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Abstract. Analytic expressions are obtained for the spectrum of the light scattered when 
a collimated atomic beam is illuminated at right angles to its path by a cw monochroma- 
tic laser beam tuned to resonance with a two-level transition. The spectra. as would 
be determined by a Fabry-Perot interferometer, vary depending on the portion of the 
interaction region from which the scattered light emanates. The spectrum of the light 
from a finite sub-region of the interaction volume is described as a function of the location 
and length of the sub-region, and of the intensity and frequency of the laser. Several 
interesting features related to the turn-on of the interaction as well as to the finite observa- 
tion interval are found. 

1. Introduction 

Consider an atomic beam illuminated at right angles to its path by a cw monochro- 
matic laser beam tuned to resonance with a two-level transition. The atoms will 
strongly scatter the incident light. The spectrum of that spontaneously emitted radi- 
ation exhibits distinctive features due to the AC Stark effect. This spectrum, as a 
function of the laser’s intensity and its detuning from the two-level resonance, has 
been the subject of a number of theoretical papers (Mollow 1969, 1975, Herrmann 
et al 1973, Agarwal 1974, Hassan and Bullough 1975, Smithers and Freedhoff 1974, 
Carmichael and Walls 1975, 1976, Cohen-Tannoudji 1975, Swain 1975, Kimble and 
Mandel 1976). This spectrum has also been measured in four different laboratories 
in the past three years (Schuda et al 1974, Walther 1975, Wu et al 1975, Gibbs 
and Venkatesan 1976). In this paper, we derive in detail the expression for the spec- 
trum of the scattered light as measured by means of a Fabry-Perot interferometer, 
using the results of a previous quantum electrodynamic calculation for the relevant 
correlation function (Renaud et al 1976, to be referred to as RWS I). This expression 
is found to be a well behaved positive definite function of the scattered frequency, 
as one would expect for such a quantity. 

Our analysis describes measurements of the spectrum of the light emitted by 
the ensemble of atoms comprising any given part of the atomic beam (henceforth 
referred to as the observation region). Our results apply even in the transient regime. 
Of particular interest is the region where the atoms in an arbitrary initial state enter 
the laser field, and thereby experience the sudden turn-on of this interaction. We 
show that these spectra exhibit features that are not present in the stationary limit, 
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which corresponds to an observation region of infinite length. These features, which 
we will characterize as ‘transient’, can be attributed either to the finite length of 
the observation region or to the recent start of the interaction. Specifically, a finite 
observation region (in which each atom spends only a limited amount of time) leads 
to a general broadening of the spectrum and, in most instances, to oscillations near 
the field frequency. The transient effects observed near the beginning of the interaction 
region are very sensitive to the choice of the initial state of the atom. The expression 
we derive for the spectrum allows one to prescribe any initial condition; however, 
for the most part our attention is directed to atoms which are in the ground state 
as they enter the laser field, since this is the situation most easily realized experimen- 
tally. In such cases quite asymmetrical lineshapes can be obtained for off-resonance 
driving fields, in contrast to the symmetrical ones obtained from observations of 
only those atoms which have been in the interaction region for many lifetimes. In 
the limit where the atom never becomes appreciably excited these asymmetrical spec- 
tra are found to be exactly those predicted by the Lorentz model. 

The above-mentioned transient features have not generally been found in other 
treatments because assumptions were made which are equivalent to assuming that 
each atom is observed interacting with the field for an infinite amount of time. How- 
ever, some results for the transient regime have been published. Herrmdnn et a1 (1973) 
solved for the spectrum under the condition that each atom interacts with the field 
for only a finite amount of time. Carmichael and Walls (1976) have given approximate 
(strong-field) solutions allowing for a finite observation time, both for an atom in 
the steady state and for an excited atom observed entering the interaction region. 
The situation we treat is slightly more general in that it allows for a finite interval 
between the start of the interaction and the observation. Moreover, we allow the 
laser field to be detuned from exact resonance. In contrast, both of the above treat- 
ments are restricted to exactly resonant fields, where the usual initial conditions 
of a pure excited state or a pure ground state result in a symmetric spectrum. 

It should be noted that, even though the interaction of a given atom with the 
field is not stationary, the spectrum of the light scattered from any part of the interac- 
tion region is time independent. This is a consequence of the assumption that the 
atoms are passing through the incident radiation field at a constant rate. 

