

These data are	REE (resting	energy ex	xpenditure	, kcal/day) for
patients with cy	tic fil	brosis ai	nd health	y individu	als matched on age,
sex, height and	weig	ht.			
	Pair	REE -	REE -	Difference	
		CF	healthy		
	1	1153	996	157	
	2	1132	1080	52	
	3	1165	1182	-17	
	4	1460	1452	8	
	5	1162	1634	-472	
	6	1493	1619	-126	
	7	1358	1140	218	
	8	1453	1123	330	
	9	1185	1113	72	
	10	1824	1463	361	
	11	1793	1632	161	
	12	1930	1614	316	
	13	2075	1836	239	

		No	nparar	netric Te	<u>sts</u>		
Q: Can we u without u				e magnitu ns themse		he obser	vations,
A: Yes! We	can co	nsider	the ran	k of the c	bserva	ations	
	Pair	REE -	REE -	Difference	Sign	rank	
		CF	healthy			of d _i	
	1	1153	996	157	+	6	
	2	1132	1080	52	+	3	
	3	1165	1182	-17	-	2	
	4	1460	1452	8	+	1	
	5	1162	1634	-472	-	13	
	6	1493	1619	-126	-	5	
	7	1358	1140	218	+	8	
	8	1453	1123	330	+	11	
	9	1185	1113	72	+	4	
	10	1824	1463	361	+	12	
	11	1793	1632	161	+	7	
	12	1930	1614	316	+	10	
	13	2075	1836	239	+	9	
						_	
13				tat 511			

Nonparametric Tests

A nonparametric test that uses the ranked data is the **Wilcoxon Signed-Rank Test**.

1. Rank the absolute value of the differences (from the null median).

2. Let R_+ equal the sum of ranks of the positive differences.

3. Then

 $E(R_{+}) = \frac{n(n+1)}{4}$ V(R_{+}) = n(n+1)(2n+1)/24

4. Let

 $Z = \frac{R_{+} - n(n + 1) / 4}{\sqrt{n(n + 1)(2n + 1) / 24}}$

5. Use normal approximation to the distribution of Z (i.e. compute p-value based on normal dist. i.e. $Z \sim N(0,1)$).

Fall 2013

Biostat 511

6. The variance of R_1 is

V (R₁) =
$$\left(\frac{n_1 n_2}{12}\right) (n_1 + n_2 + 1)$$

(an adjustment is required in the case of ties; this is done automatically by most software packages.)

7. We can base a test on the approximate normality of

$$Z = \frac{R_{1} - E(R_{1})}{\sqrt{V(R_{1})}}$$

This is known as the Wilcoxon Rank-Sum Test.

Fall 2013

Biostat 511

357

Wilcoxon Rank-Sum Test Order and rank the **pooled** sample ... Rank S+ # Sero + Sero -Rank S-4.5 21.0 2.9 16.5 1 12.1 25.0 1.3 6.0 2 3 4 5 6 7 8 9 2.6 14.0 1.0 2.0 2.5 2.8 13.0 2.0 1.0 6.0 15.0 1.3 15.8 26.0 10.0 1.9 18.5 6.0 3.2 1.3 1.8 9.0 2.1 11.5 7.8 2.9 3.2 2.1 23.0 11.5 10 16.5 1.0 2.0 18.5 11 8.0 1.5 12 13 24.0 8.0 14 6.3 22.0 1.2 4.0 15 20.0 3 ' 273 78 Fall 2013 Biostat 511 358

Types of Categorical Data •Nominal •Ordinal Often we wish to assess whether two factors are related. To
•Ordinal
Often we wish to access whether two factors are related. T
do so we construct an R x C table that cross-classifies the observations according to the two factors. Such a table is called a contingency table.
We can test whether the factors are "related" using a χ^2 test
We will consider the special case of $2 \ge 2$ tables in detail.

