by (14).

Theorem 2 Suppose that we construct
{
X̂i

}n
i=1

as described above, that the condi-

tions required in Assumption 1 are met and that m,n→∞ with m3/n→ 0, then:
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(i) Under the null hypothesis (1),

Λ̂m =
λ̂m −m√

2m
→d N(0, 1).

(ii) Under a fixed alternative (14), and for any finite κ,

Pr
[
Λ̂m ≥ κ

]
→ 1.

Theorem 2 demonstrates that for any fixed alternative that leads to the PITs

being non-uniform on (0, 1) the test will consistently reject. Since these asymptotic

results arise via convergence to what pertains in the (unfeasible) perfect specification

case, the test will have power against the same rate of local alternatives. This implies

that O
(
n1/2

)
can be attained when m is grown arbitrarily slowly.

Alternatives which imply that the sequence {Xi}n1 remains marginally uniform

- i.e. (15) does not hold- cannot be altogether dismissed. Consequently, a test for

independence might also be applied in the event of non-rejection by Λ̂m. Such a test

is, for instance, detailed in Lin and Wu (2017). Here, however, we will wish to pursue

the option of exploiting the density estimator upon which Λ̂m is based, to instead

provide corrected (conditional) quantiles for the data. The conditions under which

such is possible will then negate the need to test for independence among the {Xi}n1 .

4 Numerical Properties

The purpose of this section is to illustrate the properties of the nonparametric likeli-

hood tests and estimators described above. First we explore, numerically, the impli-

cation of Theorem 2(i), that as we increase the model dimension m and as the sample

size n increases, critical values from the standard normal distribution apply. Both

unconditional and conditional model specifications are employed to this end.

We then compare the powers of two versions of the test (m = 4, 10) against

standard EDF based tests in this field, the Kolmogorov-Smirnov (KS) and Cramer-
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von Mises (CvM) tests. I.e. those that form the basis for the operational procedures

in Andrews (1997) and Bai (2003).

The last set of experiments concern what we may do if the test rejects the null

hypothesis. The tests of this paper are based on a consistent density estimator. We

can simulate mean-square errors for the estimators of the quantiles of the correct

distribution, when an incorrect distribution is used to generate the PITs. Again both

conditional and unconditional model specifications are employed. All experiments

detailed below were performed using Mathematica 8 and are based on 10000 Monte

Carlo replications. All tables of outcomes are presented in Appendix B.

4.1 Numerical properties under the null

Theorem 2 proves that the likelihood ratio test Λ̂m is asymptotically pivotal, specif-

ically standard normal, and consistent against fixed alternatives. Competitor tests,

such as KS and CvM these tests are mathematically detailed in Stephens (1976).

Outside of the IID case, such tests require either significant adaptation to be ap-

plicable, or bootstrap schemes need to be both formally justified and applied. The

proposed test requires neither.

Tables B1 and B2, provide rejection frequencies for the test Λ̂m for values of

m = 2, .., 12, for sample sizes n = 25, 50, 100, 200 and for three significance levels,

α = 0.01, 0.05, 0.10.

We are first interested in testing the unconditional null hypotheses

HE
0 : Y ∼ Exp (β) & HN

0 : Y ∼ N
(
µ, σ2

)
.

Letting ȳ and σ̂2 be the estimated mean and variance (i.e. β̂n = ȳ for HE
0 and

β̂n =
(
ȳ, σ̂2

)′
for HN

0 ) then the tests are constructed from the mapping to (0, 1) , i.e.

from X̂i = 1− e−Yi/ȳn to test HE
0 and X̂i = 1

2

[
1 + erf

(
Yi−ȳn
σ̂n

)]
to test HN

0 . Table B1

provides rejection frequencies for both cases. Values of β = 1 for HE
0 and β = (0, 1)′

for HN
0 were chosen to generate the data.

We also generalizeHN
0 so as to allow for both heterogeneity and dependence. First
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let Fi = (Yi−1, .., Y0) and test that {Yi}n1 is generated by a simple autoregression;

HAR1
0 : Yi|Fi ∼ N

(
γ0 + γ1Yi−1, σ

2
)
,

with Y0 = 0. Second let Zi ∼ IID U [0, 1] and Fi = (Zi−1, ..., Z0) , and test that {Yi}n1
is generated by a simple predictive regression;

HPR
0 : Yi|Fi ∼ N

(
γ0 + γ1Zi−1, σ

2
)
,

with Z0 = 0. In both cases β = (γ0, γ1, σ
2)
′ and we take β̂n to be the OLS estimator

for those parameters. To generate the data we set β = (0.5, 0.5, 1)′ .

Table B2 provides rejection frequencies for HAR1
0 (left) and HPR

0 (right). What

is demonstrated in Tables B1 and B2 is that for all four cases the procedures de-

scribed finite sample rejection frequencies do become close to nominal as both n and

m increase. That this happens across a range of significance levels illustrates the

asymptotic pivotal nature of the tests more clearly than if only a single significance

level were chosen.

4.2 Numerical properties under the alternative

No purpose is served by comparing null rejection frequencies with those tests that are

not asymptotically pivotal. Instead, table B3 compares the 5% size corrected powers

of the base KS and CVM tests. For a single sample size of n = 100, tables B3a and

B3b compare (size corrected) rejection frequencies for Λ4 and Λ10 against those for

the KS and CvM tests for testing HN
0 under alternatives that the data is instead

drawn from,

Ha
1 : Y ∼ t(v), Hb

1 : Y ∼ χ2
(v) − v.

Tables B3c, B3d and B3e consider alternatives where the moments of the data

are not correctly specified, i.e.

Hc
1 : Yi|Fi ∼ N (vYi−1, 1) ,

Hd
1 : Yi|Fi ∼ N

(
0, 1 + vY 2

i−1

)
,

He
1 : Yi ∼ N (v × 1 (i > bn/2c) , 1) ,
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where 1 (.) denotes the indicator function. These latter three alternatives represent

simplistic variants of common types of mis-specification in econometric or financial

data, i.e. mis-specification of a conditional mean, variance or the possibility of a break

in the mean (here half way through the sample). Note that these models trivially

satisfy Assumption 1, but Xi as defined in (7) will not be IID on (0, 1) . Lastly, table

B3f considers testing HE
0 against the alternative

Hf
1 : Y ∼ Γ (1, v) .

Note that for each table the left hand panel corresponds to the case where we

construct the test imposing the parameter values specified in the null rather than

estimating them (i.e. using the test in (6)), whereas the right hand panels do not

impose these values.

The outcomes in Table B3 imply the following broad conclusions. The nonpara-

metric likelihood test based Λ̂4 is the most powerful almost uniformly, across all

alternatives and whether parameters are estimated or not. The observed lack of

power of the most commonly used test, KS, is particularly evident, it is consistently

the poorest performing test.

Collectively, from these first 3 tables we conclude that Λ̂10 has size close to nominal

and power on average superior to that of the EDF based tests. Its prime advantage,

however, is that it is based on an asymptotically pivotal procedure.

