NOTES AND SOLUTIONS TO THERMAL PHYSICS BY CHARLES KITTLE AND HERBERT KROEMER

ERNEST YEUNG - LOS ANGELES

ABSTRACT. These are notes and solutions to Kittle and Kroemer’s Thermal Physics. The solutions are (almost) complete: I will
continuously add to subsections, before the problems in each chapter, my notes that I write down as I read (and continuously reread).

I am attempting a manifold formulation of the equilibrium states in the style of Schutz’s Geometrical Methods of Mathematical
Physics and will point out how it applies directly to Thermal Physics. Other useful references along this avenue of investigation is
provided at the very bottom in the references.

Any and all feedback, including negative feedback, is welcomed and you can reach me by email or my wordpress.com blog.

You are free to copy, edit, paste, and add onto the pdf and LaTeX files as you like in the spirit of open-source software. You are
responsible adults to use these notes and solutions as governed by the Caltech Honor Code: “No member of the Caltech community
shall take unfair advantage of any other member of the Caltech community” and follow the Honor Code in spirit.

SECOND EDITION. Thermal Physics. Charles Kittel. Herbert Kroemer. W. H. Freeman and Company. New York.
QC311.5.K52 1980 536°.7 ISBN 0-7167-1088-9

1. STATES OF A MODEL SYSTEM
2. ENTROPY AND TEMPERATURE

Thermal Equilibrium. EY : 20150821 Based on considering the physical setup of two systems that can only exchange
energy between each other, that are in thermal contact, this is a derivation of temperature.

U = U; + U, is constant total energy of 2 systems 1, 2 in thermal contact

multiplicity g(N, U) of combined system is

g(N,U) = > g1(N1,U1)ga(No, U = Uh)
U, <U

The “differential” of g(N,U) is

_ g1 092 B
dg = <8U1>N1 gsz + 91 <8U2>N2 dUs =0

EY : 20150821 This step can be made mathematically sensible by considering the exterior derivative d of g € C*°(X), where
Y. is the manifold of states of the system, with local coordinates N, U, where U happens to be a global coordinate. Then,
consider a curve in X s.t. it has no component in a%’ aiNl’ and this curve is a “null curve” so that the vector field X € X(X)
generated by this curve is s.t. dg(X) = 0.

With —dU; = dUs,
1 ((991) _ L <892> — (311191) _ (811192)
g1 3U1 N ga 8U2 No 8U1 Ny 8U2 Ny

o(N,U) :=1ng(N,U)

(90} _ (22
oUy )y, \0Uz )y,
Date: Fall 2008.
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Temperature. 77 = T» - temperatures of 2 systems in thermal equilibrium are equal.

T “must be a function of (%)N [?].
T "P\au ),

Experimentally, kg = 1.381 x 1072 J/K = 1.381 x 107! ergs/K.

Now
1 Jo
— == = kT
T <8U)NT B

Problems. Solution 1. Entropy and temperature.

(a) Recall that 1 = (g—g)N v and o(N,U) =log g(N,U). Given g(U) = CU3N/2,

3N
o(N,U) =log CUN? = log C + = logU

G0 N1 _1_  |,;_3N
ouU _ 2 U 7 7

0o 3N [ 1
a02), = 2 \z2) ="

U(s) =Ui(s1) + Us(s2) = —2mB(s1 + s2) = —2mBsor s =

(b) (gﬁ;;)N <072

Solution 2. Paramagnetism.

—2mB
i.e. potential energy U(s) = —2s - mB.
For |s| < N, then

9(N. 5) = g(N.0) exp (~2*/N) = g(N,0) exp (2@;]0

Ur o1
mﬁ where agg = hlg(]\/v7 O)

1 (0o - =U 1
T \0U/)y m2B2N
What is the thermal equilibrium value of this N-spin system of fractional magnetization? If U denotes (U), thermal average

energy, we also get the thermal average spin excess.

(U) = (—2mBs) = —2mB(s)

o(N,U)=Ilng(N,U) =09 —

B m2B2N B mBN

— =
——s 2(s)
Solution 3. Quantum harmonic oscillator.
(a) Result from Ch. 1: g(N,n) = %
LetN—l—)N:>g(N+1,n):%.
(N +n)!

o(N+1,n)=lg(N+1,n)=In =In(N +n)! —In(n!) —In(N)

n!N!
z(N+n)ln(N+n)—N—n—nlnn—i—n—NlnN—l—N:‘(N+n)ln(N+n)—nlnn—NlnN

(b) Let U denote total energy niww of oscillators.
U=nhworn =L

hw
U(N,U):(NJrg)ln(NJrg)—glng—NlnN
w w woow
_ (Oa
AtT, 2 = (5%) v
1 1 U 1. U 1 Nw Nw
—=—In(N+—)——In—=—In{ —+1 U= —F———
T wn( +w) o w wn(U + >0r exp (w/7) —1




Solution 4. The meaning of ‘“never.”
Suppose 10'° monkeys.

(a) Hamlet represents one specific ordering of 10'® with 44 possibilities for each character. The probability of hitting

1 100000 1

upon Hamlet from a given, random sequence is (@ = | 4100000 | Given that log;,44 = 1.64345, then

10164345 — 44 or 10~104345 = 44~1 50 then
1\ 100000
() _ 10164345
44
(b)

10 k 10 k
0 eys) :mlgs( 0 keys

= 10" keys
second second ) Y

(age of universe) - (

1 hamlet

19 10 =10%
10" keys - 10" monkeys = 10°” keys typed out (1050haracters

) = 102* possible “Hamlets”

From part (a), the probability that a given, random sequence is Hamlet, 107164345
(10% characters) (10 164345) = 10164316

Note, I think that the probability should be (10?9 characters) (gimel ) (10—164345) — 10—164321

105 characters
Since we are considering the number of “Hamlet”, 105 character sequences.

3. BOLTZMANN DISTRIBUTION AND HELMHOLTZ FREE ENERGY

cf. Example: Energy and heat capacity of a two state system, pp. 62 of Kittel and Kroemer [!]. Kittel and Kroemer
introduces the heat capacity very early, specific to this example.

Definition 1. heat capacity C'y at constant volume is defined as

oo
(1) Cy =7 <87')V

Recall the thermodynamic identity (which is introduced many equations later):
dU = 7do — pdV € Q'(X)

where Y is a manifold of states of all systems.

Consider local coordinates of 33, (o, V). Consider curve ¢ : R — X s.t. ¢ generates a vector field ¢ = d% i.e. no component
c(r)exn

in the V direction. Notice the prescient choice of parameter 7.

Now for internal energy U € C°°(X), taking the exterior derivative d results in

oUu oUu
Then applying dU onto vector field d%,
.0 ou |, .
aUu <U(9(7) = 8—00—07—&-0
Now,
U\ (Do _ (U _ (0o
80V87V_ aTV_ or )y
Hence,
oo oU
2 = _— = —_—
@ Cv T<8T>V <a7'>v

EY: 20150825 Why do we need differential geometry? It’s because I always wondered why you could do this:

0 2 (OU ;
Cy =1 (U) ~ () with 7do = dU —> 700 = U
or ), or ),
and talk of “differentials.”
Definition: Reversible process. EY : 20150824 Mathematically, 1-forms are exact.
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Pressure. Consider coordinates (o, V') € ¥ of manifold of thermodynamic states .

Imagine a reversible compression of a cube system (so imagine dV' < 0; cube’s volume get smaller).

o constant, i.e. do = 0 (on this curve in X) because as particles in cube gets squeezed, less positions particles could sit in,
but they get more kinetic energy, more energetic (more momentum squared).

Now U =U(o,V) € C®(%).

= dU = (92),, do + (9%)_dV

Again, imagine a curve ¢ : R — ¥, connecting 1 state (0, V') € X to another state (o, V +dV) € Es.t. ¢ = V%.

— dU(¢) = <gg)g 14

Introduce 1-form W € Q(X) of work done on the cube system from some external agent

W = —pdV
so W > 0 when dV < 0.
Then
. U\
W)= —pV=dU(¢)=|=— )| V
@ ==V =0 = (55)
oU
3 N
3 =P (av)a

Consider another set of coordinates (U, V) € X for manifold ¥.. Now entropy o is a function of U, V, as 0 = o(U,V) €
C°° (M), so that

do do
do = (BU)VdU + (W
Consider curve ¢ = (U,
curve” of do

)y dV
U . .
V) € . Then ¢ = U% + V%. For this curve ¢, o is constant, meaning do(¢) = 0 (it’s a “null

do(¢) =0 = (%)VU+ (;‘;)UV

Now define

Definition 2.

1 do
“ == (o

T ou /.,
So then we have %U + (g—“;) U V = 0. For the parameter of curve c, choose the parameter to be V', knowing that ¢ is constant
on this curve, or thermodynamic process. Thus

1LfouN _ (9o _ —p_ (92 _
T(?Vg_ ov )y T v )y

oo
=E)

Thermodynamic Identity. Let 0 = o(U, V') € C*°(X). Then

do = (5%), dU + (5%), dV € Q' (%).
Now recall the quantities we’ve recently used: % = (3—5) - (this is a definition) and P = (3—6) p (it comes from the physics,
of doing work on the system, by some external agent). Then the thermodynamic identity is obtained:

Theorem 1.

©6) \ rdo = dU + pdV

Ideal Gas: A First Look.



On2e atom in a box. one atom of mass M in cubical box of volume V = L3
AV =e p=iv  pPu=c
= 9(z) = Asin (22 )sm (") sin (=12
B2 m\2
anm(f) (n2 —|—n +n?)
Then the partition functlon ARY

a=Tew ()= 2 o (s (7)o e0i o)

(na,my,nz)

Let
9 K22 hm
= —0ro4o= -—-——-—---
2M L2t (2MT)1/2V2/d

Then

0o 3 1\3 /71/2\? al/2\°
Zy = / dnx/ dny/ dn, exp [— (ni—&—nz—kng)}:(/o dng exp (— a2n2)> :<a> (2> :<204>

<l/2
In general, Z; = ( or )
Now

d
1/2‘/1/d v

Z=|= i = d/QZHQVZnﬁ
2W (2mr n

in terms of concentrationn = 1/V.

/2 . .
ng = (24%) /? is the quantum concentration.

Problems. Solution 1. Free energy of a two state system.

(a)
Z=1+e ¢
F=—lnZ=-7In(1 —l—e_s/T)
(b)
O(F/T) ce=e/™
U=—-72 =
T T or 14+ e—¢/T
OF Leme/T
— —1In(1 —€/T T
7= gy ST

Solution 2. Magnetic susceptibility
(a) Remember to calculate the multiplicity in the N-spin system (it’s not enough to sum up exp (—e;/7) factors).
M =2sm Us=—-MB = —-2smB N=N,+N_
2s=N;y—-N_=N;—(N-Ny)=2N, - N

N/2 N/2 N
N 2smB 2mBs N! 2mB N
S (e ()= 3 e () <5 e (2 (-

(35
=e” NmB(lJre TB)N 2N coshN< )

where it was crucial to use (1 + 2)V = Z =1 (ij )xﬂ Note, in changing the sum index, since [V is large, we can
neglect dropping the s = 0 term.

