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Abstract

Function-on-function regression refers to the situation where both independent and
dependent variables in a regression model are of functional nature. Functional concurrent

regression is a specific type of function-on-function regression that relates the response
function at a specific point to the covariate value at that point and the point itself.

Standard functional concurrent models are linear (a linear combination of the covariates is
used), and often criticized due to their linearity assumption and lack of flexibility. This
gives rise to nonparametric functional concurrent regression that models the response

function at a specific point using a multivariate nonparametric function of both the point
and the covariate value at that point. Such models allow for much more flexibility and

predictive accuracy, especially when the underlying relationship is nonlinear. In the past
decade, several methods have been proposed to perform estimation, prediction and

inference in the nonparametric concurrent models using various methods such as spline
smoothing, Gaussian process regression and local polynomial kernel regression. Such

models have been shown to be useful tools in functional regression as well as stepping stone
for further development.
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INTRODUCTION

Functional data have become more and more common in recent years and as a result various

statistical models and techniques are being developed to address problems involving such

data type. In regression problems where both response and covariate(s) are of functional

nature, an interesting and popular modeling strategy is to use concurrent models. Specifi-

cally, the response at a specific point is modeled as a function of the value of the covariate

only at that specific point. The standard linear concurrent model assumes a linear relation-

ship between the response and covariate functions at any given point of observation. Such

models, also known as varying coefficient models, are useful in many settings such as longi-

tudinal data analysis, and as such have a rich literature spanning over two decades since its

introduction for the case with scalar response variable4 and later for longitudinal data2,3,15;

readers are referred to the article by Fan and Zhang9 for a detailed review of such models.

There are several methods to estimate the model components in longitudinal setting includ-

ing local polynomial kernel smoothing3,8,15, regression and smoothing spline methods7,16,17,

and penalized spline and quadratic inference function based methods25. In the functional

data analysis setting, Ramsay and Silverman27 provide a detailed exposition of the linear

functional concurrent model and its fitting procedures. There have been many subsequent

developments in this area including extension to spatial imaging48, ridge regression14 and

extension to accommodate generalized response1,11.

A drawback of the linear concurrent models is the assumption of linear relationship

between the response and covariate functions. Nonparametric concurrent models seek to

address this issue by specifying a nonparametric relationship that offer more flexibility in

modeling and prediction. Various methods for estimation and inference in nonparamet-

ric functional concurrent regression have been developed using spline smoothing, Gaussian

process regression and local kernel smoothing techniques. This article is a survey of these

methods. In what follows, we discuss the three types of methods and their extensions, men-

tion currently available software, provide overall comparison of the procedures followed by a

numerical illustration using the Gait data, and finally present some concluding remarks.
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NONPARAMETRIC CONCURRENT MODELS

In what follows, we use Y (·) to denote the response variable and X1(·), . . . , XQ(·) to denote

the functional covariates. We denote any other (vector-valued) covariates present in the

model by Zi. We assume that Y (·) and Xq(·), q = 1, . . . , Q are defined on the same domain

[0, T ] for some T > 0. We observe data tuples [Yi(t), Xi1(t), . . . , XiQ(t)], for i = 1, . . . , n, for

a finite number of points, t ∈ {ti1, . . . , timi
}, where mi is the number of observations for the

i-th subject. The observational points may be different for each i, and may be irregularly

spaced in practice. The covariates can also be contaminated with noise, that is, instead of

Xq(·) we only observe Wijq = Xiq(tij) + eijq for i = 1, . . . , n; j = 1, . . . ,mi, and q = 1, . . . , Q,

where eijq white noise with mean zero and variance σ2
e . For simplicity of presentation, we

shall first assume that σ2
e = 0, that is, we observe error free covariates and that tij = tj and

mi = m. We shall discuss the more general case as we present each method in subsequent

sections. We assume that Y (·) and Xq(·), q = 1, . . . , Q are smooth processes. We shall

discuss the extension to the case with general response functions in a later section.

