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1 Introduction 
 
 

 
 
Figure 1. Elements of decision making for civil engineering structures. 
 
Sustainable development related to conservation of the environment, the welfare and safety of the peo-
ple have been subject to increasing concern of the society during the last decades. At the same time 
optimal allocations of available natural and financial resources are considered very important. There-
fore methods of risk and reliability analysis in civil engineering developed during the last decades are 
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becoming more and more important as decision support tools in civil engineering applications. The 
decision process is illustrated in figure 1. 
 
Civil engineering facilities such as bridges, buildings, power plants, dams and offshore platforms are 
all intended to contribute to the benefit and quality of life. Therefore when such facilities are planned it 
is important that the benefit of the facility can be identified considering all phases of the life of the fa-
cility, i.e. including design, manufacturing, construction, operation and eventually decommissioning.  
 
Benefit has different meanings for different people in the society, simply because different people have 
different preferences. However, benefit for the society can be understood as  

• economically efficient for a specific purpose 
• fulfil given requirements with regard to safety of people directly or indirectly involved with and 

exposed to the facility 
• fulfil given requirements to the effects of the facility on the community and environment 

 
Taking into account these requirements it is seen that the task of the engineer is to make decisions or to 
provide the decision basis for others such that it may be ensured that engineering facilities are estab-
lished, operated, maintained and decommissioned in such a way that they will optimise or enhance the 
possible benefits to society and individuals of society. 
 
Activity  Approximate death rate  

( 910−×  deaths/h exposure) 
Typical exposure 
(h/year) 

Typical risk of death  
( 610−× /year) 

Alpine climbing 30000 – 40000 50 1500-2000 
Boating 1500 80 120 
Swimming 3500 50 170 
Cigarette smoking 2500 400 1000 
Air travel 1200 20 24 
Car travel 700 300 200 
Train travel 80 200 15 
Coal mining (UK) 210 1500 300 
Construction work 70-200 2200 150-440 
Manufacturing 20 2000 40 
Building fires 1-3 8000 8-24 
Structural failures 0.02 6000 0.1 
Table 1. Some risks in society (from Melchers [1]). 
 
For many years it has been assumed in design of structural systems that all loads and strengths are de-
terministic. The strength of an element was determined in such a way that it exceeded the load with a 
certain margin. The ratio between the strength and the load was denoted the safety factor. This number 
was considered as a measure of the reliability of the structure. In codes of practice for structural sys-
tems values for loads, strengths and safety factors are prescribed.  
 
As described above structural analysis and design have traditionally been based on deterministic meth-
ods. However, uncertainties in the loads, strengths and in the modeling of the systems require that 
methods based on probabilistic techniques in a number of situations have to be used. A structure is usu-
ally required to have a satisfactory performance in the expected lifetime, i.e. it is required that it does 
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not collapse or becomes unsafe and that it fulfills certain functional requirements. Generally structural 
systems have a rather small probability that they do not function as intended, see table 1.  
 
This note gives an introduction to the different aspect of risk analysis and risk acceptance criteria and is 
partly based on the JCSS working paper, Faber & Stewart [2]. 
 

2 Definition of Risk 
Risk is here defined as the expected consequences associated with a given activity. Considering an ac-
tivity with only one event with potential consequences risk R is thus the probability that this event will 
occur P multiplied with the consequences given the event occurs C i.e. 
 

CPR ⋅=        (1) 
 
For an activity with n  events the risk is defined by 
 

∑ ⋅=
=

n

i
ii CPR

1
       (2) 

 
where iP   and iC  are the probability and consequence of event i. 
 
This definition is consistent with the interpretation of risk used e.g. in the insurance industry (expected 
losses) and risk may e.g. be given in terms of DKKs, dollars, number of human fatalities, etc. 
 
3 Framework for Risk Analysis 
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Consequences and 
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Figure 2. Principal flow diagram of risk assessment. 
 
Risk assessment is used in a number of situations with the general intention to indicate that important 
aspects of uncertainties, probabilities and/or frequencies and consequences have been considered in 
some way or other. Decision theory provides a theoretical framework for such analyses, see Figure 2. 
 
In typical decision problems encountered the information basis is often not very precise. In many situa-
tions it is necessary to use historical and historical data. The available historical information is often 
not directly related to the problem considered but to a somewhat similar situation. Furthermore, an im-
portant part of a risk assessment is to evaluate the effect of additional information, risk reducing meas-
ures and/or changes of the considered problem. It is therefore necessary that the framework for the de-
cision analysis can take these types of information into account and allow decisions to be updated 
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based upon new information. This is possible if the framework of Bayesian decision theory is used, see 
e.g. Raiffa and Schlaifer [3] and Benjamin and Cornell [4]. 
 
A fundamental principle in decision theory is that optimal decisions must be identified as those result-
ing in the highest expected utility, see e.g. Ditlevsen and Madsen [5]. In typical engineering applica-
tions the utility may be related to consequences in terms of costs, fatalities, environmental impact etc. 
In these cases the optimal decisions are those resulting in the lowest expected costs, the lowest ex-
pected number of fatalities and so on.  
 

4 Implementation of Risk Analysis 
Risk analyses can be presented in a format, which is almost independent from the application. Figure 3 
shows a general scheme for risk analysis, see Stewart and Melchers [6]. Maybe the most important step 
in the process of a risk analysis is to identify the context of the decision problem, i.e. the relation be-
tween the considered engineering system and/or activity and the analyst performing the analysis: 
 

• Who are the decision maker(s) and the parties with interests in the activity (e.g. society, cli-
ent(s), state and organizations). 

• Which matters might have a negative influence on the impact of the risk analysis and its results. 
• What might influence the manner in which the risk analysis is performed (e.g. political, legal, 

social, financial and cultural). 
 

Furthermore the important step of setting the acceptance criteria must be performed. This includes the 
specification of the accepted risks in regard to economic, public or personnel safety and environmental 
criteria. In setting the acceptable risks – which might be considered a decision problem itself, due ac-
count should be taken to both international and national regulations in the considered application area. 
However, for risk analysis performed for decision making in the private or inter-company sphere with 
no potential consequences for third parties the criteria may be established without the consideration of 
such regulations. In these cases the issue of risk acceptance is reduced to a pure matter of cost or re-
source optimisation involving the preferences of the decision maker alone. Risk criteria are discussed 
in section 6. 
 
System Definition 
The system (or the activity) considered has to be described and all assumptions regarding the system 
representation and idealizations stated.  
 
Identification of Hazard Scenarios 
The next step is to analyse the system with respect to how the system might fail or result in other unde-
sirable consequences. Three steps are usually distinguished in this analysis, namely the 1) Decomposi-
tion of the system into a number of components and/or sub-systems. 2) Identification of possible states 
of failure for the considered system and sub-systems – i.e. the hazards associated with the system. 3) 
Identification of how the hazards might be realized for the considered system and subsystems, i.e. the 
identification of the scenarios of failure events of components and subsystems which if they occur will 
lead to system failure.  
 
A hazard is typically referred to as a failure event for the considered system or activity. Occurrence of a 
hazard is therefore also referred to as a system failure event. System failures may thus represent events 
such as collapse of a building structure, flooding of a construction site or explosion in a road or rail 
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tunnel. Identification of hazards is concerned about the identification of all events, which might have 
an adverse consequence to 
• People 
• Environment 
• Economy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. General scheme for risk-based decision analysis. 
 
Different techniques for hazard identification have developed from various engineering application 
areas such as the chemical, nuclear power and aeronautical industries. Examples are: 
• Preliminary Hazard Analysis (PHA) 
• Failure Mode and Effect Analysis (FMEA) 
• Failure Mode Effect and Criticality Analysis (FMECA) 
• Hazard and Operability Studies (HAZOP) 
• Risk Screening (Hazid sessions) 
 
Analysis of Consequences 
Typical consequences are economic consequences, loss of life and effects on the environment. The 
estimation of consequences given failure of the system of sub-systems requires a good understanding of 
the system and its interrelation with its surroundings and is thus best performed in collaboration with 
experts who have hands on experience with the considered type of activity. 
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Analysis of Probability 
Evaluation of probabilities of failure for the individual components and sub-systems may be based on, 
in principle, two different approaches: failure rates for e.g. electrical and production systems or meth-
ods for structural reliability for structural systems as buildings and bridges. 
 
Risk analyses are typically made on the basis of information, which is subject to uncertainty. These 
uncertainties may be divided in 
 
• inherent or natural variability, e.g. the yield strength of steel. 
• modelling uncertainty: (i) uncertainty related to the influence of parameters not included in the 

model, or (ii) uncertainty related to the mathematical model used. 
• statistical uncertainty. 
 
Identify Risk Scenarios 
When consequences and probabilities are identified the risk can then be computed. Hazard scenarios, 
which dominate the risk may then be identified. The risk scenarios can bee ranked in accordance with 
the risk contribution. 
 
Analyse Sensitivities 
The sensitivity analysis is useful for analysis of the identified risk scenarios and normally includes an 
identification of the most important factors influencing the risks associated with the different risk sce-
narios. Also the sensitivity analysis may include studies of “what if” situations for the evaluation of the 
importance of various system simplifications performed under the definition of the system.  
 
Risk Treatment 
Calculated risks are compared with the accepted risks initially stated in the risk acceptance criteria. 
Should the risks not be acceptable in accordance with the specified risk acceptance criteria there are 
principally four different ways to proceed. 
 
Risk mitigation: Risk mitigation is implemented by modification of the system such that the source of 
risk is removed. For example, the risk of fatalities from a ship collision with a bridge may be mitigated 
by traffic lights stopping traffic proceeding onto the bridge whenever a ship navigates under the bridge. 
 
Risk reduction: Risk reduction may be implemented by reduction of the consequences and/or the prob-
ability of occurrence – in practice risk reduction is normally performed by a physical modification of 
the considered system. 
 
Risk transfer: Risk transfer may be performed by e.g. insurance or other financial arrangements where 
a third party takes over the risk. 
 
Risk acceptance: If the risks do not comply with the risk acceptance criteria and other approaches for 
risk treatment are not effective then risk acceptance may be an option.  
 
Monitoring and Review 
Risk analyses may be performed as already stated for a number of decision support purposes. For many 
engineering applications such as cost control during large construction projects and inspection and 
maintenance planning for bridge structures the risk analysis is a process where there is constant feed-
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back of information from the system. Whenever new information is provided the risk analysis may be 
updated. 
 
5 QRA methods 
Quantitative Risk Analysis (QRA) is used in assessment of the risks. Three calculation methods are: 
• Event Tree Analysis (ETA) 
• Fault Tree Analysis (FTA) 
• Risk matrix 
These methods are described in the following partly based on [7]. 
 
5.1 Event Tree Analysis 
An Event Tree is used to develop the consequences of an event. This method has been used for the first time 
in the Wash 14 "Rasmussen Report" in 1974 in order to represent the nuclear accident scenarios at the 
whole plant level and to gather the results obtained by using Fault Trees at emergency system level.  
 
An Event Tree is constructed by defining an initial event and the possible consequences that result from 
this, when the emergency systems function or not. The initial event is usually placed on the left and 
branches are drawn to the right, each branch representing a different sequence of events and terminating in 
an outcome. The main elements of the tree are event definitions and branch points, or logic vertices.  
 
The initial event is usually expressed as a frequency (events/year) and the subsequent splits as probabilities 
(events/demand), so that the final outcomes are also expressed as frequencies (event/year). Each branch of 
the Event Tree represents a particular scenario.  An example of a simple Event Tree is shown in figure 4 
and 5. The fire protection is provided by a sprinkler system. A detector will either detect the rise in tempera-
ture or it will not. If the detector succeeds the control box will either work correctly or it will not - and so 
on. There is only one branch in the tree that indicates that all the subsystems have succeeded: 
 

 
Figure 4. Example of a Fire Scenario. 
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Figure 5. Event Tree Analysis for Building Protected by a Sprinkler System. 
 
The results of the Event Tree are outcome event frequencies (probabilities) per year. The outcome frequen-
cies may be processed further to obtain the following results: 
 
Risk to Workforce: 
• Annual risk 
• Individual risk 
• Fatal Accident Rate  
 
Risk to Public: 
Physical effects: 
• Contours on site map 
• Transects on site map 
Individual risk: 
• Contours on site map 
• Transects on site map 
• Annual risk at fixed location 
Societal risk: 
• FN table 
• FN curve 
• Equivalent annual fatalities 
 
Risk to Workforce 
Annual Risk 
The annual risk may be expressed as Potential Loss of Life (PLL), where the PLL expresses the probability 
of fatalities per year for all the operation personnel. As such the PLL is a risk indicator which is valid for 
the whole installation, rather than for an individual. The calculation for a given event i is of the form 
 

fibiii PNfPLL ⋅⋅= 0       (3) 
where 

1 

2 

3 

4 
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iPLL  potential loss of life caused by event i,  (1/year) 

if0  outcome frequency of event i per year, (1/year) 

biN  number of personnel exposed to the effects of event i 

fiP  probability of fatalities associated with event i 
 
An example of PLL results is given in figure 6. 
 
For all the outcome events 
 

∑= iPLLPLL       (4) 
 
Individual Risk 
The Individual Risk (IR) expresses the probability per year of fatality for one individual. It is also termed as 
Individual Risk Per Annum (IRPA). The IR depends on the location of the individual at a given time and its 
contents of work. In practice, for the operating personnel of an installation an Average Individual Risk, AIR 
may be estimated for groups of persons taking into account the percentage of time of exposure to the hazard 
per year. For all the personnel involved in the annual operation of the installation, the AIR may be derived 
from the PLL 
 

QN
PLLAIR

b ⋅
=       (5) 

where 
PLL  potential loss of life for the installation, (1/year) 

bN  number of personnel involved per year, (1/year) 
Q is average percentage of exposure 
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Figure 6. Example of Presentation of PLL Results. 
 
 
 
 
Fatal Accident Rate 

Scenario PLL/year %

Hydrocarbon 2.20E-03 64
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The Fatal Accident Rate (FAR) is defined as the potential number of fatalities in a group of people exposed 
for a specific exposure time to the activity in question. Generally, the FAR is expressed as a probability of 
fatality per 100 million exposure hours for a given activity. It is mainly used for comparing the fatality risk 
of activities. The 100 million exposure hours is to represent the number of hours at work in 1000 working 
lifetimes. 
 
A location (area) specific FAR may be calculated as 
 

8760
108

⋅
⋅

=
area

area
area N

PLL
FAR       (6) 

 
where 

areaFAR  area specific Fatal Accident Rate, (1/year) 

areaPLL  Potential Loss of Life in an area per year, (1/year) 

areaN  manning in an area calculated as an average value over a typical year of operation 
8760  number of hours per year 
 
The area FAR is thus independent of manning level. 
 
The installation FAR value is calculated as an average value over a year of operation as 
 

8760
108

⋅
⋅

=
tot

tot
oninstallati N

PLL
FAR       (7) 

where 
oninstallatiFAR  whole installation FAR, (1/year) 

totPLL  total PLL for the installation, (1/year) 

totN  number of personnel on the installation 
 
An example of the presentation of FAR results is shown in figure 7. 
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Figure 7. Example of Presentation of FAR Results. 

Scenario Drilling Personnel FAR/year Production personnel FAR/year

Well events 2.3 1.5

Process 3 5.3

Risers and pipelines 0.3 0.3

Turbines 0.1 0.2

Shale shaker 0.5 0

Ship collision 0.2 0.2

Structural failure 0.2 0.2

Helicopter - platform 0.3 0.3

Helicopter - passengers 1.1 1.1

TOTAL Installation Risk (FAR) 8 9.1
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Risk to Public 
FN Curves 
 

Figure 8. Example of F/N graph. 
 
FN curves or F/N plots (generally also called the “Cumulative Frequency Graphs”) are probability versus 
consequence diagrams where “F” denotes frequency of a potential event and “N” the number of associated 
fatalities. 
 
A Cumulative Frequency Graph shows the probability of N or more fatalities occurring. Such graphs 
tend to be of interest when the risk acceptance criterion selected, or, as is more often the case, imposed 
by the Regulator, includes an aversion to potential incidents that would result in, say, more than ten 
fatalities. In simple terms, risk aversion exists if society regards a single accident with 100 fatalities as 
in some sense worse than 100 accidents (e.g. road accidents) with a single fatality each. An example of 
a F/N graph is shown in figure 8. 
 
5.2 Fault Tree Analysis 
Compared to an Event Tree the "Fault Tree" analysis works in the opposite direction: It is a "deductive" 
approach, which starts from an effect and aims at identifying its causes. Therefore a Fault Tree is used to 
develop the causes of an undesirable event. It starts with the event of interest, the top event, such as a haz-
ardous event or equipment failure, and is developed from the top down. 
 

Scenario
Number (N) of Potential 

Fatalities
Frequency of Scenario 

per Year
Frequency of Incidents with Potential (N) or more 

Fatalities per Year
1 1 0.1 0.12021
2 20 0.014 0.01141
3 70 0.0075 0.00713
4 150 0.00023 0.00022
5 300 0.00009 0.00011
6 500 0.00001 0.00001
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The Fault Tree is both a qualitative and a quantitative technique. Qualitatively it is used to identify the indi-
vidual scenarios (so called paths or cut sets) that lead to the top (fault) event, while quantitatively it is used 
to estimate the probability (frequency) of that event. 
 
A component of a Fault Tree has one of two binary states, either in the correct state or in a fault state. In 
other words, the spectrum of states from total integrity to total failure is reduced to just two states.  
 
The application of a Fault Tree may be illustrated by considering the probability of a crash at a road junction and 
constructing a tree with AND and OR logic gates (figure 9). The Tree is constructed by deducing in turn the 
preconditions for the top event and then successively for the next levels of events, until the basic causes are iden-
tified. 
 

 
Figure 9. Example of Fault Tree. 
 
Qualitative Analysis 
By using the property of the Boolean algebra it is possible first to establish the combinations of basic 
(components) failures which can lead to the top (undesirable) event when occurring simultaneously. 
These combinations are so called "minimal cut sets" (or "prime impliquant" ) and can be derived from 
the logical equation represented by the Fault Tree.   
 
Considering the Fault Tree representing figure 9, six scenarios can be extracted: 
• Driving too fast  AND Car at main road junction; 
• Driver too ill  AND Car at main road junction; 
• Vision obscured  AND Car at main road junction; 
• Road too Slippery  AND Car at main road junction; 
• Brake failure  AND  Car at main road junction; 
• Tyres worn  AND Car at main road junction. 

   
These 6 minimal cut sets are in first approach equivalent. However, a common cause failure analysis could 
show, for example that the "Road too slippery" increase the probability of "Car at main road junction" be-
cause it is too slippery from both side. Therefore the 4th cut set is perhaps more likely than the others. 
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Semi-Quantitative Analysis 
The second step consists of calculating the probability of occurrence of each scenario. By ascribing prob-
abilities to each basic event we obtain the next figures for our example: 
• Driving too fast AND  Car at main road junction :  0.1     x 0.01 = 10-3  
• Driver too ill AND  Car at main road junction : 0.01   x 0.01 = 10-4  
• Vision obscured AND  Car at main road junction : 0.01   x 0.01 = 10-4 
• Road too Slippery AND  Car at main road junction : 0.01   x 0.01 = 10-4 
• Brake failure AND  Car at main road junction : 0.001 x 0.01 = 10-5 
• Tyres worn AND  Car at main road junction : 0.001 x 0.01 = 10-5 

     Total = 1.32 10-3 
 
Now it is possible to sort the minimal cut sets in a more accurate way i.e. into three classes: One cut set 
at 10-3, three at 10-4 and two at 10-5. Of course, it is better to improve the scenarios with the higher 
probabilities first if we want to be efficient. 
 
As by-product of this calculation, the global failure probability 1.32 10-3 is obtained by a simple sum of 
all the individual probabilities. But this simple calculation is a conservative approximation, which 
works well when the probabilities are sufficiently low (in case of safety, for example). It is less accu-
rate when the probabilities increase and it can even exceed 1 when probabilities are very high. This is 
due to cross terms that are neglected. Therefore, this approach must be used with care. 
 
Quantification in Fault Tree Analysis 
As a Fault Tree represents a logical formula it is possible to calculate the probability of the top event by 
ascribing probabilities to each basic event, and by applying the probability calculation rules. When the 
events are independent, and when the probabilities are low it is possible to roughly estimate the prob-
ability of the output event if an OR gate is the sum of the probabilities of the events in input. An exam-
ple is given in figure 10. 
 
These simple calculations only work on the basis of the above hypothesis. For example, as soon as the 
Fault Tree contains repeated events (same events in several location in the Tree) the independence hy-
pothesis is lost. Therefore the calculation becomes wrong and even worse it is impossible to know if 
the result is optimistic or pessimistic. On the other hand, the estimation of the top event probability is 
less and less accurate (more and more conservative) when the probabilities increase (even if the events 
are independent). 
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Figure 10. 
 
5.3 Risk Matrix 
The arrangement of accident probability and corresponding consequence in a Risk Matrix may be a suitable 
expression of risk in cases where many accidental events are involved or where single value calculation is 
difficult. As figure 11 shows the matrix is separated into three regions,- 
• unacceptable risk, 
• further evaluation or attention is required, and 
• acceptable risk. 
 
    
 

    
   

In-
creased 

 

probabil-
ity 

    

 

  
Unacceptable risk 

  
 

    
 

  
Further evaluation 
or attention re-
quired 

  
 

    
 

  
Acceptable risk 

        
 Increasing consequence →     
Figure 11. Risk Matrix. 
 
Further evaluations have to be carried out for the region between acceptable and unacceptable risk, to 
determine whether further risk reduction is required or more studies should be performed. 
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The limit of acceptability is set by defining the regions in the matrix which represent unacceptable and ac-
ceptable risk. The Risk Matrix may be used for qualitative as well as quantitative studies. If probability is 
classified in broad categories such as “rare” and “frequent” and consequence in “small”, “medium”, “large” 
and “catastrophic”, the results from a qualitative study may be shown in the Risk Matrix. The definition of 
the categories is particularly important in case of qualitative use. The categories and the boxes in the Risk 
Matrix may be replaced by continuous variables, implying a full quantification. An illustration of this is 
shown in Figure 12. 
 
Probability 
 
 
 
                                                         Evaluate further action    
 
 
 
 
 
 
 
 
 
 
                                                                                                      Consequence 
Figure 12. Risk Matrix Presentation with Continuous Variables.  
 
The upper tolerability limit (figures 11 and 12) is almost always defined, whereas the lower limit is related 
to each individual risk reducing measure, depending on when the cost of implementing each measure be-
comes unreasonably disproportional to the reduction of risk. 
 
Examples of the applications of Risk Matrix are evaluation of: 
 
• Risk to safety of personnel for different solutions such as integrated versus separate quarters platform; 
• Risk of operations such as exploration drilling; 
• Risk of the use of a particular system such as mechanical pipe handling; 
• Environmental risk. 
 
5.4 Decision trees 
Decision trees are used to illustrate decisions and consequences of decisions. Further, when probabili-
ties are assigned to consequences expected costs / utilities of different alternatives can be determined. 
In figure 13 is shown an example of a decision tree where each possible decision and consequence are 
systematically identified – the example is taken from [4]. Two alternative designs for the structural 
deign of a building are considered. Design A is based on a conventional procedure with a probability of 
satisfactory performance equal to 99% and costs $1.5 million. Design B is a new concepts and will 
reduce the costs to $1 million. The reliability of B is not known, but the engineer estimates if the as-
sumptions made are correct the probability of good performance to 0.99, whereas if the assumptions 
are wrong then the probability is only 0.9. He is only 50% sure of the assumptions. The cost of unsatis-
factory performance is $10 million.  
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The expected costs of the two alternatives are: 
A: C=0.99 x 1.5 + 0.01 x 11.5 = 1.6 
B: C=0.5 x (0.99 x 1.0 + 0.01 x 11.0) + 0.5 x (0.9 x 1.0 + 0.1 x 11.0) = 1.55 
 
According to decision theory the alternative with the lowest expected costs should be chosen, i.e. alter-
native B should be chosen here. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Decision tree for design problem. 
 
The decision tree is constructed from left to right. Each consequence is associated with probabilities 
(summing up to 1) after each node. For each branch the expected cost /utility is determined by multi-
plying probabilities and costs/utilities for that branch. 
 
6 Risk acceptance criteria  
Acceptance of risk is basically problem of decision making, and is inevitably influenced by many factors such as 
type of activity, level of loss, economic, political, and social factors, confidence in risk estimation, etc. A risk 
estimate, in the most simplest form, is considered acceptable when below the level which divides the unaccept-
able from acceptable risks. For example, an estimate of individual risk per annum of 10-7 can be considered as 
“negligible risk”; similarly, an estimate of injuries occurring several times per year, can be considered as “unac-
ceptable”. 
 
The “as low as reasonably practicable” (ALARP) principle is sometimes used in the industry as the only 
acceptance principle and sometimes in addition to other risk acceptance criteria. 

The use of the ALARP principle may be interpreted as satisfying a requirement to keep the risk level as low 
as reasonably practicable, provided that the ALARP evaluations are extensively documented. 
The ALARP principle is shown in Figure 14. 
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(Cost is grossly disproportional to risk reducing effect) 

Figure 14. The ALARP Principle. 
 

The risk level should be reduced as far as possible in the interval between acceptable and unacceptable risk. 
The common way to determine what is possible is to use cost-benefit evaluations as basis for decision on 
whether to implement certain risk reducing measures or not. 

The upper tolerability limit is almost always defined, whereas the lower tolerability limit is sometimes 
defined, or not defined. The lower limit is individual to each individual risk reducing measure, depend-
ing on when the cost of implementing each measure becomes unreasonably disproportional to the risk 
reducing effect. 
 
The ALARP principle is normally used for risk to safety of personnel, environment and assets. 
 
The value for the upper tolerability limit derived from accident statistics, for example, indicate that “a risk of 
death around 1 in 1,000 per annum is the most that is ordinarily accepted by a substantial group of workers in 
any industry in the UK”.  
 
HSE (Health and Safety Excecutive), [8] suggested the upper maximum tolerable risk level as a line with a slope 
of  –1 through point n = 500 (number of fatalities), F = 2 x 10-4 (frequency) per year.  This line corresponds to n 
= 1 at F = 10-1 per year, and n = 100 at F = 10-3 per year.  However, in the document [9], HSE quotes that risk of 
a single accident causing the death of 50 people or more with the frequency of 5 x 10-3 per year is intolerable. 
 
For the “negligible” level, the HSE recommends a line drawn three decades lower than the intolerable line.  This 
line corresponds to one fatality, n = 1, in one per ten thousand per year, F = 10-4 per year, and similarly, n = 100 
corresponds to one in a million per year, F = 10-6 per year. 
 
Railway transport 
For the railway area different railway operators in the UK has suggested the risk criteria in table 2. 

Unacceptable region Risk cannot be justified save in
extraordinary circumstances

Tolerable only if risk reduction
The ALARP or Tolerability is impractical or if its cost is
region (risk is undertaken grossly disproportionate to the
only if a benefit is desired) improvements gained

Tolerable if cost of reduction
would exceed the improvements
gained

Broadly acceptable region Necessary to maintain assurance
(No need for detailed working that risk remains at this level
to demonstrate ALARP)

Negligible risk
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Table 2. Risk criteria adopted by different operators. 
 
Road Transport 
The current convention adopted by Department of Transport (DTLR) for the Value of Statistical Life (VOSL) is 
about £1,000,000 (2001 prices).  This value is used in a cost-benefit evaluation of road improvement schemes in 
the UK.  There are no risk criteria specific to road transport, but only to transport of hazardous material by road 
[8]. 
 
It is interesting to note that according to [8], the national scrutiny level of societal risk for road transport could be 
defined by a line passing through points defined by 10 fatalities corresponding to 0.7 times per year (7 in 10 
years), 100 fatalities corresponding to 0.07 times per year (7 in 100 years), and 1,000 fatalities corresponding to 
0.007 times per year (7 in 1,000 years). 
 
Recently developed criteria for a tunnel under a river were based on the HSE’s suggestion in [7], which defines 
the upper maximum tolerable risk level as a line with a slope of –1 passing through points N = 1 and F = 10-1 per 
year, and N = 100 and F = 10-3 per year.  For the negligible level a line drawn three decades lower is suggested 
by the HSE.  This line corresponds to one fatality, N = 1, in 1 per 10,000 per year (F = 10-4 per year), and simi-
larly, N = 100 corresponds to 1 in a million per year (F = 10-6 per year).  For the broadly acceptable level a line 
two decades lower that the maximum tolerable line is suggested.  This line is defined as N = 1 and F = 10-3 per 
year, and N = 100 and F = 10-5 per year.  The proposed criteria for the societal risk for the tunnel are presented 
in figure 15. 
 
The Dutch criteria are compared with the proposed UK criteria in figure 16.  It can be seen that up to N = 100, 
the both criteria can be assumed to have similar impact, in spite of the fact that the Dutch maximum tolerable 
level is more stringent that the proposed one for the UK.  The equalising factor is the ALARP requirement in the 
UK which drives the risk towards the broadly acceptable level. 

Criterion Railtrack Union Railways Eurotunnel

Passenger Intolerable 10-4 per year 8 x 10-10 per passenger km and
individual 9.5 x 10-9 per passenger journey
risk Broadly acceptable 10-6 per year 8 x 10-13 per passenger km and

9.5 x 10-12 per passenger journey
Target / Design values 10-5 per year 10-5 per year N/A

Staff Intolerable 10-3 per year 10-3 per year
individual Broadly acceptable 10-6 per year 10-6 per year
risk Target / Design values 2 x 10-4 per year 10-4 per year
Societal Intolerable N>10 1.1 x 10-2 per year
risk N>100 9.1 x 10-4 per year
criteria Broadly acceptable N>10 1.1 x 10-5 per year

N>100 9.1 x 10-7 per year
Target / Design values N>10 10-2 per year N/A

N>100 10-3 per year
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Figure 15. Proposed criteria for road tunnel users. 
 
 

Figure 16. Comparison of proposed and Dutch criteria for road tunnel users. 
 
Risk criteria used in the Netherlands are shown in table 3. 
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Table 3. Risk criteria in the Netherlands. 
 
Risk criteria were developed for a 6,600 m long tunnel under the River Westerschelde completed in 2002. No 
risk criteria for road users were available. So the criteria for population in the vicinity of the road used for trans-
portation of hazardous substances have been used as the basis.  These criteria define the upper tolerability level 
as the individual risk per annum of 10-6, and the societal risk of 10 fatalities once in 10,000 years, and 100 fatali-
ties once in a million years. Since the risk to road users can be considered as voluntary, a factor of 10 has been 
used for the criteria for road users [10], as presented in table 4. 
 
 

Number of Fatalities MaximumAnnual Frequency 
per km

1 10-1

10 10-3

100 10-5

 
Table 4. Societal risk criterion used for Westerschelde tunnel. 
 
It is interesting to note that the risk criterion for the overall length of the tunnel is also mentioned, but it is not 
clear if this was supposed to be used to “average” risks along the tunnel, as it is also mentioned that risks vary 
significantly throughout the tunnel (i.e. exits and entrances and their slopes present a considerably greater risk 
than horizontal sections). 
 
Building sector 
Buildings are usually designed for a life time of 50 years and in practice most buildings have a much 
longer life, also because of maintenance and refurbishment activities which also for a part of the build-
ing sector. A number of 80 years is often mentioned as an average. For some buildings, of course, a 
smaller design life is chosen on purpose, especially for some kind of industrial buildings. 
 
The Building sector generally involves many partners, e.g. 
 the owner 
 the user 
 the principal 
 the architect 
 the structural designer 
 a number of  specialists (geotechnics, building physics, etc 
 the contractor 
 a number of material suppliers 

INDIVIDUAL RISK Per Year

Maximum permissible risk New residential buildings 1.00E-06
Existing residential buildings 1.00E-05

SOCIETAL RISK Frequency Per 
Year

Maximum permissible risk > 10 deaths 1.00E-05
> 100 deaths 1.00E-07
> 1,000 deaths 1.00E-09
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 a number of suppliers of building elements 
 a number of suppliers of installations  
 a number of subcontractors 
 the authorities. 

 
Usually they do not belong to one firm and this may make communication quite difficult. It also contri-
butes to the difficulty to make successful innovations in this sector. The following hazards are to be 
considered: 
 
 Normal loads (self weight, floor loads, environmental loads, etc) 
 Natural hazards (i.e. earthquakes, landslides, etc) 
 Manmade hazards (fire, explosions, collisions) 
 Degradation (by mechanical, chemical and physical or biological attack)) 
 Ecological aspects (energy consumption, durable and economic use of materials)  
 Human errors in design, construction and use 
 Terrorist action 

 
Design usually takes care of all those issues, either implicitly or explicitly. The degree in which atten-
tion is paid depends very much on the nature and importance of the building. 
 
Most buildings are designed without any special and explicit risk analysis and risk management. Im-
plicitly, of course, the building codes can be considered as a relatively effective risk management tool. 
 
