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Cobb’s Paradox states, “We know why [programs] fail; we 
know how to prevent their failure—so why do they still fail?” 
One possibility is that we do not really know why programs fail 
and there is no paradox. Another possibility is that some of the 
problems that lead to program failure may not be susceptible 
to practical solution, so that continued failure is not para-
doxical. This article defines what we mean by nonstationary 
root causes of program failures, and identifies 10 such causes. 
Requirements volatility, funding stability, process immaturity, 
and lack of discipline are often cited among the reasons. The 
article ends with recommended approaches to mitigate the 
effects of influences from the environment that change over 
time—nonstationary effects. 
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In 2007, the many examples of government project failures led then-
Under Secretary of Defense for Acquisition, Technology and Logistics 
John Young to issue a memorandum that requires prototyping and 
competition on all major programs up to Milestone B (Young, 2007). 
Young’s memorandum was a propitious start. But is it likely to be sufficient 
to solve all the problems that lead to project failure?

This article summarizes the number and spectrum of project failures, 
and makes the case that project failures cannot be attributed solely to 
mismanagement on the part of project managers. Rather, it appears 
improbable that all project managers of large complex projects could 
produce similar failures. The prevailing perception throughout the 
acquisition community is that program and project managers know why 
projects fail and how to prevent them from failing. The authors discuss 
the concept of other influences from the environment that change over 
time—nonstationary effects—that may be the root cause of these numerous 
project failures.

background

In 2006, a Government Accountability Office report (GAO, 2006) 
highlighted several government project failures.

In the last 5 years, the Department of Defense (DoD) has doubled 
its planned investments in new weapon systems from about $700 
billion in 2001 to nearly $1.4 trillion in 2006. While the weapons 
that DoD develops have no rival in superiority, weapon systems 
acquisition remains a long-standing, high-risk area. GAO's reviews 
over the past 30 years have found consistent problems with 
weapon acquisitions such as cost increases, schedule delays, and 
performance shortfalls.

The report goes on to state that this huge increase in spending over the 
past 5 years “has not been accompanied by more stability, better outcomes, 
or more buying power for the acquisition dollar.” Examples of this huge 
increase in spending follow:

•	 Capable satellites, potential overrun of $1.4 billion
•	 Satellite payload cost and schedule overruns greater than 

$1.1 billion
•	 Radar contract projected to overrun target cost by up to 34 

percent
•	 Advanced Precision Kill Weapon System (Joint Attack 

Munition Systems), curtailment of initial program in January 
2005 due to development cost overruns, projected schedule 



nonstationary Root Causes of Cobb’s Paradox July 2010  | 3 4 0

slip of 1–2 years, unsatisfactory contract performance, and 
environmental issues

•	 C-5 Avionics Modernization Program, $23 million cost overrun
•	 C-5 Reliability Enhancement and Re-engineering Program, 

$209 million overrun
•	 F-22A, increase in the costs of avionics since 1997 by 

more than $951 million or 24 percent, and other problems 
discovered late in the program.

On March 31, 2006, Comptroller General of the United States David M. 
Walker stated in congressional testimony:

The cost of developing a weapon system continues to often 
exceed estimates by approximately 30 percent to 40 percent. 
This in turn results in fewer quantities, missed deadlines, and 
performance shortfalls. In short, the buying power of the weapon 
system investment dollar is reduced, the warfighter gets less than 
promised, and opportunities to make other investments are lost. 
This is not to say that the nation does not get superior weapons 
in the end, but that at twice the level of investment. DoD has an 
obligation to get better results. In the larger context, DoD needs to 
make changes…consistent with getting the desired outcomes from 
the acquisition process.

Cobb’s Paradox

In 1995, Martin Cobb worked for the Secretariat of the Treasury Board 
of Canada. He attended The Standish Group’s CHAOS University, where the 
year’s 10 most complex information technology (IT) projects are analyzed 
and discussed. The 10 most complex IT projects studied by The Standish 
Group in 1994 were all in trouble: eight were over schedule, on average 
by a factor of 1.6 and over budget by a factor of 1.9; the other two were 
cancelled and never delivered anything. That led Cobb to state his now-
famous paradox (Cobb, 1995): “We know why [programs] fail; we know how 
to prevent their failure—so why do they still fail?”