9,7 =2V (N)(cosh™ ~* <mTB>)Smh (mTB> (—Tgn)

B
M = —7'23111Z = Nmtanh (m)
or T

_OM NP (mB
X=9B ~ s\ T




(b)
F=-7InZ=-7ln <(2cosh <mB))N) = —N7ln(2cosh (mB>)

T T

For x = T%L = tanh (’”TB) Now 1 — tanh? y = sech?y. F = —Ntln (\/12712) = —12\17 In (1—412)-
’N
(c) For mTB < 1, cosh? (mTB) —1.|x= n
-
Solution 3. Free energy of a harmonic oscillator
()
_ — —shwy _ 1 _ —hwo/T\—1
Z—Zoexp( . )_1—ehW0/7_(1_6 )
hw Fuw
F=—lnZ=rIn(1—e™/T)~7ln ( 0> for 1> —2
T T
(b)
— oF — —hwo /T T —hwo /T hwo . —hwo/T _ hwg
U——af’r——{ln(l—e 0 )+W(_e 0 ) - }—m—ln(l—e 7')

Solution 4. Energy fluctuations.

Z = Z e

—€s —es/T
9z =y~ 2Ty
S

or " oroi - T8 gy 2626_655

U o 9BZ\\ _ (032)Z — (032)*\ B2 (952\*\ _
&__BZMU_52<85<Z)>_ﬁ2( 72 =5 Z_<Z) a

ou
— 720 () — (o)

or
Solution 5. Overhauser effect. System S in energy eigenstate E,, = ne.
P(E) = ()gr(E)
Note AUg = (a —1)e. AUs=¢ s + U= —1 4 (¢ — 1) = a = ret in a specific energy eigenstate; gs(ne) = 1
While g (Ur ) = multiplicity of reservoir R with U energy.
Now

aJR 1

OFE, T
and

gr(Ur) = exp (o= (Ur))
If U= = (a — 1)e = AU small compared to Ux.

Un(Es = (n + 1)¢) = U (ne) + dde
or(Ur((n+1))) ~ o (Un (ne)) + %(a S 1)e
P(Es = (n+1)e) exp(or(Ur(ne)) + L(a—1)e)

e =Ug(ne) + (o — 1)e

€
= =|exp (77 l-«a )
P(Es = ne) exp (o (Ur (ne))) 7'( )
Solution 6. Rotation of diatomic molecules.
(@) €(j) =j(F + Deo- 9(j) =2j +1
Remember that Z is a sum over all states, not over all levels.

- i = d 2 -7 —T = d 32+i
7 = Z(QJ + 1)6_](J+1)60/T _ Z —_(e_(J +_])€0/T) <) = Z — (6_50/7—>
=0 i=o dj €0 (— dj
(b) For1 > <«
T > d z’ 4z T 2 T
7 — _ Bl ( —eo/‘r) de = —— ( —eo/T\x +x _ (,—€0/T O) _
wn === [ (e o= =L (et eainp) =

6



(¢) For % <1
Zp(r) =1+ 3¢ 2/7

(d)
InZ
U:728L f0r1>>i0 UT287’<1H7—)T
or T €0
T ) ; —2e¢0/T @ — M
for o <L U=+ (1 +3e—2€0/7> (3e ) 72 ) 7 14 3e—2e0/T
ou
Cy = () —1lwhenl> 2
or )y T
—2¢0/7T (260 143 —2e0/TY) _ 3 —2e0/T\ (260 ,—2€0/T —2e0/T 1
Oy = ey e (72)( € ) (6 )(7—2)6 :12686
EEr=—ae 7 T ey

6—260/7
For very small = < 1,|Cy ~ 12 ()

(7/€0)?

(e) See sketch.
Solution 7. Zipper problem.

(a) N links. e; = 0 closed, € open.

N
1— e—(N+l)6/T
7 = Zexp (—se/T) = e

s=0
b) 1> .
Z = Zivzo exp (—seB)
-1 13N (—se)emsPB
—0gInZ = — ==Y = (s) =
~Opln - 7 (s)

_ 1— e—E/T _e—(N-‘rl)e/T(_(N + 1)6)(1 _ e—e/T) _ (_6—6/7)(_6)(1 _ e—(N+1)/e/‘r) _
N1 e—(N+1l)e/T (1 _ 6—6/7’)2 -

e (e VBN +1)(1 — e ) — (1 — e- (NHD/T)) N e /T(eNB(N +1)(1 — e P) —1)
B (1— ef(N+1)E/T)(]_ _ 676/7’) - (1 —e—<h)

This still does not give the desired approximation. Consider the following:

1— e—(N-‘,—l)eﬁ eeﬁ _ e—Ne,B

Z= l—e 8 eh—1
e((eP + NBe NB)(eB —1) — (eP) (e — e NB))  e(eP(eP + Ne NP —ef e NeB) _ B _ Ne=NebB)
652 = D) = 2
(e —1) (7= 1)
087  e(eP(N +1)e NP — e — Ne"NF) ¢(eF (N +1)e NP — et — Ne=NeF)
z (eeﬂ _ 1)(66,3 _ e—Neﬁ) - e2¢B -
e(Nem(N=DeB o= (N=1)ef _peB _ Ne=NeB)  ¢((N 4 1)e”NV-1FB — (e 4 Ne~NeP))
= 626[3 = 6265 =
eB eB _ € 3 € €
¢ ((NJJQE - - 665) ¢ ((Nf?vi,s N _ eeﬁ) ¢ (Ne et e PN ff) N NeB
= 626[3 = 6266 = 6265 = 6( eNeﬁeeB ) =
~ 6(—@N€B) g
6Neﬂee,8
= (s) = e /T
Solution 8. Quantum concentration. Now ¥(z,y, z) = Asin (222) sin (“™) sin (272). p = 1V, % =—;LV2

Ground orbital: n, = ny, =n, = 1.

7= 5 (7)ol = 0 (7)
7



where (1o|1b0) = 1, ¥ normalized. It was normalized in this way:

L
N T o 2ng. T L
/°° sin? (nwﬂ-x)d z = /L —1 — o8 (2T> dng = i Sm( L ) <2””> _ g
0

L ; 2 2
0

L\® 4213 8

(W) =A <2> 3 lorA 3

3/2
Recall that ng = (52%) 2
Consider the condition that there will be a concentration for which the zero-point quantum kinetic energy is equal to the
temperature 7:
3 m 3 o 93 2/3 2mT 2mr \*/?
——=—1n*"=70rn’=—S=sorn=|-—5=
2m L2 2m 3m2h2 3m2h2

(AN T g, (4N
di (<37r) 27rh2) N (37r e

Solution 9. Partition function for two systems.

2(1+2) = 3 g(Eiy2) exp (‘ETHQ) _

> 9(Br+ Ey)exp (_TEl> exp (_EQ> =

E142 E1+Ea=FE,
- %;Ezzg(El)g(Eg) exp (?) exp (fQ) =Z(1)Z(2)

since systems are independent.
Solution 10. Elasticity of polymers.
(a) Consider 2s = N+ — N,, N = N+ + N,, 2s = N+ — (N — N+> = 2N+ — N. N+ = w
For 2s, consider —2s = Ny — (N — Ny) = 2N, — N. Ny = =258

(b) |s| <N
- 2(N!
o) (02) (52
(3 £)- (5 2)- () (5 2)
where we used In(z + Az) ~ Inz + LAz,
v (3 ) (3) )5 (D)6 ()
SENPREA RS AN WA N A £ T

(©)

Solution 11. One-dimensional gas.

B2 /2 9
€, = — (Z) n in one dimension

—h2 T2 2,2 ﬁ
7, = E — (=) n? Tt — VT
1 n_leXp(Q (L> n /T> :>/0 dne 5o

8



2
O]
_ hm/L

- \V2mrl/?
Recall that o = (%—f), F =U — 70, so that

F=—-71lnZzZ= —7'Nln£ TN In <2a> =7NlIn (2hﬁ/L ) =
2a e VTV 2mrl/2

V2rh 1 2 h?
=7N1 —— | = —7N1 _
T <\/mL71/2 g <mL27>
oF 1 2wh? TN 1 —2mh?
iy Vo N (UL I _ —
or 2 mL2T 2 (iﬂngT) mL272

1 2 h? —TN N 2mh?
==-Nln|— == (In|—%) -1
2 n<mL2T> T 2 (n(mLQT> )

4. THERMAL RADIATION AND PLANCK DISTRIBUTION

where

Problems. Solution 1. Number of thermal photons.
We consider a cavity of volume V/, and of edge length L (so V' L?). So then w,, = nwc/L.
Now m is the thermal average number of photons in a single mode frequency w. So then

1
Sp) = e —
S = 3
Consider (n;,n,,n;) on positive octant, and 2 independent polarization s of em field.

=8 [t = /“nan
;exp fmﬂ'c)_li 8 0 dmn dnexp(M)_liﬂ 0 exp(mﬂ'c)_li

Lt Lt

Lt \?* [ [ 22dx V /773
”(m) /0 (ew_1> N=5(5) @400

where I used the substitutions

Ltx

hre

Lt
d =d
(de) 2 hme "

Now o (7) = (472V/45)(7/hc)?, so then

o 1 4t
N~ 2404 <45> =|3.602]

Now how was [ du d? evaluated?
Solution 2.  Surface temperature of a Sun. Given the solar constant of the Earth, the total radiant energy flux density at

the Earth from the Sun normal to the incident rays, integrated over all emission wavelengths,

solar constant = 0.136.J s~ ! cm ™2, (49)

(a)

10%2 em

1m

2
47(1.49 x 10" m)? - 0.136 J s~ L em ™2 ( ) = (47)(1.49)%10%2 - 0.136 x 10* = \3 8 x 107 J - s~

Note that I had used 1.49 x 10'! m as the distance of the Earth from the Sun.
(b) J, = energy flux density or rate of energy emission per unit area.
2 4
o = 60h3 B —=5670 x 1078 Wm—2 K~4.
Note that W = ls‘]. I will use Ry = 6.9599 x 1010 ¢m as the radius of the Sun.

4x10%J-s71

47(6.9599 x 1010 ¢m)?
9
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10%2 em

4x10% - s71 1m2( Im )
47(6.9599 % 1010 em)2 | 5.670 x 10-5 J /s

T ~ 5830 K

Solution 3. Average temperature of the interior of the Sun.

kKt =1*

(a)
G (dmpr®) (4mr2pd 16 R ~16 4
U= _/ (Gmpr?) (4mrpdr) _ ——7T2GPQ/ rldr = —n*p’GR’; M = _mR%p
0 T 3 0 15 3
_ 2
U — 3GM
5R
1 (BG (dnpr® -8 R -8
U= _5/0 7(3:pr )(47rr2pdr) = ?WQGp2A ridr = 1—5772p2GR5 =
-8, M \> —3GM?
= 2GR [ — ) =2 =114 x 10" J
5" (gwRi%) 10 R X
(b) Using the virial theorem of mechanics, note that
- m  m? 1k
“1,_ 3G _ 3 007Tx10 kg% g2 x10% g () =5.72 x 10% J
2720 R 20 7 x 1010 cm (972-) -

Now (s) = W, is the Planck distribution function, giving the thermal average number of photons in a

single mode frequency w.
thermal average energy (¢) = (s)fiw = W

So then 5.72 x 1040 J = N{e) = Nr.
L
_ —[4.14 x 10° K
T T T X 1057(1.381 x 10-23 J/K) x 10
Solution 4. Age of the Sun.

