NoSQL Introduction

CS 377: Database Systems

Recap: Data Never Sleeps

Users MAKE - PASSENGERS = USERS LIKE
TAKE

RIDES POSTS

CARLS @ — TWEETS Nl
~——— USERS VIEW @ USERS UPLOAD ——
VIDEOS y HOURS

OF NEW VIDEO
D
USERS LIKE —

SNAPS ~——— e o PHOTOS

USERS SWIPE —— @ o @

TIMES @ @ IMAGES
@ @ APPLE -

DOWNLOAD

USERS PIN —

SUBSCRIBERS
VIDEQS — RECEVES ' JERS CAST STREAM

VOTES
UNIQUE VISITORS —

HOURS OF VIDEQO -

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2016] - Ho

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

Web 2.0

;_ 3 -‘.1;f-;:‘) 4 = ,
=NeE) = \ A= "’ ”"
& A N\
N Sl i
A0 T8 Ok ¢
//.-'__:-". 1 = e '
\ ;’ :';",./.",5(__'; o S '
2002 2004 2006 2008 2010 2012 PN AL

Big data Connectivity P2P Knowledge

>
— -
>
m—

Concurrency Diversity Cloud-Grid

Lorenzo Alberton Talk, “NoSQL Databases: Why, what and when”
CS 377 [Spring 2016] - Ho

RDBMS Scaling: Add Hardware

_arge servers are

q ghly CO mplex’ e Application Scales Out
oroprietary, and d° & - A° EEE—
disproportionately e

*

expensive

RDBMS Scales Up
Get a bigger, more complex server

Physical limitations of
systems: only so
much power can be
added

CS 377 [Spring 2016] - Ho

http://www.qbit.gr/news.php?n_id=933&screen=3

Motivation for NoSQL

- Users do both updates and reads and scaling
transactions to parallel or distributed DBMS is hard

- Large servers are too expensive with maximum capacity

- Load can increase rapidly with web traffic and
unpredictabllity

- Google and Amazon developed their own alternative
approaches, Biglable and DynamoDB respectively

CS 377 [Spring 2016] - Ho

NoSQL: New Hipster

Regs 110 X
— HBASE Cassandra .
. DR oy amazon
NOT ONLY S friak dynamo

pllag = m “Google
&Ca'ar'sw . blgtab|e
.‘te

,‘.\membose

Sl

CS 377 [Spring 2016] - Ho

NoSQL: New Hipster (2)

Interest over time

<D

http://www.google.com/trends/explore#gq=NoSQL

CS 377 [Spring 2016] - Ho

http://www.google.com/trends/explore#q=NoSQL

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sSQL"

Leverage the NoSQL boom

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosqgl.html

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

What is NoSQL"?

- “Not only SQL”

- Scalable by partitioning (sharding) and replication
- Distributed, fault-tolerant architecture

- Flexible schema — no fixed schema or structure

-+ Not a replacement for RDMBS but compliments it

CS 377 [Spring 2016] - Ho

NoSQL Scaling

Easier, linear approach to
scale

Auto-sharding spreads
data across servers "M — 1

without application 7 T ?
e e e

impact

D | St rl b Uted q e ry Sy p p O r‘t Couchbase Distributed Data Store

Application Scales Out
Just add more commodity web servers

o System Cost
— Application Performance

——

———————————— R ——
Users

NoSQL Database Scales Out
Cost and performance mirrors app tier
— System Cost

— Application Performance

——

w

Users

Better handling of traffic Attox//wwn qbit Gr/news. phi?n, id=938&screens

spikes

CS 377 [Spring 2016] - Ho

http://www.qbit.gr/news.php?n_id=933&screen=3

Recap: ACID

- Atomicity: all or nothing

- Consistency: any transaction takes database from one
consistent state to another

Isolation: execution of one transaction is not impacted by
other transactions executing at the same time

- Durabillity: persistence of the transactions (recover
against system failures)

But, pitfalls of DBMS with regards to latency, partition
tolerance, and high availability!

