Nonparametric Tests

- Nemparametric tests are useful when normality or the CLT can not be used.
- Nonparametric tests base inference on the sign or rank of the data as opposed to the actual data values.
- When normality can be assumed, nonparametric tests are less efficient than the corresponding t-tests.
- Sign test (binomial test on +/-)
- Wilcoxon signed rank (paired t-test on ranks)
- Wilcoxon rank sum (unpaired t-test on ranks)

Fall 2013
339

Nonparametric Tests

In the tests we have discussed so far (for continuous data) we have assumed that either the measurements were normally distributed or the sample size was large so that we could apply the central limit theorem. What can be done when neither of these apply?

- Transform the data so that normality is achieved.
- Use another probability model for the measurements e.g. exponential, Weibull, gamma, etc.
- Use a nonparametric procedure

Nonparametric methods generally make fewer assumptions about the probability model and are, therefore, applicable in a broader range of problems.

BUT! No such thing as a free lunch...

Nonparametric Tests

These data are REE (resting energy expenditure, kcal/day) for patients with cytic fibrosis and healthy individuals matched on age, sex, height and weight.

Pair	REE - CF	REE - healthy	Difference
1	1153	996	157
2	1132	1080	52
3	1165	1182	-17
4	1460	1452	8
5	1162	1634	-472
6	1493	1619	-126
7	1358	1140	218
8	1453	1123	330
9	1185	1113	72
10	1824	1463	361
11	1793	1632	161
12	1930	1614	316
13	2075	1836	239

Fall 2013
Biostat 511
341

Nonparametric Tests

Let's simplify by just looking at the direction of the difference ...

Pair	REE - CF	REE - healthy	Difference	Sign
1	1153	996	157	+
2	1132	1080	52	+
3	1165	1182	-17	-
4	1460	1452	8	+
5	1162	1634	-472	-
6	1493	1619	-126	-
7	1358	1140	218	+
8	1453	1123	330	+
9	1185	1113	72	+
10	1824	1463	361	+
11	1793	1632	161	+
12	1930	1614	316	+
13	2075	1836	239	+

Fall 2013
Biostat 511
343

Nonparametric Tests

We want to test:

$$
\begin{aligned}
& H_{o}: \mu_{d}=0 \\
& H_{a}: \mu_{d}>0
\end{aligned}
$$

Can we construct a test based only on the sign of the difference (no normality assumption)?

If $\mu_{\mathrm{d}}=0$ then we might expect half the differences to be positive and half the differences to be negative.
$>$ What is a reasonable probability model for the sign of the differences?
$>$ Re-express the Ho given above in terms of that probability model

Sign test

In this example we find 10 positive differences out of 13 . What's the probability of that (or more extreme) if Ho is true?
. bitesti 1310 . 5

N	Observed k	Expected k	Assumed p	Observed p
13	10	6.5	0.50000	0.76923

$$
\begin{array}{lll}
\operatorname{Pr}(k>=10) & =0.046143 & \text { (one-sided test) } \\
\operatorname{Pr}(\mathrm{k}<=10) & =0.988770 & \text { (one-sided test) } \\
\operatorname{Pr}(\mathrm{k}<=3 \text { or } k>=10) & =0.092285 & \text { (two-sided test) }
\end{array}
$$

$>$ What is the p -value for our sign test?
$>$ What do you conclude $(\alpha=.05)$?

Fall 2013
Biostat 511
345

Sign test

- What we really tested was that the median difference was zero.
- Note that we didn't make any assumption about the distribution of the underlying data
- The hypothesis that the Sign Test addresses is:

Ho : median difference $=0$
Ha : median difference $>(<, \neq) 0$
Q: If it is more generally applicable then why not always use it?
A: It is less efficient than the t-test when the population is normal.
Using a sign test is like using only $2 / 3$ of the data (when the "true" probability distribution is normal)

Sign test

Sign Test Overview:

1. Testing for a single sample (or differences from paired data).
2. Hypothesis is in terms of μ, the median.
3. Assign + to all data points where $X_{i}>\mu_{0}$ for $H_{o}: \mu=\mu_{0}$.
4. Let $\mathrm{T}=$ total number of + 's out of n observations.
5. Under $\mathrm{H}_{0}, \mathrm{~T}$ is binomial with n and $\mathrm{p}=1 / 2$ (i.e. testing Ho: $\mathrm{p}=0.5$ on T is the same testing Ho: $\mu=\mu_{\mathrm{o}}$ on X)
6. Get the p -value from binomial distribution or approximating normal, $\mathrm{T} / \mathrm{n} \sim \mathrm{N}(1 / 2,1 / 4 \mathrm{n})$
7. This is a valid test of the median without assuming a probability model for the original measurements.

Fall 2013
Biostat 511
347

Nonparametric Tests

Q: Can we use some sense of the magnitude of the observations, without using the observations themselves?

A: Yes! We can consider the rank of the observations

Pair	REE - CF	REE - healthy	Difference	Sign	rank of $\left\|\mathrm{d}_{\mathrm{i}}\right\|$
1	1153	996	157	+	6
2	1132	1080	52	+	3
3	1165	1182	-17	-	2
4	1460	1452	8	+	1
5	1162	1634	-472	-	13
6	1493	1619	-126	-	5
7	1358	1140	218	+	8
8	1453	1123	330	+	11
9	1185	1113	72	+	4
10	1824	1463	361	+	12
11	1793	1632	161	+	7
12	1930	1614	316	+	10
13	2075	1836	239	+	9

Nonparametric Tests

A nonparametric test that uses the ranked data is the Wilcoxon Signed-Rank Test.

1. Rank the absolute value of the differences (from the null median).
2. Let R_{+}equal the sum of ranks of the positive differences.
3. Then

$$
\begin{aligned}
E\left(R_{+}\right) & =\frac{n(n+1)}{4} \\
V\left(R_{+}\right) & =n(n+1)(2 n+1) / 24
\end{aligned}
$$

4. Let

$$
Z=\frac{R_{+}-n(n+1) / 4}{\sqrt{n(n+1)(2 n+1) / 24}}
$$

5. Use normal approximation to the distribution of Z (i.e. compute p value based on normal dist. i.e. $\mathrm{Z} \sim \mathrm{N}(0,1)$).

Fall 2013
Biostat 511
349

Wilcoxon Signed Rank Test

Note:

- If any $d_{i}=0$ we drop them from the analysis (but assuming continuous data, so shouldn't be many).
- For "large" samples (number of non-zero $d_{i} \geq 15$), can use a normal approximation.
- If there are many "ties" then a correction to $\mathrm{V}(\mathrm{R}+)$ must be made; computer does this automatically.
- Efficiency relative to t-test is about 95% if the true distribution is normal.