4.3 Density estimation under the alternative: location-scale

time series

The final shortcoming of EDF based tests of goodness-of-fit, and diagnostics in gen-

eral, is that rejection of the null hypothesis is not indicative of how the specification

could or should be changed. The tests of this paper, however, are based on the con-

sistent nonparametric density estimator of Barron and Sheu (1991). This consistency

can readily be extended to the current context of the presence of nuisance parameters

in conditional, rather than marginal, densities.
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Suppose that the data are generated according to

Yi = µi|Fi (β) + σi|Fi (β) εi, i = 1, ..., n, (16)

where µi|Fi (β) = E [Yi|Fi] and σ2
i|Fi (β) = E

[(
Yi − µi|Fi (β)

)2 |Fi
]
represent the con-

ditional mean and variance of Yi, respectively. These depend on some unknown k× 1

dimensional parameter β. Suppose data is generated according to (16) with β = β0,

some fixed value in Rk. Let β̂n denote any (quasi maximum likelihood) estimator for

β, satisfying,
√
n
(
β̂n − β0

)
= Op (1) .

That is we require that the estimator for β0 is consistent under both the null (that

the conditional distribution is correctly specified) and the alternative (that the error

distribution is different from that specified under the null). We additionally make

the following assumption:

Assumption 2: (i) In (16) assume that the process {εi}n1 is IID, E [ε1] = 0 and

V [ε1] = 0, having density function gε1 (e) , and

(ii) Let B denote a closed ball of radius cn−1/2, for some finite c > 0, centered

on β0 then the conditional mean and variance of Yi satisfy

sup
i,β∈B

∣∣∣µi|Fi (β̂n)− µi|Fi (β0)
∣∣∣ = Op

(
n−1/2

)
and

sup
i,β∈B

∣∣∣σi|Fi (β̂n)− σi|Fi (β0)
∣∣∣ = Op

(
n−1/2

)
.

Assumption 2 is satisfied for a range of parametric and semi-parametric time series

models, such as those generated by ARMA and/or GARCH processes. Under this

assumption define, for any β ∈ B the generalized residuals (e.g. see Randles (1984))

by

εi (β) = σ−1
i|Fi (β)

(
Yi − µi|Fi (β)

)
,

so that εi ∼ IID ε1, with density gε1 (ε) . Now suppose that f (ε) and F (ε) are

any density and invertible cumulative distribution function (with f (ε) = dF (ε) /dε)

satisfying the conditions of Assumption 1 then we immediately obtain the following

corollary to Theorem 1.
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Corollary 1 Let ε1 have density gε1 (ε) , and define the variables X̂i = F
(
εi

(
β̂n

))
and Xi = F (εi (β0)) , so that Xi ∼ IIDX on (0, 1). Let T̂n,m ∈ (0, 1) be a

random variable having density function pt
(
θ̂(m)

)
where θ̂(m) is defined by (9),

then whether or not gε1 (ε) = f (ε) ,

T̂n,m →
L
X,

as n,m → ∞,m3/n → 0. I.e. T̂n,m converges in law to the random variable

X.

Assumption 2 requires that the model is correctly specified, but only up to the

conditional mean and variance (not the distribution of the errors εi) and that the for-

mer may be consistently estimated to order Op

(
n−1/2

)
. Note also that under these

conditions the independence of the {Xi}n1 can be assured via standard time series

methods, such as consistent lag-length selection in the specification of both condi-

tional mean and variance.

The accuracy of the resulting consistent quantile estimators is explored in the

following numerical experiments. Suppose {Yi}n1 is generated by the AR(1) model,

Yi = γ0 + γ1Yi−1 + εi, (17)

and define µ̂i|Fi = γ̂0,n + γ̂1,nYi−1 and σ̂i|Fi =

√∑n
i=1(Yi−γ̂0+γ̂1Yi−1)2

n−2
, where γ̂0,n and

γ̂1,n are OLS estimators. Apply the series density estimator to the sample

X̂i =
1

2

[
1 + erf

(
σ̂−1
i|Fi

(
Yi − µ̂i|Fi

))]
, i = 1, ..., n,

and construct quantile estimators, for each Yi (from the resulting density estimator

pt

(
θ̂(m)

)
, which has quantiles qT̂n,m (π)) via

q̂Yi (π) = µ̂i|Fi + σ̂i|Fi
√

2 erf −1
(

2qT̂n,m (π)− 1
)
.

Putting γ0 = 1 and γ1 = 0.3, the mean square errors of q̂Y i (π) are presented in

Tables B4a (for εi ∼ t̄(4), standardized t) and Table B4b (for εi ∼ χ̄2
(4), standardized

χ2) for both m = 4 and m = 10. The estimated quantiles converge numerically to
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their population counterparts, albeit slowly in the case of the extreme quantiles in the

very skewed case. In small samples increasing the dimension of m has no significant

impact on the accuracy. That is although a large value of m is required for the test

statistic to be correctly sized, such is not required to accurately estimate (under the

conditions of Corollary 1) the quantiles of the process generating the data.

A final implication of Corollary 1 is that it allows for the nonparametric estimator

pt

(
θ̂(m)

)
to correct the logarithmic predictive score of the fitted model F

(
εi

(
β̂n

))
.

As in the proof of Corollary 1 let px
(
θ1

(m)

)
be defined as in (A.12), which converges

in relative entropy to u1 (x) the density function of Xi = F (εi (β0)) . Defining the

inverse mapping εi = F−1 (Xi; β0) , then the change of variable formula implies that

gε1 (ε) = px
(
θ1

(m)

)
× f (ε1 (β0)) ,

so that (in sample) predictive log-scores (see for example, Gneiting and Raftery

(2007)) can be corrected, according to

L̂Si = ln pX̂i

(
θ̂(m)

)
+ ln fY i

(
β̂n

)
, (18)

where fY i
(
β̂n

)
= f

(
σ̂−1
i|Fn

(
Yi − µ̂i|Fn

))
is the in sample log-score for the original fit-

ted model and ln pX̂i

(
θ̂(m)

)
is the log-score obtained from the second, nonparametric,

stage.

To illustrate, the model in (17) was simulated with standardized t̄v errors, with

v = 4, 8. For each case, and for sample sizes from 25 to 200, a (mis-specified) Gaussian

AR(1) was estimated and, from the resulting PITs, px
(
θ̂(m)

)
also estimated, for m =

4, 10. Monte-Carlo averages for both components of (18) are reported in Table B4c.

In addition the log-scores for correctly specified Student t models (first assuming v is

known, and second estimating v via profile likelihood) are presented for comparison.