CS 377 [Spring 2016] - Ho

CAP Theorem

“Of three properties of shared-data systems — data
Consistency, system Availability, and tolerance to network
Partitions — only two can be achieved at any given moment in
time” — Brewer, 1999

+ Consistency: all nodes see the same data at the same time

- Avallabllity: guarantee that every request receives a
response about whether it was successful or failed

- Partition tolerance: system continues to operate despite
arbitrary message loss or failure of part of the system

CS 377 [Spring 2016] - Ho

NoSQL Systems and CAP

Pick Two

http://blog.nahurst.com/visual-guide-to-nosqgl-systems
CS 377 [Spring 2016] - Ho

http://blog.nahurst.com/visual-guide-to-nosql-systems

NoSQL Paradigm: BASE

Basically Available: replication and sharing to reduce
likelihood of data unavailability and use partitioning of the
data to make any remaining failures partial

- Soft state: allow data to be inconsistent, which means
that the state of system may change over time even
without input

Eventually consistent: at some future point in time, the
data assumes a consistent state and not immediate like

ACID

CS 377 [Spring 2016] - Ho

NoSQL Categories

- Four groups:
- Key-value stores
+ Column-based families or wide column systems
-+ Document stores
- Graph databases
- Some debate whether graph databases is truly NoSQL

- Categories can be subject to change in the future

CS 377 [Spring 2016] - Ho

Key-Value Store

Simplest NoSQL databases — collection of key, value
pairs

Queries are limited to query by key

Example: Riak, Redis, Voldermort, DynamoDB,
MemcacheDB

Value
AAA BBB,CCC
AAA,BBB
AAA,DDD

AAA,2,01/01/2015
3,2Z7,5623

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG
CS 377 [Spring 2016] - Ho

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG

Key-Value Store: Voldemort

- Distributed data store used by
LinkedIn for high-scalability e vos sy oo o
storage | [

- Named after fictional Harry T el I e
Potter villain
Events you may be interested in LinkedIn Skills

Everns pou May De interesded in Orowne o~
A A a0 wrieranos by s o) 1000w - A Linsatn Te
Y- TL IS

P M1 erdectos e Matere Lemrrisg 900 Date Mrvrg
- !‘ [RPT preunp—— — o s - e
priviohl - - - —
s Nt SoPwarn Crafamased) =
B P Dt 1 IS AAP L T 1 B, A
! ve orveton Ny ons A "2 — o § Sty
ad . . ¥ Worhop O 2012 - -
- Read-write store N ~
L . * . _———
e .‘\“-“.:‘ ‘-. we Vaua
W2 Ao
N ——

- Addresses two usage patterns

- Read-only store http://www.slideshare.net/r39132/linkedin-data-infrastructure-
gcon-london-2012/22-Voldemort RO_Store_Usage_at

CS 377 [Spring 2016] - Ho

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/22-Voldemort_RO_Store_Usage_at

Voldemort vs MySQL: Read Only

- MySQL -+ Voldemort

median 99th percentile

(A

latency (ms)
ek cnndh N

throughput (gps)

100 GB data, 24 GB RAM

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-
london-2012/25-Voldemort RO_Store Performance TP

CS 377 [Spring 2016] - Ho

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/25-Voldemort_RO_Store_Performance_TP

Column-Based Families

Data Is stored Iin a big table except you store columns of
data together instead of rows

Access control, disk and memory accounting performed
on column families

Example: HBase, Cassandra, Hypertable

"contents:” "anchor:cnnsi.com™ "anchor:my.look.ca”

I R O T S Y YO S

"=
0 ey iy t}i
"‘_
LN S
<i

"com.cnn.www" - > F
Ji I’---'q—_:tﬁ_) ' . ; 1

3 =ga
@)
=
s
X

S
)
Z
Z
8
3
!
o

https://www.usenix.org/legacy/events/osdi06/tech/chang/chang_html/img5.png

CS 377 [Spring 2016] - Ho

https://www.usenix.org/legacy/events/osdi06/tech/chang/chang_html/img5.png

Column-Based Family: BigTable Performance

Pages in Google's Index (Millions)

10,000 20,000

30,000

40,000

1.0 1.5 2.0
Average Search Time (Seconds)

2.5

25 million
(25,000,000)

...pages was Google’s
) original index.
A

1996
2010

v
40 billion
(40,000,000,000)

...pages is what that
index grew to — 1,600
times the size at

CS 377 [Spring 2016] - Ho

which it began ten
years earlier.