The Standish Group uses project success criteria from surveyed IT 
managers to create a success-potential chart. The success criteria are 
shown in the Table, where they are ranked according to their perceived 
importance. There seems to be an assumption that all the criteria are 
stationary—that they are assumed to be present on any specific project to 
some degree and do not change over time except potentially for the better 
with conscious effort. A little more formally, a process or system is said to 
be stationary if its behavioral description does not change over time, and 
nonstationary if its behavioral description does change over time.
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Systems under development exist in an environment that is not at 
all stationary over a project’s development span. Technology changes in 
significant ways. Leaders retire or are replaced, and new leaders have new 
priorities and perceptions. New threats emerge and old threats diminish. 
Marketplaces shift as consumers change their buying habits in response 
to advertising and personal needs. Nonstationary environmental factors 
prevent requirements from being established early with the thought that 
they will not change. They will certainly change independent of the degree 
of discipline and process maturity on the part of the system developer.

The five Whys

“A poorly defined problem and a rush to solution and action lead to 
activity without achieving the desired results” (Liker & Meier, 2006, p. 
327). One recognized technique for defining problems and uncovering root 
causes of problems is to ask the five whys. Toyota refers to the five-whys 
process as a causal chain (Figure 1) because the questions and answers are 
chain-linked to help keep track of them. Perhaps the best way to explain 
the five-whys process for those not already familiar with the technique is 
to demonstrate it. The basic idea is to ask why about five times. The criteria 
from the Table suggest the causal factors that we can further explore to 
arrive at root causes of project failures.

So let’s begin by defining the problem: to discover why projects fail. A 
possible first primary cause answer is: because requirements change over 

TABLE. CRITERIA USED BY THE STANDISH GROUP TO GAUGE 
THE CHANCE OF PROJECT SUCCESS 

Success Criteria
1. User Involvement

2. Executive Management Support

3. Clear Statement of Requirements

4. Proper Planning

5. Realistic Expectations

6. Smaller Project Milestones

7. Competent Staff

8. Ownership

9. Clear Vision & Objectives

10. Hardworking, Focused Staff
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time. Then we seek causal factors with why No. 2: Why do requirements 
change over time? A possible answer is: because advances in technology 
create opportunities. Then we dig for deeper causal factors with why No. 
3: Why do advances in technology create opportunities? A possible answer 
is: because Moore’s Law (1965) states that the number of components on a 
digital chip doubles every 18 months, which means digital products become 
practical that weren’t practical earlier. Then we dig again for deeper causal 
factors, with why No. 4: Why do digital products become practical that 
weren’t practical earlier? A possible answer is: because the complexity of 
software in the products increases to create new capabilities that demand 
more raw computing capacity and memory than earlier. Then we seek the 
root cause with why No. 5: Why does the increased complexity of software 
create new kinds of capabilities and create opportunities? A possible answer 
is: because stakeholders express a desire for new capabilities, and more 
complex software is the way to create them in the digital world in which we 
live. When we ask good questions in the five-whys process and ask them of 
the right people, we quickly arrive at the root causes of problems.

We can further examine why projects fail by positing a second 
possible first cause: because executive management support changes 
over time. Then we seek causal factors with why No. 2: Why does executive 
management support change over time? A possible answer is: because 
executive managers retire or relocate. Then we dig for deeper causal factors 
with why No. 3: Why does support change if executive managers retire or 
relocate? A possible answer is: because different managers have different 
priorities and perceptions. Then we dig again for still deeper causal factors 
with why No. 4: Why do different priorities and perceptions change support? 
A possible answer is: because executive managers have a vested interest in 

FIGURE 1. CRITERIA USED BY THE STANDISH GROUP
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creating at least the appearance of improvements. Then we seek the root 
cause with why No. 5: Why does improving things require different priorities 
and perceptions? A possible answer might be: because different priorities 
and perceptions provide the reason and justification for the improvements. 
Again, we seem to have arrived at a root cause.

We can also diagram the root causes in an Ishikawa diagram, also 
called a fishbone diagram. Although further questions and answers are 
not detailed in this article, Figure 2 diagrams the results after asking the 
five whys for each of the 10 success criteria. Readers may wish to ask and 
answer the five whys to see if they achieve similar results.

FIGURE 2. AN ISHIKAWA OR “FISHBONE” DIAGRAM
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The five whys and the Ishikawa diagram indicate that some—perhaps 
most of the root causes of project failures—are nonstationary. For example:

•	 A clear statement of requirements cannot be stationary 
because technology advances more quickly than ever, and 
marketplaces or threats in the environment shift.

•	 Executive management support and competent staffs must 
change in our world of international outsourcing and transient 
populations.

•	 Stakeholders’ expectations cannot really be held constant 
over a project’s life cycle regardless of whether or not they 
are realistic because stakeholders frequently change—not as 
a class, but as individuals.

