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1. STATES OF A MODEL SYSTEM

2. ENTROPY AND TEMPERATURE

Thermal Equilibrium. EY : 20150821 Based on considering the physical setup of two systems that can only exchange
energy between each other, that are in thermal contact, this is a derivation of temperature.
U = U1 + U2 is constant total energy of 2 systems 1, 2 in thermal contact
multiplicity g(N,U) of combined system is

g(N,U) =
∑
U1≤U

g1(N1, U1)g2(N2, U − U1)

The “differential” of g(N,U) is

dg =

(
∂g1

∂U1

)
N1

g2dU + g1

(
∂g2

∂U2

)
N2

dU2 = 0

EY : 20150821 This step can be made mathematically sensible by considering the exterior derivative d of g ∈ C∞(Σ), where
Σ is the manifold of states of the system, with local coordinates N,U , where U happens to be a global coordinate. Then,
consider a curve in Σ s.t. it has no component in ∂

∂N , ∂
∂N1

, and this curve is a “null curve” so that the vector field X ∈ X(Σ)

generated by this curve is s.t. dg(X) = 0.
With −dU1 = dU2,

1

g1

(
∂g1

∂U1

)
N1

=
1

g2

(
∂g2

∂U2

)
N2

=⇒
(
∂ ln g1

∂U1

)
N1

=

(
∂ ln g2

∂U2

)
N2

Define

σ(N,U) := ln g(N,U)

Then

=⇒
(
∂σ1

∂U1

)
N1

=

(
∂σ2

∂U2

)
N2
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Temperature. T1 = T2 - temperatures of 2 systems in thermal equilibrium are equal.
T “must be a function of

(
∂σ
∂U

)
N

[?].

=⇒ 1

T
= kB

(
∂σ

∂U

)
N

Experimentally, kB = 1.381× 10−23 J/K = 1.381× 10−16 ergs/K.
Now

1

τ
=

(
∂σ

∂U

)
N

τ = kBT

Problems. Solution 1. Entropy and temperature.
(a) Recall that 1

τ ≡
(
∂σ
∂U

)
N,V

and σ(N,U) ≡ log g(N,U). Given g(U) = CU3N/2,

σ(N,U) = logCU3N/2 = logC +
3N

2
logU

∂σ

∂U
=

3N

2

1

U
=

1

τ
=⇒ U =

3N

2
τ

(b)
(
∂2σ
∂U2

)
N
< 0 ? (

∂2σ

∂U2

)
N

= −3N

2

(
1

U2

)
< 0

Solution 2. Paramagnetism.

U(s) = U1(s1) + U2(s2) = −2mB(s1 + s2) = −2mBs or s =
U

−2mB
i.e. potential energy U(s) = −2s ·mB.
For |s| � N , then

g(N, s) ' g(N, 0) exp
(
−2s2/N

)
= g(N, 0) exp

(
−U2

2(mB)2N

)
σ(N,U) = ln g(N,U) = σ0 −

U2

2m2B2

1

N
where σ0 = ln g(N, 0)

1

τ
=

(
∂σ

∂U

)
N

=
−U
m2B2

1

N

What is the thermal equilibrium value of this N -spin system of fractional magnetization? If U denotes 〈U〉, thermal average
energy, we also get the thermal average spin excess.

〈U〉 = 〈−2mBs〉 = −2mB〈s〉

=⇒ τ =
m2B2N

−U
=

mBN

2〈s〉
Solution 3. Quantum harmonic oscillator.

(a) Result from Ch. 1: g(N,n) = (N+n−1)!
n!(N−1)! .

Let N − 1→ N =⇒ g(N + 1, n) = (N+n)!
n!N ! .

σ(N + 1, n) ≡ ln g(N + 1, n) = ln
(N + n)!

n!N !
= ln (N + n)!− ln (n!)− ln (N !)

≈ (N + n) ln (N + n)−N − n− n lnn+ n−N lnN +N = (N + n) ln (N + n)− n lnn−N lnN

(b) Let U denote total energy n~ω of oscillators.
U = n~ω or n = U

~ω

σ(N,U) = (N +
U

ω
) ln (N +

U

ω
)− U

ω
ln
U

ω
−N lnN

At τ , 1
τ =

(
∂σ
∂U

)
N

.

1

τ
=

1

ω
ln (N +

U

ω
)− 1

ω
ln
U

ω
=

1

ω
ln

(
Nω

U
+ 1

)
or U =

Nω

exp (ω/τ)− 1
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Solution 4. The meaning of “never.”
Suppose 1010 monkeys.

(a) Hamlet represents one specific ordering of 1015 with 44 possibilities for each character. The probability of hitting

upon Hamlet from a given, random sequence is
(

1
44

)100000
=

1

44100000
. Given that log10 44 = 1.64345, then

101.64345 = 44 or 10−1.64345 = 44−1 so then(
1

44

)100000

= 10−164345

(b)

(age of universe) ·
(

10 keys
second

)
= 1018 s

(
10 keys
second

)
= 1019 keys

1019 keys · 1010 monkeys = 1029 keys typed out
(

1 hamlet
105 characters

)
= 1024 possible “Hamlets”

From part (a), the probability that a given, random sequence is Hamlet, 10−164345

(1029 characters)(10−164345) = 10−164316

Note, I think that the probability should be (1029 characters)
(

1 Hamlet
105 characters

)
(10−164345) = 10−164321

Since we are considering the number of “Hamlet”, 105 character sequences.

3. BOLTZMANN DISTRIBUTION AND HELMHOLTZ FREE ENERGY

cf. Example: Energy and heat capacity of a two state system, pp. 62 of Kittel and Kroemer [1]. Kittel and Kroemer
introduces the heat capacity very early, specific to this example.

Definition 1. heat capacity CV at constant volume is defined as

(1) CV := τ

(
∂σ

∂τ

)
V

Recall the thermodynamic identity (which is introduced many equations later):

dU = τdσ − pdV ∈ Ω1(Σ)

where Σ is a manifold of states of all systems.

Consider local coordinates of Σ, (σ, V ). Consider curve c : R→ Σ

c(τ) ∈ Σ

s.t. c generates a vector field ċ = σ̇ ∂
∂σ i.e. no component

in the V direction. Notice the prescient choice of parameter τ .
Now for internal energy U ∈ C∞(Σ), taking the exterior derivative d results in

dU =
∂U

∂σ
dσ +

∂U

∂V
dV

Then applying dU onto vector field σ̇ ∂
∂σ ,

dU

(
σ̇
∂

∂σ

)
=
∂U

∂σ
σ̇ = σ̇τ + 0

Now, (
∂U

∂σ

)
V

(
∂σ

∂τ

)
V

=

(
∂U

∂τ

)
V

=

(
∂σ

∂τ

)
V

τ

Hence,

(2) CV := τ

(
∂σ

∂τ

)
V

=

(
∂U

∂τ

)
V

EY: 20150825 Why do we need differential geometry? It’s because I always wondered why you could do this:

CV := τ

(
∂σ

∂τ

)
V

?
=

(
∂U

∂τ

)
V

with τdσ = dU =⇒ τ∂σ
?
= ∂U

and talk of “differentials.”
Definition: Reversible process. EY : 20150824 Mathematically, 1-forms are exact.
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Pressure. Consider coordinates (σ, V ) ∈ Σ of manifold of thermodynamic states Σ.
Imagine a reversible compression of a cube system (so imagine dV < 0; cube’s volume get smaller).
σ constant, i.e. dσ = 0 (on this curve in Σ) because as particles in cube gets squeezed, less positions particles could sit in,
but they get more kinetic energy, more energetic (more momentum squared).
Now U = U(σ, V ) ∈ C∞(Σ).
=⇒ dU =

(
∂U
∂σ

)
V
dσ +

(
∂U
∂V

)
σ
dV

Again, imagine a curve c : R→ Σ, connecting 1 state (σ, V ) ∈ Σ to another state (σ, V + dV ) ∈ Σ s.t. ċ = V̇ ∂
∂V .

=⇒ dU(ċ) =

(
∂U

∂V

)
σ

V̇

Introduce 1-form W ∈ Ω1(Σ) of work done on the cube system from some external agent

W = −pdV

so W > 0 when dV < 0.
Then

W (ċ) = −pV̇ = dU(ċ) =

(
∂U

∂V

)
σ

V̇

(3) =⇒ p = −
(
∂U

∂V

)
σ

Consider another set of coordinates (U, V ) ∈ Σ for manifold Σ. Now entropy σ is a function of U, V , as σ = σ(U, V ) ∈
C∞(M), so that
dσ =

(
∂σ
∂U

)
V
dU +

(
∂σ
∂V

)
U
dV

Consider curve c = (U, V ) ∈ Σ. Then ċ = U̇ ∂
∂U + V̇ ∂

∂V . For this curve c, σ is constant, meaning dσ(ċ) = 0 (it’s a “null
curve” of dσ

dσ(ċ) = 0 =

(
∂σ

∂U

)
V

U̇ +

(
∂σ

∂V

)
U

V̇

Now define

Definition 2.

(4)
1

τ
:=

(
∂σ

∂U

)
V

So then we have 1
τ U̇ +

(
∂σ
∂V

)
U
V̇ = 0. For the parameter of curve c, choose the parameter to be V , knowing that σ is constant

on this curve, or thermodynamic process. Thus

1

τ

(
∂U

∂V

)
σ

= −
(
∂σ

∂V

)
U

=⇒ −p
τ

= −
(
∂σ

∂V

)
U

or

(5) p = τ

(
∂σ

∂V

)
U

Thermodynamic Identity. Let σ = σ(U, V ) ∈ C∞(Σ). Then
dσ =

(
∂σ
∂U

)
V
dU +

(
∂σ
∂V

)
U
dV ∈ Ω1(Σ).

Now recall the quantities we’ve recently used: 1
τ :=

(
∂σ
∂U

)
V

(this is a definition) and p
τ =

(
∂σ
∂V

)
U

(it comes from the physics,
of doing work on the system, by some external agent). Then the thermodynamic identity is obtained:

Theorem 1.

(6) τdσ = dU + pdV

Ideal Gas: A First Look.
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One atom in a box. one atom of mass M in cubical box of volume V = L3

−~2

2M ∇
2ψ = εψ p = ~

i∇ p2ψ = εψ

=⇒ ψ(x) = A sin
(
nxπx
L

)
sin
(nyπy

L

)
sin
(
nzπz
L

)
εn = ~2

2M

(
π
L

)2
(n2
x + n2

y + n2
z)

Then the partition function Z1 is

Z1 =
∑
n

exp

(
−εn
τ

)
=

∑
(nx,ny,nz)

exp

(
−~2

2Mτ

(π
L

)2

(n2
x + n2

y + n2
z)

)
Let

α2 =
~2π2

2ML2τ
or α =

~π
(2Mτ)1/2V 2/d

Then

Z1 =

∫ ∞
0

dnx

∫ ∞
0

dny

∫ ∞
0

dnz exp [−α2(n2
x + n2

y + n2
z)] =

(∫ ∞
0

dnx exp (−α2n2
x)

)3

=

(
1

α

)3(
π1/2

2

)3

=

(
π1/2

2α

)3

In general, Z1 =
(
π1/2

2α

)d
Now

Z1 =

(
π1/2V 1/d

2 ~π
(2Mτ)1/2

)d
=

V(
2~π
Mτ

)d/2 = nQV =
nQ
n

in terms of concentration n = 1/V .
nQ :=

(
Mτ
2π~2

)d/2
is the quantum concentration.

Problems. Solution 1. Free energy of a two state system.

(a)
Z = 1 + e−ε/τ

F = −τ lnZ = −τ ln (1 + e−ε/τ )

(b)

U = −τ2 ∂(F/τ)

∂τ
=

εe−ε/τ

1 + e−ε/τ

σ = −∂F
∂τ

= ln (1 + e−ε/τ ) +
ε
τ e
−ε/τ

(1 + e−ε/τ )

Solution 2. Magnetic susceptibility
(a) Remember to calculate the multiplicity in the N -spin system (it’s not enough to sum up exp (−εs/τ) factors).

M = 2sm Us = −MB = −2smB N = N+ +N−

2s = N+ −N− = N+ − (N −N+) = 2N+ −N

Z =

N/2∑
s=−N/2

(
N

N+

)
exp

(
2smB

τ

)
=

N/2∑
s=−N/2

N !(
N
2 + s

)
!
(
N
2 − s

)
!

exp

(
2mBs

τ

)
=

N∑
s=0

N !

s!(N − s)!
exp

(
2mB

τ

(
s− N

2

))
=

= e−
NmB
τ (1 + e

2mB
τ )N = 2N coshN

(
mB

τ

)
where it was crucial to use (1 + x)N =

∑N
j=1

(
N
j

)
xj . Note, in changing the sum index, since N is large, we can

neglect dropping the s = 0 term.

∂τZ = 2N (N)(coshN−1

(
mB

τ

)
) sinh

(
mB

τ

)(
−m
τ2

)
M = −τ2 ∂

∂τ
lnZ = Nm tanh

(
mB

τ

)
χ =

∂M

∂B
=
Nm2

τ
sech2

(
mB

τ

)
5



(b)

F = −τ lnZ = −τ ln

(
(2 cosh

(
mB

τ

)
)N
)

= −Nτ ln (2 cosh

(
mB

τ

)
)

For x ≡ M
nm = tanh

(
mB
τ

)
. Now 1− tanh2 y = sech2y. F = −Nτ ln

(
2√

1−x2

)
= −Nτ

2 ln
(

4
1−x2

)
.

(c) For mBτ � 1, cosh2
(
mB
τ

)
→ 1. χ =

m2N

τ

Solution 3. Free energy of a harmonic oscillator
(a)

Z =

∞∑
s=0

exp

(
−s~ω0

τ

)
=

1

1− e−~ω0/τ
= (1− e−~ω0/τ )−1

F = −τ lnZ = τ ln (1− e−~ω0/τ ) ' τ ln

(
~ω0

τ

)
for 1� ~ω0

τ

(b)

σ = −∂F
∂τ

= −{ln (1− e−~ω0/τ ) +
τ

1− e−~ω0/τ
(−e−~ω0/τ )

(
~ω0

τ

)
} =

−~ω0/τ

e~ω0/τ − 1
− ln (1− e−

~ω0
τ )

Solution 4. Energy fluctuations.