2. Experimental arrangement 

In figure 1 the geometry of the idealized experiment is shown. The atomic beam, 
which is well collimated, is along the y axis, while the laser beam is along the x 
axis. The spectrum of the scattered light will be measured in a small solid angle 
about the z direction. For simplicity the laser beam is taken to have a uniform 
intensity over a rectangular cross section. In a real experiment this might be approxi- 
mated by spreading the laser beam and then using an aperture near the atomic 
beam to truncate the Gaussian, leaving a reasonably uniform intensity distribution. 
As is indicated in figure l(b), we assume that a slit is placed above the atomic beam 
so as to allow observation of only a portion of the interaction region at a time. 
The beginning of the interaction region is at j = 0, while the observation region 
is bounded by y ,  and j s 2 .  It is also convenient to introduce a time parameter T 
for a particular atom. If the atom is moving with a velocity v along the beam then 
it will require a time TI to travel from the beginning of the interaction region to 
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Figure 1. (a) The geometry of the idealized experiment. (b)  The atomic beam and the 
cw laser interact in a volume which has a rectangular cross section in the y z  plane. 
The part of the interaction region visible to the detector is limited to the observation 
region Cyl, y 2 ]  by the slit. 

the beginning of the observation region. It will leave the observation region at T2 
and, in general, will satisfy the relation J = UT. The length of this interval will be 
denoted by 5 = T2 - TI. 

The scattered light passes through a linear optical system and is detected by 
a photomultiplier. Though our analysis applies for any linear system, we will special- 
ize to an ideal Fabry-Perot. 

Consider one atom in the observation region Cy1, y 2 ] .  The expression for the 
intensity (power per unit solid angle) in the far field zone can be written in terms 
of the positive and negative frequency parts of the field as (see Rehler and Eberly 
1971) 

Here the subscript U refers to the velocity v of the atom, to to the time when it 
enters the laser radiation, and r to the separation between the detector and the 
interaction region. The direction. is denoted by the unit vector E .  The positive and 
negative frequency parts of the field satisfy 

That is, the atom contributes to the detected field only when it is situated within 
the observation region. Then the intensity emanating from the interval dy about 
the coordinate y in the observation region is just the average of ZJk, T + r/c) = Ir(k, 
y/v + r/c) over the velocity distribution P(v) for the atoms in the beam, multiplied 
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by the constant density of atoms N,, by the cross section d of the atomic beam 
and the differential length dy. We neglect all cooperative effects between the atoms. 

As a second step, this intensity can be integrated over y from y1 to y2 to yield 
the total intensity emitted from all N atoms within the observation region 
(AJ = N , d ( y ,  - y,)), i.e. 

Due to the average over the ensemble of atoms within the observation region, this 
total intensity is time independent, although the contribution of the individual atoms 
to the intensity, as in (l), is not. 

Relation (3a) takes into account the velocity distribution in the atomic beam. 
If we assume that all atoms travel at the same velocity 0, then (3a) reduces to 

where we used T = T2 - T, .  This is the correct expression to use if the atomic beam 
is velocity selected (Schuda and Stroud 1973). 

It is convenient to define the truncated Fourier transform 

where w is a positive (real) frequency. The superscripts ' 5 ' are used here to show how 
both E ( + ) ( t )  and Ei-)( t )  are transformed. The inverse of (4a) is 

l o  otherwise. 

The last two expressions, when substituted into (3b), yield 

Here E(+)(w) (Ei-)(w)) is interpreted as the w component of the positive (negative) 
frequency part of the field transmitted by the linear optical system. 

This time-independent linear system (see figure 1) transforms the frequency 
components of the incident field according to the product 

E i + ' ( W )  = Y(O).E{+)(O). (6) 

In particular, the transmission function Y(w) for a non-absorbing plane Fabry-Perot 
interferometer (Born and Wolf 1970) is the 3 x 3 matrix 

where I is the 3 x 3 unit matrix and R is the reflectivity of the Fabry-Perot plates. 
Relation (7a) says that each vectorial component (as well as each frequency com- 
ponent) is transformed independently. The phase difference in the exponential is the 
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product of the frequency o and the time delay z ~ ‘ ‘  between two successive transmitted 
waves 

TFp = 2(i/c)nh cos e. ( 7 4  

Here, n is the refractive index of the medium between the plates, h is their separation 
and 8 is the angle of incidence. 