Spline smoothing based methods

The general form of a nonlinear concurrent model with only one covariate X(·) is Yi(t) =

F{Xi(t), t}+ εi(t), where F (·, ·) is a smooth unknown bivariate function and εi(·) is an error

process. The linear concurrent model is a special case of this general concurrent model if one

takes F{X(t), t} = µ(t) +X(t)β(t). A more general additive model with multiple functional

covariates is

Yi(t) = µ(t) +

Q∑
q=1

Fq{Xiq(t), t}+ εi(t),

where µ(·) is an unknown intercept function, and Fq(·, ·), q = 1, . . . , Q are unknown smooth

functions. Such models are considered by Kim et al19 and by Scheipl, Gertheiss and Greven31

as a part of a more general framework.

For simplicity, we review the case of one covariate. The same formulation can be applied

for multiple covariate case. The bivariate function F (·, ·) is modeled using tensor product of
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B-splines as basis functions23: for any fixed x and t,

F (x, t) =
∑Kx

k=1

∑Kt

l=1θk,lBX,k(x)BT,l(t), (1)

where {BX,k(x) : k = 1, 2, . . . , Kx} and {BT,l(t) : l, 2, . . . , Kt} are B-spline basis func-

tions, and θk,l are unknown parameters. The estimation then proceeds by minimizing

the penalized sum of squares L(Θ) =
∑n

i=1

∑m
j=1{Yi(tj) − Zi(tj)Θ}2/m + ΘTPΘ, where

Zi(t) = [BX,k{Xi(t)}BT,l(t)]
l=1,...,Kt

k=1,...,Kx
is the full design matrix derived using the expression

of F (x, t), Θ = [θ1,1, . . . , θ1,Kt , . . . , θKx,1, . . . , θKx,Kt ]
T is the parameter vector, and P is an

appropriate penalty matrix. Kim et al used a penalty of the form λxP
T
x Px + λtP

T
t Pt, where

Px = Dx

⊗
IKt and Pt = IKx

⊗
Dt are row and column penalties, and the parameters λx and

λt control the smoothness in the directions of x and t, respectively6,23,24. Here Dx and Dt

are matrices representing the row and column second order difference penalties, respectively.

Minimization of L(Θ) is straightforward and a closed form expression of the estimator is19

Θ̂ = (
∑n

i=1ZTi Zi+P )−1
∑n

i=1ZTi Yi, where Yi = [Yi(t1), . . . , Yi(tm)]T and Zi is a matrix such

that j-th row of Zi is Zi(tj). The penalty parameters λx and λt are typically chosen by well-

known criteria such as generalized cross validation (GCV), restricted maximum likelihood

(REML), and maximum likelihood (ML)30,41–44. The function F (·, ·) can now be constructed

by plugging-in Θ̂ in the basis expansion in (1).

An important issue in nonparametric concurrent models with continuous response is to

account for covariance that may be present in the unobserved error process. Accounting

for such covariance allows one to correctly construct standard errors for estimated model

components and prediction of a new response. Kim et al assume that the error ε(·) has

the form r(·) + η(·), where r(·) is a smooth process and η(·) is white noise. They develop

a functional principal component analysis (FPCA)5,46,47 based approach to estimate the

covariance among the errors and subsequently use the estimated covariance to form corrected

estimation and prediction errors.

When the sampling design is irregular or sparse, that is, X(·) is only observed at sij, j =

1, . . . ,mi and the response functions are observed at tik, k = 1, . . . ,mY,i, Kim et al propose to

apply FPCA on the functional covariate to obtain smooth versions X̂(·) evaluated at tik, k =

1, . . . ,mY,i, and use the modified penalized sum of squares L(Θ) =
∑n

i=1

∑mY,i

k=1 {Yi(tik) −
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Zi(tik)Θ}2/m + ΘTPΘ. The expressions for estimator of Θ, prediction and their variances

are also adjusted accordingly. Such techniques (especially the usage of FPCA) can account

for the situation where the covariates are observed with measurement error as well. We refer

the readers to Kim et al19 for a much detailed discussion of these issues and the corresponding

methodology.

