
Notes and Solutions for:

Artifical Intelligence: A Modern Approach:

by Stuart Russell and Peter Norvig.

John L. Weatherwax∗

Nov 10, 2001

∗
wax@alum.mit.edu

1

Chapter 3 (Solving Problems by Searching)

Problem Solutions

Formulating Various Search Problems

Part (d): In this case we could take our state to be how much water is in each jug and
our successor function would simulate filling jugs with water, pouring water from one jug to
another, and pouring water out of a jug onto the ground. I have implemented some code
that solve problems of this type in the python code Pouring Problems.py. When that code
is run it will solve the given problem instance and gives the following output

state= (0, 0, 0); from sink pour 12 into 0 to get state= (12, 0, 0)

state= (12, 0, 0); from 0 pour 8 into 1 to get state= (4, 8, 0)

state= (4, 8, 0); from 0 pour 3 into 2 to get state= (1, 8, 3)

In this final state our first jug has one gallon of water in it (and satisfies our goal).

The missionaries and the cannibals

Part (a): The state space for this problem consists of a description of each side of the river
where the description consists of the number of missionaries, the number of cannibals, and
whether or not there is a boat on that side of the river. To solve this using the program-
ming language python, I’ll represent the state as a simple dictionary of dictionaries like the
following (shown for the initial state)

state = { "LSide": { "nMiss": 3, "nCann": 3, "nBoat": 1 },

"RSide": { "nMiss": 0, "nCann": 0, "nBoat": 0 } }

The “successor” function will have to check if a given action would result in the number of
cannibals outnumbering the number of missionaries. If an action were to produce a state
where that is true we cannot take that action.

A general graph search algorithm for this problem was coded in the python code
missionaries N cannibals.py. When that code is run it comes up with the following
solution to this problem (in a simplified notation):

Initial state: {L: {nC=3, nM=3, nB=1}, R: {nC=0, nM=0, nB=0}}

Action Resulting State

2 Cannibals LSide to RSide {L: {nC=1, nB=0, nM=3}, R: {nC=2, nB=1, nM=0}}

1 Cannibal RSide to LSide {L: {nC=2, nB=1, nM=3}, R: {nC=1, nB=0, nM=0}}

2

2 Cannibals LSide to RSide {L: {nC=0, nB=0, nM=3}, R: {nC=3, nB=1, nM=0}}

1 Cannibal RSide to LSide {L: {nC=1, nB=1, nM=3}, R: {nC=2, nB=0, nM=0}}

2 Missionaries LSide to RSide {L: {nC=1, nB=0, nM=1}, R: {nC=2, nB=1, nM=2}}

1 Cannibal, 1 Missionary RSide to LSide {L: {nC=2, nB=1, nM=2}, R: {nC=1, nB=0, nM=1}}

2 Missionaries LSide to RSide {L: {nC=2, nB=0, nM=0}, R: {nC=1, nB=1, nM=3}}

1 Cannibal RSide to LSide {L: {nC=3, nB=1, nM=0}, R: {nC=0, nB=0, nM=3}}

2 Cannibals LSide to RSide {L: {nC=1, nB=0, nM=0}, R: {nC=2, nB=1, nM=3}}

1 Missionary RSide to LSide {L: {nC=1, nB=1, nM=1}, R: {nC=2, nB=0, nM=2}}

1 Cannibal, 1 Missionary LSide to RSide {L: {nC=0, nB=0, nM=0}, R: {nC=3, nB=1, nM=3}}

Solving the 8 puzzle

Under the conditions where all search nodes are generated at the same time (rather than
generated on an “as needed” basis) an implementation of iterative deepening depth-first
search can be found in the python code eight puzzle.py. To help facilitate testing of this
routine (and to not try and search for a solution to an unsolvable problem) I generate a
random starting board by performing some number of random steps from the goal state. An
example of the solution this routine could produce (stating with a board generated from 30
random steps from the goal state) I’m getting

Initial state: [0, 2, 4, 1, 8, 5, 3, 6, 7]

Action Resulting State

right [2, 0, 4, 1, 8, 5, 3, 6, 7]

right [2, 4, 0, 1, 8, 5, 3, 6, 7]

down [2, 4, 5, 1, 8, 0, 3, 6, 7]

left [2, 4, 5, 1, 0, 8, 3, 6, 7]

up [2, 0, 5, 1, 4, 8, 3, 6, 7]

left [0, 2, 5, 1, 4, 8, 3, 6, 7]

down [1, 2, 5, 0, 4, 8, 3, 6, 7]

down [1, 2, 5, 3, 4, 8, 0, 6, 7]

right [1, 2, 5, 3, 4, 8, 6, 0, 7]

right [1, 2, 5, 3, 4, 8, 6, 7, 0]

up [1, 2, 5, 3, 4, 0, 6, 7, 8]

up [1, 2, 0, 3, 4, 5, 6, 7, 8]

left [1, 0, 2, 3, 4, 5, 6, 7, 8]

left [0, 1, 2, 3, 4, 5, 6, 7, 8]

The array notation above is a short hand for more standard “board” notion. For example,
the initial state above (where 0 represents the blank space) has the equivalence

[1, 4, 2, 3, 0, 5, 6, 7, 8] is the same as the "board" array([[1, 4, 2],

[3, 0, 5],

[6, 7, 8]])

3

Perhaps it is due to keeping all of these search nodes in memory but it seems that this
algorithm is only able to solve (in a reasonable amount of time) relatively small 8 puzzle
problems. I did not have time to implement the more memory efficient 8 puzzle solver and
compare its performance.

4

Chapter 4 (Beyond Classical Search)

Notes on the Text

Notes on effective heuristic accuracy on performance

52 = 1 + b∗ + b∗2 + · · · b∗d−1 + b∗d =
b∗d+1 − 1

b∗ − 1
.

with d = 5 we can solve for b∗ and get b∗ = 1.92.