The expression for Ei+’(T+ r/c)  in the far field zone of the atom is written as 
the sum of the free field and the dipole field (Rehler and Eberly 1971, Mollow 1969) 

where R is the atomic transition frequency and p the dipole-moment matrix element. 
The polarization unit vector is denoted by tiA, /L = 1,2. Also a-(T) is the Heisenberg 
atomic lowering operator. The atomic raising operator appears in the corresponding 
expression for EI-’(T + r/c). 

This far field E!+)(T + r /c )  can be Fourier transformed according to equations (4). 
By doing so, and using relations (5) to (8). the total transmitted intensity becomes a 
triple integral expression whose integrand contains an autocorrelation function : 

(9) x /T:dt”JT)t’ (Q+(t’)o-(t’’)) e- i w ( f ’ -  t”) 

The two time integrals in the double truncated Fourier transform of the atomic 
correlation function ( ~ + ( t ) o - ( f ’ ) )  are taken with respect to the same conjugate vari- 
able o. The remaining integral over w involves an Airy function whose form can 
be derived directly from (7a). This function describes the filtering action of the Fabry- 
Perot interferometer. Its transmission peaks (of area A and unit height) occur at 
the frequencies 

where f is a large positive integer. 
We assume we have an ideal Fabry-Perot. The reflectivity R of its plates is nearly 

one, and its free spectral range is much larger than the width of the frequency 
spectrum of the atomic correlation function. In this case equation (9), the total 
intensity measured by the detector, becomes 

x exp [ - iof( t ‘  - t”)] . 

By slightly changing h, the separation of the plates, of would change by a value 
smaller than the free spectral range, scanning over the whole atomic spectrum. 
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Relation (11) is the final expression for the total intensity at frequency w f  coming 
from the observation region and measured by the detector in the far field zone. 

3. Analysis 

In $2 we have found that the intensity at the detector depends upon the autocorrela- 
tion of the atomic lowering operator. We wish to express this correlation function 
explicitly in terms of the atomic and field parameters. This is readily done by using 
the results of our previous paper (RWS I) in which it was shown that this correlation 
function can be written in the form 

4 

(o+(t’)  a - ( t ” ) )  = 1 Cl,fl exp [ ( s l  - iwo)t’] exp [(s, - s1 + iojo)t”]. (12) 
I.,= 1 

Here the times are ordered by the convention 

t“ - t’ > 0. 

The coefficients C,, have the explicit form 

+ iId2(s, + P ) ]  - (G-(O))$C*(S, + P + ir)s, 

- <a+(O))k(sm + P - ia)sm + (a,,(0))+IE12(sm + PI> 
+ ie(sl + 2P)(sl + P + ia) { - (0~~(0))+c*(s, - 2P)(s, + P - isc) 

+ ( G - ( o ) ) $ E * ~  S, - (a+(O))~,[(s,, + 2 P ) ( s m  + P - ix) + iIe121 

+ (a11(0))$~* ( S m  + ~P)(s ,  + P - ix)}n (14) 

where in the denominator there appears the polynomial 

D(s)  = 4s3 + 12Ps2 + 2s(5P2 + r 2  + lei2) + P(2P’ + 22’ + lei2). (15) 

Also E, SI and P are respectively the on-resonance Rabi frequency, the detuning of the 
incident field with respect to the atomic frequency, and half the Einstein A coefficient. 
The expectation values ( ~ ~ ~ ( 0 ) )  and (a, ,(O)) are the initial populations of the 
excited and lower states respectively. The variables s,(l = 1, .  . . , 4 )  are the four 
eigenvalues of the problem (see RWS I). Since one of these roots is trivially zero, 
let 

S, = 0. (16) 

The other three have negative real parts satisfying 

- 2P d Re(s,) d - P 1 = 2>3,4 .  
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After making use of equations (12), (13) and (16), the total intensity measured 
by the detector, as given by (1 l), becomes: 

ID& TI, T ,  + z.wo + A) 

C,, exp [(si + iA)r] - 1 
(s l  + iA)r [‘ 1 = 1 (SI -( + 1 4  

1 + ccl C,,exp(s,T,) exp [ ( s l  + iA)z] - 1 exp (s,T) - 1 - + i  m = 2  i: (sl - s, + iA) ( (s, + iA)z Sm5 

where the frequency variable 

A = - 00 

is just the frequency of the scattered light transmitted through the Fabry-Perot inter- 
ferometer, expressed with respect to that of the incident field. 