•	 Ownership cannot remain constant in a marketplace of 
business resizing, reorganization, and acquisition.
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Obviously, eliminating the nonstationary aspects of a project’s 
environment is not practical. Is there any way to adapt to the changes? 
Though not comprehensively, at least three options can be independently 
adopted to mitigate the effects on a project in a changing environment. 
Before discussing the three options that are available, we will first review 
the historical setting of managing a project and review the evolutionary 
strategies that have recently been adopted.

Working in a nonstationary environment

One historical method to acquire new systems is termed the waterfall 
method (Figure 3). Within the waterfall method, requirements are first 
established and then followed by several review milestones executed 
sequentially to arrive at a series of decisions that relate to the maturity of 
the system under design and development (Royce, 1970, pp. 1–9).

As is well known, the waterfall acquisition method can span a long 
time—perhaps years or even decades. The long span associated with the 
waterfall has been recognized as a factor in the failure of many projects 
that used it,1 and this recognition led to alternative development methods 
such as the spiral development method defined by Barry Boehm (Boehm, 
2002). Today there is recognition that systems evolve over their life 
cycles,2 especially software systems, and the preferred approaches to 
system development are called evolutionary development (Pressman, 
2001, pp. 34–47). Evolutionary development includes: (1) incremental 
development; (2) spiral development, including its win-win variations; (3) 
concurrent development; and (4) component-based development. For 
example, the Rational Unified Process (Larman, 2005) is a well-known, 
use-case-specified, architecture-driven, iterative software development 
process. The emphasis in these evolutionary development methods is on 
defining iterated shortened cycles that emphasize both risk reduction and 
increased product maturity in the subsequent repeated cycles. Evolutionary 
development leads to individual waterfall-like cycles that are individually 
short enough that the project environment is approximately stationary 
within the cycle.

Thus, the need to adapt to environmental changes is explicit. But this 
runs the risk of constant change, resulting in modification of requirements, 
objectives, visions, or support commitments at each cycle. Thinking of the 
environment as approximately constant for one cycle is not equivalent to 
imagining the environment is constant over the project’s life cycle.

We could simply hold all requirements, visions, goals, plans, budgets, 
stakeholders, and staffs constant. We could view agreed-to plans as 
commitments, but then the risk is that we will develop systems or capabilities 
that are not congruent with the marketplace or threat environment; and 
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that would be like Ford creating an Edsel without paying attention to what 
customers want. Is there anything else we could do?

Mitigating the effects of nonstationarities

In a competitive setting, any project must address cost, performance, 
marketing features, technical maturity, and time to completion. Yet, 
nonstationary environments imply acquisition projects will continue to 
experience product configuration changes and other changes that drive 
up cost and extend schedules. We should deal with changes in a sensible 
way. Being sensible is tantamount to adopting heuristics3 to deal with 
environmental changes. And, what is sensible depends on what we consider 
to be the most important variables to control. The priority given to cost 
and schedule will vary product to product, market to market, and threat 
to threat.

Given the fact that we cannot eliminate the nonstationary aspects of 
a project’s environment, at least three options are available to mitigate 

FIGURE 3. THE WATERFALL METHOD 
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the effects of the nonstationarities: (1) control cost, (2) control schedule, 
and (3) manage changes with discipline. We could give highest priority 
to cost and try to control cost to avoid the nonstationary effects on cost 
from the environment. We could just as well constrain schedule to avoid 
the nonstationary effects on the schedule from the environment. And we 
must manage the changes in a disciplined way to avoid the worst effects 
of the nonstationarities.

DesiGn to cost
The Innovator’s Dilemma (Christensen, 1997) makes it clear why cost 

continuously becomes an important factor that affects the competitive 
position of commercial companies. And newspapers and television 
newscasters regularly remind us that the cost of defense acquisitions by the 
U.S. Government repeatedly surfaces as an area of concern to the Congress 
and taxpayers. When cost is the most important variable, yet a constraint 
is defined that cost cannot exceed a preset limit, then we are dealing with 
a design-to-cost paradigm.

A design-to-cost strategy aims to control costs by treating cost as an 
independent design parameter. A substantial fraction (70 to 80 percent) of 
a product’s cost is determined during the product’s design/development 
phase. According to Crow (2000), the elements of a design-to-cost 
approach include the following:

•	 Recognition of what the customer can afford
•	 Definition and allocation of the target costs to a level at which 

costs can be effectively managed
•	 Commitment on the part of designers and development 

personnel
•	 Stable management to prevent requirements creep
•	 Understanding of cost drivers and their management in 

establishing product specifications
•	 Early use of cost models to project design/development costs 

in support of decision making
•	 Active consideration of costs appropriately weighted during 

development
•	 Exploration of the product’s trade space to find lower cost 

alternatives
•	 Access to a database of past costs to provide quantitative 

information about present cost estimates
•	 Design for manufacturability and design for assembly to avoid 

rework and its associated costs
•	 Identification of functions that have a high cost-to-function 

ratio as targets for cost reduction
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•	 Consistent cost accounting methods, models, and processes
•	 Continuous improvement through value engineering to 

improve products’ value over time.

