
NONSTATIONARY
ROOT CAUSES OF
COBB’S PARADOX

Lt Col Joseph W. Carl, USAF (Ret.)
and Col George Richard Freeman, USAFR (Ret.)

Cobb’s Paradox states, “We know why [programs] fail; we
know how to prevent their failure—so why do they still fail?”
One possibility is that we do not really know why programs fail
and there is no paradox. Another possibility is that some of the
problems that lead to program failure may not be susceptible
to practical solution, so that continued failure is not para-
doxical. This article defines what we mean by nonstationary
root causes of program failures, and identifies 10 such causes.
Requirements volatility, funding stability, process immaturity,
and lack of discipline are often cited among the reasons. The
article ends with recommended approaches to mitigate the
effects of influences from the environment that change over
time—nonstationary effects.

3 3 7 | A Publication of the Defense Acquisition University http://www.dau.mil

Keywords: Cobb’s Paradox, Nonstationary Environ-
ments, Program Stability, Change Management,
Configuration Management

image designed by Miracle Riese »

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Nonstationary Root Causes of Cobb’s Paradox

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Acquisition University,9820 Belvoir Road, Suite 3,Fort
Belvoir,VA,22060-5565

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3 3 9 | A Publication of the Defense Acquisition University http://www.dau.mil

In 2007, the many examples of government project failures led then-
Under Secretary of Defense for Acquisition, Technology and Logistics
John Young to issue a memorandum that requires prototyping and
competition on all major programs up to Milestone B (Young, 2007).
Young’s memorandum was a propitious start. But is it likely to be sufficient
to solve all the problems that lead to project failure?

This article summarizes the number and spectrum of project failures,
and makes the case that project failures cannot be attributed solely to
mismanagement on the part of project managers. Rather, it appears
improbable that all project managers of large complex projects could
produce similar failures. The prevailing perception throughout the
acquisition community is that program and project managers know why
projects fail and how to prevent them from failing. The authors discuss
the concept of other influences from the environment that change over
time—nonstationary effects—that may be the root cause of these numerous
project failures.

background

In 2006, a Government Accountability Office report (GAO, 2006)
highlighted several government project failures.

In the last 5 years, the Department of Defense (DoD) has doubled
its planned investments in new weapon systems from about $700
billion in 2001 to nearly $1.4 trillion in 2006. While the weapons
that DoD develops have no rival in superiority, weapon systems
acquisition remains a long-standing, high-risk area. GAO's reviews
over the past 30 years have found consistent problems with
weapon acquisitions such as cost increases, schedule delays, and
performance shortfalls.

The report goes on to state that this huge increase in spending over the
past 5 years “has not been accompanied by more stability, better outcomes,
or more buying power for the acquisition dollar.” Examples of this huge
increase in spending follow:

•	 Capable satellites, potential overrun of $1.4 billion
•	 Satellite payload cost and schedule overruns greater than

$1.1 billion
•	 Radar contract projected to overrun target cost by up to 34

percent
•	 Advanced Precision Kill Weapon System (Joint Attack

Munition Systems), curtailment of initial program in January
2005 due to development cost overruns, projected schedule

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 4 0

slip of 1–2 years, unsatisfactory contract performance, and
environmental issues

•	 C-5 Avionics Modernization Program, $23 million cost overrun
•	 C-5 Reliability Enhancement and Re-engineering Program,

$209 million overrun
•	 F-22A, increase in the costs of avionics since 1997 by

more than $951 million or 24 percent, and other problems
discovered late in the program.

On March 31, 2006, Comptroller General of the United States David M.
Walker stated in congressional testimony:

The cost of developing a weapon system continues to often
exceed estimates by approximately 30 percent to 40 percent.
This in turn results in fewer quantities, missed deadlines, and
performance shortfalls. In short, the buying power of the weapon
system investment dollar is reduced, the warfighter gets less than
promised, and opportunities to make other investments are lost.
This is not to say that the nation does not get superior weapons
in the end, but that at twice the level of investment. DoD has an
obligation to get better results. In the larger context, DoD needs to
make changes…consistent with getting the desired outcomes from
the acquisition process.