		<u>q</u>	Categ	gorica	al Dat	a				
Co	ntingency tabl	es arise f	rom	two d	iffere	nt, but	related	d, situ	ations:	
1)	We <i>sample</i> member acco				-	-		-	ach	
	Group Group		Me 2 p ₁₂ p ₂₂	asureme 3 	ent of in 4	terest 5	total 1.0 1.0			
	The hypothes	sis is								
	H ₀ : groups an	e homog	eneoi	ıs (p ₁	j=p _{2j} f	or all	i)			
	H _A : groups a	re not ho	moge	neous	5					
Fall 2013	3		I	Biostat 5	511					364

Categorical Data

Example 1: From Doll and Hill (1952) - retrospective assessment of smoking frequency. The table displays the daily average number of cigarettes for lung cancer patients and control patients.

			Daily	# cigare	ettes		
	None	< 5	5-14	15-24	25-49	50+	Total
Cancer	7	55	489	475	293	38	1357
	0.5%	4.1%	36.0%	35.0%	21.6%	2.8%	
Control	61	129	570	431	154	12	1357
	4.5%	9.5%	42.0%	31.8%	11.3%	0.9%	
Total	68	184	1059	906	447	50	2714

Fall 2013

Biostat 511

				<u>Categ</u>	orical	Data			
Cor	ntinge	ncy tab	les arise	e from t	wo dif	ferent,	but rel	ated, s	ituations
2)		-	<i>member</i> ording t	• •	-				fy each
						Factor 1			٦
				1	2	3	4	Total	_
		Factor 2	1	P ₁₁ P ₂₁	p ₁₂	p ₁₃	p ₁₄	p _{1.}	-
			3	:					-
			Total	p.1					
	H ₀ : f		esis is are inde are not i		5	_{i.} p.,)			
				-					

Categorical Data

Example 2. Education versus willingness to participate in a study of a vaccine to prevent HIV infection if the study was to start tomorrow. Counts, row percents and row totals are given.

	definitely	probably	probably	definitely	Total
	not	not	Î Î		
< high	52	79	342	226	699
school	7.4%	11.3%	48.9%	32.3%	
high school	62	153	417	262	894
-	6.9%	17.1%	46.6%	29.3%	
some	53	213	629	375	1270
college	4.2%	16.8%	49.5%	29.5%	
college	54	231	571	244	1100
-	4.9%	21.0%	51.9%	22.2%	
some post	18	46	139	74	277
college	6.5%	16.6%	50.2%	26.7%	
graduate/	25	139	330	116	610
prof	4.1%	22.8%	54.1%	19.0%	
Total	264	861	2428	1297	4850
	5.4%	17.8%	50.1%	26.7%	

Fall 2013

Biostat 511

ancer3492529.5453223.525135' $control3492529.5453223.525135'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal68184105990644750271'cotal681841059906184'105'100'cotal68184'105'105'105'100'cotal68184'105'105'105'100'$	34 92 529.5 453 223.5 25 135 $50ntrol$ 34 92 529.5 453 223.5 25 135 $50ntrol$ 34 92 529.5 453 223.5 25 135 $50tal$ 68 184 1059 906 447 50 271 $50tas$ the same proportion in each cell as the proportion. The "equal" expected number f						# cigare			
Control3492529.5453223.525135'Total681841059906447502714De has the same proportion in each cell as the proportion. The "equal" expected number for e result of the equal sample size in each group	Control3492529.5453223.525135Intersection68184105990644750271.4Intersection68184105990644750271.4Intersection707070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection7070707070Intersection70707070Intersection70707070Intersection70707070Intersection70707070Intersection70707070Intersection70707070Intersection707070Intersection707070Intersection707070Intersection707070Intersection707070Intersection707070Interse			None	< 5	5-14	15-24	25-49	50+	Total
otal681841059906447502714o has the same proportion in each cell as the proportion. The "equal" expected number for eresult of the equal sample size in each group	otal68184105990644750271o has the same proportion in each cell as the proportion. The "equal" expected number fe result of the equal sample size in each group	Jano	lcer	34	92	529.5	453	223.5	25	1357
b has the same proportion in each cell as the proportion. The "equal" expected number for eresult of the equal sample size in each group	has the same proportion in each cell as the proportion. The "equal" expected number f e result of the equal sample size in each gro	Con	itrol	34	92	529.5	453	223.5	25	1357
b has the same proportion in each cell as the proportion. The "equal" expected number for eresult of the equal sample size in each group	has the same proportion in each cell as the proportion. The "equal" expected number f e result of the equal sample size in each gro	Fota	al	68	184	1059	906	447	50	2714
	ige if there were han as many cases as conti				-	-				
		o r o e r	opo resu	o rtion. lt of tl	The ne equ	"equa ial sar	l" exp nple s	ected 1 ize in	numb each	oer gro