(a) Consider 4H —3 He. Then 4(1.0078) — 4.0026 = 0.0286 amnu. Then

1.6726 x 10727 kg
1.00727647 u

for 7 < hw, (€) ~ T

(0.0286 amu) ( ) (3x 10%m/s)? =4.271x 10712 J

Given M, =2 x 1033 g,

(2% 10 k:g)(O.lO)( 1 > ( 1.00727647 u

4% (1.0078 amu) ) \ 1.6726 x 10~27 kg

So|1.28 x 10" .J |energy is available.

(b)
1.15 x 10% J 1hr 1day 1yr
=1.02 x 10'°

4% 10%] . 51 (36003> <24hr> <365days> A years

Solution 5. Surface temperature of the Earth. Jg = abTé is the radiant power per unit area.

Total emitted radiation energy of the sun is J547TR2

4nR2J

% = R2 Js = radiation energy hitting 1 ecm? of Earth’s surface in one second
ES

Since the Earth is considered a black-body, the rate of absorption must equal the rate of emission:

R2 1010
=oulh = oy} or T = TAR: — T, = 5800 Ky % =396.2 K = 123C
ES .

Solution 6. Pressure of thermal radiation.

) (4.27 x 10712.7) = 1.28 x 10%J

(a) s; = number of photons in that mode. Suppose modes of w;, j = 0,1, 2,
€; = sjhw; = total energy in jth mode, s; photons in jth mode.

U:ZEj:ZSjFMJJj P= Z j 8&1]
J J



(b) wj = jmc/L, V = L. So then w; = jmcV /3.

dw; -1 _4 —1w;
et A VAt VA S
av ~ 37" 3V
© p=13y
(d) We want the Kinetic pressure at a concentration of (1mol/cm?). Recalling P = YtsT ];BT,
1mol\ (6.022 x 1022\ /10%cm\” J N
P= 1.381 x 1072 2. ) (2 x 10" K) = 1.663 x 10™* —
<0m3>( 1 mol )( lm) ( K>( ) m2

Now for the thermal radiation pressure,
u 1 2

N

4 13
oo T o403 %1018
3V 3 15h3c3T X m?2

p:

where t = 2 x 107 K.
For the pressures to be equal,

1 72 ., Nkp 5 _ 45(hc)*Nkg -
- =—TorT —————sothat| T =32 x 10" K
31586 B Vv wkky 0T 52 X
Solution 7. Free energy of a photon gas
(@) Z =1, 7——k=7= Consider Z = 32 ) e~ *"/™ = —L— for a single mode.

b) F=—lnZ=73,In(1l—ehwn/7) wy, = "€,

0 4 2d [e's}
F=rY In(l—e™/m)= 7/ 7”; L(2)In (1 — /Ly — m/ dnn®In (1 — e~ Pme/ly =
n 0 0

n3 —hnme/TL —R A2 0 3
_ 3 —Fmﬂ'('/‘rL € e = — e n =
=TT ((n ln(l / dnl_e_;:mﬂ.c/TL ( L )) - L 0 dnehnﬂ/'rL_ 1 -
_ (L 3/“ @’ (TL>
B he 0 €% — 1 (h2c )45
where I used z = %

Solution 8. Heat shields. For J, = o(T,} — T}!), the thermal flux without the heat shield, in the middle region. Plane m
absorbs 0Tt + 0T} and emits J,,, = op(Ti + 1)) = oT}1,.
T = (T + T;*)1/*. The key point is that, by symmetry, plane m emits 2z flux on each side.
T4+ TH Ti T} J,
Jne — T4 _ U [ — U 1 — “Ju
+ =0T, — (0B (2 )) op <2 5
Jnet 18 the same for the other side of the heat shield:

T+ T T —T*
Jnet__a,BTvlél_'_o_B( u,; l>_o,B< u2 l)

Solution 9. Photon gas in one dimension. & = Ej sin (kz) cos (wt) is the form of a solution with kL. = nm or k = =T,
since w nr
vV2E,x = Eyt — v2 k% = w? or = U, Wy = V—

L
—shw/T __
Z _Ze - 1—e hw/T

where Z; is the partition function for a particular mode frequency w.

(s) = Z;’iosZe‘mf" = Zld(—hin/r)(l — exp <77i_wn))1 =71 —exp <fw))2 exp <ij_w”> -

__exp (—hwnp,/T)
1 —exp (—hw,/T)

So
B B Fiw,, B B hvnw /L
(s)hwy, = (€,) = W U= ;<€n> = Z W

ou —hvnm/L | (exp (hvnﬂ') (—hvmr>) _ Z (hLL:)?n2eXp (funm) :Z (hLL:)?n exp (hymn)

O 4 (exp (Mnm) — 1 2 (exp (fnem) —1)2 (exp (2Zn) —1)2

11



hvr

Now >~ — fooo dn for one-dimensional photon. Let o = %
Letting x = an,

ou nom 2 nexp(an) 1 x2e” 1, —a? *° xdx
o = (1) / ”(ean71)2 a/ Tl 1) a{(eu1)+/ 1
Coefficient of k term of f(k)is j = [° =Z5dx. Now f(k) = [;° 22 (’”)dx sin (kz) = kx — (k;)3 + ..., so that

2 [ee]
7T—:/ _m dz
6 0 et —1

oU Lt (7762> _ Ltm _ oy

or  hor

Solution 10. Heat capacity of intergalactic space.

Given the density 1 atom m 2, considering thermal radiation at 2.9 K, then kT = (1.381 x 10723 J/K)(2.9K), hc =

(1.05457 x 10734 ] - 5)(3 x 108 ),

Recall for radiation, that the energy per unit volume: % = 15h3 =074 s0 that aU = 154,;,03 V.
Assume hydrogen atoms modeled as ideal gas: U = %N T, dT = 3N
3N 4 N,
CVinaster = — 20 5(520) ( /;/) —98x% 1010
CVT@diation 15;7’#3@7—3‘/ 87T (kBT)
Solution 11. Heat capacity of solids in high temperature limit. % = ”zin; Wy = ”Z". For 7 <« hw,,, 0 <n <np.
wn B (on\? (1) 1 (wn )
exp | — | —1~1+—"+ (=) + -1
T T T 2 6 T
By doing long division
hwn hwn T + hwn (h’wn)Q
hwy, = - = )2 =T _—
o (5) T1 b (1 ey Ge) 1 B+ O 2 " T
For n, = (6N/m)'/?
3 hw (hwy )? 3w [P hron  h2m2v?n?
= dnn?(r — —2 ny =20 dnn(r — - —— + 2~ ") =
u 2/0 (T = =5+ 127) 2/0 i (r =5t )
sl hrund | Kl 2y = E6N 3w (6N\Y? | 3R%7%0(6N/m)>/3
T 23T T or 127-L2 5D TT6L \n 120712
So
U= 3Nr— 3m2h 6N 4/3 3h2m3V2(6N/m)5/3
B 6L \ m 1207L?
NowT =6,60 = (ﬁv) (6n’N)'/?
s ks L
So then
U 3th(67r2N)1/3  3n%hw 61/3N*/36 _ 15 (67°N)'3ho _ Nkph 15
L 16L m4/3 8 L
U 15 15 6.022 x 1023 particles
= Nk = 1.381 x 107** J/K = 15.59
0 B(8> (8>( . / )( Tmol >
which is very close to experimental values.
Solution 12. Heat cipaaty of photons a}lnd phonons. For a photon: U = 15h303 Vot 9,U= 1457;;‘0/3 73
3rinNTt U __ 12x*N73
phonon: U(7) = 507 Or = S0
So then
12741022 /1 \°
Cy=——"(—) =23x10"®
v 5 <100> .
for a phonon.
For a photon,
472 (1.381 x 10-23J/K)3

an” 3 =920 /K373
15 (1.05457 x 10=34.J - 5(3 x 1010 cm/s))3T /KT
12



Temperature at which to photon contribution equals to phonon contribution:

(220/K3)7% = 2.3 x 10" = \ T=22x10°K

Solution 13. Energy fluctuations in a solid at low temperatures.

#(5). = te=tam

<6U) _ 127*N73 3rtNT?
1%

Recall that

= _ - h _2r At
ar 5 epo® "1V = 50,008

=S () -5 () (5) () wer =23 (7)

0.070 / 200 \*
— =2 == =002
4 1015 (102>

Solution 14. Heat capacity of liquid * He at low temperatures.

(a) Given v = 2.383 x 10* em s~! and accounting for only longitudinal waves (only longitudinal polarization), then the
Debye temperature is

1/3
b <m> (18772N>1/3 (105457 x 107347 - 5)(2.383 x 10* i /s) (1871'20.1459 (1.00727647u (4;5;”))) B

kp Vv 1.381 x 1023 J/K 1.67262 x 10=24 ¢

- [0k

(b) Recall the derivation for U for phonons in a solid. Account for only longitudinal waves (only longitudinal polariza-

tion).
v=" /nD dnnz# _T /nD n2dn hipt  hatv /"D n? in
2 Jo exp (hw,/T7)—1 2 J, exp(z) — 1 2L J, exp(z)-—1

With w,, = v, z = 20 or (L) 2 = n, then

U h2v Lr\* [m» 23 d
== — x
2L hmv o €er—1
1/3 1/3%..2/3,.1/3
For low temperatures, 7 small so take xp = (252%) = (Lrv) (18X) 3 _ 18 hmtn v 6 go to 0o.

’/T2 7_4
v= <2<hv>3> 5

Recall that Cy, = (BE)V. Then Cy /V = 1—25 <%) 73. Recall 75 = kpT, and given v = 2.383 x 10* cm /s, then

cm3

kg (1.381 x 1072 J/K)

o (1.05457266 x 10—3%J - 5)(2.383 x 104 cm/s)

Soif we take Cy//V and divide by the given density p = 0.145 g/cm? to get the heat capacity per gram, (and multiply
by kp, the Boltzmann constant to get the correct units; Kittel and Kroemer likes using dimensionless formulas ) then

B 2 o (kg\’, 5 em? B 3
(Ov/V)]p = (ks) g5 (hv) T \o1s54 = 00205 < 7%

Solution 15. Angular distribution of radiant energy flux.
(a) Recall

= 5.495 x 10 (1/K - em)

h w3
722 exp (hw) 1

T

Uy =

is the radiation energy per unit volume per unit frequency range.

cu,, = energy per unit time, per cross sectional area per unit frequency range.
em waves emitted spherically from pt. Q.

Suppose em wave comes in at a funny angle other than directly inward.
Consider area da that’s from the spherical wave from pt. Q. How much of that goes into solid angle d€2?

= cu,, cos 0dA
13



So cuy,, cos 6 is the energy per unit time, per cross-sectional area, per unit frequency range, that enters into some solid

angle df2.

r2dS)
472

@
47

is the fraction of the spectral density that if arrives in solid angle df).

—

cu,, cos—

47

is the spectral density of radiant energy flux that arrives in solid angle df2.

(b)

/cos@sin 0dfdyp = 27r/

Sm20d9 _ (cos?@)
2 2

/2 (11)
—T =T
. 2

|
4
Solution 17. Entropy and occupancy.
—shw/T _
Z = Z 1—e hw/r
- hw hw hw
0=y el () <o - eyt (1) < g
pord T T T
Then
efhw/r 1
()= Ty St =T
0,7 hw hw
oc=0;(tInZ)=InZ+r1 =In{s+1) +TT2 (s)=In(s+1)+ T<S>
Now (nyni)
1 hw
(s)In s+ _ Ze /T Inehe/m = —(s)
(s) T

:>‘0:<3+

Din(s+ 1)+ (s)In(s) ‘

Solution 18. Isentropic expansion of photon gas.