Special attention is given to the aspect of fire safety, both the structural side and the human safety side. 
Most people in fires do not die from fire or structural collapse, but from smoke. The most important 
issue over here is a good system of detection, warning, early extinguishing and good possibilities of 
evacuation and escape. In this field an increasing interest in explicit risk analysis approach can be ob-
served. 
 
In most buildings codes safety classes are distinguished for various types of buildings and various types 
of building elements. A very common system is to divide the consequences of failure into small, me-
dium and large. Some codes make a distinction between economic losses and danger to human lives. 
Based on these classes there is a safety differentiation in the code, which usually comes down to the 
prescription of different values for the partial factors or the introduction of a set of adjustment factors.  
 
It is well known, but not always fully appreciated, that the reliability of a structure as estimated on the 
basis of a given set of probabilistic models for loads and resistances may have limited bearing to the 
actual reliability of the structure. This is the case when the probabilistic modeling forming the basis of 
the reliability analysis is highly influenced by subjectivity and then the estimated reliability should be 
interpreted as being a measure for comparison only. In these cases it is thus not immediately possible to 
judge whether the estimated reliability is sufficiently high without first establishing a more formalized 
reference for comparison.  
 
Such a reference may be established by the definition of an optimal or best practice structure. The idea 
behind the "best practice" reference is that if the structure of consideration has been designed according 
to the "best practice" then the reliability of the structure is "optimal" according to agreed conventions 
for the target reliability. Typical values for the corresponding target annual failure probability are in the 
range of 10-6 to 10-7 depending on the type of structure and the characteristics of the considered failure 
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mode. Using this approach the target reliability is determined as the reliability of the "best practice" 
design as assessed with the given probabilistic model. 
 
The determination of the "best practice" design can be performed in different ways. The simplest ap-
proach is to use the existing codes of practice for design as a basis for the identification of "best prac-
tice" design. Alternatively the "best practice design" may be determined by consultation of a panel of 
recognized experts.  
 
In case where the probabilistic modeling does not rest on subjective assessments the most rational ap-
proach is to establish the optimal design on the basis of the economic decision theory.  
 
In tables 1 target failure probabilities are given for ultimate limit states based on recommendations of 
JCSS [11]. Note that the values given correspond to a year reference period and the stochastic models 
recommended in JCSS [11].  
 
Relative cost of 
safety measure 

Minor  consequences  
of failure 

Moderate consequences 
of failure 

Large consequences 
of failure 

High FP ≈10-3 FP ≈5 10-4 FP ≈10-4 
Normal FP ≈10-4 FP ≈10-5 FP ≈5 10-6 
Low FP ≈10-5 FP ≈5 10-5 FP ≈10-6 
Table 5. Tentative target failure probabilities) related to a one-year reference period and ultimate limit 
states 
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Opgave 1 – Risikoanalyse 
I forbindelse med en eksisterende bro er der opstået tvivl om den har tilstrækkelig bæreevne. Derfor 
ønskes et svigttræ og et hændelsestræ opstillet. For at kunne vurdere forskellige alternative handlinger 
ønskes også et beslutningstræ opstillet. 
 
 
 
 
 
Spørgsmål 1 – Svigttræ (failure tree) 
Top hændelsen er svigt af broen. Broen består af 1 stålbjælke og et fundament med 2 pæle. Begge pæle 
har en svigtsandsynlighed på 5% og det  kan antages at en pæl er tilstrækkelig til at bære belastningen. 
Stålbjælken kan ruste. Sandsynligheden for svigt af stålbjælken er 1% hvis den starter at ruste og 
0.01% hvis den ikke ruster. Sandsynligheden for at bjælken starter at ruste i løbet af levetiden er 10%. 
Broen svigter stålbjælken eller fundamentet svigter. Alle hændelser kan antages uafhængige. 
 
Opstil et svigttræ og vis at sandsynligheden for svigt af broen er 0.00359.  
 
Spørgsmål 2 – Hændelsestræ (event tree) 
Konsekvenserne af et svigt af broen ønskes undersøgt ved at et hændelsestræ opstilles. Hvis broen svig-
ter antages det at sandsynligheden for at dette sker så langsomt at en hurtig opdagelse heraf og efterføl-
gende reparation er 70%. Dette vil indebære omkostninger af størrelsesordenen ½ mill. kr.  
 
Hvis derimod svigtet sker øjeblikkeligt som et totalt kollaps indtræder, så er omkostningerne 10 mill. 
kr. På basis af trafikobservationer vides at sandsynligheden for at der ingen køretøjer er på broen er 
95% i svigtøjeblikket. Med en sandsynlighed på 5% er der 10 køretøjer og 20 personer på broen på et 
tilfældigt tidspunkt. Konsekvenserne af tab af et menneskeliv antages at kunne ækvivaleres med 4 mill. 
kr. 
 
Opstil et hændelsestræ og vis at de forventede omkostninger ved svigt af broen er  4.55 mill. kr. 
 
Spørgsmål 3 – Beslutningstræ (decision tree) 
En ingeniør spørges om at undersøge 3 forskellige alternativer: 
1. Bygge en ny bro. Denne antages at koste 8 mill. kr. og at have en svigtsandsynlighed der kan sættes 

til 0. 
2. Indføre trafikrestriktioner, som medfører at svigtsandsynligheden (fra Spørgsmål 1) halveres og at 

restriktionerne medfører en omkostning på 2 mill. kr. 
3. Status quo – dvs. gøre ingenting. 
 
Bestem de forventede omkostninger for hver af de 3 alternativer. Hvilket alternativ bør vælges. 
De forventede omkostningerne for et svigt af den eksisterende bro tages fra spørgsmål 2. 
 
Opstil et beslutningstræ og bestem de forventede omkostninger for hver af de 3 alternativer. Hvilket 
alternativ  er bedst? 
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Note 1 + 2: STRUCTURAL RELIABILITY 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 

1 Introduction 
 
For many years it has been assumed in design of structural systems that all loads and strengths are 
deterministic. The strength of an element was determined in such a way that it exceeded the load 
with a certain margin. The ratio between the strength and the load was denoted the safety factor. 
This number was considered as a measure of the reliability of the structure. In codes of practice for 
structural systems values for loads, strengths and safety factors are prescribed.  
 
These values are traditionally determined on the basis of experience and engineering judgement. 
However, in new codes partial safety factors are used. Characteristic values of the uncertain loads 
and resistances are specified and partial safety factors are applied to the loads and strengths in order 
to ensure that the structure is safe enough. The partial safety factors are usually based on experience 
or calibrated to existing codes or to measures of the reliability obtained by probabilistic techniques.  
 
Activity  Approximate death rate  

( 910−×  deaths/h exposure) 
Typical exposure 
(h/year) 

Typical risk of death  
( 610−× /year) 

Alpine climbing 30000 – 40000 50 1500-2000 
Boating 1500 80 120 
Swimming 3500 50 170 
Cigarette smoking 2500 400 1000 
Air travel 1200 20 24 
Car travel 700 300 200 
Train travel 80 200 15 
Coal mining (UK) 210 1500 300 
Construction work 70-200 2200 150-440 
Manufacturing 20 2000 40 
Building fires 1-3 8000 8-24 
Structural failures 0.02 6000 0.1 
Table 1. Some risks in society (from Melchers [1]). 
 
As described above structural analysis and design have traditionally been based on deterministic 
methods. However, uncertainties in the loads, strengths and in the modeling of the systems require 
that methods based on probabilistic techniques in a number of situations have to be used. A struc-
ture is usually required to have a satisfactory performance in the expected lifetime, i.e. it is required 
that it does not collapse or becomes unsafe and that it fulfills certain functional requirements. Gen-
erally structural systems have a rather small probability that they do not function as intended, see 
table 1.  
 
Reliability of structural systems can be defined as the probability that the structure under considera-
tion has a proper performance throughout its lifetime. Reliability methods are used to estimate the 
probability of failure. The information of the models which the reliability analyses are based on are 
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generally not complete. Therefore the estimated reliability should be considered as a nominal meas-
ure of the reliability and not as an absolute number. However, if the reliability is estimated for a 
number of structures using the same level of information and the same mathematical models, then 
useful comparisons can be made on the reliability level of these structures. Further design of new 
structures can be performed by probabilistic methods if similar models and information are used as 
for existing structures which are known to perform satisfactory. If probabilistic methods are used to 
design structures where no similar existing structures are known then the designer has to be very 
careful and verify the models used as much as possible.  
 
The reliability estimated as a measure of the safety of a structure can be used in a decision (e.g. de-
sign) process. A lower level of the reliability can be used as a constraint in an optimal design prob-
lem. The lower level of the reliability can be obtained by analyzing similar structures designed after 
current design practice or it can be determined as the reliability level giving the largest utility (bene-
fits – costs) when solving a decision problem where all possible costs and benefits in the expected 
lifetime of the structure are taken into account.   
 
In order to be able to estimate the reliability using probabilistic concepts it is necessary to introduce 
stochastic variables and/or stochastic processes/fields and to introduce failure and non-failure be-
havior of the structure under consideration. 
 
Generally the main steps in a reliability analysis are: 
 
1. Select a target reliability level. 
2. Identify the significant failure modes of the structure.  
3. Decompose the failure modes in series systems of parallel systems of single components (only 

needed if the failure modes consist of more than one component). 
4. Formulate failure functions (limit state functions) corresponding to each component in the fail-

ure modes. 
5. Identify the stochastic variables and the deterministic parameters in the failure functions. Fur-

ther specify the distribution types and statistical parameters for the stochastic variables and the 
dependencies between them. 

6. Estimate the reliability of each failure mode. 
7. In a design process change the design if the reliabilities do not meet the target reliabilities. 

In a reliability analysis the reliability is compared with the target reliability. 
8. Evaluate the reliability result by performing sensitivity analyses. 
 
The single steps are discussed below. 
 
Typical failure modes to be considered in a reliability analysis of a structural system are yielding, 
buckling (local and global), fatigue and excessive deformations. 
 
The failure modes (limit states) are generally divided in: 
 
Ultimate limit states 
Ultimate limit states correspond to the maximum load carrying capacity which can be related to e.g. 
formation of a mechanism in the structure, excessive plasticity, rupture due to fatigue and instability 
(buckling). 
 
Conditional limit states 
Conditional limit states correspond to the load-carrying capacity if a local part of the structure has 
failed. A local failure can be caused by an accidental action or by fire. The conditional limit states 
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can be related to e.g. formation of a mechanism in the structure, exceedance of the material strength 
or instability (buckling). 
 
Serviceability limit states 
Serviceability limit states are related to normal use of the structure, e.g. excessive deflections, local 
damage and excessive vibrations. 
 
The fundamental quantities that characterize the behavior of a structure are called the basic vari-
ables and are denoted ),...,( 1 nXX=X  where n  is the number of basic stochastic variables. Typical 
examples of basic variables are loads, strengths, dimensions and materials. The basic variables can 
be dependent or independent, see below where different types of uncertainty are discussed. A sto-
chastic process can be defined as a random function of time such that for any given point in time the 
value of the stochastic process is a random variable. Stochastic fields are defined in a similar way 
where the time is exchanged with the space.  
 
The uncertainty modeled by stochastic variables can be divided in the following groups: 
 
Physical uncertainty: or inherent uncertainty is related to the natural randomness of a quantity, for 
example the uncertainty in the yield stress due to production variability. 
 
Measurement uncertainty: is the uncertainty caused by imperfect measurements of for example a 
geometrical quantity. 
 
Statistical uncertainty: is due to limited sample sizes of observed quantities. 
 
Model uncertainty: is the uncertainty related to imperfect knowledge or idealizations of the 
mathematical models used or uncertainty related to the choice of probability distribution types for 
the stochastic variables. 
 
The above types of uncertainty are usually treated by the reliability methods which will be de-
scribed in the following chapters. Another type of uncertainty which is not covered by these meth-
ods are gross errors or human errors. These types of errors can be defined as deviation of an event 
or process from acceptable engineering practice. 
 
Generally, methods to measure the reliability of a structure can be divided in four groups, see Mad-
sen et al. [2], p.30: 
 
• Level I methods: The uncertain parameters are modeled by one characteristic value, as for ex-

ample in codes based on the partial safety factor concept. 
• Level II methods: The uncertain parameters are modeled by the mean values and the standard 

deviations, and by the correlation coefficients between the stochastic variables. The stochastic 
variables are implicitly assumed to be normally distributed. The reliability index method is an 
example of a level II method. 

• Level III methods: The uncertain quantities are modeled by their joint distribution functions. 
The probability of failure is estimated as a measure of the reliability.  

• Level IV methods: In these methods the consequences (cost) of failure are also taken into ac-
count and the risk (consequence multiplied by the probability of failure) is used as a measure of 
the reliability. In this way different designs can be compared on an economic basis taking into 
account uncertainty, costs and benefits. 

 
Level I methods can e.g. be calibrated using level II methods, level II methods can be calibrated 
using level III methods, etc. 
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Level II and III reliability methods are considered in these notes. Several techniques can be used to 
estimate the reliability for level II and III methods, e.g.  
 
• simulation techniques: Samples of the stochastic variables are generated and the relative num-

ber of samples corresponding to failure is used to estimate the probability of failure. The simu-
lation techniques are different in the way the samples are generated.  

• FORM techniques: In First Order Reliability Methods the limit state function (failure func-
tion) is linearized and the reliability is estimated using level II or III methods.  

• SORM techniques: In Second Order Reliability Methods a quadratic approximation to the 
failure function is determined and the probability of failure for the quadratic failure surface is 
estimated.  

 
In level IV methods the consequences of failure can be taken into account. In cost-benefit analyses 
(or RISK analyses) the total expected cost-benefits for a structure in its expected lifetime are maxi-
mized  

FfREPINIz
CzPzCzCzCzBzW )()()()()()(max −−−−=    (1) 

where z  represents design/decision variables, B  is the expected capitalized benefits, IC  is the ini-
tial (or construction) costs, INC  is the expected capitalized inspection costs, REPC  is the expected 
capitalized repair costs and FC  is the capitalized failure costs. Cost-optimized inspection strategies 
are based on cost-benefit analyses where the costs due to inspection, repair and failure are mini-
mized with e.g. inspection locations and inspection times and qualities as decision variables. 
 
For a detailed introduction to structural reliability theory reference is made to the following text-
books: Melchers [1], Madsen, Krenk & Lind [2], Thoft-Christensen & Baker [3] and Ditlevsen & 
Madsen [4]. 

2 Basic Probability theory and Stochastic Variables 

2.1 Events and basis probability rules 
An event E  is defined as a subset of the sample space (all possible outcomes of a random quantity) 
Ω . The failure event E  of e.g. a structural element can be modeled by }{ SRE ≤=  where R  is the 
strength and S  is the load. The probability of failure is the probability )()( SRPEPPf ≤== . If a 
system is modeled by a number of failure events, failure of the system can be defined by a union or 
an intersection of the single failure events.  
 
If failure of one element gives failure of the system, then a union (series system) is used to model 
the system failure, E : 

U
m

i
im EEEE

1
1 ...

=
=∪∪=       (2) 

where iE  is the event modeling failure of element i  and m  is the number of events. 
 
If failure of all elements are needed to obtain failure of the system, then an intersection (parallel 
system) is used to model the system failure, E : 

I
m

i
im EEEE

1
1 ...

=
=∩∩=       (3) 

 
Disjoint / mutually exclusive events are defined by 

ØEE =∩ 21        (4) 
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where Ø  is the impossible event. 
 
A complementary event E  is denoted defined by 

ØEE =∩    and   Ω=∪ EE      (5) 
 
The so-called De Morgan’s laws related to complementary events are 

2121 EEEE ∪=∩       (6) 

2121 EEEE ∩=∪       (7) 
 
Probabilities of events have to fulfill the following fundamental axioms: 
 
Axiom 1: for any event E : 

1)(0 ≤≤ EP        (8) 
 
Axiom 2: for the sample space Ω  

1)( =ΩP        (9) 
 
Axiom 3: for mutually exclusive events mEEE ,...,, 21 : 

∑=






==

m

i
i

m

i
i EPEP

11
)(U       (10) 

 
The conditional probability of an event 1E  given another event 2E  is defined by: 

( )
)(

)(

2

21
21 EP

EEPEEP ∩
=       (11) 

 
Event 1E  is statistically independent of event 2E  if 
( ) )( 121 EPEEP =       (12) 

 
From (11) we have 

( ) ( ) )()()( 11222121 EPEEPEPEEPEEP ==∩     (13) 
 
Therefore if 1E  and 2E  are statistically independent: 

( ) )()( 2121 EPEPEEP =∩       (14) 
 
Using the multiplication rule in (13) and considering mutually exclusive events mEEE ,...,, 21  the 
total probability theorem follows: 

( ) ( ) ( )
( ) ( ) ( )m

mm

EAPEAPEAP
EPEAPEPEAPEPEAPAP

∩++∩+∩=

+++=

...         
)(...)()()(

21

2211    (15) 

where A  is an event. 
 
From the multiplication rule in (13) it follows 

( ) ( ) )()()( APAEPEPEAPEAP iiii ==∩     (16) 
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Using also the total probability theorem in (15) the so-called Bayes theorem follows from:  

( ) ( ) ( )
( )∑

=

== m

j
jj

iiii
i

EPEAP

EPEAP
AP

EPEAP
AEP

1
)(

)(
)(

)(
    (17) 

 
2.2.1 Example 1 – statically determinate structure 
Consider a statically determinate structural system with 7 elements. The failure probabilities 

)element  of failure()( iPFPP ii ==  of each element are determined to: 
i  1 2 3 4 5 6 7 

iP  0.02 0.01 0.02 0.03 0.02 0.01 0.02 
It is assumed that the failure events 721 ,...,, FFF  are independent. The probability of failure of the 
system becomes: 

( )( ) ( ))(1...)(1)(11           
 )...(1           

)safe  structure(1           

)...(

721

721

721

FPFPFP
FFFP

P
FFFPPfailure

−−−−=
∩∩∩−=

−=

∪∪∪=

 

 
Using the element failure probabilities 

failureP =1-(1-0.02)4(1-0.01)2(1-0.03)=0.12 

 
2.2.2 Example 2 – use of Bayes theorem 
Consider concrete beams which are tested before use. Let E denote the event that the beam is per-
fect. Further, let A denote the event that the beam pass the test.  Experience show that 

)(AP =0.95  95% of the beams pass the test 

10.0)(

90.0)(

=

=

AEP

AEP
 reliability of test 

The probability that a perfect beam pass the test is obtained as 

994.0
86.0

95.090.0
05.010.095.090.0

95.090.0
)()()()(

)()(
)(

)()( =
⋅

=
⋅+⋅

⋅
=

+

=
=

∩
=

APAEPAPAEP
APAEP

EP
AEPEAP  

2.2 Continuous stochastic variables 
Consider a continuous stochastic variable X . The distribution function of X  is denoted )(xFX  
and gives the probability )()( xXPxFX ≤= . A distribution function is illustrated in figure 1. The 
density function )(xfX  is illustrated in figure 1 and is defined by 

)()( xF
dx
dxf XX =       (18) 

 
 
 
 
 
 
 
 
Figure 1. Distribution function )(xFX . 
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Figure 2. Density function )(xfX . 
 
The expected value is defined by 

∫=
∞

∞−
dxxxfX )(µ       (19) 

The variance 2σ  is defined by 

∫ −= dxxfx X )()( 22 µσ       (20) 
where σ  is the standard deviation. 
 
The coefficient of variation VCOV =  is 

µ
σ

=V        (21) 

The n th order central moment is 
∫ −= dxxfxm X

n
n )()( µ       (22) 

 
 
The skewness is defined by 

3
2

2
3

1 m
m

=β         (23) 

and the kurtosis is 

2
2

4
2 m

m
=β         (24) 

 
2.2.1 Example: Probability of failure – fundamental case 
 
 
 
 
 
 
 
 
 
 
Figure 3. Density functions for fundamental case. 
 
Consider a structural element with load bearing capacity R  which is loaded by the load S . R  and  
S  are modeled by independent stochastic variables with density functions Rf  and Sf  and distribu-
tion functions RF  and SF , see figure 3. The probability of failure becomes 
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( ) ( ) ( ) ( ) ( ) ( )∫=∫ +≤≤≤=≤==
∞

∞−

∞

∞−
dxxfxFdxdxxSxPxRPSRPfailurePP SRF  

 
Alternatively the probability of failure can be evaluated by 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫−=∫ −=∫ ≥+≤≤=≤==
∞

∞−

∞

∞−

∞

∞−
dxxFxfdxxFxfdxxSPdxxRxPSRPfailurePP SRSRF 11

 
It is noted that it is important that the lower part of the distribution for the strength and the upper 
part of the distribution for the load are modeled as accurate as possible. 
 
2.2.2 Example: Normal distribution 
The distribution function for a stochastic variable with expected value µ  and standard deviation  σ  
is denoted  N(µ ,σ ), and is defined by 

∫ 















 −

−=





 −

Φ=
∞−

x

X dttxxF
2

exp
2
1)(

σ
µ

σπσ
µ     (25) 

where ( )uΦ  is the standardized distribution function for a Normal distributed stochastic variable 
with expected value = 0 and standard deviation  = 1 :  N(0,1). 
 
The Normal distribution has:  
Skewness:  1β =0 
Kurtosis:  2β =0 
 
Figure 4 shows the density function for a Normal distributed stochastic variable with expected value 
10 and standard deviation 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Normal distributed stochastic variable with expected value 10 and standard deviation 3. 
 
 
2.2.3 Example: Lognormal distribution  
The distribution function for a stochastic variable with expected value µ  and standard deviation  σ  
is denoted  LN(µ ,σ ), and is defined by 

∫ 



















 −
−=







 −
Φ=

∞−

x

Y

Y

YY

Y
X dtt

t
xxF

ln
2

exp
2

1ln)(
σ
µ

σπσ
µ    (26) 

where  
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= 1ln

2

µ
σσY        (27) 

   2

2
1ln YY σµµ −=        (28) 

is the standard deviation and expected value for the Normal distributed stochastic variable 
XY ln= . 

 
The Lognormal distribution has: 
Skewness:  ( ) 222

1 33 VVV ≅+=β  

Kurtosis:  ( ) ( ) ( )( ) 36161313 222322
2 ≅+++++++= VVVVβ  

 
Figure 5 shows the density function for a Lognormal distributed stochastic variable with expected 
value 10 and standard deviation 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Lognormal distributed stochastic variable with expected value 10 and standard deviation 
3. 
 

If the coefficient of variation 
µ
σ

=V  is small (less than ≈  0.25) then the standard deviation and 

expected value of XY ln=  can approximately be obtained from 
 

VY ≈σ  
µµ ln≈Y  

 
The 5 % quantile 05.0y  defined such that 05.0)ln( 05.0 =≤= yXYP  can be obtained from 
 

YYy σµ 645.105.0 −=  
 
where –1.645 is obtained from the standard Normal distribution function such that 

05.0)645.1( =−Φ . Correspondly the 5% qualtile 05.0x  of  the LogNormal variable can be obtained 
from 
 

( ) ( )YYyx σµ 645.1expexp 05.005.0 −==  
 
which for small coefficients of variation becomes 
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( )Vx 645.1exp05.0 −≈ µ  
 
2.2.4 Example: 2 parameter Weibull-fordeling  
The distribution function for a stochastic variable with expected value µ  and standard deviation  σ  
is denoted  W2(µ ,σ ), and is defined by: 






















−−=

α

β
xxFX exp1)(       (29) 

where α  and β  are the form- and shape-parameters. These are related to µ  and σ  by: 







 +Γ=

α
βµ 11       (30) 







 +Γ−






 +Γ=

αα
βσ 1121 2      (31) 

where ( )⋅Γ  is the Gamma distribution. 
 
Figure 6 shows the density function for a 2-parameter Weibull distributed stochastic variable with 
expected value 10 and standard deviation 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. 2-parameter Weibull distributed stochastic variable with expected value 10 and standard 
deviation 3. 
 
2.2.5 Example: 3 parameter Weibull-fordeling  
The distribution function for a stochastic variable with expected value µ , standard deviation  σ  
and lower threshold γ  is denoted  W3(µ ,σ ;γ ), and is defined by: 






















−
−

−−=
α

γβ
γxxFX exp1)(  γ≥x     (32) 

where α  and β  are the form- and shape-parameters. These are related to µ  and σ  by: 

   ( ) γ
α

γβµ +





 +Γ−=

11       (33) 

   ( ) 





 +Γ−






 +Γ−=

αα
γβσ 1121 2      (34) 

Figure 7 shows the density function for a 3-parameter Weibull distributed stochastic variable with 
expected value 10, standard deviation 3 and lower threshold γ =3. 
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Figure 7. 3-parameter Weibull distributed stochastic variable with expected value 10, standard de-
viation 3 and lower threshold γ =3. 
 
2.2.6 Example: Truncated Weibull distribution  
The distribution function for a stochastic variable with expected value µ , standard deviation σ  and 
lower threshold γ  is denoted  WT(µ ,σ ;γ ), and is defined by: 

      ,    exp11)(
0

γ
β

α

≥





















−−= xx

P
xFX      (35) 

where 

      exp0 




















−=

α

β
γP       (36) 

α  and β  are the form- and shape-parameters. µ  and σ  has to be determined by numerical integra-
tion.       
 
2.2.7 Example: Generalized Pareto distribution 
The distribution function for a stochastic variable with expected value µ , standard deviation σ  and 
lower threshold γ  is denoted GP(µ ,σ ;γ ), and is defined by: 

( )
          

0                        /)(
0     /)(1ln

     ,    1)(
1





=−
≠−−−

=−=
−

−

βαγβ
βαγββ

x
x

yexF y
X    (37) 

 
where α  and β  are the parameters. The allowable intervals for the parameters are: 
 

  
   :0     if

   :0     if

            0

∞<≤≤

≤≤>

∞<<∞−∞<<∞−>

x

x

γβ
β
αγβ

βγα

     (38) 

The parameters are related to µ  and σ  by: 

γ
β

αµ +
+

=
1

      (39) 

( ) ( )αα

ασ
211 2 ++

=       (40) 
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The generalized Pareto distribution has:  

Skewness:  ( )21 )31/()21()1(2 ββββ ++−=  

Kurtosis:  
)41)(31(

)23)(21(3 2

2 ββ
ββββ

++
+−+

=  

 
2.2.8 Example: Gumbel distribution 
The distribution function for a stochastic variable with expected value µ  and standard deviation σ   
is denoted G(µ ,σ ), and is defined by: 

( )( )( )βα −−−= xxFX expexp)(      (41)
    
where α  and  β  are shape and scale parameters. These are related to µ  and σ  by: 

α
βµ 5772.0
+=       (42) 

6α
πσ =        (43) 

 
The Gumbel distribution has:  
Skewness:  3.11 =β  
Kurtosis:  4.52 =β  
 
Figure 8 shows the density function for a Gumbel distributed stochastic variable with expected 
value 10 and standard deviation 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Gumbel distributed stochastic variable with expected value 10 and standard deviation 3. 
 
The 98% quantile 98.0x  defined as 98.0)( 98.0 =xFX  becomes 
 

( )( ) ( )( )( )







−+−=−−= 98.0lnln5772.06198.0lnln1

98.0 π
µ

α
Vux  

 
The distribution function for the maximum { }nXXXY ,...,,max 21=  of n  independent Gumbel dis-
tributed stochastic variables nXXX ,...,, 21  becomes (see also section 3): 
 

( ) ( )( )( )βα −−−== ynyFyF n
XY expexp)()(  
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with expected value and standard deviation: 
 









+=+= )ln(61)ln(6 nVnY π

µσ
π

µµ  

σσ =Y  
 

2.3 Conditional distributions 
 
The conditional distribution function for 1X  given 2X  is defined by 

)(
),(

)(
2

21,
21

2

21

21 xf
xxf

xxf
X

XX
XX =      (44) 

 
1X  and 2X  are statistically independent if )()( 121 121

xfxxf XXX =  implying that 

)()(),( 2121, 2121
xfxfxxf XXXX =      (45) 

2.4 Covariance and correlation 
 
The covariance between 1X  and 2X  is defined by 

)])([(],[ 221121 µµ −−= XXEXXCov      (46) 
 
It is seen that 

2
1111 ][],[ σ== XVarXXCov      (47) 

 
The correlation coefficient between 1X  and 2X  is defined by 

21

21
,

],[
21 σσ

ρ XXCov
XX =         (48) 

and is a measure of linear dependence between 1X  and 2X . Further: 
 

11
21 , ≤≤− XXρ       (49) 

 
If 0

21 , =XXρ  then 1X  and 2X  is uncorrelated, but not necessarily statistically independent. 
 
For a stochastic vector ),,,( 21 nXXXX L=  the covariance-matrix is defined by 
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Correspondingly the correlation coefficient matrix is defined by 
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The correlation coefficient matrix has to be positive definite. 
 
Example 2.3.1 Linear combination of stochastic variables 
Consider the following linear combination of the stochastic variables ),,,( 21 nXXXX L= : 

nn XaXaXaaY ++++= L22110  
 
Y  becomes a stochastic variable with expected value 

nnY aaaa µµµµ ++++= L22110  
where nµµµ ,,, 21 L  are expected values of nXXX ,,, 21 L .  
 
The variance of Y  becomes 

 ( )[ ] ∑ ∑=−=
= =

n

i

n

j
jiijjiYY aaYE

1 1

22 σσρµσ  

where nσσσ ,,, 21 L  are standard deviations of nXXX ,,, 21 L . ijρ  is the correlation coefficient of 

ji XX , . Yσ  is the standard deviation of Y . 
 
If the stochastic variables nXXX ,,, 21 L  are independent then 

∑=
=

n

i
iiY a

1

222 σσ  

 
Finally, it can be shown that if nXXX ,,, 21 L  are Normal distributed then Y  is also Normal distrib-
uted. 

3 Estimation of distribution parameters 
 
The following general comments can be made in relation to choice of distribution functions. 
 
For extreme loads for example the annual maximum / extreme value of the load (wind velocity / 
wind pressure, significant wave height, ...) is the important value. If nXXX ,,, 21 L  are independent 
stochastic variables with identical distribution function XF  then the maximum value  

{ }nXXXY ,,,max 21 L=  
has the distribution function 

( ) { }( )
{ } { } { }( ) ( )n

Xn

nY

yFyXyXyXP

yXXXPyYPyF
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The density unction becomes 

( ) )()()( 1 yfyFnyf X
n

XY
−=  

 
 
 
 
 
 
 
 
Figure 9. Density functions for extreme loads.   



Note 1+2: Structural reliability 
 

41 

 
Figure 9 illustrates the density functions )(yf X  and )(yfY . It is seen that as n  increases the den-
sity function for the maximum value becomes more narrow (smaller coefficient of variation) and 
the expected value increases. It can be shown that in general )(yfY  approaches one of the so-called 
extreme distribution.  
 
The following distributions can be relevant for extreme loads:  
• Gumbel distribution. This distribution is recommended / used in JCSS [5], DS 410 [6], EN 1990 

[7] (Basis of Design, annex C), ISO 2394 [8] for annual maximum wind pressure, snow load 
and temperature load. 

• Weibull distribution (2-parameter / 3-parameter / truncated). This distribution is often used for 
significant wave heights in design and analysis of offshore structures. 

• Generalised Pareto distribution. This distribution is recommended in e.g. van Gelder [9] for sig-
nificant wave heights on shallow water. van Gelder [9] recommends on the basis of statistical 
analysis of measured data from a range of measurement stations placed at the coasts in the 
southern part of the North Sea, that a generalised Pareto distribution is used for the maximum 
significant wave height on shallow water. 

 
For fatigue analysis where a good fit is important for the central part of the distribution of the load 
variations (stress ranges) the following distribution types will be relevant for wind velocities and 
significant wave heights: 
• Normal distribution 
• LogNormal distribution 
• Weibull distribution. This distribution is used e.g. in Windatlas [10] 
 
For material strengths the following distribution types can be considered: 
• Normal distribution. If the strength can be considered as a sum of individual Normal distributed 

contributions, then example 2.3.1 shows that the sum becomes Normal distributed. For ductile 
materials this is a reasonable assumption. If the individual contributions are non-Normal dis-
tributed and no-one of them contributes much more than the others then according to the central 
limit theorem the sum becomes asymptotically Normal distributed. However, the normal distri-
bution has the drawback that for strengths with large coefficient of variation there is a non-
negligible probability for negative strengths. Therefore the Normal distribution cannot be rec-
ommended for materials with a high coefficient of variation. 

• LogNormal distribution. If the strength can be considered as a product of individual LogNormal 
distributed contributions, then following example 2.3.1 the product becomes LogNormal dis-
tributed since Xln  is Normal distributed if X  is LogNormal distributed. Further if the individ-
ual contributions are non-LogNormal distributed and no-one of them contributes much more 
than the others then according to the central limit theorem the product becomes asymptotically 
LogNormal distributed. The LogNormal distribution is used / recommended in DS410 [6], 
Eurocodes (Basis of Design, annex C) [7] and ISO 2394 [8]. 

