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Abstract 

In this research, we provide a new method to estimate discrete choice models with unobserved 

heterogeneity that can be used with either cross-sectional or panel data. The method imposes 

nonparametric assumptions on the systematic subutility functions and on the distributions of the 

unobservable random vectors and the heterogeneity parameter.  The estimators are computationally 

feasible and strongly consistent. We provide an empirical application of the estimator to a model of store 

format choice.  The key insights from the empirical application are: 1) consumer response to cost and 

distance contains interactions and non-linear effects which implies that a model without these effects tends 

to bias the estimated elasticities and heterogeneity distribution and 2) the increase in likelihood for adding 

nonlinearities is similar to the increase in likelihood for adding heterogeneity, and this increase persists as 

heterogeneity is included in the model. 

JEL Classification Code: C14 ; C23 ; C33 ; C35. 
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1. INTRODUCTION 

Since the early work of McFadden (1974) on the development of the Conditional Logit Model 

for the econometric analysis of choices among a finite number of alternatives, a large number of 

extensions of the model have been developed.  These extensions have spawned streams of literature of 

their own. One such stream has focused on relaxing the strict parametric structure imposed in the 

original model.  Another stream has concentrated on relaxing the parameter homogeneity assumption 

across individuals.  This paper contributes to both these areas of research.  We introduce methods to 

estimate discrete choice models where all functions and distributions are nonparametric, individuals are 

allowed to be heterogeneous in their preferences over observable attributes, and the distribution of these 

preferences is also nonparametric.  

As is well known in discrete choice models, each individual possesses a utility for each available 

alternative, and chooses the one that provides the highest utility.  The utility of each alternative is the 

sum of a subutility of observed attributes - the systematic subutility – and an unobservable random term 

– the random subutility. Manski (1975) developed an econometric model of discrete choice that did not 

require specification of a parametric structure for the distribution of the unobservable random 

subutilities.  This semiparametric, distribution-free method was followed by other semiparametric 

distribution-free methods, developed by Cosslett (1983), Manski (1985), Han (1987), Ichimura (1989), 

Powell, Stock and Stoker (1989), Horowitz (1992), Klein and Spady (1993), and Moon (2004), among 

others.  More recently, Geweke and Keane (1997) and Hirano (2002), have applied mixing techniques 

that allow nonparametric estimation of the error term in Bayesian models.  Similarly, Klein and 

Sherman (2002) propose a method that allows non-parametric estimation of the density as well as the 

parameters for ordered response models.  These methods are termed semiparametric because they 

require a parametric structure for the systematic subutility of the observable characteristics.  A second 

stream of literature has focused on relaxing the parametric assumption about the systematic subutility.  
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Matzkin (1991)'s semiparametric method accomplished this while maintaining a parametric structure for 

the distribution of the unobservable random subutilities.  Matzkin (1992, 1993) also proposed fully 

nonparametric methods where neither the systematic subutility nor the distribution of the unobservable 

random subutility are required to posses parametric structures.   

Finally, a third stream of literature has focused on incorporating consumer heterogeneity into 

choice models.  Wansbeek, et al (2001) noted the importance of including heterogeneity in choice 

models to avoid finding weak relationships between explanatory variables and choice.  However, they 

also note the difficulty of incorporating heterogeneity into nonparametric and semiparametric models.  

Further, Allenby and Rossi (1999) noted the importance of allowing heterogeneity in choice models to 

extend into the slope coefficients.  Specifications that have allowed for heterogeneous systematic 

subutilities include those of Heckman and Willis (1977), Albright, Lerman and Manski (1977), 

McFadden (1978), and Hausman and Wise (1978). These papers use a particular parametric 

specification, i.e., a specific continuous distribution, to account for the distribution of systematic 

subutilities across consumers.  Heckman and Singer (1984) propose estimating the parameters of the 

model without imposing a specific continuous distribution for this heterogeneity distribution.  Ichimura 

and Thompson (1993) have developed an econometric model of discrete choice where the coefficients of 

the linear subutility have a distribution of unknown form, which can be estimated.      

 Recent empirical work has relaxed assumptions on the heterogeneity distributions.  Lancaster 

(1997) allows for non-parametric identification of the distribution of the heterogeneity in Bayesian 

models.  Taber (2000) and Park et al (2007) apply semiparametric techniques to dynamic models of 

choice.  Briesch, Chintagunta and Matzkin (2002) allow consumer heterogeneity in the parametric part 

of the choice model while restricting the non-parametric function to be homogeneous.  Dahl (2002) 

applies non-parametric techniques to transition probabilities and dynamic models.  Pinkse, et al (2002) 

allow for heterogeneity in semiparametric models of aggregate-level choice. 
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The method that we develop here combines the fully nonparametric methods for estimating 

discrete choice models (Matzkin 1992, 1993) with a method that allows us to estimate the distribution of 

unobserved heterogeneity nonparametrically as well.  The unobserved heterogeneity variable is included 

in the systematic subutility in a nonadditive way (Matzkin 1999a, 2003). We provide conditions under 

which the systematic subutility, the distribution of the nonadditive unobserved heterogeneity variable, 

and the distribution of the additive unobserved random subutility can all be nonparametrically identified 

and consistently estimated from individual choice data.  The method can be used with either cross 

sectional or panel data.  These results update Briesch, Chintagunta, and Matzkin (2002).  

We apply the proposed methodology to study the drivers of grocery store-format choice for a 

panel of households. There are two main types of formats that supermarkets classify themselves into – 

everyday low price (EDLP) stores or high-low price (Hi-Lo) stores. The former offer fewer promotions 

of lower “depth” (i.e., magnitude of discounts) than the latter. The main tradeoff facing consumers is 

that EDLP stores are typically located farther away (longer driving distances) than Hi-Lo stores although 

their prices, on average, are lower than those at Hi-Lo stores leading to a lower total cost of shopping 

“basket” for the consumer.  Since the value of time (associated with the driving distance) is 

heterogeneous across households, and little is known about the shape of the utility for driving distance 

and expenditure, we think that the proposed method is ideally suited to understanding the nature of the 

tradeoff between distance and expenditure facing the consumer. To decrease the well-known 

dimensionality problems associated with relaxing parametric structures, we use a semiparametric 

version of our model. In particular, only the subutility of distance to the store and cost of refilling 

inventory at the store are nonparametric.  We allow this subutility to be heterogeneous across 

consumers, and provide an estimator for both, the subutilities of the different types, the distribution of 

types, and the additional parameters of the model. Further, we assume that the unobserved component of 

utility in this application is distributed according to a type-I extreme value distribution. 
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In the next section we describe the model. Section 3 states conditions under which the model is 

identified. In Section 4 we present strongly consistent estimators for the functions and distributions in 

the model. Section 5 provides computational details. Section 6 presents the empirical application. 

Section 7 concludes. 

2. THE MODEL 

As is usual in discrete choice models, we assume that a typical consumer must choose one of a 

finite number, J, of alternatives, and he/she chooses the one that maximizes the value of a utility 

function, which depends on the characteristics of the alternatives and the consumer. Each alternative j is 

characterized by a vector, zj, of the observable attributes of the alternatives. We will assume that  

j j jz (x ,r )  , where rj  R and xj  RK (K ≥ 1).  Each consumer is characterized by a vector, s  RL, of 

observable socioeconomic characteristics for the consumer. The utility of a consumer with observable 

socioeconomic characteristics s, for an alternative, j, is given by jjzsjV  ),,,(* , where j and  

denote the values of unobservable random variables. For any given value of , and any j, V*(j,•,)  is a 

real valued, but otherwise unknown, function. The dependence of V* on  allows this systematic 

subutility to be different for different consumers, even if the observable exogenous variables are the 

same for these consumers. We denote the distribution of  by G* and we denote the distribution of the 

random vector (1,…,J) by F*.  