Relation (18) is a well behaved positive function of T,, r and A as long as z 
is finite. When the length r of the observation region is allowed to go to infinity, 
then the double sum in equation (18) vanishes and I D  becomes independent of T,. 
In this limit the spectrum ID reduces to 

Because the CLI are independent of the initial atomic conditions (cf equations (14) 
and (16)), this spectrum does not depend upon the state of the atoms as they enter 
the interaction region. This is as expected, since any finite length of the atomic beam 
near the point where the atoms enter the laser field now represents an arbitrarily 
small fraction of the entire observation region. Expression (20) is exactly the emission 
spectrum in the stationary limit found previously (Mollow 1969). 

4. Discussion of spectra 

The emission spectrum of a driven two-level atom is completely described by equation 
(18). This expression is valid for observations of atoms for which the correlation 
function (o+(t’)c( t ’ ’ ) )  has become stationary and depends only on the time difference 
t’ - t”. However it is superior to expression (20) and similar results of previous treat- 
ments that assumed stationarity for (a+(t’)a - ( t”) )  because it correctly incorporates 
the effect that an observation region of finite length has on the spectrum. More 
importantly, relation (18) is valid for observations of atoms which have just entered 
the laser field, and, therefore, cannot be described by a stationary correlation function. 
A number of interesting features, related to this sudden turn-on of the interaction 
and to the finite observation region are present in this spectrum (18). These are 
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most easily understood with the aid of graphs. The intensity at the detector as 
expressed in equation (18) has been plotted in figures 2-6 for different observation 
regions, and various values of the parameters characterizing the incident field. 

As the laser is tuned away from resonance, the C l l  term in the expression for 
the intensity at the detector, equation (l8), becomes increasingly important. We shall 
refer to this term as the elastic component of the spectrum, because in the stationary 
limit (i.e. when z goes to infinity) it becomes a delta function at the frequency of 
the incident field. The behaviour of this component as a function of detuning is 
apparent from the sequence of emission spectra shown in figures 2(a) and (b). For 
each graph, E = 108 and the detuning a varies from 0 to 128. Only the length of 
the observation region differs in the two figures. 

Figure 2(a) shows the spectra in the stationary limit as given by relation (20). 
In order to make the elastic component visible in this graph, the delta function 
has been convolved with a Gaussian with a l /e half-width r of +/I, a tenth of the 

E = 100 
r= 0.20  

do- 2 0/3 WO 
Frequency of scattered light 

E = I O 0  
? = L O  
~ = 3 0  

Figure 2. (a) Emission spectra in the stationary limit for various values of the detuning 
x .  The observation region is of infinite length. The delta function of the elastic component 
is convolved with a Gaussian with a l/e half-width r of ij?. (b)  Emission spectra for 
various values of the detuning x in the case where the observation region corresponds 
to T = 30 lifetimes. 
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natural linewidth. The intensity in the elastic component is easily shown to be propor- 
tional to i(a-(t = x))I2, which is given by 

This implies that the elastic component will be maximum at CA = 0 for d J2p, 
and has maxima at CA = + ( : I E ~ ~  - pZ))’j2 for [ E /  3 J?p. For the parameters of figure 
2(a), this maximum occurs at x = 7p. 

It is realistic to assume that each atom in the beam is observed for only a finite 
amount of time, so in figure 2(b) the corresponding spectra from an observation 
region 30 lifetimes long are shown. The parameter Tl has been chosen to be very 
large, which means that the atoms have been in the interaction region for many 
lifetimes before they enter the observation region. This ensures that no effects remain 
which are due to the turn-on of the field. One notices that the sinc oscillations 
near the elastic peak are small but still visible for non-resonant fields. More 
importantly, the width of the elastic component is still significant, since the 
half-width at  half maximum is about 1.77n/z5, or 0.186p in the particular case of 
figure 2(b). 