• Weibull distribution. This distribution is recommended for strengths where the largest defect is 
important for the value of the material strength (i.e. size effects are important),  see e.g. Euro-
codes (Basis of Design, annex C) [7] and ISO 2394 [8]. 

 
A number of methods can be used to estimate the statistical parameters in distribution functions, for 
example: 
• The Maximum Likelihood method 
• The Moment method 
• The Least Square method 
• Bayesian statistics 
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In general the Maximum Likelihood method or Bayesian statistics is recommended. The Maximum 
Likelihood method gives a consistent estimate of the statistical uncertainties. In Bayesian statistics 
it is possible to take consistently into account subjective / prior information. 

3.1 Maximum Likelihood method 
A Likelihood function is formulated which gives the probability that the actual data is an outcome 
of a given distribution with given statistical parameters. The statistical parameters are determined 
such that this probability is maximum. It is assumed that the given data are statistically independent. 
 
As a example a truncated Weibull distribution is considered. The Log-Likelihood function be-
comes: 

       expln)(ln),,(ln
1

1

01
∑ 



































−








=





∏=

=

−

=

n

i

ii
n

i
iX

xx
P

xfL
αα

ββ
αγβα   (52) 

where 
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The statistical parameters are α , β  and γ .  nixi ,1,  =  are n  data values. The optimization prob-
lem to obtain the maximum value of the log-Likelihood function, ),,(ln  max

,,
γβα

γβα
L  can be solved 

using non-linear optimization algorithms, e.g. NLPQL, [11]. The result is the best estimate of the 
statistical parameters α , β  and γ .   
 
Since the statistical parameters α , β  and γ  are determined from a limited number of data, the es-
timates will be subjected with statistical uncertainty. If the number of data is larger than 25-30  α , 
β  and γ  can be assumed to be asymptotically Normal distributed with expected values equal to the 
solution of the optimization problem and with the following covariance matrix, see e.g. Lindley, [4] 
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where αβγH  is the Hessian matrix with second derivatives of the Log-Likelihood function. ασ ,  

βσ  and γσ  are standard deviations of α , β  and γ . αβρ  is the correlation coefficient between α  

and β .The Hessian matrix is determined by numerical differentiation. 

3.2 Moment method 
The unknown parameters in a given distribution function )( θxFX  for a stochastic variable X  is 
denoted ),...,,( 21 mθθθθ = . The theoretical statistical moments are with given ),...,,( 21 mθθθθ =   

∫= dxxfxm X
j

j )( θ       (55) 
 
On the basis of data / observations $ ( $ , $ ,..., $ )x = x x xn1 2  the empirical moments are 

∑=
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n

i
ij x

n
m

1
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Requiring that the theoretical moments are equal to the empirical moments the statistical parameters 
),...,,( 21 mθθθθ =  can be determined.  

 
It is noted that the method does not give an estimate of the statistical uncertainties and that it is not 
possible to include prior information. However, bootstrapping can in some situations be used to 
estimate the statistical uncertainties. 

3.3 Least Squares method 
The unknown parameters in a given distribution function )( θxFX  for a stochastic variable X  is 
denoted ),...,,( 21 mθθθθ = .  
 
On the basis f data / observations $ ( $ , $ ,..., $ )x = x x xn1 2  an empirical distribution function is deter-
mined using e.g. the Weibull – plotting formula: 

ii xx
n

iF ˆ,    
1

ˆ =
+

=       (57) 

 
The statistical parameters are determined by considering the optimization problem: 

 ( )2
1

)(ˆmin∑ −
=

n

i
iXi xFF

θ
      (58) 

 
The solution of this optimization problem is a central estimate of the statistical parameters 

),...,,( 21 mθθθθ = . 
 
If the distribution has to be good in the tails of the distribution the summation in (58) can be re-
duced to e.g. the smallest 30% of the data. 

3.4 Bayesian statistics 
Bayesian statistics has the advantage that it is possible to determine the statistical parameters in a 
stochastic model (distribution function) such both the actual data (measurements) and prior knowl-
edge can be used. Furthermore Bayesian statistics has the advantage that it is easy to make an up-
dating if new data becomes available. 
  
Consider a stochastic variable X  with distribution function )( θxFX  which depends on the statisti-
cal parameters ,...),( 21 θθθ = . For a Normal distribution the statistical parameters are equal to the 
expected value and the standard deviation. 
 
It is assumed that one or more of the statistical parameters are uncertain, and that prior knowledge 
on this uncertainty can be expressed in a prior density function for parameters: )(' θθf . 
 
If data is available these can be used to update this prior knowledge. The updated – posterior den-
sity function for the statistical parameters can be determined by 

∫
=

θθθ

θθ
θ

θ

θ
θ dff

ff
f

X

X

)()ˆ(

)()ˆ(
)ˆ(

'

'
''

x

x
x      (59) 

where ∏=
=

n

i
iXX xff

1
)ˆ()ˆ( θθx  is the probability (Likelihood) for the given data / observations 

$ ( $ , $ ,..., $ )x = x x xn1 2  if the statistical parameters is equal to θ .  
 
The predictive (updated) density function for X  given data $ ( $ , $ ,..., $ )x = x x xn1 2  is determined by 
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∫= θθθ θ dfxfxf XX )ˆ()()ˆ( '' xx      (60) 

 
Prior, posterior and predictive distributions can be established in e.g. the following cases: 
• Normal distribution with known standard deviation 
• Normal distribution with known expected value 
• Normal distribution with unknown expected value and standard deviation 
• Lognormal distribution 
• Gumbel distribution 
• Weibull distribution 
• Exponential distribution 
 
It is noted that statistical uncertainty automatically is included in this modeling and that engineering 
judgments based on experience can be quantified rationally via prior distributions of the statistical  
parameters θ . Further it can be mentioned that in Eurocode 0, Basis of Design, annex D, [1] it is 
recommended that Bayesian statistics is used in statistical treatment of data and in design based on 
tests. 

3.5 Example - timber 
The following example is from a statistical analysis of timber strength data, see Sørensen & Hoff-
meyer [12]. 1600 timber specimens of Norway spruce have been graded visually. 194 of the data 
has been graded as LT20. The bending strength has been measured, and on the basis of these test 
data the basic statistical characteristics have been determined, see table a. 05.0x  denotes the 5% frac-
tile, i.e. 05.0)()( 05.005.0 ==≤ xFxXP X . 
 
Number of data 194 
Expected value 39.6 
COV 0.26 
Min. Value 15.9 
Max. Value 65.3 

05.0x  21.6 
Table a. Statistical data (in MPa).  
 
Four different distribution types are fitted to the data 
• Normal 
• Lognormal 
• 2 parameter Weibull 
• 3-parameter Weibull with γ  chosen as 0.9 times the smallest strength value. 
 
The fitting is performed in two ways: 
• a fit to all data. The Maximum Likelihood Method is used. 
• a tail fit where only 30% of  the data is used, namely those data with the lowest strengths, i.e. a 

fit to the lower tail of the distribution is made. The Least Square Technique  
 
The results are shown in table b. 
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 COV 05.0x  
Non-parametric 0.26 21.6 

Normal 0.26 22.4 
Normal – tail 0.25 22.7 

LogNormal 0.28 24.1 
LogNormal - tail 0.38 22.8 

Weibull-2p 0.27 21.3 
Weibull-2p - tail 0.23 22.8 

Weibull-3p  0.26 23.3 
Weibull-3p - tail   
Table b. Statistical data (in MPa).  
 
In figure c to f the distribution fits are shown. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
LT20: κ =30% truncation  LT20: κ =100% truncation 

 
Figure c. Fit to Normal distribution (in MPa). 
 
 
 
 
 
 
 
 
 
 
 
 
 

LT20: κ =30% truncation  LT20: κ =100% truncation 
 
Figure d.  Distribution fits (in MPa). Lognormal distribution. 
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LT20: κ =30% truncation  LT20: κ =100% truncation 

 
Figure e.  Distribution fits (in MPa). 2 parameter Weibull distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 

LT20: κ =30% truncation  LT20: κ =100% truncation 
 
Figure f.  Distribution fits (in MPa). 3 parameter Weibull distribution. 
 
From the results it is seen that 
• the 2 parameter Weibull distribution gives the smallest COV 
• the LogNormal distribution gives rather large COV’s 
3.6 Example – significant wave height 
The following example is from Sørensen & Sterndorff [13]. Based on data from the Central part of 
the North Sea a distribution to the annual maximum significant wave height SH  is calibrated. It is 
assumed that data sets are available for the largest significant wave heights in each individual storm 
exceeding a certain threshold for a large number of years, i.e. POT (Peak Over Threshold) data sets. 
The threshold is determined partly on the basis of engineering judgement. The extreme significant 
wave heights *

SH  from each storm are assumed to follow a truncated Weibull distribution. The dis-
tribution function for the yearly maximum significant omnidirectional wave height SH  can then be 
written as follows assuming statistical independence between the storms:  

         ,    exp11)(
0

γ
β

λα

≥


































−−= hh

P
hF

SH
        and        exp0 





















−=

α

β
γP   (a) 

where γ  is the threshold, α  is the shape parameter, β  is the scale parameter and λ  is the number 
of observed storms per year with *

SH  larger than the threshold. 
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The parameters α  and β  are determined using available data and are thus subject to statistical un-
certainty. If the parameters are estimated by the Maximum Likelihood technique the uncertainty can 
be quantified and included in the stochastic model. 
 
Data obtained by continuous simulations of significant wave heights and wave directions for the 
central part of the North Sea covering the period 1979 to 1993 are used. All storm events are identi-
fied and the maximum significant wave height within the eight directional sectors: N, NE, E, S, 
SW, W, and NW are determined. The simulated wave heights have been calibrated against available 
measurements from the same location. The calibrated statistical parameters and other optimal pa-
rameters are shown in table a together with estimates of the characteristic 100 year wave heights, 

100,SH . In figure b and c empirical and fitted distribution functions are shown for the omnidirec-
tional, SouthWest, West and NorthWest directions.  
 
 jα  jβ  jλ  jγ  100,SH  
N 3.06 4.25 m 1.20 4.0 m 7.8 m 
NE 2.55 2.93 m 1.40 3.0 m 5.9 m 
E 3.23 4.36 m 1.60 4.0 m 7.6 m 
SE 3.00 3.90 m 1.07 4.0 m 7.0 m 
S 3.53 4.75 m 1.53 5.0 m 8.1 m 
SW 4.97 6.23 m 1.47 6.5 m 9.5 m 
W 6.03 6.90 m 2.20 6.0 m 8.8 m 
NW 4.98 6.25 m 1.80 5.25 m 9.1 m 
Omni 5.52 6.64 m 3.73 6.0 m 9.2 m 
Table a. Estimated statistical parameters and characteristic significant wave height: 100,SH . 
 
 
 
 
 
 
 
 
 
 
� 
 
Figure b. Southwest (left) and West (right) empirical and fitted distribution functions.  
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Figure c. Northwest (left) and Omnidirectional empirical and fitted distribution functions.  
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Note 3: FIRST ORDER RELIABILITY METHODS 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 

3.1 Introduction  

In this section the problem of estimating the reliability or equivalently the probability of failure is 
considered. Generally, methods to measure the reliability of a structure can be divided into four 
groups, see Madsen et al. [3.1], p.30: 
 
• Level I methods: The uncertain parameters are modelled by one characteristic value, as for ex-

ample in codes based on the partial coefficients concept. 
• Level II methods: The uncertain parameters are modelled by the mean values and the standard 

deviations, and by the correlation coefficients between the stochastic variables. The stochastic 
variables are implicitly assumed to be normally distributed. The reliability index method is an 
example of a level II method. 

• Level III methods: The uncertain quantities are modelled by their joint distribution functions. 
The probability of failure is estimated as a measure of the reliability. 

• Level IV methods: In these methods the consequences (cost) of failure are also taken into ac-
count and the risk (consequence multiplied by the probability of failure) is used as a measure of 
the reliability. In this way different designs can be compared on an economic basis taking into 
account uncertainty, costs and benefits. 

 
If the reliability methods are used in design they have to be calibrated so that consistent reliability 
levels are obtained. This is further discussed in a later note. 
 
Level I methods can e.g. be calibrated using level II methods, level II methods can be calibrated 
using level III methods, etc. 
 
In this note level II and III reliability methods are considered. Several techniques can be used to 
estimate the reliability for level II and III methods, e.g. 
 
• Simulation techniques: Samples of the stochastic variables are generated and the relative num-

ber of samples corresponding to failure is used to estimate the probability of failure. The simula-
tion techniques are different in the way the samples are generated. Simulation techniques are de-
scribed in note 5. 

• FORM techniques: In First Order Reliability Methods the limit state function  (failure function, 
see below) is linearized and the reliability is estimated using level II or III methods. FORM 
techniques for level II methods are described in this note. FORM techniques for level III meth-
ods are described in note 4. 

• SORM techniques: In Second Order Reliability Methods a quadratic approximation to the fail-
ure function is determined and the probability of failure for the quadratic failure surface is esti-
mated. SORM techniques are discussed in note 5. 

In section 3.2 basic variables and failure functions are defined. Next, a linear failure function is 
considered in section 3.3 and the reliability index β  is defined. In section 3.4 non-linear failure 
functions are considered. The so-called invariance problem is discussed, and the Hasofer & Lind 
reliability index β  is defined. A numerical algorithm for determination of the reliability index is 
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shown. Finally it is shown how a sensitivity analysis of the reliability index with respect to a deter-
ministic parameter can be performed. 
 

3.2 Basic Variables and Limit State Functions  

It is assumed in this section and in section 4 and 5 (notes 4 and 5) that only one failure mode is con-
sidered and that a reliability measure related to this failure mode is to be estimated. Further, it is 
assumed that it is possible to give a mathematical formulation of this failure mode. An important 
step in a reliability analysis is to decide which quantities should be modelled by stochastic variables 
and which should be modelled by deterministic parameters. The stochastic variables are denoted 

),,( 1 nXX K=X . The n stochastic variables could model physical uncertainty, model uncertainty or 
statistical uncertainty. The physical stochastic variables can be load variables (e.g. traffic load), 
resistance variables (e.g. yield strength) or geometrical variables (e.g. length or cross-sectional area 
of a beam). The variables in X  are also denoted basic variables. Realizations of the basic variables 
are denoted ),( 1 nxx K=x , i.e. x  is a point in the n-dimensional basic variable space. 
 
The joint density function for the stochastic variables X  is denoted )(xXf . The elements in the 
vector of expected values and the covariance vector are: 
 

[ ] niXE ii ,,1, K==µ   (3.1) 
 

njiXXC jiij ,,1,,],Cov[ K==   (3.2) 

 

The standard deviation of iX  is denoted iσ . The variance of iX  is iii C=2σ . The coefficient of 
correlation between iX  and jX  is defined by: 
 

nji
C

ji

ij
ij ,,1,, K==

σσ
ρ   (3.3) 

 
It is easy to see that 11 ≤≤− ijρ . 
 
Application of FORM, SORM and simulation methods requires as noted above that it is possible for 
given realizations x  of the basic variables to state whether the structure (or component/failure 
mode) is in a safe state or in a failure state. The basic variable space is thus divided into two sets, 
the safe set Sω  and the failure set Fω . The two sets are separated by the failure surface (limit state 
surface). It is assumed that the failure surface can be described by the equation: 
 

0),,()( 1 == nxxgg Kx   

where )(xg  is denoted the failure function. 

 
Usually the failure function is defined such that positive values of g correspond to safe states and 
negative values correspond to failure states, see figure 3.1. 
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Figure 3.1. Failure function )(xg .  
 
It is important to note that the failure surface does not define a unique failure function, i.e. the fail-
ure surface can be described by a number of equivalent failure functions. However, whenever pos-
sible, differentiable failure functions should be used. In structural reliability the failure function 
usually results from a mechanical analysis of the structure. 
 
If, in the failure function x  is replaced by the stochastic variables X , the so-called safety margin M 
is obtained: 
 

)(XgM =   (3.5) 

 
M is a stochastic variable. The probability of failure fP  of the component is: 
 

∫=≤=≤=
f

dfgPMPPf ω xxX X )()0)(()0(   (3.6) 

 
 
Example 3.1   
In the fundamental case only two basic variables are used, namely the load variable P and the 
strength variable S. A failure function can then be formulated as: 
 

pspsg −=),(   (3.7) 

 
The failure surface 0),( =psg  is shown in figure 3.2. The safety margin corresponding to (3.7) is: 

PSM −=   (3.8) 
 
Instead of the failure function (3.7) the following equivalent failure function can be used: 
 

33),( pspsg −=   (3.9) 
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Figure 3.2.  Failure function in fundamental case.  
 
 

3.3 Reliability Analysis for Linear Safety Margins  

A safety margin, which is linear in basic variables, can be written: 
 

nn XaXaaM +++= L110  (3.10) 

 
where naaa ,,, 10 K  are constants. The expected value Mµ  and the standard deviation Mσ  are: 
 

Xa µµµµ T
xnxM aaaa

n
+=+++= 010 1

L  (3.11) 

CaaT
M =σ  (3.12) 

 
If the basic variables are independent (3.12) simplifies to: 
 

2222
1 1 nXnXM aa σσσ ++= L  (3.13) 

 
As a measure of the reliability of a component with the linear safety margin (3.10) the reliability 
index β  can be used: 
 

M

M

σ
µβ =  (3.14) 

 
This definition of the reliability index was used by Cornell [3.2]. 
 
If the basic variables are normally distributed and the safety margin is linear then M becomes nor-
mally distributed. The probability of failure is, see figure 3.3: 
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( ) )(0)0( β
σ
µ

σµ −Φ=







−≤=≤+=≤=

M

M
MMf UPUPMPP  (3.15) 

 
where Φ  is the standard normal distribution function and U is a standard normally distributed vari-
able with expected value zero and unit standard deviation )1,0( == UU σµ . 
 
 
 
 
 
 
 
 
Figure 3.3. Illustration of reliability index and probability of failure. ϕ  is the standard normal den-
sity function.  
 
 
Example 3.2   
Consider the fundamental case with the linear failure function (3.7). If the stochastic variables P 
and S are independent then the reliability index becomes: 
 

22
PS

PS

M

M

σσ

µµ
σ
µβ

+

−
==   

 
Assume that P and S are normally distributed with expected values 5.3,2 == SP µµ  and standard 
deviations 25.0,3.0 == SP σσ . 
 
The reliability index becomes: 
 

84.3
3.025.0

25.3
22
=

+

−
=β   

 
 
Example 3.3 - Geometrical Interpretation of Reliability Index  

Consider a simple problem with two basic independent variables 1X  and 2X  and a linear failure 
function: 
 

22110)( xaxaag ++=x  (3.16) 

 
If normalized stochastic variables 1U  and 2U  with zero expected value and unit standard deviation 
are introduced by: 
 

2,1=
−

= i
X

U
i

i

X

Xi
i σ

µ
 (3.17) 
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then the failure function can be written: 
 

2211210

22110
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uauaaaa
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++++=
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or equivalently if the reliability index β  is introduced: 

2211)( uug ααβ −−=u   

 

where: 
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Figure 3.4. Linear failure function in the x-space and in the normalized u-space.  
 

In figure 3.4 the failure function in the x-space and in the u-space is shown. It is seen that β  is the 
shortest distance from origo to the failure surface in the normalized space and that the coefficients 

1α  and 2α  are elements in a unit vector, α , normal to the failure surface. 
 
 

3.4 Reliability Analysis with Non-Linear Failure Functions  

In general the failure function is non-linear and the safety margin )(XgM =  is thus not normally 
distributed. 
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A first approximation to obtain an estimate of the reliability index in this case could be to linearize 
the safety margin with the point corresponding to the expected values as expansion point: 
 

( )
iXi

n

i i

X
X
ggM µ−∑

∂
∂

+≅
=

=
XµX

Xµ
1

)(  (3.18) 

 
The reliability index can then be estimated from (3.11) - (3.14). However, as noted above, the fail-
ure surface 0)( =xg  can be defined by many different but equivalent failure functions. 
 
This implies that the reliability index based on the linearized safety margin becomes dependent on 
the mathematical formulation of the safety margin. This problem is also known as the invariance 
problem.  
 
In 1974 Hasofer & Lind [3.3] proposed a definition of the reliability index which is invariant with 
respect to the mathematical formulation of the safety margin. 
 
In this section it is assumed that the stochastic variables niX i ,,1, K=  are independent. Further, it 
is implicitly assumed that the variables are normally distributed. The first step in calculation of the 
Hasofer & Lind reliability index HLβ  is to define a transformation from X  to stochastic variables 
U  that are normalized. The normalized variables niUi ,,1, K=  with expected values 0 and stan-
dard deviation 1 are defined by: 
 

ni
X

U
i

i

X

X
i ,,2,1 K=

−
=

σ
µ

 (3.19) 

 
By this transformation the failure surface in the new u-space is given by, see figure 3.5: 
 

0)(),,( 111
==++ uunXXXX guug

nn
σµσµ K  (3.20) 

 
Figure 3.5. Failure functions in the x-space and the u-space.  

 
It should be noted that the u-space is rotationally symmetric with respect to the standard deviations. 
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The Hasofer & Lind reliability index β  is defined as the smallest distance from the origin O in the 
u-space to the failure surface 0)( =uug . This is illustrated in figure 3.6. The point A on the failure 
surface closest to the origin is denoted the β -point or the design point. The Hasofer & Lind reli-
ability index defined in the u-space is invariant to different equivalent formulations of the failure 
function because the definition of the reliability index is related to the failure surface and not di-
rectly to the failure function. The reliability index is thus defined by the optimization problem: 
 

∑=
==

n

i
ig

u
u 1

2

0)(
min

u
β  (3.21) 

The solution point for u  is denoted ∗u , see figure 3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. Geometrical illustration of the reliability index β . 
 
If the failure surface is linear it is easy to see that the Hasofer & Lind reliability index is the same as 
the reliability index defined by (3.14). The Hasofer & Lind reliability index can thus be considered 
a generalization of the Cornell reliability index. 
 
The numerical calculation of the reliability index β  defined by (3.21) can be performed in a num-
ber of ways. (3.21) is an optimization problem with a quadratic objective function and one non-
linear constraint. A number of algorithms exist for solution of this type of problem, e.g. the NLPQL 
algorithm by Schittkowski [3.4]. Here a simple iterative algorithm will be described. For simplicity 
the index u will be omitted on the failure function )(ug  in the following. 
 
At the β  point ∗u  it is seen that the following relation must be fulfilled: 
 

)( ∗∗ ∇= uu gλ  (3.22) 

 
where λ  is a proportionality factor. In order to formulate an iteration scheme it is assumed that a 
point 0u  close to ∗u  is known, i.e.: 
 

uuu ∆+=∗ 0  (3.23) 
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A first order approximation of )(ug  in 0u  then gives: 

 

uuuuuuuu ∆∇+=−∇+≅ ∗∗ TT ggggg )()()()()()( 00000  (3.24) 

 

Application of (3.22) and (3.23) gives: 
 

))(()()()()()()( 0000000 uuuuuuuuu −∇∇+≅−∇+≅ ∗∗ gggggg TT λ  (3.25) 

 

from which λ  can be determined using that 0)( =∗ug : 

 

)()(
)()(

00

000

uu
uuu

gg
gg

T

T

∇∇
−∇

=λ  (3.26) 

 

The following iteration scheme can then be formulated 

1. Guess )( 0u  
Set 0=i  

2. Calculate )( ig u  

3. Calculate )( ig u∇  

4. Calculate an improved guess of the β  point using (3.22) and (3.23) 

)()(
)()()(1

iTi

iiTi
ii

gg
ggg
uu

uuuuu
∇∇
−∇

∇=+  (3.27) 

5. Calculate the corresponding reliability index 
111 )( +++ = iTii uuβ  (3.28) 

6. If convergence in β  (e.g. if 31 10−+ ≤− ii ββ ), then stop, else 1+= ii  and go to 2. 

If a unit normal vector α  to the failure surface at the β  point ∗u  is defined by: 

 

)(
)(

∗

∗

∇
∇

−=
u
uα

g
g  (3.29) 

 

then the β -point *u can be written, see (3.22): 

 

αu β=∗  (3.30) 
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It is noted that α  is directed towards the failure set. The safety margin corresponding to the tangent 
hyperplane obtained by linearizing the failure function at the β  point can then be written: 

UαTM −= β  (3.31) 

 

Further, using that ααT  = 1 it is seen from (3.30) that the reliability index β  can be written: 

 
∗= uαTβ  (3.32) 

 

For fixed α  it is seen that: 
 

i
idu

d αβ
=

∗=uu

 (3.33) 

 
i.e. the components in the α  vector can be considered measures of the relative importance of the 
uncertainty in the corresponding stochastic variable on the reliability index. However, it should be 
noted that for dependent (correlated) basic variables the components in the α -vector cannot be 
linked to a specific basic variable, see the next section. 
 
An important sensitivity measure related to iα  is the socalled omission sensitivity factor iς  sug-
gested by Madsen [3.5]. This factor gives the relative importance on the reliability index by assum-
ing that stochastic variable no. i , i.e. it is considered a deterministic quantity. If variable no. i  is 
applied to the value 0

iu , then the safety margin in the normalized space is written: 
 

∑
≠
=

−−=′
n

ij
j

jjiii UuM
1

0 ααβ  (3.34) 

with the reliability index: 
 

2

0

1 i

ii
i

u

α

αβ
β

−

−
=′  (3.35) 

 

The omission sensitivity factor iς  is defined by: 

2

0

1

/1

i

iii
i

u

α

βα
β
β

ς
−

−
=

′
=  (3.36) 

 

If especially 00 =iu  is chosen, then: 
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21

1

i
i

α
ς

−
=  (3.37) 

 
It is seen that if 14.0<iα , then 01.01<−iς , i.e. the error in the reliability index is less than 1% if 

a variable with 14.0<α  is fixed. The omission sensitivity factor can be generalized to non-normal 
and dependent stochastic variables, see Madsen [3.5]. 
 
In this section it is assumed that the stochastic variables are normally distributed. The normalized 
variables U  defined by the linear transformation (3.19) are thus also normally distributed. If the 
failure function in the u-space is not too non-linear, then the probability of failure fP  can be esti-
mated from: 
 

)()0()0( ββ −Φ=≤−≅≤= UαT
f PMPP  (3.38) 

 
where Φ  is the standard normal distribution function. The accuracy of (3.38) is further discussed in 
section 5. 
 
 
Example 3.4 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. Linear elastic beam. 
 
Consider the structure in figure 3.7. The maximum deflection is: 
 

ei
plu

3

max 48
1

=  

 
where e is the modulus of elasticity and i the moment of inertia. p, l, e and i  are assumed to be out-
comes of stochastic variables P, L , E and I with expected values µ  and standard deviations σ . 
 
 ][⋅µ  ][⋅σ  
P 2 kN 0.6 kN 
L 6 m ~ 0 m 
E 2 710⋅ kN/m 2  3 610⋅ kN/m 2  
I 2 510−⋅ m 4  2 610−⋅ m 4  
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The failure criterion is assumed to be: 
 

100
1max ≥

l
u  

 

The failure function can then be formulated as follows with 6=l  m: 
 

peipleiielpg 36004810048),,,( 2 −=−=  

 

The three stochastic variables EXPX == 21 ,  and IX =  are normalized by: 

 

26.0
6.0
2

11 +=→
−

= UPPU  

7
27

7

2 10)23.0(
103.0
102

+=→
⋅
⋅−

= UEEU  

5
35

5

3 10)22.0(
102.0
102 −

−

+=→
⋅
⋅−

= UIIU  

 

The failure function in u-space becomes: 
 

)26.0(3600100)22.0()23.0(48)( 132 +−++= uuugu u  

 
The derivatives with respect to 21,uu  and 3u  are: 
 

2160
1

1 −=
∂
∂

=
g
ga u  

)22.0(1440 3
2

2 +=
∂
∂

= u
g
ga u  

)23.0(960 2
3

3 +=
∂
∂

= u
g
ga u  

 
Using (3.26) – (3.28) the following iteration scheme can be used: 
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Iteration 1 2 3 4 5 
u1 1.00 1.29 1.90 1.91 1.90
u2 1.00 -1.89 -2.20 -2.23 -2.25
u3 1.00 -1.32 -1.21 -1.13 -1.12
β  1.73 2.64 3.15 3.15 3.15
a1 -2160 -2160 -2160 -2160 
a2 3168 2500 2532 2555 
a3 2208 1376 1286 1278 
∑ 2

ia  19.58·106 12.81·106 12.73·106 12.83·106 

∑ iiua  3216 -9328 -11230 -11267 
)(uug  14928 1955 3.5 8.1 

λ  -0.598·10-3 -0.881·10-3 -0.882·10-3 -0.879·10-3 
 

The reliability index is thus 15.3=β  and the corresponding α -vector is: 

 ).36.0,71.0,60.0(*1 −−== uα β  

The β  point in basic variable space is: 

 

(
)57

57

1078.1,1033.1,14.3(

)10)212.12.0(,10)225.23.0(,290.16.0),,(
−

−∗∗∗

⋅⋅=

⋅+⋅−⋅+⋅−+⋅=iep
 

 

The omission sensitivity factor 3ς  corresponding to a fixed variable 03 =u  is, see (3.37): 

 

07.1
)36.0(1

1
23 =

−−
=ς  

 

i.e. the error in β  is approximately 7% by assuming 3U  deterministic. 

*     *     * 

Another very important sensitivity measure is the reliability elasticity coefficient defined by: 
 

β
β p

dp
dep =  (3.39) 

 
where  p is a parameter in a distribution function (e.g. the expected value or the standard deviation) 
or p is a constant in the failure function. From (3.39) it is seen that if the parameter p is changed by 
1%, then the reliability index is changed by pe %. dpdβ  is determined as follows: 
 
The failure function is written: 
 

0),( =pg u  (3.40) 
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If the parameter p is given a small increment then β  and the β -point change, but (3.40) still has to 
be satisfied, i.e.: 
 

0
1

=
∂
∂

+
∂
∂

∂
∂

∑
= p

g
p
u

u
g i

n

i i
 (3.41) 

 

dpdβ  is determined from: 

 

∑
∂
∂

=

∑=

=

=

n

i

i
i

n

i
i

p
uu

u
dp
d

dp
d

1

1

2

1
β

β

 (3.42) 

 
Using (3.29) - (3.30) and (3.41), dpdβ  becomes: 
 

p
g

g

p
u

u
g

gdp
d n

i

i

i

∂
∂

∇
=

∑
∂
∂

∂
∂

∇
−

=
=

1

1
1

β
β

β

 (3.43) 

 

i.e. dpdβ  can be estimated on the basis of a partial differentiation of the failure function with re-
spect to the parameter p. g∇  is already determined in connection with calculation of β . 

What is the reliability elasticity coefficient le  for the length l in example 3.4?  Using (3.43), dldβ  
is: 
 

05.1

)200(1

1

2

−=

⋅−
∑

=

∂
∂

∇
=

lp
a

l
g

gdl
d

i

β

 

 

and thus: 
 

00.205.1 −=−=
β
lel  

 

i.e. if the length is increased by 1%, then the reliability index decreases approximately by 2%. 
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Note 4: FIRST ORDER RELIABILITY ANALYSIS WITH CORRELATED 
AND NON-NORMAL STOCHASTIC VARIABLES 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 

4.1 Introduction  
 
In note 3 it was described how a first order reliability analysis can be performed for uncorrelated 
and normally distributed stochastic variables. The reliability method which is also named the "First 
Order Reliability Method" (FORM) results in a reliability index β . In this note it is described how 
a reliability index β  can be determined when the stochastic variables are correlated and non-
normally distributed. 
 

4.2 Reliability Index for Correlated, Normally Distributed Variables 
 
Let the stochastic variables niX i ,,1, K=  be normally distributed with expected values 

,,,
1 nXX µµ K  standard deviations 

nXX σσ ,,
1
K  and with correlation coefficients .,,1,, njiij K=ρ  

Further, let a failure function )(xg  be given. In order to determine a reliability index for this failure 
mode a transformation from correlated to uncorrelated stochastic variables is added to the procedure 
described in section 3.4. This transformation can be performed in several ways, e.g. by determining 
eigenvalues and eigenvectors, see Thoft-Christensen & Baker [4.1]. Here Choleski triangulation is 
used. The procedure described in the following requires that the correlation coefficient matrix ρ  is 
positive definite. 
 
The first step is to determine normalized variables niYi ,,1, K=  with expected value 0 and standard 
deviation 1: 
 

ni
X

Y
i

i

X

Xi
i ,,1, K=

−
=

σ
µ

 (4.1) 

 
It is easy to see that Y  will have a covariance matrix (and correlation coefficient matrix) equal to 
ρ . 
 
The next step is to define a transformation from Y  to uncorrelated and normalized variables U  
with expected values 0 and standard deviations 1. The transformation is written: 
 

TUY =  (4.2) 
 
where T  is a lower triangular matrix (i.e. 0=ijT  for ij > ). It is seen that the covariance matrix 

YC  for Y  can be written: 
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ρTTTUUTTTUUYYCY ===== TTTTTT EEE ][][][  (4.3) 

 

The elements in T  are then determined from ρTT =T  as: 

 

2
32

2
3133

22

312123
321331

2
21221221

11

1

1

1

TTT
T

TT
TT

TTT

T

−−=
−

==

−==

=

ρ
ρ

ρ  (4.4) 

etc. 
 