@ 7V;/? = Tfol/3 or
Vi 29K
Vy 7 3000K
r =r7(t) = at so that Ar = aAtor &7 = £L
Ty Ty tf tf
Knwowing that :—; — 103, then % —10-3.
(b) Now
oc=1V/3

(%)3:V

For constant entropy expansion.

U 2 2 w2 ot
— = 74 5V =
V. 15R3¢3 T 15 he)3 V4/3 he)3 V1/3
ou 72 -1
_ Ly
(av) 15(he)3” ( 3 )
2 2ot 1 2‘/4/3 4 1 T T2V
W= /PdV = 304 (_V_l/g) = 1/3 VN B /3 fl/3 - (T
15(%ic) v,  15(he)3 1% v 15(fic)3 1% v, 15(fic)

14
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Exercise 19. Reflective heat shield and Kirchhoff’s law.
For a left plane sheet at 7, temperature, right plane sheet at 7; temperature

+Jy = opTi —Ji = op7y}
reflection —7.J, = —(1 — a)op7i: reflection 7.J; = (1 — a)op7
absorb (left) a.J, = aoyTs absorb (left) a.J; = aoy;'

total absorption: a(J, + J;) = aoy(7 + 77)

total emission: aoy, (7, + 7). By symmetry, emitted to the left, and to right.

e emissivity, where emissivity is defined so radiation flux emitted by the object is e times the flux emitted by a blackbody at
the same temperature.

By Kirchhoff law, for equilibrium, a = e; object must emit at same rate as it absorbs.

a(Ju+J1)
2

. —a(Jy + Jp) . —(1—T)(JU+J1) 1-mJ, @{@A-7) . (Ju— 1) .
JmtfffrJquJuf 5 +(1=-r)J, = 5 - 5 f(lfr)Tf
4Tt Ju + J; 1—r)(Ju — J
gy (G et ) [0 00 )
2 2 2
5. CHEMICAL POTENTIAL AND GIBBS DISTRIBUTION
Solution 1. Centrifuge
T = %mr + mr2w2
Consider ptey: = 1M r2w? (negative so for bigger r away from r = 0 axis, lower chemical potential y, so to show

“centrifugal force” outwards.
fitor = TIn (n/ng) — S Mriw?.
Lot (1) = ot (0) for diffusion equilibrium.

rIn (;;) ;MT%J =7l (2?) — 7l (ZES;) =

1
2
ZES; = exp ( M;j“2> or[n(r) = n(0) exp (M 7’2“’2>

Solution 2. Molecules in the Earth’s atmosphere.

Recall that for ideal gas, F = —7[NInZ; —In N1|; Z; = ngV = (21\7{{2)3/2 V.
oF d n
_(9F log 7 — —= N1 =71
K <8N>ﬂv rllog 21 = I N1 = Tn(m))

Mr \3/2
27rh2) .
Now 1 = 7log (i

where ng = (

_ —GM, _ ngn GM,
Pext = —= = since g = “5=.

Lot = TIn (n/ng) + Mgh
In equilibrium, this must be independent of T ot (1) = ot (R).

M = rin (n(R)fng) ~ 14

i) =0 (=) oo (52 (7)) =67
— n(r) = n(R) exp (]‘fg <]j2 _ ;))

—MgR [ MgR?
N = 4mn(R) exp g / r2dr exp ( g )
R Tr

T

so that

Solution 6. Gibbs sum for a two level system. Recall that

Z Zexp (Np—egny)/7] = Zexp (N —esny)/7]; A =exp (%)
N=0s(N) ASN
15



(@ Z=1+ X+ Xexp (=£), 1for N =0;for N =1, A+ Xexp (=<). A fore = 0.
(b) < > 0(1) +(1)(/\+>\8XP( )) _ A(l—i—expz( €/T))

(C) < ( )> 0(1)4(0) (A)Jr/\exp( €/T) _ )\expé:e/r)

@ {6) = e(N(0) = Aeopie/n)

(e)

Z=14+X+Xexp(—¢/7) 4+ Nexp(—€¢/7) = (1+N)(1+ Xexp (—¢/7)
where we considered the possibility the orbital at 0 and at e are each occupied by one particle at the same time.
So that, for total energy being e, exp [(2i — €)/7] = (exp (£))%e~</T = A2e~/7.
Solution 7. States of positive and negative ionization.
Z = e 4 et + AeT + A2e?
NE=0+eD2 4 €T 42\
)\(eA/QT 4 e—A/QT 4 2)\6—6/27—)

A0pIn Z = — — =1
e + e + e + N2

)\2675/27 _ e6/27‘
/\eA/2T + )\e—A/2T + 2)\26—6/27 _ 66/27' _ )\eA/2T + )\e—A/2T + )\26—5/27 —

N =T or2ln\=6/1

Solution 8. Carbon monoxide poisoning.
(@) Z =1+ \Og)ecA/"

AOz)e™
1+ )\(02)6 GA/T

—In (A(902)> _;A, or7ln (A(QOQ)) —e4

-5

P(O7) =

= 0.9 0r 0.9 = 0.1A(Os) exp <_GA>
.

1
A= (kgT)In <A<902)> = (8.617 x 1077 %)(273 +39)In ( 0 ) = —0.3686 eV

(b) Z =1+ AO02)e /T + A\(CO)e~B/T

MNOy)e=ca/T
14 AMOg)e=<a/T + X\(CO)e—cB/T

9)\(02)6 ea/T _ 1 —€R )\(CO)
1 _ =71 = —0.5511
n< \CO) = orjeg =Tln ON(Oy)e—r/7 — 1 0.5511 eV

Solution 9. Absorption of O, in a magnetic field. Recall that 25 + 1 = total number of spin states.
2(1)+1=3.
Now U = —m - B.

P(0,) = =0.1 = 0.1+ 0.1A(CO)e B/ = 0.9X\(O5)e~ /T

—etrpB —(cat+upB)

+ )\(02) - "1'4 + )\(02)6% =
#BB>
)

or 0.91 = 0.09A(0z)e 6A/T(l + 2 cosh (uBB))
T

Z =1+ A(0y)e

Z =1+ M03)e /(1 +2cosh (

AMO2)e ¢4/ (1 + 2 cosh (@))
1+ A(O3)e=€4/7(1 + 2 cosh (@))

1/91 1 A/ upB 91 1 /
(= €a/T _ 1) =cosh| 2= )orB=— h calm —1
B < 9 )\(02) e > COS < - B arccos 9 )\(02) e

The Gibbs sum in the limit of zero magnetic field will differ from that of Problem 8 because there the spin multiplicity of the
bound state was neglected.

091 =
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Z =1+ 3)\Os)e /"
3)\(02)676‘4/7

P(Oy) = =0.90r 0.9 = 0.3\(0g)e /"
(O2) 14 3X(0q)e—cal/T or (Oz2)e
lnﬁ = —¢ea/Tores =7ln <)\(§2)) = —0.6227

for T" = 300 K, so that 7 = 0.049375¢eV.

T 0.049375 - 0.59927
MBO 59927 5.7884 x 10~11 x 106 eV/T

Solution 10. Concentration fluctuations.
(a) Recall that 2 =377 (3" ) exp [(Np — e5w)) /7).

6875 - Z (f) exp [(Np — eyny) /7] (N?) = Zor

ASN

(b)

0 N 0 (T (52) ) 7(%12’“);/ (g;%)ﬂv
Vv

“ou\z\ o -7 i

— LNy = (V) — (V)2 = (ANP)

op
Solution 11. Equivalent definition of chemical potential.
Recall that
do 0o do
do = | == dU — av — dN 31
7= (o), () e (aw),, o
0o
=—7| == 35
(o),
Consider when do = dV = 0.
— ZPanv 4 (92) au=o
T oUu )N

do) AU _n
oU )y ydN 7

au _ (8U
Note that 2% = (W)U,V'
do

Using the definition, <8U)N v = 1. so then

_ (U
"=\on), .,

Now F' = U — 70, by definition. Consider the thermodynamic identity, dU = 7do — pdV + udN.

dF = dU — odt — 7do = 7do — pdV + pdN — odt — 7do =
= —pdV 4+ udN — odr

oF
— (= — N
<3N>T,v (T, V,N)
ou

Likewise, 1 = (B—N)J v is equivalent to w(t,V,N) = (g—g) - through the thermodynamic identity as well.

T7

dU = 1do — pdV + pudN

(U _
onN )., "

Solution 12. Ascent of sap in trees. Given: relative humidity » = 0.9. T' = 25° C'

o,V constant. do,dV = 0.

17



no = concentration in saturated air that stands immediately above pool of water of water vapor in air.
rno = actual concentration of water vapor in air at uppermost leaves is rng.

At pool, jti,0 = [hvapor for diffusion equilibrium.
Same condition at uppermost leaves, otherwise there’s evaporation:

Hsap = ,uvapor(h)-
Psap = .0 (no flow going on in water). Thus, fiyapor(h) = ftvapor(0) and treat water vapor as an ideal gas.

Tln (n(h)) +mgh =T7ln (n(()))
nQ nQ
™Mo 1 T 1
TIn{— | =—-mgh=7In|-) =mghorh=—1In|{ -
no r mg r

2
(1381 x 1072 %) (298 K) (kg - ) In ()

= lBamu) (m) (9.8m/s?) =147.1m
1amu :
Solution 13. Isentropic expansion.
(@)
(b) Recall that F' = —7[N'In Z; — In N1] where Z) = ngV = (2%)**V and
g=- (%)V,W'

OF 1/ M \**3

~— =—[NInZ —InN!| - 7[N=— Sy =

o [NInZ; —In N!] T[NZ1 (27rh2> 57 V]
3

1
=—[NInZ; —InN] - [NZ—nQ§V] =—[NInZ; —InN!| - gN
1

. 3/2 . . . .
With N constant and Z; = (524) /2 13/2V/ then for an isentropic expansion, 7V2/3 must remain constant.

Solution 14. Multiple binding of O-.
(a) Be wary of the multiplicity, how you count, each of the energy states.

4 4
Z—1 +4)\e—€/7' + (2) A2€_2€/T + (3) )\36—36/7 + )\46—46/7 — (1 + Ae—e/7)4

4he=/™
P(e) = 4(1 + Ae—</T)4

® dp—¢/ /
Ne—e/T e—€/T
P(4e) = =
( 6) (1 4 )\6—6/7')4 ( 1 )4

A_;’_e—e/‘r

6. IDEAL GAS

Reversible Isothermal Expansion. () = 0, insulated gas, no heat flow to or from the gas (“adiabatic”)
o constant in system isolated from reservoir, if expansion reverisble (slowly)

What is the pressure after expansion? Remember

o W s
Cy 3N 3
So let
b3
y—1 2
™ o(r,V) = N(lnTﬁ +1InV + constant ) (61)
) In77 7V = constant or 771V constant (62)

_1 _1
©9) — 7 Vi=1 Ve (63)
18



for ideal monoatomic gas.