1

τ
= β

∂

∂τ
=
∂β

∂τ

∂

∂β
= − 1

τ2

∂

∂β

Z =
∑
s

e−εsβ

∂βZ =
∑
s

−εe−εsβ

∂2
βZ =

∑
s

ε2se
−εsβ

U =

∑
s εse

−εs/τ

Z
= −∂β lnZ

∂U

∂τ
= −β2 ∂

∂β
U = β2

(
∂β

(
∂βZ

Z

))
= β2

(
(∂2
βZ)Z − (∂βZ)2

Z2

)
= β2

(
∂2
βZ

Z
−
(
∂βZ

Z

)2
)

=

=⇒ τ2 ∂U

∂τ
= 〈ε2〉 − 〈ε〉2

Solution 5. Overhauser effect. System S in energy eigenstate En = nε.
P (E) = (1)gR(E)
Note ∆UR = (α− 1)ε. ∆US = ε. dUSdε + dUR

dε = 1 + (α− 1) = α = dUtot
dε in a specific energy eigenstate; gS(nε) = 1

While gR(UR) = multiplicity of reservoirR with UR energy.
Now

∂σR
∂Es

=
1

τ
and

gR(UR) = exp (σR(UR))

If εdURdε = (α− 1)ε = ∆UR small compared to UR.

UR(ES = (n+ 1)ε) = UR(nε) +
dUR
dε

ε = UR(nε) + (α− 1)ε

σR(UR((n+ 1)ε)) ' σR(UR(nε)) +
1

τ
(α− 1)ε

P (ES = (n+ 1)ε)

P (ES = nε)
=

exp (σR(UR(nε)) + 1
τ (α− 1)ε)

exp (σR(UR(nε)))
= exp

(
− ε
τ

(1− α)
)

Solution 6. Rotation of diatomic molecules.
(a) ε(j) = j(j + 1)ε0. g(j) = 2j + 1

Remember that Z is a sum over all states, not over all levels.

Z =

∞∑
j=0

(2j + 1)e−j(j+1)ε0/τ =

∞∑
j=0

d

dj
(e−(j2+j)ε0/τ )

(
−τ
ε0

)
=
−τ
ε0

∞∑
j=0

d

dj

(
e−ε0/τ

)j2+j

(b) For 1� ε0
τ

ZR(τ) = − τ
ε0

∫ ∞
0

d

dx

(
e−ε0/τ

)x2+x

dx = − τ
ε0

(
(e−ε0/τ )x

2+x − (e−ε0/τ )0
)

=
τ

ε0
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(c) For τ
ε0
� 1

ZR(τ) = 1 + 3e−2ε0/τ

(d)

U = τ2 ∂ lnZ

∂τ
for 1� ε0

τ
U = τ2∂τ

(
ln
τ

ε0

)
= τ

for
τ

ε0
� 1, U = τ2

(
1

1 + 3e−2ε0/τ

)
(3e−2ε0/τ )

(
2ε0
τ2

)
=

6ε0e
−2ε0/τ

1 + 3e−2ε0/τ

CV =

(
∂U

∂τ

)
V

= 1 when 1� ε0
τ

CV = 6ε0

(
e−2ε0/τ

(
2ε0
τ2

)
(1 + 3e−2ε0/τ )− (3e−2ε0/τ )

(
2ε0
τ2

)
e−2ε0/τ

(1 + 3e−2ε0/τ )2

)
= 12ε20

e−2ε0/τ

τ2

(
1

(1 + 3e−2ε0/τ )2

)

For very small τ
ε0
� 1, CV ≈ 12

(
e−2ε0/τ

(τ/ε0)2

)
(e) See sketch.

Solution 7. Zipper problem.
(a) N links. εs = 0 closed, ε open.

Z =

N∑
s=0

exp (−sε/τ) =
1− e−(N+1)ε/τ

1− e−ε/τ

(b) 1� τ
ε .

Z =
∑N
s=0 exp (−sεB)

−1

ε
∂β lnZ =

−1

ε

∑N
s=0(−sε)e−sεβ

Z
= 〈s〉 =

=

(
1− e−ε/τ

1− e−(N+1)ε/τ

)(
−e−(N+1)ε/τ (−(N + 1)ε)(1− e−ε/τ )− (−e−ε/τ )(−ε)(1− e−(N+1)/ε/τ )

(1− e−ε/τ )2

)
=

=
εe−ε/τ (e−Nεβ(N + 1)(1− e−εβ)− (1− e−(N+1)ε/τ ))

(1− e−(N+1)ε/τ )(1− e−ε/τ )
' εe−ε/τ (e−Nεβ(N + 1)(1− e−εβ)− 1)

(1− e−εβ)

This still does not give the desired approximation. Consider the following:

Z =
1− e−(N+1)εβ

1− e−εβ
=
eεβ − e−Nεβ

eεβ − 1

∂βZ =
ε((eεβ +Nβe−Nεβ)(eεβ − 1)− (eεβ)(eεβ − e−Nεβ))

(eεβ − 1)2
=
ε(eεβ(eεβ +Ne−Nεβ − eεβ + e−Nεβ)− eεβ −Ne−Nεβ)

(eεβ − 1)2

∂βZ

Z
=
ε(eεβ(N + 1)e−Nεβ − eεβ −Ne−Nεβ)

(eεβ − 1)(eεβ − e−Nεβ)
' ε(eεβ(N + 1)e−Nεβ − e+εβ −Ne−Nεβ)

e2εβ
=

=
ε(Ne−(N−1)εβ + e−(N−1)εβ − eεβ −Ne−Nεβ)

e2εβ
=
ε((N + 1)e−(N−1)εβ − (eεβ +Ne−Nεβ))

e2εβ
=

=
ε
(

(N+1)eεβ

eNεβ
− n

eNεβ
− eεβ

)
e2εβ

=
ε
(

(N+1)eεβ−N
eNεβ

− eεβ
)

e2εβ
=
ε
(
Neεβ+eεβ−eεβeNεβ

eNεβ

)
e2εβ

= ε

(
N − eNεβ

eNεβeεβ

)
'

' ε(−eNεβ)

eNεβeεβ
= −εe−εβ

=⇒ 〈s〉 = e−ε/τ

Solution 8. Quantum concentration. Now Ψ(x, y, z) = A sin
(
nxπx
L

)
sin
(nyπy

L

)
sin
(
nzπz
L

)
. p = 1

i∇, p2

2m = − 1
2m∇

2.
Ground orbital: nx = ny = nz = 1.

T =
3

2m

(π
L

)2

〈ψ0|ψ0〉 =
3

2m

(π
L

)2
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where 〈ψ0|ψ0〉 = 1, ψ normalized. It was normalized in this way:

∫ ∞
0

sin2
(nxπx

L

)
dnx =

∫ L

0

1− cos
(

2nxπx
L

)
2

dnx =

nx − sin
(

2nxπx
L

) (
L

2nxπ

)
2

∣∣∣∣∣∣
L

0

=
L

2

〈ψ|ψ〉 = A2

(
L

2

)3

=
A2L3

8
= 1 or A2 =

8

L3

Recall that nQ =
(
mτ

2π~2

)3/2
.

Consider the condition that there will be a concentration for which the zero-point quantum kinetic energy is equal to the
temperature τ :

=⇒ 3

2m

π2

L2
=

3

2m
π2n2/3 = τ or n2/3 =

2mτ

3π2~2
or n =

(
2mτ

3π2~2

)3/2

=⇒ n = (

(
4

3π

)
mτ

2π~2
)3/2 =

(
4

3π

)3/2

nQ

Solution 9. Partition function for two systems.

Z(1 + 2) =
∑
E1+2

g(E1+2) exp

(
−E1+2

τ

)
=

∑
E1+E2=E0

g(E1 + E2) exp

(
−E1

τ

)
exp

(
−E2

τ

)
=

=
∑
E1

∑
E2

g(E1)g(E2) exp

(
−E1

τ

)
exp

(
−E2

τ

)
= Z(1)Z(2)

since systems are independent.
Solution 10. Elasticity of polymers.

(a) Consider 2s = N+ −N−; N = N+ +N−, 2s = N+ − (N −N+) = 2N+ −N . N+ = 2s+N
2 .

For 2s, consider −2s = N+ − (N −N+) = 2N+ −N . N+ = −2s+N
2 .

=⇒ g(N,−s) + g(N, s) =
2N !(

N
2 + s

)
!
(
N
2 − s

)
!

(b) |s| � N

σ(l) = ln

(
g

(
N,

l

2ρ

)
+ g

(
N,
−l
2ρ

))
= ln

 2(N !)(
N
2 + l

2ρ

)
!
(
N
2 + −l

2ρ

)
!

 =

= ln (2N !) = {
(
N

2
+
L

2ρ

)
ln

(
N

2
+

l

2ρ

)
−
(
N

2
+

l

2ρ

)
+

(
N

2
− l

2ρ

)
ln

(
N

2
− l

2ρ

)
−
(
N

2
− l

2ρ

)
}

where we used ln(x+ ∆x) ' lnx+ 1
x∆x.

σ(l) = ln (2N !)− {
(
N

2
+

l

2ρ

)(
ln

(
N

2

)
+

1

N/2

l

2ρ

)
− N

2
+

(
N

2
− l

2ρ

)(
ln

(
N

2

)
+

1

N/2

(
−l
2ρ

))
} =

= ln (2N !)− {N
2

ln
N

2
− N

2
+
N

2
ln
N

2
− N

2
+

l

2ρ
ln

(
N

2

)
+

l

2ρ
+

2

N

(
l

2ρ

)2

+
−l
2ρ
− l

2ρ
ln

(
N

2

)
+

l2

N2ρ2
}

σ(l) = ln

(
2N !(

N
2

)
!
(
N
2

)
!

)
− l2

Nρ2

(c)
∂σ

∂l
=
−2l

Nρ2
=⇒ f =

2lτ

Nρ2

Solution 11. One-dimensional gas.

εn =
~2

2m

(π
L

)2

n2 in one dimension

Z1 =

∞∑
n=1

exp

(
−~2

2m

(π
L

)2

n2/τ

)
=⇒

∫ ∞
0

dne−α
2n2

=

√
π

2α

8



where
α2 =

~2

2mτ

(π
L

)2

α =
~π/L√
2mτ1/2

.

Recall that σ =
(
∂F
∂τ

)
, F = U − τσ, so that

F = −τ lnZ = −τN ln

√
π

2α
= τN ln

(
2α√
π

)
= τN ln

(
2~π/L

√
π
√

2mτ1/2

)
=

= τN ln

( √
2π~√

mLτ1/2

)
=

1

2
τN ln

(
2π~2

mL2τ

)
∂F

∂τ
=

1

2
N ln

(
2π~2

mL2τ

)
+
τN

2

(
1(

2π~2

mL2τ

))(−2π~2

mL2τ2

)
=

=
1

2
N ln

(
2π~2

mL2τ

)
+
−τN

2τ
=

N

2

(
ln

(
2π~2

mL2τ

)
− 1

)
4. THERMAL RADIATION AND PLANCK DISTRIBUTION

Problems. Solution 1. Number of thermal photons.
We consider a cavity of volume V , and of edge length L (so V L3). So then ωn = nπc/L.
Now 1

exp ( ~ωn
τ )−1

is the thermal average number of photons in a single mode frequency ω. So then∑
〈sn〉 =

∑ 1

exp
(~ωn

τ

)
− 1

Consider (nx, ny, nz) on positive octant, and 2 independent polarization s of em field.∑
n

1

exp
(~nπc
Lτ

)
− 1

=
(2)

8

∫ ∞
0

4πn2dn
1

exp
(~nπc
Lτ

)
− 1

= π

∫ ∞
0

n2dn

exp
(~nπc
Lτ

)
− 1

=

= π

(
Lτ

~πc

)3 ∫ ∞
0

(
x2dx

ex − 1

)
= N =

V

π2

( τ
~c

)3

(2.404)

where I used the substitutions

x =
~πcn
Lτ

Lτx

~πc
= n

(dx)
Lτ

~πc
= dn

Now σ(τ) = (4π2V/45)(τ/~c)3, so then

σ

N
=

1

2.404

(
4π4

45

)
' 3.602

Now how was
∫∞

0
dx x

2dx
ex−1 evaluated?

Solution 2. Surface temperature of a Sun. Given the solar constant of the Earth, the total radiant energy flux density at
the Earth from the Sun normal to the incident rays, integrated over all emission wavelengths,

solar constant = 0.136 J s−1 cm−2, (49)

(a)

4π(1.49× 1011m)2 · 0.136 J s−1 cm−2

(
102 cm

1m

)2

= (4π)(1.49)21022 · 0.136× 104 = 3.8× 1026 J · s−1

Note that I had used 1.49× 1011m as the distance of the Earth from the Sun.
(b) Jν = energy flux density or rate of energy emission per unit area.

σB =
π2k4

B

60~3c2 = 5.670× 10−8W m−2K−4.
Note that W = 1 J

s . I will use R◦ = 6.9599× 1010 cm as the radius of the Sun.

4× 1026 J · s−1

4π(6.9599× 1010 cm)2
= Jν = σBT

4

9



4× 1026 J · s−1

4π(6.9599× 1010 cm)2

 1m2
(

102 cm
1m

)2

5.670× 10−8 J/s

 k4 = T 4

T ' 5830K

Solution 3. Average temperature of the interior of the Sun.
(a)

U = −
∫ R

0

G
(

4
3πρr

3
)

(4πr2ρdr)

r
= −16

3
π2Gρ2

∫ R

0

r4dr =
−16

15
π2ρ2GR5; M =

4

3
πR3ρ

U =
−3GM2

5R

U = −1

2

∫ R

0

G
(

4
3πρr

3
)

r
(4πr2ρdr) =

−8

3
π2Gρ2

∫ R

0

r4dr =
−8

15
π2ρ2GR5 =

=
−8

15
π2GR5

(
M

4
3πR

3

)2

=
−3

10

GM2

R
= 1.14× 1041 J

(b) Using the virial theorem of mechanics, note that

−1

2
U =

3

20

GM2

R
=

3

20

6.67× 10−11 kg · ms2 ·
m2

kg2 · 2× 1033 g
(

1 kg
103 g

)
7× 1010 cm

(
1m

102 cm

) = 5.72× 1040 J

Now 〈s〉 = 1
exp (~ω/τ)−1 , is the Planck distribution function, giving the thermal average number of photons in a

single mode frequency ω.
thermal average energy 〈ε〉 = 〈s〉~ω = ~ω

exp (~ω/τ)−1 for τ � ~ω, 〈ε〉 ' τ
So then 5.72× 1040 J = N〈ε〉 = Nτ .

τ =
5.72× 1040 J

1× 1057(1.381× 10−23 J/K)
= 4.14× 106K

Solution 4. Age of the Sun.
(a) Consider 4H →4

2 He. Then 4(1.0078)− 4.0026 = 0.0286 amu. Then

(0.0286 amu)

(
1.6726× 10−27 kg

1.00727647u

)
(3× 108m/s)2 = 4.27× 10−12 J

Given M� = 2× 1033 g,

(2× 1030 kg)(0.10)

(
1

4× (1.0078 amu)

)(
1.00727647u

1.6726× 10−27 kg

)
(4.27× 10−12 J) = 1.28× 1044J

So 1.28× 1044 J energy is available.
(b)

1.15× 1045 J

4× 1026J · s−1

(
1hr

3600 s

)(
1 day

24hr

)(
1 yr

365 days

)
= 1.02× 1010 years

Solution 5. Surface temperature of the Earth. JS = σbT
4
� is the radiant power per unit area.