The log-score is not a metric, so for comparative purposes note that a perfectly

specified IID student t̄4 has a log-score of −1.682. The gains from the second stage

are not huge, however the procedure can recover up to around 15% of the log-score

lost by estimating the mis-specified model. As with quantile estimation there is little

or no gain from increasing m.
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Finally note that (18) offers a useful interpretation of the test, in light of the

predictive ability tests of Giacomini and White (2006). The null hypothesis is that

f (εi (β0)) , is correctly specified. Under this null E
[
ln pX̂i

(
θ̂(m)

)]
= 0, and the

quadratic loss from fitting the model f (εi (β0)) compared to the ‘corrected’gεi (ε)

can be measured by
(

ln pX̂i

(
θ̂(m)

))2

. Applying this to out-of-sample PITs and con-

structing the relevant test of Giacomini and White (2006) would form an alternate

predictive specification test. This would be at the cost of dedicating a portion of the

sample to estimate the unknown parameters, unlike the proposed test.

4.4 Guidance on implementation

According to Theorem 2 to test conditional specification, Gaussian critical values for

the statistic Λ̂(m) will be asymptotically correctly sized provided only that m → ∞,

while m3/n→ 0. Also under this rate, according to Corollary 1, estimated quantiles

for the data based on the statistic Tn,m, having density pt
(
θ(m)

)
, will be consistent.

However, the rate of local-alternative against which Λ̂m has power, declines with m.

This potential trade-off is evident in the numerical results presented above this

Section. Specifically the test is well sized whenm is large - for all sample sizes - but has

slightly higher power for smaller values of m. The properties of the density estimator

are however rather insensitive to the value of m. Further, the relative computational

times for the two cases used in Section 4.3 are important. Using Mathematica 8, on

average estimating θ̂(4) took approximately 14% of the time to estimate θ̂(10), 0.48s

against 3.46s.

Together these findings point to a recommended implementation. For the test,

Λ̂m then for the kinds of sample sizes considered here a value, m∗ = 10 can be chosen

and then m need only grow arbitrarily slowly,

m = bm∗ × nεc ,

for any ε > 0. Given the significantly greater computational burden for larger values

ofm then a smaller value ofm∗ can be chosen to implement the density estimator, say
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m∗ = 4. In the following section we exploit this and apply both test and (recursively

through the sample) density estimator to some monthly returns data, in order to

showcase their properties and usefulness as new financial econometric tools.

5 Application: Monthly S&P500 Returns

Let Pi denote the end of month price for the S&P500 index, adjusted for both stock

splits and dividends, obtained from https://finance.yahoo.com. The n = 240 obser-

vations, from January 1998 to December 2017, for monthly returns Yi = ln (Pi/Pi−1)

are collated and graphed in Figure C1 in Appendix C, which contains all graphs

pertaining to this application. The standardized correlograms for both returns and

squared returns (scaled by
√
n) are graphed in Figure C2, along with significance

lines at ±2. Over this period there is no significant correlation in returns at any lag,

while only the first five lags are significant for squared returns.

This particular sample has been chosen because it straddles the global financial

crisis of 2007/8. It therefore offers the opportunity to not only apply the procedures

developed here for their own sake, but also explore their usefulness as applied financial

econometric tools in exposing such phenomena.

5.1 Fitting and testing standard models

On the basis of the correlograms described above, the fitted models considered are

all nested within the following (atheoretical) AR(1)−GARCH(1, 1) model;

Yi = γ0 + γ1Yi−1 + zi ; zi = σiεi,

σ2
i = δ0 + δ1ε

2
i−1 + δ2σ

2
i−1, i = 1, .., n.

Denote the unrestricted model M1. Model M2 imposes δ2 = 0, M3 imposes δ1 =

δ2 = 0. Model M4 imposes γ1 = 0, M5 imposes γ1 = δ2 = 0 and, lastly, M6 imposes

γ1 = δ1 = δ2 = 0. Thus, M2 is an AR(1)−ARCH(1), M3 is a simple AR(1), M4 and

M5 are constant mean GARCH(1, 1) and ARCH(1) whileM6 implies the data is IID.
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Two assumptions are made for the idiosyncratic error process {εi}n1 , i) εi ∼ iidN (0, 1)

and ii) εi ∼ iid t̄(v), i.e. the standardized (unit variance) student t distribution, with

v degrees of freedom. Parameters are estimated via the (quasi) likelihood procedures

outlined in Bollerslev (1986, 1987).

We also consider four sub-samples; a) Jan. 1998 to Dec. 2003, b) Jan. 1998 to

Dec. 2007, c) Jan. 2008 to Dec. 2017 and d) Jan. 2013 to Dec. 2017 in addition to

the entire data set. First we evaluate Λ̂10 for all six fitted models across all samples.

The asymptotic p-value of the outcome of each test statistic is presented in the tables

below:

Table 5.1: Asymptotic p-value of Λ̂10 across subsamples of S&P500 Returns;

Assumption (i): εt ∼ IID N (0, 1)

Start End n M1 M2 M3 M4 M5 M6

01/98 12/02 60 .11385 .18462 .12229 .18957 .22602 .16996

01/98 12/07 120 .09947 .01900 .03074 .06776 .01806 .02853

01/98 12/17 240 .28006 .01601 .00018 .28234 .00542 .00025

01/08 12/17 120 .48300 .64644 .30116 .17346 .22931 .20657

01/13 12/17 60 .89109 .89257 .74563 .72437 .70279 .60518

Table 5.2: Asymptotic p-value of Λ̂10 across subsamples of S&P500 Returns;

Assumption (ii): εt ∼ IID t̄(v)

Start End n M1 M2 M3 M4 M5 M6

01/98 12/02 60 .09788 .10912 .06599 .06788 .15797 .06259

01/98 12/07 120 .08168 .00807 .03791 .08771 .01875 .04226

01/98 12/17 240 .32482 .02057 .00027 .27923 .00994 .00118

01/08 12/17 120 .50373 .60469 .29824 .20443 .18286 .30114

01/13 12/17 60 .91389 .79154 .70613 .74545 .80098 .75838

In small samples, we cannot reject the specification of any of the models at the

5% level. Although none of the estimated values are presented - these are relatively

straight forward to reproduce. In all cases the estimated degrees of freedom for

t̄v were in line with those reported in the previous study of Bollerslev (1987). The
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standardized t specification does not offer a uniformly better conditional specification,

as measured by the asymptotic p-value. Moreover, in no case does it change the

outcome of the test at any sensible significance level.

On the basis of the results presented in Tables 5.1 and 5.2, we will narrow the

focus and consider two Gaussian models, M1 which is ‘correctly specified’ across

those (sub)samples, and M6 which is only ‘correct’ in small samples. Note that,

unlike many other predictive or conditional specification tests those of this paper are

asymptotically valid in either a recursive or rolling sampling scheme, provided the

rolling window width is asymptotic.

Extending the analysis in Table 5.1 we can recursively evaluate the asymptotic

p-value for the Λ̂10 statistic for the Gaussian versions of M1 and M6 based on the

samples obtained for t = 1, .., n1 where we allow n1 = 60, ..., n. These are plotted

in Figure C3. Similarly we can construct rolling five year windows (R = 60) of

observations t = 1 +R, ..., R+n1 as n1 = 1, .., n−R and evaluate the the asymptotic

p-value of Λ̂10 applied to each window of observations. These, for M1 and M6 are

plotted in Figure C4.