 
Example 4.1 
Let the three normalized stochastic variables ),,( 321 YYY=Y  have the correlation coefficient matrix: 
 
















=

14.02.0
4.015.0
2.05.01

ρ  

 
The transformation matrix T  is then calculated using (4.4): 
 
















=

92.034.02.0
087.05.0
001

T  

 

The stochastic variables Y  can thus be written: 
 

3213

212

11

92.034.02.0
87.05.0

UUUY
UUY

UY

++=
+=

=
 

 

where ),,( 321 UUU  are uncorrelated and normalized variables. 

 

*     *     * 

 

The transformation form X  to U  can now be written: 
 

DTUµX X +=  (4.5) 
 
where D  is a diagonal matrix with standard deviations in the diagonal. Using (4.5) the failure func-
tion can be written )()( DTuµx X += gg  and a reliability index β  can be determined as shown in 
section 3.4. 
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Example 4.2 
A failure mode is modelled by a failure function with three normally distributed variables 

321 ,, XXX : 
 

2
321)( xxxg −=x  

 
where 0.25

1
=Xµ , 25.0

1
=Xσ , 0.4

2
=Xµ , 2.0

2
=Xσ , 0.2

3
=Xµ and .1.0

3
=Xσ  The variables are 

correlated as the variables in example 4.1. The standardized normalized and uncorrelated u-
variables are obtained from example 4.1 and (4.5) as: 
 

)92.034.02.0(
)87.05.0(

3213

212

11

33

22

11

UUUX
UUX

UX

XX

XX

XX

+++=
++=

+=

σµ
σµ
σµ

 

 

The failure function in the u-space can then be written: 
 

( )( )2
321211 )92.034.02.0(1.00.2)87.05.0(2.00.425.00.25)( uuuuuug +++++−+=u  

 

The failure function can be used to find β  as explained in section 3.4 by the iteration scheme used 
in example 3.4. 

 

The solution is 86.3=β )1067.5( 5−⋅=fP , { }812.2,426.2,051.1=∗u  and { }73.0,63.0,27.0=α . 

 

*     *     * 

4.3 Reliability Index for Independent, Non-Normally Distributed Variables 
 
Generally the stochastic variables are not normally distributed. In order to determine a measure of 
the reliability of a component (failure mode) with non-normally distributed variables it is natural, as 
for normally distributed variables, to establish a transformation to standardized (uncorrelated and 
normalized) normally distributed variables and to determine a Hasofer & Lind reliability index β . 
A simple transformation from iX  to iU  can be defined by the identity: 

)()( iXi XFU
i

=Φ  (4.6) 

 
where 

iXF  is the distribution function for iX . Given a realisation u  of U a  realization x  of X  can 
be determined by: 
 

( )

( ))(

)(

1

1
1

1 1

nXn

X

uFx

uFx

n
Φ=

Φ=

−

−

M  (4.7) 

 



Note 4: First order reliability analysis with correlated and non-normal stochastic variables 

68 

and the failure surface can be written: 
 

( ) ( )( ) 0)(,,)(),,( 1
1

1
1 1

=ΦΦ= −−
nXXn uFuFgxxg

n
KK  (4.8) 

 
In the algorithm for determination of β  (see section 3.4) the gradient of the failure function with 
respect to iu  is needed. From (4.8): 
 

( )( )
)(

)(1

iX

iX

ii

i

ii xf
xF

x
g

u
x

x
g

u
g

i

i

−Φ

∂
∂

=
∂
∂

∂
∂

=
∂
∂ ϕ

 (4.9) 

 
where iiXiX dxxdFxf

ii
)()( =  = is the density function for .iX  

 
 
Example 4.3 Lognormal Variable 
For a lognormally distributed variable X with expected value µ  and standard deviation σ  the dis-
tribution function is: 
 








 −
Φ=

L

L
X

xxF
σ

µln)(  (4.10) 

 
where: 
 









+= 1ln 2

2

µ
σσ L        and       2

2
1ln LL σµµ −=  

 
The transformation (4.7) becomes: 
 

)exp( LLux µσ +=  (4.11) 
 

*     *     * 
Example 4.4 Gumbel Variable 
For a Gumbel distributed variable X with expected value µ  and standard deviation σ  the distribu-
tion function is: 
 

[ ][ ])(expexp)( bxaxFX −−−=  (4.12) 
 

where: 
 

σ
π
6

=a      and     
a

b 5772.0
−= µ   

 

The transformation (4.7) becomes: 
 

[ ])(lnln1 u
a

bx Φ−−=  (4.13) 
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*     *     * 

 
The inverse transformation to (4.7) is: 
 

( )

( ))(

)(

1

1
1

1 1

nXn

X

xFu

xFu

n

−

−

Φ=

Φ=
M  (4.14) 

 
When the transformation defined above is applied in connection with the β -algorithm in section 
3.4 it is also known under the name of principle of normal tail approximation. In the normal tail 
approximation a normal distribution with parameters iµ′  and iσ ′  is determined for each non-normal 
stochastic variable such that the distribution function values and the density function values are the 
same at a point :ix′  
 

)( iX
i

ii xFx
i

′=







′
′−′

Φ
σ
µ  (4.15) 

)(1
iX

i

ii

i
xfx

i
′=








′
′−′

′ σ
µ

ϕ
σ

 (4.16) 

 
where 

iXf  is the density function for .iX  
 
The solution to (4.15) - (4.16) is: 
 

( )( )
)(

)(1

iX

iX
i xf

xF

i

i

′

′Φ
=′

−ϕ
σ  (4.17) 

( ))(1
iXiii xFx

i
′Φ′−′=′ −σµ  (4.18) 

 
Normalized variables are defined by: 
 

i

ii
i

xu
σ
µ
′
′−

=  (4.19) 

 
and the failure function is written: 
 

),,(),,( 1111 nnnn uuugxxg σσµ ′+′′+′= KK  (4.20) 
 
The gradient of the failure function with respect to iu  is: 
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( )( )
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)()(

)(

)(

1

iX

iX

i

i
i

i

i

ii

xf
xF

x
g

x
g

u
x

x
g

u
g

i

i

′
′Φ

∂
∂

=

′
∂
∂

=

∂
∂

∂
∂

=
∂
∂

−ϕ

σ

x

x

x

 (4.21) 

 
At the β -point, ∗u , and the corresponding point ∗x  in the x-space the gradient estimated by (4.9) is 
equal to the gradient estimated by (4.21) if nixx ii ,,2,1, K==′ ∗ . This indicates that if the current 
guess of the β -point in the algorithm iu  is used as ´u  in (4.17) - (4.21) and if the points K,, 21 uu  
converge to ∗u  then the transformation defined by (4.7) is equivalent to the transformation defined 
by the normal tail approximation, see Ditlevsen [4.2] for further details. 
 
 
Example 4.5 
Consider the safety margin: 
 

2
21 2)( XXgM −== X  

where: 
:1X  is log-normally distributed with expected value 101 =µ  and standard deviation 31 =σ  (or 

LN(10.0, 3.0)). From (4.10) ),( LL σµ  = (2.26, 0.294) is obtained. 
:2X  is Gumbel distributed with expected value 11 =µ  and standard deviation 1.01 =σ (or 

EX1(1.0, 0.1)). From (4.12) (a, b) = (12.8, 0.955) is obtained. 
The transformation from the physical x-space to the standard normal u-space is found from (4.11) 
and (4.13): 
 

[ ]
2

21 )(lnln12)exp()( 





 Φ−−−+= u

a
bug LL µσu  

 
By application of the β -iteration scheme explained in section 3.4 β  can be found as β  = 4.040 
and ∗u  = {– 2.587, 3.103}, α  = {– 0.640, 0.768}. 
 

*     *     * 
 

4.4 Reliability Index for Dependent, Non-Normally Distributed Variables 
 
In this section two techniques are described, which can be used to determine a reliability index 
when the stochastic variables are dependent and non-normally distributed, namely methods based 
on the Rosenblatt transformation, see [4.3] and the Nataf transformation, see [4.4]. It should be 
noted that if all the stochastic variables are normally and log-normally distributed then the tech-
nique described in section 4.2 can be used because the log-normal variables can easily be trans-
formed to normal variables, see example 4.6. 
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Example 4.6 
Consider 3 stochastic variables =iX i , 1, 2, 3 with expected values ][⋅µ , standard deviations ][⋅σ  
and coefficients of variation ][⋅V as shown in this table: 
 

 
 
 
 
 
 
 

and correlation matrix ρ  
 

















=
1

1
sym.1

2313

12

XXXX

XX

ρρ
ρρ

 
 

1X  is assumed to be normally distributed, but 2X  and 3X  are log-normally distributed. Two new 
variables are defined by == iXY ii ,ln  2, 3. They become normally distributed. The expected 
values and standard deviations of the normally distributed variables 21, YX  and 3Y  become, see 
example 4.3, 
 
 ][⋅µ  ][⋅σ  

1X  
1Xµ  

1Xσ  

2Y  2
2
1

222
ln YXY σµµ −=  )1ln( 2

22
+= XY Vσ  

3Y  2
2
1

333
ln YXY σµµ −=  )1ln( 2

33
+= XY Vσ  

 
The new correlation matrix 'ρ  of correlation coefficients between 21, YX  and 3Y  can be obtained 
from the definition of the covariance between two stochastic variables: 
 



























+

=

1
)1ln(

1

sym.1

'

32

3232

3

313

2

212

YY

XXXX

Y

XXX

Y

XXX

VVV

V

σσ
ρ

σ
ρ
σ

ρ
ρ  

 
 
 
Example 4.7 
Consider a normally distributed variable 1X  and two log-normally distributed variables 2X  and 

3X  with the statistic parameters: 
 
 

 ][⋅µ  ][⋅σ  ][⋅V  

1X  
1Xµ  

1Xσ  
11 XX µσ  

2X  
2Xµ  

2Xσ  
22 XX µσ  

3X  
3Xµ  

3Xσ  
33 XX µσ  
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 ][⋅µ  ][⋅σ  ][⋅V  

1X  10.0 2.0 0.20 

2X  5.0 2.5 0.50 

3X  7.0 0.35 0.05 

 
 
















=

10.30.5
12.0

(sym.)1
ρ  

 
From example 4.6 the following parameters are obtained for 1X , 22 ln XY =  and 33 ln XY =  
 
 ][⋅µ  ][⋅σ  

1X  10.0 2.0 

2Y  1.50 0.472 

3Y  1.94 0.05 

 
and: 
 
















=

10.370.50
121.0

(sym.)1
'ρ  

 
It is seen that the absolute value of the correlation coefficients become higher (which will always be 
the case). Furthermore, it is seen from the example and the expressions in the 'ρ -matrix that the 
difference between ijρ′  and ijρ  vanishes for small coefficients of variation V, which is also the rea-
son why the difference between ijρ′  and ijρ  is sometimes neglected. 
 
From this example it is concluded that a failure function of normally and log-normally distributed 
stochastic variables can be transformed to a failure function of normally distributed variables. The 
failure function in the u-space can then be obtained from 'ρ  and the transformation explained in 
section 5.2. Next the reliability index β  can be obtained as usual. 
 

*     *     * 
 
For dependent stochastic variables niX i ,,1, K=  the Rosenblatt transformation, see [4.3], can be 
used to define a transformation to the u-space of uncorrelated and normalized normally distributed 
variables niUi ,,1, K= . The transformation is defined as, see also (4.7): 
 

( )
( )

( )1111
1
|

112
1
|2

1
1

1

,,|)(

|)(

)(

11

12

1

−−
−

−

−

==Φ=

=Φ=

Φ=

− nnnXXXn

XX

X

xXxXuFx

xXuFx

uFx

nn
K

M

L

 (4.22) 
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where ( )1111| ,,|
11 −− ==
− iiiXXX xXxXxF

ii
KL  is the distribution function of iX  given 

1111 ,, −− == ii xXxX K : 

 

( )
),,(

),,,(
,,|

11

11

1111|
11

11

11
−

∞−
−

−−
−

−

−

∫
===

iXX

x

iXXX

iiiXXX xxf

dttxxf
xXxXxF

i

i

ii

ii K

L
K

L

L

L  (4.23) 

 

),,( 11 iXX xxf
i

KL  is the joint density function of .,,1 iXX K   The transformation starts for given 

nuu ,,1 K  by determination of  .1x  Next 2x  is calculated using the value of 1x  determined in the 
first step. nxx ,,3 K  are then calculated in the same stepwise manner. 
 
The inverse transformation from nxx ,,1 K  to nuu ,,1 K  is defined by: 
 

( )
( )( )

( )( )1111|
1

112|
1

2

1
1

1

,,|

|

)(

11

12

1

−−
−

−

−

==Φ=

=Φ=

Φ=

− nnnXXXn

XX

X

xXxXxFu

xXxFu

xFu

nn
K

M

L

 (4.24) 

 
The Rosenblatt transformation is very useful when the stochastic model for a failure mode is given 
in terms of conditional distributions. For example, this is often the case when statistic uncertainty is 
included. Examples 4.8 and 4.9 show how the Rosenblatt transformation can be used. 
 
 
Example 4.8. Evaluation of Maximum Wave Height 
The wave surface elevation )(tη  can for short periods (8 hours) be assumed to be modelled by a 
stationary Gaussian stochastic process with zero mean. The wave surface is then fully described, if 
the spectral density )(ωηηS  of the elevation process is known. ω  is the frequency. A commonly 
used spectral density is the JONSWAP spectrum, see [4.5]: 
 

a

Zp

b

Zp

Sb

Tk
k

Tk
Hkk

S γ
ω
π

πω
π

ω γ
ηη 
























−=

4

45

324 21exp
)(

4
)(  (a) 

 
where 3=γ , 4085.1=bk , 17.1)315.0exp(327.0 +−= γpk  and )ln(285.01 γγ −=k . SH  is the sig-
nificant wave height and ZT  is the zero crossing period. The superscript a is: 
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The distribution function of the maximum wave elevation mH  within a given time period [0, T] can 
be estimated from, see Davenport [4.6]: 
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where : 
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and 2,0, =imi  is the ith spectral moment: 
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SH  and ZT  are usually modelled as stochastic variables. Here SH  is modelled by a Rayleigh dis-
tribution with the parameter s: 
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and ZT  by a conditional distribution given SH : 
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where: 
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The probability that mH  is larger than hm is: 
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The distribution function for mH  given SH  and ZT  is given by (b). The distribution function for 

ZT  given SH  is given by (g), and the distribution function for SH  is given by (f). (j) can then be 
estimated by FORM using the failure function: 
 

),( ZSmm THHhg −=  (k) 

 

g is given by the three stochastic variables mH , SH  and ZT . The transformation to standardized 
variables 21,UU  and 3U  can be established by the Rosenblatt transformation: 
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The reliability index β  for (k) is determined by the algorithm in section 3.4 and: 
 

)()( β−Φ≅> mm hHP  (m) 

 
For the parameters 0.4=s m, 8=T  hours, β  as a function of mh  is shown in figure 4.1. 
 
 

 
Figure 4.1. β  as a function of mh  
 
 
Example 4.9 
Consider a failure function with two stochastic variables 1X  and 2X : (Madsen et al. [4.7], p. 77) 
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1X  and 2X  are dependent with a joint two-dimensional exponential distribution function: 
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and the corresponding probability density function: 
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Realisations 1u  and 2u  of standard normal variables 1U  and 2U  are obtained from the Rosenblatt 
transformation as: 
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Then it is possible to obtain )|( 11212
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For the transformation from the x-space to the u-space the formulas become: 
 

( ) [ ]

( )112
1
|2

11
1

1

|)(

)(1ln)(

12

1

xXuFx

uuFx

XX

X

=Φ=

Φ−−=Φ=

−

−

 (h) 

 
from which x2 can be found as the solution to: 
 

)()](exp[)1(1 22122 uxxxx Φ=+−+−  (i) 

 
The obtained failure function in the u-space is seen in figure 4.2. 
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Figure 4.2. Failure surface in standard normal space. 
 
The β -optimization problem includes a local and a global minimum. The β -point (which is also 
the global minimum) is { }1.0,78.21 =

∗u  with 78.21 =β  and 31068.2 −⋅≈fP . Further, the local mi-

nimum point { }25.3,30.12 −=∗u  is identified with 50.32 =β . 
 

*     *     * 
 
An alternative way to define the transformation from the u-space to the x-space is to use the Nataf 
transformation, see [4.4] and [4.8]. This transformation is in general only an approximate transfor-
mation. The basic idea is to establish the marginal transformations defined in section 4.3 (as if the 
stochastic variables were independent) and to use a correlation coefficient matrix eρ  in an y-space, 
which is obtained from the correlation coefficient matrix ρ  in the x-space by multiplying each cor-
relation coefficient by a factor F, which depends on distribution types and the statistical parameters. 
To describe the Nataf transformation it is thus sufficient to consider two stochastic variables iX  
and jX . 
 
Marginal transformations of iX  and jX  to normally distributed variables iY  and jY  with expected 
value 0 and standard deviation 1 is, see (4.7): 
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 (4.25) 

The stochastic variables iY  and jY  have an (equivalent) correlation coefficient e
ijρ , which in the 

Nataf transformation is determined such that dependence between iX  and jX  is approximated as 
well as possible. 
 

e
ijρ  is determined as follows. Normalized variables iZ  and jZ  are introduced by: 
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The correlation coefficient ijρ  between iX  and jX  is ][ jiij ZZE=ρ . From (4.25) and (4.26) it is 
seen that: 
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Further, from (4.2) it is seen that uncorrelated variables iU  and jU  can be introduced by: 
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ijρ  can then be related to the (unknown) equivalent correlation coefficient e
ijρ  by: 
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where )(2ϕ  is the two-dimensional normal density function. From (4.29) e
ijρ  can be determined by 

iteration. 
 

Based on e
ijρ  the following approximate joint density function ),( ji

e
XX xxf

ji
 is obtained: 
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where ( ).)(1

iXi xFy
i

−Φ=  
 
(4.29) has been solved for e

ijρ  by der Kiureghian & Liu [4.8] for a number of distribution functions 
and approximations for the factor: 
 

ij

e
ijF

ρ

ρ
=  (4.31) 

 
has been obtained. With ijρρ =  and 

ii XXiV µσ=  examples of approximations for F are shown in  
table 4.1. 
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For n = 2 it should be checked that 112 ≤eρ . For n > 2 the corresponding requirement is that eρ  is 

positive definite. In der Kiureghian & Liu [4.8] or Ditlevsen & Madsen [4.9], approximations for F 
are also shown for Gamma, Frechet, Uniform, Rayleigh and Gumbel distributions. 
 
 

iX  jX  F 

normal log-normal )1ln( 2
jj VV +  

log-normal log-normal ))1ln()1ln(()1ln( 22
jiji VVVV +++ ρρ  

exponential log-normal jjj VVV ρρρ 437.0303.0019.0025.0003.0098.1 22 −++++  

Weibull log-normal 
jiiji
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VVVVV
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009.0174.0005.0350.0
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exponential normal 107.1  
Weibull normal 2328.0195.0031.1 ii VV +−  
exponential exponential 2153.0367.0229.1 ρρ +−  
Weibull exponential ρρρ iii VVV 467.0459.0271.0010.0145.0147.1 22 −+−++  

Weibull Weibull 
)(007.0

337.02.0337.02.0001.0004.0063.1 222
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Table 4.1. The factor F for some commonly used distributions 
 
 
Example 4.10 
Consider the same problem as in example 4.9 but use the Nataf transformation instead of the Ro-
senblatt transformation. The correlation coefficient between 1X  and 2X  is: 
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The factor F for two exponentially distributed variables is: 
 

402.1153.0367.0229.1 2 =+−= ρρF  
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The equivalent coefficient thus is: 
 

566.0−== ρρ Fe  

 
The transformation form ),( 21 uu  to ),( 21 xx  is given by (4.25) and (4.2) (or (4.28) for two stochas-
tic variables) 
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Using the failure function in example 4.9 the two β -points are determined as: 
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*     *     * 

4.5 Sensitivity Measures 
 
As described in note 3 three important sensitivity measures can be used to characterize the sensitiv-
ity of the reliability index with respect to parameters and the stochastic variables, namely: 
 
 
α -vector 
The elements in the α -vector characterize the importance of the stochastic variables. From the lin-
earized safety margin UαTM −= β  it is seen that the variance of M is: 
 

122
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2
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2 =+++= nM ααασ L  (4.32) 

 

For independent stochastic variables 2
iα  thus gives the percentage of the total uncertainty associ-

ated with iU  (and iX ). If for example 32 , XX  and 4X  are dependent, then 2
4

2
3

2
2 ααα ++  gives the 

percentage of the total uncertainty which can be associated with 32 , XX  and 4X  altogether. 
 
 
Reliability elasticity coefficient pe  

pe  is defined by (3.39). For a parameter p in the failure function pepg ,0),( =u  is obtained from 
(3.43): 
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For parameters p in the distribution function for X , which is related to standardized variables U  by 
pep),,T(XU =  is obtained as: 

 

ββ
p

p
pe T

p ∂
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∗ ),)(1 T(xu  (4.34) 

 
where ∗u  and ∗x  are the β -points in the u-space and the x-space. 
 
 
Omission sensitivity factors ξ  
As described in section 3.4 the factor: 
 

21
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i
i

α
ξ

−
=  (4.35) 

 
gives a measure of the change in the reliability index if stochastic variable no. i is fixed. This sto-
chastic variable is assumed to be independent of the other stochastic variables. As described in 
Madsen [4.10], the omission sensitivity factor can be generalized to dependent stochastic variables. 
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Note 5: SORM AND SIMULATION TECHNIQUES  
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 
First Order Reliability Methods can be expected to give reasonable results when the failure func-
tions are not too non-linear. FORM techniques are described in notes 3 and 4. If the failure func-
tions in the standardized u-space are rather non-linear then Second Order Reliability Methods 
(SORM) techniques, where a second order approximation of the failure function is established, can 
be used. These techniques are described in section 5.1.  
 
Other techniques, which can be used for such types of problems, are simulation techniques. Simula-
tion methods, which are described in sections 5.2 - 5.7, can also be powerful when the failure func-
tions in the u-space have more than one β -point, i.e. there are several local, probable failure re-
gions. 
 
In simulation methods realisations (outcomes) x̂ of the stochastic variables X  are generated for 
each sample. When simulation methods are used to estimate fP the failure function is calculated for 
each realisation x̂  and if the realisation is in the failure region, then a contribution to the probability 
of failure is obtained. In section 5.2 different techniques to generate realisations of stochastic vari-
ables are described. In the literature a large number of simulation methods are described. Sections 
5.3 to 5.7 contain a description of some of the most important methods, namely: 
 
• Crude Monte Carlo simulation 
• Importance sampling 
• Importance sampling based on the β -point 
• Monte Carlo sampling by excluding part of safe area 
• Directional simulation 
• Latin hypercube simulation 
• Adaptive simulation 
 
Finally in section 5.8 it is described how sensitivity measures can be obtained by simulation. 
 

5.1 Second Order Reliability Method (SORM) 
 
Compared with a FORM estimate of the reliability of a component (or failure mode) an improved 
estimate can be obtained by using a second order approximation of the failure surface at the β  -
point ∗u in the u-space: 
 

0))()()()( 2
1 =−−+−∇≅ ∗∗∗∗ uD(uuuuuuu TTgg  (5.1) 

 
where D  the Hessian matrix of second order partial derivatives of the failure surface at the β -
point: 
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In the following it is described how a second order reliability index can be determined. 
 
The β -point and the gradient vector can be written, see (3.29) and (3.30): 
 

αu β=∗        αuu )()( ∗∗ ∇−=∇ gg  (5.3)  
 
An orthogonal transformation from u  to y  is defined by: 
    

Ruy =  (5.4) 
 
where the nth row in R  is equal to α : 
 

niR ini ,,1, K==α  (5.5) 

 
The remaining rows in R can be found by standard Gram-Schmidt orthogonalization. 
 
(5.1) can then be written: 
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where .),,,,(~
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T
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The solution of (5.6) with respect to ny  using up to second order terms in 121 ,,, −nyyy K  gives the 
hyperparabolic surface: 
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where T

nyy ),,(' 11 −= Ky and the elements in A  are: 
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A second orthogonal transformation from 'y  to v  is defined by: 
 

vHy =´  (5.9) 

 
where the columns in H  are the eigenvectors of A . (5.7) can then be written: 
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where 1,,2,1, −= nii Kλ  are the eigenvectors in A . The eigenvectors and eigenvalues can e.g. be 
found by Jacobi-iteration or subspace-iteration for large problems, where only the largest eigenval-
ues are important, see e.g. [5.11]. 
 
The probability of failure fP  estimated using the second-order approximation of the failure surface 
is: 
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The approximation is illustrated in figure 5.1, which also shows the first-order approximation (see 
(3.38)) to the exact probability of failure ).0)(( ≤= UgPPf  
 

)( β−Φ=FO
fP  (5.12) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1. Illustration of first and second order approximations of the failure surface. 
 
It should be noted that due to the rotational symmetry of the normal density function the points in 
the area close to the β -point (which is the point closest to origo) has the largest probability density. 
Therefore, the largest contributions to the probability of failure come from this area. Further, it is 
noted that the u-dimensional normal density function for uncorrelated variables )2exp()( 2rn −∝ϕ  
decreases fast with the distance r from origo. If the failure surface is rather non-linear then a second 
order approximation of the failure surface can be expected to give a much better estimate of the 
probability of failure than the first-order approximation. Finally it should be noted that for ∞→β  
the first (and second) order estimates of the probability converge to the exact result: .f

FO
f PP →   

 
Based on (5.11) Breitung [5.1] has derived an approxim ation to SO

fP : 
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Improvements to (5.13) have been suggested by for example Tvedt [5.2] and [5.3]. 
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A second order reliability index SOβ  can be defined by: 
 

)(1 SO
f

SO P−Φ−=β  (5.14) 
 
The approximation in (5.13) - (5.14) assumes that the matrix AI β2+  is positive definite. 
 

5.2 Simulation of Stochastic Variables 
 
A necessary tool in simulation techniques for estimation of the probability of failure is to simulate 
outcomes of stochastic variables with an arbitrary distribution. For this a method to generate uni-
formly distributed numbers is first described. Next it is shown how the inverse method can be used 
to generate outcomes of stochastic variables with a general distribution. Finally methods to generate 
outcomes of normally distributed variables are described. 
 

Simulation of uniformly distributed numbers 
The numbers generated by algorithms implemented on computers are usually not real random but 
only pseudo-random numbers. The reason is that they are generated by a rule (equation) such that 
the sequence of numbers is repeated after a number of outcomes. Further the same sequence of 
numbers is obtained if the generator is started again with the same starting conditions. 
 
In this subsection a stochastic variable V  which is uniformly distributed between 0 and 1 is consid-
ered. The distribution function is: 
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=
else0

1v0if
)(

v
vFV  (5.15) 

 
The most widely used techniques to simulate (generate) pseudo-random numbers of V is the multi-
plicative congruential generators, see Hammersley & Handscomb [5.4] and the XOR generator, see 
Ditlevsen & Madsen [5.5]. In multiplicative congruential generators the pseudo-random numbers 
are determined sequentially by: 
 

( )mcavv ii modulo1 += −  (5.16) 

where m is a large integer (usually a large power of 2) and a, c and 1−iv  are integers between 0 and 
1−m . The starting seed number is 0v . The numbers mvi  are then used as pseudo-random num-

bers uniformly distributed between 0 and 1. The sequence of numbers repeat after at most m steps. 
The full period m is obtained if: 
 

1. c and m have no common divisor 
2. a ≡  (modulo p) for every prime factor p of m 
3. a ≡  (modulo 4) if m is a multiple of 4. 
 
On many computers the following generator is used: 
 

( )32
1 2modulo189069 += −ii vv  (5.17) 
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The numbers generated by (5.16) are not completely independent. It can be shown that the correla-
tion between successive numbers lies in the interval, see Hammersley & Handscomb [5.4]: 
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Numerical investigations have shown that if the multiplicative congruential generator is used to 
generate outcomes of stochastic vectors then the generated vectors are not uniformly distributed in 
the n -dimensional space. An algorithm which generates numbers much more random in the n-
dimensional space is the so-called XOR random number generator, see Ditlevsen & Madsen [5.5]. 
 

Simulation of random numbers by the inverse method 
For a general stochastic variable X the distribution function is )(xFX . In the inverse method two 
steps are needed to generate an outcome x̂  of X :   
 
1. generate an outcome v̂  of V (e.g. using a multiplicative congruence generator)  
2. determine the outcome of x̂  by : 
 

( ) )ˆ()ˆ(ˆ 11 vFvFFx XVX
−− ==  (5.19) 

 
The method is illustrated in figure 5.2. It is seen that the distribution function for X̂  with outcomes 
generated by this procedure is: 
 

( ) ( ) )()()()ˆ()( 1
ˆ xFxFVPxVFPxXPxF XXXX =≤=≤=≤= −  (5.20) 

 
 
 
 
 
 

Figure 5.2. Illustration of the inverse method. 
 
 
Example 5.1 
Let X be exponential distributed with distribution function: 
 

)exp(1)( xxFX λ−−=  
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Outcomes of X can be generated by: 
 

)ˆ1ln(1ˆ vx −−=
λ

 

 
where the number v̂  are generated by (5.16). 
 

*     *     * 

The Box-Muller method to simulation of normal distributed numbers 
Outcomes 1û  and 2û  two independent normally distributed stochastic variables 1U  and 2U  both 
with expected value 0=µ  and standard deviation 1=σ  can be generated using: 
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where 1V  and 2V  are independent stochastic variables uniformly distributed between 0 and 1. 
 
Outcomes are determined by the following two steps : 
 
1) generate outcomes 1̂v  and 2v̂  of 1V  and 2V   
2) calculate the outcomes 1û  and 2û  using (5.21) 

It is easy to show that 1U  and 2U  defined by (5.21) are independent and normally distributed. 

Simulation of normally distributed numbers using the central limit theorem 
From the central limit theorem it follows that: 
 

UaVVV n →−+++ L21    for   ∞→n  (5.22) 

 
where K,, 21 VV  are independent equidistributed random variables uniformly distributed between 0 

and 1 (expected value 2
1=Vµ  and variance ).)(

1

0 12
12

2
12 ∫ =−= dxxVσ  

 
U is asymptotically normally distributed with expected value anU −= 2

1µ  and variance 12
12 nU =σ . 

 
A reasonable choice is 2

na =  and n = 12. Then U becomes approximately normal with expected 
value 0 and standard deviation 1. 
 

Simulation of correlated normally distributed numbers 
A vector ),,( 1 nXX K=X , which is normally distributed with expected value Xµ  and covariance 
matrix XC  can be written, see (4.5): 
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DTUµX X +=  (5.23) 

 
where the elements in U  are uncorrelated with zero mean and unit standard deviation. Using the 
techniques described above to generate outcomes of normally distributed variables and (5.23) reali-
sations of X  can be generated. 
 

*       *       * 
 
In the following sections different simulation methods to estimate the probability of failure are de-
scribed: 
 

( ) 0)( ≤= UgPPf  (5.24) 

 
where the failure function g is assumed to be modelled in the u-space. 
 

5.3 Crude Monte Carlo simulation 
 
In crude Monte Carlo simulation fP  is estimated by: 
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where N is the number of simulations and jû  is sample no. j of a standard normally distributed 
stochastic vector U  The indicator function )]([ ugI  is defined by: 
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The standard error of fP̂  is estimated by: 
 

N
PP

s ff )ˆ1(ˆ −
=  (5.26) 

 

Confidence intervals for the estimate of the probability of failure can be determined using that fP̂  
becomes normally distributed for .∞→N  
 

5.4 Importance sampling 
 
The idea in importance sampling is to concentrate the sampling in the area of the total sample space 
which has the largest contribution to the probability of failure. In this way the standard error of the 
estimate of fP  can be reduced significantly. fP  is written: 
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where (y)Sf  is the sampling density function and )()() 1 nyyf ϕϕ L=(yU is the standard normal 
density function for U . 
 
In theory, if the sampling density Sf  is chosen to be proportional to Uf  in the failure region then 
the standard error on fP  would be zero. Unfortunately, this choice is not possible because fP  is not 
known beforehand. In the following it is shown how Sf  can be chosen reasonably. 
 
Using importance sampling fP  is estimated by: 
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where (y)Sf  is the sampling density function from which the sample vectors jŷ  are generated. 
 
The standard error of the estimate fP̂  is: 
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Example 5.2 Estimation of the probability of failure 
Let 1X  be the load on an element and 2X  the strength of an element. Failure occurs if .21 XX ≥  If 
a failure function g is defined by: 
 

1221 ),( xxxxg −=  

 
then the probability of failure is: 
 

( ) ∫ ∫=≤=≤−= ∞ ∞
0 0 2112 ))]([0)()0( dxdxfgIgPXXPPf (xxX X  

 
where (x)Xf  is the joint density function of the stochastic variables modelling the load and the 
strength. 
 