Total emitted radiation energy of the sun is JS4πR2
�.

4πR2
�JS

4πR2
ES

=
R2
�

R2
ES
JS = radiation energy hitting 1 cm2 of Earth’s surface in one second

Since the Earth is considered a black-body, the rate of absorption must equal the rate of emission:

R2
�

R2
ES

σbT
4
� = σbT

4
e or T 4

e = T 4
�R

2
� =⇒ Te = 5800K

√
7× 1010 cm

1.5× 1013 cm
= 396.2K = 123C

Solution 6. Pressure of thermal radiation.
(a) sj = number of photons in that mode. Suppose modes of ωj , j = 0, 1, 2, . . . .

εj = sj~ωj = total energy in jth mode, sj photons in jth mode.

U =
∑
j

εj =
∑
j

sj~ωj P = −∂U
∂V

= −
∑
j

sj~
∂ωj
∂V

10



(b) ωj = jπc/L, V = L3. So then ωj = jπcV −1/3.

=⇒ dωj
dV

=
−1

3
jπcV −4/3 =

−1

3

ωj
V

(c) p = U
3V

(d) We want the Kinetic pressure at a concentration of (1mol/cm3). Recalling P = NkBT
V ,

P =

(
1mol

cm3

)(
6.022× 1023

1mol

)(
102 cm

1m

)3(
1.381× 10−23 J

K

)
(2× 107K) = 1.663× 1014 N

m2

Now for the thermal radiation pressure,

p =
U

3V
=

1

3

π2

15~3c3
τ4 = 4.03× 1013 N

m2

where t = 2× 107K.
For the pressures to be equal,

1

3

π2

15~3c3
k4
BT

4 =
NkB
V

T or T 3 =
45(~c)3NkB
π2k4

BV
so that T = 3.2× 107K

Solution 7. Free energy of a photon gas
(a) Z =

∏
n

1
1−e−~ωn/τ Consider Z =

∑∞
s=0 e

−s~ω/τ = 1
1−e−~ω/τ for a single mode.

(b) F = −τ lnZ = τ
∑
n ln (1− e−~ωn/τ ) ωn = nπc

L .

F = τ
∑
n

ln (1− e−~ωn/τ ) = τ

∫ ∞
0

4πn2dn

8
(2) ln (1− e−~nπc/τL) = πτ

∫ ∞
0

dnn2 ln (1− e−~nπc/τL) =

= πτ

(
(n3 ln (1− e−~nπc/τL))

∣∣∣∞
0
−
∫ ∞

0

dn
n3e−~nπc/τL

1− e−~nπc/τL

(
−~πc
τL

))
= −~π2c

L

∫ ∞
0

dn
n3

e~nπ/τL − 1
=

= −
(
τL

~πc

)3 ∫ ∞
0

x3

ex − 1
= − (τL)3

(~2c3)

π2

45

where I used x = ~nπc
τL .

Solution 8. Heat shields. For Ju = σB(T 4
u − T 4

l ), the thermal flux without the heat shield, in the middle region. Plane m
absorbs σBT 4

u + σBT
4
l and emits Jm = σB(T 4

u + T 4
l ) = σT 4

m.
Tm = (T 4

u + T 4
l )1/4. The key point is that, by symmetry, plane m emits Jm

2 flux on each side.

Jnet = σBT
4
u − (σB

(
T 4
u + T 4

l

2

)
) = σB

(
T 4
u − T 4

l

2

)
=
Ju
2

Jnet is the same for the other side of the heat shield:

Jnet = −σBT 4
l + σB

(
T 4
u + T 4

l

2

)
= σB

(
T 4
u − T 4

l

2

)
Solution 9. Photon gas in one dimension. E = E0 sin (kx) cos (ωt) is the form of a solution with kL = nπ or k = nπ

L ,
since

v2Exx = Ett→ v2k2 = ω2 or
ω

k
= v, ωn = v

nπ

L

Zj =

∞∑
s=0

e−s~ω/τ =
1

1− e−~ω/τ

where Zj is the partition function for a particular mode frequency ω.

〈s〉 =

∑∞
s=0 se

− s~ωnτ

Z
= Z−1 d

d(−~ωn/τ)
(1− exp

(
−~ωn
τ

)
)−1 = Z−1(1− exp

(
−~ω
τ

)
)−2 exp

(
−~ωn
τ

)
=

=
exp (−~ωn/τ)

1− exp (−~ωn/τ)

So

〈s〉~ωn = 〈εn〉 =
~ωn

exp
(~ωn

τ

)
− 1

U =
∑
n

〈εn〉 =
∑
n

~vnπ/L
exp

(~vnπ
Lτ

)
− 1

∂U

∂τ
=
∑
n

−~vnπ/L(
exp

(~vnπ
Lτ

)
− 1
)2 (exp

(
~vnπ
Lτ

)(
−~vnπ
Lτ2

))
=
∑
n

(~vπ
Lτ

)2
n2 exp

(~vnπ
Lτ

)
(exp

(~nvπ
Lτ

)
− 1)2

=
∑
n

(~vπ
Lτ

)2
n2 exp

(~vπn
Lτ

)
(exp

(~vπ
Lτ n

)
− 1)2
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Now
∑
n →

∫∞
0
dn for one-dimensional photon. Let α = ~vπ

Lτ .
Letting x = αn,

∂U

∂τ
=
(nvπ
Lτ

)2
∫
dn
n2 exp (αn)

(eαn − 1)2
=

1

α

∫
dx

x2ex

(ex − 1)2
=

1

α
{ −x

2

(ex − 1)
+

∫ ∞
0

xdx

ex − 1
}

Coefficient of k term of f(k) is j =
∫∞

0
x

ex−1dx. Now f(k) =
∫∞

0
sin (kx)
ex−1 dx, sin (kx) = kx− (kx)3

3! + . . . , so that

π2

6
=

∫ ∞
0

x

ex − 1
dx

∂U

∂τ
=

Lτ

~vπ

(
π2

6

)
=

Lτπ

6~v
= CV

Solution 10. Heat capacity of intergalactic space.
Given the density 1 atom m−3, considering thermal radiation at 2.9K, then kBT = (1.381 × 10−23 J/K)(2.9K), ~c =
(1.05457× 10−34 J · s)(3× 108 m

s ).
Recall for radiation, that the energy per unit volume: UV = π2

15~3c3 τ
4 so that ∂U∂τ = 4π2

15~3c3 τ
3V .

Assume hydrogen atoms modeled as ideal gas: U = 3
2Nτ , dUdτ = 3

2N .

CVmatter
CVradiation

=
3
2N

4π2

15~3c3 τ
3V

=
45(~c)3(N/V )

8π2(kBT )3
= 2.8× 10−10

Solution 11. Heat capacity of solids in high temperature limit. ~ωn
τ = π~vn

Lτ ; ωn = πvn
L . For τ � ~ωn, 0 ≤ n ≤ nD.

exp

(
~ωn
τ

)
− 1 ' 1 +

~ωn
τ

+

(
~ωn
τ

)2(
1

2

)
+

1

6

(
~ωn
τ

)3

+ · · · − 1

By doing long division

~ωn
exp

(~ωn
τ

)
− 1
' ~ωn

~ωn
τ

(
1 + ~ωn

2τ + (~ωn)2

6τ2

) =
τ

1 + ~ωn
2τ + (~ωn)2

6τ2

= τ +−~ωn
2

+
(~ωn)2

12τ
+ . . .

For np = (6N/π)1/3

U =
3π

2

∫ nD

0

dnn2(τ − ~ωn
2

+
(~ωn)2

12τ
) =

3π

2

∫ nD

0

dnn2(τ − ~
2

πvn

L
+

~2π2v2n2

12τL2
) =

=
3π

2
{1

3
n3
Dτ −

~πv
2L

n4
D

4
+

~2π2v2

12τL2

1

5
n5
D} =

π

2

6N

π
τ − 3π2~v

16L

(
6N

π

)4/3

+
3~2π3v2(6N/π)5/3

120τL2

So

U = 3Nτ − 3π2~v
16L

(
6N

π

)4/3

+
3~2π3V 2(6N/π)5/3

120τL2

Now T = θ, θ =
(

~v
kB

)
(6π2N)1/3

L

So then

U = 3N
~v(6π2N)1/3

L
− 3π2~v

16L

61/3N4/36

π4/3
=

15

8

(6π2N)1/3~v
L

= NkBθ

(
15

8

)
U

θ
= NkB

(
15

8

)
=

(
15

8

)
(1.381× 10−23 J/K)

(
6.022× 1023 particles

1mol

)
= 15.59

which is very close to experimental values.
Solution 12. Heat capacity of photons and phonons. For a photon: U = π2V

15~3c3 τ
4 ∂τU = 4π2V

15~3c3 τ
3.

phonon: U(τ) = 3π4Nτ4

5(kBθ)3 . ∂U
∂τ = 12π4Nτ3

5(kBθ)3

So then

CV =
12π41022

5

(
1

100

)3

= 2.3× 1018

for a phonon.
For a photon,

4π2

15

(1.381× 10−23J/K)3

(1.05457× 10−34J · s(3× 1010 cm/s))3
τ3 = 220 /K3τ3
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Temperature at which to photon contribution equals to phonon contribution:

(220/K3)τ3 = 2.3× 1018 =⇒ τ = 2.2× 105K

Solution 13. Energy fluctuations in a solid at low temperatures.

τ2

(
∂U

∂τ

)
V

= 〈(ε− 〈ε〉)2〉

Recall that (
∂U

∂τ

)
V

=
12

5

π4Nτ3

(kBθ)3
where U =

3π4Nτ4

5(kBθ)3

〈(ε− 〈ε〉)2〉
〈ε〉2

=
12π4Nτ5

5(kBθ)3

(
1

9π8N2τ8

25(kBθ)6

)
=

20

3

(
1

π4

)(
1

N

)(
1

τ3

)
(kBθ)

3 =
0.068

N

(
θ

T

)3

F =

√
0.070

1015

(
200

10−2

)3

= 0.02

Solution 14. Heat capacity of liquid 4He at low temperatures.
(a) Given v = 2.383× 104 cms−1 and accounting for only longitudinal waves (only longitudinal polarization), then the

Debye temperature is

θ =

(
~v
kB

)(
18π2N

V

)1/3

=
(1.05457× 10−34 J · s)(2.383× 104 cm/s)

1.381× 10−23 J/K

(
18π20.145 g

cm3

(
1.00727647u

(
1He

4.0026u

)
1.67262× 10−24 g

))1/3

=

= 28.6K

(b) Recall the derivation for U for phonons in a solid. Account for only longitudinal waves (only longitudinal polariza-
tion).

U =
π

2

∫ nD

0

dn
n2~ωn

exp (~ωn/τ)− 1
=
π

2

∫ nD

0

n2dn
~πnvL

exp (x)− 1
=

~π2v

2L

∫ nD

0

n3

exp (x)− 1
dn

With ωn = πn
L v, x = ~πnv

Lτ or
(
Lτ
~πv
)
x = n, then

U =

(
~2v

2L

)(
Lτ

~πv

)4 ∫ nD

0

x3

ex − 1
dx

For low temperatures, τ small so take xD =
(~πnDv

Lτ

)
=
(~πv
Lτ

) (
18N
π

)1/3
= 181/3~π2/3n1/3v

τ to go to∞.

U →
(

π2

2(~v)3

)
τ4

15
V

Recall that CV =
(
∂U
∂τ

)
V

. Then CV /V = 2
15

(
π2

(~v)3

)
τ3. Recall τB = kBT , and given v = 2.383× 104 cm/s, then

kB
~v

=
(1.381× 10−23 J/K)

(1.05457266× 10−34 J · s)(2.383× 104 cm/s)
= 5.495× 106 (1/K · cm)

So if we takeCV /V and divide by the given density ρ = 0.145 g/cm3 to get the heat capacity per gram, (and multiply
by kB , the Boltzmann constant to get the correct units; Kittel and Kroemer likes using dimensionless formulas ) then

(CV /V )/ρ = (kB)
2

15
π2

(
kB
~v

)3

T 3

(
cm3

0.145 g

)
= 0.0208× T 3

Solution 15. Angular distribution of radiant energy flux.
(a) Recall

uω =
~

π2c2
ω3

exp
(~ω
τ

)
− 1

is the radiation energy per unit volume per unit frequency range.
cuω = energy per unit time, per cross sectional area per unit frequency range.
em waves emitted spherically from pt. Q.
Suppose em wave comes in at a funny angle other than directly inward.
Consider area da that’s from the spherical wave from pt. Q. How much of that goes into solid angle dΩ?

=⇒ cuω cos θdA
13



So cuω cos θ is the energy per unit time, per cross-sectional area, per unit frequency range, that enters into some solid
angle dΩ.

r2dΩ

4πr2
=
dΩ

4π
is the fraction of the spectral density that if arrives in solid angle dΩ.

=⇒ cuω cos θ
dΩ

4π

is the spectral density of radiant energy flux that arrives in solid angle dΩ.
(b) ∫

cos θ sin θdθdϕ = 2π

∫
sin 2θ

2
dθ = −π

(
cos 2θ

2

)∣∣∣∣π/2
0

= −π
(
−1− 1

2

)
= π

=⇒ cuω
4

Solution 17. Entropy and occupancy.

Z =

∞∑
s=0

e−s~ω/τ =
1

1− e−~ω/τ

∂τZ =

∞∑
s=0

e−s~ω/τ
(
s~ω
τ2

)
= −(1− e−~ω/τ )−2(−e−~ω/τ )

(
~ω
τ2

)
= Z

~ω
τ2
〈s〉

Then

〈s〉 =
e−~ω/τ

1− e−~ω/τ
〈s+ 1〉 =

1

1− e−~ω/τ

σ = ∂τ (τ lnZ) = lnZ + τ
∂τZ

Z
= ln 〈s+ 1〉+ τ

~ω
τ2
〈s〉 = ln 〈s+ 1〉+

~ω
τ
〈s〉

Now (nynı́)

〈s〉 ln
(
〈s+ 1〉
〈s〉

)
= Ze−~ω/τ ln e~ω/τ =

~ω
τ
〈s〉

=⇒ σ = 〈s+ 1〉 ln 〈s+ 1〉+ 〈s〉 ln 〈s〉

Solution 18. Isentropic expansion of photon gas.

(a) τiV
1/3
i = τfV

1/3
f or (

Vi
Vf

)1/3

=
τf
τi

=
2.9K

3000K
= 10−3

r = r(t) = αt so that ∆r = α∆t or ∆r
r = ∆t

t

rf − ri
rf

= 1− ri
rf

=
tf − ti
tf

= 1− ti
tf

Knwowing that rirf = 10−3, then ti
tf

= 10−3.
(b) Now

σ = τV 1/3(σ
τ

)3

= V

For constant entropy expansion.