When recursively applied Λ̂10 is insignificant for both models in the smallest sam-

ples but becomes significant for both as the sample expands to include the period

prior to the financial crisis. Beyond 2009, however, the GARCH model M1 is then

not rejected, while M6 is always subsequently rejected. Under a rolling scheme the

significance of the tests for M1 and M6 are more similar, albeit much more volatile,

over the whole sample. They diverge only over the window of observations spanning

the mid-2000s, when M6 is rejected consistently, but M1 is not.

Broadly speakingM1 does seem to fit the data over most recursive or rolling sam-

ples, while the structurelessM6 does not. Here, we will employ the second function of

the nonparametric density estimator to construct both predictive interval and prob-

ability estimates in order to gauge the value that doing so will add, whether the first

stage specification is ‘correct’or not.
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5.2 Estimated predictive intervals: recursive and rolling sam-

pling schemes

To proceed, take the first 5 years of observations (n1 = 60), then for the n1 + 1th

observation the estimated conditional mean and standard deviation can be denoted

µ̂n1+1|Fn1+1
and σ̂n1+1|Fn1+1 . On the basis of the first n1 observations the series density

estimator applied to the in-sample PITs yields quantiles (on (0, 1)) which we can

denote q̂n1+1 (π), for 0 < π < 1. An estimator of the predictive quantiles for the

n1 + 1th observation is then

q̂Yn1+1 (π) = µ̂
n1+1|Fn1+1

+ σ̂n1+1|Fn1+1
√

2 erf −1 (2q̂n1+1 (π)− 1) . (19)

Allowing n1 = 60, 61, ..., n−1, then from (19) we can construct the sequence of recur-

sive predictive confidence intervals for Yn1+1, of the form
{
q̂Yn1+1 (π) , q̂Yn1+1 (1− π)

}
having nominal (1− 2π) coverage.

It is to be expected that if the models are mis-specified in accordance with the con-

ditions of Corollary 1 then the resulting predictive intervals should have better cover-

age than intervals formed from the Gaussian distribution, N
(
µ̂
n1+1|Fn1+1

, σ̂2
i+1|Fn1+1

)
.

Denote the average width of the recursive confidence interval obtained by fitting

model Mj using quantiles from (19) by ω̂m,Mj
and its actual coverage by α̂m,Mj

and

the equivalent obtained from Gaussian quantiles by ω̃G,Mj
and α̃G,Mj

. The realized

coverage and average width of these intervals are presented in Table 5.3, below.

Table 5.3: Coverage (α) and Width (ω) of Recursive S&P500 CIs

1− 2π α̂4,M1 α̃G,M1 ω̂4,M1 ω̃G,M1 α̂4,M6 α̃G,M6 ω̂4,M6 ω̃G,M6

0.50 .5922 .6424 .0548 .0595 .6201 .6480 .0561 .0635

0.60 .7150 .7263 .0692 .0743 .7460 .7598 .0712 .0793

0.70 .7821 .8045 .0865 .0914 .8044 .8268 .0899 .0977

0.80 .8547 .8715 .1086 .1131 .8604 .8771 .1143 .1208

0.90 .9217 .9330 .1413 .1451 .9106 .9274 .1501 .1550

The previous analysis was based upon a recursive predictive scheme. However,
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the results in Table 5.1 are suggestive that as the sample size becomes large, simpler

models are not correctly specified. Instead, therefore, we might also consider a rolling

predictive scheme. As above let R = 60 denote a fixed window and let Fn1+1|R denote

the truncated information set at time n1 given (here) only the R observations Yn1−R+1

to Yn1 and let µ̂n1+1|Fn1+1|R and σ̂n1+1|Fn1+1|R denote the rolling estimators for the

conditional mean and variance of Yn1+1. Rolling predictive quantiles, say q̂n1+1|R,m (π)

are then formed analogously to the method described above. The realized coverage

and average width of those, and the other intervals, are presented in Table 5.4, where

we employ the additional superscript R to signify the employment of the rolling

estimation scheme in their construction.

Table 5.4: Coverage (α) and Width (ω) of Rolling S&P500 CIs

1− 2π α̂R4,M1
α̃RG,M1

ω̂R4,M1
ω̃RG,M1

α̂R4,M6
α̃RG,M6

ω̂R4,M6
ω̃RG,M6

0.50 .5474 .5754 .0555 .0570 .5698 .5922 .0493 .0579

0.60 .6481 .6481 .0711 .0714 .6759 .7430 .0645 .0724

0.70 .7653 .7653 .0891 .0886 .7709 .7878 .0825 .0891

0.80 .8436 .8492 .1084 .1106 .8324 .8547 .1049 .1102

0.90 .8994 .8994 .1391 .1415 .8927 .8883 .1371 .1414

Across tables 5.3 and 5.4, the Gaussian predictive confidence intervals are both

wider and have poorer coverage. This is true even if the Gaussian model is correctly

specified, according to the p-value of Λ̂10. Employing a richer model, i.e. M1 rather

than M6 and also employing a rolling rather than recursive estimation scheme both

lead to narrower and more accurate predictive intervals.

This general finding is borne out in the average predictive log-scores for both

the fitted Gaussian model and the non-parametric density estimator applied to the
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recursive, then rolling out-of-sample PITs. These are presented in Table 5.5:

Table 5.5: Realized average log-scores,

Model M1 M1 M6 M6

ln fYn1+1

(
β̂n1

)
ln pX̂n1+1

(
θ(4)

)
ln fYn1+1

(
β̂n1

)
ln pX̂n1+1

(
θ(4)

)
Recursive 1.95807 0.05200 1.78688 0.06486

Rolling 1.96761 0.02895 1.75993 0.03572

Both in terms of the interval prediction and evaluation of the probability forecast

as a whole, the contribution of the second stage series density estimator is positive.

Although it is diffi cult to draw general conclusions it seems clear that, in practice,

assuming Gaussianity implies less certain inference. This would then have significance

for practitioners using such to evaluate the riskiness of any investment in this index.

5.2.1 Value at Risk and the Probability of Negative Returns

To that end, one obvious application of a method which provides consistent estimation

of the quantiles of the distribution of a financial variable is to calculate the value at

risk. See Duffi e and Pan (1999) for an overview. Denoting the π-quantile of returns

for time n1 + 1 by qn1+1 (π) , then the VaR at time n1, say V aRπ,n1+1, is

V aRπ,n1+1 = (1− eqn1+1(π))Pn1 ,

where Pn1 is the value of the asset at time n1.

Here Pn1 will be the S&P500 price at time n1, and we can estimate the quantiles

via either q̂n1+1,4 (π) or q̂n1+1|R,4 (π) for the recursive and rolling schemes and compare

with that obtained from Gaussian quantiles, q̂n1+1,G (π) or q̂n1+1|R,G (π). Figure C4

plots the relative difference between the predictive VaRs obtained from the estimated

and Gaussian quantiles, i.e.