Cobb’s Paradox

In 1995, Martin Cobb worked for the Secretariat of the Treasury Board
of Canada. He attended The Standish Group’s CHAOS University, where the
year’s 10 most complex information technology (IT) projects are analyzed
and discussed. The 10 most complex IT projects studied by The Standish
Group in 1994 were all in trouble: eight were over schedule, on average
by a factor of 1.6 and over budget by a factor of 1.9; the other two were
cancelled and never delivered anything. That led Cobb to state his now-
famous paradox (Cobb, 1995): “We know why [programs] fail; we know how
to prevent their failure—so why do they still fail?”

The Standish Group uses project success criteria from surveyed IT
managers to create a success-potential chart. The success criteria are
shown in the Table, where they are ranked according to their perceived
importance. There seems to be an assumption that all the criteria are
stationary—that they are assumed to be present on any specific project to
some degree and do not change over time except potentially for the better
with conscious effort. A little more formally, a process or system is said to
be stationary if its behavioral description does not change over time, and
nonstationary if its behavioral description does change over time.

3 4 1 | A Publication of the Defense Acquisition University http://www.dau.mil

Systems under development exist in an environment that is not at
all stationary over a project’s development span. Technology changes in
significant ways. Leaders retire or are replaced, and new leaders have new
priorities and perceptions. New threats emerge and old threats diminish.
Marketplaces shift as consumers change their buying habits in response
to advertising and personal needs. Nonstationary environmental factors
prevent requirements from being established early with the thought that
they will not change. They will certainly change independent of the degree
of discipline and process maturity on the part of the system developer.

The five Whys

“A poorly defined problem and a rush to solution and action lead to
activity without achieving the desired results” (Liker & Meier, 2006, p.
327). One recognized technique for defining problems and uncovering root
causes of problems is to ask the five whys. Toyota refers to the five-whys
process as a causal chain (Figure 1) because the questions and answers are
chain-linked to help keep track of them. Perhaps the best way to explain
the five-whys process for those not already familiar with the technique is
to demonstrate it. The basic idea is to ask why about five times. The criteria
from the Table suggest the causal factors that we can further explore to
arrive at root causes of project failures.

So let’s begin by defining the problem: to discover why projects fail. A
possible first primary cause answer is: because requirements change over

TABLE. CRITERIA USED BY THE STANDISH GROUP TO GAUGE
THE CHANCE OF PROJECT SUCCESS

Success Criteria
1. User Involvement

2. Executive Management Support

3. Clear Statement of Requirements

4. Proper Planning

5. Realistic Expectations

6. Smaller Project Milestones

7. Competent Staff

8. Ownership

9. Clear Vision & Objectives

10. Hardworking, Focused Staff

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 4 2

time. Then we seek causal factors with why No. 2: Why do requirements
change over time? A possible answer is: because advances in technology
create opportunities. Then we dig for deeper causal factors with why No.
3: Why do advances in technology create opportunities? A possible answer
is: because Moore’s Law (1965) states that the number of components on a
digital chip doubles every 18 months, which means digital products become
practical that weren’t practical earlier. Then we dig again for deeper causal
factors, with why No. 4: Why do digital products become practical that
weren’t practical earlier? A possible answer is: because the complexity of
software in the products increases to create new capabilities that demand
more raw computing capacity and memory than earlier. Then we seek the
root cause with why No. 5: Why does the increased complexity of software
create new kinds of capabilities and create opportunities? A possible answer
is: because stakeholders express a desire for new capabilities, and more
complex software is the way to create them in the digital world in which we
live. When we ask good questions in the five-whys process and ask them of
the right people, we quickly arrive at the root causes of problems.