Wilcoxon Signed Rank Test

For the REE example we find $\mathrm{R}+=6+3+1+8+11+4+12+7+10+9=71$

unadjusted variance adjustment for ties adjustment for zeros
204.75
adjusted variance 204.75
Ho: cf = healthy

z	$=1.782 \quad$ Conclusion?

Fall 2013
351

Nonparametric Tests 2 samples

The same issues that motivated nonparametric procedures for the 1sample case arise in the 2-sample case, namely, non-normality in small samples, and the influence of a few observations. Consider the following data, taken from Miller (1991):

These data are immune function measurements obtained on healthy volunteers. One group consisted of 16 Epstein-Barr virus (EBV) seropositive donors. The other group consisted of 10 EBV seronegative donors. The measurements represent lymphocyte blastogenesis with p3HR-1 virus as the antigen (Nikoskelain et al (1978) J. Immunology, 121:1239-1244).

Nonparametric Tests

$\underline{2}$ samples
Does the 2-sample t statistic depend heavily on the transformation selected?

Does our interpretation depend on the transformation selected?

	RAW	SQRT	LOG
\bar{Y}_{1}	4.88	2.06	1.31
s_{1}^{2}	17.11	0.68	0.54
\bar{Y}_{2}	1.75	1.28	0.44
s_{2}^{2}	1.13	0.12	0.23
t	2.88	3.34	3.68
df	17	21	23
p-value	0.01	0.003	0.001

Fall 2013

Nonparametric Tests Wilcoxon Rank-Sum Test

Idea: If the distribution for group 1 is the same as the distribution for group 2 then pooling the data should result in the two samples "mixing" evenly. That is, we wouldn't expect one group to have many large values or many small values in the pooled sample.

Procedure:

1. Pool the two samples
2. Order and rank the pooled sample.
3. Sum the ranks for each sample.

$$
\begin{aligned}
& \mathrm{R}_{1}=\text { rank sum for group } 1 \\
& \mathrm{R}_{2}=\text { rank sum for group } 2
\end{aligned}
$$

4. The average rank is $\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right) / 2$.
5. Under H_{0} : same distribution, $\mathrm{E}\left(\mathrm{R}_{1}\right)=\mathrm{n}_{1}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right) / 2$ (why?)
6. The variance of R_{1} is

$$
\mathrm{V}\left(\mathrm{R}_{1}\right)=\left(\frac{n_{1} n_{2}}{12}\right)\left(n_{1}+n_{2}+1\right)
$$

(an adjustment is required in the case of ties; this is done automatically by most software packages.)
7. We can base a test on the approximate normality of

$$
Z=\frac{R_{1}-E\left(R_{1}\right)}{\sqrt{V\left(R_{1}\right)}}
$$

This is known as the Wilcoxon Rank-Sum Test.

Wilcoxon Rank-Sum Test

The sum of the ranks for group 1 is $\mathrm{R}_{1}=273$
The null hypothesis is, H_{o} : same distribution,
. ranksum immune, by(ebv)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

ebv \|	obs	rank sum	expected
0 \|	10	78	135
1 \|	16	273	216
combined \|	26	351	351

unadjusted variance	360.00
adjustment for ties	-1.35

adjusted variance	358.65

Ho: immune $(\mathrm{ebv}==0)=$ immune $(\mathrm{ebv}==1) \quad$ Conclusion?
$\begin{aligned} z & =-3.010 \\ \text { Prob }>|z| & =0.0026\end{aligned}$
Compare to t-tests.
Fall 2013

Wilcoxon Rank-Sum Test

Notes:

1. The Wilcoxon test is testing for a difference in location between the two distributions, not for a difference in spread. In fact, the actual hypothesis that is being tested is Ho: $\mathrm{P}\left(\right.$ randomly chosen $\mathrm{Y}_{1}>$ randomly chosen $\left.\mathrm{Y}_{2}\right)=0.5(!)$.
2. Use of the normal approximation is valid if each group has \geq 10 observations. Otherwise, the exact sampling distribution of R_{1} can be used. Tables and computer routines are available in this situation.
3. The Wilcoxon rank-sum test is also known as the MannWhitney Test. These are equivalent tests.

Summary

- Nomparametric tests are useful when normality or the CLT can not be used.
- Nonparametric tests base inference on the sign or rank of the data as opposed to the actual data values.
- When normality can be assumed, nonparametric tests are less efficient than the corresponding t-tests.
- Without imposing other assumptions on the distributions being compared (e.g., symmetry) there may not be an obvious summary statistic (e.g., mean, median, median pairwise mean) to interpret when the null hypothesis is rejected, or not.

Categorical Data

Types of Categorical Data

-Nominal

- Ordinal

Often we wish to assess whether two factors are related. To do so we construct an $\mathrm{R} \times \mathrm{C}$ table that cross-classifies the observations according to the two factors. Such a table is called a contingency table.

We can test whether the factors are "related" using a χ^{2} test.
We will consider the special case of 2×2 tables in detail.

Categorical Data

Contingency tables arise from two different, but related, situations:

1) We sample members of 2 (or more) groups and classify each member according to some qualitative characteristic.

	Measurement of interest					
	1	2	3	4	5	total
Group 1	p_{11}	p_{12}	\ldots			1.0
Group 2	p_{21}	p_{22}	\ldots			1.0

The hypothesis is
H_{0} : groups are homogeneous $\left(\mathrm{p}_{1 \mathrm{j}}=\mathrm{p}_{2 \mathrm{j}}\right.$ for all j$)$
H_{A} : groups are not homogeneous

Categorical Data

Example 1: From Doll and Hill (1952) - retrospective assessment of smoking frequency. The table displays the daily average number of cigarettes for lung cancer patients and control patients.

	Daily \# cigarettes							
	None	5	$5-14$	$15-24$	$25-49$	$50+$	Total	
Cancer	7	55	489	475	293	38	1357	
	0.5%	4.1%	36.0%	35.0%	21.6%	2.8%		
Control	61	129	570	431	154	12	1357	
	4.5%	9.5%	42.0%	31.8%	11.3%	0.9%		
Total	68	184	1059	906	447	50	2714	

Fall 2013
Biostat 511
365

Categorical Data

Contingency tables arise from two different, but related, situations:
2) We sample members of a population and cross-classify each member according to two qualitative characteristics.