5

Chapter 14 (Probabilistic Reasoning)

Notes on the Text

Notes on efficient representation of conditional distributions

In this section we are given an example of a noisy-OR relationship between the variables
Cold, F lu, and Malaria. We expect that each of these variables (by itself) will influence
the presence of the symptom (here fever). Namely we could expect to somewhat easily
find/compute numbers like

P (fever|cold,¬flu,¬malaria) = 0.4

P (fever|¬cold, f lu,¬malaria) = 0.8

P (fever|¬cold,¬flu,malaria) = 0.9 .

These give the probability that we have a fever given only one of the possible causes of a
fever. Thus if we have malaria (and nothing else) it is very likely that we will have a fever,
while if we have a cold (and nothing else) it is less likely. The book presents the probability
complement of these relationships i.e. values for P (¬fever|cold,¬flu,¬malaria) = 0.6, but
the two are equivalent. In the noisy-OR model, rather than require a new parameter in the
cases where more than one cause is true we compute the probabilities of these cases from
the above inputs. For example, if rather than numbers we have taken parameters as

P (¬fever|cold,¬flu,¬malaria) = θc

P (¬fever|¬cold, f lu,¬malaria) = θf

P (¬fever|¬cold,¬flu,malaria) = θm ,

then using these as inputs we compute the probabilities of having a fever when we have
multiple symptoms

P (¬fever|¬cold, f lu,malaria) = P (¬fever|¬cold, f lu,¬malaria)

× P (¬fever|¬cold,¬flu,malaria) = θfθm

P (¬fever|cold,¬flu,malaria) = P (¬fever|cold,¬flu,¬malaria)

× P (¬fever|¬cold,¬flu,malaria) = θcθm

P (¬fever|cold, f lu,¬malaria) = P (¬fever|¬cold, f lu,¬malaria)

× P (¬fever|cold,¬flu,¬malaria) = θfθc and finally

P (¬fever|cold, f lu,malaria) = P (¬fever|cold,¬flu,¬malaria)

× P (¬fever|¬cold, f lu,¬malaria)

× P (¬fever|¬cold,¬flu,malaria) = θcθfθm .

These are how the entries in the table from this section are constructed.

Note: Below here these notes have not been proofed yet.

6

Notes on completeness of the node ordering

Figure 14.3 (b) to specify P (M) and P (J) we need two numbers. To specify P (E|M,J) re-
quires 4 numbers. To specify P (B|M,E, J) requires 23 = 8 numbers. To specify P (A|B,M,E, J)
requires 24 = 16 numbers this gives a total of 30 numbers. Why is this not equal to 31?

Notes on Figure 14.6

P (c|h) = p(c|h, s)p(s|h) + p(c|h, 6 s)p(6 s|h)
= p(c|h, s)p(s) + p(c|h, 6 s)p(6 s) .

Since by assumption we assume that subsidy is independent to harvest. If we take p(s) = p(6
s) = 0.5.

Notes on the Variable Elimination Algorithm

We have

P (John Call|Burglary = True) = αP (John Call|Burglary = True)

= α
∑

e

∑

a

∑

m

P (J, b, e, a,m)

= α
∑

e

∑

a

∑

m

P (b)P (e)P (e|b, e)P (J |a)P (m|a)

= αP (j)
∑

e

P (e)
∑

a

P (a|b, e)P (J |a)
∑

m

P (m|a) ,

Notes on Approximate Inference in Bayesian Networks

Sample from each variable cloudy, sprinkler, rain,wet grass with the variable specification of
[true, false, true, true] we have

SPS(true, false, true, true) = P (cloudy = true)P (sprinkle = false|cloudy = true)

× P (Rain = true|Cloudy = true)

× P (wetgrass = true|Sprinkle = false, Cloudy = true)

= 0.5(0.9)(0.8)(0.9) =

7

0 20 40 60 80 100

0.4
0.5

0.6
0.7

0.8
0.9

1.0

training set size

Pr
op

ora
tio

n c
orr

ec
t o

n t
es

t s
et

Figure 1: Duplication of the books figure 18.7 using the R code dup fig 18 7.R. The red
curve (a straight line at 1) is the classification accuracy of the build decision tree on the
training data. The top most green curve is the classification accuracy of a decision tree on a
new test set of data. The bottom curve is the classification accuracy on the test data using
“table lookup” discussed in the problems.

Chapter 18 (Learning From Observations)

Notes on the Text

Notes on Section 18.3 (learning decision trees)

See the R code restaurant problem gen data.R where we randomly generate input data
for the restaurant problem and then use the tree given in the books figure 18.2 to decide
what values to assign to the output WillWait. Next we implement the books function
DECISION-TREE-LEARNING in the R code decision tree learning.R. Then in the R code
dup fig 18 7.R we generate training and testing data for various training set sizes and
duplicate the learning curve given in the books figure 18.7. Running the R code gives rise to
the Figure 1. This result matches the books result quite closely.

8

20 40 60 80 100

0.5
0.6

0.7
0.8

0.9
1.0

training set size

Pr
op

ora
tio

n c
orr

ec
t o

n t
es

t s
et

AdaBoost test accuracy
Stumps test accuracy

Figure 2: Duplication of the books figure 18.11 using the R code dup fig 18 11.R.

Notes on Section 18.4 (ensemble learning)

See the R code dup fig 18 11.R where we use the R code adaboost w decision trees.R to
duplicate the learning curve given in the books figure 18.11. Running the R code gives rise
to the Figure 2. This result matches the books result quite closely.

Problem Solutions

Problem 18.4 (testing the same attribute twice)

For the decision trees presented in this chapter, we build them in a greedy manner looking
for the attribute that when we split on it will result in the largest information gain. Once
that attribute has been found we split the training set based on that attributes possible
values and consider each resulting sub set of the data in a recursive manner, ignoring values
of the attribute we split on. The reason we ignore the attribute we split on is that, once top
level data is split using a specific attribute value then each resulting subgroup of data has
the same attribute value and thus there is no variation in that attribute in which to facilitate
further splitting. If a decision tree is built using continuous variables as input and the split
points are restricted to be Boolean i.e. X < 0 then we may want to revisit this attribute at
further points down the tree since not every sample will have the same value.