The probability that a consumer with socioeconomic characteristics s will choose alternative j 

when the vector of observable attributes of the alternatives is ),,...,,(),...,( 111 JJJ rxrxzzz   is denoted 

by p(j|s,z;V*,F*,G*). Hence,   

)(),,;,|Pr(),,;,|(  dGFVzsjGFVzsjp   

where ),,;,|Pr( FVzsj   denotes the probability that a consumer with systematic subutility V(·,) will 

choose alternative j, when the distribution of  is F. By the utility maximization hypothesis, 
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),,;,|Pr( FVzsj   

 jkrxskVrxsjV kkkjjj  ,),,,,(),,,,(Pr   

 jkrxskVrxsjV kkjjjk  ),,,,,(),,,,(Pr   

which depends on the distribution F.  In particular, if we let *
1F  denote the distribution of the vector  

 2 1 J 1,..., ,        then ),,;,|1Pr( *FVzs   

 ),,,,|(),,,|1(),...,,,,|2(),,,|1( 112211
*

1  JJ rxsJVrxsVrxsVrxsVF   

and the probability that the consumer will choose alternative one is then ),,;,|1( * GFVzsp  

)(),,;,|1Pr( * dGGFVzs  

  )(),,,|(),,,|1(),...,,,,|2(),,,|1( 112211
*

1  dGrxsJVrxsVrxsVrxsVF JJ   

For any j, ),,;,|Pr( *FVzsj   can be obtained in an analogous way, letting *
jF  denote the distribution 

of (1-j,…J-j). A particular case of the polychotomous choice model is the Binary Threshold 

Crossing Model, which has been used in a wide range of applications.  This model can be obtained from 

the Polychotomous Choice Model by letting J=2, =(2-1) and 0),,,,2(),,,,( 2222   rxsVrxs  

2 2 2 2(s, x ,r , ) V(2,s, x ,r , ) 0.     In other words, the model can be described by:   ),,(* rxVy , 

with 







 


otherwise

y
y

:0

0:1 *

 

where y* is unobservable.  In this model, *
1F  denotes the distribution of .  Hence, for all x, r, 

  ),,(),,;,|1(Pr *
1  rxVFFVrx    and for all x, r the probability that the consumer will choose 

alternative one is 

  )(),,()(),,;,|1(Pr),,;,|1( *
1     dGrxVFdGFVzsGFVzsp  
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3. NONPARAMETRIC IDENTIFICATION 

Our objective is to develop estimators for the function V* and the distributions F* and G*, 

without requiring that these functions and distributions belong to parametric families. It follows from the 

definition of the model that we can only hope to identify the distributions of the vectors  

),..., ( jJj1  j for j=1,….,J. Let *
1F denote the distribution of 1.  Since from *

1F  we can 

obtain the distribution of j (j=2,…,J), we will deal only with the identification of *
1F .   We let *

1
* FF  . 

DEFINITION:  The function V* and the distributions F* and G* are identified in a set (W×F×G) such 

that (V*,F*,G* )  (W×F×G),  if )(),,( GFWGFV  then 

  )()),;(;,|Pr()()),;(;,|Pr( **  dGFVzsjdGFVzsj    for j=1…J, a.s. 

implies that V=V*, F=F* and G=G*.  That is, (V*,F*,G*) is identified in a set (W×F×G) to which  

(V*,F*,G*) belongs, if any triple, ),,( GFV  that belongs to (W×F×G) and is different from  (V*,F*,G*)  

generates, for at least one alternative j, and a set of (s,z) that possesses positive probability, choice 

probabilities p(j|s,z;V,F,G) that are different from p(j|s,z;V*,F*,G).  We next present a set of conditions 

that, when satisfied, guarantee that (V*,F*,G*) is identified in  (W×F×G).  

ASSUMPTION 1: The support of (s,x1,r1,…,xJ,rJ,) is a set      
J

j j YRXS
1

, where S  and Xj 

(j=1,….,J) are subsets of Euclidean spaces and Y is a subset of  R.  

 ASSUMPTION 2:  The random vectors (1,…J), (s,z1,…,xJ) and  are mutually  independent. 
  
ASSUMPTION 3: For all V W and j, there exists a real valued, continuous function v(j,·, ·,):  

  RXS j int such that  )(),,,( YRXSrxs jjj   , jjjj rxsjvrxsjV  ),,,(),,,,(  . 

ASSUMPTION 4:    


J

j jj XSxxs
11 ),...,,(  and  J

J R),...( 1  such that  WVj   , 

jjxsjv  ),,,( .  
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ASSUMPTION 5: Rj j  ~,
~  ,  and jj Xx ~~

~    such that WVYSs  ,,  , jjxsjv ~~ ),~,,
~

(    

ASSUMPTION 6:     jj
~*    and )()ˆ,ˆ( ** jj

XSxs   such that   WV   ),ˆ,ˆ*,( *jxsjv . 

ASSUMPTION 6':     jj
~*  ,  )()ˆ,ˆ,ˆ( ** YXSxs

jj
  and R  such that WV   

 )ˆ,ˆ,ˆ*,( *jxsjv , and WV  R  )ˆ,ˆ,ˆ*,( *jxsjv . 

ASSUMPTION 6”:   jj
~*  , )()ˆ,ˆ(  

jj
XSxs , R , and there exists a real valued, continuous 

function ),,( 21 xxsm  such that  YWV  , , ),,(),,,( 21
*  xxsmxsjv  , and  )ˆ,ˆ,ˆ( 21 xxsm . 

ASSUMPTION 7: )(),(  
jj

XSxs  (i) either it is known that ),,,( *
* 

j
xsjv  is strictly increasing in 

,  for allY and V W, or (ii) it is known that ),,,( *
* 

j
xsjv  is strictly decreasing in , for all  Y 

and V W.    

ASSUMPTION 8: jjk
~

,  either ),,,( kxskv  is strictly increasing in , for all   

 ),,( kxs  or ),,,( kxskv  is strictly decreasing in  ,  for all  ).,( kxs  

ASSUMPTION   9:  jj
~  such that )(),,( ~~

jjjj XXSxxs  either (i) it is known that 

),,,
~

(),,,( ~  jj xsjvxsjv  is strictly increasing in ,  for all Y and V W, or (ii) it is known that 

),,,
~

(),,,( ~  jj xsjvxsjv is strictly decreasing in ,  for allY and V W. 

ASSUMPTION 10: G* is a strictly increasing, continuous distribution on Y. 

ASSUMPTION  11: The characteristic functions corresponding to the marginal distribution functions 

)
~

;..1(*
~ jjJjF

jj
  are everywhere different from 0. 

 An example of a model where Assumptions 4-9 are satisfied is a binary choice where each 

function v(1,•) is characterized by a function m(•)  and each function v(2,•)  is characterized by a 

function h(•) such that for all s,x1,x2,: (i) v(1,s,x1,)= m(x1,), (ii) v(2,s,x2,)= h(s,x2,), (iii) 
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0),( 1 xm , (iv) 0),,( 2 xsh , (v)  ),ˆ,ˆ( 2xsh , (vi) ),,( 2 xsh  is strictly increasing when  22 xx  , 

and (vii) ),( 1 xm  is strictly decreasing when 11 xx  , where ,ˆ,, 21 sxx  and 2x̂  are given. 

In this example, Assumption 4 is satisfied when s  is any value and 021   .  Assumption 5 

is satisfied with 1
~ j , 0~ j  and 11

~ xx  .   By (v), Assumption 6 is satisfied with j*=2.  Finally, 

Assumption 7-9 are satisfied by (vi) and (vii).  If in the above example, (v) is replaced by assumption 

(v')  )ˆ,ˆ,ˆ( 2xsh and ),,( h is homogenous of degree one, where, in addition to ,ˆ,, 21 sxx  and  ,ˆ2x  ̂  

and R  are also given, then the model satisfies Assumptions 4, 5, 6', and 7-9. 

  Assumption 1 specifies the support of the observable explanatory variables and of ω. The critical 

requirement in this assumption is the large support condition on ),,...,( 1 Jrr . This requirement is used, 

together with the other requirements, to identify the distribution of ),...,( 121 J  .  Assumption 2 

requires that the vectors ),...,,( 21 J , ),,...,,( 1 Jzzs   be mutually independent.  That is, for all 

),...,,( 21 J , ),,...,,( 1 Jzzs , 

)(),...,,(),...,(),,...,,,,...,( 1),...,,(1),...,(11),,...,,((),,...,( 1111
  fzzsffzzsf JzzsJJJzzs JJJJ

  

where   ),,...,,((),,...,( 11 JJ zzsf  denotes the joint density of ),,...,,,,...,( 11  JJ zzs , and 

),,...,,(),,...,( 1),...,,(1),...,( 11 JzzsJ zzsff
JJ

  and )(f  denote the corresponding marginals. A critical 

implication of this is that for all  ),,...,,(),,...,( 11 JJ zzs , the vectors  ),,...,( 1 J  and ),...,( 1 Jrr  are 

mutually independent conditional on ),...,,( 1 Jzzs , i.e., 

),,...,,,,...,(),,...,,,...,( 11),,...,(),,...,(11),...,,|(),,...,(),,...,( 11111
  JJrrJJxxsrr zzsfrrf

JJJJJ
  

Assumption 3 restricts the form of each utility function ),,,,( jj rxsjV  to be additive in jr , and the 

coefficient of jr  to be known. A requirement like this is necessary even when the function  

),,,,( jj rxsjV  is linear in variables, to compensate for the fact that the distribution of ),...,( 1 J  is not 
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specified.  Since the work of Lewbel (2000), regressors such as ),...,( 1 Jrr  have been usually called 

“special regressors.”  Assumptions 4 and 5 specify the value of the functions ),( jv , defined in 

Assumption 3, at some points of the observable variables.  Assumption 4 specifies the values of these 

),( jv  functions at one point of the observable variables, for all values of ω. This guarantees that at those 

points of the observable variables, the choice probabilities are completely determined by the value of the 

distribution of ),...,( 112   J . This, together with the support condition in Assumption 1, allows us 

to identify this distribution.  Assumption 5 specifies the value of one of the ),( jv  functions at one value 

of jx , for all ,s . As in the linear specification, only differences of the utility function are identified.  