		val	ble entry fo lue χ^* with its right.					× Pro	obability p			
ABI	E D Chi	-square o	distributio	on critical	values							
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37 20.49	20.47 21.61	21.79 22.98	23.54	26.30	28.85 30.19	29.63 31.00	32.00 33.41	34.27 35.72	36.46 37.95	39.25 40.79	41.31
17 18	20.49	21.61	22.98	24.77 25.99	27.59 28.87	31.53	32.35	34.81	37.16	39.42	40.79	42.88 44.43
19	21.60	23.90	25.33	25.99	20.07	32.85	33.69	36.19	38.58	40.88	43.82	44.45
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60 80	66.98 88.13	68.97 90.41	71.34 93.11	74.40 96.58	79.08 101.9	83.30 106.6	84.58 108.1	88.38 112.3	91.95	95.34 120.1	99.61	102.7 128.3
80	88.13	90.41	93.11	96.58	124.3	129.6	108.1	135.8	116.3 140.2	120.1	124.8 149.4	128.3
00	109.1	111.7	114.7	118.5	124.5	129.6	131.1	135.8	140.2	144.5	149.4	155.2

Test of Independence

The **Chi-squared Test of Independence** is <u>mechanically the same</u> as the test for homogeneity. The difference is conceptual - the R x C table is formed by sampling from a population (not subgroups) and cross-classifying the factors of interest. Therefore, the null and alternative hypotheses are written as:

H₀: The two factors are independent

H_A: The two factors are not independent

Independence implies that each row has the same relative frequencies (or each column has the same relative frequency).

Example 2 is a situation where individuals are classified according to two factors. In this example, the assumption of independence implies that willingness to participate doesn't depend on the level of education (and visa-versa).

Fall 2013

Biostat 511

		definitely	probably	probably	definitely	Total		
	< high	not 52	not 79	342	226	699		
	school	7.4%		48.9%	32.3%	077		
	high school	62	153	417	262	894		
		6.9%	17.1%	46.6%	29.3% 375	1270		
	some	4.2%		49.5%	29.5%	1270		
	college	4.270		571	29.370	1100		
	-	4.9%		51.9%	22.2%			
	some post	18	46	139	74	277		
	college graduate/	6.5% 25	16.6%	50.2% 330	26.7%	610		
	prof	4.1%		54.1%	19.0%	010		
	Total	264	861	2428	1297	4850		
		5.4%	17.8%	50.1%	26.7%			
	.1 1	1		. •	1	1	.1	
Q: Based of ndependen Q: How wo Q: How ma	ce hypoth uld the ex	nesis lo xpecteo	ok? d cell :	freque	ncies	be calc	ulated?	

2 x 2 Tables

Example 1: Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo. Patients are followed-up to ascertain the development of a cold.

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

Q: Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Q: If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

Fall 2013

Biostat 511

Example 2: Keller (A	AJPH, 19	965)		
Patients with (cases) a urveyed regarding th ollapses over the smoking	eir smok	ing freque	ncy (note	e: this table
	Case	Control	Total	
Smoker	484	385	869	
Non-Smoker	27	90	117	
Total	511	475	986	

<u>2 x 2 Tables</u>

Example 3: Norusis (1988)

In 1984, a random sample of US adults were cross-classified based on their income and reported job satisfaction:

	Dissatisfied	Satisfied	Total
< \$15,000	104	391	495
≥ \$15,000	66	340	406
Total	170	731	901

Q: Is salary associated with job satisfaction?