U

V
=

π2

15~3c3
τ4 U =

π2

15(~c)3
V

(
σ4

V 4/3

)
=

π2

15(~c)3

σ4

V 1/3(
∂U

∂V

)
σ

=
π2

15(~c)3
σ4

(
−1

3
V −4/3

)

W =

∫
pdV =

π2

15(~c)3
σ4 (−V −1/3)

∣∣∣Vf
Vi

=
π2σ4

15(~c)3

(
1

V
1/3
i

− 1

V
1/3
f

)
=
π2V

4/3
i τ4

i

15(~c)3

(
1

V
1/3
i

− τf

τiV
1/3
i

)
=
π2Viτ

3
i

15(~c)3
(τi−τf )

14



Exercise 19. Reflective heat shield and Kirchhoff’s law.
For a left plane sheet at τu temperature, right plane sheet at τl temperature

+Ju = σbτ
4
u

reflection − rJu = −(1− a)σbτ
4
u

absorb (left) aJu = aσbτ
4
u

−Jl = σbτ
4
l

reflection rJl = (1− a)σbτ
4
l

absorb (left) aJl = aσbτ
4
l

total absorption: a(Ju + Jl) = aσb(τ
4
u + τ4

l )

total emission: aσb(τ4
u + τ4

l ). By symmetry, a(Ju+Jl)
2 emitted to the left, and to right.

e emissivity, where emissivity is defined so radiation flux emitted by the object is e times the flux emitted by a blackbody at
the same temperature.
By Kirchhoff law, for equilibrium, a = e; object must emit at same rate as it absorbs.

Jnet =
−a(Ju + Jl)

2
− rJu + Ju =

−(1− r)(Ju + Jl)

2
+ (1− r)Ju =

(1− r)Ju
2

− (1− r)Jl
2

= (1− r) (Ju − Jl)
2

=

= (1− r)
(
σb(τ

4
u − τ4

l )

2

)
=
a(Ju + Jl)

2
+ rJl − Jl =

(1− r)(Ju − Jl)
2

5. CHEMICAL POTENTIAL AND GIBBS DISTRIBUTION

Solution 1. Centrifuge.
T = 1

2mṙ
2 + 1

2mr
2ω2.

Consider µext = − 1
2Mr2ω2 (negative so for bigger r away from r = 0 axis, lower chemical potential µ, so to show

“centrifugal force” outwards.
µtot = τ ln (n/nQ)− 1

2Mr2ω2.
µtot(r) = µtot(0) for diffusion equilibrium.

τ ln

(
n

nQ

)
− 1

2
Mr2ω2 = τ ln

(
n(0)

nQ

)
=⇒ τ ln

(
n(r)

n(0)

)
=

1

2
Mr2ω2

n(r)

n(0)
= exp

(
Mr2ω2

2τ

)
or n(r) = n(0) exp

(
Mr2ω2

2τ

)
Solution 2. Molecules in the Earth’s atmosphere.
Recall that for ideal gas, F = −τ [N lnZ1 − lnN !]; Z1 = nQV =

(
Mτ
2π~2

)3/2
V .

µ =

(
∂F

∂N

)
τ,V

= −τ [logZ1 −
d

dN
lnN !] = τ ln

(
n

nQ

)
where nQ =

(
Mτ
2π~2

)3/2
.

Now µ∫ = τ log
(
n
nQ

)
µext = −GMe

r = − gR
2
m

r since g = GMe

R2
e

.
µtot = τ ln (n/nQ) +Mgh

In equilibrium, this must be independent of r: µtot(r) = µtot(R).

τ ln (n(r)/nQ)− gR2M

r
= τ ln (n(R)/nQ)− MgR2

R

τ ln

(
n(r)

n(R)

)
= Mg

(
R2

r
−R

)
or exp

(
Mg

τ

(
R2

r
−R

))
=

n(r)

n(R)

=⇒ n(r) = n(R) exp

(
Mg

τ

(
R2

r
− 1

R

))
so that

N = 4πn(R) exp
−MgR

τ

∫ ∞
R

r2dr exp

(
MgR2

τr

)
Solution 6. Gibbs sum for a two level system. Recall that

Z(µ, τ) =

∞∑
N=0

∑
s(N)

exp [(Nµ− εs(N))/τ ] =
∑
ASN

exp [(Nµ− εs(N))/τ ]; λ = exp
(µ
τ

)
15



(a) Z = 1 + λ+ λ exp
(−ε
τ

)
, 1 for N = 0; for N = 1, λ+ λ exp

(−ε
τ

)
. λ for ε = 0.

(b) 〈N〉 =
0(1)+(1)(λ+λ exp (−ετ ))

Z = λ(1+exp (−ε/τ))
Z

(c) 〈N(ε)〉 = 0(1)+(0)(λ)+λ exp (−ε/τ)
Z = λ exp (−ε/τ)

Z
(d) 〈ε〉 = ε〈N(ε)〉 = λε exp (−ε/τ)

Z
(e)

Z = 1 + λ+ λ exp (−ε/τ) + λ2 exp (−ε/τ) = (1 + λ)(1 + λ exp (−ε/τ)

where we considered the possibility the orbital at 0 and at ε are each occupied by one particle at the same time.
So that, for total energy being ε, exp [(2µ− ε)/τ ] = (exp

(
µ
τ

)
)2e−ε/τ = λ2e−ε/τ .

Solution 7. States of positive and negative ionization.

Z = e
δ
2τ + λe

∆
2τ + λe

−∆
2τ + λ2e

−δ
2τ

∂λZ = 0 + e∆/2τ + e
−∆
2τ + 2λe

−δ
2τ

λ∂∂ lnZ =
λ(e∆/2τ + e−∆/2τ + 2λe−δ/2τ )

e
δ
2τ + λe

∆
2τ + λe

−∆
2τ + λ2e

−δ
2τ

= 1

λe∆/2τ + λe−∆/2τ + 2λ2e−δ/2τ = eδ/2τ = λe∆/2τ + λe−∆/2τ + λ2e−δ/2τ =⇒
λ2e−δ/2τ = eδ/2τ

λ2 = eδ/τ or 2 lnλ = δ/τ

2τ lnλ = δ

Solution 8. Carbon monoxide poisoning.

(a) Z = 1 + λ(O2)e−εA/τ

P (O2) =
λ(O2)e−εAτ

1 + λ(O2)e−εA/τ
= 0.9 or 0.9 = 0.1λ(O2) exp

(
−εA
τ

)

=⇒ ln

(
9

λ(O2)

)
=
−εA
τ

; or τ ln

(
λ(O2)

9

)
= εA

εA = (kBT ) ln

(
λ(O2)

9

)
= (8.617× 10−5 eV

k
)(273 + 39) ln

(
10−5

9

)
= −0.3686 eV

(b) Z = 1 + λ(O2)e−εA/τ + λ(CO)e−εB/τ

P (O2) =
λ(O2)e−εA/τ

1 + λ(O2)e−εA/τ + λ(CO)e−εB/τ
= 0.1 =⇒ 0.1 + 0.1λ(CO)e−εB/τ = 0.9λ(O2)e−εA/τ

ln

(
9λ(O2)e−εA/τ − 1

λ(CO)

)
=
−εB
τ

or εB = τ ln

(
λ(CO)

9λ(O2)e−εA/τ − 1

)
= −0.5511 eV

Solution 9. Absorption of O2 in a magnetic field. Recall that 2j + 1 = total number of spin states.
2(1) + 1 = 3.
Now U = −m ·B.

Z = 1 + λ(O2)e
−ε+µBB

τ + λ(O2)e−
εA
τ + λ(O2)e

−(εA+µBB)

τ =

Z = 1 + λ(O2)e−εA/τ (1 + 2 cosh

(
µBB

τ

)
)

0.91 =
λ(O2)e−εA/τ (1 + 2 cosh

(
µBB
τ

)
)

1 + λ(O2)e−εA/τ (1 + 2 cosh
(
µBB
τ

)
)

or 0.91 = 0.09λ(O2)e−εA/τ (1 + 2 cosh

(
µBB

τ

)
)

1

2

(
91

9

1

λ(O2)
eεA/τ − 1

)
= cosh

(
µBB

τ

)
or B =

τ

µB
arccosh

(
1

2

(
91

9

1

λ(O2)
eεA/τ − 1

))
The Gibbs sum in the limit of zero magnetic field will differ from that of Problem 8 because there the spin multiplicity of the
bound state was neglected.
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Z = 1 + 3λ(O2)e−εA/τ

P (O2) =
3λ(O2)e−εA/τ

1 + 3λ(O2)e−εA/τ
= 0.9 or 0.9 = 0.3λ(O2)e−εA/τ

ln
3

λ(O2)
= −εA/τ or εA = τ ln

(
λ(O2)

3

)
= −0.6227

for T = 300K, so that τ = 0.049375 eV .

=⇒ B =
τ

µB
0.59927 =

0.049375 · 0.59927

5.7884× 10−11 × 106 eV/T
= 511.1T

Solution 10. Concentration fluctuations.
(a) Recall that Z =

∑∞
N=0

∑
s(N) exp [(Nµ− εs(N))/τ ].

∂2Z
∂µ2

=
∑
ASN

(
N

τ

)2

exp [(Nµ− εs(N))/τ ] 〈N2〉 =
τ2

Z
∂2Z
∂µ2

(b)

∂

∂µ
〈N〉 =

∂

∂µ

(
τ

Z

(
∂Z
∂µ

)
τ,V

)
= τ

−
(
∂Z
∂µ

)2

τ,V

Z2
+

(
∂2Z
∂µ2

)
τ,V

Z


=⇒ τ

∂

∂µ
〈N〉 = 〈N2〉 − 〈N〉2 = 〈(∆N)2〉

Solution 11. Equivalent definition of chemical potential.
Recall that

dσ =

(
∂σ

∂U

)
V,N

dU +

(
∂σ

∂V

)
U,N

dV +

(
∂σ

∂N

)
U,V

dN (31)

µ = −τ
(
∂σ

∂N

)
U,V

(35)

Consider when dσ = dV = 0.

=⇒ −µ
τ
dN +

(
∂σ

∂U

)
V,N

dU = 0(
∂σ

∂U

)
V,N

dU

dN
=
µ

τ

Note that dUdN =
(
∂U
∂N

)
σ,V

.

Using the definition,
(
∂σ
∂U

)
N,V
≡ 1

τ , so then

µ =

(
∂U

∂N

)
σ,V

Now F = U − τσ, by definition. Consider the thermodynamic identity, dU = τdσ − pdV + µdN .

dF = dU − σdτ − τdσ = τdσ − pdV + µdN − σdτ − τdσ =

= −pdV + µdN − σdτ

=⇒
(
∂F

∂N

)
τ,V

= µ(τ, V,N)

Likewise, µ =
(
∂U
∂N

)
σ,V

is equivalent to µ(τ, V,N) =
(
∂F
∂N

)
τ,V

through the thermodynamic identity as well.

dU = τdσ − pdV + µdN

σ, V constant. dσ, dV = 0.

=⇒
(
∂U

∂N

)
σ,V

= µ

Solution 12. Ascent of sap in trees. Given: relative humidity r = 0.9. T = 25◦ C
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n0 = concentration in saturated air that stands immediately above pool of water of water vapor in air.
rn0 = actual concentration of water vapor in air at uppermost leaves is rn0.

At pool, µH2O = µvapor for diffusion equilibrium.

Same condition at uppermost leaves, otherwise there’s evaporation:
µsap = µvapor(h).
µsap = µH2O (no flow going on in water). Thus, µvapor(h) = µvapor(0) and treat water vapor as an ideal gas.

τ ln

(
n(h)

nQ

)
+mgh = τ ln

(
n(0)

nQ

)
τ ln

(
rn0

n0

)
= −mgh =⇒ τ ln

(
1

r

)
= mgh or h =

τ

mg
ln

(
1

r

)
h =

(1.381× 10−23 1
K )(298K)(kg · m

2

s2 ) ln
(

10
9

)
(18 amu)

(
1.67×10−27 kg

1 amu

)
(9.8m/s2)

= 147.1m

Solution 13. Isentropic expansion.
(a)
(b) Recall that F = −τ [N lnZ1 − lnN !] where Z1 = nQV =

(
Mτ
2π~2

)3/2
V and

σ = −
(
∂F
∂τ

)
V,W

.

∂F

∂τ
= −[N lnZ1 − lnN !]− τ [N

1

Z1

(
M

2π~2

)3/2
3

2
τ1/2V ] =

= −[N lnZ1 − lnN !]− [N
1

Z1
nQ

3

2
V ] = −[N lnZ1 − lnN !]− 3

2
N

With N constant and Z1 =
(
M

2π~2

)3/2
τ3/2V , then for an isentropic expansion, τV 2/3 must remain constant.

Solution 14. Multiple binding of O2.
(a) Be wary of the multiplicity, how you count, each of the energy states.

Z = 1 + 4λe−ε/τ +

(
4

2

)
λ2e−2ε/τ +

(
4

3

)
λ3e−3ε/τ + λ4e−4ε/τ = (1 + λe−ε/τ )4

P (ε) =
4λe−ε/τ

(1 + λe−ε/τ )4

(b)

P (4ε) =
λ4e−ε/τ

(1 + λe−ε/τ )4
=

e−ε/τ(
1

λ+e−ε/τ

)4

6. IDEAL GAS

Reversible Isothermal Expansion. Q = 0, insulated gas, no heat flow to or from the gas (“adiabatic”)
σ constant in system isolated from reservoir, if expansion reverisble (slowly)

What is the pressure after expansion? Remember

Cp
CV

=
5
2N
3
2N

=
5

3
= γ

So let
1

γ − 1
=

3

2

(7) σ(τ, V ) = N(ln τ
1

γ−1 + lnV + constant ) (61)

(8) ln τ
1

γ−1V = constant or τ
1

γ−1V constant (62)

(9) =⇒ τ
1

γ−1

1 V1 = τ
1

γ−1

2 V2 (63)
18



for ideal monoatomic gas.
Use pV = Nτ

(10) =⇒ τ
γ
γ−1

1

p1
=
τ

γ
γ−1

2

p2
(64)

or p
1

γ−1

1 V
γ
γ−1

1 = p
1

γ−1

2 V
γ
γ−1

2 or p1V
γ
1 = p2V

γ
2

I will recap Problem 10 and my solution.
Isentropic relations of ideal gas.

(a) γ =
Cp
CV

. For isentropic process, pV γ = piV
γ
i .