UsepV = N7
P T
(10) — 0 _ D (64)
b1 b2
or py 1V1" Y =pJ 1V27 Yorp VT = pa V)
I will recap Problem 10 and my solution.
Isentropic relations of ideal gas.
(@ v= . For isentropic process, pV7 = p;V,".
Then essentlally and equivalently, take the exterior derivative:
d, av
Vidp +ypVildv =0 = L 77 0
p

(b)

For
=1 _ L
TV =7V,

then taking d:
dr

drVI7 T (v =)V =0 = — + Tczv =0
For
~ 0
TI=7p = Tllprl
then taking d:
~ d d
dpT T + 7 7 WdTp—O=>fp—§-7’y l:()
L=y p l—vyr
isentropic bulk moduli
_ (o _. pVi_
S \ev), v TP
since p = p‘i/‘?
B, = P

EY : 20150606 I think when one consider small, linear longitudinal perturbations of the gas system, with pressure
being the external restoring force, then sound waves propagate (correct me if I'm wrong) and this is the way to derive
B,.

. . ) nr __

isothermal bulk moduli B, = —V (ﬁ)T = =p

. . ) 1/2 1/2
velocity of sound in gas is ¢ = v = (%)

for ideal gas of molecules of mass M, pV = Nt

Manifold interpretation; I’'m using Chapter 5 Applications in Physics, Section A Thermodynamics of [2]. Consider a 2-
dimensional manifold of equilibrium states M, s.t. dimM = 2. Local coordinates are (U, V) with U being a global
coordinate.

Now U = Cy 7 so use T as a global coordinate, i.e. the local coordinates of M can be (7, V).

Consider a curve in M parametrized by A: (7(A), V())). The corresponding tangent vector X = T'% + V% € X(M) has

components in coordinate vector basis 7 = 7(A)

V=V
Recall
Tyt =0
+ % =
Consider applying this 1-form onto X:
dr v B B N1
(T VdV)()JrVV O:>d(V)O

Then the equalities of the endpoints of this curve (7(A), V' (\)) are the equalities above. The interpretation is that the isentropic
process draws out a curve in M and can be written as a curve or as a tangent vector field (specifically a section of T'M).
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(11) nVy =Vt (66)

il il

(12) P =1, P, (67)
(13) PVY =PRVy  (68)
T =300K, Vi/Va=g,
2/3
(14) Ty = (2) (300K) =189 K  (69)

The gas is cooled in expansion process by
(15) T, —T,=300K — 189 K =111 K (70)
Expansion at constant entropy is important e.g. methods of refridgeration.
What is the change in energy in the expansion?
1

Uy—U =Cylr—7)= ——
2= U1 =Cy(ra—7) o

N(ra —11)

Problems. Solution 1. Derivative of Fermi-Dirac function. Recall f = (ele=m/T 4 1)1

1 _
exp [(e—p)/7]+1

Oef = —1(elMW/T £ 1)2(ele=)/T) <1)

-
-1
aef(€ = :u) = T
-
Solution 2. Symmetry of filled and vacant orbitals. e = p + 0
5 AT S 5
fle)=f(u+d)= o1 1 +W_ — flp—9)

Solution 3. Distribution function for double occupancy statistics.
(@) 7 =14 e 97 + X\2e~2¢/7 where \ = e//7.
Ae™ /T 4 2\2em 2T
¢

<N> = )\5>\ h’lC = %(6_6/7 + 2A6_2€/T) _

(b) ¢ =1+ 2Xe /7 4 \2e72¢/7
2Xe /T +2X2¢72¢/T  2\(e¢/T)(1 4+ Ae~/7)

=\ In\ = -
(N) = A0\ In c c

Solution 4. Energy of gas of extreme relativistic particles. For e, ~ p, > _ e P/tav — 7.
With the factor 2 for the 2 possible polarizations,

4 o0 00 oo o0
Z = (2)%/0 pPdpe P/ = 7T{p267p/7(—7’)‘0 —/0 2peP/T(—7)} = 27'71'/0 pe P/Tdp =

oo

== QTW{pe_p/T(—T)’0 —/ e_p/T(—T)dp} =237
0

InZ
20lnZ =720 {In (2n7%)} = 720,(3InT) =

Solution 5. Integration of the thermodynamic identity for an ideal gas. For constant NV, recall

do =20 2V _ 1 (aU) dr + (8[]) av + 4V
\4 T T

U=r

T r  r\or r\ov

Cv = (%Y),,. and for an ideal gas pV = NT.

/dcr_g_C’VlnTJernVJr/l(aU) dV + o1
T\OT ).

ou

Now U = 27 for an ideal gas, so (9%) = 0.

= oc=CylnT+ NInV + 04
o1 independent constant of 7 and V.

Solution 6. Entropy of mixing.
20



Solution 7. Relation of pressure and energy density.

(a) Recall that U = U(o,V,N). p= — (%%) . and
€se /T
U= 2t 7
ou Oe —1 [ Oe e 1
oY _ s —es/T 4 s —es/T 7 _ Yt - —€s/T —€s/T Z2
=S (o), e (7 (50), ) )2 S(5) (3) 7 Sewerr
_ ou
Now p = — (a—v)N. )
So if the system is in state s; then p, = — (§52) -
[ Oes —€s/T
N e
Z
22 22
(©) Now e, = 7551 = i i
272
Oes ) _ _2V75/3M — _les
ovV ) n 3 2M 3V
()
—‘263 —€s/T 2 1
p= Lomre T 121N,
Z 3\V
Solution 8. Time for a large fluctuation.
(a) Recall o = N[In (%2) + 3]. ng = (21\;[{2)3/2.

o1 = N (25525) 3

n 1%
o; = N[ln (—% ) + 3
N 5N No\ Y
g e” ~exp <1n (%Q) * 52) =e¥ (nQ>

Now
(938 MeV/c?)((0.8617 x 10~4eV)/K)(300 K) (1 MeV lc 2 _ 788 x 1030/m3
27(6.582122 x 10722 MeV - )2 106 eV 3 x108m/s o

Now PV = Nr. Then

nQ:4><

1.013%x10° N/m?2\ [ kg-m/s>
p N (atm)(RENm) (homy

T V. 1.381x 1072 J/K(300 K)
Now 1 L = 1073 m3 and so for 0.1 L,
1
(2.445 x 10%* —)(10~*m?) = 2.445 x 10*!
m

) = 2.445 x 10%° /m3

With

_ 5
2.445 x 10% /m3> = 32210

— g~ 63(2.445><1021)(3.22 % 105)2.445><1021

( 7.88 x 1030 /m3

(b)
(©
Solution 9. Gas of atoms with internal degree of freedom.

For an ideal monatomic gas, assume noninteracting.
(@ Aint = A\ A =-exp(p/7)ideal gas. u = 7In(n/ng); ng = (21\,{{2)3/2

‘ Aewt = €xp (—A/7) or 1 ‘

. . .. . 3/2
Zy is the usual canonical partition function, Z; = ngV where ng = (2];{;2) /

2= (hexp (—e/7)(1) + Aexp (f) exp (_TA>)Z1 = \1+e 27

S

(Z0)V = A1+ e M)z)N



(b)
(©
Solution 10. Isentropic relations of ideal gas.

(a) Isentropic process, so pV7 = p;V,".

d,
Vdp +ypVILdy =0 = | &L + VdV -0
p
Dealing with an ideal gas, pV = N still applies.
TV771 = Ti‘/{y_l
drVI T 4T (y =)V 2V =0
d -1
G A i P
Vv
Using pV = Nt again, note that p! =777 = constant .
d d
(1 —y)p Ydpr? +p* Iy ldr =0 = o TR
l—v 71
(b) Using p = V‘i ,
op _ —ypiVy
v vt
op _ Vi _
= Vv = T
So that B, = =V (9p/dV'), = ~yp, the isentropic bulk moduli.
oP nr
— V - — =
(av) v P
since
pV =nt
_nr
P=7v
dp _ —n1
oV V2

7. FERMI AND BOSE GASES

Problems. Problem 1. Density of orbitals in one and two dimensions.

(a) Show that the density of orbitals of a free electron in one dimension is

(16) Di(e) = (L/?T)(Qm/hze)l/Q,

where L is the length of the line.

(b) Show that in two dimensions, for a square of area A,

(17) Dy (e)
independent of e.
Solution 1. Recall for the free electron: H = —; = E;f Vv

2 2 2 (n,+n,)m .
— e, = 1 forldlm €5 = ;—m% for 2-dim.

2m L2
If ez = Fermi energy, energy of the highest filled orbital,

I-dim: N = 2np. 2-dim.: N = (2) (1) (wn2) = T2k
2 factor for 2 possible spin states.

Ldim e = 2 (5)" 5 = 2 (459 () = 2 (2
i e — £ () (F)7 = £ - 2~

1-dim.: D(e) = 4N =\ [2m (2£)*L(ep) /2 = N = (L

2-dim.: Ne = Am/nh?

= Am/mh?

2

)2 n> N
N = g




Problem 2. [Energy of relativistic Fermi gas. For electrons with an energy € > mc?, where m is the rest mass of the
electron, the energy is given by € =~ pc, Where p is the momentum. For electrons in a cube of volume V = L3 the momentum
is of the form (7//L), multiplied by (n2 + n2 +n 2)1/2 exactly as for the nonrelativistic limit.

(a) Show that in this extreme relativistic limit the Fermi energy of a gas of IV electrons is given by

(18) ep = hme(3n/m)'/3,
where n = N/V.
(b) Show that the total energy of the ground state of the gas is
3
(19) U() = ENEF.
The general problem is treated by F. Jiittner, Zeitschrift fiir Physik 47, 542 (1928).
Solution 2.
(@) e~pc= h”—”c, € = —hnffﬂc.
Recall, for 3-dim.: N = (2) (%) (%ﬂ'n%) = %n% np = (TN)l/3
1/3 1/3
er = 3 ()" = hme (22)Y
(b)
1 nE h hm?c [™F hr?
Uo:226n=2*§*47r/0 dnn? Zﬁc: 7;6/0 dnn® = ZLCTL%:

n<ng

_h?TQC erL 4_h7r20 ﬂ erL §N
T 4L \hme) ~ 4L \x J\hme) |2

Problem 3. Pressure and entropy of degenerate Fermi gas.

(a) Show that a Fermi electron gas in the ground state exerts a pressure
3r2)2/3 B2 / N\ /3
(20) p= BTN (N
5 m \V

In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of an orbital is
proportional to 1/L? or to 1/V?/3,
(b) Find an expression for the entropy of a Fermi electron gas in the region 7 < ep. Notice that 0 — 0 as 7 — 0.

Solution 3.

(a) Recall Uy = £N 4 (37T2N)2/3V 2/3

oU 3 I? —2 1R N\?
OY _ 2N g2/ ([ ZE ) yoss = T2 g 2y (Y
v 5V, 0N 3 )V U

So then

5/3
G |

P="5v T 5m %

\4 T
helps directly with ﬁndlng the entropy.

1 11 N
o(1) — (o) :/ —dU z/ 3 72N dr 7; T
T )

0’7‘ T TR TR

2/3
(b) Recallthatep = 7 = hz SN ) and that the heat capacity of an electron gas is C; = %772N TT 9U '\which

Leto(1o = 0) =0,

N
2TF

o(1) =

Problem 4. Chemical potential versus temperature. Explain graphically why the initial curvature of p versus 7 is upward
for a fermion gas in one dimension and downward in three dimensions (Figure 7.7). Hint: The D;(€) and Ds(¢) curves are
different, where D; is given in Problem 1. It will be found useful to set up the integral for N, the number of particles, and to
consider from the graphs the behavior of the integrand between zero temperature and a finite temperature.
Solution 4. Recall, N = f o deD(e

23



1-dim:

v e 2/ io(2)

™

3-dim:

Note the difference in the concavity of the N (¢) curves.
Solution 5.