υ̂n1 =
(1− eq̂n1+1,4(π))

(1− eq̂n1+1,G(π))
& υ̂n1|R =

(1− eq̂n1+1|R,4(π))

(1− eq̂n1+1|R,G(π))

It is seen above that the second nonparametric stage is able to correct mis-specified

predictive quantiles (as in Table B4) and offers superior predictive intervals (as in
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Tables 5.3 and 5.4). Consequently significant deviation from one of υ̂n1 implies that

performing VaR calculations using Gaussian quantiles will likely be inaccurate.

In figure C4 the relative quantiles are plotted forM1 (solid line) andM6 (dashed)

and both Recursive (Fig. C4a) and Rolling (Fig. C4b) estimation schemes. Naturally

one would expect the relative quantiles (nonparametric to Gaussian), and hence VaR,

to diverge for the simpler, less well-specified model. Although the divergence is

smaller for the better specified M6 it remains present throughout the sample and

correlates well to the p-values of the Λ̂10 test, particularly when applied recursively.

Finally, as well as producing predictive quantiles, the density estimator pt
(
θ̂(4)

)
can be used to produce predictive probabilities for particular (sets of) outcomes of

the returns. Here we will predict the probability of a negative return. To do so, let

π̂0
n1+1,G =

∫ 0

−∞
Ξ
(
µ̂
n1+1|Fn1

, σ̂2
n1+1|Fn1

, y
)
dy,

where Ξ (µ, σ2, y) denotes the CDF of a N (µ, σ2) random variable, evaluated at y.

Thus π̂0
n1+1,G represents the Gaussian estimator, at time n1, of the probability of a

negative outcome for Yn1+1 .

The nonparametric estimator for this quantity is instead,

π̂0
n1+1,4 =

∫ π̂0n1+1,G

0

pt

(
θ̂(4)

)
dt.

Again these probability estimators can be recursively constructed through the sample

as n1 = 60, .., 239 and are plotted in Figure C5. Figure C5a plots the percentage(
π̂0
n1+1,m

)
/π̂0

n1+1,G, constructed from both M1 and M6. As was done for predictive

VaR, we can also construct two rolling sequences of predicted probabilities of negative

returns. Doing so, then the percentage difference between them, again for both models

M1 and M6, is plotted in Figure C5b.

Taking Figures C5a and C5b together it is clear that there is a divergence of predic-

tive intervals and probabilities obtained from a Gaussian model and those obtained

by correcting via the nonparametric density estimator. This becomes particularly

pronounced around 2008 onwards. That is, uncorrected Gaussian models would im-

ply a significantly different assessment of risk than the corrected predictive model
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would have.

6 Conclusions

This paper has extended the nonparametric likelihood ratio based tests introduced in

Marsh (2007) to cover specifications involving estimated parameters in the context of

conditional, dynamic models. Doing so yields a straight forward two stage process. In

the context of standard time series models this allows fitting of a parametric model,

allied to a specified error distribution, in the first stage, with the nonparametric

estimation of the density function of the PITs, in the second.

The second stage provides tests which help overcome the three potential short-

comings of EDF based tests, i.e. that they are not pivotal, have low power, and

offer little direction in case of rejection. Instead the tests of this paper are shown to

be asymptotically standard normal, there is good evidence that they have a power

advantages, particularly over the basis for the most conditional specification tests,

the Kolmogorov-Smirnov. In the event of rejection these results can be used to im-

prove the predictive ability of the original fitted model, through consistent quantile

estimation or via an improvement of a loss function such as the log-score.

The procedure of this paper is seen to have relevance in empirical financial re-

search. Applied to monthly S&P500 data, the usefulness of being able to correct the

quantiles of a predictive density are manifest. This is particularly true for the man-

agement of risk - both Value at Risk calculations and estimators for the probability of

a negative return - based on the estimator begin to diverge significantly from assumed

Gaussian equivalents, around and from the time of the financial crisis of 2007/8.
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APPENDIX A (Proofs of theorems and corollary)

In order to avoid any ambiguity throughout this appendix the order of magnitude

symbol O(.) is defined by,

an,m = O (bn,m)⇐⇒ lim
m,n→∞ ; m3/n→0

an,m
bn,m

≤ c1 <∞,

and analogously for the probabilistic versions Op(.) and op(.). If the quantity un-

der scrutiny does not depend upon the dimension m then the condition m3/n → 0

becomes redundant.

Proof of Theorem 1:

Convergence of the density estimator is established by showing that the effect of

having to estimate unknown parameters is asymptotically negligible, under Assump-

tion 1. To proceed denote the following two m× 1 vectors;

x̂(m) = n−1

n∑
i=1

(
cos
(

2πkX̂i

)
, sin

(
2πkX̂i

)
, .., cos

(
πmX̂i

)
, sin

(
πmX̂i

))′
and

x̄(m) = n−1

n∑
i=1

(cos (2πkXi) , sin (2πkXi) , .., cos (πmXi) , sin (πmXi))
′ ,

and let

E (cos [2πkXi]) = µk,C and E (sin [2πkXi]) = µk,S,

for all i, so that we can write the mean of x̄(m) as

µP(m) = E
[
x̄P(m)

]
=
(
µ1,C , µ1,S, ....., µm/2,C , µm/2,S

)′
.

Notice that since cos (.) and sin (.) are bounded functions then both µk,C and µk,S are

bounded for all k,and as k →∞.
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The Euclidean distance between x̂(m) and x̄(m) satisfies

∣∣x̂(m) − x̄(m)

∣∣ =

√√√√m/2∑
k=1

(
1

n

n∑
i=1

(
Ĉk,i − Ck,i

))2

+

m/2∑
k=1

(
1

n

n∑
i=1

(
Ŝk,i − Sk,i

))2

,

where we have denoted, Ĉk,i = cos
(

2πkX̂i

)
, Ck,i = cos (2πkXi), Ŝk,i = sin

(
2πkX̂i

)
and Sk,i = sin (2πkXi)

Since both cos (2πkx) and sin (2πkx) are also continuously differentiable in x and

X̂i − Xi = ei = Op

(
n−1/2

)
with |ei| ≤ 1, then eji = Op

(
n−j/2

)
and, for any k,

expansion of Ĉk,i (and Ŝk,i) around Xi yields,

Ĉk,i − Ck,i = Op

(
n−1/2

)
,

and similar for Ŝk,i. Boundedness of the sin and cosine functions implies

1

n

n∑
i=1

Ĉk,i −
1

n

n∑
i=1

Ck,i = Op

(
n−1/2

)
,

also. Defining,

d∗C = sup
k∈Z+

1

n

n∑
i=1

Ĉk,i −
1

n

n∑
i=1

Ck,i & d∗S = sup
k∈Z+

1

n

n∑
i=1

Ŝk,i −
1

n

n∑
i=1

Sk,i,

then both d∗C and d
∗
S are Op

(
n−1/2

)
and so

∣∣x̂(m) − x̄(m)

∣∣ ≤
√√√√m/2∑

k=1

d∗2C +

m/2∑
k=1

d∗2S = Op

(√
m

n

)
. (A.1)