We can further examine why projects fail by positing a second
possible first cause: because executive management support changes
over time. Then we seek causal factors with why No. 2: Why does executive
management support change over time? A possible answer is: because
executive managers retire or relocate. Then we dig for deeper causal factors
with why No. 3: Why does support change if executive managers retire or
relocate? A possible answer is: because different managers have different
priorities and perceptions. Then we dig again for still deeper causal factors
with why No. 4: Why do different priorities and perceptions change support?
A possible answer is: because executive managers have a vested interest in

FIGURE 1. CRITERIA USED BY THE STANDISH GROUP

1. Write problem description PROBLEM

Cause 1 Cause 2 Cause N

CF 1a

CF 2a-1-2

CF 2a-1-3

CF 1b CF 1c CF 2a

CF 2a-1 CF 2a-2 CF 2a-3

RC RC

RC

RC RC RC

4. Identify root causes (RC)

4. Identify root causes (RC)

3. Brainstorm causal factors (CF) or
4. Identify root causes (RC)

3. Brainstorm causal factors (CF)

3. Brainstorm causal factors (CF)

3. Brainstorm causal factors (CF)

2. Ask why it happens

3 4 3 | A Publication of the Defense Acquisition University http://www.dau.mil

creating at least the appearance of improvements. Then we seek the root
cause with why No. 5: Why does improving things require different priorities
and perceptions? A possible answer might be: because different priorities
and perceptions provide the reason and justification for the improvements.
Again, we seem to have arrived at a root cause.

We can also diagram the root causes in an Ishikawa diagram, also
called a fishbone diagram. Although further questions and answers are
not detailed in this article, Figure 2 diagrams the results after asking the
five whys for each of the 10 success criteria. Readers may wish to ask and
answer the five whys to see if they achieve similar results.

FIGURE 2. AN ISHIKAWA OR “FISHBONE” DIAGRAM

Why Do
Projects Fail?

Appearance of
Improvement

Di�erent
Perceptions
and Priorities

Managers
Move On

Threat Environment
Shifts

Budgets Change
Budgets are Cut

Schedules Slip

Managers Change

Business Acquisition

Marketplace Shifts

Priorities Change

Perceptions Change

People Quit

Stakeholders
Change

New People
are Hired

Enterprise is
Acquired

Stakeholder
Desires

Stakeholders Come and Go

Di�ering
Desires

Requirements
Change

Executive
Support
Changes

User Involvement
ChangesPlans Change

Expectations and
Sta� Change

Milestones SlipOwnership Changes

Objectives Change

4

1

2

35
7

10

68

9

Advancing
Technology

New Capabilities

The five whys and the Ishikawa diagram indicate that some—perhaps
most of the root causes of project failures—are nonstationary. For example:

•	 A clear statement of requirements cannot be stationary
because technology advances more quickly than ever, and
marketplaces or threats in the environment shift.

•	 Executive management support and competent staffs must
change in our world of international outsourcing and transient
populations.

•	 Stakeholders’ expectations cannot really be held constant
over a project’s life cycle regardless of whether or not they
are realistic because stakeholders frequently change—not as
a class, but as individuals.

•	 Ownership cannot remain constant in a marketplace of
business resizing, reorganization, and acquisition.

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 4 4

Obviously, eliminating the nonstationary aspects of a project’s
environment is not practical. Is there any way to adapt to the changes?
Though not comprehensively, at least three options can be independently
adopted to mitigate the effects on a project in a changing environment.
Before discussing the three options that are available, we will first review
the historical setting of managing a project and review the evolutionary
strategies that have recently been adopted.

Working in a nonstationary environment

One historical method to acquire new systems is termed the waterfall
method (Figure 3). Within the waterfall method, requirements are first
established and then followed by several review milestones executed
sequentially to arrive at a series of decisions that relate to the maturity of
the system under design and development (Royce, 1970, pp. 1–9).

As is well known, the waterfall acquisition method can span a long
time—perhaps years or even decades. The long span associated with the
waterfall has been recognized as a factor in the failure of many projects
that used it,1 and this recognition led to alternative development methods
such as the spiral development method defined by Barry Boehm (Boehm,
2002). Today there is recognition that systems evolve over their life
cycles,2 especially software systems, and the preferred approaches to
system development are called evolutionary development (Pressman,
2001, pp. 34–47). Evolutionary development includes: (1) incremental
development; (2) spiral development, including its win-win variations; (3)
concurrent development; and (4) component-based development. For
example, the Rational Unified Process (Larman, 2005) is a well-known,
use-case-specified, architecture-driven, iterative software development
process. The emphasis in these evolutionary development methods is on
defining iterated shortened cycles that emphasize both risk reduction and
increased product maturity in the subsequent repeated cycles. Evolutionary
development leads to individual waterfall-like cycles that are individually
short enough that the project environment is approximately stationary
within the cycle.