Q: If salary is associated with satisfaction, then what is the magnitude of the effect?

Fall 2013

Biostat 511

Example 4 : Sartwell et al (Is oral contraceptive use as cases with blood clots of controls based on age, rac	sociat			
cases with blood clots of		ted with		
parity, marital status and SE	e, tim	nown o	origin w	vere matched to
		Contro	1 OC	
		Us		
		Yes	No	
Case OC Y	es	10 57		
Use	No	13	95	
 Q: Is OC use associated with the magnitude of the effective of th	ith thro	romboer	nbolism	

		<u> </u>		represented a	1	_
			D	not D	Total	
E	Ξ		a	b	$(a+b) = n_1$	
n	not E		c	d	$(c+d) = n_2$	
Т	Fotal	(a + a)	$m = m_{1}$	$(b + d) = m_2$	N	-
X^2 (ex	uestior cept fo	n of ass or exar	sociation	n can be addre	essed with Pea the expected c	
X^2 (ex	uestior cept for s as fol	n of ass or exar	sociation	n can be addre	essed with Pea	
X ² (excounts	uestior cept for s as fol	n of ass or exar llows:	sociation	n can be addre	essed with Pea	
X ² (excounts	uestior cept for s as fol	n of ass or exar llows:	sociation nple 4) $\frac{D}{n_1m_1/N}$	n can be addre We compute	essed with Pea the expected c $\frac{\text{Total}}{(a+b) = n_1}$	
X ² (excounts	uestior cept for s as fol	n of ass or exar llows:	sociation nple 4)	n can be addre We compute $n_1 m_2/N$ $n_2 m_2/N$	essed with Pea the expected c	

 <u>**2 x 2 Tables**</u>

 Recall, Pearson's chi-square is given by:

 $X^2 = \sum_{i=1}^4 (O_i - E_i)^2 / E_i$

 Q: How does this X² test in Example 1 compare to simply using the 2 sample binomial test of

 $H_0: P(D | E) = P(D | \overline{E})?$

 Q: How does the X² test in Example 2 compare to simply using the 2 sample binomial test of

 $H_0: P(E | D) = P(E | \overline{D})?$

 Fall 2013
 Biostat 511
 382

	971)			
	Cold - Y	Cold - N	Total	
Vitamin C	17	122	139	
Placebo	31	109	140	
Total	48	231	279	

	Cold - Y	Cold - N	Total
Vitamin	C 17	122	139
Placebo	31	109	140
Total	48	231	279
The estimated relative ri		- (-)	
	$\hat{R}R = \frac{\hat{P}(1)}{\hat{P}(1)}$	$\frac{D E}{D \overline{E}} = \frac{17/139}{31/140}$	
	= 0.55	5	

We can obtain a confidence interval for the relative risk by first obtaining a confidence interval for the log RR. For Example 1, a 95% confidence interval for the log relative risk is given by:

Fall 2013

Biostat 511

The resulting 95% CI for the log RR is $\textbf{-0.593}~\pm~1.96\times0.277$ -0.593 ± 0.543 (-1.116, -0.050) To obtain a 95% confidence interval for the relative risk we exponentiate the end-points of the interval for the log - relative risk. Therefore, (exp(-1.116), exp(-0.050)) (.33,.95) is a 95% confidence interval for the relative risk. Fall 2013 Biostat 511 388

2 x 2 Tables – Case-Control Study

Like the relative risk, the odds ratio has $[0, \infty)$ as its range. The **log** odds ratio has $(-\infty, +\infty)$ as its range and the normal distribution is a good approximation to the sampling distribution of the estimated log odds ratio.