Gaussian process regression based methods

Gaussian process regression39,40 provides a nice tool to accommodate large number of covari-

ates into a regression model that would otherwise be over-saturated and unfeasible to fit. We

start by providing a brief overview of Gaussian process regression framework. A Gaussian

process can be seen as a collection of random variables where any finite number of them has a

multivariate normal distribution29,40. We denote such a process by GP{m(·), C(·, ·)}, where

m(·) and C(·, ·) are the mean and covariance functions, respectively. A realization h(·) from

such a process is a random function with E{h(x)} = m(x) and cov{h(x), h(x′)} = C(x, x′),

where x and x′ are points in the domain of the process. Also, for any finite set of points

x1, . . . , xn, the vector [h(x1), . . . , h(xn)]T follows a multivariate normal distribution.

Now consider a simple nonparametric model

Yi = h(xi) + εi,

where Yi’s are scalar responses, xi’s are vector-valued covariates, εi’s are independent ran-

dom errors from a normal distribution with mean zero and finite variance σ2, and h(·) is a

nonlinear unknown function. Gaussian process regression starts with the assumption that

the unknown function h(·) is a realization from a zero mean Gaussian process34, that is,

h(·) ∼ GP{0, C(·, ·)}, where C(·, ·) is a covariance ‘kernel’, typically known up to a set of

parameters. Thus combined with the assumption that the errors εi ∼ N(0, σ2) and are in-

dependent, one can write (Y1, . . . , Yn)T ∼ N(0,C + σ2In), where C is an n× n matrix with

Cij = C(xi, xj).

In practice, there are many choices for the kernel function such as, polynomial kernel40

C(x, x′) = (a + bxTx′)d, where a, b > 0 are constants and d is an positive integer; Gaussian

kernel40 C(x, x′) = exp(−γ||x − x′||2), γ > 0; spline13 and B-spline kernels10, among many
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others22,40. Shi, Murray-Smith and Titterington34 suggest to use

C(x, x′) = ν0 exp

(
−1

2

Q∑
q=1

wq(xq − x′q)2
)

+ a0 + a1x
Tx′,

where x = (x1, . . . , xQ)T and x′ is defined similarly.

One could adopt several approaches for estimation. A Bayesian approach is to specify

priors for the parameters and then make inference based on the posterior distribution. A

frequentist approach is to consider the parameters (σ2 and the parameters in C(·, ·)) as

variance components and use maximum likelihood34 or restricted maximum likelihood20

for estimation. Prediction of Ynew for a new covariate value Xnew can be conducted by

first observing that (Y1, . . . , Yn, Ynew)T follows a multivariate normal distribution, and then

computing conditional distribution of Ynew given (Y1, . . . , Yn)T , where one can plug-in the

estimated parameters.

It is interesting to note that the Gaussian process regression framework has a strong

connection to Reproducing Kernel Hilbert Space (RKHS). This mainly follows from the fact

that every mean zero Gaussian process is defined by some RKHS, and the covariance kernel

of the process can be identified with the reproducing kernel of the corresponding RKHS33.

Shi, Murray-Smith and Titterington34 develop a Gaussian process regression framework

for nonparametric concurrent models of the form

Yi(tj) = Fi{Xi1(tj), . . . , XiQ(tj)}+ εi(tj),

where they assume

Fi(·) ∼
L∑
`=1

π`GP{0, C(·, ·; θ`)}.