The hypothesis is
H_{0} : factors are independent $\left(\mathrm{p}_{\mathrm{ij}}=\mathrm{p}_{\mathrm{i} .} \mathrm{p}_{\mathrm{j}}\right)$
H_{A} : factors are not independent

Categorical Data

Example 2. Education versus willingness to participate in a study of a vaccine to prevent HIV infection if the study was to start tomorrow. Counts, row percents and row totals are given.

	definitely not	probably not	probably	definitely	Total
< high	52	79	342	226	699
school	7.4\%	11.3\%	48.9\%	32.3\%	
high school	62	153	417	262	894
	6.9\%	17.1\%	46.6\%	29.3\%	
some	53	213	629	375	1270
college	4.2\%	16.8\%	49.5\%	29.5\%	
college	54	231	571	244	1100
	4.9\%	21.0\%	51.9\%	22.2\%	
some post	18	46	139	74	277
college	6.5\%	16.6\%	50.2\%	26.7\%	
graduate/	25	139	330	116	610
prof	4.1\%	22.8\%	54.1\%	19.0\%	
Total	264	861	2428	1297	4850
	5.4\%	17.8\%	50.1\%	26.7\%	

Test of Homogeneity

In example 1 we want to test whether the smoking frequency is the same for each of the populations sampled. We want to test whether the groups are homogeneous with respect to a characteristic. The concept is similar to a t-test, but the response is categorical.
H_{0} : smoking frequency same in both groups
H_{A} : smoking frequency not the same
Q: What does H_{0} predict we would observe if all we knew were the marginal totals?

	Daily \# cigarettes						
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total
Cancer							1357
Control							1357
Total	68	184	1059	906	447	50	2714

Test of Homogeneity

A: H_{0} predicts the following expectations:

	Daily \# cigarettes							
	None	<5	$5-14$	$15-24$	$25-49$	$50+$	Total	
Cancer	34	92	529.5	453	223.5	25	1357	
Control	34	92	529.5	453	223.5	25	1357	
Total	68	184	1059	906	447	50	2714	

Each group has the same proportion in each cell as the overall marginal proportion. The "equal" expected number for each group is the result of the equal sample size in each group (what would change if there were half as many cases as controls?)

Test of Homogeneity

We have

- Observed counts, O_{ij}
- Expected counts (assuming Ho true), E_{ij}
$>$ Heuristically, if the O_{ij} are "near" the E_{ij} that seems consistent with Ho; if the O_{ij} are "far" from E_{ij} we might suspect Ho is not true.
$>$ The Pearson's Chi-square Statistic (X^{2}) measures the difference between the observed and expected counts and provides an overall assessment of Ho.

Test of Homogeneity

Example 1. Smoking history vs lung cancer
. tabi $75548947529338 \backslash 6112957043115412$

Conclusion?

Test of Independence

The Chi-squared Test of Independence is mechanically the same as the test for homogeneity. The difference is conceptual - the R x C table is formed by sampling from a population (not subgroups) and cross-classifying the factors of interest. Therefore, the null and alternative hypotheses are written as:

$$
\begin{aligned}
& \mathrm{H}_{0} \text { : The two factors are independent } \\
& \mathrm{H}_{\mathrm{A}} \text { : The two factors are not independent }
\end{aligned}
$$

Independence implies that each row has the same relative frequencies (or each column has the same relative frequency).

Example 2 is a situation where individuals are classified according to two factors. In this example, the assumption of independence implies that willingness to participate doesn't depend on the level of education (and visa-versa).

Fall 2013
Biostat 511
373

Test of Independence

	definitely not	probably not	probably	definitely	Total
< high	52	79	342	226	699
school	7.4\%	11.3\%	48.9\%	32.3\%	
high school	62	153	417	262	894
	6.9\%	17.1\%	46.6\%	29.3\%	
some	53	213	629	375	1270
college	4.2\%	16.8\%	49.5\%	29.5\%	
college	54	231	571	244	1100
	4.9\%	21.0\%	51.9\%	22.2\%	
some post	18	46	139	74	277
college	6.5\%	16.6\%	50.2\%	26.7\%	
graduate/	25	139	330	116	610
prof	4.1\%	22.8\%	54.1\%	19.0\%	
Total	264	861	2428	1297	4850
	5.4\%	17.8\%	50.1\%	26.7\%	

Q: Based on the observed row proportions, how does the independence hypothesis look?
Q: How would the expected cell frequencies be calculated?
Q: How many degrees of freedom would the chi-square have?

Test of Independence

. tabi $5279342226 \backslash 62153417 \quad 262 \backslash 53213629375 \backslash 54231571$ 244 \ $184613974 \backslash 25139330116$

Conclusion?

Fall 2013
Biostat 511
375

Summary
 χ^{2} Tests for R x C Tables

1. Tests of homogeneity of a factor across groups or
independence of two factors rely on Pearson's \mathbf{X}^{2} statistic.
2. X^{2} is compared to a $\chi^{2}((\mathrm{r}-1) \mathrm{x}(\mathrm{c}-1))$ distribution (BM , table D or display chiprob(df, $\left.\mathrm{X}^{2}\right)$).
3. Expected cell counts should be larger than 5 .
4. We have considered a global test without using possible factor ordering. Ordered factors permit a test for trend (see Agresti, 1990).

$\underline{2 \times 2 \text { Tables }}$

Example 1: Pauling (1971)
Patients are randomized to either receive Vitamin C or placebo. Patients are followed-up to ascertain the development of a cold.

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

Q: Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Q: If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

Fall 2013

$\underline{2 \times 2}$ Tables

Example 2: Keller (AJPH, 1965)
Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency (note: this table collapses over the smoking frequency categories shown in Keller).

	Case	Control	Total
Smoker	484	385	869
Non-Smoker	27	90	117
Total	511	475	986

Q: Is oral cancer associated with smoking?
Q: If smoking is associated with oral cancer, then what is the magnitude of the risk?

$\underline{2 \times 2}$ Tables

Example 3: Norusis (1988)
In 1984, a random sample of US adults were cross-classified based on their income and reported job satisfaction:

	Dissatisfied	Satisfied	Total
$<\$ 15,000$	104	391	495
$\geq \$ 15,000$	66	340	406
Total	170	731	901

Q: Is salary associated with job satisfaction?
Q: If salary is associated with satisfaction, then what is the magnitude of the effect?

Fall 2013
Biostat 511
379

Example 4: Sartwell et al (1969)
Is oral contraceptive use associated with thromboembolism? 175 cases with blood clots of unknown origin were matched to controls based on age, race, time and place of hospitalization, parity, marital status and SES.

		Control OC Use	
		No	
Case OC Use	Yes	10	57
	No	13	95

Q: Is OC use associated with thromboembolism?
Q: If OC use is associated with thromboembolism then what is the magnitude of the effect?