Assumption 5 allows to recover the values of each of the ),( jv  functions, for jj
~ , from the difference 

between ),( jv  and ),
~

( jv . Once the ),( jv  functions are identified, one can use them to identify ),
~

( jv . 

Assumptions 5-10 guarantee that the difference function  ),,,( ~* 
jj

xxsm  

),,,
~

(),,,( ~
*

* 
jj

xsjvxsjv   and the distribution of ω are identified from the joint distribution of 

),,( xs  where ),,,( ~* 
jj

xxsm . Using the results in Matzkin (2003), identification can be achieved 

if (i) ),,,( ~* 
jj

xxsm  is either strictly increasing or strictly decreasing in ω, for all ),,( ~* jj
xxs , (ii) ω is 

distributed independently of ),( *j
xs  conditional on all the other coordinates of the explanatory 

variables, and (iii) one of the following holds:  (iii.a) for some )~,ˆ,ˆ( ~* jj
xxs , the value of m  is known at 

)~,ˆ,ˆ( ~* jj
xxsm , for all ω; (iii.b) for some )ˆ,~,ˆ,ˆ( ~* 

jj
xxs , the value of m  is known at )ˆ,~,ˆ,ˆ( ~* 

jj
xxs  and 

),~,,( ~* 
jj

xxsm is homogeneous of degree 1 along the ray that connects )ˆ,ˆ,ˆ( * j
xs  to the origin; (iii.c) 

for some )ˆ,~,ˆ,ˆ( ~* 
jj

xxs , the value of  m  at )ˆ,~,ˆ,ˆ( ~* 
jj

xxs  is known and m  is strictly separable into a 

known function of ω and at least one coordinate of ),( *j
xs .  Assumptions 6, 6’, and 6’’ guarantee, 
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together with Assumption 5, that (iii.a), (iii.b), and (iii.c) are, respectively satisfied.  Assumption 7 with 

Assumption 5 guarantees the strict monotonicity of m  in ω.  Assumption 2 guarantees the conditional 

independence between ω and ),( *j
xs . Hence, under our conditions, the function m  and the distribution 

of ω are identified nonparametrically, as long as the joint distribution of ),,( xs , where 

),,,( ~* 
jj

xxsm , is identified. 

Assumption 10 and 11, together with Assumption 2, guarantee that the distribution of ),,( xs , 

where ),,,( ~* 
jj

xxsm , is identified, by using results in Teicher (1961).  In particular, Assumption 

11 is needed to show that one can recover the characteristic function of ),,,( * jxsjv  from the 

characteristic functions of *jj    and of *),,,( *

jjjxsjv   .  The normal and the double 

exponential distributions satisfy Assumption 11.  The distribution whose density is 

))cos(1()( 21 xxxf   does not satisfy it. 

Assumptions 8 and 9 guarantee that all the functions  ),( jv  can be identified when the 

distribution of ω, the distribution of ),...,( 121 J  , and the function  ),( * jv  are identified.  

 Using the assumptions specified above, we can prove the following theorem: 

THEOREM 1: If Assumptions 1-11,  Assumptions 1-5,6',7-11 or Assumptions 1-5,6’’,7-11 are satisfied, 

then  ),,(  GFV   is identified in )( GFW  . 

This theorem establishes that one can identify the distributions and functions in a discrete choice 

model with unobserved heterogeneity, making no assumptions about either the parametric structure of 

the systematic subutilities or the parametric structure of the distributions in the model.  The proof of this 

theorem is presented in the Appendix.   

Our identification result requires only one observation per individual.  If multiple observations 

per individual were available, one could relax some of our assumptions.  One such possibility would be 
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to use the additional observations for each individual to allow the unobserved heterogeneity variable to 

depend on some of the explanatory variables, as in Matzkin (2004).  Another, more obvious, possibility 

would be to allow the nonparametric functions and/or distributions to be different across periods. 

4.  NONPARAMETRIC ESTIMATION 

Given N independent observations  N

i
iii zsy 1,,   we can define the log-likelihood function: 

  )()),;(;,|(Prlog),,(
1

 dGFVzsjGFVL
i
jyii

N

i




   

where ),...,( 1 JFFF  .  We then define our estimators,  V̂ , F̂  and  ,Ĝ   for V*, F*, and  G*, to be the 

functions and distributions that maximize  L(V,F,G)  over triples (V,F,G) that belong to a set 

).( GFW    Let dW, dF and dG denote, respectively, metric functions over the sets W, F, and G. Let  

 RWWd GFGF )()(:   denote the metric defined by 

).,(),(),()],,(),,,[( GGdFFdVVdGFVGFVd GFW    

Then, the consistency of the estimators can be established under the following assumptions: 

 ASSUMPTION 12: The metrics dW and dF are such that convergence of a sequence with respect to dW  

or  dF implies pointwise convergence. The metric dG is such that convergence of a sequence with respect 

to  dG  implies weak convergence. 

ASSUMPTION 13: The set  )( GFW   is compact with respect to the metric d.  

ASSUMPTION 14: The functions in W and F  are continuous. 

An example of a set )( GFW   and a metric d that satisfy assumptions 12 and 13 is where the 

metrics dW, dF, and dG are defined, for all  V, V’, F, F’, and G, G’ by  

),,(),,('),,()',( ,,   zsdezsVzsVVVd zs
w

   

dtettFttFFFd Jtt
JJF

),...(
1111

11),...('),...()',( 
    

and 

dtetGtGGGd t
G

  )(')()',( , 
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the set W is the closure with respect to dW of a set of pointwise bounded and w-Lipschitsian functions, 

the set F is the closure with respect to  dF of a set of –Lipschitsian distributions, and  G is the set of 

monotone increasing functions on R with values in [0,1].  A function RRm K :  is - Lipschitsian if 

for all x,y in RK, yxymxm  )()( .   In particular, sets of concave functions with uniformly 

bounded subgradients are  - Lipschitsian for some  (See Matzkin 1992).  The following theorem is 

proved in the Appendix: 

THEOREM 2: Under Assumptions 1-14  )ˆ,ˆ,ˆ( GFV   is a strongly consistent estimator of (V*,F*,G*) with 

respect to the metric d.  The same conclusion holds if Assumption 6’ or 6’’ replace Assumption 6. 

 In practice, one may want to maximize the log-likelihood function over some set of parametric 

functions that increases with the number of observations, in such a way that it becomes dense in the set  

)( GFW   (Elbadwai, Gallant, and Souza 1983, Gallant and Nychka 1987, Gallant and Nychka 

1989).   Let N
G

N
F

N andW  ,,  denote, respectively, such sets of parametric functions, when the number 

of observations is N. Let  NNN GFV
~

,
~

,
~

 denote a maximizer of the log-likelihood function ),,( GFVL  

over )( N
G

N
F

NW  .  Then, we can establish the following theorem: 

THEOREM 3: Suppose that Assumptions 1-14 are satisfied, with the additional assumption that the 

sequence  
 1)}{( N

N
G

N
F

NW  becomes dense (with respect to d) in  )( GFW  as N .   

Then,  NNN GFV
~

,
~

,
~

  is a strongly consistent estimator of (V*,F*,G*) with respect to the metric d.  The 

same conclusion holds if Assumption 6 is replaced by Assumption 6' or 6’’. 

Note that Theorem 3 holds when only some of the functions are maximized over a parametric set, which 

becomes dense as the number of observations increases, and the other functions are maximized over the 

original set. 
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 5. COMPUTATION 

In this section, we introduce a change of notation from the previous sections.  Let H be the 

number of households in the data (H ≤ N), and Nh be the number of observed choices for household 

h=1..h (Nh > 0, and  


Hh hNN
,1

).  Therefore, the key difference in this and the following sections 

from the previous section is that we have repeated observations for the households.  The above theorems 

still apply as long as the assumptions are maintained; including independence of choices (see, e.g., 

Lindsay 1983, Heckman and Singer 1984, Dayton and McReady 1988).  Note that this assumption 

excludes endogenous (including lagged endogenous variables), and we leave it for future research to 

determine the identification and consistency conditions for models with endogenous predictors. 