Then, essentially and equivalently, take the exterior derivative:

V γdp+ γpV γ−1dV = 0 =⇒ dp

p
+
γdV

V
= 0

For
τV γ−1 = τiV

γ−1
i

then taking d:

dτV γ−1 + τ(γ − 1)V γ−2dV = 0 =⇒ dτ

τ
+
γ − 1

V
dV = 0

For

τ
γ

1−γ p = τ
γ

1−γ
i pi

then taking d:

dpτ
γ

1−γ +
γ

1− γ
τ

2γ−1
1−γ dτp = 0 =⇒ dp

p
+

γ

1− γ
dτ

τ
= 0

(b) isentropic bulk moduli

Bσ = −V
(
∂p

∂V

)
σ

= γ
piV

γ
i

V γ
= γp

since p =
piV

γ
i

V γ

Bσ = γp

EY : 20150606 I think when one consider small, linear longitudinal perturbations of the gas system, with pressure
being the external restoring force, then sound waves propagate (correct me if I’m wrong) and this is the way to derive
Bσ .

isothermal bulk moduli Bτ = −V
(
∂p
∂V

)
τ

= nτ
V = p

velocity of sound in gas is c =
(
Bσ
ρ

)1/2

=
(
γp
ρ

)1/2

for ideal gas of molecules of mass M , pV = Nτ

Manifold interpretation; I’m using Chapter 5 Applications in Physics, Section A Thermodynamics of [2]. Consider a 2-
dimensional manifold of equilibrium states M, s.t. dimM = 2. Local coordinates are (U, V ) with U being a global
coordinate.
Now U = CV τ so use τ as a global coordinate, i.e. the local coordinates ofM can be (τ, V ).
Consider a curve inM parametrized by λ: (τ(λ), V (λ)). The corresponding tangent vector X = τ̇ ∂

∂τ + V̇ ∂
∂V ∈ X(M) has

components in coordinate vector basis τ̇ = τ̇(λ)

V̇ = V̇ (λ)
Recall

dτ

τ
+
γ − 1

V
dV = 0

Consider applying this 1-form onto X:(
dτ

τ
− γ − 1

V
dV

)
(X) =

τ̇

τ
+
γ − 1

V
V̇ = 0 =⇒ d

dλ
(τV γ−1) = 0

Then the equalities of the endpoints of this curve (τ(λ), V (λ)) are the equalities above. The interpretation is that the isentropic
process draws out a curve inM and can be written as a curve or as a tangent vector field (specifically a section of TM).
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τ1V
γ−1
1 = τ2V

γ−1
2 (66)(11)

τ
γ

1−γ
1 P1 = τ

γ
1−γ

2 P2 (67)(12)

P1V
γ
1 = P2V

γ
2 (68)(13)

T1 = 300K , V1/V2 = 1
2 ,

(14) T2 =

(
1

2

)2/3

(300K) = 189K (69)

The gas is cooled in expansion process by

(15) T1 − T2 = 300K − 189K = 111K (70)

Expansion at constant entropy is important e.g. methods of refridgeration.

What is the change in energy in the expansion?

U2 − U1 = CV (τ2 − τ1) =
1

γ − 1
N(τ2 − τ1)

Problems. Solution 1. Derivative of Fermi-Dirac function. Recall f = 1
exp [(ε−µ)/τ ]+1 = (e(ε−µ)/τ + 1)−1

∂εf = −1(e(ε−µ)/τ + 1)−2(e(ε−µ)/τ )

(
1

τ

)
∂εf(ε = µ) =

−1

4τ
Solution 2. Symmetry of filled and vacant orbitals. ε = µ+ δ

f(ε) = f(µ+ δ) =
1

eδ/τ + 1
=

e−δ/τ

1 + e−δ/τ
= 1 +

−1

e−δ/τ + 1
= 1− f(µ− δ)

Solution 3. Distribution function for double occupancy statistics.
(a) η = 1 + λe−ε/τ + λ2e−2ε/τ where λ = eµ/τ .

〈N〉 = λ∂λ ln ζ =
λ

ζ
(e−ε/τ + 2λe−2ε/τ ) =

λe−ε/τ + 2λ2e−2ε/τ

ζ

(b) ζ = 1 + 2λe−ε/τ + λ2e−2ε/τ

〈N〉 = λ∂λ lnλ =
2λe−ε/τ + 2λ2e−2ε/τ

ζ
=

2λ(e−ε/τ )(1 + λe−ε/τ )

ζ

Solution 4. Energy of gas of extreme relativistic particles. For εp ' p,
∑
s e
−p/tau = Z.

With the factor 2 for the 2 possible polarizations,

Z = (2)
4π

8

∫ ∞
0

p2dpe−p/τ = π{p2e−p/τ (−τ)
∣∣∣∞
0
−
∫ ∞

0

2pe−p/τ (−τ)} = 2τπ

∫ ∞
0

pe−p/τdp =

== 2τπ{pe−p/τ (−τ)
∣∣∣∞
0
−
∫ ∞

0

e−p/τ (−τ)dp} = 2τ3π

U = τ2 ∂ lnZ

∂τ
= τ2∂τ{ln (2πτ3)} = τ2∂τ (3 ln τ) = U = 3τ

Solution 5. Integration of the thermodynamic identity for an ideal gas. For constant N , recall

dσ =
dU

τ
+
pdV

τ
=

1

τ

(
∂U

∂τ

)
V

dτ +
1

τ

(
∂U

∂V

)
τ

dV +
pdV

τ

CV =
(
∂U
∂τ

)
V

, and for an ideal gas pV = Nτ .∫
dσ = σ = CV ln τ +N lnV +

∫
1

τ

(
∂U

∂τ

)
τ

dV + σ1

Now U = 3
2τ for an ideal gas, so

(
∂U
∂V

)
τ

= 0.

=⇒ σ = CV ln τ +N lnV + σ1

σ1 independent constant of τ and V .
Solution 6. Entropy of mixing.
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Solution 7. Relation of pressure and energy density.
(a) Recall that U = U(σ, V,N). p = −

(
∂U
∂V

)
N

, and

U =
∑
s εse

−εs/τ

Z

∂U

∂V
=
∑
s

((
∂εs
∂V

)
N

e−εs/τ + εs

(
−1

τ

(
∂εs
∂V

)
N

)
e−εs/τ

)
/Z −

∑
s

(
−∂εs
∂V

)(
1

τ

)
e−εs/τ

∑
s2

εs2e
−εs/τ/Z2

Now p = −
(
∂U
∂V

)
N

.
So if the system is in state s; then ps = −

(
∂εs
∂V

)
N

.

=⇒ 〈p〉 = p =

∑
s−
(
∂εs
∂V

)
N
e−εs/τ

Z

(b) Now εs = π
L2

n2~2

2M = π
V 2/3

n2~2

2M (
∂εs
∂V

)
N

= −2

3
V −5/3πn

2~2

2M
= − 2

3V
εs

(c)

p =

∑
s
−2εs
3V e−εs/τ

Z
=

2

3

(
1

V

)
U

Solution 8. Time for a large fluctuation.

(a) Recall σ = N [ln
(nQ
n

)
+ 5

2 ]. nQ =
(
Mτ
2π~2

)3/2
.

σf = N [ln
(
nQA2V
N

)
+ 5

2 ]

σi = N [ln
(
nQAV
N

)
+ 5

2 ]

Now

g ∼ eσ ∼ exp

(
ln
(nQ
n

)N
+

5N

2

)
= e

5N
2

(
NQ
n

)N
nQ = 4× (938MeV/c2)((0.8617× 10−4 eV )/K)(300K)

2π(6.582122× 10−22MeV · s)2

(
1MeV

106 eV

)(
1 c

3× 108m/s

)2

= 7.88× 1030/m3

Now PV = Nτ . Then

P

τ
=
N

V
=

(1 atm)( 1.013×105 N/m2

1 atm )
(
kg·m/s2

1N

)
1.381× 10−23 J/K(300K)

= 2.445× 1025/m3

Now 1L = 10−3m3 and so for 0.1L,

(2.445× 1025 1

m3
)(10−4m3) = 2.445× 1021

With (
7.88× 1030/m3

2.445× 1025 /m3

)
= 3.22× 105

=⇒ g ∼ e 5
2 (2.445×1021)(3.22× 105)2.445×1021

(b)
(c)

Solution 9. Gas of atoms with internal degree of freedom.
For an ideal monatomic gas, assume noninteracting.

(a) λint = λ. λ = exp (µ/τ) ideal gas. µ = τ ln (n/nQ); nQ =
(
Mτ
2π~2

)3/2
.

λext = exp (−∆/τ) or 1

Z1 is the usual canonical partition function, Z1 = nQV where nQ =
(
Mτ
2π~2

)3/2
Z1 =

∑
s

(λ exp (−εs/τ)(1) + λ exp

(
−εs
τ

)
exp

(
−∆

τ

)
)Z1 = λ(1 + e−∆/τ )Z1

(Z1)N = (λ(1 + e−∆/τ )Z1)N
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(b)
(c)

Solution 10. Isentropic relations of ideal gas.
(a) Isentropic process, so pV γ = piV

γ
i .

V γdp+ γpV γ−1dV = 0 =⇒ dp

p
+
γ

V
dV = 0

Dealing with an ideal gas, pV = Nτ still applies.

τV γ−1 = τiV
γ−1
i

dτV γ−1 + τ(γ − 1)V γ−2dV = 0

=⇒ dτ

τ
+

(γ − 1)

V
dV = 0

Using pV = Nτ again, note that p1−γτγ = constant .

(1− γ)p−γdpτγ + p1−γγτγ−1dτ = 0 =⇒ dp

p
+

γ

1− γ
dτ

τ
= 0

(b) Using p =
piV

γ
i

V γ ,
∂p

∂V
=
−γpiV γi
V γ+1

=⇒ −V ∂p

∂V
=
γpiV

γ
i

V γ
= γp

So that Bσ = −V (∂p/∂V )σ = γp, the isentropic bulk moduli.

Bτ = −V
(
∂P

∂V

)
τ

=
nτ

V
= p

since
pV = nτ

p =
nτ

V
∂p

∂V
=
−nτ
V 2

7. FERMI AND BOSE GASES

Problems. Problem 1. Density of orbitals in one and two dimensions.
(a) Show that the density of orbitals of a free electron in one dimension is

(16) D1(ε) = (L/π)(2m/~2ε)1/2,

where L is the length of the line.
(b) Show that in two dimensions, for a square of area A,

(17) D2(ε) = Am/π~2

independent of ε.

Solution 1. Recall, for the free electron: H = p2

2m = −~2

2m ∇
2

=⇒ εs = ~2

2m
n2
xπ

2

L2 for 1 dim., εs = ~2

2m

(n2
x+n2

y)π2

L2 for 2-dim.
If εF = Fermi energy, energy of the highest filled orbital,
1-dim: N = 2nF . 2-dim.: N = (2)

(
1
4

)
(πn2

F ) =
πn2

F

2
2 factor for 2 possible spin states.

1-dim: εF = ~2

2m

(
N
2

)2 π2

L2 = 1
2m

(~πN
2

)2 ( 1
V 2

)
= 1

2m

(~m
2

)2
n2 N =

√
2mεF

(
2V
~π
)2

2-dim: εF = ~2

2m

(
2N
π

) (
π
L

)2
= ~2

m
N
π
π2

V = ~2

m
Nπ
V = ~2π

m n N = mV εF
π~2

1-dim.: D(ε) = dN
dε =

√
2m
(

2V
~π
)2 1

2 (εF )−1/2 = N
2ε =

(
L
π

) (
2m
~

2
ε
)1/2

2-dim.: Nε = Am/π~2

22



Problem 2. Energy of relativistic Fermi gas. For electrons with an energy ε � mc2, where m is the rest mass of the
electron, the energy is given by ε ' pc, where p is the momentum. For electrons in a cube of volume V = L3 the momentum
is of the form (π~/L), multiplied by (n2

x + n2
y + n2

z)
1/2, exactly as for the nonrelativistic limit.

(a) Show that in this extreme relativistic limit the Fermi energy of a gas of N electrons is given by

(18) εF = ~πc(3n/π)1/3,

where n = N/V .
(b) Show that the total energy of the ground state of the gas is

(19) U0 =
3

4
NεF .

The general problem is treated by F. Jüttner, Zeitschrift für Physik 47, 542 (1928).

Solution 2.

(a) ε ' pc = ~nπ
L c, εF = ~nFπ

L c.

Recall, for 3-dim.: N = (2)
(

1
8

) (
4
3πn

3
F

)
= π

3n
3
F . nF =

(
3N
π

)1/3
.

εF = π~
L

(
3N
π

)1/3
= ~πc

(
3n
π

)1/3
(b)

U0 = 2
∑
n≤nF

εn = 2 ∗ 1

8
∗ 4π

∫ nF

0

dnn2 ~nπc
L

=
~π2c

L

∫ nF

0

dnn3 =
~π2c

4L
n4
F =

=
~π2c

4L

(
εFL

~πc

)4

=
~π2c

4L

(
3N

π

)(
εFL

~πc

)
=

3

4
NεF

Problem 3. Pressure and entropy of degenerate Fermi gas.

(a) Show that a Fermi electron gas in the ground state exerts a pressure

(20) p =
(3π2)2/3

5

~2

m

(
N

V

)5/3

In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of an orbital is
proportional to 1/L2 or to 1/V 2/3.

(b) Find an expression for the entropy of a Fermi electron gas in the region τ � εF . Notice that σ → 0 as τ → 0.

Solution 3.

(a) Recall U0 = 3
5N

~2

2m (3π2N)2/3V −2/3

∂U

∂V
=

3

5
N

~2

2m
(3π2N)2/3

(
−2

3

)
V −5/3 =

−1

5

~2

m
(3π2)2/3

(
N

V

)5/3

So then

p =
−∂U0

∂V
=

1

5

~2

m
(3π2)2/3

(
N

V

)5/3

(b) Recall that εF ≡ τF = ~2

2m

(
3π2N
V

)2/3

and that the heat capacity of an electron gas is Cel = 1
2π

2N τ
τF

= ∂U
∂τ , which

helps directly with finding the entropy.

σ(τ)− σ(τ0) =

∫ τ

τ0

1

τ
dU =

∫ τ

τ0

1

τ

1

2
π2N

τ

τF
dτ =

π2N

2τF
τ

Let σ(τ0 = 0) = 0,

σ(τ) =
π2N

2τF
τ

Problem 4. Chemical potential versus temperature. Explain graphically why the initial curvature of µ versus τ is upward
for a fermion gas in one dimension and downward in three dimensions (Figure 7.7). Hint: The D1(ε) and D3(ε) curves are
different, where D1 is given in Problem 1. It will be found useful to set up the integral for N , the number of particles, and to
consider from the graphs the behavior of the integrand between zero temperature and a finite temperature.
Solution 4. Recall, N =

∫ εF
0

dεD(ε).
23



1-dim:

N =

∫ εF

0

dεD1(ε) =

∫ εF

0

dε

(
L

π

)(
2m

~2ε

)1/2

=

(
L

π

)
(2m)1/2

~

∫ εF

0

dεε−1/2 =

=

(
L

π

)
(2m)1/2

~
(2ε1/2)

∣∣∣∣εF
0

=

(
L

π

)
(2m)1/2

~
2ε

1/2
F

3-dim:

N =

∫ εF

0

dε
V

2π2

(
2m

~2

)3/2

ε1/2 =
V

2π2

(
2m

~2

)3/2(
2

3
ε3/2

)∣∣∣∣∣
εF

0

=
V

3π2

(
2m

~2

)3/2

ε
3/2
F

Note the difference in the concavity of the N(ε) curves.
Solution 5.