The spectrum for the situation of a strong resonant field with no detuning has 
been widely discussed in the stationary limit (z --+ CO). In figures 3(a) and (b), we 
show the evolution of this spectrum as a function of the time the atoms spend in 
the field (see also Herrmann et al 1973, Carmichael and Walls 1976). The slit is 
adjusted so that the light is collected from atoms which have been in the field for 
times ranging from 0 up to 7. This parameter z is plotted on the axis going ‘into’ 
the page, in units of the natural atomic lifetime, 1/(2p). The atoms are assumed to 
be in the ground state when they enter the interaction region ( T =  0). From an 
initially broad featureless spectrum, the central peak and the sidebands emerge rather 
quickly. When E = 4/3, as in figure 3(a), they take shape after 10 lifetimes, whereas 
for a stronger field as in figure 3(b) where E = lop, the sidebands are already visible 
at z = 2. As the observation region is lengthened, all three components get taller 
and narrower. Then for about z = 15 and z = 30 respectively, the elastic component 
has narrowed enough to be distinguishable from the broader peak of the central 
inelastic component. Here, the delta function which is present in the stationary limit 
of both figures 3(a) and (b )  has been convolved with a Gaussian with a l /e half-width 
z of &p. Note that the delta function is a smaller fraction of the total spectrum 
for the stronger field. 

In the limit of a very strong, exactly resonant field (lei >> p), it is possible to 
simplify the expression (18) for the spectrum and illustrate explicitly the manner 
in which the sidebands and the inelastic central peak narrow with increasing z. In 
this limit, the eigenvalues become 

(22) s1 = 0, s2 = - P ,  s3 = sq* = - 3 p  + iIE1. 

For an atom initially in the ground state, the coefficients simplify to 

(23) 4C2l = C31 = C41 - C 2 3  = -C24 = - C 3 3  = -C44 = 8 1 + c(fl/I~I) 
with all of the other coefficients of higher order. For z greater than a few lifetimes, 



28 B Renaud, R M Whit ley  and C R Stroud J r  

( 0  
,,-8P WO W , + W  

Frequency of scattered iight 

/ I b ’  

c =  lop 

r =  o , i p  I 

x 
v) 

C 

w0-13/3 
Frequency of scattered light 

Figure 3. Emission spectra for various observation slit widths T In the case of (a) a 
moderately strong on-resonance field and (b) a strong on-resonance field 
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Figure 3. Emission spectra for various observation slit widths T in the case of (a) a 
moderately strong on-resonance field and (b) a strong on-resonance field. 

one finds that 

1 4 P’ - A2 
G[b’ + A2 j P T  - b2 + A’) 

2 9P2/4 - (A + I€”’) 
9P2/4 + (A + 161)’ (? ‘ - 9P2/4+ (A + 161)’ + 
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Two remarks must be made about this expression. Firstly, the elastic component 
is of higher order than the other three peaks and does not appear here. This means 
the integrated intensity in the elastic component is much less than in the inelastic 
ones, and it becomes visible in the spectrum as z -+ cc only because it is so narrow. 
Secondly, the Tl dependence no longer appears explicitly, but is contained in the 
higher order terms. Indeed, one should compare (24) to the solutions (4.22) through 
(4.25) found by Carmichael and Walls (1976) for an atom in a strong field, observed 
for a finite amount of time after it has reached the steady state. Neglecting their 
exponentially decaying terms (since z is assumed greater than a few lifetimes), one 
finds their results identical to (24). It is easy to see that there is a difference in 
the height of a peak at finite z and in the stationary limit, and that this difference 
goes to zero like l/z. Similarly, equation (24) makes it clear that the narrowing 
visible in the sequence of spectra in figure 3(b) is due to the increase in the length 
of the observation region. Therefore, even though the spectra in figure 3(b) are for 
atoms which have been in the interaction region for only a short time, the narrowing 
of the peaks should not be attributed to the recent turn-on of the interaction because 
it is independent of Tl. 

To illustrate this point better, we have considered the spectra for a situation 
identical to that of figure 3(b), with the exception that the observation region was 
moved from [0, z] to [40,40+z]. When they enter the observation region, the atoms 
have already been interacting with the field for so long (40 lifetimes) that no effects 
remain from the time when they entered the field. These spectra have not been repro- 
duced here because they are virtually indistinguishable from the corresponding spectra 
for TI = 0 and the same z. Thus we conclude that the noticeable features in the 
sequence of spectra in figure 3(b) are not associated with the interaction time, but 
rather are a consequence of a finite observation region. 