9

Problem 18.5 (returning the correct tree)

If the data generation process is without noise I think the answer is yes. In other words, if
the data generation process produces data that is generated from a tree the learned tree will
eventually match that from the data generation process (logically) as the number of samples
goes to infinity. The learned tree may not be exactly the same tree that generated the data
but will be logically equivalent (i.e. provide the same labeling to examples). If the process
contains noise then again under the infinite data case the resulting tree should be logically
equivalent to the data generation process. Practically decision trees are very sensitive to
noise and thus the number of samples one needs to have a good match can will be larger in
the “with noise” case vs. the “without noise” case.

Problem 18.6 (table look-up learning)

The suggested algorithm really just “memorizes” the training data and when presented with
an input it has seen before returns that inputs response. If a provided input happens to
have more than one output the classifier returns the most likely response. This algorithm
is implemented in the R code table lookup learning.R. To compare this algorithm with
others in the R code dup fig 18 7.R we present learning curves of table lookup learning.R

compared with that of decision tree learning.R.

Problem 18.7 (zero leave-one-out cross validation?)

For the perfectly paired samples (25 in each of class A and B) when we leave one sample
out (say from class A) we will have 24 samples remaining from class A and 25 samples from
class B. The majority classifier in this case will return B which is incorrect since the sample
held out was from A. Thus the classifier is wrong for every sample we perform this process
to (giving zero classification accuracy).

Problem 18.8 (error criterion)

Let ti be the “target” for the ith training sample have the value 0 if the output should be
“false” and 1 if the output should be “true”. Let t̂i be the assigned label from the classifier.

Part (a): In this case our metric for performance is the absolute error or

E ≡
n+p
∑

i=1

|t̂i − ti| ,

where we have n negative and p positive examples. We assume that we will pick the same

10

value t̂ (i.e. it is independent of i) for all samples in this node and the above becomes
∑

negative examples

|t̂|+
∑

positive examples

|t̂− 1| = n|t̂|+ p|t̂− 1| .

The expression on the right-hand-side is the sum of two piecewise linear functions and is thus
a piecewise linear function. When t̂ → ±∞ its value goes to +∞ and its smallest value will
be at the “corners”. This means when t̂ = 0 or when t̂ = 1. If t̂ = 0, classify everything as
false, we get the value of p, the number of positive examples. When t̂ = 1, classify everything
as true, we get n, the number of negative examples. Thus to make this expression as small
as possible we take t̂ = 0 if p < n and take t̂ = 1 if p > n. This is the same as picking the
majority classification.

Part (b): In this case our metric for performance is the squared error or

E ≡
n+p
∑

i=1

(t̂i − ti)
2 = nt̂2 + p(t̂− 1)2 .

It is now possible that the minimum value of the above happens to be between the values of
[0, 1]. To find possible minimums we take the first derivative of the above expression with
respect to t̂, set the result equal to zero, and solve for t̂ to get

2nt̂ + 2p(t̂− 1) = 0 so t̂ =
p

n+ p
.

The second derivative of the above is given by 2n+2p > 0 showing that the above expression
is a minimum. Evaluating the above at t̂ = p

n+p
we get np

n+p
. Since our minimum location is

inside the domain [0, 1] we don’t need to check to see if the end points of the domain have
a smaller objective value.

Problem 18.11 (implementing χ2-pruning)

I’ll assume in working this problem that we will apply χ2-pruning as the tree is built. One
can imagine running a pruning routine after a tree has been overfit and using it to remove
unnecessary splits. This procedure works as follows when we are considering next splitting
on the attribute A that has the largest information gain before we actually make the split
we will perform a statistical hypothesis test to determine if indeed this split is significant.
To do this we perform the following steps

• Compute for each of the v child nodes i = 1, 2, · · · , v − 1, v the values

p̂i = (pi + ni)

(

p

p+ n

)

n̂i = (pi + ni)

(

n

p+ n

)

.

Here p

p+n
is the fraction of positive examples in the parent node and thus p̂i as defined

above is the expected number of positive examples in the ith node that has pi + ni

samples flowing there. As similar statement can be made for the expression n̂i.

11

50 100 150 200

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

training set size

Pr
op

ora
tio

n c
orr

ec
t o

n t
es

t s
et

BL train accuracy
BL test accuracy
Chi2 train accuracy
Chi2 test accuracy

Figure 3: Learning curves for tree learning with χ2 pruning.

• Next compute the value

D =

v
∑

i=1

(

(pi − p̂i)
2

p̂i
+

(pi − p̂i)
2

p̂i

)

.

We expect D to be large if this split is significant since then pi 6= p̂i.

• Compute the value of cα,v−1 or the (1 − α)% critical value of a χ2 distribution with
v − 1 degrees of freedom. If D < cα,v−1 we conclude that we cannot reject the null
hypothesis and don’t perform the indicated splitting on this parent node.

This procedure is implemented in the R code decision tree learning.R. We test this code
in the script chap 18 prob 11.R. When that code is run we get the plot given in Figure 3.

Problem 18.12 (learning a decision tree with missing attribute values)

The expression for the gain obtained when we split on an attribute A is given by

Gain(A) = I

(

p

p+ n
,

n

p+ n

)

− Remainder(A)

= I

(

p

p+ n
,

n

p+ n

)

−
v
∑

i=1

(

pi + ni

p+ n

)

I

(

pi

pi + ni

,
ni

pi + ni

)

. (1)

12

Recall that pi and ni are the positive and negative examples that result when we require
the attribute A take on its ith value. We need a way to modify this calculation in the case
where the training data might have missing values for this attribute. If we assume that there
are m training samples with missing attributes for A then we would expect that on average
if we had split these examples into positive and negative examples when they had the ith
attribute values we would get

m

(

pi

pi + ni

)

,

additional positive examples and

m

(

ni

pi + ni

)

,

additional negative examples. Thus create given m training examples with missing values
for attribute A we augment pi and ni to include the expected number of examples we would
get for each of these m. This means that we can compute

p̂i = pi +m

(

pi

pi + ni

)

n̂i = ni +m

(

ni

pi + ni

)

,

and run the standard tree building algorithm with p̂i and n̂i in place of pi and ni. This is
implemented in the R code decision tree learning.R. To compare performance in the cases
where there is missing attributes in the training data with the R code chap 18 prob 12.R

we build trees with complete data and then trees with incomplete data (data that contains
missing attribute values for a fixed number of the training samples). We then generate
test data with the same properties and see how the testing errors compare. When that R

code is run we get the plot in Figure 4. As we see when the number of training examples
increases while the number of samples with an error stays constant the learned decision-tree
will continue to improve the more data is observed.