(a) For 3He, given I = 1/2, density of liquid 0.081 g cm 3, we want to find vr, €, T5.

h? 2 \2/3
€p = <2m> (37°n)*/° =

(6.582 x 10722 MeV - 5)? ((3 20.0819) (1kg) ( lu ) (13He)>2/3
= 2 i 3 3 o7 =
c cm 10 1.67 x 10—27k 3u
23938 MeV/ (grotimnrs ) ! !

=424 x 10710 MeV =4.24 x 107 % eV

Now suppose we have a nonrelativistic gas. Then %mv% or v = 2%
vp = 1.675 x 10
sec
4.24 x 10~%eV
Tp = =492K
708619 x 101 eV/K
®) 2 2 2
T m 3N T T
Cea=—=D =——7=—N—=1003kgTN
=g Pl =g T =g N B
Solution 6. Mass-radius relationship for white dwarfs.
()
Gzmrop M 41 M —3GM?
2 _ 2 5 _
U= / drdr = —47r/f dr =4m 4R3G3 5R4R3_ TR
(b)

h? 2. \2/3
€F = <2m> (37°n)

n2 /372N 2/3 (3%2)2/3 B2 N5/3 (3772)2/3 h2 N5/3
Tm_N e _NGF_Nm< v ) T2 <mv2/3):

is the Fermi energy.
With V = %WR?’,

2 m( )2/3R2_

\2/3
() RN (b

2 mR2 mR?2
since N = MﬂH since Mg < m.
(©)
h2Mo/3 _GM? . MR~ n?/G
MPR2 R mM?/?

(6.582 x 10722 MeV - 5)(1.05457 x 10734 J - s) (1039)2 J(6.67 x 10-11 m3/s2) <(3 x 108 m/s)2>
0.511 MeV/c2((1.67 x 10-27 kg) (103 ))5/3 kg kg 12

Dealing with units and dimensions,

2 N . m2 32 3/.2
J:kg~m—; m:kg.m/s:m/s
2 kg2 kg2 kg




1m

6.582 x 10722 MeV - 5)(1.05457 x 1034 kg - m?y (10%cm 2 10%g ?
(6. X e s)(1. X 9~ ) Thyg ((3 % 1010 Cm/S)Q) L0 13
g’°em

(OTL MoV ) (167 102 g 667 x 101 B2 e () \ 12
(d
_ M _ M B M?2 B (2 x 10339)2 B 3 % 106692
. %WRS ; %W (%)3 B %W1060gcm3 o %W1060gcm3 ~ 71050 g om3
g
10° <
cm3
©)
n%/G 1017g1/3 e

M'Y3R ~ 101791/30771 — R =

M (2% 107 g)173

Solution 7. Photon condensation. N, = 2.404V 73 /72h3c3.
The condition is that N = N,:

="7.937km

2.404V 73
N=Ne="ops

233 N\ P
T < 2.404 V)
With a concentration of 1020 cm ™3, T = 1.7 x 10° K (the critical temperature in K below which N, < N.

Solution 8. Energy, heat capacity, and entropy of degenerate boson gas.
Recall that the distribution function for bosons is

1
f €T) =
e T
Consider /V noninteracting bosons of spin zero.
€ = 0 for ground state. Thus, f(0,7) = m. Recall that

o © v (2M\*? |, 1
Ne(T) :/0 dGD(G)f(E,T) :/0 dﬁrﬂa <h2) € / W(i)_l

1 > ¢ > ¢ Vo2M\*?
o _C D()de = S S il 1/24e =
v=0 <exp(—u/r) - 1> +/0 oy 1 Ple)de /0 e—m/T _1 472 ( h? ) ce

Vo2MN\PE e /2
T an2 \ n2 /0 ele—w)/m _ 1

T < Te, S0 A = 1, for Ny to be sufficiently large.

Vo2M\P? e 2
U=— (2= L
VT e ( 2 ) /0 el 1

Recall,

x=c¢€/T

Usi
8 g = de/T

o, = (2) V(M W2w3/wxwwx
v\ e\ ) T ), et

1 V By 273/2Cyd
o(U) — o(Up) :/;dU:/M - VBogco/TlﬂdT -

T

dU=V By 37%/%Codr i

B 5,2 3
= VBO2C()3’T

0
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5, s/ 5 Us/s
O'(U) :VBOECOT / :VBOgCO (VBOCO)3/5

2/5
(Y (2 "5 e
~\dr \ h2 0o er—1 3

= (VBOC'O)2/5§U3/5 =

3/5
where we had used U = V By7%/2C, or (VBLOCO) — 73/2
Solution 9. Boson gas in one dimension.
In one-dim.,
k2 72n? B2 w2n? 2mV? 9

‘3:77:7701'73:

T om 12 2m V32 Reg2 T

B omy2 1/2 o dn B omV2 1/2 1

— "\ ) T T a T\ ) 2ar

Note the difference with 3-dim.: For spinless bosons,

D(n)dn de =

B 4drn2dn .o 2mIL? 2mIL? 1/2 1
- 8 T2\ n2g2? € h2m2 2¢l/2
oo <2mL2

o h2m2

3/2
1 ) €'/2de = D(e)de

o0 < romv\'? 1 1 ¢
Ne(T) = /O dED(E)f(E,T) = [) de (W> mF exp (;) —1=

1 2mV2\'"? [ de 1 €
=3 (m) /0 ap e (7)< )
For ¢ — 0, N.(7) — oo which is not characteristic of a Boson.

Solution 10. Relativistic white dwarf stars. ¢ ~ pc X = 27h/p.
Virial theorem:

3 3 3\ 1 3GM2\ 3G M?
2(SNep | = =N*3hne (= —=—(- =
(Gver) =g (2) 2=~ (-%52) = %5

Approximating the sphere as a box,

4
L} = -nR?

3 1/3
3) L—R

P
L= (g) /3R am

niss _ (GM? 2L v (G 2L AN
5R him2/3¢31/3 5R fim2/3¢31/3 5 h32/371/3¢

Now M = Nmy, where my is the mass of hydrogen, so

- 2G'm?, 41/3 N2
5 h32/371/3¢

. 3/2 .
N <5h(32/5)7rl/3c)3/2 ( (105457 x 10~ J - $)(3 x 108 m/s) \ <5(32/3)7r1/5>
( 2

A13(2Gm3;) (667 x 1011 5)(1.67 x 10-27 kg) 41/32

3/4

3/2
=922 x 10°®
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8. HEAT AND WORK

Energy and Entropy transfer: Definition of Heat and Work. Consider ¥, a manifold consisting of points representing
thermodynamic states of a single system. For instance, for global coordinates (U, V),

(U, V)eX.

Consider W, Q € Q!(X), 1-forms on X.

Now define (Q as

Q= 71do
with 0 = o(U,V) € C (%)
T=7(U,V)eC®X)
Recall energy conservation in this form:
dU =W +Q

Consider pure heat and, so, no work. Now @ = 7do

Heat Engines: Conversion of Heat into Work. Consider curve ¢ : R = X s.t. ¢ generates vector field ¢ = % (U is suited
ct)yex

o(2)-

This is what’s meant when it’s said “reversible heat transfer accompanying 1 unit of entropy is given by temperature 77 [1].
Consider Figure 8.1 on page 229 of Kittel and Kroemer [1]. Roughly it looks like this:

T="Th dop = Qn/m Qn

for this).
Act on this vector field % € X(X) with Q, i.e.

T=1 doy = Qi/m Q

But what’s really going on?
Consider )y, = dU, the initial heat input at high temperature (I'1l show that later) 7.
Consider a curve ¢y € X s.t. ¢ = ('708%. Then

Qn(éo) = dU(¢o) = (gg) = 700 = Th00
v

We can integrate the 1-form dU € Q!(X) for 2 reasons: mathematically, it is an exact form. Physically, we are considering
a reversible process, passing through thermodynamic states of the system, starting with the system being in energy Uy and
ending up with energy Uj, and all the energy states (€ R) in between.

1
:>U1—U0:/ Thd(f
0

If this is conducted all at temperature 77, during the whole process, then U; — Uy = 73, fol do = 1p,(01 — 0p). It’s in this case
that do is an exact form and can be integrated over that curve cg.

Legendre transforms revisited. Let’s recall 2 of our favorite thermodynamic potentials, U, and Helmholtz free energy F'.
They are related by Legendre transformations that transform 1 coordinate into its conjugate coordinate, somewhat like how
the Legendre transform transforms that Lagrangian in canonical coordinates into a Hamiltonian written with the conjugate
momentum. However, I do want to point out that, for Lagrangians and Hamiltonians, the Legendre transformation is a fiber
derivative between tangent bundle to the cotangent bundle on the manifold. In our current case, we want a mundane Legendre
transformation between convex function to another convex function, a coordinate transformation by a C'°*° function, not a
morphism between vector spaces.
Recall F'. It’s defined as such:
F=U-70,s0
dF =dU — t7do — odT = —odt — pdV
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Consider curve ¢: R — %
c(t)ex
Consider 2 curves that generate vector fields:

Now, in general, mathematically,

Thus,

Maxwell relations are easily derived:

0*F B 0*F © 8i _ @
ovor  oroV ov ). ~\or v
So-called natural coordinates for F' are 7,V. So ¥ 3 (7, V) (i.e. after a Legendre transformation, the coordinates become

(7, V) for each thermodynamic state.
Recall U as a thermodynamic potential. Using energy conservation and how () is defined,

dU =Q + W = 1do + pdV

Natural coordinates are o, V for U. So £ 3 (o, V).
heat engine
ideal heat engine:

1 (01, Vo)
Qn = mhdoy,/” Q= midoy Qn = Thdo Qi = mdoy
0 2 (00, Vo) (02,V1)
W4+Q=QrortW=0Q,—@Q
l hT T ' l O'l*O'hSOQh*Ql
h—Ti = — =
W=0Qn—Q < Qnr =ncQn Th T
Carnot efficiency ¢ = ”Ti_h” is the ratio of the work generated to the heat added, in the reversible process.
Carnot cycle.
w3 w3
32 9 (0w, m) (OH,Th)
Wé“ 1%2 = Qn Wi ~Wi=Qn
4 ——1 (or,m) ———— (oL, 7h)
W} Wi

The total work is as such: 59 dU = 0 for 2 reasons: mathematically, the integration of an exact 1-form around a closed curve
is 0, and physically, we return the system back to its original state, as this is a reversible process.

jdezozydea—fpdv:—fwzfmo—:[Th(aH—aL)+o+n(aL—o—H)+0]:(Th—n)(oH—aL)

28



Example: Carnot cycle for an ideal gas.

3 w3
3 9 (ow,m,V3) «———— (om, ™, V2)
Wy = Ql‘ 1% =Qn Wy =-Q Wi =Qu
4 Wi 1 (oL, 7, Va) . (o, Th, V1)
with
2 V2
isothermal expansion Qj, = —W? = / pdV = N1p1n (V)
1 1 1
3 —1 -1 Vs Th\ "t
adiabatic expansion Wy = —/2 dU =U(m,) = U(r) = Cy(mh — 1) nvy T =V or v, (q-l)
4 V-
isothermal compression — (Q; = ng = /3 —pdV = N1;1n Vi Vi L
Vi o7

adiabatic compression W, = Cy (1, — 7)
EY : 20150911 I don’t have a good reason why C'y, which is defined for constant V, that Cy = (%)V’ can be used in the

isentropic (i.e. adiabatic) expansion from 2 — 3.