Now consider the Euclidean distance between x̂(m) and µ(m) which, via the triangle

inequality, satisfies,

∣∣x̂(m) − µ(m)

∣∣ ≤ ∣∣x̂(m) − x̄(m)

∣∣+
∣∣x̄(m) − µ(m)

∣∣ . (A.2)

The first term in (A.2) is Op

(√
m
n

)
. For the second, we have

∣∣x̄(m) − µ(m)

∣∣ ≤
√√√√√m/2∑

k=1

(∑n
i=1Ck,i
n

− µTk,c
)2

+

√√√√m/2∑
k=1

(∑n
i=1 Sk,i
n

− µTk,c
)2
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Again the boundedness of cos (.) and sin (.) implies that both µk,C and µk,S are

bounded for all k ∈ Z+, and thus a standard Weak Law of Large Numbers applies;∑n
i=1 Ck,i
n

− µTk,c = Op

(
n−1/2

)
&

∑n
i=1 Sk,i
n

− µTk,s = Op

(
n−1/2

)
. (A.3)

As a consequence we find,
∣∣x̄(m) − µ(m)

∣∣ = Op

(√
m
n

)
as m,n → ∞, also. Together

these results imply that,

∣∣x̂(m) − µ(m)

∣∣ ≤ ∣∣x̄(m) − µ(m)

∣∣+
∣∣x̂(m) − x̄(m)

∣∣ = Op

(√
m

n

)
, (A.4)

which follows from (A.1) and noting the same order of magnitude applies for the first

distance, as in equation 6.5 of Barron and Sheu (1991), so that the order of magnitude

of
∣∣x̂(m) − µ(m)

∣∣ is the same as that of ∣∣x̂(m) − x̄(m)

∣∣ . Thus, asymptotically, the effect
of having to estimate β is negligible, under Assumption 1.

Extending the decomposition of the Kullback-Leibler divergence of Barron and

Sheu (1991, eq. 6.9) we have,

EU

[
ln

(
u (x)

px(θ̂(m))

)]
= EU

[
ln

(
u (x)

px(θ(m))

)]
+ EU

[
ln

(
px(θ(m))

px(θ̄(m))

)]

+EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)]
. (A.5)

Since here we choose u (x) = 1 (the Xi are IID Uniform under correct specification)

and θ(m) = 0(m), then this immediately simplifies to

EU

[
ln

(
1

px(θ̂(m))

)]
= EU

[
ln

(
px(0(m))

px(θ̄(m))

)]
+ EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)]

By construction log[u (x)] = 0 ∈ W∞
2 then from Barron and Sheu (1991, Theorem

1) the first two terms in (A.5) are, respectively, limr→∞O(m−2r) and Op(m/n). For

the third term, application of the last part of Lemma 5 of Barron and Sheu (1991),

which holds for any two values in Tm ⊂ Rm, here uniquely defined by equations (5)

and (9), implies that

EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)]
=

∫ 1

0

ln

(
px(θ̄(m))

px(θ̂(m))

)
u(x)dx = Op

(∣∣x̂(m) − x̄(m)

∣∣2) = Op

(m
n

)
,
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and hence

EU

[
ln

(
1

px(θ̂(m))

)]
= Op

(m
n

)
,

as required.

Proof of Theorem 2:

Consider the problem of testing H0 : θ(m) = 0(m) against the alternative H1 :

θ(m) 6= 0(m) when n,m→∞ and m3/n→ 0.

Part (i): To proceed we have defined,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]
= 2n

(
θ̂(m) − 0(m)

)
x̂(m),

where θ̂(m) solves (9), or equivalently,

ψ′m

(
θ̂(m)

)
=
∂ψm

(
θ(m)

)
∂θ(m)

∣∣∣∣∣
θ(m)=θ̂(m)

= x̂(m).

Since ψm (.) is the cumulant function then the value θ0
(m) = 0(m) can be defined by,

ψ′m
(
θ(m)

)∣∣
θ(m)=0(m)

= µ(m) = E(x̄(m)).

Since the exponential log-likelihood is strictly convex, the mapping

θ(m)(η) : ψ′m
(
θ(m)

)
= µ(m)

is one-to-one between the parameter space Θm ⊂ Rm and sample space Fm ⊂ Rm

and application of Barron and Sheu (1991, eq. 5.6) and also (A.4) gives,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣) = Op

(∣∣x̂(m) − µ(m)

∣∣) = Op

(√
m

n

)
. (A.6)

As a consequence of both (A.6) and (A.4) we have that,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣) = Op

(∣∣θ̄(m) − 0(m)

∣∣) & Op

(∣∣x̂(m) − µ(m)

∣∣) = Op

(∣∣x̄(m) − µ(m)

∣∣) ,
and note that the expansions given in the proofs of Theorems 3.1 and 3.2 of Portnoy

(1988) apply for any two pairs of values, here
(
θ̄(m), 0(m)

)
and

(
x̄(m), µ(m)

)
.
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To continue, denote expectations under the null hypothesis as E0(m) [.] and let the

m× 1 vector Uθ(m) have density function

pθ(m) (u1, .., um) = exp

{
m∑
k=1

θkuk − ψm
(
θ(m)

)}
.

Analagous to Portnoy (1988, eq. 3.5 and 3.6), we have the following two expansions;

|θ̂(m) − 0(m)|2 =
(
θ̂(m) − 0(m)

)′
x̂(m) −

1

2
E0(m)

[(
θ̂(m) − 0(m)

)′
U(m)

]2

+Op

(
m2

n2

)
,

and (A.7)(
θ̂(m) − 0(m)

)′
x̂(m) = |x̂(m)|2 −

1

2
E0(m)

[((
θ̂(m) − 0(m)

)′
U(m)

)2

x̂′(m)U(m)

]
+Op

(
m2

n2

)
.

(A.8)

Subtracting (A.8) from (A.7) restates equation (3.7) of Portnoy (1988) and hence

|θ̂(m) − 0(m) − x̂(m)| = Op

(m
n

)
.

From the definition of the likelihood ratio test we therefore have,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ0

(m)

))]
= n

[
|x̂(m)|2 − |θ̂(m) − 0(m) − x̂(m)|2 +

1

6
EU0

((
θ̂(m) − 0(m)

)′
U

)3
]

+Op

(
m2

n

)
,

(A.9)

as in Portnoy (1988, eq. 3.12). Let ē = x̂(m) − x̄(m), then from the proof of Theorem

1, we have

|x̂(m)|2 = |x̄(m) + ē|2 ≤ |x̄(m)|2 + |ē|2 = |x̄(m)|2 +Op

(m
n

)
. (A.10)

Note that for the given trigonometric basis we have E
[
x̄(m)

]
= 0(m). Now de-

fine the m × 1 random variable V0(m) = ψ
′′

m

(
0(m)

)−1/2
(x̄) , and denote its density

pθV(m)

(
v(m)

)
, so that E [Vm] = 0(m) and V ar[Vm] = Im. Since the likelihood ratio

statistic is parameterization invariant the likelihood ratio test based on observations

on Vm will be identical to that based on x̄(m).
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Rather than defining a new triple of values, analogous to those in (13), in both

the parameter space Θm (note that in particular the hypothesized value would no

longer satisfy θ0
(m) = 0(m)) and sample space Fm we will instead, and without any

loss of generality assume a parameterization in which both E
[
x̄(m)

]
= 0 and now

also V
[
x̄(m)

]
= Im. Note, however, that it is the unobserved x̄(m) which is assumed

to be standardized not the observed x̂(m).In this parameterization the asymptotic

distribution of first |x̄(m)|2 and hence |x̂(m)|2 (via (A.10)) and then via (A.9) for

Λ̂m = λ̂m−m√
2m

follows exactly as in Portnoy (1988, Theorem 4.1).