Let  )ˆ,ˆ,ˆ( GFV   denote a solution to the optimization problem: 

  )()),,(;,|(Prlog),,( ,

111
)(),,(

 dGFVzsjGFVLMax
i

jh
h

GF

yi
j

i
h

J

j

N

i

H

h
WGFV

 



 

 It is well known that, when the set G includes discrete distributions, Ĝ is a discrete distribution 

with at most H points of support (Lindsay 1983, Heckman and Singer 1984). Hence, the above 

optimization problem can be solved by finding a solution over the set of discrete distributions, G, that 

possess at most H points of support. We will denote the points of support of any such G by  H ,...,1 , 

and the corresponding probabilities by H ,...,1 .  Note that the value of the objective function depends 

on any function  ),( V only through the values that ),( V attains at the finite number of observed 

vectors }.),,(,...,),,{( ,...,1,...,1
11

1 Jjj
N
j

N
HJjjj rxsrxs HH

   Hence, since at a solution, Ĝ will possess at most H 

points of support, we will be considering the values of at most H different functions, HcV c ,...,1),(   , 

i.e., we can consider for each ),...,1( Jjj   at most H different subutilities, ),...,1();,( HcjV c   . For 

each i and c, we will denote the value of ),,,,( cj
i
j

i
h rxsjV  by i

chjV ,, .  Also, at a solution, the value of 

the objective function will depend on any F only through the values that F attains at the finite number of 
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values ),...,( ,,1,,,1,1,1,
i

cH
i

cHj
i

c
i

cj VVVV  , hNi ,...,1 , Jj ,.,.,1 , Hh ,...,1 , Hc ,...,1 .  We then let  

i
chjF ,,   denote, for each j (j=1,…,J), the value of a distribution function Fj at the vector  

),...,( ,,1,,,1,1,1,
i

cH
i

cHj
i

c
i

cj VVVV  . It follows that a solution, )ˆ,ˆ,ˆ( GFV  for the above maximization problem 

can be obtained by first solving the following finite dimensional optimization problem, and then 

interpolating between its solution: 

  i
jh

h

i
chjc

i
chj

yi
chj

J

j

N

i
c

H

c

H

hFV
F ,

,,,,
,,

1111}{},{},{
logmax 






 

KFVtosubject i
chjc

i
chj }){},{},({ ,,,,   

 where K is a set of a finite number of restrictions on  }{},{},{ ,,,,
i

chjc
i

chj FV  . The restrictions characterize 

the behavior of sequences  }{},{},{ ,,,,
i

chjc
i

chj FV   whose values correspond to functions V in W, 

probability measures G in G,  and distribution functions F in  F.  To see what is the nature of the 

restrictions determined by the set K, consider for example a binary choice model where 

,1 Rx ),,(),,,2(,)(),,,1( 2211  xhxsvxsrxsv hhh  ,0)0( r  0),0( h  for all )(, r   is 

concave and increasing, and ),( h is concave and decreasing. Then, the finite dimensional optimization 

problem takes the following form: 

    )1(

,,
111

}{},{},{},{},{

,1,1

,,,,

1logmax
i

h
i

h
h

i
ch

i
h

i
chc

i
chj

yi
ch

yi
ch

N

i
c

H

c

H

h
DTFV

FF




 


 

subject to  

0,0,)( 1,1,11,,1,1,  dc
k

hdd
k

h
k

h
i

chc
i

h
i

h
k

dh
i
ch andhxrhxrifFFa   

         0,0,,11,11,,1,1,  dc
k

dhd
k

h
k

h
i

chc
i

h
i

h
k

dh
i

ch andhxrhxrifFF   

,10)( ,  i
chFb  

)()( 111
k
h

i
h

k
h

k
h

i
h ssTrrc   
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0)),(),(()( 2,12,,1,1,  cc
k
hc

i
h

k
ch

k
ch

i
ch ifxxDhhd   

,0,0,0)( 11
1   NNk

h srTe  

00,0,0)( 1
2,

1
,,  

c
N
h

N
ch

k
ch ifxandhDf   

for  .,...,11,,,};1,,...1{};1,,...,1{ HhhdcNNkNNi jh    

Constraints (a) and (b) guarantee that the  i
chF ,   values are those of an increasing function whose 

values are between 0 and 1. Constraint (c) guarantees that the  i
hr  values correspond to those of a 

concave function. Constrains (d) guarantees that the i
chh ,  values correspond to those of a concave 

function, as well. Constraints (e) and (f) guarantee that the i
hr  and the i

chh ,  values correspond, 

respectively, to those of a monotone increasing and a monotone decreasing function, and that the i
hr  and 

the i
chh ,  values correspond to functions satisfying r(0)=0 and h(0,)=0 for all .  Some additional 

constraints would typically be needed to guarantee the compactness of the sets  ,, FW    and  G   and 

the continuity of the distributions in  .F   

A solution to the original problem is obtained by interpolating the optimal values obtained from 

this optimization (see Matzkin 1992, 1993, 1994, 1999b for more discussion of a similar optimization 

problem).  To describe how to obtain a solution to this maximization problem, we let 
















),...,(),,...,,...,(),,...,,...,(

),,...,,...,(),,,...,,...,(~

1
1

1
1
1

1
1

1
1

1
1

1
1

1
1

1
1

11

11

H
N
c

N
Hc

N
cc

N
c

N
Hc

N
cc

NN
H

NNN
H

N

DDDDhhhh

TTTTrrrr
L

HH

HH


 

denote the optimal value of the following maximization problem: 
 

     )1(

,,
111

}{},{},{},{},{

,1,1

,,,,

1logmax
i

h
i

h
h

i
ch

i
h

i
chc

i
chj

yi
ch

yi
ch

N

i
c

H

c

H

h
DTFV

FF




 


 (1) 

subject to: 

0,0,)( ,11,11,1,,1,  dc
k

dhd
k
h

k
h

i
chc

i
h

i
h

k
dh

i
ch andhxrhxrifFFa   
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  0,0,,11,11,1,,1,  dc
k

dhd
k
h

k
h

i
chc

i
h

i
h

k
dh

i
ch andhxrhxrifFF   

10)( ,  i
chFb . 

A solution to this latter problem can be obtained by using a random search over vectors  

Hc
N

cHc
HFF ,...,1,

1
,1 ),...,(    that satisfy the monotonicity constraint (a) and the boundary constraint (b).  Then, a 

solution to the full optimization problem can be obtained by using a random search over vectors  

),,...,,...( 1
1

1
1

1 NN
H

N rrrr H , ),...,,...,( 1
1

1
1

1 N
c

N
Hc

N
cc hhhh H ,  and  ),...,( 1 H   that satisfy, respectively, constraints 

(c) and (e), constraints (d) and (f), and the constraints of  c ≥ 0 (c=1, .., H) and  


H

c c1
1 .  

 Instead of estimating the distribution function F using (a) and (b), one could add alternative-

specific random intercepts to the model and assume that ε has a known, parametric distribution. When 

the specified distribution for ε is smooth, this has the effect of smoothing the likelihood function.  Let 

 SCSC  ,...,,,..., 11  be the set of parametric parameters, where  SC ,...,1  are the parameters of 

the utility function; and SC is the number of discrete consumer segments with SC  H; let 

 SC ,...,1  be the vector of unobserved heterogeneity, and  SC
NN hhhH 1

1
1

1
1 ,...,...,   be the set of 

values for the non-parametric function.  The computational problem then becomes estimating (,,H) 

efficiently using the likelihood function described in equation (1).  Clearly, a random search over the 

entire parameter space is infeasible as the parametric parameters are unconstrained and the heterogeneity 

parameters are only constrained to be positive (from Assumption 9).  Therefore, we adapted the 

algorithm for concave functions developed in Matzkin (1999b) and later used by Briesch, Chintagunta 

and Matzkin (2002) to monotone functions of the form described above.  This is a random search 

algorithm combined with maximum likelihood estimation for the parametric parameters.  
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6. EMPIRICAL APPLICATION   

We are interested in answering the research question of how consumers select between an Every 

Day Low Price (EDLP) format retailer (e.g., Wal-Mart) and a HiLo format (e.g., Kroger or many 

grocery stores) retailer. An EDLP retailer generally has lower price variance over time than a HiLo 

retailer (Tang, et al 2001).  In studying store choice, the marketing literature typically assumes that 

consumers look in their household inventory, construct a list (written or mental) of needed items and 

quantities of these items, then determine which store to visit based upon the cost of refilling their 

inventory and the distance to the store, and potentially, interactions among them (Huff 1962, Bucklin 

1971, Bell and Lattin 1998, Bell, Ho and Tang 1998).  While consumers may make purchases for 

reasons other than replenishing inventory (e.g., “impulse” purchase), we leave the analysis of such 

purchases for future research.   

The functional relationship between distance to store and the cost of refilling inventory on the 

one hand and the utility derived from going to a store is not well understood. Distance enters the indirect 

utility function non-linearly (i.e., natural logarithm) in Smith (2004), whereas it enters linearly in Bell 

and Lattin (1998).  Further, Rhee and Bell (2002) find that the cost of a format is not significant in the 

consumer’s decision to switch stores, so they conclude that the “price image” drives store choice, not 

cost to refill the inventory (at odds with Bell and Lattin 1998, and Bell, Ho and Tang 1998). It is also 

likely that the influence of these variables is heterogeneous across consumers.  So how do consumers 

make tradeoffs between distance to the store and the price paid for the shopping basket? To answer this, 

we apply a semiparametric version of the method described above (details on follow) that allows us to 

(a) recover the appropriate functional form for the effects of inventory replenishing cost and distance on 

format choice; and (b) account for heterogeneity in this response function across consumers. 

