
NoSQL Introduction
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2016] - Ho

Web 2.0

Lorenzo Alberton Talk, “NoSQL Databases: Why, what and when”

CS 377 [Spring 2016] - Ho

RDBMS Scaling: Add Hardware
• Large servers are

highly complex,
proprietary, and
disproportionately
expensive

• Physical limitations of
systems: only so
much power can be
added

http://www.qbit.gr/news.php?n_id=933&screen=3

http://www.qbit.gr/news.php?n_id=933&screen=3

CS 377 [Spring 2016] - Ho

Motivation for NoSQL
• Users do both updates and reads and scaling

transactions to parallel or distributed DBMS is hard

• Large servers are too expensive with maximum capacity

• Load can increase rapidly with web traffic and
unpredictability

• Google and Amazon developed their own alternative
approaches, BigTable and DynamoDB respectively

CS 377 [Spring 2016] - Ho

NoSQL: New Hipster

CS 377 [Spring 2016] - Ho

NoSQL: New Hipster (2)

http://www.google.com/trends/explore#q=NoSQL

http://www.google.com/trends/explore#q=NoSQL

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

CS 377 [Spring 2016] - Ho

What is NoSQL?
• “Not only SQL”

• Scalable by partitioning (sharding) and replication

• Distributed, fault-tolerant architecture

• Flexible schema — no fixed schema or structure

• Not a replacement for RDMBS but compliments it

CS 377 [Spring 2016] - Ho

NoSQL Scaling
• Easier, linear approach to

scale

• Auto-sharding spreads
data across servers
without application
impact

• Distributed query support

• Better handling of traffic
spikes

http://www.qbit.gr/news.php?n_id=933&screen=3

http://www.qbit.gr/news.php?n_id=933&screen=3

CS 377 [Spring 2016] - Ho

Recap: ACID
• Atomicity: all or nothing

• Consistency: any transaction takes database from one
consistent state to another

• Isolation: execution of one transaction is not impacted by
other transactions executing at the same time

• Durability: persistence of the transactions (recover
against system failures)
But, pitfalls of DBMS with regards to latency, partition

tolerance, and high availability!

CS 377 [Spring 2016] - Ho

CAP Theorem
“Of three properties of shared-data systems — data
Consistency, system Availability, and tolerance to network
Partitions — only two can be achieved at any given moment in
time” — Brewer, 1999

• Consistency: all nodes see the same data at the same time

• Availability: guarantee that every request receives a
response about whether it was successful or failed

• Partition tolerance: system continues to operate despite
arbitrary message loss or failure of part of the system

CS 377 [Spring 2016] - Ho

NoSQL Systems and CAP

http://blog.nahurst.com/visual-guide-to-nosql-systems

http://blog.nahurst.com/visual-guide-to-nosql-systems

CS 377 [Spring 2016] - Ho

NoSQL Paradigm: BASE
• Basically Available: replication and sharing to reduce

likelihood of data unavailability and use partitioning of the
data to make any remaining failures partial

• Soft state: allow data to be inconsistent, which means
that the state of system may change over time even
without input

• Eventually consistent: at some future point in time, the
data assumes a consistent state and not immediate like
ACID

CS 377 [Spring 2016] - Ho

NoSQL Categories
• Four groups:

• Key-value stores

• Column-based families or wide column systems

• Document stores

• Graph databases

• Some debate whether graph databases is truly NoSQL

• Categories can be subject to change in the future

CS 377 [Spring 2016] - Ho

Key-Value Store
• Simplest NoSQL databases — collection of key, value

pairs

• Queries are limited to query by key

• Example: Riak, Redis, Voldermort, DynamoDB,
MemcacheDB

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG

https://upload.wikimedia.org/wikipedia/commons/5/5b/KeyValue.PNG

CS 377 [Spring 2016] - Ho

Key-Value Store: Voldemort
• Distributed data store used by

LinkedIn for high-scalability
storage

• Named after fictional Harry
Potter villain

• Addresses two usage patterns

• Read-write store

• Read-only store http://www.slideshare.net/r39132/linkedin-data-infrastructure-
qcon-london-2012/22-Voldemort_RO_Store_Usage_at