Part (ii): Under any fixed alternative the density of Xi = Fi (Yi|Fi; β∗) is not

uniform, nor even independent or identically distributed. However, since φk (x) is

bounded then even under H1,

lim
n→∞

∑n
i=1 φk

(
X̂i

)
n

= µk ≤M <∞.

Consequently, let θ1
(m) be the unique solution to,∫ 1

0

φk (x) px
(
θ1

(m)

)
dx = µk, k = 1, ..,m. (A.11)

The uniqueness of solutions to (A.11) imply θ1
(m) 6= 0(m).

To take the least favorable case, define

θ1
(m) =

(
θ1

1, θ
1
2, .., θ

1
m

)′
and suppose that θ1

k 6= 0 for some finite k but that θ1
j = 0 for all j 6= k. The series

density estimator is consistent for θ1
(m), under H1, in that

∣∣∣θ̂(m) − θ1
(m)

∣∣∣ = Op

(√
m
n

)
,

analogous to (A.6) above, and so we can write,

n
(
θ̂(m) − 0(m)

)′
x̂(m) = n

[(
θ̂(m) − θ1

(m)

)′
x̂(m) +

(
θ1
k

) 1

n

n∑
i=1

φk

(
X̂i

)]
.
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Since also ψm
(
0(m)

)
= 0, we can write the likelihood ratio as

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) − ψm

(
θ̂(m)

)]
= 2n

[(
θ̂(m) − θ1

(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ1

(m)

))]
+2n

[(
θ1
k − θ0

k

) 1

n

n∑
i=1

φk

(
X̂i

)
− ψm

(
θ1

(m)

)]

= λ̂
1

m + 2n

[(
θ1
k − θ0

k

) 1

n

n∑
i=1

φk

(
X̂i

)
− ψm

(
θ1

(m)

)]
,

where λ̂
1

m is the likelihood ratio for testing H1 : θ(m) = θ1
(m).

Thus, under H1, we can write

Λ̂m =
λ̂m −m√

2m
=
λ̂

1

m −m√
2m

+
2n
[(
θ1
k − θ0

k

)
1
n

∑n
i=1 φk

(
X̂i

)
− ψm

(
θ1

(m)

)]
√

2m
.

Immediate from Part (i) of this theorem is that as m,n→∞, with m3/n→ 0,

λ̂
1

m −m√
2m

→d N (0, 1) ,

i.e.
(
λ̂

1

m −m
)
/
√

2m is Op (1) . However, since ψm (.) is a uniquely defined cumulant

function then

ψm
(
θ1

(m)

)
6= 0,

while 1
n

∑n
i=1 φk

(
X̂i

)
= Op (1) and since m3/n→ 0,

Λ̂m = Op (1) +Op

(
n√
m

)
→∞,

and hence Pr
[
Λ̂m > κ

]
→ 1, as required.

Proof of Corollary 1:

Under Assumptions 1 and 2, we immediately find

sup
i,β∈B

∣∣∣εi (β̂n)− εi (β)
∣∣∣ = Op

(
n−1/2

)
,

and since F (e) is continuously differentiable and monotone then, similar to the proof

of Theorem 1, we have

X̂i = Xi + êi,
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where 0 < êi < 1 and êi = Op

(
n−1/2

)
and Xi ∼ IIDX. Let the density of X be

u1 (x) and define the unique m× 1 vector θ1
(m) by∫ 1

0

φk (x) px
(
θ1

(m)

)
dx =

∫ 1

0

φk (x)u1 (x) dx. (A.12)

Similar to the proof of Theorem 1 we can decompose the Kullback-Leibler divergence

between px(θ̂(m)) and u1 (x) , with

EU

[
ln

(
u1 (x)

px(θ̂(m))

)]
= EU

[
ln

(
u1 (x)

px(θ
1
(m))

)]
+ EU

[
ln

(
px(θ

1
(m))

px(θ̄(m))

)]

+EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)]
,

where θ̄(m) is defined in (13). Notice that the approximation error represented by

the first term does not vanish in this case since, in general u1 (x) 6= 1. None-the-less,

from Barron and Sheu (1991) and the proof of Theorem 1, we have

EU

[
ln

(
u1 (x)

px(θ̂(m))

)]
= O

(
m−2r

)
+Op

(m
n

)
+Op

(m
n

)
= Op

(
m−2r +

m

n

)
,

i.e. px(θ̂(m)) converges in relative entropy to u1 (x) which is suffi cient for convergence

in law, so T̂m,n →L X, as required.
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APPENDIX B (Tables of outcomes of Monte Carlo simulations)

Table B1: Sizes of tests for both HE
0 and HN

0 .

n 25 25 50 50

HE
0 HN

0 HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

2 .053 .033 .017 .012 .007 .002 .059 .040 .017 .012 .005 .001

4 .071 .042 .020 .039 .023 .011 .067 .044 .021 .042 .029 .009

6 .073 .037 .007 .046 .026 .011 .072 .045 .016 .045 .027 .009

8 .081 .056 .020 .054 .027 .004 .077 .047 .020 .056 .031 .008

10 .092 .057 .018 .058 .030 .005 .096 .055 .020 .065 .037 .009

12 .091 .055 .014 .065 .034 .005 .094 .055 .018 .063 .038 .007

n 100 100 200 200

HE
0 HN

0 HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

2 .055 .037 .017 .013 .006 .001 .065 .038 .020 .012 .006 .002

4 .070 .042 .008 .050 .035 .009 .070 .041 .015 .049 .031 .010

6 .088 .051 .016 .063 .041 .011 .085 .047 .017 .065 .041 .011

8 .093 .055 .016 .078 .045 .013 .093 .048 .016 .077 .043 .010

10 .098 .054 .014 .080 .047 .015 .098 .055 .012 .085 .045 .017

12 .096 .053 .014 .092 .045 .018 .096 .052 .013 .094 .046 .016
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Table B2: Sizes of tests for both HAR(1)
0 and HPR

0 .

n 25 25 50 50

HAR1
0 HPR

0 HAR1
0 HPR

0

α

m
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

2 .044 .028 .009 .028 .017 .006 .044 .028 .014 .029 .016 .006

4 .063 .035 .014 .045 .026 .011 .066 .044 .017 .047 .031 .013

6 .079 .053 .019 .061 .037 .013 .079 .046 .015 .056 .038 .017

8 .088 .061 .023 .082 .057 .016 .079 .047 .016 .065 .039 .017

10 .104 .066 .026 .121 .084 .031 .083 .055 .019 .065 .042 .013

12 .123 .081 .030 .128 .087 .038 .083 .055 .017 .074 .044 .014

n 100 100 200 200

HAR1
0 HPR

0 HAR1
0 HPR

0

α

m
.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

2 .049 .029 .011 .031 .019 .006 .052 .033 .015 .029 .017 .007

4 .064 .043 .015 .049 .030 .013 .063 .041 .015 .053 .033 .012

6 .075 .046 .020 .061 .038 .015 .069 .044 .018 .060 .033 .010

8 .072 .042 .015 .066 .036 .013 .082 .046 .019 .069 .043 .014

10 .078 .045 .018 .071 .042 .014 .083 .045 .014 .082 .046 .013

12 .087 .045 .013 .086 .047 .015 .095 .049 .013 .093 .048 .011
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Table B3: Rejection frequencies under various alternatives.