Problem 18.13 (building a decision tree using the gain ratio)

Recall that the information gain when we split on attribute A is given by Equation 1 where
the information content I is given by

I(p, q) = −p log2(p)− q log2(q) , (2)

here p and q are probabilities so p + q = 1. In general for a distribution that has v possible
values vi each with probabilities P (vi) for i = 1, 2, · · · , v − 1, v we have the information
content defined as

I(P (v1), P (v2), · · · , P (vv−1), P (vv)) = −
v
∑

i=1

P (vi) log2(P (vi)) . (3)

The gain ratio is then the ratio of the information gain (given by Equation 1) and the
intrinsic information I given by Equation 3. In the R code decision tree learning.R

there is an option that allows trees to be built using this criterion.

13

50 100 150 200

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

training set size

Pr
op

ora
tio

n c
orr

ec
t o

n t
es

t s
et

CD train accuracy
CD test accuracy
MD train accuracy
MD test accuracy

Figure 4: Learning rates for training with complete data (CD) and training with data that
contains missing data (MD). Note that the training and testing error for the complete case
(where there are no missing attributes represented as the R NA) is better in the long run
than in the case where we have missing attributes. This is to be expected since we are loosing
information from the training set with the introduction of missing attributes. For a fixed
number of missing attributes the testing error learning rate in each case is asymptotic to the
same value. This is to be expected because eventually the amount of good data overwhelms
the amount of bad data. If we enforced a fixed fraction of data with missing attributes
at every training set size we might see the error rates of the missing data case becomes a
constant factor worse than in learning when we have complete data.

14

Problem 18.14 (an ensemble of learning algorithms)

We have that ǫ is the probability that a single classifier makes a mistake. We want to evaluate
the probability that the ensemble of classifiers makes a mistake. This will happen if at least
⌈M

2
⌉ of the classifiers vote incorrectly (i.e. make a mistake). Assuming independence we will

have exactly k classifiers make a mistake with probability

(

M

k

)

ǫk(1− ǫ)N−k .

we will thus have at least ⌈M
2
⌉ classifiers make a mistake with a probability of

M
∑

k=⌈M
2
⌉

(

M

k

)

ǫk(1− ǫ)N−k .

For the given values of M and ǫ we find the above probability given by

[1] " 5 0.10 0.008560"

[1] " 5 0.20 0.057920"

[1] " 5 0.40 0.317440"

[1] " 10 0.10 0.000147"

[1] " 10 0.20 0.006369"

[1] " 10 0.40 0.166239"

[1] " 20 0.10 0.000001"

[1] " 20 0.20 0.000563"

[1] " 20 0.40 0.127521"

See the R script chap 18 prob 14.R.

15

Chapter 20 (Statistical Learning Methods)

Notes on the Text

Notes on Section 20.1 (the likelihood of various data sequences)

It may help to consider the general equations for posterior probability and the predicted
probability in the case of observing 10 lime candies in a row. When P (dj = lime|h3) =

1
2
if

we see 10 limes in a row then we would have the probability of this data vector is

P (d = lime|h3) =

(

1

2

)10

.

Here d is the vector of all samples and lime is a vector of 10 lime readings. In general to
determine the probability that a given hypothesis hi for 1 ≤ i ≤ 5 is true, given the data
vector d of ten measurements we would need to evaluate

P (hi|d) = α

(

10
∏

j=1

P (dj|hi)

)

P (hi) . (4)

In the above we need the individual likelihoods of each data i.e. P (dj|hi). In this case these
are computed from the information in the problem where we are told that

P (dj = lime|h1) = 0

P (dj = lime|h2) =
1

4

P (dj = lime|h3) =
1

2

P (dj = lime|h4) =
3

4
P (dj = lime|h5) = 1 .

Values for the likelihoods P (dj = cherry|hi) can be computed using P (dj = cherry|hi) =
1 − P (dj = lime|hi). Thus in the case where all 10 measurements are of lime candies the
probability of each type of bag hi using Equation 4 would be given by

P (hi|d) = αP (lime|hi)
10P (hi) .

To compute the predicted next flavor given N measurements we would use

P (dN+1 = lime|d1, · · · , dN) =
5
∑

i=1

P (dN+1 = lime|hi)P (hi|d1, · · · , dN) . (5)

Here P (hi|d1, · · · , dN) would be computed using Equation 4 but of course over N measure-
ments and not just 10.

16

20 40 60 80 100

0.4
0.5

0.6
0.7

0.8
0.9

1.0

training set size

pro
ba

bil
ity

 co
rre

ct
de

cis
ion

decision tree
naive bayes

Figure 5: Bayesian learning when data is drawn from each of the five different bag types.

Notes on the Naive Bayes Model

In the R code naive bayes.R we implement the Naive Bayes model. In the R code dup fig 20 3.R

we run this code and the code decision tree learning.R to learn models for the restau-
rant problem. The learning curves for these two methods are plotted in Figure 5. This plot
agrees well with the one presented in the book.

Notes on Maximum-likelihood parameter learning in discrete models

With the joint density parametrization of the two variables (flavor,wrapper) given by

P (F = c,W = g) = θ(1− θ1)

P (F = c,W = r) = θθ1

P (F = l,W = g) = (1− θ)(1− θ2)

P (F = l,W = r) = (1− θ)θ2 .