We specify the utility of a format as a tradeoff between a consumer’s cost of refilling inventory 

at that format and the distance of the format as:  
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 t
fhh

t
fhfh

t
fh

t
fh XDShV ,,,,, ),,(    

where: t
fhV ,  is the value of format f for household h in period (or shopping occasion) t, t

fhS ,  is the cost 

of refilling household h’s inventory at format f in period t, Dh,f is the distance (in minutes) from 

household h to format f, h(.) is a monotonically increasing function of its parameters, t
fhX ,  are other 

variables that need to be controlled for,  is the unobserved heterogeneity and t
fh,  is the error term. 

Note that the matrix of variables in t
fhX ,  can be used to provide identification of the non-parametric 

function h (-S, -D,), if required.   

Time invariant format characteristics such as service quality, parking, assortment, etc. (see 

Bucklin 1971, Tang, et al 2001) are reflected in a household-specific intercept term for the price format.  

In addition to the format-specific intercept, key consumer demographic variables are also included.  

Finally, several researchers (e.g., Bell and Lattin, 1998; Bell, Ho, and Tang, 1998) have found that 

consumers prefer to go to EDLP stores when the expected basket size is large or as time between 

shopping trips increases (e.g., Leszczyc, et al., 2000).  Our objective is to account fully for all 

observable sources of heterogeneity so any unobserved heterogeneity estimated from the data is to the 

extent possible, unobservable.  Therefore, we can rewrite the utility of each format as in equation (2),   

 0 1 2 3 4 5 6              t t t t
h , f f h h h h h h , f h , f h , f h , fV EDLP* ( TS E HS I CE ) L h( S , D , )  (2) 

where: EDLP is a binary variable set to one when the format is EDLP and zero otherwise, t
hTS  is the 

elapsed time (in days) from the previous shopping trip to the current shopping trip, Eh is a binary 

indicator set to one if the household is classified as “Elderly” (head of household is at least 65 years 

old), HSh is the size of the household, Ih is the household income, CEh is a binary indicator of whether 

the head of household is college educated, and Lhf is a format-specific loyalty term.  We use the same 

measure of loyalty as Bell, Ho and Tang (1998) after adjusting for using store formats instead of stores: 
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   0 5 1 1     i i i
h ,EDLP h ,EDLP h,EDLP h ,HiLo h ,HiLo h ,EDLPL NV . / NV NV ; L L  

where i
EDLPhNV , is the number of visits to EDLP stores by household h during an initialization period 

denoted by i, and i
HiLohNV ,  is the number of visits to HiLo stores by household h during the same 

initialization period, i.   The data from the initialization period temporally precede the data that we use 

for the estimation for each household included in our sample. In this way we are not directly using any 

information on our dependent variable as a model predictor. 

 We make the assumption that the error term, t
fh, , has an extreme value distribution.  We use a 

discrete model of consumer heterogeneity, where there are SC segments of consumers (or points of 

support).  The parameter vector is allowed to be segment specific, so the utility function in equation (1) 

can be rewritten using segment-specific subscripts for the appropriate parameters and .  To guarantee 

that Assumption 3 is satisfied, we impose the restriction that for all segments s, 02.0,1 s .  This value 

was determined from the single segment parametric model. To guarantee that Assumptions 4, 5, and 6’’ 

are satisfied, we impose the restrictions that (1) ),(),,( ,,, hfs
t

fhsfh
t

fh DSmDSh   , (2) 

  ),0( 1NDm , and (3)   ),1( 1NDm , with N being the number of observations in the data, 1ND , α 

and γ known. Assumption 4 is then satisfied when D=DN+1 and S=SN+1=0.  The variable S is measured 

in differences from its average.  To guarantee that Assumptions 7 and 8 are satisfied, the function m(·) is 

restricted to be monotonically increasing.  

 We define the probabilities for the support points, c, such that  


SC

c c1
1 .  Following the 

literature on discrete segments (Dayton and McReady 1988, Kamakura and Russell 1989), we write the 

mass points as   


SC

k kcc 1
)exp()exp(  , with 1 set to zero for identification. 
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We next describe how the computational algorithm presented in the previous section can be 

modified to leverage our specific form of the nonparametric function. For expository ease, we drop the 

household subscript from the predictor variables and treat them as if they are independent observations.  

Since there are two alternatives (EDLP and Hi-Lo), we have 2*N +2 pairs of cost and distance (note that 

we are assuming that the pairs are all unique.  If there are repeated pairs, then we use the subset of 

unique pairs.  Additionally, there are two constraints.) If a continuous, differentiable and constraint 

maintaining (i.e., does not violate any of the AH ≤ 0 constraints) approximation of ),( ii DSm   for all 

>0, is used, then the dimensionality of the random search (or the size of the vector H) can be reduced 

from 2*(N+1)*SC to 2*(N+1) and maximum likelihood can be used to estimate  as well as .   

A natural choice for this interpolation would be a multidimensional kernel where the weight 

placed on observation i, in calculating the value for observation j is inversely proportional to the 

Euclidian distance from },{ j
c

j DS   to },{ ii DS , i.e., },{},{,,
iijj

ccji DSDSE   . The problem with 

using a multi-dimensional kernel is that is does not preserve the shape restrictions (a stylized proof is 

available from the authors).  Therefore, we use a single dimensional kernel to smooth the Sjc values. 

The final issue to address is identification of the ’s. The segments are not uniquely defined as 

segments can be renumbered while still maintaining the same likelihood function.   Additionally, we 

note while all of the ’s are identified, the estimation is computationally inefficient as we estimate the 

base function for 0=1, then interpolate for all SC segments.  The computational efficiency can be 

improved by estimating ` instead of , where i /  for some non-zero i.  This constraint then 

implies we can set 1=1 and estimate SC-1 segment values.   

6.1 Data 

We use a multi-outlet panel dataset from Charlotte, North Carolina that covers a 104-week 

period between September 2002 and September 2004.  Since panelists record all packaged and non-
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packaged goods purchases using in-home scanning equipment, purchase records are not limited to a 

small sample of grocery stores; purchases made in all grocery and non-grocery stores are captured.  This 

is important since packaged goods purchases are frequently made outside of grocery stores.  

Households were included in the sample if at least 95 percent of their purchases were at the 7 

stores (five supermarket, two mass merchandisers) for which we have geolocation data, and if they spent 

at least $20 per month in the panel.  The last criterion was used to ensure that the panelist was faithful in 

recording its purchases and remained in the panel for the entire 104 week period.    The resulting data set 

had 161 families with a total of 26,540 shopping trips.  The first 25% of the weeks were used as our 

“initialization” period to compute the various weights and other quantities described below.  The final 

26 weeks were used as a “hold out” sample and remaining weeks were used as the estimation sample.  

The estimation (holdout) sample had 13,857 (6573) shopping trips.  On average, each household made a 

shopping trip every 4.6 days.   Descriptive statistics for the households are provided in Table 1. 

< Put Table 1 about here> 

Consistent with Bell, Ho and Tang, (1998) we identified retailers as being either EDLP or HiLo 

based on their advertised pricing strategy. This resulted in three EDLP retailers and four HiLo retailers.  

The EDLP (HiLo) retailers had 58% (42%) of the shopping trips.  To determine distance between a 

panelist and a store, we use the travel time (in minutes) from a panelist’s zip+4 to the store’s location 

(for privacy reasons, the panelists actual street address is not included in the data.) 

We have detailed price information for 289 categories, of these categories we selected 150 

categories based upon the following criteria. First, three common UPCs had to be carried by each 

retailer so that category price indices could be computed.  Second, at least 5% of the selected households 

had to make at least three purchases in the category to ensure that the category is substantial.  Third, the 

category had to account for at least 0.9% of total basket spending of the selected households.  These 

categories together comprise more than 88% of the market basket on average (excluding fresh meat, 



 22

fruit and vegetables).  So, we use these categories to estimate the cost at each format.  While not 

reported here, details of the categories are available from the authors. Table 2 shows specific statistics 

for the price formats with the standard deviations in parentheses.  Note that the description of cost to 

refill inventory is provided in the next section. 

< Put Table 2 about here> 

6.1 Data Aggregation  

Because our focus is on consumers selecting a type of store format (EDLP vs. Hi-Lo) rather than 

selecting a specific store, we need to aggregate our store-level data to the format level.  This aggregation 

is done based on the proportion of a household’s visits to each store during the initialization period 

defined previously.  Specifically, let FE be the set of stores with an EDLP price format, FH be the set of 

stores using a HiLo format and Dhs be the distance from household h’s home to store s.  The distance 

from household h to format f can be defined as 



fFs

shsfhfh DwD ,,,, , where wh,f,s is the proportion of 

visits to store s made by household h in the initialization period, and Ff is either FE or FH.   

Because the cost to replenish the inventory (also called “cost”) for a household, t
fhS ,  on a 

shopping occasion is not observed prior to the visit, we need to create a measure of cost for each trip. 