In importance sampling the simulations are concentrated in the area which contributes most to the 
probability of failuire. fP  is estimated by (5.28): 
 

∑=
=

N

j j

j
jf f

f
gI

N
P

1 )ˆ(
)ˆ

)]ˆ([1
y
y(

y
Y

X  

 



Note 5: SORM and simulation techniques 
 

91 

where (y)Yf  is the sampling density function from which the sample vector jŷ  is generated. Fig-
ure 5.3 shows the general difference between crude Monte Carlo simulation and importance sam-
pling. 
 

Figure 5.3. Crude Monte Carlo simulation and importance sampling. 
 
 
Example 5.3 
Consider the example from Madsen et al. [5.6], where the cross-section of a reinforced concrete 
beam is analysed. n = 7 stochastic variables are used. The failure function is written 
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 VARIABLE DIST. µ  V 

1x  bending moment N 0.01 MNm 0.3 

2x  eff. depth of reinforcement N 0.3 m 0.05 

3x  yield stress of reinforcement N 360 MPa 0.1 

4x  area of reinforcement N 226·10 6− m 2  0.05 

5x  factor N 0.5 0.1 

6x  width of beam N 0.12 m 0.05 

7x  compressive strength of concrete N 40 MPa 0.15 

Table 5.1. Statistical data. µ  is the expected value and µσ /=v  is the coefficient of variation. N 
indicates normal (Gauss) distribution. 
 
The statistical data are shown in table 5.1. The stochastic variables are assumed to be independent. 
 
A transformation to normalized stochastic variables (with expected value 0 and standard deviation 
1) 7,,2,1, K=iUi  is established by: 
 

7,,1, K=+= iUX iiii µσ  

 
The failure function is now written: 
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Crude Monte Carlo simulation and importance sampling are used. 
 
In importance sampling fP  is estimated by (5.28) with ∗+= uuy ˆˆ  and ,ˆ)ˆ )uy(y( US

∗−= ff  i.e. the 

samples are concentrated around the point ∗u . û  is a sample generated from the standard normal 
vector U .  In this example ∗u  is chosen as (see the next section) 
 

)0,0,0,1,2,1,5.2( −−−=∗u  

 
The standard error is estimated by (5.29). 
 
N CRUDE M C IMP. SAMP. 
1000 0 

(0) 
0.000344 
(0.000016) 

10000 0.000300 
(0.000173) 

0.000333 
(0.000005) 

100000 0.000350 
(0.000059) 

0.000337 
(0.000002) 

Table 5.2. Result of Monte Carlo simulation. 
The numerical results are shown in table 5.2 with standard errors in ( ). It is seen that the standard 
error in importance sampling decreases much faster than in crude Monte Carlo simulation. 
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5.5 Importance sampling based on the β -point 
 
If the β -point has been determined before simulation techniques are used importance sampling can 
be very effective with the β -point as the point around which the samplings are concentrated, see 
figure 5.4. Such a technique is described in this section. The sampling density function Sf  in (5.28) 
is the normal density of uncorrelated variables with expected values nii ,,2,1, K=∗u  and common 
standard deviations, σ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4. Importance sampling around the β -point. 
 

fP  is estimated by: 
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where )(uUf  is the standardized normal density function and jû  is a sample generated from stan-
dardized normal variables.  

 
Figure 5.5. Different standard deviations of the sampling density, .321 σσσ <<   
The standard error is estimated by (5.29). The efficiency of the importance sampling can be ex-
pected to be dependent on the choice of standard deviation of the sampling density, see figure 5.5. 
 
It should be noted that if a failure mode has multiple β -points importance sampling based on only 
one β -point is not efficient. In this case more general methods have to be used, see section 5.7. 
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5.6 Monte Carlo sampling by excluding part of safe area 
 
In this technique the space is separated into two disjoint regions 1D  and 2D , see figure 5.6. It is 
assumed that 1D  is selected such that no failure occurs in this region. Here 1D  is chosen as the re-
gion inside a sphere with radius β . The probability of being in 1D  is: 
 

),( 222
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 ≤∑=

=
 (5.31) 

 

where ),( 22 βχ n  is the 2χ  distribution function with n degrees of freedom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6. Monte Carlo sampling by excluding part of safe area. 
 
 
The probability of failure is estimated from: 
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where jû  is sample no. j from 2D  (simulated from a standard normally distributed stochastic vec-
tor ),,( 1 nUU K=U , but only those samples outside 1D  are used). 
The standard error is: 
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ps ff )ˆ1(ˆ
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−
−=  (5.33) 

 
The standard error is thus reduced by a factor )1( 1p−  when compared with crude Monte Carlo 
simulation. Usually this is a significant reduction. However, it should be taken into account that it is 
more difficult to generate the samples to be used. If the samples are generated by taking the samples 
from simulation of normal distributed variables with β>û  then on average 

11
1
p−  samples should 
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be generated before one sample is outside the β -sphere. So only in cases where the failure function 
require much more computational work than the generation of the samples û  it can be expected that 
this technique is efficient. 
 
 
Example 5.4 
Consider an example where the failure surface in standardized coordinates can be written: 
 

07138202( 13232 =+−++= uuuuug u)  

 
The reliability index is determined as β  = 3.305 and the design point is  

∗u = (0.540, –3.548, –0.188). The estimate of the failure probability using (3.38) is: 
  

000228.0)305.3( =−Φ=fP  

 
The failure probability is estimated by simulation using the following techniques: 
 
• Crude Monte Carlo (C.M.C.) simulation. 
• Importance sampling (Imp.samp.) using the design point. The standard deviation σ  of the sam-

pling density is chosen to ½, 1 and 2. 
• Crude Monte Carlo simulation by excluding the β-sphere (C.M.C. – β ). 
 
The simulation results are shown in table 5.3 with standard errors in ( ). It is seen that importance 
sampling and Crude Monte Carlo simulation by excluding the β -sphere are much better than crude 
Monte Carlo simulation. Further it is seen that in this example 1=σ  is the best choice for impor-
tance sampling. 
 
N 100 1000 10 000 
C.M.C 0

(0)
0

(0)
0.000200

(0.000141)
Imp.samp. 

2
1=σ  

0.000306
(0.000193)

0.000196
(0.000021)

0.000195
(0.000010)

Imp.samp. 
1=σ  

0.000146
(0.000034)

0.000215
(0.000014)

0.000232
(0.000005)

Imp.samp. 
2=σ  

0.000153
(0.000070)

0.000163
(0.000024)

0.000234
(0.000011)

C.M.C.- β  0.000129
(0.000073)

0.000219
(0.000003)

Table 5.3. Result of Monte Carlo simulation. 
 

5.7 Other Simulation Techniques 
 
In this section some other simulation methods are described, namely directional sampling, Latin 
hypercube simulation and adaptive simulation techniques. 
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Directional simulation 
Instead of formulating the reliability problem in rectangular coordinates it is possible to formulate it 
in polar coordinates. Directional simulation methods are based on such a formulation and were first 
suggested by Deak [5.7] in connection with evaluation of the multinormal distribution function. 
 
The n-dimensional standardized normal vector U  is written: 
 

AU R=  (5.34) 
 
where the radial distance 0>R  is a stochastic variable and A  is a unit vector of independent sto-
chastic variables, indicating the direction in the u-space. 
 
In uniform directional simulation A  is uniformly distributed on the n-dimensional unit (hyper-) 
sphere. It then follows that the radial distance R has a distribution such that 2R is chi-square distrib-
uted with n degrees of freedom. If R is independent of A  then the probability of failure can be writ-
ten: 
 

( ) ( )∫ =≤=≤= sphereunit )0)(0)( a(aaAAU A dfRgPgPPf  (5.35) 

 
where (a)Af  is the constant density of A  on the unit sphere. 
 
It is now assumed that the origin 0u =  is in the safe area ( )0)( >0g  and that the failure region de-
fined by { }0)(: ≤uu g  is star shaped with respect to the 0u = , i.e. every half-line starting form 

0u =  only crosses the failure surface once. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7. Uniform directional simulation. 
 
The probability ( )aAA =≤ 0)(RgP  in (5.35) can then be calculated by: 
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( ) ( )∫ −====≤ ∞
)(

22 (1)(0)( a a)aAaAA r nR rdssfRgP χ  (5.36) 

 

where )(2
nχ  is the 2

nχ  distribution with n degrees of freedom. )(ar  is the distance from the origin 
0u =  to the failure surface, i.e. ( ) 0( =a)arg  in the a  direction. 

 
An unbiased estimator of fP  is: 
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where N is the number of simulations and jâ  is a simulated sample of A . Several generalisations 
are possible, e.g. to include importance sampling, see Melchers [5.8] and Ditlevsen & Madsen [5.5]. 
 
 
Latin hypercube simulation method 
The description of the Latin hypercube simulation method is based on McKay et al. [5.9].  
 
The basic idea in this method is to assure that the entire range of each variable is sampled, in order 
to obtain an efficient estimate of the probability of failure. The range of each variable is divided 
into m intervals. The probability of an outcome in each interval should be equal. 
 
In the simulation procedure the samples are generated in such a way that an interval of each vari-
able will be matched just one time with an interval from each of the rest of the variables. In figure 
5.8 the Latin hypercube method is illustrated by an example with n = 2 stochastic variables and m = 
7 intervals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8. Latin hypercube simulation method.  
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The simulation procedure for the Latin hypercube method is : 
 
1. For each variable generate one point from each of the intervals. mjuij ,,2,1,ˆ K=  thus repre-

sents the m points for variable i. 
 
2. The first point 1ˆ ju  in the Latin hypercube sample is generated by sampling one value 1ˆiju  from 

each axis iu . The second point is generated in the same way, except that the values 1ˆiju  are de-
leted from the sample. In this way m points are generated. 

 
3. The probability of failure from this sample is estimated from: 
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4. This procedure is repeated N times and the final estimate of fP  is: 
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where kjû  is realisation no. j in the kth Latin hypercube sample. 
 
There is no simple form for the standard error of this simulation method but in general the standard 
error is of the magnitude mN

1  times the standard error of crude Monte Carlo simulation.  
 

Adaptive simulation methods 
The description of the adaptive simulation methods is based on Melchers [5.8] and Karamchandani 
[5.10]. In order to develop a good importance sampling density it is necessary to know the region of 
the failure domain in which the probability density is relatively large. Usually our knowledge of this 
nature is poor. However, if the sample points are spread out (i.e. not clustered together), the value of 
the probability density of the points will vary. The regions that have higher probability densities can 
then be identified and the sampling density can be modified to generate sample points in these re-
gions. However, it is still desirable to generate sample points that are spread out in order to explore 
the extent of the failure region in which the probability density is relatively large. 
 
The initial sampling density is suggested to be standard normal with standard deviation 1 but with 
the expected value point moved to a point )0(û  in or close to the failure region. This can be difficult, 
but based on the initial knowledge of which variables represents load variables and which variables 
represents strength variables such a point can be selected (for strength variables )0(û  should be 
negative and for load variables )0(û  should be positive). The initial density is used until a sample 
point is generated in the failure domain. 
 
When multiple points in the failure region are generated the sampling density is modified such that 
the regions around the points with the largest probability density are emphasized. The simplest ap-
proach is to locate the expected value point at the point in the failure region with the largest prob-
ability density. 
 
Another approach is to use a so-called multi-modal sampling density which generates samples 
around a number of points in the failure region, but emphasizes the region around a point in propor-
tion to the probability density at the point. This allows us to emphasize more than one point and is 
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closer to the ideal sampling density (which is proportional to the probability density at each point in 
the failure domain). Let { })()2()1( ˆ,,ˆ,ˆ kuuu K  be the set of points in the failure region, which are used 
to construct the multi-modal sampling density. The corresponding multi-modal density is: 
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where )()( uU

jf  is the density function of a normally distributed stochastic vector with uncorrelated 
variables, standard deviations 1 and expected value point equal to )(ˆ ju . The weights are determined 
by: 
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The multimodal sampling density is illustrated in figure 5.9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.9. Multimodal sampling density (from [5.10]). 
 
An estimate of the probability of failure can now be obtained on the basis of N simulations where 
the importance sampling technique is used : 
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5.8 Sensitivity Measures  
 
In many cases it is very interesting to know how sensitive an estimated probability of failure is with 
respect to a change of a parameter p. p is here assumed to be the expected value or the standard de-
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viation of a stochastic variable. The transformation from the basic stochastic variables X  to stan-
dardized normal variables is written: 
 

), pT(UX =  (5.41) 

 
and the probability of failure is defined by: 
 

( ) [ ] [ ] (u)duT(u(x)dxxX UX fpgIfgIgPPf ∫=∫=≤= )),()(0)(  (5.42) 
 
In crude Monte Carlo simulation fP  is estimated by: 
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By direct differentiation the gradient p
Pf
∂
∂  of fP  with respect to p can be estimated by introducing a 

small change p∆  in p and calculating: 
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The two terms in (5.44) are estimated separately. This estimate of fP∆  can be expected to be both 
inaccurate because it is the difference between two "uncertain" estimates and time consuming be-
cause two sets of samples has to be generated. 
 
Alternatively, p

Pf
∂
∂  can be written: 
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where )()( xX pf  is the density function of X  with the parameter p. Corresponding to (5.43) and 
(5.45) the following estimates can be obtained by simulation: 
 

[ ]∑=
=

N

j

j
f gI

N
P

1
)ˆ(1ˆ x  (5.46) 

[ ]
)ˆ(

1)ˆ(
)ˆ(1ˆ

)(

)(ˆ

1
j

p

j
pN

j

j
f fp

f
gI

N
P

x
x

x
X

X

∂

∂
∑=
=

 (5.47) 

 
The samples jx̂  are generated from the density function )()( xX pf  using for example the inverse 
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simulation method. The advantage of this formulation is that the same samples can be used to esti-

mate both fP̂  and p
Pf
∂
∂ ˆ

. This increases the accuracy and reduces the computational effort compared 

with direct differentiation. Similar formulations can be derived for other simulation types. 
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Note 6: RELIABILITY EVALUATION OF SERIES SYSTEMS  
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 

6.1 Introduction 
 
So far, in the previous notes, only reliabilities of individual failure modes or limit states have been 
considered. In this note it is described how the individual limit states interact on each other and how 
the overall systems reliability can be estimated when the individual failure modes are combined in a 
series system of failure elements. 
 
In section 6.2 a series system is defined, followed by section 6.3 where it is explained how the 
FORM-approximation of the reliability of a series system is obtained and how the correlation be-
tween failure elements are interpreted. In section 6.4 it is described how the multi-dimensional nor-
mal distribution function needed for the series system reliability estimation can be evaluated using 
bounds and approximations. Finally, section 6.5 introduces sensitivity analysis of series systems. 
 

6.2 Modelling of Series Systems 
 
A failure element or component, see figure 6.1, can be interpreted as a model of a specific failure 
mode at a specific location in the structure. 
 
 
 
Figure 6.1. Failure element. 
 
The combination of failure elements in a series system can be understood from the statically deter-
minate (non-redundant) truss-structure in figure 6.2 with n structural elements (trusses). Each of the 
n structural elements is assigned 2 failure elements. One with a failure function modelling material 
yielding failure and one with a failure function modelling buckling failure. 
 
 
 
 
 
 
 
Figure 6.2. Statically determinate truss structure. 
 
For such a statically determinate structure it is clear that the whole structural system fails as soon as 
any structural element fails, i.e. the structure has no load-carrying  capacity after failure of one of 
the structural elements. This is called a weakest link system and is modelled as a series system. The 
series system which then becomes the systems reliability model consists of 2n failure elements 
shown in figure 6.3. 
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Figure 6.3. Weakest link system modelled as a series system of failure elements. 
 
It is in this connection important to notice the difference between structural components and failure 
elements and the difference between a structural system and a systems reliability model. 
 
If failure of one failure element is defined as systems failure the reliability of the series system can 
be interpreted as the reliability of failure.  That also includes the case of statically indeterminate 
structures where failure of more than one failure element cannot be accepted. 
 
 

6.3 FORM Approximation of the Reliability of a Series System 
 
Consider a structural system where the system reliability model is a series system of m failure ele-
ments. Each of the failure elements is modelled with a safety margin: 
 

mgM ii ,,2,1,)( KX=  (6.1) 

 
The transformation between the standard normal stochastic U -variables and the stochastic variables 
X  can be obtained as explained in note 4 and is symbolically written as T(U)X = . Furthermore, it 
is known from notes 3 and 4 that the FORM probability of failure for failure element i can be writ-
ten: 
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The series system fails if just one of the elements fails, i.e. the probability of failure of the series 
system is: 
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Thus, if all the failure functions as in (6.2) are linearized at their respective β -points the FORM 
approximation of S

fP  of a series system can be written: 
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which by use of De Morgan's laws can be written: 
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where mΦ  is the m-dimensional normal distribution function (see the following section 6.4). It has 
been used that the correlation coefficient ijρ  between two linearized safety margins 

UαT
iiiM −= β  and UαT

jjjM −= β  is: 
  

j
T
iij αα=ρ  (6.6) 

 

From (6.5) a formal or so-called generalized series systems reliability index Sβ  can be introduced 
from: 
 

)()(1 S
m

S
fP β−Φ=Φ−= ρβ,  (6.7) 

 
or: 
 

( ))(1)( 11 ρβ;m
S
f

S P Φ−Φ−=Φ−= −−β  (6.8) 
 
 
 
Example 6.1 Illustration of the FORM approximation 
Consider the two-dimensional case with 3 failure functions 3,2,1,0))( == igi T(u  shown in figure 
6.4. 
 
In figure 6.4 the exact failure domain, which is the union of the individual element failure domains 
is hatched. Furthermore, the reliability indices 3,2,1, =iiβ  and the safety margins linearized at their 
corresponding β -points 3,2,1, =∗ iiu  are shown. It is seen that (6.7) or (6.8) is an approximation 
when the failure functions are non-linear in the u-space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4. Illustration of the FORM-approximation. 
 
 

*     *     * 
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Example 6.2 The Meaning of ijρ  

Consider the two linearized safety margins UαT
iiiM −= β  and UαT

jjjM −= β  shown in figure 6.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. Illustration of ijρ . 
 
From figure 6.5 it is seen that: 
 

ijj
T
iij ρθ == ααcos  

 
where ijθ  is the angle between the α-vectors iα  and jα  or simply between the linearized safety 
margins. I.e., the correlation coefficients ijρ  can be comprehended as a measure of the angle be-
tween the linearized safety margins and hereby as a measure of the extent of the failure domain. 
 
 

*     *     * 
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Example 6.3 The Importance of ijρ  in a Series System 
Again the safety margins iM  and jM  from the previous example are considered. In figure 6.6 four 

cases are shown with 0.3,0.3 == ji ββ  and ijρ  equal – 1.0, 0.0, 5.0  and 1.0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.6. Illustration of ijρ . 

The generalized systems reliability index Sβ  of the four cases in figure 6.6 can be found from (6.8) 
as 2.782, 2.783, 2.812 and 3.000, respectively. 
 
In figure 6.7 ( ));0.3,0.3(1 2

1 ρβ Φ−Φ−= −S  is shown as a function of ρ . 
From figures 6.6 and 6.7 it is seen that 2.782 = ( ) ( ))]3(1[)]3(1[2 11 −Φ−Φ≤≤−Φ−Φ −− Sβ  = 3.000 
corresponding to the correlation 0.1−=ρ  and the fully correlated case 0.1=ρ , respectively, i.e. it 
is always unsafe to assume that the failure elements are fully correlated if this is not the case. 
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Figure 6.7. ( ));0.3,0.3(1 2

1 ρβ Φ−Φ−= −S  as a function of ρ . 
 
 

*     *     * 

6.4 Evaluation of Series Systems Reliabilities 
 
From the previous section it is obtained that if iβ  and ijρ , mji ,,2,1, L=  are known the problem is 
to evaluate the m-dimensional normal distribution function )( ρβ;mΦ  in (6.8) for the FORM ap-
proximation of Sβ . 
 

)( ρβ;mΦ  is defined as: 
 

∫ ∫ ∫=Φ ∞− ∞− ∞−
1 2

21)()( β β β ϕm
mmm dxdxdx KL ρx;ρβ;  (6.9) 

 
where mϕ  is the m-dimensional normal density function: 
 

)
2
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mm

π
ϕ  (6.10) 

 
The multi-dimensional integral in (6.9) can only in special cases be solved analytically and will for 
even small dimensions, say five, be too costly to evaluate by numerical integration. Instead, so-
called bounds methods are used for hand calculations and so-called asymptotic approximate meth-
ods are used for computational calculations. 
 

6.4.1 Reliability Bounds for Series Systems 
 
In the following, so-called simple bounds and Ditlevsen bounds will be introduced as bounds for 
the reliability of series systems. 
 
 
Simple Bounds 
Simple bounds can be introduced as: 
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where the lower bound corresponds to the exact value of S

fP  if all the elements in the series system 
are fully correlated. 
 
In the terms of reliability indices (6.11) can be written: 
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−ΦΦ− ∑  (6.12) 

 
When the failure of one failure element is not dominating in relation to the other failure elements 
the simple bounds are generally too wide and therefore often of minor interest for practical use. 
 
 
Ditlevsen Bounds 
Much better bounds are obtained from the second-order bounds called Ditlevsen bounds [6.4]. The 
derivation of the Ditlevsen bounds can be seen in [6.1], [6.4], [6.6], [6.7] or [6.8]. The bounds are: 
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and in terms of the FORM approximation in reliability indices: 
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The numbering of the failure elements influences the bounds. However, experience suggests that it 
is a good choice to arrange the failure elements according to decreasing probability of failure, i.e. 

)0()0()0( 21 ≤≥≥≤≥≤ mMPMPMP L . The Ditlevsen bounds are usually much more precise than 
the simple bounds in (6.11) - (6.12), but require the estimation of );,(2 ijji ρββ −−Φ  in (6.14). 
 
From (6.9) it follows that: 
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Therefore: 
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Hereby only a one-dimensional integral has to be solved for the evaluation of );,(2 ijji ρββΦ . It is 

also possible to estimate I )00();,(2 ≤≤=−−Φ jiijji MMPρββ  from simple bounds, which are 
derived from figure 6.8. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Figure for simple bounds of );,(2 ijji ρββ −−Φ .  

From figure 6.8 it is seen that I )00( ≤≤ ji MMP  equals the probability contents in the hatched 
angle BAE. P is greater than the probability content in the angle BAD and in the angle CAE. How-
ever, P is less than the sum of the probability contents in the angles BAD and CAE. This observa-
tion makes it possible to derive simple bounds for );,(2 ijjiijP ρββ −−Φ= . 
 
The probability contents ip  and jp  in the angles CAE and BAD, respectively, are: 
 

)()( jiip γβ −Φ−Φ=           and         )()( ijjp γβ −Φ−Φ=  (6.17) 

 
where iγ  and jγ  can be found from figure 6.8 as: 
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Therefore, for 0>ijρ , the following bounds exist: 
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jiijjiji pppp +≤−−Φ≤ );,(),max( 2 ρββ  (6.19) 

 
and similarly for 0<ijρ : 
 

),min();,(0 2 jiijji pp≤−−Φ≤ ρββ  (6.20) 

 
These bounds are easy to use and ijP  can be approximated as the average of the lower and the upper 
bounds. If the gap between the lower and the upper bounds is too wide, a more accurate method, 
such as numerical integration of (6.16) should be used. 
 
 
Example 6.4 Simple Illustration of Ditlevsen Bounds 
Consider a simple example with 3 failure elements in a series system. Each of the elements 3,2,1=i  
has a finite failure domain iD  with uniform and equal probability density as shown in figure 6.9 
 
The lower Ditlevsen bound on U U )( 321 DDDPP S

f =  is: 

I I I )()()()()()( 231331221 DDPDDPDPDDPDPDPPS
f −−+−+≥  

 
from which it is seen that the hatched domain in figure 6.9 is the difference between the lower Dit-
levsen bound and the exact S

fP . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9. Illustration of Ditlevsen bounds. 
 
The upper Ditlevsen bound on U U )( 321 DDDPPS

f =  is: 
 

I I )()()()()( 1312321 DDPDDPDPDPDPPS
f −−++≤  

 
From which it is seen that the dotted domain in figure 6.9 is the difference between the upper Dit-
levsen bound and the exact S

fP . 

*     *     * 
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Example 6.5 FORM Evaluation of Sβ  of a Series System 
Consider a series system of 4 failure elements. After the transformation of the stochastic (physical) 
variables 1X  and 2X  into the standard normal space of variables 1U  and 2U  the four failure ele-
ments are described by the following failure functions: 
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The failure functions 0)( =uig  4,,1K=i are shown in figure 6.10. 
 
The reliability indices iβ  with the corresponding 

if
P , α -vectors and β -points are shown in table 

6.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10. Four failure functions for a series system. 
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i iβ  )( iβ−Φ  1iα  2iα  ∗
1iu  ∗

2iu  
1 3.51 2.276 410−⋅  –0.283 0.959 –0.99 3.36
2 3.54 2.035 410−⋅  –0.707 0.707 –2.50 2.50
3 3.86 5.738 510−⋅  –0.875 0.483 –3.38 1.86
4 4.00 3.174 510−⋅  0.000 1.000   0.00 4.00

Table 6.1 Information concerning failure elements. 
 
From table 6.1 the correlation matrix ρ  can be obtained from (6.6): 
 



















=

000.1492.0714.0962.0
000.1961.0712.0

000.1878.0
sym.000.1

ρ  

 
Simple Bounds 
From (6.12) the simple bounds of Sβ  can be obtained as: 
 

28.3)10174.310738.510035.210276.2( 55441 =⋅+⋅+⋅+⋅Φ−≥ −−−−−Sβ  

{ } 51.300.4;86.3;54.3;51.3min =≤Sβ  

 
Ditlevsen Bounds 
For Ditlevsen bounds it is necessary to evaluate  );,(2 ijji ρββ −−Φ ,  i, j = 1,…,4, for ij < , which 

can be done approximately by (6.17) - (6.20). In the following matrix iγ  and jγ  from (6.18) are 

shown. ( iγ from (6.18) is shown in the lower triangle and jγ  is shown in the upper triangle) 
 



















−
−

−−
−−

415.2107.2297.2
170.2659.1938.1
971.0617.0956.0
253.1082.1839.0

 

From (6.17) -(6.20) it is then possible to obtain the following table with bounds of 
);,(2 ijji ρββ −−Φ . 

 
ji,  2,1 3,1 4,1 3,2 4,2 4,3 

ip  4.09 0.801 2.84 4.18 0.526 0.0476 

jp  3.86 0.599 0.246 0.535 0.220 0.0451 

{ }ji ppa ,max=  4.09 0.801 2.84 4.18 0.526 0.0476 

ji ppb +=  7.95 1.40 3.09 4.71 0.776 0.0927 

)(5.0 ba +  6.02 1.10 2.96 4.45 0.636 0.0702 

Table 6.2 List of probabilities ( 510−⋅p ). 
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Ditlevsen Lower Bound 
In the lower Ditlevsen bound the upper bounds of );,(2 ijji ρββ −−Φ  are used, i.e.: 
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Ditlevsen Upper Bound 
In the upper Ditlevsen bound the lower bounds of );,(2 ijji ρββ −−Φ are used, i.e.: 
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corresponding to: 
 

39.336.3 ≤≤ Sβ  

 
If instead the average approximations of );,(2 ijji ρββ −−Φ  in the bottom row of table 6.2 are 

used only approximations of the bounds are obtained (i.e, there is no guarantee that Sβ  is within 
the bounds): 
 

37.336.3 ≤≤ Sβ  

 
If );,(2 ijji ρββ −−Φ  is calculated exactly from (6.16) the following exact bounds are obtained: 
 

383.3381.3 ≤≤ Sβ  
 
It is seen that the Ditlevsen bounds in this case are narrow. This will often be the case. 
 
 

*     *     * 
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Example 6.6 Failure Element with Two β -Points 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11. Failure functions from example 4.9. 
 
Consider again example 4.9 where the failure function in the u-space was found as shown in figure 
6.11. 
 
Instead of estimating the probability of failure as 3

1 1068.2)78.2()(
1

−⋅=−Φ=−Φ= βfP , the prob-
ability of failure is estimated as )00( 21 U ≤≤= MMPPf  where 1M  and 2M  are safety margins 

from linearization at the β -points ∗
1u  and ∗

2u , respectively, (see figure 6.11). The safety margins 
are written UαTM 111 −= β  and UαTM 222 −= β .  
 
With 784.21 =β , 501.32 =β ( 41031.2

2

−⋅=fP ) and the α -vectors )036.0,999.0(1 =α  and 

)929.0,370.0(2 −=α , the correlation coefficient is 337.02112 −== ααTρ . The probability of failure 
is then obtained as );,(1 12212 ρββΦ−=fP , which is: 
 

);,()()( 1221221 ρββββ −−Φ−−Φ+−Φ=fP  

 
);,( 12212 ρββ −−Φ  is estimated from (6.17) -(6.20). From (6.18) it can be obtained that 2101.41 =γ  

and 715.42 =γ , which by use of (6.17) results in 9
1 1025.3 −⋅=p  and 9

2 10960.2 −⋅=p . An average 
estimate from (6.20) is then obtained as 9

12212 1048.1);,( −⋅=−−Φ ρββ . fP  then is fP = 31068.2 −⋅ + 
394 1091.21048.11032.2 −−− ⋅=⋅−⋅ , which corresponds to 758.2=Sβ . Compared to the exact result 

755.2=Sβ  obtained by numerical integration with formula (c) in example 4.9 inserted into (3.6) 
this is a satisfactory estimate. 
 

*     *     * 
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6.4.2 Numerical Methods for Evaluation of mΦ  
 
Approximation based on the average correlation coefficient 
If as a special case all the correlations between the elements are the same, i.e. ρρ =ij , ji,  =  

jim ≠,,,2,1 K  then it can be shown that, see [6.7] or [6.10]: 
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For series systems the probability of failure then is: 
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when the correlation coefficients are not all equal an approximation of the probability of failure can 
be obtained by using an average correlation coefficient ρ  as ρ  in (6.22). ρ  is determined from: 
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m
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1
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2 ρρ

r  (6.23) 

 
The approximation based on the average correlation coefficient can be considered as the first term 
in a Taylor expansion of S

fP  at the average correlation coefficient point with respect to the correla-
tion coefficients. 
 
Using (6.22) with ρρ = , an approximation of S

fP  is obtained. The approximation will in many 
cases be conservative. 
 
 
Example 6.7  
Consider the series system of example 6.5 again. The average correlation coefficient becomes: 
 

786.0)492.0714.0962.0961.0712.0878.0(
6
1

=+++++=ρ  

 
with =β  (3.51, 3.54, 3.85, 4.00) in (6.22) the average correlation coefficient approximation be-
comes 41028.4 −⋅=S

fP  corresponding to 33.3=Sβ , which from example 6.5 is seen to give a 
conservative estimate of the series system reliability. 
 
 

*     *     * 
 
Advanced Asymptotic Methods 
It has already been mentioned that the bounds methods in section 6.4.1 can be used in hand calcula-
tions. However, in professional reliability programs other more precise and more refined methods 
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are used. Two of these methods are the Hohenbichler approximation, see [6.5], and the approxima-
tion by Gollwitzer and Rackwitz [6.3]. These methods are in general very precise and make it pos-
sible to calculate mΦ  within reasonable computer time. 
 

6.5 Sensitivity Analysis of Series Systems Reliabilities 
 
From (6.8) it can be shown that the sensitivity of Sβ  with respect to a model parameter p can be 
found as: 
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However, to get an estimate of the sensitivity of a systems reliability index Sβ  it is often sufficient 
to use: 
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where dpd iβ  can be obtained as already described in note 4 and im β∂Φ∂ )( ρβ,  can be determined 
either numerically by finite differences or by the semi-analytical methods described in [6.9] where 
also details of sensitivity analysis can be found. 
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Note 7: RELIABILITY EVALUATION OF PARALLEL SYSTEMS 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 
7.1 Introduction 
 
In this note it is described how the reliability of a system can be evaluated when more than one fail-
ure element have to fail before the whole system is defined to be in a state of failure. This is per-
formed by introduction of parallel systems in section 7.2, followed by sections 7.3 and 7.4 where 
the FORM approximation of the reliability of a parallel system and reliability evaluation techniques 
are introduced, respectively.  In section 7.5 it is described how the parallel systems are combined 
into a systems reliability model of a series system of parallel systems and finally, in section 7.6, it is 
shown, how the corresponding reliability evaluations can then be performed. 
 
 
7.2 Modelling of Parallel Systems 
 
The introduction and the necessity of parallel systems for the reliability modelling of some struc-
tural systems can be illustrated by considering the statically indeterminate (redundant) truss-
structure in figure 7.1 with N structural elements (trusses). Two failure elements are assigned to 
each of the N structural elements, one with a failure function modelling material yielding failure 
and one with a failure function modelling buckling failure. 
 