(a) For 3He, given I = 1/2, density of liquid 0.081 g cm−3, we want to find vF , εF , τF .

εF =

(
~2

2m

)
(3π2n)2/3 =

=
(6.582× 10−22MeV · s)2

2 · 3 · 938MeV/c2
(

1 c
3×1010 cm/s

)2

((
3π2 0.081 g

cm3

)(
1 kg

103 g

)(
1u

1.67× 10−27 kg

)(
1 3He

3u

))2/3

=

= 4.24× 10−10MeV = 4.24× 10−4 eV

Now suppose we have a nonrelativistic gas. Then 1
2mv

2
F or v2

F = 2εF
m .

vF = 1.675× 104 cm

sec

TF =
4.24× 10−4eV

0.8619× 10−4 eV/K
= 4.92K

(b)

Cel =
π2

3
D(εF )τ =

π2

3

3N

2τF
τ =

π2

2
N

τ

τF
= 1.003kBTN

Solution 6. Mass-radius relationship for white dwarfs.
(a)

U =

∫
ρ(r)φ(r)r24πdr = −4π

∫
ρ
G 4

3πr
3ρ

r
r2dr = 4π

M
4
3πR

3
G

4

3
π

1

5
R5 M

4
3πR

3
=
−3GM2

5R

(b)

εF =

(
~2

2m

)
(3π2n)2/3

is the Fermi energy.
With V = 4

3πR
3,

Ttot = N
1

2
mv2 = NεF = N

h2

2m

(
3π2N

V

)2/3

=
(3π2)2/3

2

(
~2

m

N5/3

V 2/3

)
=

(3π2)2/3

2

~2

m

N5/3(
4
3π
)2/3

R2
=

=

(
9π
4

)2/3
2

~2N5/3

mR2
' ~2 (M/MH)5/3

mR2

since N = M
MH

since MH � m.
(c)

~2M5/3

mM
5/3
H R2

=
GM2

R
=⇒M1/3R ' ~2/G

mM
5/3
H

(6.582× 10−22MeV · s)(1.05457× 10−34 J · s)

0.511MeV/c2((1.67× 10−27 kg)
(

103 g
1 kg

)
)5/3

(
103 g

1 kg

)2

/(6.67× 10−11 m
3/s2

kg
)

(
(3× 108m/s)2

1 c2

)
Dealing with units and dimensions,

J = kg · m
2

s2
;

N ·m2

kg2
= kg · m

3/s2

kg2
=
m3/s2

kg
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(6.582× 10−22MeV · s)(1.05457× 10−34 kg · m
2

s )
(

102 cm
1m

)2 (
103 g
1 kg

)2

(0.511MeV/c2)(1.67× 10−24 g)5/3(6.67× 10−11 m3/s2

kg ×
(

102 cm
1m

)3
)

(
(3× 1010 cm/s)2

1 c2

)
1020 g1/3 cm

(d)

ρ =
M

4
3πR

3
=

M

4
3π
(

1020 g1/3 cm
M1/3

)3 =
M2

4
3π1060 g cm3

=
(2× 1033 g)2

4
3π1060 g cm3

=
3× 1066 g2

π1060 g cm3

106 g

cm3

(e)

M1/3R ' ~2/G

mM
5/3
H

1017 g1/3 cm =⇒ R =
1017g1/3 cm

(2× 1033 g)1/3
= 7.937 km

Solution 7. Photon condensation. Ne = 2.404V τ3/π2~3c3.
The condition is that N = Ne:

N = Ne =
2.404V τ3

π2~3c3

τ =

(
π2~3c3

2.404

N

V

)1/3

With a concentration of 1020 cm−3, T = 1.7× 106K (the critical temperature in K below which Ne < N .
Solution 8. Energy, heat capacity, and entropy of degenerate boson gas.
Recall that the distribution function for bosons is

f(ε, τ) =
1

exp [(ε− µ)/τ ]− 1

Consider N noninteracting bosons of spin zero.
ε = 0 for ground state. Thus, f(0, τ) = 1

exp (−µτ )−1
. Recall that

Nε(τ) =

∫ ∞
0

dεD(ε)f(ε, τ) =

∫ ∞
0

dε
V

4π2

(
2M

~2

)3/2

ε1/2
1

λ−1 exp
(
ε
τ

)
− 1

Recall,

U = 0

(
1

exp (−µ/τ)− 1

)
+

∫ ∞
0

ε

e(ε−µ)/τ − 1
D(ε)dε =

∫ ∞
0

ε

e(ε−µ)/τ − 1

V

4π2

(
2M

~2

)3/2

ε1/2dε =

=
V

4π2

(
2M

~2

)3/2 ∫ ∞
0

ε3/2

e(ε−µ)/τ − 1

τ < τε, so λ ≈ 1, for N0 to be sufficiently large.

=⇒ U =
V

4π2

(
2M

~2

)3/2 ∫ ∞
0

ε3/2

eε/τ − 1

Using
x = ε/τ

dx = dε/τ

=⇒ U =
V

4π2

(
2M

~2

)3/2

τ5/2

∫ ∞
0

x3/2dx

ex − 1
= B0τ

5/2C0

It’s true that ∂τ (eε/τ ) = eε/τ
(−ε
τ2

)
CV =

(
5

2

)
V

4π2

(
2M

~2

)3/2

τ3/2

∫ ∞
0

x3/2dx

ex − 1

Now 1
τ =

(
∂σ
∂U

)
V

.

σ(U)− σ(U0) =

∫
1

τ
dU =

∫
V B0

5
2τ

3/2C0dτ

τ
= V B0

5

2
C0

∫
τ1/2dτ =

dU=V B0
5
2 τ

3/2C0dτ−−−−−−−−−−−−−→= V B0
5

2
C0

2

3
τ3/2

∣∣∣∣τ
0
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σ(U) = V B0
5

3
C0τ

3/2 = V B0
5

3
C0

U3/5

(V B0C0)3/5
= (V B0C0)2/5 5

3
U3/5 =

=

(
V

4π

(
2M

~2

)3/2 ∫ ∞
0

x3/2dx

ex − 1

)2/5
5

3
U3/5

where we had used U = V B0τ
5/2C0 or

(
U

V B0C0

)3/5

= τ3/2.
Solution 9. Boson gas in one dimension.
In one-dim.,

εs =
~2

2m

π2n2

L2
=

~2

2m

π2n2

V 2
or

2mV 2

~2π2
εs = n2

=⇒ n =

(
2mV 2

~2π2

)1/2

ε1/2 =⇒ dn

dε
=

(
2mV 2

~2π2

)1/2
1

2ε1/2

Note the difference with 3-dim.: For spinless bosons,

D(n)dn =
4πn2dn

8
=
π

2

(
2mL2

~2π2
εs

)(
2mL2

~2π2

)1/2
1

2ε1/2
dε =

=
π

4

(
2mL2

~2π2

)3/2

ε1/2dε = D(ε)dε

Nε(τ) =

∫ ∞
0

dεD(ε)f(ε, τ) =

∫ ∞
0

dε

(
2mV 2

~2π2

)1/2
1

2ε1/2
1

λ−1
exp

( ε
τ

)
− 1 =

=
1

2

(
2mV 2

~2π2

)1/2 ∫ ∞
0

dε

ε1/2
(λ−1 exp

( ε
τ

)
− 1)

For ε→ 0, Nε(τ)→∞ which is not characteristic of a Boson.
Solution 10. Relativistic white dwarf stars. ε ' pc λ = 2π~/p.
Virial theorem:

2〈T 〉 = −〈U〉 2〈T 〉 = k〈U〉

2

(
3

4
NεF

)
=

3

2
N4/3~πc

(
3

π

)1/3
1

L
= −

(
−3GM2

5R

)
=

3GM2

5R

εF = ~πc
(

3n

π

)1/3

Approximating the sphere as a box,

L3 =
4

3
πR3

L =

(
4

3

)1/3

π1/3R

(
3

4π

)1/3

L = R

N4/3 =

(
GM2

5R

)(
2L

~π2/3c31/3

)
=⇒ N =

((
GM2

5R

)(
2L

~π2/3c31/3

))3/4

=

((
2GM2

5

)
41/3

~32/3π1/3c

)3/4

Now M = NmH , where mH is the mass of hydrogen, so

1 =

((
2Gm2

H

5

)
41/3

~32/3π1/3c

)3/4

N1/2

=⇒ N =

(
5~(32/3)π1/3c

41/3(2Gm2
H)

)3/2

=

(
(1.05457× 10−34 J · s)(3× 108m/s)

(6.67× 10−11 m3

kg·s2 )(1.67× 10−27 kg)2

)3/2

·
(

5(32/3)π1/3

41/32

)3/2

= 2.2× 1058
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8. HEAT AND WORK

Energy and Entropy transfer: Definition of Heat and Work. Consider Σ, a manifold consisting of points representing
thermodynamic states of a single system. For instance, for global coordinates (U, V ),
(U, V ) ∈ Σ.
Consider W,Q ∈ Ω1(Σ), 1-forms on Σ.
Now define Q as

Q ≡ τdσ

with σ = σ(U, V ) ∈ C∞(Σ)

τ = τ(U, V ) ∈ C∞(Σ)
Recall energy conservation in this form:

dU = W +Q

Consider pure heat and, so, no work. Now Q = τdσ

Heat Engines: Conversion of Heat into Work. Consider curve c : R→ Σ

c(t) ∈ Σ

s.t. c generates vector field ċ = ∂
∂σ (U is suited

for this).
Act on this vector field ∂

∂σ ∈ X(Σ) with Q, i.e.

Q

(
∂

∂σ

)
= τ

This is what’s meant when it’s said “reversible heat transfer accompanying 1 unit of entropy is given by temperature τ” [1].
Consider Figure 8.1 on page 229 of Kittel and Kroemer [1]. Roughly it looks like this:

τ = τh dσh = Qh/τh Qh

W

τ = τl dσl = Ql/τl Ql

τ

But what’s really going on?
Consider Qh = dU , the initial heat input at high temperature (I’ll show that later) τh.
Consider a curve c0 ∈ Σ s.t. ċ0 = σ̇0

∂
∂σ . Then

Qh(ċ0) = dU(ċ0) =

(
∂U

∂σ

)
V

= τ σ̇0 ≡ τhσ̇0

We can integrate the 1-form dU ∈ Ω1(Σ) for 2 reasons: mathematically, it is an exact form. Physically, we are considering
a reversible process, passing through thermodynamic states of the system, starting with the system being in energy U0 and
ending up with energy U1, and all the energy states (∈ R) in between.

=⇒ U1 − U0 =

∫ 1

0

τhdσ

If this is conducted all at temperature τh during the whole process, then U1 −U0 = τh
∫ 1

0
dσ = τh(σ1 − σ0). It’s in this case

that dσ is an exact form and can be integrated over that curve c0.

Legendre transforms revisited. Let’s recall 2 of our favorite thermodynamic potentials, U , and Helmholtz free energy F .
They are related by Legendre transformations that transform 1 coordinate into its conjugate coordinate, somewhat like how
the Legendre transform transforms that Lagrangian in canonical coordinates into a Hamiltonian written with the conjugate
momentum. However, I do want to point out that, for Lagrangians and Hamiltonians, the Legendre transformation is a fiber
derivative between tangent bundle to the cotangent bundle on the manifold. In our current case, we want a mundane Legendre
transformation between convex function to another convex function, a coordinate transformation by a C∞ function, not a
morphism between vector spaces.
Recall F . It’s defined as such:
F ≡ U − τσ, so
dF = dU − τdσ − σdτ = −σdτ − pdV
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Consider curve c : R→ Σ

c(t) ∈ Σ
Consider 2 curves that generate vector fields:

ċ = τ̇
∂

∂τ
or ċ = V̇

∂

∂V

Now, in general, mathematically,

dF = +

(
∂F

∂τ

)
V

dτ +

(
∂F

∂V

)
τ

dV

Thus, (
∂F

∂τ

)
V

= −σ(
∂F

∂V

)
τ

= −p

Maxwell relations are easily derived:

∂2F

∂V ∂τ
=

∂2F

∂τ∂V
so
(
∂σ

∂V

)
τ

=

(
∂p

∂τ

)
V

So-called natural coordinates for F are τ, V . So Σ 3 (τ, V ) (i.e. after a Legendre transformation, the coordinates become
(τ, V ) for each thermodynamic state.
Recall U as a thermodynamic potential. Using energy conservation and how Q is defined,

dU = Q+W = τdσ + pdV

Natural coordinates are σ, V for U . So Σ 3 (σ, V ).
heat engine
ideal heat engine:

1

0 2

Qh = τhdσh Ql = τldσl W

(σ1, V0)

(σ0, V0) (σ2, V1)

Qh = τhdσh Ql = τldσl

W +Ql = Qh or W = Qh −Ql

W = Qh −Ql ≤
τh − τl
τh

Qh = ηCQh
σl = σh so

Qh
τh

=
Ql
τl

Carnot efficiency ηC ≡ τh−τl
τh

is the ratio of the work generated to the heat added, in the reversible process.

Carnot cycle.

3 2

4 1

−W 2
1 = Qh

W 3
2

W 4
3

W 1
4

(σH , τl) (σH , τh)

(σL, τl) (σL, τh)

−W 2
1 = Qh

W 3
2

W 4
3

W 1
4

The total work is as such:
∮
dU = 0 for 2 reasons: mathematically, the integration of an exact 1-form around a closed curve

is 0, and physically, we return the system back to its original state, as this is a reversible process.∮
dU = 0 =

∮
τdσ −

∮
pdV =⇒ −

∮
W =

∮
τdσ = [τh(σH − σL) + 0 + τl(σL − σH) + 0] = (τh − τl)(σH − σL)
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Example: Carnot cycle for an ideal gas.

3 2

4 1

−W 2
1 = Qh

W 3
2

W 4
3 = −Ql

W 1
4

(σH , τl, V3) (σH , τh, V2)

(σL, τl, V4) (σL, τh, V1)

−W 2
1 = Qh

W 3
2

W 4
3 = −Ql

W 1
4

with

isothermal expansion Qh = −W 2
1 =

∫ 2

1

pdV = Nτh ln

(
V2

V1

)
adiabatic expansion W 3

2 = −
∫ 3

2

dU = U(τh)− U(τl) = CV (τh − τl)

isothermal compression −Ql = W 4
3 =

∫ 4

3

−pdV = Nτl ln
V3

V4

adiabatic compression W 1
4 = CV (τh − τl)

τlV
γ−1
3 = τhV

γ−1
2 or

V3

V2
=

(
τh
τl

) 1
γ−1

V4

V1
= (

τh
τl

)
1

γ−1

EY : 20150911 I don’t have a good reason why CV which is defined for constant V , that CV ≡
(
∂U
∂τ

)
V

, can be used in the
isentropic (i.e. adiabatic) expansion from 2→ 3.
The total work done is

W = N(τh − τl) ln

(
V2

V1

)
Energy Conversion and the Second Law of Thermodynamics.