Here c is a cherry flavored candy, l is a lime flavored candy, g is a green wrapper, and r is a
red wrapper. The parameters of the above model are θ, θ1, and θ2 (and thus the hypothesis
h depends on them). We have that given a sequence of N candies in d where we observe
both the flavor and the wrapper color the likelihood of this data sequence is given by

P (d|hθ,θ1,θ2) = θc(1− θ)lθrc1 (1− θ1)
gcθrl2 (1− θ2)

gl .

17

Thus the log-likelihood for the full data set looks like

L = log(P (d|hθ,θ1,θ2))

= [c log(θ) + l log(1− θ)] + [rc log(θ1) + gc log(1− θ1)] + [rl log(θ2) + gl log(1− θ2)] .

which shows a decomposition into three parts each of which only depends on terms that
depend only on one of the parameters θ, θ1, and θ2.

Notes on learning with hidden variables

The book discuss the number of parameters in the two Bayes networks given in Figure 20.7.
The network on the left has a hidden variable HeartDisease. We assume that each variable
has three states. In this section of these notes we document how the book counted the
total number of variables. For the network on the left we need to specify 2 parameters
to specify the distribution P (Smoking) the third probability is constrained since the three
numbers must sum to one. We have two more parameters to specify the distribution for
each of P (Diet) and P (Exercise). This given a total of 2 + 2+ 2 = 6 parameters to specify
the first row. Then to specify the conditional probability distribution of HeartDisease for
each value of the parents, there are 33 = 27 unique ways to specify the parents to this
node and for each one we need 2 (the third one is determined such that everything sums to
one). This means that we have 2 × 27 = 54 additional parameters. This gives at total of
6 + 54 = 60 parameters thus far. Next to specify the conditional probability distribution of
P (Symptomi|HeartDisease) for the three symptoms. We have to specify one of the three
values for HeartDisease and then for each value two parameters for 6 parameters for a
symptom. For all three symptoms this gives an addition 3(6) = 18 parameters. In total we
thus have 60 + 18 = 78 parameters.

Next for the complete network we again have to specify a total of 6 parameters to specify the
prior distributions of Smoking, Diet, and Exercise just as in the first network. To determine
the number of parameters needed to describe the conditional probability table (CPT) for
Symptom1 we note that we have to specify the values of Smoking, Diet, and Exercise

which requires 33 = 27 specifications and for each of them we have two parameters giving
2(27) = 54 parameters. Next we determine the number of parameters needed to describe
the conditional probability table for Symptom2. We again have to specify the values of
Smoking, Diet, and Exercise but now we also have to specify the value of Symptom1

which in total requires 34 = 81 specifications for the conditioning variables of Symptom2.
Thus for this CPT we need 2(81) = 162 parameters. Finally for the specification of the CPT
for Symptom3 (using the same logic) we have

35(2) = 486 ,

parameters. Thus in total we have 6 + 54 + 162 + 486 = 708 parameters.

18

Notes on Learning Bayesian Networks with Hidden Variables

In the python code dup Bayes nets w hidden variables.py we have some code to dupli-
cate the numbers in using the EM algorithm to compute the parameter estimates in the
Bayesian network for the mixture model for candy.

Notes on Single Layer Feed-Forward Neural Networks (Perceptrons)

Using code developed earlier for decision tree learning with the new codes in

• majority function gen data.R to generate data for the majority function and

• perceptron learning.R to learn a perceptron

we can run dup fig 20 22 majority function.R and dup fig 20 22 restaurant problem.R

to duplicate the books Figure 20.22. The results of running these two scripts are given in
Figure 6.

Problem Solutions

Problem 20.1-20.2 (Bayesian learning and prediction)

See the R code chap 20 prob 1 N 2.R where this problem is worked. When we run that R
code we get the plots shown in Figure 7. Notice that in each case as enough data is drawn
the type of bag the candies is coming from can be determined.

Problem 20.3 (when to trade/sell your candy)

Assume that bag starts with N candy pieces and we will draw and unwrap m candies. Then
from this sequence of candies that we unwrap we get a “measurement” vector d with m

measurements of either lime or cherry. Then we will have N −m candies left. The fair value
of the bag for Anne is given by its expected utility and the fair value of the bag for Bob is
also given by his expected utility. The fair value is the price at which either Bob or Anne will
pay for the given bag. If we compute the expected utility (over the different bag hypothesis

19

20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

training set size

P
ro

po
ra

tio
n

co
rr

ec
t o

n
te

st
 s

et

decision tree test accuracy
perceptron test accuracy

20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

training set size

P
ro

po
ra

tio
n

co
rr

ec
t o

n
te

st
 s

et

decision tree test accuracy
perceptron test accuracy

Figure 6: Left: Learning a decision tree (red curve) and a perceptron (green curve) on data
from the majority function. Notice that on this learning task the perceptron is better able to
learn this task. Right: Learning a decision tree (red curve) and a perceptron (green curve)
on data from the restaurant problem. Notice that the decision tree vastly outperforms the
perceptron in this learning task. Note in both of these learning tasks for given training set
size we trained each algorithm 10 times and then report the average classification accuracy
(the probability that we make a correct classification over the entire test dataset). This has
the effect of smoothing each curve so that the true trend in learning can be more easily seen.

20

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

data from bag 1

index of candy drawn

pro
b(h

|dat
a)

bag 1
bag 2
bag 3
bag 4
bag 5

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

lime prediction

index of candy drawn

pro
b(n

ext
is li

me|
data

)

Bayes
MAP
ML

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

data from bag 2

index of candy drawn

pro
b(h

|dat
a)

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

lime prediction

index of candy drawn

pro
b(n

ext
is li

me|
data

)

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

data from bag 3

index of candy drawn

pro
b(h

|dat
a)

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

lime prediction

index of candy drawn

pro
b(n

ext
is li

me|
data

)

0.8
1.0

data from bag 4

0.8
1.0

lime prediction

21

hi) for Anne after unwrapping the m pieces is given by

E[UA] = cA1(N −m)P (h1|d)
+ cA0.75(N −m)P (h2|d) + lA0.25(N −m)P (h2|d)
+ cA0.5(N −m)P (h3|d) + lA0.5(N −m)P (h3|d)
+ cA0.25(N −m)P (h4|d) + lA0.75(N −m)P (h4|d)
+ lA1(N −m)P (h5|d) .