 
 
 
 
 
 
 
Figure 7.1. Statically indeterminate truss structure. 
 
For such a statically indeterminate (redundant) structure it is clear that the whole structural system 
will not always fail as soon as one of structural element fails, because the structure has a load-
carrying capacity after failure of some of the structural elements. This load-carrying capacity is ob-
tained after a redistribution of the load effects in the structure after the element failure. Failure of 
the entire redundant structure will then often require failure of more than one structural element. (It 
is in this connection very important to define exactly what is understood by failure of the structural 
system). Clearly the number of systems failure modes in a redundant structure is generally high. 
Each of these system failure modes can be modelled by a parallel system consisting of generally n 
elements, where n is the number of failure elements which have to fail in the specific systems fail-
ure mode before the entire structure is defined to be in a state of failure. The parallel system with n 
elements is shown in figure 7.2. 
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Figure 7.2. Failure mode of a redundant structure modelled as a parallel system. 
 
Since a redistribution of the load effects has to take place in a redundant structural system after fail-
ure of one or more of the structural elements it becomes very important in parallel systems to de-
scribe the behaviour of the failed structural elements after failure has taken place. If the structural 
element has no strength after failure the element is said to be perfectly brittle. If the element after 
failure has a load-bearing capacity equal to the load at failure, the element is said to be perfectly 
ductile. 
 
In figure 7.3 a perfectly brittle and a perfectly ductile element are shown with an example of the 
behaviours and the symbols used for perfectly brittle and perfectly ductile elements, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.3. Perfectly brittle and perfectly ductile elements with symbols. 
 
Clearly all kinds of structural components and material behaviours cannot be described as perfectly 
brittle or perfectly ductile. All kinds of combinations in between exist, i.e. some, but not all, of the 
failure strength capacity is retained. One of these modellings are the elastic-residual model shown 
in figure 7.4. 
 
 
 
 
 
 
 
 
Figure 7.4. Elastic-residual element behaviour. 
 
Before the reliability modelling in a parallel system of failure elements can be performed the struc-
tural behaviour of the considered failure mode must be clarified. More specifically the failure of the 
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structural elements and consequences with determination of residual load-carrying capacity and 
load redistribution in each step in the structural element failure sequence must be described. Then 
the failure functions of the failure elements in the parallel system can be formulated. Failure func-
tion no. 1 models failure in parallel system element no. 1 without failure in any other elements. 
Failure function no. 2 models failure in parallel system element no. 2 with failure in the structural 
element corresponding to failure element no. 1 (i.e. after redistribution of loads). Failure function 
no. 3 then models failure of parallel system element no. 3 with failure in the structural elements 
corresponding to failure element nos. 2 and 1, etc.  etc. 
 
The obtained failure functions can then be used in the reliability evaluations of the parallel system 
without further consideration of the structural system and structural behaviour. 
 
 
Example 7.1 Structural Parallel Systems 
As a special case of parallel systems so-called structural parallel systems as fibre bundles are con-
sidered in this example. 
 
Consider a fibre bundle with n perfectly ductile fibres modelled by a parallel system. The strength 

niRi ,,2,1, K=  of the individual fibres is identically normal distributed ),(N σµ  with a common 
correlation coefficient ρ . The fibre bundle is loaded by a deterministic load enSS = , where eS  is 
the constant load on each fibre. The reliability indices of the fibre are the same for all 
fibres and equal to: 

σ
µ

β eS−
=  

 
The strength R of the ductile fibre bundle is obtained as the sum of the individual fibre strengths, 
i.e. R is normally distributed with: 

µµ nR =           and          222 )1( ρσσσ −+= nnnR  

 
The reliability index of the parallel system (fibre bundle) then is: 
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where it is used that )( βσµ −== nnSS e . 
 
It is also possible to obtain Pβ  of a ductile fibre bundle when the fibres are not correlated by a 
common correlation coefficient ρ . This can e.g. be done by use of the average correlation coeffi-
cient defined in (6.23) and used in the above expression, see [7.4]. 
 
Another case of a fibre bundle is the Daniels system [7.7] of n perfectly brittle fibres. The strengths 
of the n fibres are nrrr ,,, 21 K , where nrrr ≤≤≤ L21 . The strength of the fibre bundle then is: 

{ }nns rrrnnrr ,2,,)1(,max 121 −−= K  

 
Now, let ir , ni ,,2,1 K=  be realizations of independent random variables iR  with identical distri-
bution functions. Similarly, sr  is the realization of sR . Daniels showed that sR  is normally distrib-
uted ),(N

ss RR σµ  for ∞→n , where: 
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)](1[ 00 rFnr RRs
−=µ           and          )](1)[( 00

2
0

2 rFrFnr RRRs
−=σ  

where 0r  is the maximum point of the function )](1[ rFr R− . The result is valid under the condition 
that 0r  is unique and 0)](1[ =− rFr R  for ∞→r . 
 
For a closer description also for small values of n, see [7.8 p. 249]. 
 

*     *     * 
 
7.3 FORM Approximation of the Reliability of a Parallel System 
 
After the failure functions of the failure elements in a parallel system have been formulated it is 
possible to estimate the reliability by FORM from the following description. 
 
Consider a parallel system of n failure elements each modelled with a failure function and a safety 
margin: 

nigM ii ,,2,1),( K== X                        (7.1) 

 
The transformation between the standard normal U -variables and the stochastic variables X  can be 
obtained as explained in note 4 and is symbolically written as ).(UTX =  
 
The parallel system fails if all of the elements fail, i.e. the probability of failure of the parallel sys-
tem is defined as the intersection of the individual failure events: 
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Then a so-called joint β -point is introduced as the point in the failure domain (defined from (7.2)) 
closest to the origin, see figure 7.5. The An  out of the n failure functions which equal zero at ∗u  are 
then linearized at ∗u : 
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Figure 7.5. Illustration of the FORM-approximation of a parallel system. 
 
Thus, Jβ  is an An -vector of indices at element level ),,,( 21

J
n

JJJ
A

βββ K=β  calculated from (7.4) by 
use of the joint β -point and not the individual β -points as in calculation of an element reliability 
index β . 
 
The FORM-approximation of P

fP  of a parallel system can then be written: 
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where 
AnΦ  is the An -dimensional normal distribution function and the correlation coefficient ijρ  

between two linearized safety margins UαT
i

J
iiM −= β  and UαT

j
J
jjM −= β  is: 

j
T
iij αα=ρ                              (7.6) 

 
From (7.5) a formal generalized parallel systems reliability Pβ  can be introduced by: 

)();( PJ
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P
f A

P β−Φ=−Φ= ρβ                        (7.7) 

as: 

( ));()( 11 ρβ J
n

P
f

P
A

P −ΦΦ−=Φ−= −−β                     (7.8)
  

The joint β -point is from its definition determined as the solution of the following optimization 
problem: 

nigi

T

,,2,1,0)(s.t.
min 2

1
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u

uu
u

γ
                     (7.9) 

 
The solution of the joint β -point problem can be obtained by a general non-linear optimization 
algorithm as NLPQL [7.1] or the problem specific algorithm JOINT3 described in [7.2]. 
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Example 7.2 Illustration of the FORM-approximation 
Consider the two-dimensional case with 3 failure functions 3,2,1,0))(( == igi uT  shown in fig-
ure 7.6. 
 
In figure 7.6 the exact failure domain as the intersection of the individual element failure domains is 
hatched.  Furthermore, the 2=An  active safety margins linearized at the joint β -point ∗u  are 
shown. 
 
It is seen that (7.7) or (7.8) is an approximation when the failure functions are non-linear in the u-
space or if so-called secondary joint β -points exist (a secondary β -point is shown in figure 7.6 as 

2u ). For high reliability levels the approximation in (7.8) including the An  active constraints of 
(7.9) is often sufficiently accurate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6. Illustration of the FORM-approximation. 

 
*     *     * 

 
The formulation in (7.9) requires that at least one of the failure functions is greater than zero in the 
origin. If this is not the case the problem can be converted to a series system problem by writing the 
safe domain as a union. For further explanation and inclusion of the secondary joint β -points for a 
more precise estimation, see [7.3]. 
 
In some references a cruder and older formulation of the FORM parallel system reliability is util-
ized. The failure domain is estimated as the intersection of the linearized failure functions at the 
individual β -points, i.e. only the individual β -point optimization problems are solved and not the 
joint β -point problem in (7.9). 
 
 
Example 7.3 The Importance of ijρ  in a Parallel System 

For illustration of the importance of ijρ  consider the margins UαT
i

J
iiM −= β  and UαT

j
J
jjM −= β . 

In figure 7.7 four cases are shown with 0.3=iβ , 0.3=jβ  and ijρ  equal 
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–1.0, 0.0, 5.0  and 1.0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7. Illustration of ijρ . 

The generalized parallel systems reliability index Pβ  of the four cases in figure 7.7 can be found 
from (7.8) as ∞ , 4.63, 4.48 and 3.0, respectively. 
 
In figure 7.8 ( ));0.3,0.3(2

1 ρβ −−ΦΦ−= −P  is shown as a function of ρ . 
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Figure 7.8. ( ));0.3,0.3(2

1 ρβ −−ΦΦ−= −P  as a function of ρ . 
 
From figure 7.8 it is seen that 3.0 ∞≤≤ Pβ  corresponding to the fully positive correlated and the 
fully negative correlated cases, respectively. 
 

*     *     * 
 
7.4 Evaluation of Parallel Systems Reliabilities 
 
The result from the previous section is that if J

iβ  and Aij n,,2,1, Kρ  are known the problem is to 

evaluate the An -dimensional normal distribution function );( ρβ J
nA

−Φ  in (7.8) for the FORM ap-

proximation of Pβ . As described in note 6, this can generally not be performed by numerical inte-
gration within a reasonable computing time for higher dimensions. Instead bounds or approximate 
methods are used. 
 
In the following, simple bounds and a second order bound will be introduced as bounds for the reli-
ability of parallel systems. 
 
 
Simple Bounds 
If only the active constraints of (7.9) are assumed to influence the reliability of the parallel system 
the simple bounds can be introduced as: 

( ))0(min0
1
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P
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                          (7.10) 

where J
iM , Ani ,,1K=  are the linearized safety margins at the joint β -point. The upper bound 

corresponds to the exact value of P
fP  if all the An  elements are fully correlated with 1=ijρ . 

 
In the terms of reliability indices Jβ  (7.10) can be written: 
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If all correlation coefficients ijρ  between the An  elements are higher than zero, the following sim-
ple bounds are obtained: 



Note 7: Reliability evaluation of parallel system 

127 

)0(min)0(
11

≤≤≤∏ ≤
==

J
i

n

i

P
f

n

i

J
i MPPMP

AA

                      (7.12) 

where the lower bound corresponds to uncorrelated elements. i.e. 0=ijρ  , ji ≠ . In terms of Jβ , 
(7.12) becomes: 
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The simple bounds will in most cases be so wide that they are of little practical use. 
 
 
Second-Order Upper Bound 
A second-order upper bound of P

fP  can be derived as: 
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The corresponding lower bound of Pβ  is: 
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In (7.15) it is seen that the probability of failure of a parallel system of two elements 

),,(2 ij
J
j

J
i ρββ −−Φ  is necessary. These probabilities are the same as the probabilities used in the 

Ditlevsen bounds for series systems, see note 6. In note 6 both a method by numerical integration 
(6.16) and a bounds method (6.17) - (6.20) are described. Hereby the tools for evaluation of the 
bounds are described. 
 
More refined and complicated bounds can also be developed, see [7.4], but will not be shown here. 
 
Example 7.4 FORM Evaluation of Pβ  of a Parallel System 
Consider a parallel system of 4 failure elements. After the transformation of the stochastic (physi-
cal) variables 1X  and 2X  into the standard normal space of variables 1U  and 2U  the four failure 
elements are described by the following failure functions: 
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The failure functions 0)( =uig , 4,,1K=i are shown in figure 7.9. 
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Figure 7.9. Four failure functions for a parallel system and joint β -point, ∗u . 
 
It is seen directly from figure 7.9 that 2=An  and the joint β -point is the intersection between 3g  
and 4g . The joint β -point can be found to be )16.2;23.1(−=∗u . The α -vectors are found from 
(7.4) as )420.0;908.0(3 −=α  and )971.0;233.0(4 =α , i.e the correlation coefficient from (7.6) is 

18.034 =ρ . From (7.3) )81.1;02.2(=Jβ . 
 
The simple bounds are obtained from (7.13): 

{ } ( ))02.2()8.1(02.2,81.1max 1 −Φ−ΦΦ−≤≤ −Pβ  

or: 

17.302.2 ≤≤ Pβ  

 
The second order lower bound will in this two-dimensional case be exact if );,( 34432 ρββ JJ −−Φ  s 
evaluated to be exact. The result is: 

92.2=Pβ  

 
If instead the bounds technique from note 6, (6.17)-(6.20) is used, the bounds are obtained as 2.84 

≤≤ Pβ  3.04 or by taking the average of the bounds in (6.19) 92.2=Pβ . 
 

*     *     * 
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Advanced Asymptotic Methods 
The bounds methods can be used in hand calculations. However, as described in note 6 (section 
6.4.2) for series systems, other more precise and more refined methods are used in professional reli-
ability programs. 
 
 
7.5 General Systems Reliability 
 
It is clear that a real redundant structural system generally has many failure modes, i.e. different 
sequences of element failure. Each sequence can then be modelled by a parallel system. If one of 
these parallel systems fails then the whole system fails, i.e. the overall systems reliability model is a 
series system of the failure modes or parallel systems. This is schematically shown in figure 7.10. 
 
 
 
 
 
 
 
 
Figure 7.10. Systems reliability model as a series system of parallel systems.  
 
It is also possible to formulate the systems reliability model as a parallel system of series systems, 
see [7.5]. 
 
 
Example 7.5 Systems Reliability Model of a Truss Structure 
Consider the truss structure with two applied concentrated loads shown in figure 7.11. 
 
 
 
 
 
 
 
 
 
 
Figure 7.11. Statically indeterminate truss structure. 
 
It is seen in figure 7.11 that the truss structure becomes statically determinate if any of the elements 
1,2,3,4,5 or 6 is removed (fails). It is furthermore seen that the structure fails if any pair of the ele-
ments 1,2,3,4,5 and 6 fails. The structure also fails if one of the elements 7,8,9 or 10 fails. The sys-
tems reliability model is then a series system with 19 elements where 15 of the elements are parallel 
systems each with two failure elements. The elements in the series system are: {1,2}, {1,3}, {1,4}, 
{1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,8}, {7}, {8}, {9} and 
{10}. 
 

*     *     * 
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7.6 Reliability of Series Systems of Parallel Systems 
 
The probability of failure of series systems of Pn  parallel systems each with im , Pni ,,2,1 K=  
failure elements can be written as a union of intersections: 
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where ijg  is the failure function of element j in parallel system i. 
 
The FORM estimate of the generalized systems reliability index Sβ  is written as in note 6, see (6.1) 
- (6.8): 
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where Pβ  is an Pn -vector of generalized reliability indices for the individual parallel systems calcu-
lated as in (7.8) and Pρ  is a matrix of the corresponding approximate correlation coefficients 
between the parallel systems. 
 
For approximation of the coefficients in the correlation matrix Pρ each of the parallel systems is 
approximated by a failure element with a linear safety margin, see [7.6]: 
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where the vectors P
iα , ni ,,2,1 K=  are determined such that the sensitivity of Pβ  with respect to 

changes in the joint β -point: P
u β∗∇  are equivalent when obtained from (7.18) (formulated as 
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iβ  and when obtained from (7.8). Furthermore, a normalization is performed for calculation 
of correlations: 
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where, the elements of P
ia  are obtained as: 
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In (7.20) the influence on Pβ  in (7.18) of the correlations iρ  are neglected. 

iAn  is the number of 

active constraints in the ith parallel system. ∗
jk dudα  is obtained from differentiation of (7.4): 
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The elements in the matrix of correlation coefficients between the parallel systems are then calcu-
lated from: 
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Now Sβ  can be estimated from (7.17). For further explanations and details of reliability estimation 
of series systems of parallel systems, see [7.6]. 
 
 
Comments on General Systems Reliability Models 
The reliability modelling of a general system as a series system of parallel systems is healthy seen 
from a reliability theoretical point of view but from a structural engineering point of view in many 
cases unrealistic. This is due to the fact that the parallel systems reliabilities are dependent on the 
history of the load effects in the individual elements or in other words on 1) the residual load carry-
ing capacity of a failed element or elements and 2) how the overall load effects in the entire struc-
ture are redistributed at each step in a sequence of element failures. This leads to the conclusion that 
failure of more than one structural element of major importance often cannot be treated in a realistic 
manner. More generally it can be said that the systems reliability model is totally dependent of the 
structural response model and thus it should not be refined more than the structural response model 
justifies. 
 
 
7.7 Sensitivity Analysis of General Systems 
 
The sensitivities for evaluation of the obtained systems reliability indices in (7.17) or (7.9) can in 
principle be obtained as explained in section 7.5. The sensitivity evaluation of a generalized reli-
ability index of series system of parallel systems or of a parallel system, however, requires much 
more numerical effort and several perturbation analyses of optimality conditions of the included 
optimization problems, see [7.6]. 
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Note 8: Structural reliability: Level 1 approaches 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University  
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 

1 Introduction 
 
During the last two decades calibration of partial safety factors in level 1 codes for structural 
systems and civil engineering structures has been performed on a probabilistic basis in a number of 
codes of practice, see e.g. OHBDC (Ontario Highway Bridge Design Code) [1], NBCC (National 
Building Code of Canada) [2], Ravindra & Galambos [3], Ellingwood et al. [4] and Rosenblueth & 
Esteva [5]. 
 
The calibration is generally performed for a given class of structures, materials and/or loads in such 
a way that the reliability measured by the first order reliability index β  estimated on the basis of  
structures designed using the new calibrated partial safety factors are as close as possible to the 
reliability indices estimated using existing design methods. Procedures to perform this type of 
calibration of partial safety factors are described in for example Ravindra & Lind [6], Thoft-
Christensen & Baker [7]. 
 
A code calibration procedure usually includes the following basic steps, see e.g. Nowak [8]: 
 
• definition of scope of the code, 
• definition of the code objective,  
• selection of code format, 
• selection of target reliability index levels, calculation of calibrated partial safety factors and 
• verification of the system of partial safety factors. 
 
A first guess of the partial safety factors is obtained by solving an optimization problem where the 
objective is to minimize the difference between the reliability for the different structures in the  
class considered and a target reliability level. In order to ensure that all the structures in the class 
considered have a satisfactory reliability, constraints are imposed on the reliability for the whole 
range of structures. In this note it is shown how this optimization problem can be formulated and 
solved. Next, the partial safety factors determined in this way are adjusted taking into account 
current engineering judgement and tradition. 
 
In section 2 the partial safety factor method is briefly described. In section 3 it is shown how partial 
safety factors can be determined for a single failure mode using the results from a first order 
reliability method (FORM). In section 4 a general procedure for estimating partial safety factors is 
described. This procedure can be used to calibrate partial safety factors for a class of structures. In 
section 5 the ‘design value method’ is presented and illustrated by an example. Finally section 6, 
describes the calibration of partial safety factors in the Danish structural codes from 1999, [24]. 
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2 Design values for loads and strengths 
 
In the partial safety factor method single structural elements are usually considered and it has to be 
verified that the design resistance dR  is larger than the design load effect dS  for the structural 
element considered: 
 
   dd SR >        (1) 
 
This requirement has to be verified for a number of different load combinations, see below in 
equation (5) and in section 6. The design value of the load effect is determined on the basis of 
permanent actions, variable actions and accidental loads. 
  
Design value for permanent actions is determined by: 
 
   cGd GG γ=        (2) 
 
where 
γ G  partial safety factor 

cG  characteristic value for permanent actions, typically the 50 % quantile 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Characteristic and design values for variable action. 
 
Design values for variable actions are determined by, see figure 1: 
 
   cQd QQ γ=        (3) 
 
where 

Qγ  partial safety factor 

cQ  characteristic value for variable actions, typically the 98 % quantile 
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Figure 2. Characteristic and design values for strength parameter. 
 
Design values for accidental loads are determined by 
   cAd AA γ=        (4) 
where 

Aγ  partial safety factor 

cA  prescribed value for accidental load 
 
The design value of the load effect dS  is obtained considering the following load combination 
 
   ( )cAcnmccQcGd AQQQGSS γψψγγ  , ,..., , , 221=     (5) 
where n  is the number of variable actions, 1cQQγ  is the design value for the dominating variable 
action, jψ  is the load combination factor for non-dominating variable action no j  and cjQ  is the 
characteristic value for variable action no j . Table 24 in section 6.5 shows the load combinations to 
be verified in the Danish structural codes, see DS409 [24]. 
 
Design values for strength parameters are determined from: 

   
m

c
d

mm
γ

η=        (6) 

where 
γ m  partial safety factor 

cm  characteristic value, typically the 5 % quantile 
η  conversion factor taking into account differences between the conditions in the 

structure and the conditions at the determination of the characteristic value. This 
includes for example load duration, scale, moisture and temperature effects. Normally 
η =1 but for example design values of timber strengths are determined using values of 
η  between 0.6 and 1.1. 

 
Design value for resistances Rd  are usually determined using design values for material and 
geometrical parameters. 
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3 Estimation of partial safety factors for one failure mode 
 
In code calibration based on first order reliability methods (FORM) it is assumed that the limit state 
function can be written  
 
   0)( =zp,x,g       (7) 
 
where ),...,( 1 nxx=x  is a realization of ),...,( 1 nXX=X  modeling n  stochastic variables describing 
the uncertain quantities. External loads (e.g. wave), strength parameters and model uncertainty 
variables are examples of uncertain quantities. ),...,( 1 Mpp=p  are M  deterministic parameters, for 
example well defined geometrical quantities. ),...,( 1 Nzz=z  are N  design variables which are used 
to design the actual structure. Realizations  x  of X  where 0)( ≤zp,x,g  corresponds to failure 
states, while 0)( >zp,x,g  corresponds to safe states. 
 
Using FORM (First Order Reliability Methods) the reliability index β  is determined. The 
corresponding estimate of the probability of failure is  
 
   ( )β−Φ=fP       (8) 
 
where Φ  is the standard normal distribution function. 
 
If the partial safety factors and if the number of design variables is 1=N  then the design (modeled 
by z ) can be determined from the design equation 
 
   0),( ≥γzp,,xcG       (9) 
 

),...,( 1 cncc xx=x  are characteristic values corresponding to the stochastic variables X . 
),...,( 1 mγγγ =  are m  partial safety factors. The partial safety factors γ  are usually defined such 

that mii ,...,1  ,1 =≥γ . In the most simple case, nm = . 
 
The design equation is closely connected to the limit state function (7). In most cases the only 
difference is that the state variables x  are exchanged by design values dx  obtained from the 
characteristic values cx  and the partial safety factors γ . 
 
The characteristic values are for load variables usually the 90 %, 95 % or 98 % quantiles of the 
distribution function of the stochastic variables, e.g.  
 
   )98.0(1−=

iXci Fx  
 
where )( iX xF

i
 is the distribution function for iX . The design values for load variables are then 

obtained from 
 
   ciidi xx  γ=        (10) 
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The characteristic values are for strength variables usually the 10 %, 5 % or 2 % quantiles of the 
distribution function of the stochastic variables. The design values for strength variables are then 
obtained from 
 

   
 i

ci
di

xx
γ

=        (11) 

 
For geometrical variables usually the median (50 % quantile) is used and the design values are  
 

ciidi xx  γ=        (12) 
 
If 2== nm , 1x  is a load variable and 2x  is a strength variable, the design equation can be written: 
 

   ( ) ( ) 

















== zp,zp,zp, ,,),,(),(,),,(

2

2
11212121 γ

γγγ c
cddcc

xxGxxGxxG   (13) 

 
A reliability analysis by FORM with the limit state function (7) gives the reliability index β  and 
the β -point *x . Partial safety factors can then be obtained from 
 

   * i

ci
i x

x
=γ   for strength variables 

   
ci

i
i x

x
 

*

=γ   for load variables 

 
If more than one variable load type are important then e.g. the Turkstra rule can be used to model 
the combined effect, see e.g. Thoft-Christensen & Baker [7]. Let vXX ,...,1  model v  different 
variable load variables. The variables modeling permanent loads are denoted pvv XX ++ ,...,1  and the 
remaining stochastic variables are denoted npv XX ,...,1++ . The design equation is written 
 

   ( ) 0,,...,,,...,,,...,,,
1

1,
,1,1111 =




















=

++

++
++++ zp,zp,x

n

cn

pv

pvc
pvcpvvcvcvvvcc

xx
xxxxGG

γγ
γγψγψγγ  (14) 

where 1≤iψ  is a load combination factor for the variable load iX . Usually v  different load 
combinations are investigated where in combination j , 1=jψ  and 1<iψ  for ij ≠ . 

Example Fundamental case 
The limit state function corresponding to the fundamental case is written: 
 

12 xxg −=  
 
where 1x  is a load variable and 2x  is a strength variable. The design equation becomes: 
 

11
2

2
12 c

c
dd xxxxG γ

γ
−=−=  

* * * * * * * * 



Note 8: Structural reliability: Level 1 approaches 

138 

4 General procedure for estimating partial safety factors 
 
Code calibration can be performed by judgement, fitting, optimization or a combination of these, 
see Madsen et al. [11]. Calibration by judgement has been the main method until 10-20 years ago.  
Fitting of partial safety factors in codes is used when a new code format is introduced and the 
parameters in this code are determined such that the same level of safety is obtained as in the old 
code. The level of safety can be measured by the reliability index β . In code optimization the 
following steps are generally performed, see [11] and [8]: 
 
1. Definition of the scope of the code, i.e. the class of structures to be considered is defined. 
 
2. Definition of the code objective. The code objective may be defined at any higher level than the 

level of the reliability method used in the code. In a level 1 reliability method (which uses a 
single characteristic value of each uncertain quantity and partial safety factors) the objective 
may be to obtain on average the same reliability (measured by the target reliability index β  as 
obtained by a reliability method on a higher level.  

 
3. Definition of code format. The code format includes: 

      - how many partial safety factors to be used 
      - where to use the partial safety factors in the design equations 
      - rules for load combinations 

 
4. Determination of the frequency at which each type of safety check is performed.  
 
5. Definition of a measure of closeness between code realizations and the code objective. 
 
6. Determination of the "best" code format, i.e. calculation of the 'optimal' partial safety factors 

which gives the closest fit to the objective measured by the closeness criteria. 
 
7. Verification of the system of partial safety factors. 
 
Structural failure modes (limit states) are generally divided in: 
 
Serviceability limit states 
Serviceability limit states are related to normal use of the structure, e.g. excessive deflections, local 
damage and excessive vibrations.  
 
Ultimate limit states 
Ultimate limit states correspond to the maximum load carrying capacity which can be related to e.g. 
formation of a mechanism in the structure, excessive plasticity, rupture due to fatigue and 
instability. 
 
Conditional limit states 
Conditional limit states correspond to the load-carrying capacity if a local part of the structure has 
failed. A local failure can be caused by an accidental action or by fire. The conditional limit states 
can be related to e.g. formation of a mechanism in the structure, exceedance of the material strength 
or instability. 
 
In general, the target reliability index can be determined by calibration to the reliability level of 
existing similar structures. Alternatively or supplementary the target reliability indices can be 
selected on the basis of e.g. the recommended minimum reliability indices specified in ISO [19] or 
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NKB [10]. The maximum probability of failure (or equivalently the minimum reliability) are 
assumed to be related to the consequences of failure specified by safety classes and failure types. 
 
The following safety classes are considered, see NKB [10] and DS409 [24]: 
 
Less serious: 1- and 2-storey buildings, which only occasionally hold persons, for instance 

stock buildings, sheds, and some agricultural buildings, small pylons, roofs and 
internal walls. 

 
Serious: Buildings of more than two stories and hall structures which only occasionally 

hold people, small 1- and 2-storey buildings often used for people, for example 
houses, offices or productions buildings, tall pylons, scaffolds and moulds, 
external walls, staircases and rails. 

 
Very serious: Buildings of more than two stories, hall structures, and stages which will often 

hold many persons and e.g. be used for offices, sports or production. 1- and 2-
storey buildings with large spans often used by many persons, stands, 
pedestrian bridges, road bridges, railroad bridges. 
 

The following failure types are considered (see NKB [10] and DS409 [24]): 
 
Failure type I: Ductile failures where it is required that there is an extra carrying capacity 

beyond the defined resistance, i.e. in the form of strain hardening. 
 
Failure type II: Ductile failures without an extra carrying capacity.  
 
Failure type III: Failures such as brittle failure and instability failure.  
 
For ultimate limit states NKB [10] recommends the maximum probabilities of failure shown in 
table 1 based on a reference period of 1 year. The corresponding minimum reliability indices are 
shown in table 2. 
 
Safety class Failure type I Failure type II Failure type III 
Less serious 310−  410−  510−  
Serious 410−  510−  610−  
Very serious 510−  610−  710−  
Table 1. Maximum annual probabilities of failure. 
 
Safety class Failure type I Failure type II Failure type III 
Less serious 3.1 3.7 4.3 
Serious 3.7 4.3 4.7 
Very serious 4.3 4.7 5.2 
Table 2. Target (minimum) annual reliability indices β . 
 
As explained above calibration of partial safety factors is generally performed for a given class of 
structures, materials or loads in such a way that the reliability measured by the first order reliability 
index β  estimated on the basis of structures designed using the new calibrated partial safety factors 
is as close as possible to the target reliability index or to the reliability indices estimated using 
existing design methods, see Thoft-Christensen & Baker [7], Ditlevsen & Madsen [12], Östlund 
[13], Shinozuka et al. [14], Vrouwenvelder [15] and Hauge et al. [16]. Procedures to perform this 
type of calibration of partial safety factors are described in e.g. Thoft-Christensen & Baker [7]. 
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In the following this procedure is described and extended in some directions. For each failure mode 
the limit state function is written, see (7) 
 
   0)( =zp,x,g       (15) 
 
Using FORM (First Order Reliability Methods) the reliability index β  can be determined.  
 
If the number of design variables is 1=N  then the design can be determined from the design 
equation, see (9) 
 
   0),( ≥γzp,,xcG       (16) 
 
If the number of design variables is 1>N  then a design optimization problem can be formulated: 
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     (17) 

 
C  is the objective function and mici ,...,1,  =  are the constraints. The objective function C  is often 
chosen as the weight of the structure. The em  equality constraints in (17) can be used to model 
design requirements (e.g. constraints on the geometrical quantities) and to relate the load on the 
structure to the response (e.g. finite element equations). Often equality constraints can be avoided 
because the structural analysis is incorporated directly in the formulation of the inequality 
constraints. The inequality constraints in (17) ensure that response characteristics such as 
displacements and stresses do not exceed codified critical values as expressed by the design 
equation (16). The inequality constraints may also include general design requirements for the 
design variables. The lower and upper bounds, l

iz  and u
iz , to iz  in (17) are so-called simple 

bounds. Generally, the optimization problem (17) is non-linear and non-convex. 
 
The application area for the code is described by the set I  of L  different vectors Lii ,...,1, =p . The 
set I  may e.g. contain different geometrical forms of the structure, different parameters for the 
stochastic variables and different statistical models for the stochastic variables. 
 
The partial safety factors γ  are calibrated such that the reliability indices corresponding to the L  
vectors p  are as close as possible to a target probability of failure t

fP  or equivalently a target 

reliability index ( )t
ft P1−Φ−=β . This is formulated by the following optimization problem 

 

   ( )∑ −=
=

L

j
tjjwW

1

2)()(  min βγβγ
γ

     (18) 

 
where Ljw j ,...,1,   =  are weighting factors ( 11 =∑ =

L
j jw ) indicating the relative frequency of 

appearance / importance of the different design situations. Instead of using the reliability indices in 
(18) to measure the deviation from the target, for example the probabilities of failure can be used. 
Also, a nonlinear objective function giving relatively more weight to reliability indices smaller than 
the target compared to those larger than the target can be used. )(γβ j  is the reliability index for 
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combination j  obtained as described below. In (18) the deviation from the target reliability index is 
measured by the squared distance. 
 
The reliability index )(γβ j  for combination j  is obtained as follows. First, for given partial safety 
factors γ  the optimal design is determined by solving the design equation (16) if 1=N  or by 
solving the design optimization problem (17) if 1>N . Next, the reliability index )(γβ j  is 
estimated by FORM on the basis of (15) using the design z  from (16) or (17). 
 
It should be noted that, following the procedure described above for estimating the partial safety 
factors two (or more) partial safety factors are not always uniquely determined. They can be 
functionally dependent, in the simplest case as a product, which has to be equal to a constant. 
 