Thus, the need to adapt to environmental changes is explicit. But this
runs the risk of constant change, resulting in modification of requirements,
objectives, visions, or support commitments at each cycle. Thinking of the
environment as approximately constant for one cycle is not equivalent to
imagining the environment is constant over the project’s life cycle.

We could simply hold all requirements, visions, goals, plans, budgets,
stakeholders, and staffs constant. We could view agreed-to plans as
commitments, but then the risk is that we will develop systems or capabilities
that are not congruent with the marketplace or threat environment; and

3 4 5 | A Publication of the Defense Acquisition University http://www.dau.mil

that would be like Ford creating an Edsel without paying attention to what
customers want. Is there anything else we could do?

Mitigating the effects of nonstationarities

In a competitive setting, any project must address cost, performance,
marketing features, technical maturity, and time to completion. Yet,
nonstationary environments imply acquisition projects will continue to
experience product configuration changes and other changes that drive
up cost and extend schedules. We should deal with changes in a sensible
way. Being sensible is tantamount to adopting heuristics3 to deal with
environmental changes. And, what is sensible depends on what we consider
to be the most important variables to control. The priority given to cost
and schedule will vary product to product, market to market, and threat
to threat.

Given the fact that we cannot eliminate the nonstationary aspects of
a project’s environment, at least three options are available to mitigate

FIGURE 3. THE WATERFALL METHOD

System
Requirements

Configuration Item
Requirements

Software
Requirements

Preliminary Design

Detailed Design

Coding and Debugging

Integration
and Testing

Production

Operations and
Maintenance

System Requirements Review

Preliminary Design Review

Critical Design Review

Test Readiness Review

Production Readiness Review

Deployment Readiness Review

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 4 6

the effects of the nonstationarities: (1) control cost, (2) control schedule,
and (3) manage changes with discipline. We could give highest priority
to cost and try to control cost to avoid the nonstationary effects on cost
from the environment. We could just as well constrain schedule to avoid
the nonstationary effects on the schedule from the environment. And we
must manage the changes in a disciplined way to avoid the worst effects
of the nonstationarities.

DesiGn to cost
The Innovator’s Dilemma (Christensen, 1997) makes it clear why cost

continuously becomes an important factor that affects the competitive
position of commercial companies. And newspapers and television
newscasters regularly remind us that the cost of defense acquisitions by the
U.S. Government repeatedly surfaces as an area of concern to the Congress
and taxpayers. When cost is the most important variable, yet a constraint
is defined that cost cannot exceed a preset limit, then we are dealing with
a design-to-cost paradigm.

A design-to-cost strategy aims to control costs by treating cost as an
independent design parameter. A substantial fraction (70 to 80 percent) of
a product’s cost is determined during the product’s design/development
phase. According to Crow (2000), the elements of a design-to-cost
approach include the following:

•	 Recognition of what the customer can afford
•	 Definition and allocation of the target costs to a level at which

costs can be effectively managed
•	 Commitment on the part of designers and development

personnel
•	 Stable management to prevent requirements creep
•	 Understanding of cost drivers and their management in

establishing product specifications
•	 Early use of cost models to project design/development costs

in support of decision making
•	 Active consideration of costs appropriately weighted during

development
•	 Exploration of the product’s trade space to find lower cost

alternatives
•	 Access to a database of past costs to provide quantitative

information about present cost estimates
•	 Design for manufacturability and design for assembly to avoid

rework and its associated costs
•	 Identification of functions that have a high cost-to-function

ratio as targets for cost reduction

3 4 7 | A Publication of the Defense Acquisition University http://www.dau.mil

•	 Consistent cost accounting methods, models, and processes
•	 Continuous improvement through value engineering to

improve products’ value over time.

Thus, well-understood techniques and practices are readily available that
treat cost as an appropriately weighted design parameter. Adopting these
techniques when cost is a high priority can serve to limit costs and thereby
reduce the impact of cost growth due to nonstationary environments.