A row of the above can be reasoned as follows. For the second row, where we are considering
h2 to be true then we will have on average 0.75(N−m) cherry candies and 0.25(N−m) lime
candies. For Anne each cherry candies carries a utility of cA and each lime candy carries a
utility of lA. Thus when we weight by the probability of each hypothesis we get the above
expression. The utility for Bob is computed in the same way and we get

E[UB] = cB1(N −m)P (h1|d)
+ cB0.75(N −m)P (h2|d) + lB0.25(N −m)P (h2|d)
+ cB0.5(N −m)P (h3|d) + lB0.5(N −m)P (h3|d)
+ cB0.25(N −m)P (h4|d) + lB0.75(N −m)P (h4|d)
+ lB1(N −m)P (h5|d) .

Anne will want to sell her bag of candies when Bob’s utility (the price he will pay) is greater
than Anne’s value of that bag or

E[UB] > E[UA] . (6)

Notice that if we put the above two expressions for E[UA] and E[UB] into the above the
expression N −m cancel and the results are independent of the number of samples. To use
this procedure one would unwrap candy until Equation 6 is true. At this point Anne should
sell her bag of candy to Bob for an amount E[UB].

Problem 20.4 (two statisticians)

The first statistician (the Bayesian) would weight his drugs in proportion to how likely each
disease is. Thus he would request a drug cocktail consisting of a mixture of 40% anti-A and
60% anti-B. The second statistician would request the maximum-likelihood solution which
in this case would be to assume that the disease is B and then request to take all a cocktail
of only anti-B.

When the type B disease now comes in two types dextro-B and levo-B since they are equally
likely the possible disease sources are

• disease A 40%

• disease dextro-B 30%

• disease levo-B 30%

22

The Bayesian would now request a cocktail consisting of 40% anti-A, 30% anti-B, 30% anti-
B which is really the same cocktail requested before. The second statistician would now
select the maximum likelihood solution (which is disease A now) and thus request a cocktail
of 100% anti-A. Thus the second statistician has now selected an entirely different cocktail
while the Bayesian cocktail has not changed.

Problem 20.5 (naive Bayes learning with boosting)

In this problem, we compare the learning performance of decision trees, naive Bayes, and
boosted naive Bayes on data for the restaurant problem. The naive Bayes algorithm is imple-
mented in the routine naive bayes.R, decision trees in the code decision tree learning.R

and boosted naive bayes is implemented in the code adaboost w naive bayes.R.

These three routines are then called from the script chap 20 prob 5.R. We then plot the
learning curves for each algorithm in Figure 8. These are curves where we observe the test
set accuracy as the number of samples in the dataset increases. In that figure we see that the
best performer is the decision tree algorithm. This might be due to the fact that the actual
data was generated from a function that is effectively a decision tree. Thus the decision tree
learning is only having to learn the parameters (the attributes to split on at each stage) of
the model and not the functional form. The other learners must learn the functional form
(a decision tree) as well as the parameters of the tree. This means that we expect them to
have a harder task to perform. We see that the boosted naive bayes is able to learn from
the data better than direct naive bayes but only if enough data is present. The fact that
more data needs to be supplied for boosted naive bayes to outperform direct naive bayes is
an argument for using direct naive bayes (where in the real world data is always limited).

Problem 20.6 (maximum-likelihood parameter learning)

Since the distribution of y given x is assumed to be Gaussian it takes the functional form

p(y|x) = 1√
2πσ

e−
1

2σ2
(y−(θ1x+θ2))2 .

The likelihood of the data d given the parameters of the model or hθ1,θ2,σ is

p(d|hθ1,θ2,σ) =

N
∏

i=1

1√
2πσ

e−
1

2σ2
(yi−(θ1xi+θ2))2 .

23

200 400 600 800 1000

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

training set size

pro
ba

bil
ity

 co
rre

ct
de

cis
ion

decision tree
boosted naive bayes
naive bayes

Figure 8: Comparing boosted naive Bayes learning with naive Bayes (by itself) and decision
tree learning.

Thus the log-likelihood of this expression is given by

L = log(P (d|hθ1,θ2,σ)) =

N
∑

i=1

log

(

1√
2πσ

e−
1

2σ2
(yi−(θ1xi+θ2))2

)

= −N log(
√
2πσ)−

N
∑

i=1

1

2σ2
(yi − (θ1xi + θ2))

2

= −N log(
√
2π)− N

2
log(σ2)− 1

2σ2

N
∑

i=1

(yi − (θ1xi + θ2))
2 .

From the above, to find the maximum of L we need to take the derivatives with respect to
the parameters (in this case θ1, θ2, and σ2), set the resulting equations equal to zero, and
solve for the parameters. We get

∂L

∂θ1
= − 1

σ2

N
∑

i=1

(yi − (θ1xi + θ2))(−xi) = 0 , (7)

∂L

∂θ2
= − 1

σ2

N
∑

i=1

(yi − (θ1xi + θ2))(−1) = 0 , (8)

∂L

∂σ2
= −N

2

1

σ2
+

1

2(σ2)2

N
∑

i=1

(yi − (θ1xi + θ2))
2 = 0 . (9)

24

Note that in the above we are solving for σ2 that maximizes the log-likelihood of the data
(rather than σ) since that is computationally easier and equivalent. Distributing the sum in
Equation 8 gives

N
∑

i=1

yi − θ1

N
∑

i=1

xi − θ2N = 0 .

If we divide this equation by N we get

1

N

N
∑

i=1

yi − θ1

(

1

N

N
∑

i=1

xi

)

− θ2 = 0 .