$$\hat{OR} = \frac{p_1}{p_2} / (1 - p_2)$$
$$\hat{OR} = \frac{\hat{p}_1 / (1 - \hat{p}_1)}{\hat{p}_2 / (1 - \hat{p}_2)} = \frac{ad}{bc}$$

Confidence intervals are based upon:

$$\ln(\hat{O}R) \sim N\left(\ln(OR), \frac{1}{n_1p_1} + \frac{1}{n_1(1-p_1)} + \frac{1}{n_2p_2} + \frac{1}{n_2(1-p_2)}\right)$$

Therefore, a (1 - α) confidence interval for the log odds ratio is given by:
$$\ln\left(\frac{ad}{bc}\right) \pm z_{1-\alpha/2} \times \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

Fall 2013

Biostat 511

	Case	Control	Total
Non-Smoker	27	90	117
Smoker	484	385	869
Total	511	475	986
dds ratio = .239 \Rightarrow In	nterpret.		

<u>2 x 2 Tables – Cross-sectional Study</u>

Example 3 is an example of a **cross-sectional** study since only the total for the table is fixed in advance. The row totals or column totals are not fixed in advance.

Either the relative risk or odds ratio may be used to summarize the association when using a cross-sectional design.

The major distinction from a prospective study is that a crosssectional study will reveal the number of cases <u>currently</u> in the sample. These are known as prevalent cases. In a prospective study we count the number of new cases, or incident cases.

	Study	Probability	Description	
	Cohort	incidence	probability of	
			obtaining the disease	
	Cross-sectional	prevalence	probability of having	
\backslash			the disease	/
Fall 2013		Biostat 51	1	397

<u>2 x 2 Tables – Cross-sectional Study</u> . csi 104 391 66 340, or Exposed Unexposed Total Cases 104 391 495 Noncases 66 340 406 731 901 Total 170 Risk .6117647 .5348837 .5493896 [95% Conf. Interval] Point estimate Risk difference .076881 -.0048155 .1585775 1.31234 Risk ratio 1.143734 .9967902 Attr. frac. ex. .1256708 -.0032201 .2380023 Attr. frac. pop .0264036 Odds ratio 1.370224 .9752222 1.925102 (Cornfield) chi2(1) = 3.29 Pr>chi2 = 0.0696 Fall 2013 Biostat 511 398

	ertained.	
High Salt	Low Salt	Total
2	23	25
5	30	35
7	53	60
lds ratio yield	ls:	
$OR = \frac{2 \times 3}{5 \times 2}$	$\frac{0}{3} = 0.522$	
	2 5 7 Ids ratio yield	$\begin{array}{c c} 2 & 23 \\ \hline 2 & 30 \\ \hline 5 & 30 \\ \hline 7 & 53 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 7 & 53 \\ \hline 8 & 30 \\ \hline 8 $

Paired Binary Data

Example 4 measured a binary response on matched pairs. This is an example of **paired binary data**. One way to display these data is the following:

	OC	No OC	Total
Case	67	108	175
Control	23	152	175
Total	90	260	350

Q: Can't we simply use X² Test of Homogeneity to assess whether this is evidence for an increase in knowledge?

A: NO!!! The X^2 tests assume that the rows are **independent** samples. In this design, the controls are constrained to be similar to the controls in many respects.

Fall 2013

Biostat 511

	Pa	ired E	Binary D	ata	
For paired bin	nary data we di	splay	the result	s as follo	ows:
			Contro	ol OC	
			Yes	No	
		Yes	n ₁₁	n ₁₀	
	Case OC	No	n ₀₁	n ₀₀	
those that sco OC use since known as the	bre $(0,0)$ and $(1,$ they may be "y	,1) pro weak" airs. 7	vide no i or "stror The infor	nformati ng" indiv	y of subjects. Thus, ion about the effect of riduals. These are egarding OC use is in
	$p_1 = "sucp_2 = "suc$			•	
		$\mathbf{I}_0 : \mathbf{p}_1$ $\mathbf{I}_A : \mathbf{p}_1$			
Fall 2013		Bic	stat 511		406