DesiGn to scHeDuLe
In a military setting, quick reaction implies that a capability is required

in the field with high priority in a time period that can be as short as 1 to 3
months. Environments do not change appreciably in that timeframe. Time
to market can also be a consideration for commercial firms because of short
windows of opportunity. If schedule is the most important variable, and a
constraint is defined that project length cannot exceed a relatively short
preset span, we are dealing with a design to schedule paradigm, which is
often also called a Quick-Reaction Capability (QRC) paradigm.

We cannot find much written about QRC other than definitions of the
abbreviation. But our private industry experience gives us some personal
insight into how to accomplish a QRC effort. Basically, a QRC effort relies
on the reuse of earlier designs and components, and upon a dedicated,
knowledgeable workforce that is committed to completion of the effort
in the required timeframe. The reuse of standard parts eliminates the
long lead time to design new or nonstandard parts. The reuse of standard
manufacturing processes and tools eliminates time to retool or re-plan
the manufacture. And techniques that are suggested to implement the
design-to-cost paradigm suggest further techniques to save time: time
correlates with cost. We can reword the recommended elements of the
design-to-cost paradigm (cited above) to apply to the QRC paradigm:

•	 Recognition of when the customer needs the product or
capability

•	 Definition and allocation of schedule milestones to a level at
which time can be effectively managed

•	 Commitment on the part of designers and development
personnel

•	 Stable management to prevent requirements creep
•	 Understanding of time drivers and their management in

establishing product specifications
•	 Early use of schedule models to project design/development

time in support of decision making
•	 Active consideration of time appropriately weighted during

development

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 4 8

•	 Exploration of the product’s trade space to find lower
elapsed-time alternatives

•	 Access to a past experience database to define earned-value
milestones realistically

•	 Design for manufacturability and design for assembly to avoid
rework and its associated time

•	 Identification of components and parts that have a high time-
to-capability ratio as targets for schedule reduction

•	 Consistent earned-value milestone accounting methods and
processes to assess technical progress

•	 Continuous improvement through value engineering to
improve the time to market/field.

Thus, inferred techniques and practices are available that treat schedule
as a constrained parameter. Adopting these techniques when time is a
high priority can serve to limit schedule and thereby reduce the impact of
schedule growth due to nonstationary environments.

conFiGuRAtion AnD cHAnGe MAnAGeMent
This article is not deliberately focused on a single weapon system

or product, which is likely easier to change. Modern acquisitions include
systems of systems in an environment of exponentially increasing inter- and
intra-dependencies. In an era of net-centric warfare, globalization, and the
World Wide Web, interdependencies are unavoidable. In his book Leading
Change, Kotter (1996, pp. 21, 136–137) discusses the nature of change
in highly interdependent systems. Specifically, in highly interdependent
environments, a single desired change drives almost everything to change
(Figure 4). We think of physical changes to a system as configuration
changes. But, interdependency becomes a further challenge when various
component systems are themselves unstable, for example, because of
funding constraints, political climate, or changes in leadership or ownership.
Therefore, change management deals with nonphysical aspects of a system,
such as requirements changes, priority or budget changes, or other changes
to established baselines.

Kotter (1996) also highlights an eight-step process of creating major
change:

1. Establish a sense of urgency.
2. Create the guiding coalition.
3. Develop a vision and strategy.
4. Communicate the new vision.
5. Empower broad-based action.
6. Generate short-term wins.

3 4 9 | A Publication of the Defense Acquisition University http://www.dau.mil

7. Consolidate gains and produce more change.
8. Anchor new approaches in the culture.

While Kotter’s eight-step process model is primarily designed for
changing organizations, many of the principles contained in this approach
are applicable to effective project/program management, especially during
periods of frequent change and turmoil. This is especially true if the desired
change is more process- than product-based. For example, if a project
desires to capitalize on a new technology or address quality problems
through manufacturing process alteration, we can see where the Kotter
eight-step process is directly applicable.

Configuration management. Change management and configuration
management are closely related (Figure 5). The concepts are similar: by
controlling or managing proposed changes to a product’s or a system’s
configuration, we are controlling or managing the effect on the product or
system of changes in the external environment. Configuration management
typically requires a configuration control board chaired by an executive
stakeholder; a configuration working group of subject matter experts to
analyze proposed changes, and to create and evaluate alternative means
to accommodate the change; and a secretariat to record the deliberations
and decisions of the configuration control board, and to manage any
action items that are assigned.