Here C(·, ·) is a pre-specified kernel/covariance function depending on parameter θ`, possibly

taking different values for each component of the mixture, and π` is the weight corresponding

to the `-th component. A Bayesian methodology is developed by putting prior distributions

on θ` and π`, ` = 1, . . . , L, and then using a combination of Gibbs sampling and MCMC

procedure to draw samples from the resulting posterior distribution. A method for prediction

of new response curves is also provided based on the posterior density of Fi(·).
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Shi et al37 extend the nonparametric concurrent model to include a linear mean compo-

nent by using the model

Yi(t) = ZT
i β(t) + Fi{Xi1(t), . . . , XiQ(t)}+ εi(t),

where β(·) is a vector of unknown coefficient functions, and Fi(·) is defined as before. The

model components are estimated using a two stage approach. In the first stage, each observed

response curve is smoothed using B-spline basis functions: Yi(t) = ΦT (t)Ai, where Φ(t) =

[Φ1(t), . . . ,ΦKY
(t)]T are B-spline basis functions, and Ai is a KY × 1 vector of coefficients.

These coefficients are estimated by minimizing
∫

(Yi(t)−ΦT (t)Ai)
2 dt with respect to Ai for

each i = 1, . . . , n. The unknown coefficient function β(·) is also modeled using B-spline basis

functions: β(t) = ΦT (t)B, where B is a matrix of unknown coefficients. B is estimated

as (ZTZ)−1ZTA, where Z = [Z1, . . . , Zn]T and similarly for A. In the second stage, the

residuals from the first stage are computed as F̃i(Xi(t)) = Yi(t) − ZT
i β̂(t). Then, based

on the model F̃i(Xi(t)) = Fi(Xi(t)) + εi(t), the variance components involved in Fi(·) are

estimated either by MLE or a Bayesian approach34.

The number of basis functions, KY , controls smoothness of β(·). Later, Shi and Choi33

discuss a general procedure to include a second derivative based roughness penalty terms

in the first stage to estimate Ai as well as β(·). They propose an iterative procedure that

accounts for the covariance structure imposed by the Gaussian process regression framework

into the estimation of Ai as well. The approach of Shi et al37 essentially removes these

roughness penalty terms as well as the covariance structure in estimation of Ai and β(·) for

faster computation.

Other notable works in this framework include extension to the case where data are

spatially indexed36; incorporating mixed effects of functional variable in the mean model33,35,

and extension to the case with generalized response from exponential family38.

It should be noted that the two stage approach37 depends on individual smoothing of

each response curves, and as such may face difficulties if the curves are observed using a

sparse design.
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Kernel smoothing based methods

Jiang and Wang18 develop a functional single index model that uses concurrent relationship

between a functional response and multiple functional covariates. Specifically, the functional

single index model is given by

Y (t) = F{βTX(t), t}+ ε{X(t), t},

where X(t) = [X1(t), . . . , XQ(t)]T , F (·, ·) is an unknown bivariate function, β is an unknown

coefficient vector, and ε is an error process possibly depending on the covariates. Jiang

and Wang extend the standard conditional minimum average variance estimation (MAVE)

methodology45 based on local kernel smoothing to the case of functional single index model.

Denote Yij = Y (tij) and similarly for Xij for any i, j. Given any tj` and covariate value

Xj` = X(tj`), one can expand F (βTXik, tik) = E(Yik|tij, Xik) around (βTXj`, tj`) using a

locally linear approximation

F (βTXik, tik) = aj` + bj`(tik − tj`) + dj`β
T (Xik −Xj`),

where aj`, bj` and dj` are quantities that depend on F (·, ·) and its first derivatives, respec-

tively, evaluated at (βTXj`, tj`). The conditional variance E{Yik−F (βTZik, tik)}2 (at tj` and

βTXj`) can be approximated as

σ2(βTXj`, tj`) =
n∑
i=1

mi∑
k=1

[Yik − {aj` + bj`(tik − tj`) + dj`β
T (Xik −Xj`)}]2wikj`,

where

wikj` =
K[(tik − tj`)/ht, {βT (Xik −Xj`)}/hx]∑n

i=1

∑mi

k=1K[(tik − tj`)/ht, {βT (Xik −Xj`)}/hx]
are kernel based weights, and ht and hx are corresponding bandwidths. The MAVE procedure

then proceeds to estimate β by solving

argmina,b,d,β

n∑
j=1

mj∑
`=1

n∑
i=1

mi∑
k=1

[Yik − {aj` + bj`(tik − tj`) + dj`β
T (Xik −Xj`)}]2wikj`.