Example 4:			Contro	ol OC	
			Yes	No	
		Yes	10	57	
	Case OC	No	13	95	
	Z	$Z = \frac{n_{01}}{\sqrt{M}}$ $= \frac{13 - 1}{\sqrt{M}}$	$\frac{-M_{\frac{1}{2}}^{1}}{(\frac{1}{2}(\frac{1}{2}))}$ $\frac{(13+57)}{(13+57)/4}$	$\frac{2}{4}$	
		= 5.26	,		
Comparing 5.26 reject the null hy controls.			-		1. Therefore we ilities for cases an
We estimate the	odds ratio	as ôi	R = 57/13	= 4.38.	

ains data	from body	yfat.dta	obs:	252
L. density	float	%9.0g		Density determined from
2. pctfat	float	%9.0g		underwater weighing Percent body fat from Siri's (1956) equation
3. age	float	%9 0a		Age (years)
1. weight				Weight (lbs)
5. height				Height (inches)
5. neck				Neck circumference (cm)
7. chest		%9.0a		Chest circumference (cm)
3. abdomen				Abdomen 2 circumference (cm)
). hip	float			Hip circumference (cm)
). thigh	float			Thigh circumference (cm)
. knee	float			Knee circumference (cm)
2. ankle	float			Ankle circumference (cm)
3. biceps	float	%9.0g		Biceps (extended) circumference (cm)
1. forarm	float	%9.0g		Forearm circumference (cm)
5. wrist	float	%9.0g		Wrist circumference (cm)

Correlation – Restricted Range

What happens if we restrict the range of the data for one or the other variables when computing correlation?

E.g. knee circumference vs thigh circumference

	range	<u>R</u>	<u>p</u>
	All	.80	<.001
]	knee < 45	.78	<.001
]	knee < 40	.68	<.001
]	knee < 35	.19	.48

Fall 2013

Biostat 511

Assumptions for Linear Regression Systematic component: $E(Y_i | X_i) = \alpha + \beta X_i$ "expected (mean) population value of Y at X_i" α = intercept = value of mean of Y when X = 0 β = slope = expected change difference in mean of Y for each 1 unit change difference in X Y β α 0 Х Fall 2013 Biostat 511 426

abdomen 252 92.55595 10.78308 69.4 148.1 . regress pctfat abdomen	
Source SS df MS Number of obs =	
Model 11631.5264 1 11631.5264 Prob > F = Residual 5947.46321 250 23.7898528 R-squared =	0.6617
Adj R-squared = Total 17578.9896 251 70.035815 Root MSE =	
pctfat Coef. Std. Err. t P> t [95% Conf. Int	erval]
abdomen .6313044 .0285507 22.112 0.000 .5750739 .6	875349

Fall 2013

Confidence Intervals for Regression Parameters

Given that the errors ε_i are independent, have equal variances, and are normally distributed, then:

$$a \sim N\left(\alpha, \ \sigma^2\left(\frac{1}{n} + \frac{\overline{X}^2}{L_{xx}}\right)\right)$$
$$b \sim N\left(\beta, \ \sigma^2\left(\frac{1}{L_{xx}}\right)\right)$$

Since σ is unknown, confidence intervals for the regression parameters use the t(n - 2) distribution:

CI for
$$\alpha$$
: $a \pm t_{1,\alpha/2}(n-2) \times \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{L_{xx}}}$
CI for β : $b \pm t_{1,\alpha/2}(n-2) \times \hat{\sigma} \sqrt{\frac{1}{L_{xx}}}$

Fall 2013

Biostat 511

437

 $\begin{array}{c} \hline \textbf{Prediction Intervals} \\ \text{In predicting a single new observation we have the uncertainty about the population mean PLUS the intrinsic variability of individual observations (<math>\sigma^2$). The variability in predicting a single new observation is the sum of these: $\begin{array}{l} \text{Var}(\hat{Y}_{\text{single}}) = \sigma^2 + \text{Var}(\hat{Y}_{\text{mean}}) \\ = \sigma^2 \left(1 + \frac{1}{n} + \frac{(X \cdot \overline{X})^2}{L_{xx}} \right) \end{array}$ Thus, for an **individual** observation the interval: $\begin{array}{l} (a + bX_i) \pm t_{1.9/2}(n-2) \times \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(X_i \cdot \overline{X})^2}{L_{xx}}} \\ \hat{Y}_i \pm t_{1.9/2}(n-2) \times \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(X_i \cdot \overline{X})^2}{L_{xx}}} \end{array}$ is a (1 - α) prediction interval for a new observation taken at X_i .