To see effects which are related to the turn-on of the interaction rather than 
caused by the limited observation interval, it is better to detune the applied field 
somewhat from resonance. In figure 4 we again show a sequence of spectra corre- 
sponding to the observation regions [O,z]. The atoms are assumed to be in the 
ground state when they enter the interaction region. The field parameters are E = 7p,  
CI = - 7 p .  For this field, the relative minima and maxima of the spectra form notice- 
able valleys and ridges. These follow curves which are rectangular hyperbolae in 
the AT plane, and they are especially pronounced on the right-hand side of the central 
peak. Although in the stationary limit the spectra are always symmetric about the 
incident field frequency, even when the detuning is non-zero, in the present case 
the lineshapes are noticeably asymmetric. These asymmetries consist of: (i) an 
enhanced sideband on the atomic resonance frequency side of the central peak; (ii) 
more pronounced oscillations between the central peak and the enhanced sideband 
than on the opposite side of the central peak; (iii) a slight displacement in the location 
of the central maximum from the applied field frequency toward the atomic frequency. 

We must again consider whether these features are, in fact, due to the start of 
the atom-field interaction, and not to the finite observation region. This question 
can be most directly answered by fixing the length of the observation region and 
investigating the spectra for various values of TI (i.e. as the slit of fixed width is 
moved down the atomic beam). Such spectra are shown in figures 5(a) and (b). The 
field parameters for both figures are the same as for figure 4. In figure 5(a) the 
slit width corresponds to 4 lifetimes, and in figure 5(b) it is twice as wide, that 
is, 8 lifetimes. One can see that the larger value of (i) gives narrower peaks and 
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Figure 4. Emission spectra for various widths T of a slit positioned at the front of the 
interaction region. The field is strong and tuned off-resonance. The spectra show asymmet- 
ric features due to the sudden turn-on of the interaction. 

(ii) puts a larger number of oscillations in the spectrum. As the front edge of the 
observation region is moved back from the point where the atoms enter the laser 
beam, these two effects are unchanged. In contrast, the asymmetries discussed above, 
i.e. the enhanced sideband and oscillations on the atomic frequency side of the central 
peak, are easily seen to fade away as TI becomes larger. The shift of the central 
maximum also decreases as the slit is moved along the atomic beam away from 
the front of the interaction region. However. since in this particular case of figure 
5(a) this shift is only about 48 even for TI = 0, this effect is not visible on these 
graphs. The longer the atoms have been in the interaction region, the less significant 
these asymmetries in the lineshape become. Thus they are properly referred to as 
turn-on features attributable to the sudden turn-on of the interaction. 

It is important to note that these transient effects disappear much more slowly 
from the spectra in figure 4 than in figure 5. For TI about 4 lifetimes in figure 5 ,  
the spectra have already approached very closely their asymptotic (T ,  going to 
infinity) symmetric shape. The spectra in figure 4, however, still show pronounced 
asymmetries at t = 4 lifetimes. In fact, for t = 20 the ratio of the sidebands is 1.34:1, 
significantly greater than the one-to-one ratio found in the stationary limit. These 
two types of behaviour are easily understood by reference to expression (18) for 
ID(i, TI, T, + t, oo + A). Only those terms which are a function of TI can be respon- 
sible for the asymmetric spectral features which we have called turn-on effects. 
Obviously, those are just the terms in the double sum, 

) + cc].  - 1 exp(s,z) - 1 - 
SIT2 
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Figure 5. Emission spectra for a slit (a )  4 lifetimes wide and (b)  8 lifetimes wide as 
a function of position along the beam. 