In the above procedure there is no lower limit on the reliability. An improved procedure which has a 
constraint on the reliability and which takes the non-uniqueness problem into account can be 
formulated by the optimization problem  
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where Ljw j ,...,1,   =  are weighting factors ( 11 =∑ =

L
j jw ). δ  is a factor specifying the relative 

importance of the two terms in the objective function. )(γβ j  is the reliability index for combination 

j  obtained as described above. *
jiγ  is an estimate of the partial safety factor obtained by 

considering combination j  in isolation. The second term in the objective function (19) is added due 
to the non-uniqueness-problem and has the effect that the partial safety factors are forced in the 

direction of the "simple" definition of partial safety factors. For load variables: 
cx

x*

=γ . If only one 

combination is considered then 
jic

ji
ji x

x

,

*
* =γ  where *

jix  is the design point. Experience with this 

formulation has shown that the factor δ  should be chosen to be of magnitude one and that the 
calibrated partial safety factors are not very sensitive to the exact value of δ . The constraints have 
the effect that no combination has a reliability index smaller than min

tβ . 
 
This type of code calibration has been used in Burcharth [17] for code calibration of rubble mound 
breakwater designs. These structures are known to have reliabilities which vary considerably. The 
reason is that the structures are used under widely different conditions. 
 
As discussed above a first guess of the partial safety factors is obtained by solving these 
optimization problems. Next, the final partial safety factors are determined taking into account 
current engineering judgement and tradition. 

Example 1 
In this example partial safety factors are determined for one failure mode in one application )1( =L . 
Consider the limit state function: 
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   QGzRg −−=  
 
where z  is a design variable, R  a resistance, G  a permanent load and Q  a variable load. The 
stochastic model in table 3 is used. 
 

 Distribution Expected value Coefficient of variation
R  Lognormal 1 kN/m 2  0.15 
G  Normal 2 kN 0.1 
Q  Gumbel 3 kN V  

Table 3. Statistical parameters. 
 
If the target reliability index is chosen to tβ =3.8 and V =0.4 then z =15.6 m 2 . The corresponding 
β -point in basic variable space is ( ) ( )83.9  ,04.2  ,76.0,, *** =qgr . 
 
Characteristic values are chosen to: 
R  5 % quantile: cr =0.77 
G  50 % quantile: cg =1.0 

Q  98 % quantile: cq = ( ){ }[ ] QQ V µ
π

µ 04.298.0lnln5772.061 =







−+− =6.12 

 
Partial safety factors are then  
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qγ  

 
In table 4 results are shown for other coefficients of variation, V  and target reliability indices. It is 
seen that the partial safety factors for the variable load become rather large compared with the two 
other partial safety factors, especially for large values of V . 
 

tβ  V  z  Qcq µ/  *r  *g  *q  Rγ  Gγ  Qγ  
3.8 0.2 12.8 1.52 0.70 2.08 5.82 1.10 1.04 1.28 
4.3 0.2 14.5 1.52 0.68 2.08 6.53 1.13 1.04 1.43 
4.8 0.2 11.3 1.52 0.65 2.08 7.30 1.18 1.04 1.60 
3.8 0.3 13.4 1.78 0.74 2.05 7.86 1.04 1.02 1.47 
4.3 0.3 15.5 1.78 0.71 2.05 8.96 1.08 1.02 1.68 
4.8 0.3 17.9 1.78 0.68 2.05 10.2 1.12 1.02 1.91 
3.8 0.4 15.6 2.04 0.76 2.04 9.83 1.01 1.02 1.61 
4.3 0.4 18.3 2.04 0.73 2.04 11.3 1.05 1.02 1.84 
4.8 0.4 21.4 2.04 0.70 2.04 13.0 1.10 1.02 2.12 
Table 4. Partial safety factors obtained by direct reliability-based calibration. 

 
* * * * * * * * 
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5 Design value format in Eurocodes 
 
In the Eurocodes [18] and ISO [19] the so-called design value format is proposed to estimate partial 
safety factors. According to that format the design value dx  of an uncertain variable X  is estimated 
from 
 
   )()( t

dX xF αβ−Φ=       (20) 
 
where XF  is the distribution function for X  and tβ  is the target reliability index, e.g. tβ =3.8. α  
is the α -coefficient associated with the type and importance of the stochastic variable considered. 
The following values are recommended: 
 
For strength variables:  α = 0.8 
For dominating loads:  α = -0.7 
For non-dominating loads: α = -0.4 x 0.7 = -0.28 
 
When the design value have been estimated the partial safety factor is determined from: 
 

d

c

x
xθγ =  for strength variables 

c

d

x
xθγ =  for load variables 

 
where θ  is an uncertainty factor, typically = 1.05. cx  is the characteristic value. 
 
The following distribution types are recommended: 
 
For permanent loads: Normal distribution: )7.01( Vx t

Xd βµ +=  

For variable loads:  Gumbel distribution:  ( )( ){ }[ ]







Φ−+−= t

Xd Vx β
π

µ 7.0lnln5772.061  

For strength:  Lognormal distribution: ( )Vx t
Xd βµ 8.0exp −=  

 

Example 2 
Example 1 is considered again but now the partial safety factors are determined using the design 
value method. The result is shown in table 5. When compared to the results in table 4 it is seen that 
the partial safety factors for resistance and permanent loads are larger than those obtained in 
example 1 whereas the partial safety factors for the variable load are smaller. If the design value and 
corresponding reliability index are determined using the partial safety factors in table 5, it is seen 
that for V =0.4 the reliability indices are almost the same as the target reliability indices. However, 
for smaller values of V  the reliability indices become larger than the target reliability indices when 
using the design value method. 
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tβ  V  Qcq µ/  dr  dg  dq  Rγ  Gγ  Qγ  z  ( )QGR γγγβ ,,  
3.8 0.2 1.52 0.63 2.53 5.31 1.22 1.27 1.16 12.4 4.19 
4.3 0.2 1.52 0.60 2.60 5.85 1.28 1.30 1.28 14.0 4.67 
4.8 0.2 1.52 0.56 2.67 6.39 1.38 1.34 1.40 16.2 5.25 
3.8 0.3 1.78 0.63 2.53 6.48 1.22 1.27 1.21 14.3 4.03 
4.3 0.3 1.78 0.60 2.60 7.26 1.28 1.30 1.36 16.4 4.50 
4.8 0.3 1.78 0.56 2.67 8.10 1.38 1.34 1.52 19.4 5.08 
3.8 0.4 2.04 0.63 2.53 7.65 1.22 1.27 1.25 16.1 3.90 
4.3 0.4 2.04 0.60 2.60 8.67 1.28 1.30 1.42 18.8 4.39 
4.8 0.4 2.04 0.56 2.67 9.81 1.38 1.34 1.60 22.4 4.94 
Table 5. Partial safety factors obtained using the design value method. z  is the design value 
obtained using the values of Rγ , Gγ  and Qγ  in columns 7-9. ( )QGR γγγβ ,,  is the corresponding 
reliability index. 
 
* * * * * * * * 
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6 Calibration of Partial Safety Factors for Danish Structural Codes 
 
This section describes the main steps in the probabilistic code calibration performed for the Danish 
Structural Codes (1999). It is based on [20]. First, the reliability level is evaluated in a number of 
typical, simple structures designed according to the current (old) Danish structural codes (1982) and 
with a reasonable stochastic model for the uncertain quantities. The reliability analyses show a non-
uniform reliability level for different materials and actions. Next, new partial safety factors in a 
slightly modified code format are calibrated such that the safety level is the same in the new code as 
in the current codes, i.e. it is assumed that the reliability level in the old structural codes is 
satisfactory. Using the optimized partial safety factors a more uniform reliability level is obtained 
for different types of materials / structures and for different types of loads. The calibrations are 
performed with the assumption that characteristic values for actions and strengths are the same in 
the old and the new codes, except for changes in some of the quantile percentages used. 
 
6.1 Characteristic values for loads and strengths 
 
Characteristic values are determined as follows: 
• permanent actions:  50 % quantiles 
• variable actions:  98 % quantiles 
• strength parameters:     5 % quantiles 
 
6.2 Partial safety factors for loads and strengths 
 
Three main load combinations have to be checked by design. Load combination 2 consists of four 
combinations and load combination 3 consists of three combinations: 
 
Load combination 1: Serviceability limit states 
Load combination 2: Ultimate limit states 
 2.1: Permanent and variable actions unfavorable – variable actions dominating 
 2.2: Permanent actions favorable 
 2.3: Permanent and variable actions unfavorable – permanent actions dominating 
 2.4: Fatigue 
Load combination 3: Accidental actions 
 3.1: Impact, explosion and vertical actions on air raid shelters 
 3.2: Removal of a structural element 
 3.3: Fire 
 
The partial safety factors  for strength parameters γ m  are determined by 
 
      γ γ γ γ γ γ γm = 0 1 2 3 4 5       (21) 
 
where 
γ 0   takes into account the consequences of failure see table 6 
γ 1  takes into account the type of failure, see table 7 
γ 2  takes into account the possibility of unfavorable differences from the characteristic value 

of the material parameter, see table 8. The values in the table are indicated by ? since they 
are determined on the basis of a calibration, see the following subsections 

γ 3   takes into account the uncertainty in the computational model, see table 10 
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γ 4   takes into account the uncertainty in connection with determination of the material 
parameter in the structure on the basis of the controlled material parameter, see table 11 

γ 5   takes into account the amount of control at the working place (in excess of the statistical 
quality control), see table 12 

 
Safety class Low Normal High 
γ 0  0.90 1.00 1.10 
Table 6. γ 0  - factor for different safety classes. 

 
Failure type Ductile Brittle 
  With reserve Without reserve  
γ 1  0.90 1.00 1.10 
Table 7. γ 1   - factor for different failure types. 
 
δ  <0.05 0.10 0.15 0.20 0.25 0.30 
γ 2  ? ? ? ? ? ? 
Table 8. γ 2  as function of the coefficient of variation δ  (for 5 % quantiles). 
 
 
For other quantile values than the 5 % quantile, the γ 2  values should be multiplied with  
      exp(( , ) )1 65− kγ δ  
 
Quantile, % 20 10 5 2.5 1 0.1 
kγ  0.84 1.28 1.65 1.96 2.33 3.00 

Table 9. Factor γk  
 
Accuracy of computational model Good Normal Bad 
γ 3  0.95 1.00 1.10 
Table 10. γ 3   - factor taking into account the accuracy of the computational model. Normal 
accuracy corresponds to usual calculations of normal structures and structural elements. 
 
Certainty in determination of material 
parameter 

Large Average Small 

γ 4  0.95 1.00 1.10 
Table 11. γ 4   - factor taking into account the uncertainty in connection with determination of the 
material parameter in the structure on the basis of the controlled material parameter. 
 
 
Control class Extended Normal Reduced 
γ 5  0.95 1.00 1.10 
Table 12. γ 5  - factor for different levels of control for material identity and construction. 
 
6.3 Stochastic models 
 
The stochastic model used for calibration of partial safety factors is shown in table 13 and is partly 
based on the following references: SAKO [21], DGI [22] and Foschi et al. [23]. 



Note 8: Structural reliability: Level 1 approaches 

147 

Variable Coefficient of 
variation 

Distribution 
type 

Quantiles in 
old code 

Quantile in 
New code 

Permanent loads:  
Permanent action 10 % N 50 % 50 %
self-weight: concrete 6 % N 50 % 50 %
self-weight: steel 4 % N 50 % 50 %
self-weight: timber 6 % N 50 % 50 %
Variable loads:  
Imposed load 20 % G 98 % 98 %
Environmental load 40 % G 98 % 98 %
Strengths:  
Concrete compression strength 15 % LN 10 % 5 %
Reinforcement 5 % LN 0.1 % 5 %
Steel 5 % LN 5 % 5 %
glued laminated timber 15 % LN 5 % 5 %
eff. Friction angle – sand 3.3 % LN 5 % 5 %
Undrained shear strength – clay 16 % LN 5 % 5 %
Model uncertainty: concrete 5 % LN 50 % 50 %
Model uncertainty: steel 3 % LN 50 % 50 %
Model uncertainty: timber 5 % LN 50 % 50 %
Model uncertainty: foundation 15 % LN 50 % 50 %
Table 13. Stochastic model. Distributions types: N: normal, LN: lognormal, G: Gumbel.  
 
For timber the Lognormal distribution is used. Also the Weibull distribution has been considered, 
but since the partial safety factors in the old codes implicitely were based on Lognormal 
distributions for the strengths this distribution is also used in the following calibrations. The 
Lognormal distribution is considered to be reasonable for laminated timber. For single lumber 
members theoretical considerations and statistical analysis of available data indicate that a Weibull 
distribution should be considered. A Weibull distribution usually results in significantly smaller 
reliability indices than the Lognormal distribution. Note, that in the new Danish codes all quantile 
values for material strengths are defined as 5 % values. 
 
For the variable action, two action types are used, namely imposed action and environmental action 
(e.g. wind and snow). 
 
6.4 Probabilistic calibration of partial safety factors for load combination 2.1 and 2.3 
 
6.4.1 Description of example structures 
Three types of structures are considered for calibration of the partial safety factors, namely a simply 
supported beam, a short column and typical geotechnical structures. The structures are: 
- Simply supported reinforced concrete beam  
- Simply supported steel beam  
- Simply supported glued laminated beam  
- Short concrete column  
- Short steel column  
- Short glued laminated column  
- Central loaded footing (foundation) on sand  
- Central loaded footing (foundation) on clay  
- Concrete gravity wall 
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The following six load cases with different ratios between permanent and variable actions are 
considered for beams and columns of concrete, steel and timber and for the footings on sand and 
clay: 
 
1) ( cG , Qc i, , Qc e, )  = ( 30 kN/m,   0 kN/m,      0 kN/m) 

2) ( cG , Qc i, , Qc e, )  = ( 24 kN/m,   6 kN/m,   4.5 kN/m) 

3) ( cG , Qc i, , Qc e, )  = ( 24 kN/m, 18 kN/m, 13.5 kN/m) 

4) ( cG , Qc i, , Qc e, )  = (3.6 kN/m,   6 kN/m,   4.5 kN/m) 

5) ( cG , Qc i, , Qc e, )  = (3.6 kN/m, 18 kN/m, 13.5 kN/m) 

6) ( cG , Qc i, , Qc e, )  = (   0 kN/m, 30 kN/m, 22.5 kN/m) 
 
where cG , Qc i, and Qc e,  are characteristic values for permanent actions, variable imposed action 
and environmental action, respectively. For the gravity wall only load case 2.1 is considered. 
Therefore, in total 98 different structures are used in the calibration. The limit state functions for the 
considered failure modes are described in [20]. 
 
6.4.2 Reliability analysis with old partial safety factors 
 
Each structure is first designed according to the old structural codes (1982). As described in section 
6.2, the material partial safety factors are determined as a product of a number of factors, where γ 2  
models the physical uncertainty related to a given type of material strength parameter. In table 14 is 
shown the partial safety factors 2γ  for materials and fγ  for actions corresponding to the old code. 
 

fγ /γ 2   Partial safety factor    
fγ /γ 2  

Quantile used to define 
characteristic value 

21Gγ  
 

Permanent action  
(load combination 2.1) 

1.0 50 % 

iQ ,21γ  Imposed action  
(load combination 2.1) 

1.3 98 % 

eQ ,21γ  Environmental action 
(load combination 2.1) 

1.3 98 % 

23Gγ  Permanent action 
(load combination 2.3) 

1.15 50 % 

iQ ,23γ  Imposed action 
(load combination 2.3) 

-  

eQ ,23γ  Environmental action 
(load combination 2.3) 

-  

aγ  Reinforcement 1.32 0,1 % 

bγ  Concrete 1.73/1.1 = 1.58 10 % 

sγ  Steel 1.28/0.9 = 1.42 5 % 

tγ  Timber (glued laminated) 1.35/0.95 2 =1.49 5 % 

ϕγ  Friction angle 1.2 5 % 

ucγ  Undrained shear strength 1.8 5 % 

Table 14. Partial safety factors in old code where material partial safety factors are modified for 
failure type, degree of control etc. 
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Next, reliability indices are determined for each structure using the partial safety factors in table 14. 
In table 15 the average and the standard deviation of the reliability indices are shown for each of the 
9 groups of structures considered and in figure 3 the distribution of reliability indices is shown. 
Table 16 shows the annual probability of failure corresponding to some typical reliability indices. It 
is seen that: 
• The reliability for concrete and steel structures is larger than for glued laminated timber 

structures. 
• For the geotechnical problems the reliability levels are slightly lower than for concrete, steel and 

timber structures. 
• The reliability indices for the concrete beam (where the reinforcement strength is important) are 

significantly larger than for the concrete column (where the concrete strength is important). 
 
From table 15 it is also seen that the average reliability index for all example structures are 4.79. In 
the next section new partial safety factors are calibrated such that the average reliability index will 
remain equal to 4.79, i.e the target reliability index is β t =4.79. In table 17 the average reliability 
index is shown for the six different load cases described in section 6.4.1. For each load case is 
shown  the parameter α  (=0 if all load is permanent and = 1 if all load is variable) defined by: 
 

cc

c

GQ
Q
+

=α        (22) 

 
It is seen that  
• the largest reliability indices are obtained for α =0, i.e. when all the load is permanent load 
• the smallest reliability indices are obtained for α =1, i.e. when all the load is variable load 
• relatively high reliability indices are obtained for α =0.2 – 0.5 
 
In summary the reliability analysis using the old partial safety factors shows a rather non-uniform 
reliability level and therefore some changes in the partial safety factors can be expected if a 
homogenous reliability level is to be obtained. Especially, it can be expected that the partial safety 
factors for timber and variable actions are increased and the partial safety factors for concrete and 
steel are decreased. 
 
 Average value Standard deviation
Beam – concrete 5.39 0.62 
Beam – steel 5.06 0.64 
Beam – timber 4.58 0.27 
Column – concrete 4.64 0.26 
Column – steel 5.10 0.66 
Column – timber 4.58 0.27 
Foundation on sand 4.61 0.45 
Foundation on clay 4.37 0.76 
Gravity wall 4.89  
Total 4.79 0.56 
Table 15. Reliability indices for example structures using old partial safety factors. 
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Reliability index  
β  

Probability of failure 
Pf  

3.1 10 3−  
3.7 10 4−  
4.3 10 5−  
4.7 10 6−  
5.2 10 7−  
Table 16. Reliability indices β  and corresponding probability of failure Pf . 
 
Load case α  Average reliability index 
  concrete steel timber 
1 0 5.32 5.82 4.36 
2 0.2 5.08 5.02 4.36 
3 0.43 5.20 5.27 4.87 
4 0.63 5.11 4.79 4.80 
5 0.83 4.79 4.52 4.63 
6 1 4.60 4.33 4.50 
Table 17. Reliability indices for example structures using old partial safety factors for the six load 
cases described in section 6.4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Reliability indices for the 98 example structures. 
 
 
6.4.3 Calibration of new partial safety factors for load combination 2.1 and 2.3 
 
The code format used is basically the same as in the current codes, except for two changes: 
• Separate partial safety factors for imposed variable actions and for environmental variable 

actions (wind and snow) are introduced. 
• In load combination 2.3 (permanent action dominating) also partial safety factors for the 

variable actions are introduced.  
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The partial safety factor 21Gγ  for permanent action in load combination 2.1 is chosen to 1.0 (as in 
the current code). The partial safety factors corresponding to load combination 2.1 (variable action 
dominating) and 2.3 (permanent action dominating) are: 
 
Load combination 2.1:  

21Gγ =1,  Qγ = iQ ,21γ  (imposed actions) or  Qγ = eQ ,21γ  (environmental actions)  
Load combination 2.3:  

Gγ = 23Gγ ,  Qγ = iQ ,23γ  (imposed actions) or   Qγ = eQ ,23γ  (environmental actions)  
 
Structures of concrete, steel and timber are checked by both load combination 2.1 and 2.3. 
Geotechnical problems are checked by load combination 2.1 only. 
 
The total set of partial safety factors to be calibrated is: iQ ,21γ , eQ ,21γ , 23Gγ , iQ ,23γ , eQ ,23γ , aγ , cγ , 

sγ , tγ , ϕγ   and 
ucγ . The optimal partial safety factors are obtained by minimizing the deviation 

between the target reliability index tβ  and the reliability indices obtained from the 98 example 
structures. Each reliability index is determined in the following way. First, the considered structure 
is designed using the deterministic design equation with characteristic values for the variables and 
the actual guess on the partial safety factors. Next with the obtained design a reliability analysis is 
performed, now treating the uncertain quantities as stochastic variables. 
 
The mathematical formulation of the optimization problem is: 

   

( )

1 , 1 , 1 , 1 , 1 , 1                     

1 ,1 , 1 , 1      subject to

)()(               min

,23,23,21,21
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ϕ

γ

   (23) 

 
where )(γβ i  is the reliability index for example structure no i  designed with partial safety factors 
γ . L = 98 is the number of example structures. iω =1 is assumed for all structures. 
 
Results 
Using a target reliability index tβ  equal to the average of the reliability indices of the example 
structures and a standard nonlinear optimization program, the results shown in table 18 are 
obtained. The table shows the optimized partial safety factors directly and modified with the factors 
from table 14.  The modification consists of multiplying the optimized partial safety factors 2γ  with 
the relevant values of the 1γ , 3γ , 4γ  and 5γ  factors in the old codes, see table 14. Further, also 
optimized and modified partial safety factors obtained by rounding and fixing the action partial 
safety factors are shown.  
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 old code 
fγ / mγ  

optimized 
fγ / 2γ  

optimized 
fγ / mγ  

optimized 
fγ / 2γ  

optimized 
fγ / mγ  

21Gγ   (2.1 permanent) 1 1 1 1 1 

iQ ,21γ  (2.1 imposed) 1.3 1.28 1.28 1.3 
(fixed) 

1.3 
(fixed) 

eQ ,21γ  (2.1 env.) 1.3 1.52 1.52 1.5 
(fixed) 

1.5 
(fixed) 

23Gγ   (2.3 permanent) 1.15 1.13 1.13 1.15 
(fixed) 

1.15 
(fixed) 

iQ ,23γ  (2.3 imposed) - 1.00 1.00 1.0 
(fixed) 

1.0 
(fixed) 

eQ ,23γ  (2.3 env.) - 1.00 1.00 1.0 
(fixed) 

1.0 
(fixed) 

aγ  (reinforcement) 1.4 1.25 1.25 1.23 1.23 

cγ  (concrete) 1.8 1.50 1.65 1.49 1.64 

sγ  (steel) 1.28 1.30 1.17 1.29 1.16 

tγ  (glued lam. timber) 1.35 1.53 1.53 1.51 1.51 

ϕγ  1.2 1.21 1.21 1.21 1.21 

ucγ  1.8 1.90 1.90 1.90 1.90 

Table 18. Partial safety factors for old and optimized code (β t =4.79). 
Corresponding to the optimal partial safety factors table 19 shows the average reliability indices and 
the standard deviation of the reliability indices for each of the 9 groups of structures considered. 
Figure 4 shows the distribution of the reliability indices obtained using the optimized partial safety 
factors in table 19. Table 20 shows the reliability indices for different values of α  (relative ratio of 
variable load). 
 
It is seen that  
• the partial safety factor for imposed actions in load combination 2.1 is almost unchanged while 

the partial safety factor for environmental actions should be increased from 1.3 to 1.5. 
• In load combination 2.3 the partial safety factor for permanent action is unchanged 1.15. 
• the partial safety factors for reinforcement, concrete and steel can be decreased. 
• the partial safety factor for glued laminated timber should be increased 
• the partial safety factors for geotechnical parameters are almost unchanged. 
 
 Average value Standard deviation
Beam – concrete 4.69 0.34 
Beam – steel 4.64 0.39 
Beam – timber 4.81 0.22 
Column – concrete 4.81 0.20 
Column – steel 4.67 0.41 
Column – timber 4.81 0.22 
Foundation on sand 4.81 0.48 
Foundation on clay 4.68 0.50 
Gravity wall 5.10  
Total 4.79 0.35 
Table 19. Reliability indices using the optimized partial safety factors. 
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Load case α  Average reliability index 
  concrete steel timber 
1 0 4.58 4.70 4.42 
2 0.2 5.02 5.36 4.80 
3 0.43 4.89 4.83 5.06 
4 0.63 4.86 4.56 4.99 
5 0.83 4.65 4.33 4.85 
6 1 4.51 4.19 4.73 
Table 20. Reliability indices for example structures using optimized partial safety factors for the six 
load cases described in section 4.1.  
 
Generally, the partial safety factors for actions should be increased while the partial safety factors 
for the material strengths can be decreased. Further it is, as expected, seen that the difference in 
reliability levels in the example structures are much smaller using the optimized partial safety 
factors than using the partial safety factors in the old code (1982). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Reliability indices for the 98 example structures using calibrated partial safety factors. 
 
The material partial safety factors in the new structural codes are based on the above calibration 
results. The values in the following table have been chosen.   
 
Material Coefficient of 

variation 
Calibrated partial 
safety factor 2γ  

Partial safety factor 
2γ  in structural codes 

Steel 5 % 1.29 1.30 
Reinforcement 5 % 1.23 1.30 
Concrete 15 % 1.49 1.50 
Timber (glued laminated) 15 % 1.51 1.50 
Table 21. Partial safety factors 2γ  in structural codes. 
 
6.4.4 Evaluation of safety level for a simple limit state 
 
In order to evaluate the reliability level in load combination 2.1 and 2.3 the following simple, but 
representative limit state function is considered: 
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   ( )QGzRXg R αα +−−= )1(      (24) 
 
where  
   R  strength (modeled by a stochastic variable) 
   RX  model uncertainty (modeled by a stochastic variable) 
   z  design variable, e.g. a cross-sectional area 
   G  permanent action (modeled by a stochastic variable) 
   Q  variable action (modeled by a stochastic variable) 
   α  factor between 0 and 1, giving the relative importance of the variable action. 
 
As examples only steel and concrete structures are considered. As variable actions both 
environmental and imposed actions are used. The following stochastic model, based on table 13, is 
used: 
 
Variable Distribution 

type
Coefficient of

variation
Quantile 

Permanent action N 0.10 50 % 
Variable action      -environmental G 0.40 98 % 
                              -imposed G 0.20 98 % 
Strength                 -concrete LN 0.15 5 % 
                              -steel LN 0.05 5 % 
Model uncertainty -concrete N 0.05 50 % 
                              -steel N 0.03 50 % 
Table 22. Stochastic model. N: Normal, G: Gumbel, LN: Lognormal. 
 
The design variable z  is determined by considering load combination 2.1 and 2.3. The design 
equations can then be written: 
 
   ( ) 0)1(/

111 =+−− cQcGmc QGRz αγγαγ     (25) 
 
   ( ) 0)1(/

333 =+−− cQcGmc QGRz αγγαγ     (26) 
 
z  is determined as z z z= max( , )1 3 . Index c  indicates a characteristic value. The partial safety 
factors in table 23 are determined with 2γγ =m . 
 
 Partial safety factor 
 Load combination 2.1 Load combination 2.3 
Permanent action =

1Gγ 1.0 =
3Gγ 1.15 

Variable action –environmental =
1Qγ 1.5 =

3Qγ 1.0 
                         -imposed =

1Qγ 1.3 =
3Qγ 1.0 

Strength            -concrete γ γm = =2 1.5 
                         -steel γ γm = =2 1.3 
Table 23. Partial safety factors. 
 
The reliability index β  is determined as function of α . The result is shown in figure 5. It is seen 
that an almost uniform distribution of the reliability index is obtained as a function of α . Only steel 
structures have a larger reliability when permanent actions are dominating (small α ). However, in 
practice variable actions will usually be dominating for steel structures.  



Note 8: Structural reliability: Level 1 approaches 

155 

 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 5. Reliability index β  for different combinations of variable actions and material type. 
 

In deterministic evaluations of the reliability the design equation is often rewritten as  
 
   ( )qqr QGm γγγ +−= )1(       (27) 
 
where 
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It is seen that r  can be considered as a ‘total safety factor’, namely as a product of the material 
partial safety factor and the weighted action partial safety factor. q  is seen to be a measure of the 
characteristic variable action compared to the total characteristic action. 
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Figure 6. ‘total safety factor’ r  as function of q  for different combinations of variable actions and 
material type. 
 
In figure 6 the ‘total safety factor’ r  is shown as a function of q  for different combinations of 
variable actions and material type. It is noted that the smallest value of the ‘total safety factor’ r  is 
obtained for values of q  between 0.2 and 0.3. A comparison with figure 5 shows that it is not in this 
interval that the smallest reliability index is obtained; in fact the largest reliability indices are 
obtained in this interval. The reasons for this are among others that  
• the variable actions have a larger coefficient of variation than the permanent actions 
• the ‘total safety factor’ r  is based on characteristic values which have some ‘safety’ included 

since they are obtained as quantile values in the distribution functions for actions and strengths. 
 
It is thus concluded that  
• the reliability level is almost constant for different combinations of variable and permanent 

actions and different material types 
• the ‘total safety factor’ r  is not a good indicator of the reliability. Evaluations of the reliability 

level require that probabilistic calculations are performed. 
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6.5 Partial safety factors for actions in new DS 409 
 
The final partial safety factors for actions in DS409 [24] are given in table 24. 
 
 Load combination 
 Serv.    Ultimate    Accidental 
Load type 1  2.1 2.21) 2.3 2.4  3.1 3.2 3.3 
Permanent action           
Self weight           
  cG  1.0  1.0 0.8 0.9 1.0  1.0 1.0 1.0 

   action free  25.0 cG  -  - - 1.0 -  - - - 
Weight of soil and 
ground water 

1.0  1.0 1.0 1.0 1.0  1.0 1.0 1.0 

Variable action           
 Variable action           
    imposed action -   1.3 1.3 1.0 1.0-1.3  ψ ψ ψ 
    environmental action -   1.5 1.5 1.0 1.0-1.3  - - ψ 
Other variable actions -   ψ ψ  ψ 1.0-1.3  ψ ψ ψ 
Horizontal  mass load -  1.0 1.0 1.0 -  - - 0.25 
Accidental action – 
impact, etc. 

-  - - - -  1.0 - - 

Accidental load  – fire -  - - - -  - - 1.0 
Table 24. Load combinations, partial safety factors and load combination factors ψ . 1) The partial 
safety factors for load combination 2.2 are for normal safety class. For low and high safety classes 
the partial safety factors for variable action have to be multiplied by 0γ , see table 6. 
 
The final partial safety factors for materials can be determined using (21) in section 6.2 with γ 2  
selected according to the coefficient of variation δ  for the material considered. In table 25 γ 2  
values are shown for different values of δ . The γ 2  values are determined such that the average 
reliability level is obtained for the relevant value of δ . The values for δ =0.05 and 0.15 shown in 
the table are derived in section 6.4.3. 
 
δ  <0.05 0.10 0.15 0.20 0.25 0.30 
γ 2  1.30 1.38 1.50 1.64 1.83 2.06 
Table 25. γ 2  as function of the coefficient of variation δ  (for 5 % quantiles).  
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Note 9: TIME-VARIANT RELIABILITY 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University  
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 

1 Introduction 
 
In the previous lectures it has been assumed that all variables could be considered either to be time-
invariant stochastic variables or deterministic parameters. However, loads such as wave-loads, 
snow-loads and wind-loads are usually modeled as time-varying stochastic processes. In this case 
we are usually interested in determining the probability that the load within a given period of time 
exceeds a given threshold, the so-called barrier crossing problem. Further, it is of interest to deter-
mine the distribution of the maximum and minimum values of the process. This note is partly based 
on an earlier lecture note by S. Engelund. 
 

2 Stochastic processes 
 
 
 
 
 
 
 
 
 
 
Figure 1. Realization of stochastic process.  
 
A stochastic process is an indexed set of random variables ]},0[),({ TttX ∈  defined in the sample 
space Ω . The index variable t  is here assumed to be time, defined on the time interval ],0[ T . Fig-
ure 1 shows a realization of a stochastic process.  
 
At time t  the stochastic variable )(tX  with realization )(tx  is described by the distribution function  
 
   { }( )xtXXPtxFX ≤== )();(      (1) 
 
At times 1t  and 2t the joint distribution function for the two random variables )( 1tX  and )( 2tX  is, 
see figure 1 
 
   { } { }( )2221112121 )()(),;,( xtXXxtXXPttxxFX ≤=∩≤==    (2) 
 
Correspondingly, if n  times are considered the joint distribution function is 
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The corresponding joint density function of order n  is defined by 
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The stochastic process is fully described by the distribution functions )(xFX , ),( 21 xxFX ,….  
The expected value function )(tXµ  is defined by 
 

   ∫==
∞

∞−
dxtxxftXEt XX ),()]([)(µ      (5) 

 
The autocorrelation function ),( 21 ttRXX  is defined by 
 

   ∫ ∫==
∞

∞−

∞

∞−
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The autocovariance function ),( 21 ttCXX  is defined by 
 
   ( )( ) )()(),(])()()()([),( 2121221121 ttttRttXttXEttC XXXXXXXX µµµµ −=−−=   (7) 
 
The variance function )(2 tXσ  is defined by ( 21 tt = ): 
 
   )(),(),()( 22 tttRttCt XXXXXX µσ −==      (8) 
 
The autocorrelation coefficient function ),( 21 ttXXρ  is defined by  
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),(),(
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21
21 tt

ttCtt
XX

XX
XX σσ

ρ =      (9) 

 
It is seen that 1),(1 21 ≤≤− ttXXρ . 
 
