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ABSTRACT
This paper presents a compact Nonlinear model Order Reduction

Method (NORM) that is applicable for time-invariant and time-vary-
ing weakly nonlinear systems. NORM is suitable for reducing a class
of weakly nonlinear systems that can be well characterized by low
order Volterra functional series. Unlike existing projection based re-
duction methods [6]-[8], NORM begins with the general matrix-
form Volterra nonlinear transfer functions to derive a set of minimum
Krylov subspaces for order reduction. Direct moment matching of
the nonlinear transfer functions by projection of the original system
onto this set of minimum Krylov subspaces leads to a significant re-
duction of model size. As we will demonstrate as part of our compar-
ison with existing methods, the efficacy of model order for weakly
nonlinear systems is determined by the extend to which models can
be reduced. Our results further indicate that a multiple-point version
of NORM can substantially reduce the model size and approach the
ultimate model compactness that is achievable for nonlinear system
reduction. We demonstrate the practical utility of NORM for macro-
modeling weakly nonlinear RF circuits with time-varying behavior.
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1. INTRODUCTION
Over the past decade a large body of work on model order reduc-

tion of IC interconnect has emerged from the design automation
community [1]-[5]. Compared to the success of model order reduc-
tion for linear time invariant (LTI) RLC networks, the problem of
reducing nonlinear systems has been less understood and explored
[6]-[8][13]. There are numerous applications, however, where
abstracting weakly nonlinear effects into a compact macromodel is
important. For instance, in RF communication IC design there is a
growing interest in modeling circuit level nonlinearities as they
impact system level distortion analyses. While these circuit blocks
often exhibit only weak nonlinearities, the design specifications for
linearity such as IIP3 and 1dB compression point are usually
extremely important and very stringent. As depicted in Fig. 1, build-
ing compact blackbox type macromodels that capture accurately
nonlinear input-output relationships not only facilitates efficient
simulations of the circuit component being modeled, but also facili-
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tates entire-system verification and design trade-off analyses that
would otherwise be impossible. 

Trajectory piecewise-linear approximation has been recently
proposed for nonlinear system reduction, but it is limited by a sys-
tem training input signal dependency [13]. In a different direction,
Volterra functional series (e.g. [9][10]) have been used in symbolic
block-diagram type system-level model generation [14], and for
projection based nonlinear model order reduction [6]-[8]. One
advantage of using Volterra series is that it provides a canonical
characterization of weakly nonlinear systems in the form of Volt-
erra kernels or nonlinear transfer functions. In particular, the
method proposed in [6][8] makes automated nonlinear system
reduction possible by extending the popular projection based tech-
niques used for interconnects, such as PVL[2], Arnoldi method[3]
and PRIMA[4]. 

Modeling a weakly nonlinear system as a set of linear networks
via Volterra theory facilitates the direct application of the estab-
lished projection based order reduction techniques. However, such
an approach leaves several important issues unaddressed: How
does the quality of each linear reduction problem impact the accu-
racy of the overall nonlinear model? What is the best strategy in
carrying out each linear reduction for achieving good nonlinear
model accuracy? Another interesting approach uses the bilinear
form of a nonlinear system allowing an elegantly derived projec-
tion based moment-matching reduction scheme [7]. The critical
issue associated with this approach is the explosion of state vari-
ables in a bilinear form; e.g., the bilinear form of a system with
cubic nonlinearities has O(N3) state variables, where N is the num-
ber of state variables in the original state-equations. 

In this paper, we further explore the projection based reduction
framework laid out in [6]-[8]. As shown in the paper, model com-
pactness is a particularly critical factor for effective reduction
since it will become increasingly more costly to form the reduced
model explicitly as the model size increases. Therefore, we pro-
pose an approach that begins with the most general matrix-form
nonlinear transfer functions needed for model order reduction, and
derive the expressions for nonlinear transfer function moments.
This development leads to a deeper understanding on the interac-
tion of Krylov subspace projection and the moment matching
under nonlinear context, and thereby allows us to address some of
the open questions created by the work in [6][8]. Most importantly,
from this development we propose a new reduction scheme,
NORM, which dramatically reduces the size of reduced order
models and copes with the model growth problem for nonlinear

Fig. 1. Model order reduction of nonlinear analog circuits
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system representation by using a set of minimum Krylov sub-
spaces. We demonstrate the excellent accuracy of reduced-order
models generated via NORM with orders of magnitude runtime
speedup in harmonic balance simulations for several circuit exam-
ples.