11 12

01 02

Qh Qh

W1 = η1Qh Wout = η2Qh − η1Qh

Ql2

Ql2 = (1− η2)Qh

Qh
Ql1 = (1− η1)Qh

Q(in) = (η2 − η1)Qh

Ql2 waste heat

11 12

01 02

Qh

W1 Wout

Ql2

Q(in)

So with Q(in) heat in, Wout net work can be done. But that’s a decrease in overall entropy. This violates the law of increasing
entropy.
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Define H = U + pV . H ∈ C∞(Σ), where Σ is the manifold of equilibrium (and non-equilibrium) states of the system.

Path Dependence of Heat and Work. Mathematically,Q andW are not necessarily exact 1-forms. So they are path-dependent.
EY : 20150911 That Q, W are not necessarily exact 1-forms would imply that Σ has some nontrivial, interesting topological
features.

Heat and Work at Constant Temperature or Constant Pressure.

isothermal work.
dU = W +Q = W + τdσ

F = U − τσ
dF = dU − τdσ − σdτ = W − σdτ

If dτ = 0, on an isothermal curve,
dF = W , W becomes an exact 1-form, with potential function F , the Helmholtz free energy.

isobaric heat and work. e.g. boiling of liquid. When liquid boils under atmospheric pressure, vapor pressure displacing
atmospheric odes work against atmospheric pressure. isobaric process.
Consider this change of volume:
dx = dV

A . Now
peq = vapor pressure.

F = peqA = patmA (force equilibrium)

(σ1, V1)

(σ0, V0)

W = −patmAdx = −patmdV

W = −patmdV ≡ −pdV = −d(pV ) is part of total work done on system.

If −d(pV ) > 0, work provided by environment and is “free”.
If −d(pV ) < 0, work delivered to environment and not extractable from system for other purposes.

W + d(pV ) = dU −Q+ d(pV ) = dH −Q
Recall that for enthalpy H = U + pV ,

dH = dU + V dp+ pdV = dU −W + V dp = τdσ + V dp

σ, p are natural coordinates of H .

dH −Q = W + d(pV )

An isobaric curve s.t. dp = 0,
dH = Q+W + d(pV )
so
Q+W is an exact 1-form of H − pV =⇒ d(H − pV ) = W +Q.
2 classes of constant pressure processes:

(a)
W + d(pV ) = 0

dH = Q

e.g. liquid evaporation from open vessel, because no effective work is done.
heat of evaporation is enthalpy difference between vapor phase and liquid phase

(b) constant temperature and constant pressure.
G = F + pV = U − τσ + pV

dG = dF + V dp+ pdV = dU − τdσ − σdτ + V dp+ pdV = V dp− σdτ
dG = W − σdτ + d(pV ) = W + d(pV )− σdτ

with natural variables are p, τ
at constant temperature, W + d(pV ) is exact 1-form, dG
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FIGURE 1. Problem 8.1(c)

Problems. Solution 1. Heat pump.
(a) For a heat pump,

input: σh = Qh
τh

output: σl = Ql
τl

Reversible condition: σh = σl = Qh
τh

= Ql
τl

so that Qh = τh
τl
Ql.

Qh −Ql = Qh − τl
τh
Qh = τh−τl

τh
Qh net heat inputted to pump heat.

Thus,
W

Qh
= ηc =

τh − τl
τh

If heat pump is not reversible, σh > σl, so that Qhτh > Ql
τl

or τl
τh
Qh > Ql,

W

Qh
=
Qh −Ql
Qh

<
Qh − τl

τh
Qh

Qh
= ηc, ideal

(b) Qh = electricity consumed by reversible heat pump.
Carnot engine: W = (τhh − τl)(σhh − σl), with σhh = Qhh

τhh
, and σl = Ql

τl
Condition that electricity consumed by reversible heat pump:

W = (τhh − τl)
(
Qhh
τhh
− Ql
τl

)
= Qh

Note we let σl = Ql
τl

since both heat pump andCarnot engine are reversible.

=⇒
(
Qhh
τhh
− Qh
τh

)
=

Qh
τhh − τl

=⇒ Qhh
τhh

= Qh

(
1

τhh − τl
+

1

τh

)
=⇒ Qhh

Qh
=
τhh(τh + τhh − τl)

τh(τhh − τl)

For Thh = 600K, Th = 300K, Tl = 270K,
Qhh
Qh

=
600(300 + 600− 270)

300(600− 270)
= 3.82

(c) See Figure (1).
Solution 2. Absorption refrigerator.

(a) See Figure (2).
(b) Given τhh > τh,

by energy conservation: Qhh +Ql −Qh = 0
reversible refrigerator: σhh + σl − σh = 0,

=⇒ Qhh
τhh

+
Ql
τl
− Qh
τh

= 0

Qhh
τhh

+
Ql
τl

=
Qhh +Ql

τh
or Qhh

(
1

τhh
− 1

τh

)
= Ql

(
1

τh
− 1

τl

)
Ql
Qhh

=

(
1

τhh
− 1

τh

)
/

(
1

τh
− 1

τl

)
=

(
τh − τhh
τhτhh

)
/

(
τl − τh
τhτl

)
=

(
τhh − τh
τh − τl

)(
τl
τhh

)
=

Ql
Qhh

Note that Ql −Qh = Ql − (Qhh +Ql) = −Qhh; we’ve removed Qhh heat from refrigerator’s inside.
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FIGURE 2. Problem 8.2(a)

Solution 3. Photon Carnot engine. Recall, photons are relativistic: ε = pc. Recall p = ~
i∇. =⇒ εs = pc = ~ksc =(

nsπ
L

)
~c.

Recalling that there are 2 polarization states for a photon in 3-dim. space,

U = (2)

(
1

8

)
(4π)

∫ ∞
0

n2dn
(nπ
L

~c
)
e−

nπ
L ~c/τ =

π2~c
L

∫ ∞
0

n3dnexp

(
−π~c
Lτ

n

)
=

=

(
π2~c
L

)
{n3exp

(
−π~c
Lτ

n

)(
Lτ

−π~c

)∣∣∣∣∞
0

−
∫ ∞

0

3n2exp

(
−π~c
Lτ

n

)(
Lτ

−π~c

)
dn} =

=

(
π2~c
L

)
{(−1)

(
−Kτ
π~c

)
3

∫ ∞
0

n2exp

(
−π~c
Lτ

n

)
dn} =

=

(
π2~c
L

)
{(−1)

(
−Lτ
π~c

)
3{n2exp

(
−π~c
Lτ

n

)(
Lτ

−π~c

)∣∣∣∣∞
0

−
∫ ∞

0

2nexp

(
−π~c
Lτ

n

)(
Lτ

−π~c

)
dn =

=

(
π2~c
L

)
(−1)2

(
−Lτ
π~c

)2

3(2)

∫ ∞
0

nexp

(
−π~c
Lτ

n

)(
Lτ

−π~c

)
dn =

=

(
π2~c
L

)
(−1)3

(
−Lτ
π~c

)3

3(2)(1)

∫ ∞
0

exp

(
−π~c
Lτ

n

)
dn =

(
π2~c
L

)
(−1)3

(
−Lτ
π~c

)4

3(2)1

(
exp

(
−π~c
Lτ

n

))∣∣∣∣∞
0

=

= 6

(
L

π2~c

)3

τ4 = 6
V

(π2~c)3
τ4 = U

To get the entropy, recall,
(
∂σ
∂U

)
V

= 1
τ , and using this is usually the most direct way to obtain entropy.

=⇒ dσ =

∫
dU

τ
=

∫
6V

(π2~2c)3
4τ3 dτ

τ
=

6V

(π2~2c)3

1

3
τ3 =⇒ σ(τ) =

8V τ3

(π2~2c)3

Consider
Isothermal expansion: Helmholtz free energy F is needed.

F = U − τσ =
6V

(π2~2c)3
τ4 − τ 8V τ3

(π2~2c)3
= − 2V τ4

(π2~2c)3

Then

p = −
(
∂F

∂V

)
τ,N

=
2τ4

(π2~2c)3

W12 = p(V2 − V1) =
2τ4
h

(π2~2c)3
(V2 − V1)

σ12 =
8τ3
h

(π2~2c)3
(V2 − V1)

∆Q12 =
τ

∆
σ =

8τ4
h

(π2~2c)3
(V2 − V1)

Isentropic expansion: =⇒ V2τ
3
h = V3τ

3
l or V3 = V2

(
τh
τl

)3

.

So for this isentropic process, V2τ
3
h = V τ3,

U =
6V

(π2~2c)3

(
V2τ

3
h

V

)4/3

=
6(V2τ

3
h)4/3

(π2~2c)3
V −1/3
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p =
−∂U
∂V

= −6(V2τ
3
h)4/3

(π2~2c)3

(
−1

3
V −4/3

)
=

2(V2τ
3
h)4/3

(π2~2c)3
V −4/3

W23 =

∫
pdV =

∫
2(V2τ

3
h)4/3

(π2~2c)3
V −4/3dV =

2(V2τ
3
h)4/3

(π2~2c)3
(−3V −1/3)

∣∣∣∣V3

V2

=
−6(V2τ

3
h)4/3

(π2~2c)3

(
1

V
1/3
3

− 1

V
1/3
2

)
=

=
6V2τ

4
h

(π2~2c)3

(
1− τl

τh

)
Isothermal compression: W34 =

2τ4
l

(π2~2c)3 (V4 − V3) =
2τ3
hτl

(π2~2c)3 (V1 − V2).

σ34 =
8τ3
l

(π2~c)3 (V4 − V3) =
8τ3
h

(π2~c)3 (V1 − V2).

Isentropic compressiong: V4τ
3
l = V1τ

3
h or V4 = V1

(
τh
τl

)3

.

W41 =
6(V4τ

3
l )4/3

(π2~2c)3

(
1

V
1/3
4

− 1

V
1/3
1

)
=
−6V1τ

4
h

(π2~2c)3

(
1− τl

τh

)

∆W =
2τ4
h

(π2~2c)3
(V2−V1)+

6V2τ
4
h

(π2~2c)3

(
1− τl

τh

)
+

2τ3
hτl

(π2~2c)3
(V1−V2)+

−6V1τ
4
h

(π2~2c)3

(
1− τl

τh

)
=

8τ4
h(V2 − V1)

(π2~2c)3

(
1− τl

τh

)

Qh =
8τ4
h(V2 − V1)

(π2~c)3
=⇒ ∆W

Qh
= 1− τl

τh

Solution 4. Heat engine-refrigerator cascade. Consider the heat engine as a Carnot cycle.

W +Wr = (τh − τl)σh

where Wr = work consumed by refrigerator.

σh =
Qh
τh

=
Ql
τl

= σl

This must be true for any heat engine undergoing Carnot cycle; furthermore, we can say it’s the most efficient heat engine
possible.
reversible refrigerator: QL +Wr = QH , (by E-consv.)
σL = σH = QL

τL
= QH

τH
, (by reversible condition)

Note, Ql is energy transfer from heat engine to τl reservoir. QL is energy transfer from τl reservoir to refrigerator. QL ≥ Ql,
otherwise, no cooling, no thermal energy extracted from τl resevoir to lower its temperature. QL = Ql at equilibrium; no
further cooling, τr reached.
Note that τl is given as the environmental temperature. Assume refrigerator throws out QH heat into the environment.
→ τH = τl. Since QL heat inputed into refrigerator from a τl reservoir now lowered to τr, τl → τr.

Wr =
τl
τr
QL −QL =

(
τl
τr
− 1

)
QL

since for a reversible refrigerator, σL = σH = QL
τL

= QH
τH

.

=⇒ W

Qh
=

(
1− τr

τh

)
−
(
τl
τr
− 1

)
QL
Qh

=

(
1− τr

τh

)
−
(
τl
τr
− 1

)(
τr
τh

)
= 1− τl

τh

Combinations of reversible systems = reversible system.

Solution 5. Thermal pollution. Given
Tl = 20◦ C

Th = 500◦ C
. Consider a Carnot cycle.

W = (τh − τl)σl = (τh − τl)
Ql
τl

=

(
τh
τl
− 1

)
Ql =

(
500

20
− 1

)
1500MW = 36000MW

If improvements in hot-steam technology would permit raising Th by 100◦ C,

W =

(
600

20
− 1

)
1500MW = (29)(1500MW ) = 43500MW

There was a 17.2 % increase in output.
Solution 6. Room air conditioner.
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(a)

W = (τh − τl)
Ql
τl

=

(
τh
τl
− 1

)
Ql

P =

(
τh
τl
− 1

)
dQl
dt

=

(
τh
τl
− 1

)
A(τh − τl) =⇒ P

A
τl = (τh − τl)(τh − τl) = τ2

h − 2τhτl + τ2
l

=⇒ τ2
l − 2τhτl −

P

A
τl + τ2

h = 0

τl = τh +
P

2A
−
√

(τh +
P

2A
)2 − τ2

h

(b) For Tl = 17◦ C = 290K, Th = 310K,

A =
Pτl

(τh − τl)2
=

(2 kW )(290K)

(310− 290)2
=

580× 103W

400K
= 1450

W

K

Solution 7. Light bulb in a refrigerator
Carnot refrigerator draws 100 W. For any Carnot cycle,

W = (τh − τl)
Ql
τl

=

(
τh
τl
− 1

)
Ql =

(
1− τl

τh

)
Qh

Carnot refrigerator expels Qh thermal energy to hot τh environment and inputs Ql thermal energy from τl reservoir.

Ql +W = Qh

Work W must be drawn by Carnot refrigerator to do work. Suppose Carnot cycle part of the refrigerator must input in heat
from light bulb to cool down its inside, i.e. consider Carnot refrigerator in equilibrium with light bulb, now inputting in heat
from light bulb Qext, and drawing in work to expend out Qh thermal energy into the environment.

=⇒ Qext = Ql

Ẇ = Q̇l in this case, so (
τh
τl
− 1

)
Ql −Ql = 0 or

(
τh
τl
− 2

)
Ql = 0

=⇒ τl =
τh
2

=
300K

2
= 150K

Solution 8. Geothermal energy.
Given ∆Qh = −MCdTh,
Tl lower reservoir temperature stays constant. τh decreasing, dτh < 0.

∆W = (τh − τl)
∆Qh
τh

=

(
1− τl

τh

)
(−MC)

dτh
kB

=⇒W = −
(
MC

kB

)
(τh − τl ln τh)|τfτi = −

(
MC

kB

)(
τl ln

(
τi
τf

)
− (τi − τf )

)
For M = 1017 g, C = 1 J/g ·K, Tl = 20◦ C = 293K, Ti = 600◦ C = 873K, Tf = 110◦ C = 383K

W = 2.486× 1019 J

Note that 1014 kWh = 1017 J
s · h

(
3600 sec

1h

)
= 3.6× 1020 J .