The general goal is to create a time-varying, household-specific index for each store.  This index is then 

aggregated to the format level similar to distance above.  Clearly, the cost at store s in period t by 

household h, denoted t
shS , , is the sum of the cost to the household in each category, c=1..C the 

household will purchase in period t (Bell, Ho and Tang 1999).  Therefore, cost can be written as 

 ][][][
1

,,,, 



C

c

t
ch

t
csh

t
sh qEpESE  (3) 

where ][ ,,
t

cshpE  is the expected price of category c at store s in period t for household h, and ][ ,
t

chqE   is 

the quantity household h needs to purchase in category c in period t to replenish its inventory.  For price, 

we construct “market average” price indices for the EDLP and HiLo retailers based upon the retailers’ 
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long-run share of visits, i.e., visits over the entire estimation sample.  The second component on the right 

hand side of equation (3) is quantity that needs to be replenished, ][ ,
t

chqE .  Because we do not observe 

household inventories, we need a mechanism to predict this quantity using data that we, as researchers, 

observe – quantities purchased on previous occasions.  We use Tobit models (that account for household 

heterogeneity) to predict each household’s expected purchase quantity.  Using the arguments found in 

Nevo and Hendel (2002) and elsewhere, we define ( ][ ,
t

chqE ) to depend upon previous quantity 

purchased, the amount of time since last purchase, and the interaction between these terms as: 

             t
chhc

t
chhc

t
chhhc

t
chhch

t
chhhch

t
ch ddqqddqqqqE ,,

1
,3,,2,

1
,1,,0,, 1/1////     (4)  

where t
chq ,  is the quantity purchased in category c in period t by household h, chq , is the average quantity 

of category c purchased by household h conditional on purchase in the category, t
chd ,  is the number of 

days since the category has been purchased, hcd is the average number of days between purchases in 

category c by household h, and t
ch, is an error term which has normal distribution and is independent 

between categories.  In the interaction term we subtract one (which is the mean of both hc
t

ch qq /1
,
  and 

hc
t

ch dd /, ) from the quantity and time terms to allow clear definition of 1h and 2h: 1h is the household 

response to quantity when the time between purchases is at the mean value, and 2h represents 

household response to time when the average quantity was purchased on the prior occasion.  The 

interaction term allows the household’s consumption rate to be non-constant.  The household 

coefficients in equation (4) are assumed to have a normal distribution with mean  and standard 

deviation of , where  is a diagonal matrix.   The key parameters of interest are lag quantity (expected 

sign is negative), days since last category purchase (expected sign is positive), and the interaction effect 

between these variables (expected sign is positive). 

Although not reported here, we find that, at the 5% level, 3 categories (2%) had positive and 
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significant coefficients for lag quantity and 71 categories (47%) had negative and significant coefficients 

for lag quantity. 95 (63%) categories had positive and significant coefficients for time since last category 

purchase and 13 (9%) had negative and significant coefficients for time since last category purchase. 46 

(31%) has positive and significant coefficients for the interaction between these variables, and 0 (0%) 

has negative and significant coefficients for the interaction.  These results provide support for the 

models where the coefficients with incorrect signs are, on aggregate, approximately 5% (16 of 450), 

which would be expected by chance.  

We use the Tobit model results to predict the expected quantity required by each household in 

each period.  We then follow the same aggregation scheme from above to obtain the cost of visiting a 

specific format.  Given the complexity and computational intensity of this method, we leave it for future 

research to determine methods that allow computationally feasible simultaneous estimation of quantity 

and store choice.  However, even in a parametric case, the problem of simultaneously estimating 150 

category equations and one format choice equation is formidable (Note that we account for the 

estimation error in the standard errors by estimating Tobit models for each bootstrap simulation). 

6.3 Results 

We also estimated a parametric model for model comparison.  For this model, the function h(.) is 

defined as a simple linear specification: hf
s

hft
s

shfhft DSDSh 21),,(   . 

6.3.1 Model Selection 

Table 3 provides the maximized likelihood values and information criteria for the estimation and 

hold-out samples for one to four discrete segments.  We calculate hits by assigning households to 

segments using the posterior probability of segment membership (see Kamakura and Russell 1989) then 

calculating the correct number of predicted choices using only that segment’s parameters to which the 

household is assigned.  We use 25 bootstrap simulations to calculate the standard deviations of the 

model fit statistics across all models in both the parametric and semiparametric estimation. 
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<Put Table 3 about here> 

The Schwarz Criterion and the out-of-sample performance (log-likelihood and hit rate) indicate 

that the three segment model is the “best” parametric model.  Interestingly, the Deviance Information 

Criterion (DIC) suggests that the four segment model is superior.  However, we use the more 

conservative Schwarz Criterion to avoid over-parameterization of the model.  In the DIC, the effective 

degrees of freedom are calculated as the difference between the likelihood of the estimation and the 

mean likelihood of the bootstrap simulations.     

Given a three-segment parametric solution, we then estimated one through three segment 

solutions of the semiparametric model.  The results of the estimation are provided in table 4, with the 

DIC indicating that the three segment model is superior.  It is interesting to note that the improvement in 

the likelihood for using the one-segment semiparametric model versus the one-segment parametric 

model is similar to the improvement in the two-segment parametric model versus the one segment 

parametric model.  Therefore, replacing a linear function with a monotone function has a similar impact 

on the likelihood as adding heterogeneity, and this relationship remains as more discrete segments are 

added.  This result is consistent with the findings in Briesch, Chintagunta and Matzkin (2002). 

<Put Table 4 about here> 

6.3.2 Model Results 

Table 5 provides the MLE parameter estimates from the three segment models for the parametric 

and semiparametric estimations, with the standard errors reported in parentheses.  The segments were 

matched based upon the size of the mass coefficient (which roughly translates to the number of 

households in the segment).  We note that this matching is arbitrary.  Some of the key points are: 

1. Demographic effects appear to be different across the parametric and semiparametric models.  

In the parametric model, Household Size is significant and positive for all segments, while it 

is significant (and negative) for only one segment in the semiparametric model.  College 
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educated head of household is significant for all of the semiparametric segments, while it is 

significant for only one of the parametric segments.   

2. Loyalty effects appear to be similar for two of three segments between the parametric and 

semiparametric models.  However, for segment three of the parametric model, the coefficient 

is negative and significant, unlike the inertia effects in the semiparametric model. 

3. Finally, all of the distance and cost coefficients for the parametric model have the expected 

negative coefficients, and these coefficients are significant at p<0.05 (one-tailed test). 

<Put Table 5 about here> 

Now, we turn our attention to heterogeneity distribution of cost and distance sensitivities.  Table 

6 provides the elasticity estimates for both parametric and semiparametric models as well as the percent 

of households assigned to each segment.   First, the heterogeneity distribution is somewhat similar 

between the methods in an ordinal manner, i.e., most of the families are in the moderate cost sensitivity 

segment (segment 2), followed by the most cost sensitive segment (segment one) then the least cost 

sensitive segment (segment three).  Second, the semiparametric model indicates a larger range of cost 

sensitivity elasticities with a larger proportion of households being very cost sensitive.  Third, the range 

of distance elasticities is larger in the parametric model. Indeed, the semiparametric model indicates less 

heterogeneity in distance sensitivities across households. These differences suggest that there are likely 

big differences in the response surfaces.  Accordingly, the estimated response surfaces for the variables 

of interest (cost and distance) are shown in Figures 1 and 2.  Bootstrap simulations are used to get the 

semiparametric confidence intervals.  The response surface for distance is plotted holding cost fixed at 

the mean value.  Similarly, the response surface for cost is plotted holding distance fixed at the mean.   

If we examine consumer response to distance (figure 1), we see that the semiparametric function 

is convex and decreasing. While not shown here, this convexity is pronounced at lower cost levels. This 

finding implies an interaction with the two variables would be required in a parametric representation of 
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the model.  We note that there are large differences in the parametric versus semiparametric functions, 

with the former having much larger slopes and different intercepts.   

<Put figures 1 and 2 about here> 

If we examine consumer response to cost (figures 2), we also find differences between the 

parametric and semiparametric response surfaces.  While not shown here, in the semiparametric case, 

we see an interaction effect with distance.  At large distances, the response surface is almost flat.  

However, there are significant non-linearities at shorter distances.  The finding is consistent with the 

“tipping point” argument made in Bell, Ho and Tang (1998), although these results are much stronger.   

Finally, we examine the demographic profiles of the segments in Table 7.  The significant 

differences (at p < 0.05) between the parametric and semiparametric models are in bolder font in the 

table.  There are three significant differences between the parametric and semiparametric results: percent 

of trips to EDLP retailer for segment one, average distance to selected formats in segments one and two 

and college education of segment one.  The average expected spending is similar for the segments but 

the number of trips (and hence total cost) is different, similar to Bell, Ho and Tang (1998). 