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/22-Voldemort_RO_Store_Usage_at

CS 377 [Spring 2016] - Ho

Voldemort vs MySQL: Read Only

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-
london-2012/25-Voldemort_RO_Store_Performance_TP

http://www.slideshare.net/r39132/linkedin-data-infrastructure-qcon-london-2012/25-Voldemort_RO_Store_Performance_TP

CS 377 [Spring 2016] - Ho

Column-Based Families
• Data is stored in a big table except you store columns of

data together instead of rows

• Access control, disk and memory accounting performed
on column families

• Example: HBase, Cassandra, Hypertable

https://www.usenix.org/legacy/events/osdi06/tech/chang/chang_html/img5.png

https://www.usenix.org/legacy/events/osdi06/tech/chang/chang_html/img5.png

CS 377 [Spring 2016] - Ho

Column-Based Family: BigTable Performance

http://sandeepsamajdar.blogspot.com/2011/08/bigtable-google-database.html

http://sandeepsamajdar.blogspot.com/2011/08/bigtable-google-database.html

CS 377 [Spring 2016] - Ho

Document Databases

• Collections of similar documents

• Each document can resemble a
complex model

• Examples: MongoDB, CouchDB
https://gigaom.com/wp-content/uploads/sites/

1/2011/07/unql-1.jpg

https://gigaom.com/wp-content/uploads/sites/1/2011/07/unql-1.jpg

CS 377 [Spring 2016] - Ho

JavaScript Object Notation (JSON)
• Alternative data model for semistructured data

• Built on two key structures

• Object is a sequence of fields (name, value pairs)

• Array of values

• A value can be

• Atomic value (e.g., string)

• Object

• Array
http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

http://natishalom.typepad.com/.a/6a00d835457b7453ef0133f2872d36970b-pi

CS 377 [Spring 2016] - Ho

Document Database: MongoDB
• Open-source NoSQL database released in 2009

• Database contains zero or more collections

• Collection can have zero or more documents

• Documents can have multiple fields

• Documents need not have the same fields

https://docs.mongodb.org/manual/_images/crud-annotated-document.png

https://docs.mongodb.org/manual/_images/crud-annotated-document.png

CS 377 [Spring 2016] - Ho

MongoDB vs Relational DBMS

• Collection vs table

• Document vs row

• Field vs column

• Schema-less vs
Schema-oriented

http://s3.amazonaws.com/info-mongodb-com/_com_assets/
media/sql-v-mongodb-1.png

http://s3.amazonaws.com/info-mongodb-com/_com_assets/media/sql-v-mongodb-1.png

CS 377 [Spring 2016] - Ho

Example: MongoDB Collection

CS 377 [Spring 2016] - Ho

Example: Blog
• A blog post has an author, some text, and many

comments

• Comments are unique per post, and one author can have
many posts

• How would you design this in SQL?

CS 377 [Spring 2016] - Ho

Blog: Relational Database Diagram

http://www.yiiframework.com/doc/blog/1.1/en/start.design

http://www.yiiframework.com/doc/blog/1.1/en/start.design

CS 377 [Spring 2016] - Ho

Blog: MongoDB “schema”
• Collection for posts

• Embed comments & author name 
 
post = { 
 author: ‘Joyce Ho’,  
 text: ‘Database systems are awesome.’,  
 comments:[ 
 ‘Your class is too much work!’,  
 ‘ACID is not as cool as you think’  
]  
}

CS 377 [Spring 2016] - Ho

MongoDB Benefits
• Embedded objects brought back in the same query as the

parent object

• No need to join 3 tables to retrieve content for a single post

• Keeps functionality that works well in RDBMS

• Ad hoc queries

• Indexes (fully featured & secondary)

• Document model matches your domain well, it can be much
easier to comprehend than figuring out nasty joins