Change management. Change management is a well-known and respected
means to deal with volatile requirements, budget cuts, and other
nonstationary root causes of project failures. The definition of change

FIGURE 4. CONFIGURATION MANAGEMENT USES THE SAME
BASIC PROCESS THAT CHANGE MANAGEMENT USES

Note. (a) In a system with independent parts, A can be changed by simply changing A;

(b) in a system with some interdependence, several elements (A, E, D) may need to be

changed in order to change A; (c) in a system with much interdependence, all elements

may need to be changed in order to change A.

(Blanchard & Fabrycky, 2006)

A B

C

DE

F

(a)

A B

C

DE

F

(b)

A B

C

DE

F

(c)

Note. (a) In a system with independent parts, A can be changed by simply changing A; (b) in a system
with some interdependence, several elements (A, E, D) may need to be changed in order to change A; (c)
in a system with much interdependence, all elements may need to be changed in order to change A.
(Blanchard & Fabrycky, 2006)

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 5 0

management includes at least four basic aspects: (1) the task of managing
change, (2) an area of professional practice, (3) a body of knowledge, and
(4) a control mechanism. Change can be planned or unexpectedly driven
by unforeseen external events; this article addresses the latter. Many
believe that the general process of change can be treated separately from
the specifics of the situation; thus, acquisition practitioners may seek to
leverage the expertise of professional change consultants.

The body of knowledge relating to change management is drawn
from psychology, sociology, business administration, economics,
industrial engineering, systems engineering, and the study of human and
organizational behavior. For many practitioners, these component bodies
of knowledge are linked and integrated by a set of concepts and principles
known as general systems theory (Skyttner, 2005). Thus, a large, somewhat
eclectic body of knowledge underlies the practice of change management
upon which many practitioners might agree.

However, the very application of the word management in direct
association with the word change implies that change is an activity or event
that lends itself to being controlled (control is a function of management)

FIGURE 5. BASIC PROCESS FOR CONFIGURATION MANAGEMENT
AND CHANGE MANAGEMENT

Note. Adapted from Figure 5.10 (Blanchard & Fabrycky, 2006, p. 138).

Design and
Development

Engineering
Change Proposal

Engineering
Change Proposal

Engineering
Change Proposal

Change Control
Board

Develop a Change
Implementation Plan

Develop Mod Kits
and Install Procedures

Incorporate
Approved Change

Dispose of Residue

Return System
to Former Status

Revise
Documentation

Production/
Construction

Operational Use
Sustainment

YES

YES

NO

ABANDON

NO

Verified
Adequacy?

Change
Feasible?

NONSTATIONARY ROOT CAUSES

Note: Adapted from Figure 5.10 (Blanchard & Fabrycky, 2006, p. 138).

3 5 1 | A Publication of the Defense Acquisition University http://www.dau.mil

through the application of logical procedures applicable to standardized,
effective, and efficient processes. For this to be true, the volatility of
impacting factors must also have some reasonable degree of predictable
control. Infrequently, however, is there a case where change is desired
while all aspects of the change are predictable. Therefore, although various
methods are available by which one can approach change, the challenge
of successfully effecting change is directly proportional to the number of
nonpredictable aspects.

summary and Conclusions

Cobb’s Paradox, as detailed in this article, is a result of nonstationary
causes. Some of these nonstationary causes are not explicitly defined in
the acquisition or systems engineering literature before now. Some of these
nonstationary causes are not at all easy to manage. So it seems that project
failure is not paradoxical as Cobb’s Paradox suggests.

Given the fact that project environments can not be expected to remain
constant over a typical project’s life cycle, we are left with disciplined
change management to deal with any changes and heuristic methods to
control their impacts. Perhaps if we treat every project as if it was both cost-
constrained and schedule-constrained, and we applied disciplined change
management techniques, we would avoid many of the project problems
analyzed by The Standish Group and so clearly articulated by Martin Cobb.