3.0

ttp://sandeepsamajdar.blogspot.com/2011/08/bigtable-google-database.html

http://sandeepsamajdar.blogspot.com/2011/08/bigtable-google-database.html

Document Databases

Collections of similar documents

Each document can resemble a
complex model

Examples: MongoDB, CouchDB

https://gigaom.com/wp-content/uploads/sites/
1/2011/07/ungl-1.jpg

CS 377 [Spring 2016] - Ho

https://gigaom.com/wp-content/uploads/sites/1/2011/07/unql-1.jpg

Javascript Object Notation (JSON)

Alternative data model for semistructured data

Built on two key structures

Object is a sequence of fields (hame, value pairs)

Array of values

"firstName": "John",

° A Value Can be "‘.a?t,}lar:.e": nSmith",
Tage¥™: 25,
"address"™
"streetAddress" 21 2nd Street
' ' ~[ea L= "New York
Atomic value (e.qg., string) "stace": "NY
"postalCode 10021
‘é oneNumber
" { "type”: "home", "number": "212 555-1234" }
(:)k)JEBCDt { "E;E;": "f;i:,,"::;ze;": "6;64555—452:" } ,

Array
http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

CS 377 [Spring 2016] - Ho

http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

Document Database: MongoDB

Open-source NoSQL database released in 2009

Datalbase contains zero or more collections

Collection can have zero or more documents
Documents can have multiple fields

Documents need not have the same fields

{
name: "sue", <+— field: value
age: 26, <«— field: value
status: "A", <«— field: value
groups: ["news”, "sports”] <—— field:value
}

https://docs.mongodb.org/manual/_images/crud-annotated-document.png
CS 377 [Spring 2016] - Ho

https://docs.mongodb.org/manual/_images/crud-annotated-document.png

MongoDB vs Relational DBMS

+ Collection vs table _EEEp &

- Document vs row “__—;__ & i]

+ Fleld vs column —:";_*_;; = ;__:— |
- Schema-less vs ;::i =L F -

Schema-oriented

http://s3.amazonaws.com/info-mongodb-com/ com assets/
media/sql-v-mongodb-1.png

CS 377 [Spring 2016] - Ho

http://s3.amazonaws.com/info-mongodb-com/_com_assets/media/sql-v-mongodb-1.png

Example: MongoDB Collection

name.: name:
eyes: aliases
birthplace:

aliases

loc:

boss:

CS 377 [Spring 2016] - Ho

Example: Blog

- A blog post has an author, some text, and many
comments

- Comments are unique per post, and one author can have
many posts

- How would you design this in SQL?

CS 377 [Spring 2016] - Ho

Blog: Relational Database Diagram

tbl _post tbl user
PK |id PK |id
title —p username
content password
tags salt
status email
create_time profile
update_time
FK1 |author_id
A tbl_comment
PK |id
content
status
create_time
author
email
url
FK1 | post_id
http://www.viiframework.com log/1.1/en/start. ign

CS 377 [Spring 2016] - Ho

http://www.yiiframework.com/doc/blog/1.1/en/start.design

Blog: MongoDB “schema”

- Collection for posts
Embed comments & author name

post = {
author: ‘Joyce Ho’,
text: ‘Database systems are awesome.’,
comments:|
"Your class Is too much work!’,
'‘ACID Is not as cool as you think’

]

CS 377 [Spring 2016] - Ho

MongoDB Benefits

- Embedded objects brought back in the same query as the
parent object

- No need to join 3 tables to retrieve content for a single post
-+ Keeps functionality that works well in RDBMS

- Ad hoc queries

- Indexes (fully featured & secondary)

- Document model matches your domain well, it can be much
easier to comprehend than figuring out nasty joins

CS 377 [Spring 2016] - Ho

MongoDB Pitfalls

- Query can only access a single collection

- Joins of documents are not supported

Long running multi-row transactions are not distributed
well

- Atomicity is only provided for operations on a single
document

- Group together items that need to be updated together

CS 377 [Spring 2016] - Ho

MongoDB CRUD Operations

- Create
- db.collection.insert(<document>)
- db.collection.save(<document>)
- Read
- db.collection.find(<query>, <projection>)

- db.collection.findOne(<query>, <projection>)

CS 377 [Spring 2016] - Ho

MongoDB CRUD Operations (2)

- Update
- db.collection.update(<query>, <update>, <options>)
+ Delete

- db.collection.remove(<query>, <justOne>)

CS 377 [Spring 2016] - Ho

MongoDB Functionality

- Aggregation framework provides SQL-like aggregation functionality

- Documents from a collection pass through aggregation pipeline
which transforms objects as they pass through

- Qutput documents based on calculations performed on input
documents

- Map reduce functionality to perform complex aggregator functions
given a collection of key, value pairs

- Indexes to match the query conditions and return the results using
only the index (B-tree index)