2. EXISTING PROJECTION BASED APPROACHES
Under certain conditions, a weakly nonlinear system can be ana-

lyzed using Volterra functional series [9][10] in which the response
x(t) is expressed as a sum of responses at different orders:

, where, xn is the n-th order response. As an exten-

sion to the use of impulse response function in a LTI system, n-th
order response can be related to Volterra kernel of order n

 by

. (1)

The Laplace transform of the n-th order Volterra kernels
 is called as nonlinear transfer function of order n. No-

tice that Volterra kernels and nonlinear transfer functions are sys-
tem properties independent of the system inputs, and capable of
fully describing the weakly nonlinear behavior of the system. 

For simplicity, consider the expanded state-equation of a weakly
nonlinear single-input multiple-output (SIMO) system at its bias
point (keeping only small-signal terms)

, (2)

where Kronecker tensor products of state variable vector  are
used. Applying Volterra functional analysis on (2), the first order
through the third order nonlinear responses are recursively given by

, (3)

, (4)

. (5)
The key idea in [6][8] is that (3)-(5) represent a set of LTI systems
which can be in turn reduced by applying any existing projection
methods for LTI systems [2]-[4]. The overall reduced nonlinear sys-
tem can be expressed by a smaller set of nonlinear equations using
the variable embedding , where  is an orthonormal basis
of , ,  and  are the projections used for reduc-
ing (3)-(5), respectively. For instance, the third order matrix can be
reduced to a matrix of a smaller dimension as

. However, the reduced third order matrix is
usually dense and has  entries, where q is the number of
states of the reduced model. Hence, to void forming large reduced
high order matrices, controlling the dimension of reduced model is
crucial. Essentially, this method models a nonlinear system, possi-
bly with small number of inputs, as several linear systems with
many more inputs. Intuitively, this increase of degree of freedom
leads to unnecessarily large reduced models. To asses the quality of
this reduction approach and suggest strategies for optimizing model
compactness, a careful moment analysis is required as shown in the
following sections. 

3. GENERAL MATRIX-FORM VOLTERRA 
NONLINEAR TRANSFER FUNCTIONS

Without loss of generality consider the Modified Nodal Analysis
formulation of a SIMO weakly nonlinear system with  unknowns

, (6)

where  and  are the vectors of circuit unknowns and outputs, 
is the input,  and  are functions representing resistive and

dynamic nonlinearities,  and  are the input and output matrices,
respectively. First consider a small perturbation of (6) around a DC
operating point  (this can be generalized to a perturbation along
a time-varying operating point). Expand  and  at the bias
point and consider only small-signal quantities, we have

, (7)

where  are the ith 

order conductance and capacitance matrices respectively. Before
proceeding we first introduce the notations used throughout this pa-
per. For matrices in (7) we define

, (8)

and for an arbitrary matrix F define

(9)

Also define the Krylov subspace corresponding to matrix
 and vector (matrix)  as the space spanned by vectors

.
For the system in (7), the first order transfer function for state-

variables  is simply the transfer function of the linearized system

, or . (10)
Defining , the second order transfer function is given by

, (11)

where .

Similarly define  as the arithmetic av-
erage of terms of all possible permutations of frequency variables
in the Kronecker product, and define , then the third
order nonlinear transfer function is given by the following equa-
tions

(12)

(13)

Without loss of generality, expand (10) at the origin as a Mclaurin
series

, (14)

where  is the kth order moment of the first order trans-
fer function. Expand at the origin 

, (15)

where  is a kth order moment for the second order transfer
function. To derive the expressions for the moments of ,
substitute (14) into (11) and expand w.r.t. 

(16)

Comparing (15) with (16), we can express the moments of
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 in (18) at the bottom of the page. Similarly, the third or-
der transfer function can be expanded at the origin as

, (19)

where  is a kth order moment. Due to the limit of space, we
omit the expression of . Also note that in (11) and (12),
symmetrized nonlinear transfer functions (symmetric w.r.t frequen-
cy variable permutations) are used. This reduces the number of mo-
ments that need to be considered for  and  by approximately
a factor of 2 and 6 respectively when expanding them at a point with
equal coordinates such as the origin.

4. NORM
In this section we outline our proposed algorithm, NORM, but

limit our discussion to SIMO time-invariant weakly nonlinear sys-
tems. We consider problems that can be well modeled by up to
third order nonlinear transfer functions. Extensions to more gen-
eral scenarios such as time-varying systems, can be derived in a
very similar fashion. To assess the model order reduction quality
from a moment matching perspective, we begin with the following
definition:
Definition 1 A nonlinear reduced order model is a kth order model
in  (  or ) if and only if up to kth order
moments , , ( ,  or ,

) of the first (second or third) order
transfer function of the original system defined in (14) ((15) or
(19)) are preserved in the reduced model.