The minimization can be done in an iterative manner until convergence is reached18. The

bandwidths for the kernel estimator is chosen via m-fold cross-validation.
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Jiang and Wang show that, under appropriate regularity conditions, the parametric com-

ponent β has an asymptotic normal distribution with root-n convergence rate. For the es-

timation of the bivariate function F (·, ·), two results are presented. It is assumed that the

design points t are sampled randomly from some distribution, that is, the design is ran-

dom. Jiang and Wang show that when only one functional covariate is present, that is,

E[Y (t)|X(t)] = F{X(t), t}, then√
nN̄hthx{F̂ (x, t)− F (x, t)} →d N{η(x, t),ΣF (x, t)}

for any scalars t and x. Here N̄ =
∑

imi/n, η(x, t) is the asymptotic bias term (shown

to be dependent on hx/ht and on second derivatives of F (·, ·)) and ΣF is the asymptotic

variance-covariance matrix (shown to be dependent on the kernel function as well as the

joint density of X and t). This result is of particular interest since it applies exactly to the

nonlinear nonparametric concurrent model with one functional covariate. Thus this result

provides a nice asymptotic property of the kernel smoothing estimator for a single covariate

nonparametric concurrent model. A similar second result concerning the estimation of F (·, ·)

for the general case with multiple covariates with estimated β is also presented.

GENERALIZED CONCURRENT MODELS

In the Gaussian process regression framework, Wang and Shi38 develop a nonparametric

concurrent modeling approach for non-Gaussian response. They assume that for each t, the

response Yi(t) has a distribution from an exponential family with density function

f{yi(t)|αi(t), φi(t)} = exp

[
yi(t)αi(t)− b{αi(t)}

a{φi(t)}
+ c{yi(t), φi(t)}

]
,

where α(·) and φ(·) are the canonical and dispersion parameters, respectively. Wang and Shi

then define the nonparametric concurrent regression model, conditional on the covariates,

E{Yi(t)} = h[µi(t) + Fi{Xi(t)}] with Fi{Xi(t)} ∼ GP{0, C(·, ·; θi)},

where µi(·) is an unknown function that can depend of other vector valued covariates Zi

(e.g., ZT
i β(·)), and h(·) is a known link function. The model proposed in Shi et al37 is indeed
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a special case of this model. For the case µi(t) = ZT
i β(t), Wang and Shi propose to model

β(·) using spline basis functions, and use an empirical Bayes learning approach to estimate θi

and the unknown coefficients in the expression of β(·). Theoretical results about consistency

of the predicted process Ŷ (·) to the true process Y (·) are also presented.

Recently, Scheipl, Gertheiss and Greven31 develop a generalized additive modeling frame-

work for non-Gaussian functional response that also includes nonparametric concurrent mod-

els. They consider the model

Yi(t) ∼ F{µi(t), ν} with g{µi(t)} = ηi(t) =
R∑
r=1

fr(Xri, t),

where Xr is a set of predictor that can include part of the functional covariates X(·), F is

some distribution with conditional mean E[Yi(t)|Xi, t, ν] = µi(t). This model is indeed very

general, see their Table 1 for different possible choices of fr(·) that give rise to various func-

tional regression models. While Scheipl, Gertheiss and Greven did not specifically investigate

nonparametric concurrent models in their article, their modeling framework does include lin-

ear and nonparametric concurrent models as well as concurrent interaction models of the

form v(t)w(t)β(t) or f(v(t), w(t), t), among others. The unknown functions fr(Xr, t) are

approximated by sum of tensor product of marginal basis functions for Xr and t. Estimation

of unknown coefficients are done by a penalized likelihood approach.