The total work done is
Vs
W=N(m,—7n)In|—+
(Th Tl) n (V1 >
Energy Conversion and the Second Law of Thermodynamics.
Wi =mQn Wou = 12Qn — mQn
13 Ly  ——m

Qll = (1 -

01

Q(in) = (2 — n1)Qn

@1, waste heat

1y W 1o
\
01 02
Qin)~"
Q1,

So with Q(in) heat in, W, net work can be done. But that’s a decrease in overall entropy. This violates the law of increasing

Wout

entropy.
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Define H = U + pV. H € C*°(X), where X is the manifold of equilibrium (and non-equilibrium) states of the system.

Path Dependence of Heat and Work. Mathematically, ¢ and W are not necessarily exact 1-forms. So they are path-dependent.
EY : 20150911 That @@, W are not necessarily exact 1-forms would imply that 3 has some nontrivial, interesting topological
features.

Heat and Work at Constant Temperature or Constant Pressure.

isothermal work.
dU =W +Q =W + rdo

F=U-710
dF =dU — 7do — odr =W — odr
If d7 = 0, on an isothermal curve,
dF = W, W becomes an exact 1-form, with potential function F, the Helmholtz free energy.

isobaric heat and work. e.g. boiling of liquid. When liquid boils under atmospheric pressure, vapor pressure displacing
atmospheric odes work against atmospheric pressure. isobaric process.

Consider this change of volume:

dr = %. Now

Peq = Vapor pressure.

F = pegA = pamA (force equilibrium)
(o1,V1)

W = _pathd-r = —PamdV

(00, Vo)

W = —pamdV = —pdV = —d(pV’) is part of total work done on system.

If —d(pV') > 0, work provided by environment and is “free”.
If —d(pV) < 0, work delivered to environment and not extractable from system for other purposes.

W+dpV)=dU - Q+d(pV)=dH - Q
Recall that for enthalpy H = U + pV/,
dH =dU +Vdp+pdV =dU — W + Vdp = tdo + Vdp

o, p are natural coordinates of H.

dH — Q=W +d(pV)
An isobaric curve s.t. dp = 0,
dH = Q+ W +d(pV)
o)
Q@ + W is anexact I-formof H —pV = d(H —pV) =W + Q.
2 classes of constant pressure processes:

(a)
W+d(pV)=0

dH = Q
e.g. liquid evaporation from open vessel, because no effective work is done.

heat of evaporation is enthalpy difference between vapor phase and liquid phase
(b) constant temperature and constant pressure.

G=F+pV=U-T10+pV
dG =dF +Vdp+ pdV = dU — 7do — odm + Vdp + pdV = Vdp — odr
dG =W —odr +d(pV) =W +d(pV) — odr
with natural variables are p, 7
at constant temperature, W + d(pV) is exact 1-form, dG
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FIGURE 1. Problem 8.1(c)

Problems. Solution 1. Heat pump.
(a) For a heat pump,
input: o5, = 9n

Th

output: o; = %
Reversible condition: o}, = 07 = %h = %l so that Qy, = %Ql_
Qn — Q1= Qn — Z-Qp = ™"2Qp net heat inputted to pump heat.
Thus,
w _Th— T

@ =N = -
If heat pump is not reversible, oj, > o7y, so that %‘ > % or :—LQh > Qy,
W_@-Q_@-EQ_
Qn Qn Qn ¢ tdeal

(b) @y = electricity consumed by reversible heat pump.
Carnot engine: W = (1, — 71)(0pn — 01), with opp, = ?:: ,and oy = %l
Condition that electricity consumed by reversible heat pump:

W = (Thn — 71) <th—Ql> =Qn

Thh Tl

Note we let o; = <L since both heat pump andCarnot engine are reversible.

= —Tl

— (th _ Qh) __Qn Qnh :Qh< LI ) | Qnh _ (T A Thi — T1)

_— — =
Thh Th Thh — T1 Thh Thh — T1 Th Qh Th(Thh - Tl)

For T}, = 600 K, T}, = 300 K, T; = 270 K,
Qnh 600(300 + 600 — 270)

Qhn 300(600 — 270)
(c) See Figure (1).
Solution 2. Absorption refrigerator.
(a) See Figure (2).
(b) Given 3, > 71,
by energy conservation: Qpp + Q; — Qp =0
reversible refrigerator: opp + 07 — o = 0,
O, Q@
Thh T Th
1 1 1 1
th+@:M0rth <_) - Q (_>
Thh T Th Thh  Th Th T

(LD )
th Thh Th Th T ThThh ThTl Th —T1 Thh th

Note that Q; — Qrn = Q1 — (Qnn + Q1) = —Qnn; we’ve removed @, heat from refrigerator’s inside.
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adl 10,
ICZ}L__m

FIGURE 2. Problem 8.2(a)

=

Solution 3. Photon Carnot engine. Recall, photons are relativistic: ¢ = pc. Recall p = ?V. = €5 = pc = hksc =

(25) e

Recalling that there are 2 polarization states for a photon in 3-dim. space,

1 *° nmw nx w2he [ —mhe
= =14 2 — "2 he/T _ / 3 _
U ()<8)(7T)A ndn(Lhc)e L </, n’dnexp "
—mhe Lt \|~ B —mhe Lt
{n? exp( n) (_th> . —/0 3n emp( 7o n) (—ﬂ'hc) dn} =

>
) e (57 -

%) (3 >3{new< ) () [ mer(2) ()
|
-

N

L)) (e
o () o () v o250

[ee)

h
B

0

)
>
o

) e >/0°°ew(

— — 14 4_
6<7r2hc> = 6( 2hc)3 =U

To get the entropy, recall, (—g) % and using this is usually the most direct way to obtain entropy.

e [ [ St W[ S
B T ) (72h%c)3 T (m2h2c)3 3 - (m2h2c)3

Consider
Isothermal expansion: Helmholtz free energy F' is needed.
6V 4 8V 3 2V 4

F=U-710= (thzc):ﬂ— 77(7r2h20)3 = T (n2hZc)

Then )
oF 2T 87’2
P:‘(av>TN:W 712 = Gz 2 1)
ot T 87!
Wiz =p(Va = V1) = 7@%36)3 (Vo —W1) AQu = o= 7(7r2h§c)3 (Vo= V1)

3
Isentropic expansion: = Va7 = V372 or Vi = Vs (T:’l’) .

So for this isentropic process, Va7 = V73,

4/3
s 6V <v> IR

(m2h2¢)3 \ V (m2h?c)3
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—oU  6(Varp)¥/3 <_1V_4/3> _ 2(Vor)4/3 -

4/3

UL A B T A
- (7r2ﬁ20)3 V31/3 ‘/21/3 -

P= v T T (m2h2ee (72h2c)?
V3
2V 2V
Wos = dV = 2(Var,) /2 Bay = 232h)  ( gy—-1/3
23 /p th (7r2h2c)3 ( ) v
B GVQTh 1 T
~ (72h2c)3 ™
Isothermal compression: W34 = %(W -V3) = (ﬁ;g;c’)g (Vi — Vo).
034 = (7r2hc)3 (‘/4 ‘/3) 2hc)~3 (Vl ‘/2)
3
Isentropic compressiong: VUl = V17'h orV, =WV, (;—7) .
6(var?)? [ 1 1 —6V47,
Wi = (72h2c)? /3 13 | T (r2h2c)3
Vi Vi

27} 6Vor! 273 —6V; T
AWH:71(@@4@+ﬂiﬁh(l_n>+7W7(%_%H_Nh

(1_
Q_

(72h2c)? (n2h2c) m ) (72h2c)3 (72h2c)?
_ 87}%(‘/2*‘/1) AW T
Qh = (7T2FLC)3 - Qh = ™

Tl

Th

Tl
Th

Solution 4. Heat engine-refrigerator cascade. Consider the heat engine as a Carnot cycle.

wW+Ww, = (Th — Tl)Uh

where W,. = work consumed by refrigerator.
0 _Q

Th Tl

op = = 0]

)=t (- 7)

This must be true for any heat engine undergoing Carnot cycle; furthermore, we can say it’s the most efficient heat engine

possible.
reversible refrigerator: Qr, + W, = Qpg, (by E-consv.)

oL =0g = ?LL = ?—:, (by reversible condition)

Note, Q; is energy transfer from heat engine to 7; reservoir. (Jy, is energy transfer from 7; reservoir to refrigerator. Q, > Q;,
otherwise, no cooling, no thermal energy extracted from 7; resevoir to lower its temperature. QJ;, = ; at equilibrium; no

further cooling, 7, reached.

Note that 7; is given as the environmental temperature. Assume refrigerator throws out (Qz heat into the environment.
— 7 = 7. Since (@1, heat inputed into refrigerator from a 7; reservoir now lowered to 7,., 7, — 7.

Wr:QL_QL—<T_1>QL

T

since for a reversible refrigerator, 0, = o = %L = ?—5

W _(_m\_(n_\Q_(,_©\_[(n_
—a=(0) - (E)a=0-2)-(-)(

Combinations of reversible systems = reversible system.
T, =20°C

Solution 5. Thermal pollution. Given T, = 500° C'

Consider a Carnot cycle.

)3
Th

W = (1t —m)or = (tn — n)Ql <Th ) Q = <50(? — 1) 1500 MW = | 36000 M W

Tl Tl

If improvements in hot-steam technology would permit raising 77, by 100° C,

20

600
W = ( - 1) 1500 MW = (29)(1500 MW) = 43500 MW

There was a 17.2 % increase in output.
Solution 6. Room air conditioner.
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(a)

W:(Th—Tl)@ = <Th—1> Qu
7 7
d P
"= (Zb - 1) % - (TT’; _1> Almn =) = 2= (m = m)(T = 7) = 73 = 2mm + 77
5 2 _
= T —2Tth—ZTl+Th =0

P P
nEmt gy )

(b) For T, = 17°C = 290 K, T}, = 310 K,

Pr  (2EW)(290K) 580 x 10°W uso W
(th —m)%  (310—290)2 400K K

A:

Solution 7. Light bulb in a refrigerator
Carnot refrigerator draws 100 W. For any Carnot cycle,

W(Mﬁ)%(j_};l)Ql(l;i)Qh

Carnot refrigerator expels ();, thermal energy to hot 7, environment and inputs (; thermal energy from 7; reservoir.

Q+W =Qh

Work W must be drawn by Carnot refrigerator to do work. Suppose Carnot cycle part of the refrigerator must input in heat
from light bulb to cool down its inside, i.e. consider Carnot refrigerator in equilibrium with light bulb, now inputting in heat
Sfrom light bulb ()., and drawing in work to expend out ()}, thermal energy into the environment.

= [Qeer = @

(Th—1>Ql—Qz=00f (Th—2>Ql:0
7 7

300 K
— n:%h =5 = 150K

W = @ in this case, so

Solution 8. Geothermal energy.
Given AQ}L = —MCdTh,
T; lower reservoir temperature stays constant. 7, decreasing, dm, < 0.

AQp ( T

AWZ(Th—Tl) ™ =

MC MC i
=W=—(—)(m-nhn)|=—(—) (1l ui — (ri — 7¢)

kB i kB Tf
For M =109, C=1J/g-K,T; =20°C =293 K, T, = 600° C =873 K, Ty = 110°C = 383 K

W = 2.486 x 10" J

Note that 10 kWh = 1017 £ . b (2598s¢ec) = 3.6 x 102 J.