According to definition 1, a 2nd order reduced model in  pre-
serves moments of  corresponding to the coefficients of terms

( ), , , ,  and  in the expansion.

4.1 Single-Point Expansion
To derive a set of minimum Krylov subspaces for the most com-

pact order reduction, understanding the interaction between the
moments of nonlinear transfer functions at different orders is
extremely important. For example, for the moment matching of

, this interaction is manifested in (16). A particular term
corresponding to  in the expansion of ,  where  are

integers, is a consequence of the power series expansion of  in
(14) and the expansion of (11) w.r.t. . As such, the final
expression for  is in the form as shown in (18). The expres-
sion for  is derived similarly in a more complex form,
which we omit here due to the space limitation. If we were to use a
projection for order reduction, only Krylov subspaces containing
the directions of moments to be matched are required. A close
inspection of (18) reveals that the Krylov subspaces of matrix A
given in Table 1 are the desired Krylov subspaces of the minimum
total dimension for constructing a kth order model in . In the
table, both the starting vector and the dimension of each subspace
are shown. For the last row, , ,

 and . We denote the
union of Krylov subspaces in Table 1 as ,
where  in the parenthesis indicates the order of  moments up
to which contained in the subspaces. In an analogous and some-
what more involved way, a set of minimum Krylov subspaces

 for moment-matching of  up to kth order can be also
derived. Using these subspaces we can rigorously prove the fol-
lowing: 
Theorem 1 If , where

, is an orthonormal basis for the union of subspaces
,  and  then for (7) the reduced order

model specified by the following system matrices

, , , 

, ,

, (20)

is a th order model in , a th order model in  and a th
order model in .

In theorem 1,  refers to the QR procedure used for oth-
onormalizing the input vectors. We omit the proof of the theorem 1
and the derivation of subspaces , but outline the complete
single point version of NORM algorithm (expanded at the origin)
in Fig. 2. For step 3.1, 

(21)

Note that in Fig. 2, to compute any Kronecker product term, one
can exploit the original problem sparsity such that the computation
takes only a linear time in the problem size. The requirement

 is due to the dependence of high order nonlinear trans-
fer functions on transfer functions of lower orders. Provided this
condition is satisfied, the order of moment matching for each non-
linear transfer function can be flexibly chosen to fit specific needs.
For each of these choices, a reduced order model of minimum size
is produced as described in the following section. 

4.2 Size of Reduced Order Models
Without causing ambiguity, we define the size of a state-equa-

tion model in terms of its number of states. Consider the size of the
SIMO based reduced order models generated using the method of
[6][8] under definition 1. It can be shown that if the linear net-
works described by (3)-(5) are each reduced to a system preserving
up to ,  and th order moments of the original system
respectively, then the overall reduced nonlinear model is a th
order model in , a th order model in , and a th order
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model in , where , . For
instance, as can be seen from (11)(16), the th order moments of

 depend on moments of  with an order equal or less than .
Therefore, the lesser of  and  determines the order of moment
matching for . It follows that for this method the most
compact th order model in  with a size in  is achieved
by choosing . In other words, choosing 
does not necessarily increase the number of moments of 
matched in the reduced model. On the other hand, if one would
like to have  to increase the accuracy of , the best way is
to only make use of the first  moment directions of  for
reducing , while the remaining  moments are included in the
projection only for matching  itself. Similar strategies apply to
reducing (5) for the moment matching of  such as the optimal
way to generate a th order model in  is to choose

 with a resulting model size of . Note that
these strategies are also employed in the single point NORM algo-
rithm. To compare with the above “optimal” model sizes for the
method of [6][8], using single-point NORM the sizes of a kth order
model in  and  are in  and , respectively. The
exact model sizes for several values of  is shown in the following
section.

4.3 Multi-Point Expansions
To target a system’s particular input frequency band, particularly

for RF circuits, it might be desirable to expand both linear and non-
linear transfer functions at points other than the origin. It is crucial

to note that under nonlinear context, a single expansion point may
inherit multiple matrix factorizations due to the nonlinear frequen-
cy mixing effects. Suppose that the inband third order intermodula-
tion of a nonlinear system around center frequency  is important
to model. To build the most compact model, one would opt to ex-
pand  at , but to correctly perform moment match-
ing for  and , the expansion points should be 
and  for , and  for , re-
spectively. Here the use of two expansion points for  takes care
of matching second order mixing effects in terms of both sum and
difference frequencies around the center frequency, and also en-
sures the moment matching of the third order in-band intermodula-
tions. This choice of expansion points requires the system matrix
factorized at DC and  but not  in (11) or (4). Therefore,
if every linear system in (3)-(5) is reduced by expanding at

 using the method of [6][8], then there is no guarantee for
matching any moments of  and .