CS 377 [Spring 2016] - Ho

Graph Database

- Collection of vertices

match (kevin) —[:ACTED_IN]-> (movie) <—[:DIRECTED]- (director) where kevin.name = 'Kevin Bacon' return
(nodes) and edges
| -tl d -th] { ' Movie
relations) an elr : :
() ' eeeee l ACTED. IN Kevin o
Men

properties

- Example:
AllegroGraph,
VertexDB, Neo4;

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/
images/neodj_browser.png

CS 377 [Spring 2016] - Ho

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/images/neo4j_browser.png

RDBMS vs Native Graph Database

Degree: Thousands+
Size: Billions+
Hops: Tens to Hundreds

Response Time

w— RDBMS

Degree: < 3
Size: Thousands w—
Hops: <3

Connectedness of Data Set

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

CS 377 [Spring 2016] - Ho

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

Focus of Different Categories

A
Key-Value
&1’ Stores -
N olumn
%) ‘ Families
‘ Document
Databases
. Graph
Databases
>
Complexity

http://www.slideshare.net/emileifrem/nosql-east-a-nosql-overview-and-the-benefits-of-graph-databases

CS 377 [Spring 2016] - Ho

http://www.slideshare.net/emileifrem/nosql-east-a-nosql-overview-and-the-benefits-of-graph-databases

Popularity of Different Categories

Popularity trend for different categories of NoSQL data models

-®- Graph DBEMS

- Wide column stores

- Document stores
300 -®- Key-value stores

Populanty Changes

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014 Jul 2014 Oct 2014

http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison
%200f%20Leading%20NoSQL %20Big%20Data%20Models%2009%2022%202014.pdf1

CS 377 [Spring 2016] - Ho

http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1

NoSQL Performance Test

NoSQL Performance Test M ArangoDB [Neo4j M Postgres (json)
ArangoDB, Postgres, MongoDB, Neo4j and OrientDB M MongobB [OrientDB [l Postgres (tab)
300 % °
X X SR ° SESIXPR X
X) ofl— X ~fof ol o ©
o S B S e b= S S 8
N 1 T B less is
250 % &
& . better ¥
: S
(a\] O\ch; er
200 % N
. 5
150 % g -
XE®
O
3 |
100 % ol
S
— o\o
N R o b B S
50 % i [& X ~
| o
o N (o]
; ¢
single read single write single write aggregation shortest path neighbors neighbors memory
sync with profiles usage
*) neighbors and neighbors of neighbors (distinct) Weinberger 2015-10-13 (r207)

Database versions: ArangoDB 2.7 RC2, OrientDB 2.2 alpha, MongoDB 3.0.6, Neo4J 2.3 M3, PostgreSQL 9.4.4

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

CS 377 [Spring 2016] - Ho

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

NoSQL Use Cases

Bigness: big data, big number of users, big number of
computers, ...

Massive write performance: high volume to fit on a single
node

Fast key-value access: lower latency

Flexible schema & datatypes: complex objects can be
easlly stored without a lot of mapping

No single point of failure

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosqgl-for.html
CS 377 [Spring 2016] - Ho

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

NoSQL Use Cases (2)

- Generally available parallel computing
Easier maintainability, administration, and operations

Programmer ease of use: accessing data Is intuitive for
developers

Right data model for the right problem: graph problem
should be solved via a graph database

Distributed systems support: designed to operate In
distributed scenarios

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosqgl-for.html
CS 377 [Spring 2016] - Ho

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

NoSQL Challenges

- Lack of maturity — numerous solutions still in their beta
stage

- Lack of commercial support for enterprise users — many
are still open source projects

- Lack of support for data analysis and business intelligence
- Maintenance efforts and skills are required

—xperts are hard to find (although becoming more
orevalent these days)

CS 377 [Spring 2016] - Ho

Jumping on NoSQL Bandwagon?

- Data model and query support
-+ Do you want/need the power of something like SQL?
- Do you want/need fixed or flexible schemas

- Scale
- Do you want/need massive scalability®?

- Are you willing to sacrifice replica consistency?

CS 377 [Spring 2016] - Ho

Jumping on NoSQL Bandwagon? (2)

- Agllity and growth

- Are you building a service that could grow
exponentially?

- Are you optimizing for quick, simple coding or
maintainability”?

CS 377 [Spring 2016] - Ho

NoSQL: Recap

- Motivation for NoSQL
- CAP theorem

- ACID vs BASE

- NoSQL categories

+ Use cases and challenges

CS 377 [Spring 2016] - Ho