$\underline{2 \times 2 \text { Tables }}$

Each of these tables can be represented as follows:

	D	not D	Total
E	a	b	$(a+b)=n_{1}$
not E	c	d	$(c+d)=n_{2}$
Total	$(a+c)=m_{1}$	$(b+d)=m_{2}$	N

The question of association can be addressed with Pearson's X^{2} (except for example 4) We compute the expected cell counts as follows:

Expected:

	D	$\operatorname{not} D$	Total
E	$n_{1} m_{1} / N$	$n_{1} m_{2} / N$	$(a+b)=n_{1}$
not E	$\mathrm{n}_{2} \mathrm{~m}_{1} / \mathrm{N}$	$\mathrm{n}_{2} \mathrm{~m}_{2} / \mathrm{N}$	$(\mathrm{c}+\mathrm{d})=\mathrm{n}_{2}$
Total	$(\mathrm{a}+\mathrm{c})=\mathrm{m}_{1}$	$(\mathrm{~b}+\mathrm{d})=\mathrm{m}_{2}$	N

Fall 2013

$\underline{2 \times 2 \text { Tables }}$

Recall, Pearson's chi-square is given by:

$$
X^{2}=\sum_{i=1}^{4}\left(O_{i}-E_{i}\right)^{2} / E_{i}
$$

Q: How does this X^{2} test in Example 1 compare to simply using the 2 sample binomial test of

$$
H_{0}: P(D \mid E)=P(D \mid \bar{E}) ?
$$

Q: How does the X^{2} test in Example 2 compare to simply using the 2 sample binomial test of

$$
H_{0}: P(E \mid D)=P(E \mid \bar{D}) ?
$$

$\underline{2 \times 2} 2$ Tables - Prospective study

Example 1: Pauling (1971)

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

H_{0} : probability of disease does not depend on treatment
H_{A} : probability of disease does depend on treatment

Fall 2013
Biostat 511
383

$\underline{2 \times 2} 2$ Tables - Prospective study

. csi 1731122109

The X^{2} value is 4.81 and the p -value is $\mathrm{P}\left(\chi^{2}(1)>4.81\right)=0.028$.
Therefore, using $\alpha=.05$, we reject the hypothesis that the risk of disease is equal in both treatment groups and conclude that vitamin C is protective.

How does this compare to the two sample test of binomial proportions?

Therefore, we reject H_{0} with the exact same result as the χ^{2} test. (Note: $2.19^{2}=4.81$)

Fall 2013

2×2 Tables - Prospective Study

Example 1 fixed the number of E and not E, then evaluated the disease status after a fixed period of time. This is a prospective study. Given this design we can estimate the relative risk:

$$
R R=\frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

The range of RR is $[0, \infty)$. By taking the logarithm, we have $(-\infty,+\infty)$ as the range for $\ln (R R)$ and a better approximation to normality for the estimated $\ln (\hat{R} R)$:

$$
\begin{aligned}
\ln (\hat{R} R) & =\ln \left(\frac{\hat{P}(D \mid E)}{\hat{P}(D \mid \bar{E})}\right) \\
& =\ln \left(\frac{a / n_{1}}{c / n_{2}}\right)
\end{aligned}
$$

	Cold - Y	Cold - N	Total
Vitamin C	17	122	139
Placebo	31	109	140
Total	48	231	279

The estimated relative risk is:

$$
\begin{aligned}
\hat{R} R & =\frac{\hat{P}(D \mid E)}{\hat{P}(D \mid \bar{E})}=\frac{17 / 139}{31 / 140} \\
& =0.55
\end{aligned}
$$

We can obtain a confidence interval for the relative risk by first obtaining a confidence interval for the \log RR. For Example 1, a 95\% confidence interval for the log relative risk is given by:

$$
\begin{aligned}
& \ln (\hat{R} R) \pm 1.96 \times \sqrt{\frac{1-\hat{p}_{1}}{\hat{p}_{1} n_{1}}+\frac{1-\hat{p}_{2}}{\hat{p}_{2} n_{2}}} \\
& \ln (0.55) \pm 1.96 \times \sqrt{\frac{122}{(17)(139)}+\frac{109}{(31)(140)}}
\end{aligned}
$$

Fall 2013
Biostat 511
387

The resulting $95 \% \mathrm{CI}$ for the $\log \mathrm{RR}$ is

$$
\begin{aligned}
& -0.593 \pm 1.96 \times 0.277 \\
& -0.593 \pm 0.543 \\
& (-1.116,-0.050)
\end{aligned}
$$

To obtain a 95% confidence interval for the relative risk we exponentiate the end-points of the interval for the log - relative risk. Therefore,

$$
\begin{gathered}
(\exp (-1.116), \exp (-0.050)) \\
(.33, .95)
\end{gathered}
$$

is a 95% confidence interval for the relative risk.

$\underline{2 \times 2} 2$ Tables - Case-Control Study

In Example 2 we fixed the number of cases and controls then ascertained exposure status (i.e. we measured $\mathrm{P}(\mathrm{E} \mid \mathrm{D})$). Such a design is known as case-control study. Based on this we are able to estimate $\mathrm{P}(\mathrm{E} \mid \mathrm{D})$ but not $\mathrm{P}(\mathrm{D} \mid \mathrm{E})$. That means we can't (directly) estimate the relative risk θ°.
However, we can estimate the exposure odds ratio $\Theta \ldots \begin{gathered}\text { an ods } \\ \text { ratio? }\end{gathered}$

$$
O R=\frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}
$$

\ldots and Cornfield (1951) showed the exposure odds ratio is equivalent to the disease odds ratio $: \ldots$

$$
\frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))}
$$

Odds Ratio

\ldots and, for rare diseases, $\mathrm{P}(\mathrm{D} \mid \mathrm{E}) \approx 0$ so that the disease odds ratio approximates the relative risk! ©

$$
\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} \approx \frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

$>$ Case-Control data \Rightarrow able to estimate the exposure odds ratio \Rightarrow exposure odds ratio equal to the disease odds ratio \Rightarrow for rare diseases, odds ratio approximates the relative risk.

For rare diseases, the sample odds ratio approximates the population relative risk.

