Lighting Math

NOT SO SCARY LIGHTING MATH

The importance of Lighting Math:

- Calculations can determine the light levels
- Calculations can determine the required quantity of fixtures
- Calculations can verify layout

Methods to perform Lighting Math:

- By Hand
- By Computer

Lighting Math

- IESNA Light Level
recommendations are for Footcandles at the work plane ($2^{\prime} 6^{\prime \prime}$ AFF)
- They have limited significance to us when we interpret the actual environment.
- Such factors as lighting walls, brightness accents, shadows, sparkle, and color have a greater influence on emotional reaction.
- IESNA's recommend light levels are for an age range of 40 - 55 years old

Orientation and simple visual tasks. Visual performance is largely unimportant. These tasks are found in public spaces where reading and visual inspection are only occasionaly periormed. Higher levels are recommended for tasks where visual periormance is occasionaly important.		
	ublic spaces	(3 fc)
B	Simple orientation for short vists	50 lx (5 fc)
C	Working spaces where simple visual lasks are performed	100 lx (10 fc)
Common visual tasks. Visual performance is important. These tasks are found in commercial, indusirial and residential applications. Recommended illuminance levels differ because of the characleristics of the visual task being illuminated. Higher levels are recommended for visual tasks with critical elements of low contrast or small size.		
D	Porformance of visual tasks of high contrast and large size	300 lx (30 fc)
E	Performance of visual tasks of high contrast and small size, or visual tasks of low contrast and large size	500 lx (50 fc)
F	Pefformance of visual tasks of low contrast and small size	1000 l (100 fc)
Special visual tasks. Visual performance is of critical importance. These tasks are very specialized, including those with very small or very low contrast critical elements. Recommended illuminance levels should be achieved with supplementary task lighting. Higher recommended levels are often achieved by moving the light source doser to the task.		
G	Performance of visual tasks near threshold	3000 to $10,000 \mathrm{~lx}$ (300 to 1000 fc)

Lighting Math

Babies require 3 times more light than a 20 yearr oldy

IESNA Recommended Light Levels

Lighting Math

Summary Light Level (table 15)

Measuring Light

Luminance

- Measures how easy something is to see, or how bight a surface is - e
- Examples: backlit signage, a full moon, glowing wall
- Measured in: Foot-Lamberts (US) or Candelas per meter squared (metric)
1 Foot-Lambert = 3.426 Candelas/m2

Illuminance

- Measures how much light there is to see by, the light level to perform a task arriving lighting energy
- Examples: emergency light level on the floor),
- Measured in: Foot-Candles (US) and Lux (Metric)

Lighting Math

Light - The Foot-candle

Foot-candle is known as a unit of light - direct illumination light level

Derived from one candle placed at a distance of one foot from a surface is defined as a foot-candle (abbreviation = fc or FC)

Light - The Lumen

The energy of light from a candle falling on a one foot square area is One Lumen (abbreviation = Im)

The total amount of light energy coming out of the candle is approximately 13 Iumens The total amount of light energy coming out of 100-watt A-lamp is approximately 1650 Iumens

NOT DEFINED BY DISTANCE

Lighting Math

CIE Luminaire Types / Distributions

Lighting Math

Candlepower Distribution Curve

- Candlepvショr disimibution curves provides intuitive
information on how a luminaire will perform
- Candela values are used in calculations to predict light levels

Asymmetrical Distribution Curve

Lighting Math

Light Measurement

Measures the candlepower distribution of a particular lamp or luminaire.

Information is generated in a -- Photometric report

Gonio-Photometer

The Spectro-Radiometer

Lumens versus Candelas

Lussers is an amount of
Candela is an amount of INTESITY

Light output from lamps and fixtures be measured in Lusseess and Candelas.
Fixtures alter Lumen and Candela output (Their values can only be found in Photometry Reports)

Lighting Math

Photometry Reports

Plot of candlepower values
Summary of candlepower values in different planes

Fixture Efficiency

- Lumen Summary
- Luminance summary
- Spacing criteria (SC) or Spacing/Mounting Height (S/MH) for uniformity
- Coefficient of Utilization Table
- Guides

Photometry Reports: sample 1

Lighting Math

Photometry Reports: sample 2

Indirect Pendant

Lighting Systems Silhouette ${ }^{\oplus}$ Luminous Indirect SC
Page 2 of $2 \quad 2$ Light T5 Per 4' (nominal) Section

Perfornance

Photometry Reports: sample 3

Ceiling Fixture
$\Leftrightarrow \quad$ Specification Decorative Discus ${ }^{\mathrm{w}}$ 6700MS213U

Page 2 of 2

mexatileninion
SPACING RATIO $=13$
SPACING RAT10 $=1.3$

Lighting Math

Hand Methods to Calculate Light

Mnfirs Guides

- Direct or Average Illumination from a Fixture or Lamp
- Recommended spacing or layout

Point-by-Point

- Direct light level from a Fixture or Lamp

Lumen Method

- Average Light Level in a Room from a Fixture
- Can be used to determine quantity needed

Lighting Math

Lighting Math

Lighting Math

Point-by-Point \quad Foot-candle $=\frac{\text { Candle Power }}{\text { Distance }^{2}}$

- Ceiling Fixture Example

$\mathrm{FC}=$ \qquad candelas / \qquad $f t^{2}$

FC = \qquad foot-candles

Point-by-Point Factors

- Calculated Levels are Facing the Light Fixture
- With the exception of directly below

Lighting Math

Point-by-Point Factors

- You need to factor an adjustment if you want levels at other angles (IE Horizontal, Vertical Angles)
- COSINE Adjusted!!!