Equation 7 gives

1

N

N
∑

i=1

xiyi − θ1

(

1

N

N
∑

i=1

x2
i

)

− θ2

(

1

N

N
∑

i=1

xi

)

= 0 .

These give two equations and two unknowns for the variables θ1 and θ2. As a matrix system
(and using somewhat standard notation for averages) this looks like

[

x̄ 1

x2 x̄

] [

θ1
θ2

]

=

[

ȳ

xy

]

.

This can be solved with Cramer’s rule and we find

θ1 =

∣

∣

∣

∣

ȳ 1
xy x̄

∣

∣

∣

∣

∣

∣

∣

∣

x̄ 1

x2 x̄

∣

∣

∣

∣

=
x̄ȳ − xy

x̄2 − x2
(10)

θ2 =

∣

∣

∣

∣

x̄ ȳ

x2 xy

∣

∣

∣

∣

∣

∣

∣

∣

x̄ 1

x2 x̄

∣

∣

∣

∣

=
x̄xy − x2ȳ

x̄2 − x2
. (11)

Once we have θ1 and θ2 solved for we can use Equation 9 to solve for σ2. We find

σ2 =
1

N

N
∑

i=1

(yi − (θ1xi + θ2))
2 .

Note we would use the values of θ1 and θ2 found in Equations 10 and 11 to get the estimate
of σ2 using the above expression.

Problem 20.7 (maximum-likelihood learning of the noisy-OR model)

See Page 6 for some discussion on the noisy-OR model. If we assume that we have complete
data meaning that we have true/false values for each of the variables (fever, cold, f lu,malaria).

25

Then with N data points the total likelihood for this data is given by

N
∏

i=1

P (feveri, coldi, f lui, malariai) =
N
∏

i=1

P (feveri|coldi, f lui, malariai)P (coldi, f lui, malariai)

= P (coldi)
NP (flui)

NP (malariai)
N

×
N
∏

i=1

P (feveri|coldi, f lui, malariai) .

Here we have assumed that the causes cold, flu, or malaria are all independent. Then to
maximize the above likelihood is equivalent to maximizing the above conditional likelihood.
To study how to maximize our likelihood lets generalize the notation a bit. We start with a
Boolean (0 for false and 1 for true) symptom Y (like fever) and some number c of Boolean
possible causes (like cold, flu, or malaria). The noisy-OR model is useful when its easier
to specify the probability of the symptom given a single cause is true i.e.

P (Y = 0|Xj = 1, X−j = 0) = θj or equivalently P (Y = 1|Xj = 1, X−j = 0) = 1− θj .

Here the notation X−j = 0 means that we know that all the causes (but the jth which we
don’t necessarily know about) are false. Given the above parameters we can express the
value of any set of conditioning variables on the event Y = 0 as follows

P (Y = 0|X1 = x1, X2 = x2, · · · , Xc−1 = xc−1, Xc = xc) =

c
∏

j=1

P (Y = 0|Xj = 1, X−j = 0)xj

=
c
∏

j=1

θ
xj

j .

stating mathematically the fact that the probability we have our Boolean symptom Y = 0
is the product of the probability we have Y = 0 for each of the cause variables that are true
xj = 1. Using this we can compute

P (Y = 1|X1 = x1, X2 = x2, · · · , Xc−1 = xc−1, Xc = xc) = 1−
c
∏

j=1

θ
xj

j .

We can now express the total data likelihood in terms of the parameters θj . We assume
that the realization of the symptom variable for each of our N cases is denoted yi (for
i = 1, . . . , N) and the realization of our possible causes for each of the N cases is denoted
xij (for i = 1, . . . , N and j = 1, . . . , c). Using this our conditional likelihood L is given by

L =
N
∏

i=1

P (Y = yi|xi1, xi2, · · · , xi,c−1, xi,c)

=
N
∏

i=1

P (Y = 1|xi1, xi2, · · · , xi,c−1, xi,c)
yiP (Y = 0|xi1, xi2, · · · , xi,c−1, xi,c)

1−yi

=

N
∏

i=1

(

1−
c
∏

j=1

θ
xij

j

)yi
(

c
∏

j=1

θ
xij

j

)1−yi

.

26

The logarithm of this expression is given by

log(L) =

N
∑

i=1

(

yi log

(

1−
c
∏

j=1

θ
xij

j

)

+ (1− yi) log

(

c
∏

j=1

θ
xij

j

))

=
N
∑

i=1

(

yi log

(

1−
c
∏

j=1

θ
xij

j

)

+ (1− yi)
c
∑

j=1

xij log θj

)

.

To maximize the log-likelihood we need to take the derivative of the above with respect to the
parameters θj′, set the resulting expressions equal to zero, and solve for θj′ for j

′ = 1, · · · , c.
The steps to compute the derivative of log(L) with respect to θj′ are given by

∂ log(L)

∂θj′
=

N
∑

i=1

{(

−yi

1−
∏c

j=1 θ
xij

j

)

∂

∂θj′

(

c
∏

j=1

θ
xij

j

)

+ (1− yi)
xij′

θj′

}

=

N
∑

i=1

{(

−yi

1−∏c

j=1 θ
xij

j

)(

c
∏

j=1;j 6=j′

θ
xij

j

)

(

xij′θ
xij′−1

j′

)

+ (1− yi)
xij′

θj′

}

=
N
∑

i=1

{

−yixij′

1−∏c

j=1 θ
xij

j

(

∏c

j=1 θ
xij

j

θj′

)

+ (1− yi)
xij′

θj′

}

=

N
∑

i=1

{

xij′

θj′

(

1− yi −
∏c

j=1 θ
xij

j

1−
∏c

j=1 θ
xij

j

)}

,

when we simplify a bit. Setting these expression equal to zero would result in a nonlinear
system of equations that would need to be solved for θj′. It would probably be easier in
practice to use the above derivatives in a gradient assent type algorithm to maximize log(L)
numerically rather than analytically.