Fall 2013
Biostat 511
391

$\underline{2 \times 2} 2$ Tables - Case-Control Study

Like the relative risk, the odds ratio has $[0, \infty)$ as its range. The \log odds ratio has $(-\infty,+\infty)$ as its range and the normal distribution is a good approximation to the sampling distribution of the estimated \log odds ratio.

$$
\begin{aligned}
& O R=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)} \\
& \hat{O} R=\frac{\hat{p}_{1} /\left(1-\hat{p}_{1}\right)}{\hat{p}_{2} /\left(1-\hat{p}_{2}\right)}=\frac{a d}{b c}
\end{aligned}
$$

Confidence intervals are based upon:

$$
\ln (\hat{O} R) \sim N\left(\ln (\mathrm{OR}), \frac{1}{\mathrm{n}_{1} p_{1}}+\frac{1}{\mathrm{n}_{1}\left(1-p_{1}\right)}+\frac{1}{\mathrm{n}_{2} p_{2}}+\frac{1}{\mathrm{n}_{2}\left(1-p_{2}\right)}\right)
$$

Therefore, a $(1-\alpha)$ confidence interval for the \log odds ratio is given by:

Fall 2013

Interpreting Odds ratios

1. What is the outcome of interest? (i.e. disease)
2. What are the two groups being contrasted? (i.e. exposed and unexposed)

$$
\text { OR }=\frac{\text { odds of OUTCOME in EXPOSED }}{\text { odds of OUTCOME in UNEXPOSED }}
$$

- Similar to RR for rare diseases
- Meaningful for both cohort and case-control studies
- $\mathrm{OR}>1 \Rightarrow$ increased odds of OUTCOME with EXPOSURE
- $\mathrm{OR}<1 \Rightarrow$ decreased odds of OUTCOME with EXPOSURE

Interpreting Odds ratios

Be aware of how the table is laid out ...

	Case	Control	Total
Non-Smoker	27	90	117
Smoker	484	385	869
Total	511	475	986

Odds ratio $=.239 \Rightarrow$ Interpret.

$\underline{2 \times 2} 2$ Tables - Cross-sectional Study

Example 3 is an example of a cross-sectional study since only the total for the table is fixed in advance. The row totals or column totals are not fixed in advance.

Either the relative risk or odds ratio may be used to summarize the association when using a cross-sectional design.

The major distinction from a prospective study is that a crosssectional study will reveal the number of cases currently in the sample. These are known as prevalent cases. In a prospective study we count the number of new cases, or incident cases.

Study	Probability	Description
Cohort	incidence	probability of obtaining the disease probability of having
Cross-sectional	prevalence	prob disease

Fall 2013
Biostat 511
397

Fisher's Exact Test

Motivation: When a 2×2 table contains cells that have fewer than 5 expected observations, the normal approximation to the distribution of the log odds ratio (or other summary statistics) is known to be poor. This can lead to incorrect inference since the p -values based on this approximation are not valid.

Solution: Use Fisher's Exact Test

	$\mathrm{D}+$	$\mathrm{D}-$	Total
$\mathrm{E}+$			n_{1}
$\mathrm{E}-$			n_{2}
Total	m_{1}	$\mathrm{~m}_{2}$	N

Fall 2013
Biostat 511
399

Fisher's Exact Test

Example: Cardiovascular disease. A retrospective study is done among men aged 50-54 who died over a 1-month period. The investigators tried to include equal numbers of men who died from CVD and those that did not. Then, asking a close relative, the dietary habits were ascertained.

	High Salt	Low Salt	Total
non-CVD	2	23	25
CVD	5	30	35
Total	7	53	60

A calculation of the odds ratio yields:

Interpret.

$$
\mathrm{OR}=\frac{2 \times 30}{5 \times 23}=0.522
$$

Fisher's Exact Test

Example: Cardiovascular disease.
If we consider the margins fixed, there are only a limited number of possible tables. Using the hypergeometric distribution, "we" can compute the probability of each table under Ho.

Possible Tables (with probability under Ho):

0		25
		35
7	53	60
.017		

1		25
		35
7	53	60
.105		

2		25
		35
7	53	60
252		

3		25
		35
7	53	60
312		

4		25
		35
7	53	60
.214		

5		25
		35
7	53	60
.082		

6		25
		35
7	53	60
.016		

7		25
		35
7	53	60
.001		

Fall 2013
401

Fisher's Exact Test

To compute a p-value we then use the usual approach of summing the probability of all events (tables) as extreme or more extreme than the observed data.

- For a one tailed test we sum the probabilities of all tables with a less than or equal to (greater than or equal to) the observed a.
- For a two-tailed test of $p_{1}=p_{2}$ we sum all tables that are less likely than the observed.

You will never do this by hand

Fisher Exact test using Stata

Fisher's exact test.
. cci 5302 23, exact

1-sided Fisher's exact $P=0.3747$
2-sided Fisher's exact $P=0.6882$
all 2013
Biostat 511
403

Fisher Exact test using Stata

The usual chi-squared test, for comparison.

Paired Binary Data

Example 4 measured a binary response on matched pairs. This is an example of paired binary data. One way to display these data is the following:

	OC	No OC	Total
Case	67	108	175
Control	23	152	175
Total	90	260	350

Q: Can't we simply use X^{2} Test of Homogeneity to assess whether this is evidence for an increase in knowledge?
A: NO!!! The X^{2} tests assume that the rows are independent samples. In this design, the controls are constrained to be similar to the controls in many respects.

Fall 2013
Biostat 511
405

Paired Binary Data

For paired binary data we display the results as follows:

		Control OC	
		No	
Case OC	Yes	n_{11}	n_{10}
	No	n_{01}	n_{00}

This analysis explicitly recognizes the heterogeneity of subjects. Thus, those that score $(0,0)$ and $(1,1)$ provide no information about the effect of OC use since they may be "weak" or "strong" individuals. These are known as the concordant pairs. The information regarding OC use is in the discordant pairs, $(0,1)$ and $(1,0)$.

$\mathrm{p}_{1}=$ "success" probability for cases
$\mathrm{p}_{2}=$ "success" probability for controls
$\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$
$\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1} \neq \mathrm{p}_{2}$

Biostat 511

Paired Binary Data - McNemar's Test

Under the null, $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$, we expect equal numbers of " 01 " and " 10 " discordant pairs (i.e., $\mathrm{E}\left[\mathrm{n}_{01}\right]=\mathrm{E}\left[\mathrm{n}_{10}\right]$). Specifically, under the null:

$$
\begin{aligned}
& M=n_{01}+n_{10} \\
& n_{01} \left\lvert\, M \sim \operatorname{Bin}\left(M, \frac{1}{2}\right)\right. \\
& Z=\frac{n_{01}-M \frac{1}{2}}{\sqrt{M_{2}^{1}\left(1-\frac{1}{2}\right)}}
\end{aligned}
$$

Under $H_{0}, Z^{2} \sim \chi^{2}(1)$, and forms the basis for McNemar's Test for Paired Binary Responses.

