New/ Vocabulary/

- Rational Zero Theorem
- lower bound
- upper bound
- Descartes' Rule of Signs
- Fundamental Theorem of Algebra
- Linear Factorization Theorem
- Conjugate Root Theorem
- complex conjugates
- irreducible over the reals

Key Concept
 Rational Zero Theorem

If f is a polynomial function of the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$, with degree $n \geq 1$, integer coefficients, and $a_{0} \neq 0$, then every rational zero of f has the form $\frac{p}{q}$, where

- p and q have no common factors other than ± 1,
- p is an integer factor of the constant term a_{0}, and
- q is an integer factor of the leading coefficient a_{n}.

Corollary If the leading coefficient a_{n} is 1 , then any rational zeros of f are integer factors of the constant term a_{0}.

Note: this technique only finds roots that can be written as fractions.

EXAMPLE 1

 Leading Coefficient Equal to 1A. List all possible rational zeros of $f(x)=x^{3}-3 x^{2}-2 x+4$. Then determine which, if any, are zeros.

Step 1 Identify possible rational zeros.

EXAMPLE 1 Leading Coefficient Equal to 1

Step 2 Use direct substitution to test each possible zero.

$$
\begin{aligned}
& f(1)=(1)^{3}-3(1)^{2}-2(1)+4 \text { or } 0 \\
& f(-1)=(-1)^{3}-3(-1)^{2}-2(-1)+4 \text { or } 2 \\
& f(2)=(2)^{3}-3(2)^{2}-2(2)+4 \text { or }-4 \\
& f(-2)=(-2)^{3}-3(-2)^{2}-2(-2)+4 \text { or }-12 \\
& f(4)=(4)^{3}-3(4)^{2}-2(4)+4 \text { or } 12 \\
& f(-4)=(-4)^{3}-3(-4)^{2}-2(-4)+4 \text { or }-100
\end{aligned}
$$

The only rational zero is 1 .
Answer: $\pm 1, \pm 2, \pm 4 ; 1$

EXAMPLE 1

 Leading Coefficient Equal to 1B. List all possible rational zeros of $f(x)=x^{3}-2 x-1$. Then determine which, if any, are zeros.

Step 1

EXAMPLE 1

Step 2 Begin by testing 1 and -1 using synthetic substitution.
1

-1

EXAMPLE 1 Leading Coefficient Equal to 1

Because $f(-1)=0$, you can conclude that $x=-1$ is a zero of f. Thus $f(x)=(x+1)\left(x^{2}-x-1\right)$.

Because the factor $x^{2}-x-1$ yields no rational zeros, we can conclude that f has only one rational zero, $x=$ -1 .

Answer: $\pm 1 ; 1$

EXAMPLE 1

(f) Guided Practice

List all possible rational zeros of
$f(x)=x^{4}-12 x^{2}-15 x-4$. Then determine which, if any, are zeros.
A. $\pm 1, \pm 4 ; \pm 1, \pm 4$
B. ± 2; none
C. $\pm 1, \pm 2, \pm 4 ;-1,4$
D. $\pm 1, \pm 2 ;-1,2$

EXAMPLE 2 Leading Coefficient not Equal to 1

List all possible rational zeros of $f(x)=2 x^{3}-5 x^{2}-28 x+15$. Then determine which, if any, are zeros.

Step 1 The leading coefficient is 2 and the constant term is 15 . Possible rational zeros:
$\frac{\text { Factors of } 15}{\text { Factors of } 2}=\frac{ \pm 1, \pm 3, \pm 5, \pm 15}{ \pm 1, \pm 2}$ or

Hint: start finding roots by testing integers first!

EXAMPLE 2 Leading Coefficient not Equal to 1

Step 2 By synthetic substitution, you can determine that $x=-3$ is a rational zero.

Now, break down the polynomial into linear factors like we did in the last section.

EXAMPLE 2 Leading Coefficient not Equal to 1
Answer: $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2} ; \frac{1}{2},-3,5$

EXAMPLE 2

V Guided Practice

List all possible rational zeros of $f(x)=4 x^{3}-20 x^{2}+x-5$. Then determine which, if any, are zeros.
A. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4} ; 5$
B. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4} ; \frac{5}{4}$
C. $\pm 1, \pm 5 ; 5$
D. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{1}{4} ;-1,5, \frac{1}{4}$

WATER LEVEL The water level in a bucket sitting on a patio can be modeled by $f(x)=x^{3}+4 x^{2}-2 x+7$, where $f(x)$ is the height of the water in millimeters and x is the time in days. On what day(s) will the water reach a height of 10 millimeters?

Because $f(x)$ represents the day when the water will reach a given height, you need to solve $f(x)=10$ to determine what day the water will reach a height of 10 millimeters.

Real-World ExampLe 3

$f(x)=10$ Write the equation.
$x^{3}+4 x^{2}-2 x+7=10 \quad$ Substitute $x^{3}+4 x^{2}-2 x+7$ for $f(x)$.
$x^{3}+4 x^{2}-2 x-3=0 \quad$ Subtract 10 from each side.
Apply the Rational Zeros Theorem to this new polynomial function, $f(x)=x^{3}+4 x^{2}-2 x-3$.

Step 1 Possible rational zeros: factors of $-3= \pm 1, \pm 3$.

Q Real-World Example 3 Solve a Polynomial Equation

Step 2 Because the number of the day cannot be negative, check each of the positive rational zeros using synthetic substitution. Doing, so, you can determine that $x=1$ is the only positive rational zero of f.

$$
\begin{array}{l|rrrr}
1 & 1 & 4 & -2 & -3 \\
& & 1 & 5 & 3 \\
\hline & 1 & 5 & 3 & 0
\end{array}
$$

Because $x=1$ is a zero of $f, x=1$ is a solution of $f(x)=0$. So, it was day 1 when the water reached a height of 10 millimeters.
Answer: day 1

Q Real-World example 3 © Guided Practice

PHYSICS The path of a ball is given by the function $f(x)=-4.9 x^{2}+21.5 x+40$, where x is the time in seconds and $f(x)$ is the height above the ground in meters. After how many seconds will the ball reach a height of 25 meters?
A. 4 seconds, 10 seconds
B. 4 seconds
C. 5 seconds, $\frac{30}{49}$ seconds
D. 5 seconds