Table B3a: Power H0 : Y ∼ N (0, 1) vs. H1 : Y ∼ t(v).

v 4 6 8 10 12 4 6 8 10 12

Λ̂4 .923 .710 .388 .260 .118 .601 .297 .158 .130 .099

Λ̂10 .854 .569 .257 .165 .087 .494 .241 .133 .111 .081

KS .614 .206 .091 .055 .049 .217 .114 .075 .059 .052

CvM .722 .309 .165 .092 .061 .296 .132 .087 .075 .066

Table B3b: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ χ2
(v) − v.

v 12 20 28 36 44 12 20 28 36 44

Λ̂4 .855 .664 .571 .469 .417 .574 .269 .185 .151 .111

Λ̂10 .796 .641 .546 .427 .377 .388 .189 .158 .111 .096

KS .717 .568 .443 .388 .350 .238 .151 .106 .093 .075

CvM .837 .663 .563 .463 .403 .274 .176 .131 .100 .091

Table B3c: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N (vYi−1, 1) .

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂4 .701 .588 .385 .163 .090 .912 .736 .507 .274 .099

Λ̂10 .688 .483 .351 .141 .071 .847 .683 .461 .235 .091

KS .592 .458 .254 .091 .053 .579 .359 .207 .122 .058

CvM .690 .585 .362 .140 .066 .648 .448 .273 .162 .083

Table B3d: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
0, 1 + vY 2

i−1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂4 .730 .519 .278 .120 .079 .871 .739 .483 .228 .106

Λ̂10 .704 .503 .263 .113 .074 .864 .740 .460 .225 .094

KS .568 .361 .161 .063 .052 .509 .350 .201 .112 .080

CvM .709 .497 .255 .109 .075 .511 .352 .185 .115 .073
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Table B3e: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
v1t>bT/2c, 1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂4 .754 .553 .346 .200 .081 .655 .491 .277 .143 .081

Λ̂10 .738 .525 .311 .173 .064 .592 .442 .256 .139 .066

KS .256 .189 .127 .088 .052 .542 .349 .185 .078 .059

CvM .362 .291 .164 .103 .066 .601 .445 .260 .130 .078

Table B3f: Power H0 : Yi ∼ Exp [1] vs. H1 : Yi ∼ Γ (v, 1) .

v 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30

Λ̂4 .113 .125 .226 .302 .432 .189 .302 .595 .770 .886

Λ̂10 .103 .106 .179 .277 .398 .177 .285 .550 .712 .825

KS .066 .069 .136 .200 .252 .096 .193 .404 .616 .747

CvM .094 .099 .179 .237 .343 .174 .280 .551 .732 .853
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Table B4: MSEs of estimated quantiles and mean predictive log-scores.

Table B4a: MSE of estimated quantiles, q̂Y T , for fitted AR(1) with t̄(4) errors

m 4 4 4 4 10 10 10 10

n

π
25 50 100 200 25 50 100 200

0.05 .0454 .0287 .0191 .0125 .0837 .0563 .0335 .0216

0.25 .0433 .0248 .0131 .0073 .0503 .0264 .0149 .0080

0.50 .0329 .0168 .0079 .0036 .0397 .0173 .0094 .0045

0.75 .0421 .0249 .0132 .0068 .0512 .0266 .0140 .0076

0.95 .0457 .0296 .0198 .0124 .0819 .0557 .0332 .0218

Table B4b: MSE of estimated quantiles, q̂Y T , for fitted AR(1) with χ̄2
(4) errors

m 4 4 4 4 10 10 10 10

n

π
25 50 100 200 25 50 100 200

0.05 .1742 .1583 .1470 .1416 .1039 .0711 .0515 .0372

0.25 .0337 .0205 .0123 .0087 .0406 .0227 .0140 .0081

0.50 .0434 .0280 .0186 .0141 .0449 .0251 .0147 .0093

0.75 .0748 .0475 .0328 .0252 .0759 .0475 .0282 .0188

0.95 .3110 .2914 .2638 .2491 .2531 .2070 .1773 .1578

Table B4c: Average in sample Log-Scores for fitted AR(1) with t̄(4) and t̄(8) errors.

The mis-specified Gaussian model is fy (β) , the correct model is gy (β; v) .

n 25 50 100 200 25 50 100 200

Log-Score v 4 4 4 4 8 8 8 8

ln pX̂n+1

(
θ̂(4)

)
.0935 .0801 .0714 .0618 .0799 .0492 .0374 .0281

ln pX̂n+1

(
θ̂(10)

)
.1019 .0871 .0704 .0674 .0883 .0668 .0455 .0347

ln fYn+1

(
β̂n

)
-2.56 -2.39 -2.28 -2.11 -2.04 -1.95 -1.90 -1.62

ln gYn+1

(
β̂n; v

)
-1.47 -1.43 -1.36 -1.35 -1.53 -1.42 -1.27 -1.26

ln gYn+1

(
β̂n; v̂

)
-1.82 -1.61 -1.55 -1.49 -1.81 -1.67 -1.50 -1.46
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APPENDIX C (Application graphs)

Figure C1: S&P500 Monthly Returns; Jan 1998 to December 2017

Figure C2: Correlogram for Returns “+”and for Squared Returns “O”
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Figure C3: Observed p-values for Λ̂10. Solid line for M6 dashed line for M1.

Figure C3a: Recursive Sampling Scheme

Figure C3b: Rolling Sampling Scheme (5 year rolling window)
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Figure C4: Relative Estimates of Predicted Value at Risk, V aR0,05;

Jan. 2003 to Nov 2017, M1 solid and M6 dashed.

Figure C4a: Recursive Predictive Scheme

Figure C4b: Rolling Predictive Scheme (5 year rolling window)
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Figure C5: Ratios of the nonparametric to the Gaussian predictors of the

probability of a negative return, Jan. 2003-Nov. 2017. Solid line for M1, dashed for M6.

Figure C5a: Recursive sampling scheme.

Figure C5b: Rolling Sampling Scheme (5 year rolling window)
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