Recall that Re(s,) < - p  for m = 2, 3, 4. Thus as TI increases in figures 5(a) and 
(b), the magnitude of the transient effects decreases exponentially. The behaviour 
is much different when TI is fixed and z is increased, as in figure 4. In this case 
the function in the large round brackets is purely oscillatory for 1 = 1 (there is no 
damping in T ) ,  and so the contributions of these terms to the spectrum are inversely 
proportional to z. This is much slower than an exponential decrease, and, therefore, 
these transient effects can be significant even after many natural lifetimes. 
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The specific turn-on effects which we have just described are strongly dependent 
upon the initial state of the atoms as they enter the laser field. Although we have 
considered each atom to be in its ground state, it was not necessary to do so. Equa- 
tions (14) and (18) allow one to consider any possible initial density matrix for the 
atoms, and the particular choice can make a qualitative difference in the transient 
features of the spectrum. For example, for atoms initially in the excited state, the 
pronounced sideband on the atomic frequency side would be several times larger, 
resulting in an even more asymmetric lineshape. (It is reassuring to note that as 
~ - 0 .  this sideband becomes just the Lorentzian of a spontaneously decaying atom, 
located at the atomic frequency. as it should.) If one chooses for the initial state 
the proper coherent superposition of ground and excited states, for the same values 
of the parameters as in figures 4 and 5,  one can find the opposite sideband to be 
initially more pronounced. Even when the applied field is exactly resonant, similar 
initial states can be found which lead to asymmetrical turn-on features. A consider- 
ation of the dressed states of a driven two-level atom (Stroud 1971) can provide 
one with an intuitive understanding of the origin of these transient effects. Because 
all these asymmetrical turn-on features basically are due to a non-equilibrium density 
matrix, their significance in the spectra as a function of TI and T is the same as 
discussed above and illustrated in figures 4 and 5. This is rigorously confirmed by 
reference to expression (25). since different initial conditions merely change the values 
of the coefficients C,, without affecting its functional dependence on TI and z. 

5. The Lorentz model approximation 

The asymmetries we have discussed are not necessarily quantum-mechanical features. 
For example. consider the two limits, first for very low field 

IEl <<< P (26) 

1x1 >>> I € / .  (27) 

and second for very large detuning 

In either limit the atom is not appreciably excited ( ( c J ~ ~ ( ~ ) )  << 1) and one would, 
therefore. expect the Lorentz model of a classical damped harmonic oscillator driven 
by a classical field to be able to describe the atom. This identification with the 
Lorentz model has already been made in the stationary limit (see e.g. Heitler 1954), 
where the emission spectrum consists solely of the delta function at the incident 
field frequency. One can similarly derive a power spectrum for the Lorentz atom 
for short times from the proportionality relation 

L 

where ji,(o) is the truncated Fourier transform (in the sense of equations (4a) 
and 4(h)) of the classical dipole moment p( T )  of the oscillator. The result is 

2(1 - COS AT) 1 + e-2pT  - 2eCpr cos [(A + x)z ]  

[(A + a)2 + B 2 ] T  
+ -  [ I(0A 7 )  K 

(29) 

+ cc)l exp [ - (ix + P ) T ]  + 1 - exp (iAz) - exp { - [i(A + x) + P]z} 
iAz[i(A +r)+ p] 
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where all the variables have already been defined previously (note that TI = 0). 
The initial conditions have been chosen to be 

p(0)  = j (0 )  = 0. (30) 

When z is much larger than a couple of lifetimes, the decaying terms in (29) 
can be approximated by zero; then 

( 2 (  1 AT) 1 
$(A + x)’ + p’ ]  I(w, z) - cc + 

r>>(l P )  

(1 - cos Az)(A + a) + ,8 sin A T  
Az[(A + x)’ + p2]  - 2  

The first term is the elastic component which becomes a delta function for z+ CO, 

and leads to the stationary spectrum. The second term is a Lorentzian at the atomic 
frequency which decreases as 117. The third term consists of the interferences between 
‘photons’ emitted at the atomic and field frequencies; it also vanishes in l /z  and 
cannot be large in the case when (27) is satisfied. Expressions identical to (29) and 
(31) can also be derived from equations (14) and (18) in the two limits and with 
the proper initial conditions mentioned above. Thus the identification with the 
Lorentz model has been extended to the non-stationary regime. 

Equations (29) and (31) are instructive because they show how some of the tran- 
sient features enter the spectrum in a simple explicit way. As an example, in figure 
6 a sequence of emission spectra for the observation region [0, z] and field parameters 
x = -2Op and E = 2p are shown. Note the expected asymmetry with respect to the 
applied field frequency, particularly the pronounced sideband and oscillations on 
the side nearer the atomic frequency. For larger z the elastic component approaches 
its delta-function limit and the other features die away in l j z .  All this is in agreement 
with relations (29) and (31). 