Thus, well-understood techniques and practices are readily available that 
treat cost as an appropriately weighted design parameter. Adopting these 
techniques when cost is a high priority can serve to limit costs and thereby 
reduce the impact of cost growth due to nonstationary environments.

DesiGn to scHeDuLe
In a military setting, quick reaction implies that a capability is required 

in the field with high priority in a time period that can be as short as 1 to 3 
months. Environments do not change appreciably in that timeframe. Time 
to market can also be a consideration for commercial firms because of short 
windows of opportunity. If schedule is the most important variable, and a 
constraint is defined that project length cannot exceed a relatively short 
preset span, we are dealing with a design to schedule paradigm, which is 
often also called a Quick-Reaction Capability (QRC) paradigm.

We cannot find much written about QRC other than definitions of the 
abbreviation. But our private industry experience gives us some personal 
insight into how to accomplish a QRC effort. Basically, a QRC effort relies 
on the reuse of earlier designs and components, and upon a dedicated, 
knowledgeable workforce that is committed to completion of the effort 
in the required timeframe. The reuse of standard parts eliminates the 
long lead time to design new or nonstandard parts. The reuse of standard 
manufacturing processes and tools eliminates time to retool or re-plan 
the manufacture. And techniques that are suggested to implement the  
design-to-cost paradigm suggest further techniques to save time: time 
correlates with cost. We can reword the recommended elements of the 
design-to-cost paradigm (cited above) to apply to the QRC paradigm:

•	 Recognition of when the customer needs the product or 
capability

•	 Definition and allocation of schedule milestones to a level at 
which time can be effectively managed

•	 Commitment on the part of designers and development 
personnel

•	 Stable management to prevent requirements creep
•	 Understanding of time drivers and their management in 

establishing product specifications
•	 Early use of schedule models to project design/development 

time in support of decision making
•	 Active consideration of time appropriately weighted during 

development
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•	 Exploration of the product’s trade space to find lower 
elapsed-time alternatives

•	 Access to a past experience database to define earned-value 
milestones realistically

•	 Design for manufacturability and design for assembly to avoid 
rework and its associated time

•	 Identification of components and parts that have a high time-
to-capability ratio as targets for schedule reduction

•	 Consistent earned-value milestone accounting methods and 
processes to assess technical progress

•	 Continuous improvement through value engineering to 
improve the time to market/field.

Thus, inferred techniques and practices are available that treat schedule 
as a constrained parameter. Adopting these techniques when time is a 
high priority can serve to limit schedule and thereby reduce the impact of 
schedule growth due to nonstationary environments.

conFiGuRAtion AnD cHAnGe MAnAGeMent
This article is not deliberately focused on a single weapon system 

or product, which is likely easier to change. Modern acquisitions include 
systems of systems in an environment of exponentially increasing inter- and 
intra-dependencies. In an era of net-centric warfare, globalization, and the 
World Wide Web, interdependencies are unavoidable. In his book Leading 
Change, Kotter (1996, pp. 21, 136–137) discusses the nature of change 
in highly interdependent systems. Specifically, in highly interdependent 
environments, a single desired change drives almost everything to change 
(Figure 4). We think of physical changes to a system as configuration 
changes. But, interdependency becomes a further challenge when various 
component systems are themselves unstable, for example, because of 
funding constraints, political climate, or changes in leadership or ownership. 
Therefore, change management deals with nonphysical aspects of a system, 
such as requirements changes, priority or budget changes, or other changes 
to established baselines.

Kotter (1996) also highlights an eight-step process of creating major 
change:

1. Establish a sense of urgency.
2. Create the guiding coalition.
3. Develop a vision and strategy.
4. Communicate the new vision.
5. Empower broad-based action.
6. Generate short-term wins.
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7. Consolidate gains and produce more change.
8. Anchor new approaches in the culture.

While Kotter’s eight-step process model is primarily designed for 
changing organizations, many of the principles contained in this approach 
are applicable to effective project/program management, especially during 
periods of frequent change and turmoil. This is especially true if the desired 
change is more process- than product-based. For example, if a project 
desires to capitalize on a new technology or address quality problems 
through manufacturing process alteration, we can see where the Kotter 
eight-step process is directly applicable.