Scheipl, Gertheiss and Greven also presents a numerical comparison (see their Section

4.3) of their method to that of Wang and Shi, where the response process is binary with a

functional intercept and observation-specific functional random effects. The two approaches

yield similar errors for estimates of η(·) (Wang and Shi’s method performs better in predicting

the random effects but not so for fixed functional intercept, while Scheipl, Gertheiss and

Greven’s method shows the opposite trend). An investigation of coverage for estimates of

η(·) shows that both the methods generally do not achieve nominal coverage, but Scheipl,

Gertheiss and Greven’s method converges to the nominal level faster as sample size increases.

In addition, the Gaussian process based method requires much more computation time.
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SOFTWARE DEVELOPMENT

Some Gaussian process regression based procedures for continuous responses have been im-

plemented in the R26 package GPFDA32. Kim et al19 implement their method using the mgcv

package in R. Implementation details are discussed in their supplementary materials; code is

available at http://www4.stat.ncsu.edu/~maity/ under the software section. R functions

for the procedure in Scheipl, Gertheiss and Greven31 is included in the pffr function in

the R package refund12. A MATLAB implementation of the functional single index model

approach18 is available at http://www.stat.ucdavis.edu/PACE/download.html under the

name fsim.zip.

COMPARISON OF METHODS

General discussion

We review three types of modeling and fitting procedures for nonparametric functional

concurrent regression models, namely, spline smoothing, Gaussian process and local kernel

smoothing based approaches. Gaussian process based approaches attempt to directly model

the covariance structure within each response function via a pre-specified covariance/kernel

function that depends on the functional covariates. These approaches have the flexibility to

incorporate multiple (and possibly a large number of) functional covariates simultaneously

quite easily and without assuming any specific parametric structure such as additivity, giv-

ing these methods much more flexibility over their parametric counterparts. However, the

computation complexity and time of such methods are generally greater. Also, the methods

proposed by Shi et al37 and subsequent articles require the functional response curves to be

sampled on a sufficiently large number of points, so that smoothing of individual curves is

possible. They also use the assumption that the functional covariates are sampled without

any additional measurement errors. As a result, such methods may face difficulties when the

covariate data is sampled over a sparse design and/or observed with measurement errors.

Also, choice of smoothing parameters for the response curves as well as in the estimation

step for any linear concurrent components can have heavy computational burden in prac-
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tice. While the Gaussian process based methods provide good prediction based on all the

covariates, interpretation of individual covariates are difficult to quantify and interpret.

Spline based methods for nonparametric concurrent models essentially model the un-

known bivariate function F (·, ·) using linear combinations of tensor products of marginal

basis functions for the two directions, and then propose to estimate the unknown coefficients

by minimizing an appropriate penalized (likelihood or sum of squares) criteria. An advan-

tage of such methods is that the response and/or the covariate functions do not have to be

observed on a dense grid, and covariates can have measurement errors19. The smoothing

parameters can be thought of variance components in a mixed model and can be determined

easily using REML. A spline based approach also enables faster computational methods

while keeping the prediction accuracy similar, as is demonstrated in Scheipl et al31 in the

comparison with Gaussian process based methods, especially if the number of observations

per curve increases. A potential disadvantage of such spline based methods arises in pres-

ence of multiple functional covariates. If one uses an additive structure for the functional

concurrent effects, the computational burden can be much bigger, especially when the num-

ber of covariates is moderate of large. This issue is even more pronounced if one wishes to

incorporate interactions in the model as well.

The kernel smoothing based method of Jiang and Wang uses a single index modeling

framework, where one computes an index by taking a linear combination of the functional

covariates (using unknown coefficients), then the response function at time t is modeled

using a bivariate function of the index and t. The bivariate surface is estimated using kernel

smoothing, and the unknown parameter in the single index is estimated using nonlinear

optimization. When only one functional covariate in available, the model coincides with

the standard nonparametric functional concurrent model. Unlike the Gaussian regression

based method, the single-index model can accommodate sparsely observed data, and as such

does not require smoothing of each response curve before fitting the model. It does however

require that the covariates are observed without any measurement error. This procedure

has the advantage that the same bandwidth is used to estimate the nonparametric mean

function and the single index parameter, and the estimated parameter still achieves root-n