Figure 6. The Lorentz model limit as approached by tuning the field far from resonance, 
The observation is made on the front of the interaction region 

A M P ( I 3 )  10 1 < 
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6. Remarks 

In this paper, we have shown that the quantity which is measured in a resonance 
fluorescence spectrum experiment is the total intensity, ID(k TI, T, + t; wo + A), as 
given by relation (18). It should be noted that this quantity is not proportional 
to the expression d((n,,(t)))/dt which is the rate of change of the number of photons 
in the mode k3. due to the emission of an atom from time t = 0 up to time t. 
This last expression has been considered in previous treatments (Mollow 1969, Agar- 
wal 1974, Hassan and Bullough 1975) to yield the spectrum in the stationary limit 
(t --+ x). However, it would be erroneous to carry over this expression into the non- 
stationary regime. Indeed, this quantity becomes negative for some frequencies at 
small times: and has other properties quite different from those seen in experimentally 
measured spectra. This has already been pointed out by Herrmann et a1 (1973). 

The emission spectrum can be properly related to the number of photons in 
the field mode ki, at time t z  due to the radiation of an atom from t ,  to t 2 ,  

( n k L ( t 2 .  t l ) >  = Igki.1 21y dt”1‘; dt’ ( ~ - ( t ‘ ) a - ( t ” ) )  exp [-  iw,(t’ - t”)] 

t ” 

= /gki .J2 r2  dt” [ dt‘ ( o + ( t ’ )  a - ( t ” ) )  exp [ - ico,(t’ - t”)] + cc. (32) 
J r ,  Jr ,  

This is a generalization of the definition of (nkj,(t)) derived in RWS I. Comparing 
the above expression with equation ( l l ) ,  we see that it is related to the measured 
spectrum in the following way: 

It is the number of photons emitted in the observation interval z which is the quantity 
related to the experimentally measured spectrum, not d ((nki(t)))/dt. If, however, one 
goes to the stationary limit. where the length t of the observation region goes to 
infinity, one finds that the number of photons scattered into the mode k/Z grows 
linearly with t. In this limit, 

(34) 

For this reason. some previous calculations which defined the spectrum as the deriva- 
tive of the photon number obtained correct results for the stationary limit. 

From expression (32) it can be seen that ( n k j ( ~ 2 ,  t,)) is not a simple integral 
over the interval [t l ,  t 2 ]  of an integrand which is independent of the end points. 
Thus the number of photons scattered in the interval [ t l . t3 ]  is not just the sum 
of the photons scattered in the intervals [ t l ,  t2] and [ t z ,  t3]. Rather, we find 

+ (igkAJ21i,; d t ’ l :  dt”(a+(t’)  a-(t”)) exp [I- iwk(L’ - t”)] + cc . (35) 1 
The additional term represents an interference between the photons emitted earlier 
with those emitted later, in the same way that light coming from two regions of 
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a slit can interfere to give a different angular distribution of the light than would 
be found from summing the diffraction patterns due to each separate region. 
Although ( n k x ( t 2 ,  t l ) )  is a positive definite quantity, its derivative is not. 

It is interesting to note that though our calculations are fully quantum mechanical, 
some of the most surprising results can be explained in classical terms. For  instance, 
the asymmetries in the spectrum related to the turn-on were shown to be derivable 
from the Lorentz model. Also, the ringing in the elastic component due to the finite 
observation region is just what one expects classically from the Fourier transform 
of a truncated sinusoid. 

In conclusion, we have completely solved the two-level resonance fluorescence 
problem using the Heisenberg picture QED, and have derived the proper expression 
for the emission spectrum which would be measured in a realistic experiment. Our 
derivation has avoided any ad hoc assumptions concerning what quantity related 
to the quantized field is measured in such an experiment. This spectrum has been 
obtained not only as a function of the atomic and field parameters, but also as 
a function of two variables which are available to the experimenter: the slit position 
TI and observation interval z. Thus it correctly incorporates the possible effects of 
(i) a finite observation interval, (ii) observations made close to the point where the 
interaction was turned on, and (iii) arbitrary initial conditions for the atom at the 
start. All of the solutions have been obtained analytically, and a computer has been 
used only to generate graphical illustration of particular cases. 
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