CS 377 [Spring 2016] - Ho

MongoDB Pitfalls
• Query can only access a single collection

• Joins of documents are not supported

• Long running multi-row transactions are not distributed
well

• Atomicity is only provided for operations on a single
document

• Group together items that need to be updated together

CS 377 [Spring 2016] - Ho

MongoDB CRUD Operations
• Create

• db.collection.insert(<document>)

• db.collection.save(<document>)

• Read

• db.collection.find(<query>, <projection>)

• db.collection.findOne(<query>, <projection>)

CS 377 [Spring 2016] - Ho

MongoDB CRUD Operations (2)
• Update

• db.collection.update(<query>, <update>, <options>)

• Delete

• db.collection.remove(<query>, <justOne>)

CS 377 [Spring 2016] - Ho

MongoDB Functionality
• Aggregation framework provides SQL-like aggregation functionality

• Documents from a collection pass through aggregation pipeline
which transforms objects as they pass through

• Output documents based on calculations performed on input
documents

• Map reduce functionality to perform complex aggregator functions
given a collection of key, value pairs

• Indexes to match the query conditions and return the results using
only the index (B-tree index)

CS 377 [Spring 2016] - Ho

Graph Database

• Collection of vertices
(nodes) and edges
(relations) and their
properties

• Example:
AllegroGraph,
VertexDB, Neo4j

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/
images/neo4j_browser.png

http://www.apcjones.com/talks/2014-03-26_Neo4j_London/images/neo4j_browser.png

CS 377 [Spring 2016] - Ho

RDBMS vs Native Graph Database

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

http://www.slideshare.net/maxdemarzi/graph-database-use-cases

CS 377 [Spring 2016] - Ho

Focus of Different Categories

http://www.slideshare.net/emileifrem/nosql-east-a-nosql-overview-and-the-benefits-of-graph-databases

http://www.slideshare.net/emileifrem/nosql-east-a-nosql-overview-and-the-benefits-of-graph-databases

CS 377 [Spring 2016] - Ho

Popularity of Different Categories

http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison
%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1

http://web.cs.iastate.edu/~sugamsha/articles/Classification%20and%20Comparison%20of%20Leading%20NoSQL%20Big%20Data%20Models%2009%2022%202014.pdf1

CS 377 [Spring 2016] - Ho

NoSQL Performance Test

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

https://www.arangodb.com/wp-content/uploads/2015/09/chart_v2071.png

CS 377 [Spring 2016] - Ho

NoSQL Use Cases
• Bigness: big data, big number of users, big number of

computers, …

• Massive write performance: high volume to fit on a single
node

• Fast key-value access: lower latency

• Flexible schema & datatypes: complex objects can be
easily stored without a lot of mapping

• No single point of failure
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

CS 377 [Spring 2016] - Ho

NoSQL Use Cases (2)
• Generally available parallel computing

• Easier maintainability, administration, and operations

• Programmer ease of use: accessing data is intuitive for
developers

• Right data model for the right problem: graph problem
should be solved via a graph database

• Distributed systems support: designed to operate in
distributed scenarios

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html

CS 377 [Spring 2016] - Ho

NoSQL Challenges
• Lack of maturity — numerous solutions still in their beta

stage

• Lack of commercial support for enterprise users — many
are still open source projects

• Lack of support for data analysis and business intelligence

• Maintenance efforts and skills are required

• Experts are hard to find (although becoming more
prevalent these days)

CS 377 [Spring 2016] - Ho

Jumping on NoSQL Bandwagon?
• Data model and query support

• Do you want/need the power of something like SQL?

• Do you want/need fixed or flexible schemas

• Scale

• Do you want/need massive scalability?

• Are you willing to sacrifice replica consistency?

CS 377 [Spring 2016] - Ho

Jumping on NoSQL Bandwagon? (2)
• Agility and growth

• Are you building a service that could grow
exponentially?

• Are you optimizing for quick, simple coding or
maintainability?

CS 377 [Spring 2016] - Ho

NoSQL: Recap
• Motivation for NoSQL

• CAP theorem

• ACID vs BASE

• NoSQL categories

• Use cases and challenges