In additional to the benefit of using specific expansion point, a
multiple-point projection where several expansion points are used
simultaneously has a unique efficiency advantage in terms of model
compactness over the single-point method, i.e., adopting multiple-
point methods can lead to significantly smaller reduced models. Al-
though it is not surprising that the size of the nonlinear reduced or-
der model grows faster than the order of moment matching, it is
very revealing to recognize that the numbers of up to kth order mo-
ments of  and  are  and  respectively, i.e.,
the total dimension of the subspaces used in the single-point expan-
sion version of NORM grows even faster than the number of mo-
ments matched1. However, to preserve the value of a nonlinear
transfer function at a specific point (a zeroth-order moment), for ex-
ample, only one vector needs to be included in the projection as-
suming the dependency between transfer functions of different
orders is resolved properly, i.e., the reduced model size is the same
as the number of moments matched. 

This suggests that a multiple-point method based on low-order
moment-matching at several expansion points can trade off compu-
tational cost with model compactness. The added computational
cost due to more matrix factorizations in the multiple-point method
might be alleviated by exploiting the idea of recycled Krylov-sub-
space vectors for time-varying systems [11][12]. It is also possible
to use constant Jacobian iterations for solving the resulting linear
problems for narrow band systems, such as those corresponding to
certain RF applications. The LU factorization at one expansion
point might be reused at another point not far apart as an approxi-
mated Jacobian in the iteration. Finally, for the state-equation form
of (7), we compare the worst-case reduced model sizes generated
by three methods in Table 2, where each method is used to match
the moments of  or &  up to kth order. In the table, the “op-
timal” strategies outlined in previous section are used for the meth-
od of [6][8], and NORM(mp) is the “equivalent” zeroth-order
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Fig. 2. Single-Point NORM
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k

1. Using the bilinear form can produce models with a size propor-
tional to number of moments matched, however, this may be offset
by the inflated problem size and the accuracy degradation for
reducing a significantly larger system.

Order K 3 4 5 6 7 8 9
[6][8]: H2 116 230 402 644 968 1386 1910

NORM(sp):H2 24 40 62 91 128 174 230
NORM(mp):H2 16 23 30 39 48 59 70

[6][8]: H2&3 3,700 11,480 28,914 63,070 123,848 224,460 381,910
NORM(sp):H2&3 66 118 194 301 446 636 880

NORM(mp):H2&3 37 56 78 108 141 182 229

Table 2. Comparison on the Reduced Model Sizes

fo

H1 s( ) s j2πf0=
H2 H3 j2πf0 j2πf0,( )

j2πf0 j2πf0–,( ) H2 j2πf0 j2πf0 j2πf0–,,( ) H3
H2

j4πf0 j2πf0

s j2πf0=
H2 H3

H2 H3 k k 1+( ) 2⁄ O k3( )

H2 H2 H3
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multiple-point method preserving the same total number of mo-
ments. As clearly shown, using NORM the model compactness has
been significantly improved.

5. RESULTS
We compared the method of [6][8], single-point NORM

(NORM-sp) and zeroth-order multiple-point NORM (NORM-mp)
on two examples. The origin was chosen as the expansion point for
the first two methods. Note that the optimal strategies presented in
Section 4.2  were applied to the methods in [6][8], otherwise, sig-
nificantly larger models resulted with little accuracy improvement.
For all the three methods, SVD was used in a post-processing step
to deflate the Krylov subspaces.

5.1 A Double-balanced Mixer

A standard double-balanced mixer, as shown in Fig. 3, is mod-
eled as a time-varying weakly nonlinear system with respect to the
RF input. Circuit nonlinearities are modeled using third order
polynomials around the time-varying operating point due to the
large 830MHz LO. The full model has 2403 time-sampled circuit
unknowns and characterized by time-varying Volterra series. The
60 state model generated by the method of [6][8] matches 4
moments of , 2 moments of both  and . NORM-sp gener-
ates a model with 19 states matching 4 moments for all of , 
and . NORM-mp matches 4 moments of  and , 8
moments of  resulting a model size of 14. As can be seen,
smaller models generated by NORM can actually match more