53

To get confidence intervals on predicted values and prediction intervals, first edit the dataset to add the X values you want (leave Y missing), then fit the regression, and use predict.

Fall 2013	Biostat 511	447
pctfat abdomen 253 100	fathat sefathat senew 23.85025 .3735964 4.891771	
. list pctfat abdomen fath	nat sefathat senew if abdomen==100	
. reg pctfat abdomen . predict fathat . predict sefathat, stdp . predict senew, stdf	// gives E(Y X) // gives (se for) CI for E(Y X) // gives (se for) PI	
. use "bodyfat.dta", clear . edit	// add "fake" observations	

		Sum of Squares (SS)	\backslash
It is c	elear that		
		$\left(Y_{i}-\overline{Y} ight)=\left(Y_{i}-\hat{Y_{i}} ight)+\left(\hat{Y_{i}}-\overline{Y} ight)$	
It car	also be show	wn that	
	$\sum_{i=1}^{n} \left(Y_{i} - \tilde{Y}_{i} \right)$	$\overline{Y}^{-}\right)^{2} = \sum_{i=1}^{n} \left(Y_{i} - \hat{Y}_{i}\right)^{2} + \sum_{i=1}^{n} \left(\hat{Y}_{i} - \overline{Y}^{-}\right)^{2}$	
	$\sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$	= Total SS - describes the total variation of the	
		Y _i	
	$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$	= Error SS - describes the variation of the Y_i around the regression line.	
	$\sum_{i=1}^{n} \left(\hat{Y}_i - \overline{Y} \right)^2$	= Model SS - describes the structural variation; how much of the variation is due to the regression relationship.	
Fall 2013		Biostat 511	448

	<u>R²</u>	\searrow
-	Total SS = Model SS + Error SS ition allows a characterization of the usefulness of the predicting the response variable Y_i .	
Q: If you didn' A: \overline{Y}	t know X, what would you predict for mean of Y?	
Q: How much A: Total SS	unexplained variation is left after you make that predicti	ion?
A: The proport	e gain by using X? ion of the Total variation that can be explained by the of Y on X is $R^2 = Model SS/Total SS$	
	y, we can say that the unexplained (residual) variation y a proportion R^2 (i.e. $R^2 = 1$ - Error SS/Total SS)	
This R ² is, i	n fact, the correlation coefficient squared.	
Fall 2013	Biostat 511	450

Regre	ession - Model Checking	
Given the data Y _i and the	e fitted values, \hat{Y}_i ,we define the re-	sidual as:
	$\mathbf{r}_{i} = \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}$	
"explained" by X _i . We we terms of the adequacy of	nent of the measurement Y_i that ca vill use the residuals to assess our r f both the systematic and random c imptions and Diagnostics	nodel in
∆ ssumption	Model Checking	
Assumption Linearity	Model Checking • residual vs X or Ŷ Q: Is there any trend?	
	• residual vs X or Ŷ Q: Is there any trend?	
Linearity	• residual vs X or Ŷ Q: Is there any trend?	
Linearity Independence	residual vs X or Ŷ Q: Is there any trend? Q: Any scientific concerns? residual histogram / qq-plot Q: Symmetric? Normal?	
Linearity Independence Normality	residual vs X or Ŷ Q: Is there any trend? Q: Any scientific concerns? residual histogram / qq-plot Q: Symmetric? Normal? e • residual vs X or Ŷ	