<Put Table 7 about here> 

7. CONCLUSIONS 

We have presented a method to estimate discrete choice models in the presence of unobserved 

heterogeneity. The method imposes weak assumptions on the systematic subutility functions and on the 

distributions of the unobservable random vectors and the heterogeneity parameter.  The estimators are 

computationally feasible and strongly consistent. We described how the estimator can be used to 

estimate a model of format choice.  Key insights from the application include: (1) the parametric model 

provides different estimates of the heterogeneity distribution than the semiparametric model, (2) the 

semiparametric suggests interactions between cost and distance that change the shape of the response 

function, and (3) the benefit to adding semiparametric estimation is roughly equal in magnitude to 

adding heterogeneity to parametric models.  The benefit remains as the number of segments increases. 
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One drawback of the method is the computational time.  The amount of time required to estimate 

the model is proportional to how good of a starting point is used.  We used the one-segment 

semiparametric solution as a starting point for the three segment solution, and it took approximately two 

weeks for the first simulation to complete on a 1 GHz personal computer (the bootstrap simulations took 

a much shorter amount of time as they used the three-segment solution as a starting point).  As 

computing power becomes cheaper, this should be less of a problem. 

Some variations to the model presented in the above sections are possible. For example, instead 

of letting  ,),,,(),,,,( jjjj rxsjvrxsjV     where rj  R+, one can let rj be an L dimensional vector, 

and specify .),,,(),,,,( jjjj rxsjvrxsjV     Assuming that one coordinate of  equals one, it is 

possible to identify  as well as all the functions and distributions that were identified in the original 

model. Another variation is obtained by eliminating the unobservable random variables j.  When  

,),,,(),,,,( jjjj rxsjvrxsjV    the distribution of  and the functions v(j,.) are identified as well. 

Future extensions of the model will deal with the case where the heterogeneity parameter  is 

multidimensional and the case where the vector of observable exogenous variables (s,z1,…,zJ) is not 

necessarily independent of either   or  (1,…, J) (Matzkin, 2005). 
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APPENDIX A: Theorem Proofs 

PROOF OF  THEOREM 1:  
Let  jJjj   ,...,1  (j=1,…J). To recover the distribution of k for all k=1,…J it is 

enough to determine the identification of  *
1F  (see Thompson 1988).  So, let (t2,…,tJ) be given. Let 

(r1,….,rJ) be such that (t2,…,tJ) = ).,...,( 112121 JJrrrr      Then,  GGWV  ,   

),,...,,,,,|1(
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dGrrrrF

dGttFttF


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










 

where the last equality follows from Assumption 4. It follows that *
1F  is identified, since if for some  

*
1F  and ),,...,( 2 Jtt  ),...,(),...,( 2

*
121 JJ ttFttF    then ',,', GGVV   

).,,;,,...,,,,,|1(),,;,,...,,,,,|1( 22112211 GFVrxrxrxspGFVrxrxrxsp JJJJ    

Since both ),,;|1(),,;|1( GFVpandGFVp J    are continuous, the inequality holds on a set of 

positive probability.  Next, assume w.l.o.g. that the alternative, j
~

, that satisfies Assumption 5 is 2
~ j ,   

02  , and the alternative,  j*  that satisfies either Assumption 6 or 6' or 6’’ is j*=1.  To show that  

),1(* v and G* are identified, we transform the polychotomous choice model into a binary choice model 

by letting jr  for j≥3.  Let 12   , and denote the marginal distribution of  12    by *
F .  

Since F* is identified, we can assume that *
F  is known.  

),)((),,,...,,,( 2
312131   RXXSrrxxxs j

J
jJ   

).()),,,1((),...,,,,...,~,,|1( 2112121 
   dGrrxsvFrrrxxxsp JJ  

Let ),,,1( 1
*  xsv  and let S* denote the distribution of  conditional on (s,x1).  Then,  

2
21 ),(  Rrr   
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It then follows by Assumption 11 and Teicher (1961) that S*(·) is identified. Let ƒ(s,x1) be the 

marginal pdf of (s,x1); ƒ(·) is identified since (s,x1) is a vector of observable variables. Hence, since  

S*(·) is the distribution of  conditional on (s,x1), we can identify the joint pdf, ),,,( 1xsf   of  

).,,( 1xs  By Assumptions 5-7 and 10, ),,,1( 1  xsv  is a nonparametric, continuous function, that 

satisfies the requirements in Matzkin (2003) for identification of ),,,1( 1  xsv and the distribution of 

ω.  Hence, *),,,1( Gandv  are identified. Substituting j in the above argument by k, as in Assumption 

8, it follows that the distribution of ),,,(  k
k xskv  conditional on ),( kxs  is identified. Since by 

Assumption 8 the nonparametric function ),,,( kxskv  is known to be either strictly increasing or 

strictly decreasing in ω, and the distribution of ω has already been shown to be identified, it follows by 

Matzkin (2003) that ),,,(  kv  is identified.  Finally, since for all ),,,(,
~ *  jvjj is identified, it follows 

by Assumption 9, using similar arguments as above that ),,,
~

(  jv is identified. This completes the proof 

of Theorem 1. 

PROOF OF THEOREM 2:  
We show the theorem by showing that the assumptions necessary to apply the result in Kiefer 

and Wolfowitz (1956) are satisfied (see also Wald 1949). For any  ),(),,( FGWFGV    define 

)()),,(;,,|(),,;,,(
1

 dGFVzssjpFGVzsyf
i
jy

J

j

 


 

and for any ,0  define the function ),,,;,,( FGVzsyf    by 

).,,;,,(sup),,,;,,(

)],,(),,,[(








FGVzsyfFGVzsyf

FGVFGVd 

  
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We need to show continuity, measurability, integrability, and identification. 

CONTINUITY:   ),,(,),,( 1 GFVGFV kkkk

  such that  

  )(),,(),(),,( 1 GFGFkkkk WGFVWGFV 
  and   ,0),,(),,,( GFVGFVd kkk   one has 

that  ),,,( zsy  except perhaps on a set of probability 0,  ).,,;,,(),,;,,( GFVzsyfGFVzsyf kkk    

MEASURABILITY:  )(),,( GFWGFV   and ),,,;,,(,0  FGVzsyf   is a measurable 

function of  ).,( zy   

INTEGRABILITY:  )(),,( GFWGFV   



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
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0 loglim
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
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IDENTIFICATION:  )(),,( GFWGFV    such that  ),,(),,(  GFVGFV   there exists a set  

 such that ),(),,;,,(),(),,;,,( zydFGVzsyfzydFGVzsyf 
  .  

To show continuity, we note that    0),,(),,,( GFVGFVd kkk  implies that for all 

, and all j,  ),,(,, szVF kjkj  converges to  ),,( szVF jj , where  

)),,,,(),,,(),...,,,,1(),,,((),,( 1  Jjjj zsJVzsjVzsVzsjVzsV   and that Gk converges weakly 

to  G over Y.  Let  RYhk :     and   RYh :    denote, respectively, the functions  

)),,(( ,, zsVF kjkj  and  )).,,(( zsVF jj   Since h is continuous, it follows from Theorem 5.5 in Billingsley 

(1968) that 1
kk hG  converges weakly to 1Gh .  Hence, using a change of variables, it follows that 
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where the convergence follows because t is a continuous and bounded function on the supports of 

1
kk hG  and .1Gh   Hence, it follows that ),,;,,(),,;,,( GFVzsyfGFVzsyf kkk   for all  z.  
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To show measurability, we first note that it suffices to show that for all j,  

),,;,|(sup
)],,(),,,[(

GFVzsjp
FGVFGVd


  

 is measurable in (s,z).  Now, since  )( GFW    is a 

compact space, there exists a countable, dense subset of  ).( GFW    Denote this subset by  

).
~~~

( GFW    Then, 

  )(),,(,)],,(),,,[(|),,;,|(sup GFWFGVFGVFGVdGFVzsjp      =  

 )~~~
(),,(,)],,(),,,[(|),,;,|(sup GFWFGVFGVFGVdGFVzsjp      

Since, suppose that the left hand side is bigger than the right hand side, then, there must exist 

>0  and  )(),,( GFWFGV    such that  ),
~~~

()",,( ""
GFWFGV    

(i) ).,,;,|(),,;,|( """ GFVzsjpGFVzsjp     

But, )
~~~

( GFW  is dense in ).( GFW   Hence, there exists a sequence  

)}
~~~

()},,{( GFkkk WGFV    such that  .0)],,(),,,[(   GFVGFVd kkk   As it was shown in the 

proof of continuity, this implies that ),,,;,|(),,;,|( GFVzsjpGFVzsjp kkk    which contradicts (i).  