Solution 9. Cooling of nonmetallic solid to T = 0. Recall that C = aT 3 =
(
∂U
∂T

)
V

. Then dQl = aT 3
l dTl. Now dτl < 0

since τl decreasing.
For the refrigerator: Ql +W = Qh.

dW = (τh − τl)
Ql
τl

= −
(
τh
τl
− 1

)
(aτ3

l dτl)

(
1

k4
B

)
=
−a
k4
B

(
τh
τl
− 1

)
τ3
l dτl =

−a
k4
B

(τhτ
2
l − τ3

l )dτl

W =
−a
k4
B

(
τh

1

3
τ3
l −

1

4
τ4
l

)∣∣∣∣0
τh

=
aT 3

h

12kB
= W
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9. GIBBS FREE ENERGY AND CHEMICAL REACTIONS

Solution 1. Thermal expansion near absolute zero
(a) (

∂G

∂τ

)
N, p

= −σ(
∂2G

∂p∂τ

)
τ

= −
(
∂σ

∂p

)
τ

(
∂G

∂p

)
τ

= V(
∂2G

∂τ∂p

)
p

=

(
∂V

∂τ

)
p

=⇒
(
∂V

∂τ

)
p

= −
(
∂σ

∂p

)
τ(

∂G

∂N

)
p

= µ(
∂2G

∂p∂N

)
N

=

(
∂µ

∂p

)
N

(
∂G

∂p

)
τ

= V(
∂2G

∂N∂p

)
p

=

(
∂V

∂N

)
p

=⇒
(
∂V

∂N

)
p

=

(
∂µ

∂p

)
N

(
∂2G

∂τ∂N

)
N

=

(
∂µ

∂τ

)
N

(
∂2G

∂N∂τ

)
τ

= −
(
∂σ

∂N

)
τ

=⇒
(
∂µ

∂τ

)
N

= −
(
∂σ

∂N

)
τ

(b) α = 1
V

(
∂V
∂τ

)
p

= −1
V

(
∂σ
∂p

)
τ

= 0 as τ → 0 since σ → constant as τ → 0 by third law of thermodynamics.

Solution 2. Thermal ionization of hydrogen.
(a) Given e+H+ � H , note that e+H+ −H = 0. Recall

[e][H+]

[H]
= K(τ) =

∏
j

n
νj
Qj

exp [−νjFj(int)/τ ]

where nQ =
(
Mτ
2π~2

)3/2
V .

For dissocation of H into e−+H+ choose zero of internal energy of each composite particle (here H) to concide
with energy of dissociated particles (here H+, e−) at rest; place energy of ground state of composite particle H at
−I , I is energy required in reaction to dissociate composite particle into its constituents and is taken to be positive,
i.e. the ionization energy.

K(τ) = (ne−)1 exp [−Fint(e−)/τ ] · (nH+)1 exp [−Fint(H+)/τ ](nH)−1 exp (−(−1)(Fint(H)/τ))

Note that nH+ ' nH . Let ne− = nQ. Importantly, note

Fint(e
−) + Fint(H

+)− Fint(H) = I

Fint(H) is at a lower free energy than e− and H+.

=⇒ K(τ) = nQe
−I/τ =⇒ [e][H+]

[H]
= nQe

−I/τ

(b) By charge conservation, [e] = [H+], so that

[e] = [H]1/2n
1/2
Q exp (−I/2τ)

Given [H] ' 1023 cm−3, me = 0.511MeV/c2, T = 5000K, I = 13.6 eV ionization energy,

[e] = (1023 cm−3)1/2(2.92× 10101/cm3/2)1/2 exp (−13.6 eV/2kB5000K) = 1.3× 1015 cm−3

Note that H(exc) and H are just two different states of atomic hydrogen. Their concentrations must therefore be
proportional to the probability of occurrence of these states, and the ratio of probabilities is the ratio of the respective
Boltzmann

[H(exc)]

[H]
=
p(H(exc))

p(H)
If εH(exc) is the internal energy of the first excited state and εH is the internal energy of the ground state of atomic

hydrogen, we are given that εH(exc) − εH = 3
4I . We also need to take into account the fact that the first excited

electronic state of hydrogen is 4-fold degenerate i.e. one 2s-orbital and three 2p-orbitals.1 Therefore,

[H(exc)]

[H]
=
p(H(exc))

p(H)
=

4e−εH(exc)/τ

e−εH/τ
= 4e−3I/4τ

[H(exc)] = 4[H]e−3I/4τ = 2.092× 1013 cm−3

1(from solutions to Homework 8, Ph12c, Caltech, June 6, 2008, by Prabha Mandayam, Heywood Tam)
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[e]

[H(exc)]
= 62

Solution 4. Biopolymer growth.
Recall that G(N, p, τ) = Nµ(p, τ), since G was chosen to be an extensive quantity (it scales with size). For more than one
chemical species G =

∑
j Njµj .

dF = 0 for equilibrium, for constant P, τ .

µj = chemical potential of species j, µj = (∂G/∂Nj)τ,p.

Given
∑
i νjAj , e.g. H2 + Cl2 = 2HCl,

dG = (
∑
j νjµj)dN̂ where dNj = νjdN̂ , dG = 0→

∑
j νjµj = 0.

Recall the mass action law derivation: assume constituents act as ideal gases; µj = τ(lnnj − ln cj), nj concentration of
species j; cj ≡ nQjZj(int).∑

j

νj lnnj =
∑
j

νj ln cj =⇒
∑
j

lnn
νj
j =

∑
j

ln c
νj
j = ln

∏
j

n
νj
j = lnK(τ)

∏
j

n
νj
j = K(τ) mass action law

(a) By mass action law, [ monomer][Nmer]
[(N+1)mer] = [1][N ]

[N+1] = KN .

[1][1]

[2]
= K1

[1]2

[2]

[1][2]

[3]
=

[1]3

[3]
= K1K2

[1]j+1

[j + 1]

[1][j + 1]

[j + 2]
=

j∏
l=1

KlKj+1 =
[1]j+2

[j + 2]
=

j+1∏
l=1

Kl

=⇒ [N + 1] = [1]N+1/K1K2K3 . . .KN

(b) Recall that K(τ) =
∏
j n

νj
Qj

exp [−νjFj(int)/τ ]

KN =
nQ(N)nQ(1)

nQ(N + 1)
exp

[
−FN
τ
− F1

τ

]
exp

[
FN+1

τ

]
=
nQ(N)nQ(1)

nQ(N + 1)
exp

[
−(FN + F1 − FN+1)

τ

]
where nQ(N) =

(
MNτ
2π~2

)3/2
and MN is the mass of Nmer molecules, FN is the free energy of one Nmer molecule.

(c) Assume N � 1 so nQ(N) ' nQ(N + 1). Assume [1] = 1020 cm−3. Assume ∆F = FN+1 − FN − F1 = 0,
meaning zero free energy change in the basic reaction step. We’re given the molecular weight of the monomer to be
200.

We want [N+1]
[N ] at room temperature. Now KN ' nQ(1) =

(
M1τ
2π~2

)3/2
.

[1][N ]

[N + 1]
= nQ(1) =

(
M1τ

2π~2

)3/2

or
[N + 1]

[N ]
=

[1]

nQ(1)
=

(
2π~2

M1τ

)3/2

1020 cm−3

Note that
(

2π(6.582×10−22 MeV ·s)2

200(938MeV/c2)(0.8617×10−4eV/K)(298K)

(
3×1010 cm/s

1 c

)2
)3/2

= 0.3627× 10−27 cm.

=⇒ [N + 1]

[N ]
= 3.627× 10−8

(d) We want the condition

1 <
[N + 1]

[N ]
=

[1]

nQ(1)
exp

(
−∆F

τ

)
or ln

nQ(1)

[1]
<
−∆F

τ

=⇒ ∆F < τ ln
[1]

nQ(1)
= −0.44 eV
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10. PHASE TRANSFORMATIONS

11. BINARY MIXTURES

12. CRYOGENICS

13. SEMICONDUCTOR STATISTICS

14. KINETIC THEORY

15. PROPAGATION

Heat Conduction Equation. nonrelativistic case:
Let manifold N = R×M , with dimM = n.
Let J ∈ X(N) = X(R×M) be a vector field in N .

Let ρ ∈ C∞(N)

ρ = ρ(t, x) locally
be a smooth function on N .

Let J ∈ Ω1(N) be a 1-form on N that is isomorphic to J (Tangent-Cotangent isomorphism theorem), i.e.

J = J[

Ji = gijJ
j

with gij being the metric on N (not just M !)
Note that as N = R×M , g0j = δ0j
The local form of J is the following:

J = ρ
∂

∂t
+ ji

∂

∂xi
i = 1 . . . n

So
J = Jidx

i = gijJ
jdxi = ρdt+ jkdx

k k = 1 . . . n

Thus

(21) J = ρdt+ jkdx
k k = 1 . . . n

Now do the Hodge star operator, resulting in a n-form

∗J ∈ Ωn(N)

and so
∗J = ρ ∗ dt+ jk ∗ dxk = ρvoln + ijvoln+1

as

ρ ∗ dt = ρ

√
g

n!
ε0i1...indx

i
1 ∧ · · · ∧ dxin i1 . . . in ∈ {1 . . . n}

jk ∗ dxk = gklj
l

√
g

(n+ 1)!
εki1...indx

i1 ∧ · · · ∧ dxin = ijvoln+1

so thus
∗J = ρvoln + ijvoln+1

Hence

(22) d ∗ J =
∂

∂t
(ρ
√
g)

1
√
g

voln+1 +
∂

∂xk
(
√
gjk)

1
√
g

voln+1 = d(ρvoln) + dijvoln+1

Special case: ∂
√
g

∂t = 0

d ∗ J =
∂ρ

∂t
voln+1 +

(
∂

∂xk
ln
√
g

)
jkvoln+1 +

∂jk
∂xk

voln+1 = 0

=⇒ ∂ρ

∂t
+

(
∂

∂xk
ln
√
g

)
jk +

∂jk
∂xk

= 0

Special case: if
√
g constant, ∂ρ∂t + ∂jk

∂xk
= 0

Let j ≡ −Ddρ (j is a closed form on M ) where dρ = ∂ρ
∂xi dx

i i = 1 . . . n, D constant

d ∗ J = dρvoln +−Dd ∗ dρ = 0
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For flat metric,
√
g constant,

∂ρ

∂t
= D

∂2ρ

(∂xk)2

For relativistic case,
Consider manifold M , with dimension dimM = n+ 1

J = ρ
∂

∂t
+ ji

∂

∂xi

Let J = J[. Jµ = gµνJ
ν

For special case of flat Minkowski space,
J = −ρdt+ jidx

i

∗J = −ρ ∗ dt+ ji ∗ dxi

− ρ
√
g

(n+ 1)!
ε0i1...indx

i1 ∧ · · · ∧ dxin + ji

√
g

(n+ 1)!
εiµ1...µndx

µ1 ∧ · · · ∧ dxµn

d ∗ J = −
∂(ρ
√
g)

∂t

1
√
g

voln+1 +
∂(ji
√
g)

∂xi
1
√
g

voln+1 = 0

=⇒ −
∂(ρ
√
g)

∂t
+
∂(ji
√
g)

∂xi
= 0

Fick law (14.19) for particle flux density, j = −Dndn where Dn particle diffusivity constant
n particle concentration

J = ndt+ j

thermal conductivity; homogeneous medium Ĉ heat capacity per unit volume. ju = −Kdτ

J = Ĉτdt+ ju

(23) Ĉ
∂τ

∂t
+
∂(ju)k
∂xk

= 0 (5)

(24)
∂τ

∂t
= Dτ

∂2τ

(∂xk)2
Dτ ≡ K/Ĉ (6)

Propagation of Sound Waves in Gases. pressure associated with sound wave

(25) δp = δp0 exp [i(kx− ωt)] (27)

Suppose ideal gas:

(26) pV = Nτ or p = ρτ/M (28)

Consider “solid ball” or “billiard ball” particle (extended particle, not pt. particle, but no internal structure)

ρ =
NM

V
Force on particle

F =
dP

dt
=

d

dt

∫
ρvolnu =

M

V

∫
L ∂
∂t+uu =

M

V

∫
∂u

∂t
+ [u, u]

Suppose [u, u] = 0 (certainly for flat spaces; what about for curved spaces? [u, u] 6= 0? Possibly? I don’t know. EY:
20150317

(27) dU + pdV = τdσ

define fractional deviations s, θ

(28)
ρ = ρ0(1 + s)

τ = τ0(1 + θ)
(5)

where ρ0, τ0 are density and temperature in absence of sound wave.
assume u, s, θ have form of traveling exp [i(kx− ωt)]
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ωu−
(
kτ

M

)
s−

(
kτ

M

)
θ = 0 (39)(29)

ωs− ku = 0 (40)(30)

τĈV θ − ps = 0 or ĈV θ − ns = 0 (41)(31)

ωu =
kτ

M

(
1 +

n

ĈV

)
s

ω =
kτ

M

(
1 +

n

ĈV

)
k

ω

So

(32) ω =
(γτ
M

)1/2

k (42)

γ =
ĈV + n

ĈV
=
Ĉp

ĈV

vs =
∂ω

∂k
=
(γτ
M

)1/2

Problems. Problem 1. Fourier analysis of pulse
t = 0

(33) θ(x, 0) = δ(x) =
1

2π

∫ ∞
−∞

dk exp (ikx) (58)

(34) θ(x, t) =
1

2π

∫ ∞
−∞

dk exp [i(kx− ωt)] (59)

Given a dispersion relation at this form:

(35) Dk2 = iω (10)

(36) θ(x, t) =
1

2π

∫ ∞
−∞

dk exp [ikx−Dk2t] (60)

and so, doing the Gaussian integral,

(37) θ(x, t) =
1√

4πDt
exp

(
−x2

4Dt

)
(14)

Problem Diffusion in two and three dimensions.

(a)

∂θ2

∂t
= −θ2

t
+
r2

4

θ2

Dt2

∂2θ2

(∂xi)2
= −1

2

θ2

Dt
− 1

2

θ2

Dt
+

1

4

θ2

D2t2
(x2 + y2)

=⇒ ∂θ2

∂t
= D

∂2θ2

(∂xi)2

(b)
(c)
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There is a Third Edition of T. Frankel’s The Geometry of Physics [4], but I don’t have the funds to purchase the book (about
$ 71 US dollars, with sales tax). It would be nice to have the hardcopy text to see new updates and to use for research, as the
second edition allowed me to formulate fluid mechanics and elasticity in a covariant manner. Please help me out and donate
at ernestyalumni.tilt.com or at subscription based Patreon, patreon.com/ernestyalumni.
E-mail address: ernestyalumni@gmail.com
URL: http://ernestyalumni.wordpress.com
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