Solution 9. Cooling of nonmetallic solid to 7' = 0. Recall that C = aT? = (%)V' Then dQ; = aT?dT;. Now dr; < 0
since 7; decreasing.

For the refrigerator: Q; + W = Qy,.

dw = (m, — Tl)@ = — (Th - 1) (aTlngl) (1) S (Th - 1) Tl?’dn = ;—f(ThTf — Tl?’)dn
B

Tl Tl kAB kAB Tl
0
—a 1 1 aT?
W: —_— —_ _ - 4 = h =
k4B <Th3Tl 4Tl) . 12k’B




9. GIBBS FREE ENERGY AND CHEMICAL REACTIONS

Solution 1. Thermal expansion near absolute zero

@ oG oG
®), - @)
87_ N,p ap T — al —_ @
PG\ (0o <8QG> _<8V) or), \op/,
(8p87)T<0p)T orop ), T/)p
(3v),- ().
N/, s ap ). (v _ (o
32G’> _(3u) (82G) _<8V> ON p_ op )y
OpON N D) N ONOp » ON »
0*G ou 0?°G do ou 0o
= —_— = — —_— — —_— = — _
OTON ) or )y ONOT ) _ ON ) _ ot ) y ON ) _
b) o=+ (2Y) ==L (92) —(as7 — 0since o — constant as 7 — 0 by third law of thermodynamics.
v \or v \9p
Solution 2. Thermal 10nizati0n of hydrogen.
(a) Givene + HT = H, note thate + HT — H = 0. Recall
[e][H]
] HnQ exp [—v; F;(int) /7]
where ng = (247, )3/2 V.

For dissocation of H into e~ 4 H ' choose zero of internal energy of each composite particle (here H) to concide
with energy of dissociated particles (here HT, e™) at rest; place energy of ground state of composite particle H at
—1, I is energy required in reaction to dissociate composite particle into its constituents and is taken to be positive,
i.e. the ionization energy.

K () = (ne-)" exp [~ Fine(e7) /] - (ngr+)" exp [~ Fint(HT)/7)(ng1) ™ exp (—(=1) (Fyne (H) /7))

Note that ng+ ~ ny. Let n.—- = ng. Importantly, note

| Funt(e™) + Font(H*) = Fiy (H) = I

Fini(H) is at a lower free energy than e~ and H.

NG
1/ = [H] =nge 1/

= K(1) = nge”

(b) By charge conservation, [¢] = [H ], so that
le] = [H]/*ngf? exp (—1/27)
Given [H] ~ 102 em ™3, m, = 0.511 MeV/c?, T = 5000 K, I = 13.6 €V ionization energy,
[e] = (1022 em™3)Y/2(2.92 x 10'°1/em®/?)Y/2 exp (—13.6 eV/2k5000 K) = 1.3 x 10'° em ™3

Note that H(exc) and H are just two different states of atomic hydrogen. Their concentrations must therefore be
proportional to the probability of occurrence of these states, and the ratio of probabilities is the ratio of the respective

Boltzmann
[H (exc)] _ p(H(exc))
[H] p(H)
If € (eac) IS the internal energy of the first excited state and ey is the internal energy of the ground state of atomic
hydrogen, we are given that €y (cpc) — €H = %I . We also need to take into account the fact that the first excited

electronic state of hydrogen is 4-fold degenerate i.e. one 2s-orbital and three 2p-orbitals. Therefore,
[H(exe)] _ p(H(exc) _ de=eol o
_ _ — 4e

A pH) el
[H (exc)] = 4[H]e 31/47 = ‘ 2.092 x 103 em ™3

1(from solutions to Homework 8, Ph12c, Caltech, June 6, 2008, by Prabha Mandayam, Heywood Tam)
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Solution 4. Biopolymer growth.
Recall that G(N,p,7) = Nu(p, 7), since G was chosen to be an extensive quantity (it scales with size). For more than one

chemical species G = >, Njpu;.
dF = 0 for equilibrium, for constant P, 7.

p; = chemical potential of species j, pu; = (0G/ON;)+ p.

Given ) . v;A;,e.g. Hy + Cly = 2HCI,
dG = (3°; vjp;)dN where dN; = v;dN, dG = 0 — Y. v;u; = 0.

Recall the mass action law derivation: assume constituents act as ideal gases; p1; = 7(Inn; — Inc¢;), n; concentration of
species j; ¢; = ng, Z;(int).

Zujlnnj :Zlencj :Zlnn? :Zhlc]”-j zlnﬂn]”-j =InK(7)
J J J J J

HnJUJ = K(7) mass action law
J
(a) By mass action law, [m[o(r}s“flr])ﬁf]ler] = [[]1\;[4{\;]] = Ky.
2 3
N+1
W W+ _f e = |V +1] =077/ K KoK K
=Tl KK = ~TI &

G+1] [+2] E R T g T L

(b) Recall that K(7) = []; nyQ]7 exp [—v; Fj(int) /]

N 1 —F F F N 1 —(F P -F
oo = eWne) { N—l]exp[ NH]:nQ( (1) [ —(En + Fi = Fni1)
ng(N +1) T T T ng(N +1) T
where ng (V) = (g{r %5)3/2 and My is the mass of Nmer molecules, Fy is the free energy of one Nmer molecule.
(c) Assume N < 150 ng(N) =~ ng(N + 1). Assume [1] = 1020 cm™3. Assume AF = Fyi1 — Fy — Fy =0,

meaning zero free energy change in the basic reaction step. We’re given the molecular weight of the monomer to be

200.
We want [Z\[];]l] at room temperature. Now Ky ~ ng(1) = (%}; )3/2

Ny M\ N1 1) f2ar\YP
[N+11‘”Q(”‘(W> "V ‘nQ<1>‘<Mn) 10% e

3/2
27(6.582x 10722 MeV -5)? 3x10'% em/s 2 _ _o7
Note that <200(938M6V/02)(0.8617>< 10-2eV/K) (298 K) ( Tc ) = 0.3627 x 107" cm.

[N + 1]

=3.627 x 1078
[NV]

(d) We want the condition

1<

N+1 [ _AF no(l)  —AF
N~ oD ( )0”“ W<




10. PHASE TRANSFORMATIONS
11. BINARY MIXTURES
12. CRYOGENICS
13. SEMICONDUCTOR STATISTICS
14. KINETIC THEORY
15. PROPAGATION

Heat Conduction Equation. nonrelativistic case:
Let manifold N = R x M, with dimM = n.
LetJ € X(N) = X(R x M) be a vector field in N.

Let p € C°(N) be a smooth function on N.
p = p(t, z) locally
Let J € Q'(N) be a 1-form on N that is isomorphic to J (Tangent-Cotangent isomorphism theorem), i.e.
J=7
Ji = gij I
with g;; being the metric on N (not just M!)

Note thatas N = R x M, goj = do;
The local form of J is the following:

0 ;0
J=p—+j"=— i =1...
Por Vo ! "
So
J = Jida' = g;; 3 dxt = pdt + jrdz®  k=1...n
Thus
(21) J = pdt + jrdx” k=1...n
Now do the Hodge star operator, resulting in a n-form
xJ € Q"(N)
and so
wJ = pxdt + ji * dz* = pvol™ + ijvol”Jrl

as

pxdt=p \/'ﬁeo odrt AN dat i1...ip € {1...n}

n! n

i * dz® = gt (n\"/‘g]-)!ekilu.indmil A-ee Nda'™ = igvol™

so thus
xJ = pvol™ + izvol" !

Hence

0 1
(22) dxJ == (pV9) \/gvol”“ + w(fjk)%volnﬂ = d(pvol™) + dijvol™
Special case: 6—\? =0

_ 8[) n+1 8 n+1 a n+1 __
d*Jfatvol + Dk 7 1n4/g ) jrvol am vol =0

%, (0 D

Special case: if /g constant, E + gik =0

Let j = —Ddp (j is a closed form on M) where dp = 90 dyt §=1...n, D constant

ox?

dxJ =dpvol" + —Ddxdp =0
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For flat metric, /g constant,
0 0?
o _p Pr
ot (0xk)2

For relativistic case,

Consider manifold M, with dimension dimM =n + 1

0 .

oxt
Let J =J°. J, = g, J”
For special case of flat Minkowski space,

J = —pdt + jidz’

wJ = —pxdt + j; * da’

- p(n\{m!eoil..»indﬂﬂ” Ao A+ i (nf1)!€lm...undf'f“l A Adat

0 U
d* J = — (p\/g) Lvoln"_l -+ Mivoln+l =0
ot /g ozt /g
Apyvg) | 00ig)
= "ot "o 0

Fick law (14.19) for particle flux density, j = —D,,dn where D;,,  particle diffusivity constant

n particle concentration
J=ndt+j
thermal conductivity; homogeneous medium C heat capacity per unit volume. j,, = —Kdr
J=Crdt + j,
A0T 90wk

23 C— =0 )
@) at " ouk (5)
(24) o _p, P p_kiE (@

ot T (0xk)2 T

Propagation of Sound Waves in Gases. pressure associated with sound wave

(25) dp = dpo exp [i(kx — wt)] (27)
Suppose ideal gas:
(26) pV =Ntorp=pr/M (28)
Consider “solid ball” or “billiard ball” particle (extended particle, not pt. particle, but no internal structure)
_NM
P="v
Force on particle
_ar d [y — M r M [ Ou
=y =g [ pvoltu= 3> S+ull = E—i—[u,u]
Suppose [u,u] = 0 (certainly for flat spaces; what about for curved spaces? [u,u] # 0? Possibly? I don’t know. EY:
20150317
27) dU + pdV = tdo
define fractional deviations s, 6
p=po(l+s)
(28) (5)
T=T10(l+6)

where pg, T are density and temperature in absence of sound wave.
assume u, s, 6 have form of traveling exp [i(kx — wt)]
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kT kT
2 - = =
(29) wu (M>S (M)9 0
(30) ws—ku=0 (40)
3D T@VQ—pSZOOr(/Z\'VG—ns:O
kT (1 L )
Wy = =
M Cv
kT 14 k
YT M 6\/ w
So
T\ /2
(32) w = ( M) k (42)
. av +n . @
Cy Cy
ow T\ 1/2
v =5 = (37)
Problems. Problem 1. Fourier analysis of pulse
t=0
1 [ .
(33) 0(z,0) =0(z) = 2—/ dk exp (ikx)
™ — 00
34) 0(x,t) / dk exp [i(kz — wt)]
Given a dispersion relation at this form:
(35) Dk? = iw (10)
1 [ ) 9
(36) O(x,t) = o dk exp [ikz — DEk*t]
™ — 00
and so, doing the Gaussian integral,
1 —x?
37 0(x,t) = ex
) (020) =m0 (757
Problem Diffusion in two and three dimensions.
(a)
% - 92 7”2 92
ot~ t 4 Dt?
B0 10 16 10
(0x®)2 2Dt 2Dt 4 D22
20, _ ) 0%,
ot (0x%)?

(b)
()
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(41)

x2+y
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There is a Third Edition of T. Frankel’s The Geometry of Physics [4], but I don’t have the funds to purchase the book (about
$ 71 US dollars, with sales tax). It would be nice to have the hardcopy text to see new updates and to use for research, as the
second edition allowed me to formulate fluid mechanics and elasticity in a covariant manner. Please help me out and donate
aternestyalumni.tilt.com or at subscription based Patreon, patreon.com/ernestyalumni.

E-mail address: ernestyalumni@gmail.com

URL: http://ernestyalumni.wordpress.com
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