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 5 2

Author Biographies
Lt col Joseph W. carl, uSAF (Ret.) enlisted in
the U.S. Air Force at age 17 and retired after a
25-year military career. Following his military
service, Dr. Carl worked for Harris Corporation
as a systems engineer for over 21 years, and
for Riverside Research Incorporated as an
adjunct faculty member of the Air Force
Institute of Technology (AFIT) where he taught
systems engineering. He holds a PhD from Ohio
State University and is a Professional Engineer
(PE) and Certified Systems Engineering
Professional (CSEP).

 (E-mail: Joseph.Carl.ctr@afit.edu)

col G. Richard Freeman, uSAFR (Ret.) is the
technical director, Air Force Center for Systems
Engineering, AFIT. He has over 30 years’
experience in systems and process engineering.
Col Freeman’s federal civilian career included
positions as chief, Concept Development and
Process Engineering; chief process officer; and
chief, Environment, Safety and Occupational
Health for Weapons Systems. In the defense
industry, he held executive positions as CEO
Delta Environmental Services, Inc.; executive
vice president and board member, EICON, Inc.;
and positions with General Electric, United
Nuclear, and UNC Aerospace. Col Freeman
holds a BS from Phillips University, cum laude,
an MA from the National War College with
highest distinction, and an MS from Troy Tate
University, summa cum laude, respectively. His
professional credentials include CSEP and
CSEP-Acquisition.

(E-mail: Richard.Freeman@afit.edu)

3 5 3 | A Publication of the Defense Acquisition University http://www.dau.mil

REFERENCES
Blanchard, B. S., & Fabrycky, W. J. (2006). Systems engineering and analysis (4th ed.). Upper

Saddle River, NJ: Pearson-Prentice Hall.

Boehm, B. W. (2002). Spiral development: Experience, principles, and refinements. Pittsburgh:

Carnegie Mellon University, Software Engineering Institute.

Christensen, C. M. (1997). The innovator's dilemma: When new technologies cause great firms

to fail. Oxford, MA: Harvard Business School Press.

Cobb, M. (1995). Unfinished voyages. Presentation at The CHAOS University, sponsored by The

Standish Group, in Chatham, MA, November 6–9, 1995.

Crow, K. (2000). Achieving target cost/Design-to-cost objectives. Retrieved from http://www.

npd-solutions.com/dtc.html

Kotter, J. P. (1996). Leading change. Oxford. MA: Harvard Business School Press.

Larman, C. (2005). Applying UML and patterns: An introduction to object-oriented analysis and

design and iterative development (3rd ed.). Upper Saddle River, NJ: Prentice Hall PTR.

Liker, J. K., & Meier, D. (2006). The Toyota way fieldbook: A practical guide for implementing

Toyota’s 4Ps. New York: McGraw-Hill.

Moore, G. (1965, April 19). Cramming more components onto integrated circuits. Electronics

Magazine, 38(8).

Pressman, R. S. (2001). Software engineering: A practitioner’s approach. New York: McGraw-

Hill.

Royce, W. R. (1970, August). Managing the development of large software systems.

Proceedings of the IEEE/WESCON Conference, Los Angeles, CA.

Skyttner, L. (2005). General systems theory (2nd ed.). Singapore: World Scientific Publishing

Co.

U.S. Government Accountability Office. (2006). Defense acquisitions: Assessments of selected

major weapon programs (GAO-06-391). Washington, DC: Author.

Young, J. (2007). Prototyping and competition [policy memorandum]. Washington, DC: Office

of the Under Secretary of Defense (Acquisition, Technology & Logistics).

nonstationary Root Causes of Cobb’s Paradox July 2010 | 3 5 4

ENDNOTES
1. According to The Standish Group, 16 percent of software-intensive projects are

successful, while 53 percent are over schedule or budget and 31 percent are cancelled

(see http://www.gtislig.org/Documents/ISO%2012207.ppt#265,10,Project Failure

Reasons).

2. Note that evolution is driven by feedback from the environment, and is usually

interpreted to result in entities that have adapted to the changing environment to

become more survivable in it.

3. A heuristic is something that cannot be proven to work all the time, but experience

indicates it works well most of the time. A heuristic may also be thought of as a method

of solving a problem for which no formula exists so that the solution is based on informal

methods or experience and may employ a form of trial-and-error iteration.