The odds ratio comparing the odds of OC use for cases to OC use for controls is estimated by:

$$
\hat{O} R=\frac{n_{10}}{n_{01}}
$$

Confidence intervals: see Breslow and Day (1981), sec. 5.2, or Armitage and Berry (1987), chap. 16
Fall 2013
Biostat 511
407

Example 4:

		Control OC	
		Yes	No
Case OC	Yes	10	57
	No	13	95

We can test $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$ using McNemar's Test:

$$
\begin{aligned}
Z & =\frac{n_{01}-M_{\frac{1}{2}}}{\sqrt{M \frac{1}{2}\left(\frac{1}{2}\right)}} \\
& =\frac{13-(13+57) / 2}{\sqrt{(13+57) / 4}} \\
& =5.26
\end{aligned}
$$

Comparing 5.26^{2} to a $\chi^{2}(1)$ we find that $\mathrm{p}<0.001$. Therefore we reject the null hypothesis of equal OC use probabilities for cases and controls.

We estimate the odds ratio as $\hat{O} R=57 / 13=4.38$.

Paired Binary Data

Paired data analyses arise in a number of situations ...

- Matched case-control studies (as above)
- Repeated tests on an individual over time (e.g. before-after)
- Paired observations on an individual (e.g. two eyes)
- Twin studies
- Other ...

Inference in Correlation and Linear
Correlation
Pearson's, Spearman's
Hypothesis test for ρ
Linear Regression
Summarize linear association
Prediction
Hypothesis testing for regression parameters
Confidence intervals
parameters
fitted values
new observation (prediction interval)
Sums of Squares
Regression SS, Residual SS, Total SS, R^{2}
Assumptions in linear regression
Linearity
Independence
Normality
Equal variances
Model Checking
Checking systematic component (linearity)
Checking the random component (normality, equal variance)

Pearson's Correlation Coefficient

The correlation between two variables X and Y is defined as:

$$
\rho=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sqrt{V(X) V(Y)}}
$$

Properties:

- Symmetric - no distinction between X and Y
- The correlation is constrained: $-1 \leq \rho \leq+1$
- $|\rho|=1$ means "perfect linear relationship":

$$
Y=a+b X
$$

- The correlation is a scale free measure.
- We estimate the correlation as: $\mathrm{R}=\frac{1}{\mathrm{n}-1} \frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)}{\mathrm{s}_{\mathrm{X}} \mathrm{s}_{\mathrm{Y}}}$

Fall 2013
Biostat 511
417

Inference for Pearson's Correlation Coefficient

To test the hypothesis:

$$
\begin{aligned}
& \mathrm{H}_{0}: \rho=0 \\
& \mathrm{H}_{\mathrm{A}}: \rho \neq 0
\end{aligned}
$$

We use the statistic:

$$
T=\sqrt{n-2} \frac{R}{\sqrt{1-R^{2}}}
$$

Under the null hypothesis:

$$
\mathrm{T} \sim \mathrm{t}(\mathrm{n}-2)
$$

which forms the basis for testing.

NOTE: For the validity of the test we assume that both X and Y are normally distributed (bivariate normality).

Inference for Pearson's Correlation Coefficient

E.g. Knee circumference and thigh circumference

$$
\begin{aligned}
\mathrm{n} & =252 \\
\mathrm{R} & =0.799 \\
\mathrm{H}_{0} & : \rho=0 \\
\mathrm{H}_{\mathrm{A}} & : \rho \neq 0 \\
T & =\sqrt{n-2} \frac{R}{\sqrt{1-R^{2}}} \\
& =\sqrt{252-2} \frac{.799}{\sqrt{1-.799^{2}}} \\
& =21
\end{aligned}
$$

Conclusion: reject H_{0} with $\mathrm{p}<.0001$

Fall 2013
Biostat 511
419

Spearman Rank Correlation

- A nonparametric analogue to Pearson's correlation coefficient is Spearman's rank correlation coefficient. Use Spearman's correlation when the assumption of (bivariate) normality is not met.
- A measure of monotonic association (not necessarily linear)
- Based on the ranked data
- Rank each sample separately
- Compute Pearson's correlation on the ranks
- $-1 \leq \mathrm{R}_{\mathrm{s}} \leq 1$
- $T=\sqrt{n-2} \frac{R_{s}}{\sqrt{1-R_{s}^{2}}} \sim t(n-2)$

Fall 2013
Biostat 511
421

Linear Regression

$>$ If a scatterplot suggests a linear relationship between X and Y we can draw a linear regression line to describe how the mean of Y ehanges differs when X ehanges differs or to predict the mean of Y for any given value of X .
$>$ In linear regression one variable (X) is used to predict or explain another (Y) (the situation is asymmetric).

$$
\mathrm{X} \text { independent, predictor } \Rightarrow \mathrm{Y} \text { dependent, response }
$$

\Rightarrow We assume that we collect a sample of pairs of observations,

$$
\left(X_{i}, Y_{i}\right) \text { for } i=1,2, \ldots, n
$$

Note: here, X and Y are both quantitative; more generally, X need not be.
$>$ Modeling the relationship between X and Y requires the specification of two components:

- Systematic Component
- Random Component

Fall 2013

Assumptions for Linear Regression

Systematic component:

"expected (mean) population value of Y at X_{i} "
$\alpha=$ intercept $=$ value of mean of Y when $X=0$
$\beta=$ slope $=$ expected change difference in mean of Y for each 1 unit ehange difference in X

Assumptions for Linear Regression

Random part: $\quad \mathrm{Y}_{\mathrm{i}}=\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}$

$$
=\alpha+\beta X_{i}+\varepsilon_{i}
$$

1. Equal variance (i.e. variance doesn't depend on X)

$$
V\left(Y_{i} \mid X_{i}\right)=V\left(\varepsilon_{i}\right)=\sigma^{2}
$$

2. Responses are independent.

$$
\mathrm{Y}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\left(\text { actually, } \varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{j}}\right) \text { are independent for all } i, j .
$$

3. "Errors" are normally distributed.

$$
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

Regression - Predicted Values

Given the estimates (a, b) we can find the predicted value, \hat{Y}_{i}, for any value of X_{i}.

$$
\hat{Y}_{i}=a+b X_{i}
$$

The interpretation of \hat{Y}_{i} is as the estimated mean value of Y_{i} for a large sample of values taken at $X=X_{i}$.
 Predicted body fat when abdominal circumference is 90 cm

$$
=-39.28+.6312 * 90=17.53 \text { percent }
$$

Regression - Residuals

We also wish to estimate σ^{2}. Recall that $\sigma^{2}=\operatorname{Var}\left(\varepsilon_{\mathrm{i}}\right)$. We call the ε_{i} the "residuals".