Configuration management. Change management and configuration 
management are closely related (Figure 5). The concepts are similar: by 
controlling or managing proposed changes to a product’s or a system’s 
configuration, we are controlling or managing the effect on the product or 
system of changes in the external environment. Configuration management 
typically requires a configuration control board chaired by an executive 
stakeholder; a configuration working group of subject matter experts to 
analyze proposed changes, and to create and evaluate alternative means 
to accommodate the change; and a secretariat to record the deliberations 
and decisions of the configuration control board, and to manage any 
action items that are assigned.

Change management. Change management is a well-known and respected 
means to deal with volatile requirements, budget cuts, and other 
nonstationary root causes of project failures. The definition of change 

FIGURE 4.  CONFIGURATION MANAGEMENT USES THE SAME 
BASIC PROCESS THAT CHANGE MANAGEMENT USES

Note. (a) In a system with independent parts, A can be changed by simply changing A; 

(b) in a system with some interdependence, several elements (A, E, D) may need to be 

changed in order to change A; (c) in a system with much interdependence, all elements 

may need to be changed in order to change A.

(Blanchard & Fabrycky, 2006)
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Note. (a) In a system with independent parts, A can be changed by simply changing A; (b) in a system 
with some interdependence, several elements (A, E, D) may need to be changed in order to change A; (c) 
in a system with much interdependence, all elements may need to be changed in order to change A.
(Blanchard & Fabrycky, 2006)
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management includes at least four basic aspects: (1) the task of managing 
change, (2) an area of professional practice, (3) a body of knowledge, and 
(4) a control mechanism. Change can be planned or unexpectedly driven 
by unforeseen external events; this article addresses the latter. Many 
believe that the general process of change can be treated separately from 
the specifics of the situation; thus, acquisition practitioners may seek to 
leverage the expertise of professional change consultants.

The body of knowledge relating to change management is drawn 
from psychology, sociology, business administration, economics, 
industrial engineering, systems engineering, and the study of human and 
organizational behavior. For many practitioners, these component bodies 
of knowledge are linked and integrated by a set of concepts and principles 
known as general systems theory (Skyttner, 2005). Thus, a large, somewhat 
eclectic body of knowledge underlies the practice of change management 
upon which many practitioners might agree.

However, the very application of the word management in direct 
association with the word change implies that change is an activity or event 
that lends itself to being controlled (control is a function of management) 

FIGURE 5. BASIC PROCESS FOR CONFIGURATION MANAGEMENT 
AND CHANGE MANAGEMENT 

Note. Adapted from Figure 5.10 (Blanchard & Fabrycky, 2006, p. 138).
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through the application of logical procedures applicable to standardized, 
effective, and efficient processes. For this to be true, the volatility of 
impacting factors must also have some reasonable degree of predictable 
control. Infrequently, however, is there a case where change is desired 
while all aspects of the change are predictable. Therefore, although various 
methods are available by which one can approach change, the challenge 
of successfully effecting change is directly proportional to the number of 
nonpredictable aspects.

summary and Conclusions

Cobb’s Paradox, as detailed in this article, is a result of nonstationary 
causes. Some of these nonstationary causes are not explicitly defined in 
the acquisition or systems engineering literature before now. Some of these 
nonstationary causes are not at all easy to manage. So it seems that project 
failure is not paradoxical as Cobb’s Paradox suggests.

Given the fact that project environments can not be expected to remain 
constant over a typical project’s life cycle, we are left with disciplined 
change management to deal with any changes and heuristic methods to 
control their impacts. Perhaps if we treat every project as if it was both cost-
constrained and schedule-constrained, and we applied disciplined change 
management techniques, we would avoid many of the project problems 
analyzed by The Standish Group and so clearly articulated by Martin Cobb.
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ENDNOTES
1. According to The Standish Group, 16 percent of software-intensive projects are 

successful, while 53 percent are over schedule or budget and 31 percent are cancelled 

(see http://www.gtislig.org/Documents/ISO%2012207.ppt#265,10,Project Failure 

Reasons).

2. Note that evolution is driven by feedback from the environment, and is usually 

interpreted to result in entities that have adapted to the changing environment to 

become more survivable in it.

3. A heuristic is something that cannot be proven to work all the time, but experience 

indicates it works well most of the time. A heuristic may also be thought of as a method 

of solving a problem for which no formula exists so that the solution is based on informal 

methods or experience and may employ a form of trial-and-error iteration.