Hence, 

  )(),,(,)],,(),,,[(|),,;,|(sup GFWFGVFGVFGVdGFVzsjp      =  

 )~~~
(),,(,)],,(),,,[(|),,;,|(sup GFWFGVFGVFGVdGFVzsjp       

Since ),,;,|(),
~~~

(),,( GFVzsjpWFGV GF    is measurable in (s,z), it follows that 

  )(),,(,)],,(),,,[(|),,;,|(sup GFWFGVFGVFGVdGFVzsjp       

is measurable in (s,z).  
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To show integrability, we note that  .1),,;,|(),,,(   GFVzsjpFGVj   Hence, j, 

.1})(),,(,)],,(),,,[(|),,;,|(sup{  
GFWFGVFGVFGVdGFVzsjp    It follows 

then that  ,0      
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    ),(),,;,|(log(),,;,|(1),( zsdFGFVzsjpGFVzsjpJ
jzs


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Since the term in brackets is bounded, it follows that    .log
),,,,,(

),,,,,,( 


 FGVzsyf

FGVzsyfE    Finally, 

identification follows from Theorem 1.  Hence, it follows by Kiefer and Wolfowitz (1956) that the 

estimators are consistent. 

PROOF OF THEOREM 3:   

The properties shown in the proof of Theorem 2 imply that the log-likelihood function converges  a.s. 

uniformly, over the compact set )( GFW  ,  to a continuous function that is uniquely maximized 

over )( GFW   at ),,(  GFV  (see Newey and McFadden 1994). Since 
 1)}{( N

N
G

N
F

NW  

becomes dense in )( GFW   as the number of observations increases, it follows by Gallant and 

Nychka (1987, Theorem 0) that the estimators obtained by maximizing the log-likelihood over 

)( N
G

N
F

NW   are strongly consistent. 
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Table 1 – Descriptive statistics for the households 

 Mean Std Dev 

Number of Households 161  

Average Monthly Spending $233.9 85.4 

Minimum Monthly Spending $102.2 61.9       

Number of Shopping Trips 184.2  83.4 

Av Days Between Trips 4.6 1.8 

Av Spending Per Trip 36.5 15.8 

Elderly  13.7% 34.5% 

Household Size 2.9 1.3 

Income (,000) $56.2 $25.0 

College 41.0% 49.3% 

Married 82.0% 38.5% 

 

Table 2 – Price Format Statistics. 
 EDLP HiLo 
Share of Trips 57.8% 42.2%

Distance (minutes) 
35.5 

(22.6) 
12.4 

(10.7) 

Cost to refill inventory 
34.3 

(10.9) 
37.2 

(11.0) 
Loyalty (percent of trips to format 
during initialization period) 

0.57 
(0.30) 

0.43 
(0.30) 
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Table 3 – Estimation results for parametric models. 

 Segments 
 Zero One Two Three Four
In-Sample  
   -Log-Likelihood 9605 6398 6122 5904 5883
        (std dev)1  (15) (32) (70) (93)
   Hits  10846 11032 11172 11167
        (std dev)1  (14) (47) (58) (72)
   Hit Rate  78% 80% 81% 81%
   No Parameters 0 9 19 29 39
   AIC 19210 12814 12282 11866 11845
   Swartz 19210 12882 12425 12085 12138
   DIC  12845 12350 12123 11975
   Effective DOF2  24 53 157 104
      
Out of Sample      
   -Log-Likelihood 4556 3169 3010 2907 2968
       (std dev)1  (11) (24) (30) (58)
   Hits  5032 5165 5219 5215
       (std dev)1  (15) (31) (34) (45)
   Hit Rate  77% 79% 79% 79%

Notes:  1. Standard deviations calculated using 25 bootstrap simulations. 

2. Effective Degrees of Freedom is defined as the difference between the mean of the bootstrap 
simulation liklihoods and the estimation sample likelihood Spiegelhalter, et al (2002) . 
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Table 4 – Semiparametric estimation results. 
 Segments 
 One1 Two Three 
In-Sample  
   -Log-Likelihood 6185 5816 5676 
        (std dev)2 (22) (64) (30) 
   Hits 10956 11112 11281 
        (std dev)2 (30) (77) (36) 
   Hit Rate 79% 80% 81% 
   No Parameters 6 14 22 
   DIC 12489 11896 11518 
   Effective DOF3 59 132 83 
   
Out of Sample    
   -Log-Likelihood 3224 2993 2892 
        (std dev)2 (56) (50) (20) 
   Hits 5093 5248 5270 
        (std dev)2 (24) (33) (26) 
     Hit rate 77% 80% 80% 

Notes:  1. The one segment model is over-identified as the extant literature (Matzkin (1992), Briesch, 
Chintagunta and Matzkin (2002)) show that only one extra point and no parameter restrictions 
are required for identification of this model.  We include this model for completeness. 

2. Standard deviations calculated using 25 bootstrap simulations. 

 3. Effective Degrees of Freedom is defined as the difference between the mean of the bootstrap 
simulation liklihoods and the estimation sample likelihood Spiegelhalter, et al (2002). 
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Table 5 – MLE parameter estimates for three-segment model. 
 Parametric Semiparametric 
Coefficients  Segment 1 Segment 2 Segment 3 Segment 1 Segment 2 Segment 3 
Mass 1.27 0.12 0.00 0.00 -0.26 -1.50
 (0.24) (0.29)  (0.18) (0.34)
Intercept -0.20 3.23 -0.74 1.45 -0.01 -2.93
 (0.07) (0.48) (0.15) (0.12) (0.07) (1.52)
Loyalty 2.61 3.31 -0.95 3.21 3.12 1.90
 (0.03) (0.15) (0.19) (0.07) (0.04) (0.31)
Elderly -0.32 0.84 -4.51 -2.18 1.28 3.13
 (0.05) (0.19) (0.29) (0.09) (0.09) (1.17)
HH Size 0.05 0.38 0.28 0.02 -0.14 0.58
 (0.01) (0.12) (0.02) (0.02) (0.02) (0.31)
Income 0.002 0.008 0.063 -0.007 -0.003 0.029
 (0.001) (0.003) (0.004) (0.002) (0.001) (0.011)
College 
Educated 0.06 1.56 -4.01 0.07 0.10 -0.92
 (0.03) (7.92) (0.26) (0.07) (0.05) (0.40)
Distance -0.20 -0.85 -3.82    
 (0.01) (0.06) (0.21)    
Cost -0.95 -2.33 -0.51    
 (0.19) (0.82) (0.38)    
EDLP * Days 
since last trip -0.01 -0.07 -0.14 -0.013 -0.013 -0.013
 (0.01) (0.02) (0.02)    
Theta  1.000 2.09 0.53
    (0.01) (0.02)

Notes: 1. One segment’s mass point set to zero for identification. 

 2. EDLP*Days since last trip set to -0.013 for identification in semiparametric model. 

 3. One semiparametric theta constrained to one. 

 4. Segments are matched based upon mass values. 

            5. Bold values are significant at p < 0.05. 
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Table 6 – Cost and Distance Elasticities by Segment and Model 

 Percent of Families Cost Elasticity Distance Elasticity 

Segment 1     

     Parametric 22.36 -1.19 

(1.60) 

-0.57 

(0.45) 

     Semiparametric 38.51 -2.52 

(0.35) 

-0.21 

(0.06) 

Segment 2     

     Parametric 62.11 -0.96 

(1.36) 

-0.12 

(0.45) 

     Semiparametric 52.8 -0.53 

(0.04) 

-0.22 

(0.10) 

Segment 3     

     Parametric 15.53 -0.48 

(0.98) 

-1.39 

(0.32) 

     Semiparametric 8.7 -0.22 

(0.09) 

-0.19 

(0.07) 
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Table 7 – Demographic profiles of segments. 
 Parametric Semiparametric 
 Segment 1 Segment 2 Segment 3 Segment 1 Segment 2 Segment 3 
Size (# families) 36 100 25 62 85 14

% Trips at 
EDLP 

82% a 55% b 43% c 63% a 58% a,b  44% b 
(0.28) (0.31) (0.30) (0.31) (0.35) (0.25)

Av Days 
between trips 

5.57 a  5.20 a 4.28 b 4.86 b 5.46 a  4.41 b 
(2.20) (1.75) (1.79) (2.01) (1.73) (1.99)

COST-Average 
Cost at selected 
format ($/10) 

 -0.07 0.18 0.10 0.14 0.11 0.00

(0.80) (0.93) (0.71) (0.83) (0.85) (1.17)
Distance to 

selected 
format/10 

3.28 a  1.82 b 1.38 c 1.98 2.19 1.85

(2.32) (1.07) (0.91) (1.44) (1.70) (1.20)

Income/10,000 
48.96 b  59.22 a 54.44 a,b 50.23 b 58.51 a  68.39 a 
(19.89) (26.10) (25.37) (26.83) (21.46) (30.72)

Family Size 
2.67 2.85 3.20 2.82 2.93 2.64

(1.17) (1.29) (1.63) (1.34) (1.33) (1.28)

Elderly 
14% 13% 16% 18% 11% 14%

(0.35) (0.34) (0.37) (0.39) (0.31) (0.36)

College 
Educated 

19% b  48% a 44% a 47% 38% 36%
(0.40) (0.50) (0.51) (0.50) (0.49) (0.50)

Av. Trips per 
family 

79.03 b  82.36 b 111.04 a 91.77 a 77.86 b  110.64 a 
(34.91) (35.57) (53.86) (43.46) (30.63) (59.55)

 

Notes: 1) Bold implies comparisons (parametric vs. semiparametric) are significant at p < 0.05. 

           2) Bold and Italic comparisons (parametric vs. semiparametric) are significant at p<0.10. 

           3) a>b>c in paired comparisons at p < 0.10 (within parametric or semiparametric) 
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FIGURE 1.  Segment Distance Response Surface at Mean Cost . 
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FIGURE 2.  Segment Cost Response Surface at Mean Distance. 
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