Problem 20.8 (the beta distribution)

Part (a): The books equation 20.6 is the definition of the beta distribution given by

beta[a, b](θ) = αθa−1(1− θ)b−1 . (12)

From this expression in order for this to be a density we must have the integral with respect
to θ over its domain (which is [0, 1]) equal 1 or

α

∫ 1

0

θa−1(1− θ)b−1dθ = 1 .

The integral above is the definition of the beta function defined as

B(a, b) ≡
∫ 1

0

θa−1(1− θ)b−1dθ .

It can be shown that the above integral expression is equivalent to

Γ(a)Γ(b)

Γ(a + b)
,

27

see for example Rudin [1] and thus our normalization constant α is given by Γ(a+b)
Γ(a)Γ(b)

.

Part (b): The mean of the beta distribution is given by

∫ 1

0

θ
(

αθa−1(1− θ)b−1
)

dθ = α

∫ 1

0

θa(1− θ)b−1dθ =
Γ(a+ b)

Γ(a)Γ(b)

(

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)

)

.

From the properties of the Gamma function we have that

Γ(a+ b)

Γ(a + b+ 1)
=

1

a+ b
and

Γ(a+ 1)

Γ(a)
= a ,

so our expression for the mean becomes

E[θ] =
a

a+ b
.

Part (c): To find the mode we want to find the maximum of the beta distribution. To do
this we take the derivative of the beta distribution with respect to θ, set the result equal to
zero, and solve for θ. We find the first derivative given by

α
[

(a− 1)θa−2(1− θ)b−1 + θa−1(b− 1)(1− θ)b−2(−1)
]

.

If we set this equal to zero and then divide by αθa−2(1− θ)b−2 we get the equation

(a− 1)(1− θ)− (b− 1)θ = 0 or θ =
a− 1

a+ b− 2
.

Part (d): In the R code chap 20 prob 8.R we plot the beta distribution with ǫ = 10−3.
We see that there is only nonzero probability at the two extremes θ = 0 and θ = 1. Thus
the beta[ǫ, ǫ](θ) distribution gives a “two choice” distribution. When we update, say with
a positive example we will obtain the beta[ǫ + 1, ǫ](θ) distribution. This is a distribution
with almost all of the probability mass centered on θ = 1. More positive samples make this
distribution more peaked on θ = 1. If we get an equal number of positive and negative
examples the distribution gets more and more peaked around θ = 0.5.

Problem 20.9 (adding a new link to a network cannot decrease the likelihood)

Imagine running maximum likelihood on the original network to get a set of parameters P0

for P (y|x1, · · · , xk), the conditional probabilities of the child y given the parents x1, · · · , xk

and a final likelihood of L0. If we introduce a new parent (say xk+1) to the variable y so
that now we have to specify the conditional probabilities P (y|x1, · · · , xk, xk+1) if we use the
old parameters P0 from before for these probabilities and ignoring what the value of xk+1 is,
then the new network will have the same likelihood L0 as the first network. This is because

28

when we compute the product of probabilities (or sum of log-probabilities) no mater what
the value of xk+1 is we will have

P (y|x1, · · · , xk, xk+1) = P (y|x1, · · · , xk) ,

and our likelihood in the new net will not be different from the likelihood in the old net. If
we apply a maximum likelihood learning procedure in the new network we must end with a
likelihood that is larger than the one we started with which is L0. Thus the new network
must have a larger or equal likelihood to the original net.

Problem 20.11 (The XOR network)

Since the XOR function is not linearly separable we will need a hidden unit to represent this
function. Recall that the XOR function is given by the Table 1. If we plot each of the input

X Y XOR(X,Y)
0 0 0
1 0 1
0 1 1
1 1 0

Table 1: The output from the XOR function given its two inputs.

points in the (X, Y) plane we can see that we can separate the points that have a response
of 1 with those that have a response of 0 by thinking about putting two lines in the (X, Y)
plane and then requiring that the points with a response of 1 be between the two lines. The
points not between these two lines should have a response of 0. Now note that the training
points with XOR(X, Y) = 1 are between the two lines

x+ y =
1

2
.

and

x+ y =
3

2
.

We can construct these two lines in the first layer and then perform the AND mapping in
the second layer. In Figure 9 we present the network that performs these two operations.

Problem 20.15 (Running the Perceptron)

WWX: This problem is not yet finished.

See the R code chap 20 prob 15.R where this problem is worked.

29

x1

x2

y1

y2

−0.5

−1.5

1

1

1

1

+1

+1 1.5

Figure 9: The XOR network for problem 11.

Problem 20.16

The books equation 20.13 is

L = T log(p) + (1− T) log(1− p) .

Here the output p as a function of the inputs given by

p = g

(

n
∑

j=0

Wjaj

)

.

The later expression is because we are assuming a single layer percepton with a single output
unit. The derivative of L with respect to Wj is given by

∂L

∂Wj

=
T

p

∂p

∂Wj

− (1− T)

1− p

∂p

∂Wj

.

For the sigmoidal activation unit we have p(x) = 1
1+e−x and one can show that p′(x) = p(1−p).

Thus using this for ∂L
∂Wj

we get

∂L

∂Wj

= T (1− p)aj − (1− T)paj = (T − p)aj .

Note that T − p is the error in the output unit and thus we have shown

∂L

∂Wj

= Err × aj ,

as we were to show.

30

Chapter 21 (Reinforcement Learning)

Notes on the Text

Notes on passive reinforcement learning

The first trial specified has 7 states each with the constant reward −0.04 and one state with
the reward +1. The total reward from (1, 1) with a discount γ = 1 is then given by

7(−0.04) + 1 = −0.28 + 1 = 0.72 ,

for starting with the state (1, 1). For the state (1, 2) the first time we visit that state we find
that the total reward then observed as we move towards the goal is given by

6(−0.04) + 1 = −0.24 + 1 = 0.76 ,

and the second time we visit (1, 2) we get a total reward of

4(−0.04) + 1 = −0.16 + 1 = 0.84 .

These numbers agree with what the book presents.

31

References

[1] W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York, third
edition, 1976. International Series in Pure and Applied Mathematics.

32