convergence rate (unlike semiparametric regression models with independent response, where
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one often needs to under-smooth the nonparametric component). The main computational

burden of this method comes from two sources: the iterative procedure to estimate the

single-index parameter, and the selection of bandwidths for the bivariate kernel smoothing

using cross-validation. In our experience in the real data analysis, the kernel smoothing

method (implemented in MATLAB) appeared to be more time consuming than the spline

based method (implemented in R) with automatic smoothing parameter selection. One

important point to be noted that the single-index parameter is identifiable only if specific

constraints are imposed, such as β1 = 1. Thus one should exercise caution when interpreting

the absolute values of the estimates.

Numerical illustration

For illustration purposes, we apply the spline based method of Kim et al (GFCM), Gaus-

sian process regression based method of Shi et al (GPFR), and kernel smoothing based

method of Jiang and Wang (FSIM) to the Gait dataset27. The gait dataset is avail-

able in the fda package28 in the R software. The R and Matlab programs for the data

analysis presented below are available in the software section of the author’s web page

(http://www4.stat.ncsu.edu/∼maity/).

The gait dataset consists of measurements of hip and knee angles (in degrees) through a

movement cycle for n = 39 boys over m = 20 equally spaced time points. The left and middle

panels in the first row of Figure 1 display the observed hip and knee angles, respectively.

Data for two specific boys are highlighted in red and blue. In this analysis, we use hip angle

as covariate and knee angle as response variable. To investigate the performance of the three

methods, we first randomly split the dataset into a training set with ntrain = 30 subjects

and a test set with the remaining ntest = 9 subjects. We de-noise the covariate curves in

the training set by performing FPCA and obtain smooth covariate curves for each subject

in the training set. The FPCA procedure also produces a smooth estimate of the pointwise

mean function and the pointwise variance can also be estimated from the output. We

then standardize the training set covariates by subtracting the pointwise mean function and

dividing by the pointwise standard deviation. Such a pre-processing method is suggested in

Kim et al19 to fit the spline based model. For the sake of comparison, we apply the Gaussian
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process and kernel smoothing based methods to these de-noised and transformed data.

To fit GFCM, we use tensor products of 7 spline basis functions for both x and t directions,

and choose the penalty parameters using REML. For FSIM, the Epanechnikov kernel function

is used and bandwidths are chosen using 10-fold crossvalidation. For the GPFR method,

we include an intercept function in the model (as the software required such an inclusion

to run properly), and use 10 basis functions for the intercept function as well as to smooth

each response curve. One practical point to note here is that both the GFCM and FSIM

approaches have automatic smoothing parameter selection implemented in the corresponding

software. However we could not locate such a procedure in the software for the GPFR

method (implemented in R package GPFDA32, version 2.2). To save computing time, we

therefore choose the smoothing parameters as λ1 = 10−4 (to smooth each response curve)

and λ2 = 10−4 (to smooth the intercept function). These values are chosen so that the fit

obtained from GPFR is reasonable. We note that changing the values of these parameters

may impact the results from the GPFR method.

We first investigate the out-of-sample prediction performance of the three methods. For

each method, we take the fitted surface obtained from the training set, and predict the

responses in the test set using the covariates in the test set. To this end, we de-noise

the test set covariates using the same eigen-components obtained from the training set and

standardize them using the original transformation used in the training set. We then compute

root mean squared prediction error as

RMPE =

[
1

mntest

ntest∑
i=1

m∑
j=1

{Ŷ pred
i (tj)− Y test

i (tj)}2
]1/2

,

where Y test
i (tj) and Ŷ pred

i (tj) denote the i-th actual and predicted responses in the test set,

respectively, evaluated at time tj. We repeat this process of splitting the data set into

training and test sets 50 times, and compute RMPE for each split. Boxplots of the RMPE

values for the three methods are displayed in Figure 1 (first row, right panel). The average

RMPEs for the GFCM, GPFR and FSIM methods are 5.86, 6.16, and 5.72, respectively.