We don't know the ε_{i} exactly since these are based on α and β. BUT, we do have a reasonable estimate based on a and b :

$$
\begin{aligned}
\mathrm{r}_{\mathrm{i}} & =\mathrm{Y}_{\mathrm{i}}-\mathrm{a}-\mathrm{bX} \mathrm{X}_{\mathrm{i}} \\
& =\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{i}
\end{aligned}
$$

Since the average of the r_{i} is 0 (guaranteed by least squares), a reasonable estimate of σ^{2} is

$$
\hat{\sigma}^{2}=\frac{\sum_{i} r_{i}^{2}}{n-2}=\frac{\sum_{i}\left(Y_{i}-a-b X_{i}\right)^{2}}{n-2}
$$

$>$ We will also use the estimated residuals to assess the adequacy of our model.

Fall 2013
Biostat 511
433

Inferences about Regression Parameters

For the simple linear model we can test hypotheses regarding β :

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta=0 \\
& \mathrm{H}_{\mathrm{A}}: \beta \neq 0
\end{aligned}
$$

using a standardized test statistic: $\quad \mathrm{T}=\frac{\mathrm{b}-0}{\sqrt{\mathrm{~V}(\mathrm{~b})}}$

Similarly, hypotheses about α (less common):

$$
\begin{aligned}
& \mathrm{H}_{0}: \alpha=0 \\
& \mathrm{H}_{\mathrm{A}}: \alpha \neq 0
\end{aligned}
$$

are based on the test statistic: $\quad \mathrm{T}=\frac{\mathrm{a}-0}{\sqrt{\mathrm{~V}(\mathrm{a})}}$

We just need estimates of $V(a)$ and $V(b) \ldots$

Fall 2013

Inferences about Regression Parameters

The variance of the estimated regression coefficients $(a=\hat{\alpha}, \mathrm{b}=\hat{\beta})$ is given by:

$$
\begin{aligned}
& \mathrm{V}(\mathrm{a})=\sigma^{2}\left(\frac{1}{\mathrm{n}}+\frac{\overline{\mathrm{X}}^{2}}{\mathrm{~L}_{\mathrm{xx}}}\right) \\
& \mathrm{V}(\mathrm{~b})=\sigma^{2}\left(\frac{1}{\mathrm{~L}_{\mathrm{xx}}}\right)
\end{aligned}
$$

where $L_{x x}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1) s_{x}^{2}$ and we replace σ by its estimate.

Fall 2013
Biostat 511
435

Inferences about Regression Parameters

Bodyfat example: Regress abdominal fat (Y) on abdomen circum (X).

$$
\begin{array}{rl}
\mathrm{H}_{0}: \beta=0 & \\
\mathrm{H}_{\mathrm{a}}: \beta \neq 0 & \\
\mathrm{a}=-39.28 & \text { (see Stata } \\
\mathrm{b}=0.6312 & \text { output on page } \\
\hat{\sigma}=4.877 & 420 \text {) } \\
\mathrm{L}_{\mathrm{xx}}=251 * 10.78^{2}=29184.5 & \\
\mathrm{~T}=\frac{.6312-0}{4.877 \sqrt{\frac{1}{29184.5}}}=22.1
\end{array}
$$

Conclusion?
NOTE: The tests for $\mathrm{Ho}: \beta=0$ and $\mathrm{Ho}: \rho=0$ are mathematically equivalent.

Confidence Intervals for Regression Parameters

Given that the errors ε_{i} are independent, have equal variances, and are normally distributed, then:

$$
\begin{aligned}
& a \sim N\left(\alpha, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{L_{x x}}\right)\right) \\
& b \sim N\left(\beta, \sigma^{2}\left(\frac{1}{L_{x x}}\right)\right)
\end{aligned}
$$

Since σ is unknown, confidence intervals for the regression parameters use the $t(n-2)$ distribution:

CI for $\alpha: \quad a \pm \mathrm{t}_{1-\alpha / 2}(n-2) \times \hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{X}^{2}}{L_{x x}}}$
CI for $\beta: b \pm \mathrm{t}_{1-\alpha / 2}(n-2) \times \hat{\sigma} \sqrt{\frac{1}{L_{x x}}}$

Fall 2013
Biostat 511
437

Confidence Intervals for Regression Parameters

Bodyfat example: $(\mathrm{n}=252)$

$$
\begin{gathered}
a=-39.28 \\
b=0.6312 \\
\hat{\sigma}=4.877 \\
L_{x x}=29184.5
\end{gathered}
$$

A 95% confidence interval for β is
$0.6312 \pm 1.97 * 4.877 * \operatorname{sqrt}(1 / 29184.5)$
(.575,.687)

Fall 2013
Biostat 511
438

Confidence Intervals for Predicted Means

The predicted value, \hat{Y}_{i}, is the estimated mean response at X_{i} and is estimated as:

$$
\hat{Y}_{i}=a+b X_{i}
$$

Further $\quad \hat{V}\left(\hat{Y}_{i} \mid X_{i}\right)=\hat{\sigma}^{2}\left(\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{L_{x x}}\right)$
so, a confidence interval for $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)=\alpha+\beta \mathrm{X}_{\mathrm{i}}$ is given by:

$$
\hat{\mathrm{Y}}_{\mathrm{i}} \pm \mathrm{t}_{1-\alpha / 2}(\mathrm{n}-2) \times \sqrt{\hat{\mathrm{V}}\left(\hat{\mathrm{Y}}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)}
$$

Confidence Intervals for Predicted Means

Bodyfat example: $(\mathrm{n}=252)$

$$
\begin{aligned}
a & =-39.28 \\
b & =0.6312 \\
\hat{\sigma} & =4.877 \\
\bar{X} & =92.56 \\
L_{x x} & =29184.5
\end{aligned}
$$

Consider the mean bodyfat for an abdomen circumference of 100 cm :

$$
\begin{aligned}
\hat{\mathrm{Y}}_{\mathrm{i}} & =\mathrm{a}+\mathrm{b} \times \mathrm{X}_{\mathrm{i}} \\
& =-39.28+0.6312 \times 100=23.82 \\
\hat{\mathrm{~V}}\left(\hat{\mathrm{Y}}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right) & =\hat{\sigma}^{2}\left(\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~L}_{\mathrm{xx}}}\right) \\
& =(4.877)^{2}\left(\frac{1}{252}+\frac{(100-92.56)^{2}}{29184.5}\right)=0.139
\end{aligned}
$$

$$
t_{1-\alpha / 2}(n-2)=1.97
$$

Thus a 95% confidence interval for $E\left(Y_{i} \mid X=100\right)$ is:

$$
\begin{aligned}
\hat{Y}_{i} & \pm \mathrm{t}_{1-\alpha / 2}(n-2) \times \hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{L_{x x}}} \\
& =23.82 \pm 1.97 \times \sqrt{0.139} \\
& =23.82 \pm 0.74 \\
& =(23.08,24.56)
\end{aligned}
$$

Fall 2013
441

Prediction Intervals

The confidence interval for $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ that we have developed gives us an interval that we expect the (population) mean of Y at X to fall in.