COSINE Adjustments

$$
\text { Foot-candle }=\frac{\text { Candle Power }}{\text { Distance }^{2}} \times \text { COS(Angle of Incidence) }
$$

Light Source

Lighting Math

Point-by-Point... with cosine Adjustment

- Ceiling Fixture Example

$$
\begin{aligned}
& \mathrm{FC}=\mathrm{CP} / \mathrm{D}^{2} \times \text { COS(angle) } \\
& \text { What is the Angle of } \\
& \text { Incidence? } \\
& \mathrm{FC}=7.25 \times \text { COS }(\ldots \quad \text { deg }) \\
& \mathrm{FC}=\ldots \quad \text { foot-candles }
\end{aligned}
$$

Methods to Calculate Light

Point-by-Point

- Direct Illumination from a Fixture or Lamp
- You need...
- Photometry
- Distances from Fixture or Lamp

Lumen Method

- Average Light Level in a Room from a Fixture
- You need.
- Photometry
- Room Dimensions and Surface Reflectance's

Lighting Math

Room Reflectance

- Room comprised of Walls, Ceiling, and Floor.
- Walls typically have Doors and Windows
- All surfaces have a reflectance value to bounce light.
- Light from Light Fixture bounces off of all surfaces.

Room Reflectance

- Surfaces with less reflectance will bounce less light
- Typical Reflectance

Values:

- 75\%-90\% White, Off

White, Grey, Light tints of Blue or Brown
30\%-60\% Medium Green, Yellow, Brown, or Grey

- 10\%-20\% Dark Grey,

Medium Blue
5\%-10\% Dark Blue, Brown. Dark Green, and many wood finishes

Lighting Math

Calculations using Lumens

Lumen Method Calculation

Calculates the Average Illumination for a room.
Takes into account the room surface reflectance's - but assumes the surfaces are diffuse (not shiny!).
Assumes an empty room (without furniture).
Can also be used to determine the required Quantity of Fixtures needed for a target light level.
Does not determine light fixture layout or location - you must following mnfrs spacing criteria.

1. You need Room Dimensions and the Fixture Mounting Height.

You need to select a Light fixture
Determine the rooms Room Cavity Ratio (RCR).
Look-up the fixtures Coefficient of Utilization for the RCR.
Calculate!

Photometry Reports

Plot of candlepower values
Summary of candlepower
values in different planes

- Fixture Efficiency
- Lumen Summary
- Luminance summary
$-$
(SC) or Spacing/Mounting Height (SIMH) for uniformity
- Coefficient of Utilization Table
- Guides

Lighting Math

Coefficient of Utilization

Room Cavity Ratio
$\mathrm{RCR}=\frac{5 \mathrm{xMHx}(\mathrm{L}+\mathrm{W})}{\text { Room Area }}$

Room Section

Lighting Math

Room Cavity Ratio
 $\mathrm{RCR}=\frac{5 \mathrm{xMHx}(\mathrm{L}+\mathrm{W})}{\text { Room Area }}$

- The RCR can vary depending on the height of the
fixture....as shown here with Wall Brackets or Sconces.

Lighting Math

Room Cavity Ratio \quad RCR $=\frac{5 \times M H x(L+W)}{\text { Room Area }}$

Room Section

- The RCR can vary depending on the height of the fixture....as shown here with Pendants.

Lighting Math

Lumen Method Formula

To Calculate Foot-candle level:

FC $=\underline{\text { Oty of Fixtures } \times \text { Number of Lamps per Fiximre } \times \text { Lumens per Lamp x CU }}$ Area of the Room

To Calculate number of Fixtures:

FC $=$ Total Lumens in the Room x CU
Area of the Room

Qty of Fixtures =
$\frac{\text { FC x Area of the Room }}{\text { Number of Lamps per Fixture } x \text { Lumens per Lamp x CU }}$

Qty of Fixtures $=\quad$ FC \times Area of the Room Total Lumens in the Room x CU

Lumen Method Example 1

What is the resulting Foot-candle Level at table height from four downlights?

Lighting Math

Coefficient of Utilization

- Also known as CU
- Defines the percentage of light output that is expected from a fixture
- The value is determined by a CU table
- For our example:
- RCR
- the CU is
- For commercial Reflectance of $80 / 50 / 20$, the actual CU value is this.

Lumen Method Example 2

How many fixtures do I need to achieve 30-foot-candles at table height?

\square 임