We observe that the out-of-sample predictions errors for the three methods are quite similar

for the gait data. One practical point to note here is that during the process of randomly

splitting the data set into training and testing sets, we sometimes encounter cases where the
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test set covariates are not fully inside the range of the training set covariates, and thereby

making prediction inappropriate for those test sets. Therefore we perform our analysis using

only those 50 splits where this issue is not present.
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Figure 1: Results from gait data analysis. The first row displays the observed hip (left panel)

and knee angles (middle panel), and the out-of-sample root mean squared prediction errors

(right panel) of the three methods. The bottom row displays the full estimated bivariate

surfaces using spline (left panel), Gaussian process (middle panel) and kernel smoothing

(right panel) based methods, respectively.

Next we estimate the full bivariate surface F (·, ·) using each of the three methods based

on the full data set. To this end, we use a equally spaced grid of 59 points in [0, 1] for

the t-direction and 59 equally spaced points between the minimum and maximum values of

the transformed covariates (roughly between -3 and 3). We then estimate F (·, ·) for each
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point on this grid. The estimated surfaces are shown in Figure 1 (second row) for GFCM

(left panel), GPFR (middle panel) and FSIM (right panel). Here also it is evident that

the estimated surfaces from the three methods are quite similar to each other, and as such

indicative of similar performance of the three methods.

It is worth mentioning that the functional variables in the gait dataset are observed on an

equally spaced grid of points, and as such all three methods perform similarly. However, this

may not be the case in every situation. For example, while the GFCM and FSIM methods

are applicable for sparsely observed data, the GPFR procedure is not applicable in such a

situation. Furthermore, we have de-noised the covariate curves by applying FPCA for fair

comparison since both FSIM and GPFR assume that the covariates are measured without

any error. It is not clear how FSIM would perform in the situation where covariates are

measured with error and are observed sparsely.

We note that the analysis presented here is meant for illustration purposes, and is not

intended to be a fully fledged data analysis. Looking closely at the estimated surfaces,

one can see that while F (·, ·) is nonlinear in time, it is close to linear in the x-direction

(hip angle). Thus a simpler model, such as a linear functional concurrent model, might be

sufficient for this data set. However, as Kim et al19 observes in their numerical studies, fitting

a nonparametric concurrent model when the actual relationship is linear does not result in

significant loss in performance (e.g., prediction error), but fitting linear concurrent model

when the true relationship is in fact nonlinear may result is drastic loss of performance.

Thus a safer option might be to fit a nonparametric model to begin with and then assessing

whether a linear model would suffice by examining the fitted surface.

CONCLUSIONS

Concurrent models are useful statistical tools to perform function-on-function regression.

Due to the limitations imposed by the assumed linearity, it is of practical importance to

extend the classical linear concurrent regression to the nonparametric setting. The methods

we review in this article provide statistical tools for further development. There are many

open research questions in this area. One such question of interest is variable selection in
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presence of multiple functional covariates. While there are a few procedures for functional

variable selection in other functional regression models, to the best of our knowledge, no

such procedures are available for nonparametric functional concurrent regression.

Hypothesis testing in nonparametric concurrent models remains a relatively new area

of research as well. To the best of our knowledge, no procedure for hypothesis testing has

been developed in the contest of nonparametric concurrent regression using Gaussian process

framework or using local kernel smoothing approach. In the spline smoothing framework,

Kim et al19 proposed two bootstrap based testing procedures: 1) testing for a global effect,

that is, whether the function F depends on both X(·) and t or just t in a single covari-

ate nonparametric concurrent model, and 2) testing for inclusion, that is, in an additive

nonparametric concurrent model, whether one needs to include a particular functional co-

variate or not. For both the tests, Kim et al19 propose to use F -ratio type test statistics,

and approximate their null distributions using bootstrap. Their numerical study shows that

the proposed tests have close to nominal type one errors and good power consistently over

different sample sizes and covariance structures of the error process. A particular problem

of interest is to see whether one can use the connection of spline models and linear mixed

effects models to develop more efficient tests for these problems.
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