transfer function moments due to its proper selection of Krylov
subspace vectors. Since the double-balanced mixer is fully sym-
metric, the second order transfer function  is ideally zero
(except for numerical noise). To see the third order intermodula-
tion translated by one LO frequency, the corresponding harmonic
of the third order time-varying nonlinear transfer function

 where ,
 is plotted in Fig. 4(a). The maximum relative

modeling errors are 27%, 13% and 4.5% respectively for the
method of [6][8], NORM-sp, and NORM-mp. These models were
also simulated for two-tone third order intermodulation tests using
a harmonic-balance simulator as plotted in Fig. 5. We first fixed
the RF input amplitude for both tones at 40mv while varying the
frequency of one tone from 100MHz to 2GHz (the second tone
was separated from the first one by 800KHz). Then, we fixed two
tone frequencies at 600MHz and 600.8MHz respectively but var-
ied the amplitude of the two tones from 20mv to 70mv. As can be
seen from Fig. 5, the smallest model generated by NORM-mp is
also the most accurate for both cases. The 60-state model gener-
ated by the method of [6][8] incurs apparent error for the first test.
Also note that the amount of IM3 from the simulation is predicted
accurately by the corresponding third order transfer functions.

Due to the resulting large third order matrices, the 60-state model
of the method of [6][8] brought less than 5x runtime speedup over
the full model for various input frequencies and amplitudes. How-
ever, for the much smaller models produced by NORM-sp and
NORM-mp, significant runtime speedups of 350~380x and
730~840x were achieved, respectively.

5.2 A 2.4GHz Subharmonic Direct-conversion Mixer
A 2.4GHz subharmonic direct-conversion mixer used in WCD-

MA applications is shown in Fig. 6. It employs six phases of a LO
signal at 800MHz to generate an equivalent LO at 2.4GHz. For di-
rect-conversion mixers, second-order nonlinear effects are impor-
tant, which exist when the perfect circuit symmetry is lost in a
balanced architecture. For this example, we introduced about 2%
transistor width mismatch in the circuit and applied the three meth-
ods to reduce the original time-varying system with 4130 time-sam-
pled circuit unknowns, where each circuit nonlinearity is modeled

+ Vout -

Vlo

Vrf

M1 M2 M3 M4

M5 M6

Vdd

Fig. 3. A double-balanced mixer
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using a time-varying third order polynomial. The DC component of
the time-varying  specifying the mixing of two RF tones directly
to the baseband and the corresponding relative modeling errors of
the three methods are plotted in Fig. 7, where two RF frequencies
vary from -2.6GHz to -2.2GHz, and from 2.2GHz to 2.6GHz re-
spectively. The model produced by the method of [6][8] has 122
states and matches 4 moments of , 6 moments of , and 2 mo-
ments of  with a maximum relative error about 700% or 16.9dB.
NORM-sp produces a model with 34 states while matching 5 mo-
ments of , 9 moments of , and 2 moments of . The maxi-
mum relative error for this model is about 14%. For both methods,
the origin is used as the expansion point. The better accuracy ob-
tained in the smaller model of NORM-sp can be explained by the
fact that more moments are matched in the reduced model. We an-
ticipate that both methods will generate more accurate models when
the correct procedure is employed to expand transfer functions at a
point close to the center frequency as outlined in Section 4.3 . Last-
ly, NORM-mp generates a compact 22-state model with the small-
est maximum relative error of 4% while matching 6 moments of

, 12 moments of  and 4 moments of . 
In a two-tone harmonic balance simulation, we applied two RF

sinusoidal tones around 2.4GHz with 2mv amplitude, explicitly

formed reduced models of NORM-sp and NORM-mp provided a
runtime speedup of 237x and 1200x over the full model, respective-
ly. Due to the large reduced third order system matrices, however,
it becomes inefficient to explicitly form the 122-state model of the
methods of [6][8]. Only the projection matrix was used to reduce
the size of the linear problem solved at each simulation iteration.
Consequently, the corresponding models did not provide a signifi-
cant runtime speedup.

6. CONCLUSIONS
We have demonstrated that the rapid growth of reduced order

models for nonlinear time-varying systems makes model order
reduction much more difficult than for the case of linear time
invariant system order reduction. The proposed nonlinear system
order reduction algorithm, NORM, controls the model size growth
by using a minimum set of Krylov subspace vectors. It was also
shown that the use of multiple-point NORM further reduces the
model size. The use of NORM algorithm allows us to tackle non-
linear reduction problems to which applying existing projection-
based methods becomes ineffective.
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