Suppose that we wanted an interval (range of values) that we would expect a single "new" observation to fall in...
$>$ How should the prediction of an single new observation at $\mathrm{X}=100$ (say) compare to the prediction of the mean of all observations at X $=100$ (same, higher, lower)?

How should the uncertainty about the prediction of an single new observation at $\mathrm{X}=100$ (say) compare to the uncertainty about the prediction of the mean of all observations at $\mathrm{X}=100$ (same, higher, lower)?

Fall 2013

Prediction Intervals

In predicting a single new observation we have the uncertainty about the population mean PLUS the intrinsic variability of individual
observations $\left(\sigma^{2}\right)$. The variability in predicting a single new observation is the sum of these:

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\mathrm{Y}}_{\text {single }}\right) & =\sigma^{2}+\operatorname{Var}\left(\hat{\mathrm{Y}}_{\text {mean }}\right) \\
& =\sigma^{2}\left(1+\frac{1}{\mathrm{n}}+\frac{(\mathrm{X}-\overline{\mathrm{X}})^{2}}{\mathrm{~L}_{\mathrm{xx}}}\right)
\end{aligned}
$$

Thus, for an individual observation the interval:

$$
\begin{array}{r}
\left(\mathrm{a}+\mathrm{bX} X_{\mathrm{i}}\right) \pm \mathrm{t}_{1-\alpha / 2}(\mathrm{n}-2) \times \hat{\sigma} \sqrt{1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~L}_{\mathrm{xx}}}} \\
\hat{Y}_{\mathrm{i}} \pm \mathrm{t}_{1-\alpha / 2}(\mathrm{n}-2) \times \hat{\sigma} \sqrt{1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~L}_{\mathrm{xx}}}}
\end{array}
$$

is a $(1-\alpha)$ prediction interval for a new observation taken at X_{i}.

Prediction Intervals

Bodyfat example: $(\mathrm{n}=252)$

$$
\begin{aligned}
a & =-39.28 \\
b & =0.6313 \\
\hat{\sigma} & =4.877 \\
\bar{X} & =92.56 \\
L_{x x} & =29,184.5
\end{aligned}
$$

Consider an individual bodyfat measurement for a new individual with an abdomen circumference of 100 cm :

$$
\hat{Y}_{i}=a+b \times 100=23.82
$$

A $\mathbf{9 5 \%} \%$ prediction interval is given by $\hat{Y}_{i} \pm \mathrm{t}_{1-\alpha / 2}(n-2) \times \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{L_{x x}}}$

$$
\begin{aligned}
& 23.82 \pm 1.97 \times 4.877 \sqrt{1+\frac{1}{252}+\frac{(100-92.56)^{2}}{29,184.5}} \\
& 23.82 \pm 9.64 \\
& (14.18,33.46)
\end{aligned}
$$

Fall 2013
Biostat 511
445

Sum of Squares (SS)

It is clear that

$$
\left(Y_{i}-\bar{Y}\right)=\left(Y_{i}-\hat{Y}_{i}\right)+\left(\hat{Y}_{i}-\bar{Y}\right)
$$

It can also be shown that

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y_{i}}\right)^{2}+\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \quad= & \text { Total SS }- \text { describes the total variation of the } \\
& Y_{i}
\end{aligned}
$$

$$
\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \quad=\text { Error SS - describes the variation of the } \mathrm{Y}_{\mathrm{i}}
$$ around the regression line.

$\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \quad=$ Model SS - describes the structural variation; how much of the variation is due to the regression relationship.

Total SS = Model SS + Error SS

This decomposition allows a characterization of the usefulness of the covariate X in predicting the response variable Y_{i}.

Q: If you didn't know X, what would you predict for mean of Y ?
A: \bar{Y}

Q: How much unexplained variation is left after you make that prediction?
A: Total SS

Q: What did we gain by using X?
A: The proportion of the Total variation that can be explained by the regression of Y on X is $\mathrm{R}^{2}=$ Model SS/Total SS
Alternatively, we can say that the unexplained (residual) variation decreased by a proportion R^{2} (i.e. $\mathrm{R}^{2}=1$ - Error SS/Total SS)
This R^{2} is, in fact, the correlation coefficient squared.

Regression - Model Checking

Given the data Y_{i} and the fitted values, \hat{Y}_{i}, we define the residual as:

$$
\mathrm{r}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{\mathrm{i}}
$$

This captures the component of the measurement Y_{i} that cannot be "explained" by X_{i}. We will use the residuals to assess our model in terms of the adequacy of both the systematic and random components.

Assumptions and Diagnostics

Assumption	Model Checking
Linearity	• residual vs X or \hat{Y} Q: Is there any trend?
Independence	Q: Any scientific concerns?

Impact of Violations

Nonlinearity:

1. Estimates - rubbish. Biased estimation.
2. Tests/CIs - also rubbish. Systematic deviations spill over into estimates of variability.
3. Correction - transform or choose a nonlinear model.

Nonnormality:

1. Estimates - effect is minimal for most departures. Outliers can be a disaster. If points exist far from the main body of X values, they can exert undue influence on estimates (particularly $\hat{\beta}$).
2. Tests/CIs - again minimal for most departures
3. Correction - delete outliers (if warranted) or nonparametric regression.

Fall 2013
Biostat 511
459

Impact of Violations

Unequal Variances:

1. Estimates - minimal impact. (still unbiased, consistent)
2. Tests/CIs - variance estimates are wrong, but the effect is usually not dramatic.
3. Correction - transform or weighted least squares.

Dependence:

1. Estimates - range of possibilities, but often the estimates are unbiased.
2. Tests/CIs - variance estimates are wrong. Often they will overestimate the precision and inflate test statistics (p -values too small).
3. Correction - regression for dependent data.

Model Checking...

Anscombe's Quartet (1973)

- Statistician Francis Anscombe created four datasets with nearly identical simple statistical properties. He used the illustration to demonstrate the effects of outliers and non-linear patterns.
- And to warn us of the importance of graphing our data!

Model Checking...

Anscombe's Quartet (1973)

Each of the four dataset has the following summaries:

- $\mathrm{E}[\mathrm{Y}]=3+5 \mathrm{X}$ (2-3 decimal places)
- $\overline{\mathrm{X}}=9$ (exact)
- $\overline{\mathrm{Y}}=7.50$ (2 decimal places)
- $\mathrm{S}_{\mathrm{x}}=11$ (exact)
- $\mathrm{S}_{\mathrm{y}}=4.12$ (2 decimal places)
- $\mathrm{R}=0.816$ (2 decimal places)