If all finite dimensional distribution functions )(xFX , ),( 21 xxFX ,…. are invariant to a linear trans-
lation of the time origin then the process is called strictly stationary. If this invariance assumption 
only holds for )(xFX  and ),( 21 xxFX  then the process is called weakly stationary. For a stationary 
process );( txFX  becomes independent on time and ),;,( 2121 ttxxFX  only becomes dependent on the 
time difference 21 tt −=τ . Similarly, ),( 21 ttRXX , ),( 21 ttCXX  and ),( 21 ttXXρ  will only be dependent 
on 21 tt −=τ . 
 
For a stationary stochastic process, the spectral density is related to the covariance function by the 
Wiener-Khintchine equations: 
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   ∫=
∞

∞−
ωωτωτ diSC XXX )exp()()(      (11) 

 
where ω  is the circular frequency in radians per second. From (8) then follows that the variance of 
the stationary process is: 
 

   ∫==
∞

∞−
ωω dSCC XXXX )()0(2      (12) 

 
If measurements of a stationary stochastic process are made, then usually only one realization be-
comes available. In that case the expected value is estimated by: 
 

   ∫=
T

dx
T 0

)(1 ττµ       (13) 

 
If this time average approaches Xµ  for ∞→T  the process is ergodic in mean value. Similarly if 
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approaches )(τXXR  for ∞→T  the process is ergodic in correlation. If this property holds for all 
moments then the process is called ergodic. 
 
A stochastic process ]},0[),({ TttX ∈  is Gaussian if the random variables )( 1tX , )( 2tX ,…, )( ntX  
are jointly Normal distributed for any n . The joint density function can then be written: 
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where C  is the covariance matrix: 
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and ij ][ 1−C  denotes element ji,  in the inverse covariance matrix 1−C . A Gaussian process is thus 
completely determined by )(tXµ  and ),( 21 ttCXX . Therefore a stationary Gaussian process is strictly 
stationary. The derivative process is also Gaussian: 
 

   )()( tX
dt
dtX =&       (17) 

 
For a stationary process it can be shown that 
 
   0][ =XE &        (18) 
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   0] [ =XXE &       (20) 
 
Consider a stationary Gaussian process with mean value Xµ  and standard deviation Xσ . Since 

)(tX  is a stationary process the mean value of X&  is 0=X&µ , see (18). The standard deviation of X&  
is denoted X&σ . The joint density function of X  and X&  is then 
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3 Barrier Crossing 
 
 
 
 
 
 
 
 
 
Figure 2. Realization of stochastic process.  
 
In many engineering applications it is necessary to determine the reliability of structural compo-
nents subject to stochastic process loading. Then the probability that the structural component en-
ters, during some given time interval, a critical state (failure) must be determined. Let failure occur 
when the process )(tX  exceeds some threshold ξ , see figure 2 where failure occurs at time ft . The 
probability of failure in the interval [ ]T;0  is 
 
   [ ]( )TttXPtPf ;0   ,)(1)( ∈∀<−= ξ      (22) 
 
In the following a number of different methods by which estimates of (22) can be obtained are pre-
sented. 
 

3.1 Simulation 
 
Monte Carlo simulation of stochastic processes has attracted much attention in the recent years. 
Partly because the development of more efficient computers the method has become more attractive 
and partly because it often is the only available method to determine the reliability of complicated 
nonlinear structural systems. The most commonly used method for simulating Gaussian processes is 
the so-called spectral representation method proposed by Borgman [1]. 
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where )(ωXS  is the one-sided spectrum of the stochastic process and ωω ∆= kk . The phases, kΘ , 
are stochastic variables, independent and uniformly distributed in the interval [ ]π2;0 . The process 

)(tXM  is asymptotically Gaussian as M  becomes large due to the central limit theorem. Further, it 

is important to notice that the process )(tXM  is periodic with the period 
ω
π

∆
2 . It is evident that for 

longer time histories and finer spectral resolution the computation time becomes excessive. Fortu-
nately, this problem can be overcome by performing the summation in (23) by Fast Fourier Trans-
formation (FFT). The failure probability now can be determined by simulating a large number of 
realizations of )(tX  and determining the relative number of times )(tX  exceeds the threshold 
value, ξ . 
 

   
N
NP C

f =        (24) 

 
where CN  denotes the number of realizations which exceeds the threshold value and N  denotes the 
number of realizations of )(tX . 
 
The simulation method is not restricted to Gaussian processes. It is, however, more complicated to 
simulate Non-Gaussian processes. The major disadvantage of the method is the fact that it requires 
a very large number of simulations in order to determine an out-crossing probability if the out-
crossings events are rare. In that case the method is very inefficient even if the Fast Fourier Trans-
formation is applied to perform the summation. 
 

3.2 Rice's In- and Exclusion Series 
 
Let kp  denote the probability of exactly k  out-crossings in the interval [ ]T;0 . It is then evident that 
the probability of no out-crossings or the complementary first passage probability is 
 

   

( )

...
6
1

2
1     

!
)1(1     

)1)...(1(
!
)1(1     

!
!
)1(1     

11     

1     

1

3210

1

1 1

1 1

1 1

1

0

+−+−=

∑
−

+=

∑ ∑ +−−
−

+=

∑ ∑ 






−
+=

∑ ∑ 







−+=

∑−=

−=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

mmmm

m
i

pikkk
i

p
i
k

i
i

i
k

p

p

Pp

i
i

i

k
i k

i

k
i k

i

k i

i
k

k
k

f

    (25) 

 
where im  denotes the i th factorial moment of the number of out-crossings, i.e. 
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and where it has been used that  
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i
k

>=







ifor     0       (27) 

 
(25) is the so-called Rice's '' in- and exclusion '' series (see Rice [4] which provides an exact solu-
tion to the barrier crossing problem. Of course, the moments ,...)2,1(  =imi  must exist and the se-
ries in (25) must converge in order to make (25) a valid representation. The series provides lower 
and upper bounds for the survival probability upon truncation after an odd or even term, respec-
tively. The computational effort involved in evaluating )(tPf  according to this method, however, is 
extensive. Further an increasing number of terms has to be taken into account as 1m  increases. 
Normally the series is truncated after the first term. This provides an upper limit for the failure 
probability 
 
   1mPf ≤        (28) 
 
where 1m  is nothing but the mean number of out-crossings. It is evident that )(tPf  can only be ap-
proximated by 1m  if the out-crossing probability is very small, i.e. fP <<1. 
 

3.3 The Poisson Assumption 
 
Let the process ),( ξtN +  be a process that increases by one each time the process )(tX  exceeds the 
threshold ξ  and let 0),0( =+ ξN . Obviously ),( ξtN +  is a counting process which counts the num-
ber of exits of )(tX  across ξ . 
 
If it is now assumed that the probability of having two or more out-crossings in ], ] ttt ∆+  is negli-
gible compared to the probability of having exactly one out-crossing, if t∆  is sufficiently small, and 
further that the out-crossings in ], ] ttt ∆+  are independent of the previous out-crossings in ],0] t , 
then )(tN +  is a Poisson process. The probability that the number of out-crossings ),( ξtN +  is equal 
to n  can be determined as 
 

   ( ) ( ) ))(exp(),(
!

1),( tt
n

ntNP n λξλξ −==+     (29) 

 
where ),( ξλ t  is the mean value of  ),( ξtN +  in the interval ],0] t , 
 
   1)],([),( mtNEt == + ξξλ      (30) 
 
The probability of failure now is 
 
   ( ) )exp(10),(1)( 1mtNPtPf −−==−= + ξ     (31) 
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For broad-banded processes the correlation length is of the magnitude equal to the zero up-crossing 
period. In this case the maxima between succeeding zero-upcrossings are virtually uncorrelated. 
Hence, the out-crossings from the safe domain related to these maxima will also be independent and 
(31) is valid. 
 
 
 
 
 
 
 
 
 
Figure 3. Out-crossings of a narrow-band process. 
 
For narrow-banded processes, the out-crossings in case of low to medium barrier levels tend to oc-
cur in clumps, see figure 3. In this case the crossing events are highly correlated, and (31) is no 
longer appropriate. However, at higher barrier levels only the highest peak in a clump is likely to 
imply an out-crossing. This suggests that the out-crossings tend to become independent as ∞→ξ . 
Actually, this hypothesis can be formally proved for Gaussian processes, see Cramer and Leadbetter 
[3]. 
 

3.4 Initial Conditions 
 
By (25) and (31) one determines the probability that )(tX  at some time crosses the threshold, ξ . It 
has not been taken into account that the process might start in the failure region, i.e. ξ>)0(X . By 
taking the initial condition into account the failure probability can be defined as 
 
   ( )ξξ <∈∀<−−= )0( ],0[  )( ))0(1(1)( XTttXPPTP ff    (32) 
 
where ( )ξ<= )0( )0( XPPf  is a simple time-invariant reliability problem.  
 
By differentiation of (32) one obtains 
 

   ( )ξ<= )0( )(
)(

1 XPtf
dT
TdPf      (33) 

 
where )(1 tf  is the probability density function of the time to the first barrier crossing conditional on 

ξ<)0(X . No exact solutions for )(1 tf  are available even for very simple problems. Hence, it is 
necessary to determine some approximation by which the failure probability can be determined. 
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4 Mean Number of Out-crossings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Realizations of )(tX , )(tY  and )(tY& . 
 
In order to determine the mean number of exits of )(tX  across the level ξ  it is convenient to con-
sider the stochastic process )(tY  given by 
 
   ))(()( ξ−= tXHtY       (34) 
 
where (.)H  is Heavisides step function. By differentiation of )(tY  the derivative process )(tY&  can 
be determined by 
 
   ))(()()( ξδ −= tXtXtY &&       (35) 
 
where (.)δ  denotes the dirac delta function. In (35) it has been assumed that )(tX  is a differenti-
able process. For a realization of )(tX  the corresponding realizations of )(tY  and )(tY&  are shown 
in figure 4. It is seen that )(tY&  consists of a series of unit pulses which occurs each time an out-
crossing of )(tX  occurs. The number of out-crossings, ),( ξTN , within the time interval ],0] T  can 
be determined by integrating the absolute value of )(tY&  
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The mean number of out-crossings is 
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where XXf &  is the joint density function of X  and X& . It should be noted that by deriving (37) both 
the up-crossings and down-crossings have been taken into account. However, for a stationary proc-
ess it is reasonable to assume that any positive crossing is followed by a negative crossing: 
 

   [ ] [ ] [ ]),(
2
1),(),( ξξξ TNETNETNE == −+     (38) 

 
where ),( ξTN −  counts the number of down-crossings of X  and X&  of the level ξ . This implies 
that 
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It is often convenient to consider the rate of out-crossings pr unit time, ),( ξν t+  which is defined by 
 

   ∫=
∞

+

0
 ),,( ),( xdtxfxt XX &&& & ξξν      (40) 

 
which is the so-called Rice's  formula, see [4]. For stationary processes the out-crossing intensity 
does not depend on t  i.e. )(),( ξνξν ++ =t . 
 
From (28) follows that an upper bound of the probability of failure in the time interval ],0] T  is 
 

   ∫=≤ +
T

f dttmTP
0

1 ),()( ξν       (41) 

 
If )(),( ξνξν ++ =t  then 
 
   TTPf )()( ξν +≤       (42) 
 
Higher order factorial moments and factorial moments of the number of out-crossing of a given safe 
domain by a vector process can be determined on the basis on the so-called Belyaev's formula, see 
[1]. This formula, however, can only be solved analytically in a few special cases and a numerical 
solution is generally a non-trivial task. 
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4.1 Initial Conditions 
 
We have now determined the mean number of out-crossings of )(tX  without taking into account 
the initial conditions. The mean number of )(tN +  given ξ<)0(X  is often approximated by the 
unconditional mean value, 1m . By using (11) one then obtains 
 
   ( ))](T,N E[-exp ))0(1(1)( ξ+−−= ff PTP     (43) 
 
It has, however, been shown that a better approximation for the mean number of out-crossings 
given ξ<)0(X  is given by 
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whereby 
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This expression has been shown to yield very accurate results even for relatively low threshold lev-
els, where the out-crossings are not independent. 
 

4.2 Gaussian Processes 
 
Let )(tX  be a stationary Gaussian process with density function given by (21). For a given thresh-
old ξ  the out-crossing intensity now can be determined on the basis of Rice's formula (40): 
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For Xµξ =  one finds the zero-crossing intensity 
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Example 1 
Consider a stationary Gaussian process with  
 

1=Xµ  3.0=Xσ  2.0=X&σ  
 
If the critical barrier is 
 
 2=ξ  
 
then the out-crossing intensity is, see (46) 
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and the zero-crossing intensity becomes 
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* * * * * * * * 

 

5 Distribution of Local Extremes 
 

 
Figure 5. Realization of narrow-banded stochastic process and density function of local extremes. 
 
First, consider the simple case of a stationary narrowband Gaussian process, )(tX . A realization 
of a narrow-band process is shown in figure 5. For an ideally narrow-band process the rate of zero-
crossings is equal to the rate of occurrence of maxima. Further the rate of crossings of the level ξ  is 
equal to the rate of occurrence of maxima above ξ . Therefore, the ratio )0(/)( ++ νξν  may be inter-
preted as the complementary distribution function of the local maxima, Ξ  
 

   




















 −
−−=−=>Ξ−= +

+

Ξ

2

2
1exp1

)0(
)(1)(1)(

X

XPF
σ
µξ

ν
ξνξξ      , Xµξ ≥   (48) 

 
Differentiation of (48) yields the density function of the local maxima 
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which is the density function of the Rayleigh distribution. 
 

Example 2 
Using the same data as in example 1 and assuming that the process is narrow-banded, the density 
function of local maxima (peaks) becomes 
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and the expected number of peaks between 1.5 and 1.6 becomes 
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* * * * * * * * 
 

Example 3 
 

 
Figure 6. Joint density function ),( xxf XX && . 
 
Consider a stationary stochastic process where the joint density function of X  and X&  is: 
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The density function is illustrated in figure 6. The marginal density functions are 
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The out-crossing intensity of the level ξ =0.8 is determined using Rice’s formula, see (40): 
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If the process is approximated by a Gaussian process with the same expected values and standard 
deviations then out-crossing intensity becomes, see (46): 
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and the expected number of peaks above 0.8 becomes, see (48): 
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In the following is considered a normalized process mX  with expected value equal to zero and unit 
standard deviation. A realization mx  is obtained from: 
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m
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=       (50) 

 
For non-narrowband Gaussian processes an expression for the distribution of local maxima can be 
derived on the basis of Rice's formula, (40). Using the fact that the occurrence of a maxima of )(tX  
implies a down-crossing of )(tX&  of the level Xµξ = , and by introducing the so-called irregularity 
factor 
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Rice [4] has derived the following expression for the density function of the local maxima: 
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where (.)Φ  denotes the standard Normal distribution and (.)ϕ  denotes the standard Normal density 
function. The irregularity factor α  takes on values in the interval between zero and one. It can be 
shown that when α =1 (an ideally narrow-band process) (52) gives the Rayleigh distribution, eq. 
(49). When α  is approximately equal to zero, the density function of the local extremes, eq. (52), 
tends to the Gaussian density function with zero mean and standard deviation Xσ . This shows that 
maxima occur randomly and with equal probability of being above and below zero. 
 

6 Global Extremes 

6.1 Gaussian process 
It is often on interest to have information about the largest of the maxima in an interval ],0[ T . In 
this interval the expected number of local maxima is mNN α= , where N  denotes the expected 
number of zero-crossings. Again consider a Gaussian process with zero mean and unity standard 
deviation. The distribution function, )( mT xF  of the extreme value in the interval ],0[ T  can be ob-
tained from 
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Integration of (52) gives 
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Assuming that mx  is large leads to the asymptotic result 
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where it has been used that for large z  
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Now introduce the variable y  given by 
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and using the fact that the largest of mN  observed maxima is located around the mN/1  fractile, 
which implies that the variable y  is of order unity for increasing mN , we obtain 
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The mean value and the standard deviation of the maximum value in the interval ],0[ T  now can be 
determined on the basis of (58). It is found that 
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N
log2
577.0log2max +=µ      (59) 
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In the Danish codes of practice for wind loads the characteristic wind load is determined using  (59) 
and (60), see [5]. 
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6.2 Loads modeled by Poisson ‘spike’ process 
 
 
 
 
 
 
 
 
 
 
Figure 7. Poisson ‘spike’ process. 
 
A stochastic process { })(tX  is considered where the length of the single events is very small and 
can be considered as spikes. The size of the spikes are modeled as independent stochastic variables 
X  with distribution function )(xFX . The times ,..., 21 tt  of the events are assumed to be modeled by 
a Poisson process with intensity )(tλ , see section 3.3. In figure 7 is shown the case with a time 
varying threshold )(tξ . The events where the ‘spikes’ exceed the threshold can be considered as a 
new Poisson process with intensity 
 

[ ]))((1)()( tFtt X ξλλξ −=       (61) 
{ })(tX  could for example model a load process and the threshold )(tξ  could model the strength of 
an element. 
 
Using (31) and (39)-(40) the probability of failure becomes: 
 









∫−−=
t

f dtP
0

)(exp1)( ττλξ       (62) 

 
If the threshold )(tξ  is constant ξξ =)(t  the probability of failure becomes: 
 

[ ] 







∫ −−−=
t

Xf dFtP
0

)(1)(exp1)( τξτλ      (63) 

 
When the threshold is constant the probability of no failure in the time interval ],0[ T  is equal to the 
distribution function )(ξTF  of the maximum value of the stochastic process. Therefore 
 

{ } [ ] 







∫ −−=−=




 ≤=

∈

T

XfTtT dFTPtXPF
0],0[

)(1)(exp)(1)(max)( τξτλξξ   (64) 

 
If the intensity )(tλ  is time independent, then 
 

[ ]( )TFF XT λξξ )(1exp)( −−=      (65) 
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6.3 Loads modeled by Poisson square-wave process 
 
 
 
 
 
 
 
 
 
 
Figure 8. Poisson square wave process. 
 
In figure 8 is shown a so-called square-wave Poisson process. The process { })(tX  is constant be-
tween the changes in size at time ,..., 21 tt . The times where the process changes its value are as-
sumed to be modeled by a Poisson process with intensity )(tλ , see section 3.3. The threshold is 
assumed to be constant equal to ξ .  
 
It can be shown that the distribution function )(ξTF  of the maximum value of the stochastic process 
in the time interval ],0[ T  is, see e.g. Madsen et al. [6] 
 

[ ] 







∫−−=
T

XXT dFFF
0

)()(1exp)()( ττλξξξ     (66) 

 
If the intensity )(tλ  is time independent, then the distribution function becomes 
 

[ ]( )TFFF XXT λξξξ )(1exp)()( −−=      (67) 
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Note 10: LOAD COMBINATIONS 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University  
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 

1 Introduction 
 
In this note the load combination problem is considered. The situation is considered where two or 
more variable loads act on a structure. How is for example the annual maximum combined load 
described and how are characteristic and design values determined? These are questions considered 
in this note, which is partly based on [1] and [2].  
 

2 Exact model 
 

 
Figure 1. Realizations of two variable loads and their sum. 
 
Consider two independent and stationary stochastic processes ]},0[),({ 1 TttX ∈  and 

]},0[),({ 2 TttX ∈  with joint densities functions ),( 1111
xxf XX &&  and ),( 2222

xxf XX &&  for ( 1X , 1X& ) and 

( 2X , 2X& ). The sum of the two processes is 
 
   )()()( 21 tXtXtX +=       (1) 
 
with derivative )()()( 21 tXtXtX &&& += . Figure 1 shows a realization of the stochastic processes. Note 
that in the time interval considered the maximum value for )(tX  does not occur at the same time as 
the maximum values for )(1 tX  or )(2 tX . The maximum value of )(tX  in the time interval ],0[ T  is 
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denoted TX max, . T  could for example be 1 year. The distribution function for TX max,  is equal to 1 
minus the probability that the maximum value exceeds a threshold ξ  in ],0[ T : 
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where )(ξν X  is the out-crossing intensity determined by Rice’s formula ( ∫=
∞

0
),()( xdxfx XXX &&& & ξξν ). 

To calculate )(ξν X  we need the joint density junction ),( xxf XX && . First, it is seen that the distribu-
tion and density functions for X  can be obtained from the convolution integrals: 
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Similarly: 
 

   ∫ ∫ −−=
∞

∞−

∞

∞−
111111 ),(),(),(

2211
xddxxxxxfxxfxxf XXXXXX &&&&& &&&    (5) 

 
where 21 xxx +=  and 21 xxx &&& += . 
 
Further, the out-crossing intensity )(ξν X  is determined by the following generalization of Rice’s 
formula: 
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where ω  is shown in figure 2. 
 

 
Figure 2. Domain ω . 
 
An upper bound can then be determined from 
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where 1ω  and 2ω  are shown in figure 3. 
 

 
Figure 3. Domains 1ω  and 2ω . 
 
For a sum of three processes the following generalization applies: 
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where )(xf

ji XX +  is determined by the convolution integral: 

   ∫ −=
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Example 1 
Consider two independent stochastic processes with joint density functions: 
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The marginal density functions for 1X  and 2X  are: 
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The out-crossing intensities 1X  and 2X  are: 
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An upper bound for the out-crossing intensity for )()()( 21 tXtXtX +=  for 
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3 πξπ
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then be determined from, see integration limits in figure 4: 
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The out-crossing intensity of 2=ξ  is then approximated by 
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Figure 4. Integration domain for example 1. 
 
* * * * * * * * 
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Example 2 
Consider two independent, stationary Gaussian stochastic processes )(1 tX  and )(2 tX  with statisti-
cal parameters: 

1
1
=Xµ  3

1
=Xσ  2

1
=X&σ  

0
2
=Xµ  2

2
=Xσ  1

2
=X&σ  

 
Further, the combined process is: 
 
   )()(2)( 21 tXtXtX +=  
 
Since )(1 tX  and )(2 tX  are Gaussian also )(tX  is Gaussian with statistical parameters: 
 
   2012 =+⋅=Xµ   

   325.6232 222 =+⋅=Xσ   

   123.4122 222 =+⋅=X&σ  
 
The out-crossing intensities of )(tX  with the critical barrier 12=ξ  is 
 

       
325.6

212
2
1exp

325.6 2
123.4)12(

2

















 −

−=+

π
ν =0.0297 

 
Note, that in this case with Gaussian processes and a linear combination of the processes, the out-
crossing intensity can be determined without evaluation of the integrals in (7). 
 
 
* * * * * * * * 
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3 The Ferry Borges-Castanheta load model 
 

 
Figure 5. The Ferry Borges-Castanheta load model. 
 
In the Ferry Borges-Castanheta load model, [3] it is assumed that the variable load processes in the 
load combination problem can be approximated by ‘square-wave’ processes, see figure 5 for the 
case of two load processes )(1 tX  and )(2 tX . The following description is based on ISO [2].  
 
It is further assumed that: 
 
• { })(1 tX  and { })(2 tX  are stationary, ergodic stochastic processes 
• All intervals 1τ  with constant load for load process { })(1 tX  are equal and all intervals 2τ  for 

load process { })(2 tX  are equal. 
• 21 ττ ≥  
• 11 τTr =  and 22 τTr = are integers 
• 12 rr  is an integer 
• 1X  and 2X  are constant during each interval 1τ and 2τ , respectively 
• The values of 1X  for different intervals are mutually independent. The same holds for 2X . 
• 1X  and 2X  are independent. 
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Figure 6. Distribution functions for load combination problems. 
 
For each process (load) three different stochastic variables are defined: 
 
1. An arbitrary point in time stochastic variable for load no j :  *

jX  with distribution function 
)( jX xF

j
. 

2. The maximum value for load no j : TjX max,,  during the reference time T  with the distribution 

function: j

jj

r
jXjTX xFxF )]([)(max,, = . 

3. For each load a combination load is defined: 
• for 2X  the combination load is denoted CX 2  and is equal to the maximum value occurring 

during the interval 1τ . The distribution function becomes: 12

22

/
22 )]([)( rr

XX xFxF
C

=  
• for 1X  the combination load is denoted CX1  and is equal to the arbitrary point in time vari-

able *
1X . The distribution function thus becomes: )()( 11 11

xFxF XX C
= . 

 
These stochastic variables and quantiles of them can be used in reliability analyses and in defining 
design values if the partial safety factor method is used, see next two sections. The distribution 
functions are illustrated in figure 6. 
 
Note that the combination load CX  is not the same as the characteristic value of a stochastic vari-
able, cx . 
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4 The Turkstra rule 
 
As can be seen from section 2 it is generally very difficult to obtain an exact / analytic expression 
for the out-crossing intensity (and the probability of failure). Therefore a number of approximations 
have been suggested. In practice (and in codes) the Turkstra rule, [4] is often used in load combina-
tion problems to estimate the probability of failure and to establish design values to be checked in a 
level 1 safety approach. 
 
Instead of { })(...)()(max 21max, tXtXtXX rTT +++=  the following r  stochastic variables obtained 

from r  different combinations of the loads (or load effects) are considered: 
 

{ }
{ }
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2

*
1

*
2
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**
211

tXtXtXZ

tXtXtXZ

tXtXtXZ

rTr

rT

rT

+++=

+++=

+++=

M
     (10) 

 
where *t  is an arbitrary point in time and )}({max tX jT

 is the maximum value of )(tX j  in the time 

interval ],0[ T . TX max,  is then approximated by { }rT ZZZX ,...,,max 21max, = . This stochastic variable 
can be used in evaluation of the reliability of the structure considered.  
 
If the partial safety factor method is used the Turkstra rule is often applied together with the Ferry 
Borges-Castanheta load model.  
 
It is assumed that the load effect (e.g. a cross sectional force) can be written as a function of two (or 
more loads): 
 
   ),( 21 XXSS =       (11) 
 
According to the Turkstra rule two load combinations are considered: 
1. 1X  is dominating and 2X  is the non-dominant load. The resulting load effect is 

),( 2max,,1 CT XXSS =  
2. 2X  is dominating and 1X  is the non-dominant load. The resulting load effect is 

),( max,,21 TC XXSS =  
 
In a level 1 code, two combinations for the design load effect corresponding to these two combina-
tions are generally considered: 
1. )  ,(  )  ,(   222112,11,11, ccddd xxSxxSS ψγγ==  

2. )  ,()  x,( 221112,21,22, ccddd xxSxSS γψγ==  
 
where 21  , γγ  are partial safety factors, 21  ,ψψ  are load combination factors and 21  , cc xx  are charac-
teristic values (usually 98 % quantiles in the distribution function for the annual maximum load 
which is 2,1),(year1max,, == jxF jTX j

. 
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Note that this definition of load combination factors are different from that used in the Danish codes 
[5] where design values for non-dominating variable loads are calculated as jcj x  ψ  i.e. without the 
partial safety factor jγ . 
 
The design load effect to be used in design checking is:  
 
   },max{ 2,1, ddd SSS =         (12) 
 
In the following it is shown how the above model can be used in a reliability analysis and how it 
can be used to determine load combination factors. 
 

4.1 Reliability analysis: 
Load combination 1: 1X  and 2X  are modeled as stochastic variables with distribution functions 

)( 1max,,1
xF TX  and )( 22

xF
CX . A reliability analysis is performed using a given limit state function and 

the load effect modeled by (11). The result is a reliability index 1β  and design-point values: *
1,1x  and 

*
2,1x . 

 
Load combination 2: Similarly, 1X  and 2X  are modeled as stochastic variables with distribution 
functions )( 11

xF
CX  and )( 2max,,2

xF TX . A reliability analysis is performed using a given limit state 
function and the load effect modeled by (11). The result is a reliability index 2β  and design-point 
values: *

1,2x  and *
2,2x . 

 
The two cases can be considered as two failure modes and a series system reliability index can be 
estimated. 
 
Note that if there is a non-zero probability that the load jX  is equal to zero during some of the time 
intervals jτ , then the distribution function for jX  has to include this probability, i.e. 
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xF
j

Xjj
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j

j
    (13) 

 
where )(* xF

jX  is the distribution function for jX  given 0>jx . 
 

4.2 Level 1 approach:  
In this subsection the level I approach is considered. First it is described how the load combination 
factors can be estimated directly on the basis of reliability analyses. Next, the computationally sim-
pler design-value format is used to determine load combination factors. 
 
It is assumed that a target reliability index tβ  and characteristic values are given. The partial safety 
factors and load combination factors can now be estimated.  
 
Load combination factors calculated from reliability analyses: reliability analyses are performed 
such that for both load combinations the reliability index becomes equal to tβ . From the corre-
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sponding design-point values the partial safety factors and load combination factors can be esti-
mated: 
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Load combination factors calculated from design-value format: In Eurocodes, Basis of Design [5] 
and ISO [2] it is recommended that design values of dominating variable loads are determined 
from: 
 
   )()( ,max,,

t
SjdjTX xF

j
βα−Φ=      (15) 

 
where Sα =-0.7 is recommended. If the Turkstra rule is applied design values for non-dominating 
loads can be determined from: 
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   )4.0()()( 22,1 22

t
SCXdX xFxF

CC
βα−Φ==     (17) 

 
where the factor 0.4 is chosen as a reasonable value. Partial safety factors and load combination 
factors can then be obtained from (note the similarity with (14): 
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Example 3 
It is assumed that 1X  and 2X  are modeled as Gumbel distributed stochastic variables with statisti-
cal parameters: 
 
   Expected values: 1µ  and 2µ  
   Coefficients of variation: 1V  and 2V  with a reference period =T 1 year 
   Number of repetitions in reference time =T 1 year: 1r  and 2r  
 
Characteristic values are assumed to be 98% quantiles in the distribution functions for annual 
maximum loads. The partial safety factors are determined from: 
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The load combination factors are determined from: 
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       (21) 
 
* * * * * * * * 
 

Example 4. Load combination factors for imposed loads and wind load 
 
The reference period is assumed to be =T 1 year and the corresponding target reliability index 

tβ =4.3. 
 
 Load Distribution Coefficient of 

Variation 
jτ  jr  

1Q  Inposed  Gumbel 0.2 1τ =0.5 years 1r =2 

2Q  Wind  Gumbel 0.4 2τ =1 day 2r =360 
Table 1. Statistical data 
 
If the design-value format is used (18)-(21) give the partial safety factors and load combination fac-
tors in table 2. 
 
Load Characteristic value Partial safety factor Load combination factor 
Imposed 

11 52.1 µ=cq  1γ =1.28 1ψ =0.58 
Wind  

22 04.2 µ=cq  2γ =1.42 2ψ =0.44 
Table 2. Partial safety factors and load combination factors with design-value method. 
 
Now, consider the following limit state function: 
 
   )3.06.04.0( 21 QQGzRg ++−=  
 
where z  is a design parameter, R  is a Lognormal distributed strength with coefficient of variation 
= 0.15 and G  is a Normal distributed permanent load with expected value 1 and coefficient of 
variation = 0.1. 1Q  and 2Q  have expected values = 1 and other statistical data as in table 1.  
 
In load combination 1 (imposed load dominating) 1Q  and 2Q  have the distribution functions 

)( 1max,1
qFQ  and ( ) 1

max,22

/1
22 )()( r

QQ qFqF
C

= . In load combination 2 (wind load dominating) 1Q  and 2Q  

have the distribution functions ( ) 1

max,11

/1
11 )()( r

QQ qFqF
C

=  and )( 2max,2
qFQ . 

max,1QF  and 
max,2QF  refer to 

the statistical data in table 1. The design values for the two load combinations corresponding to 
tβ =4.3 and the associated load combination factors obtained by (14) are shown in table 3. The load 

combination factors are rather large, whereas compared to the results in [6], example 1 and 2 the 
partial safety factors are small. Therefore, it is of interest to calculate modified load combination 
factors where the partial safety factors in [6], example 1 are used, see table 4 below. The load com-
bination factors in table 4 are larger but comparable to those obtained by the design-value method, 
see table 2. 
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Load Load  

combination 1 
Load  
combination 2 

Partial safety factor Load combination factor 

Imposed  *
1,1q =1.62 *

1,2q =1.51 

1

*
1,1

1
cq

q
=γ =1.07 *

1,1

*
1,2

1 q
q

=ψ =0.93 

Wind  *
2,1q =2.03 *

2,2q =2.25 

2

*
2,2

2
cq

q
=γ =1.10 *

2,2

*
2,1

2 q
q

=ψ =0.90 

Table 3. Partial safety factors and load combination factors with reliability method. 
 
 
Load Partial safety factor Load combination factor 
Imposed  1γ =1.43 

11

*
1,2

1
cq

q
γ

ψ = =0.69 

Wind  2γ =1.84 

22

*
2,1

1
cq

q
γ

ψ = =0.54 

Table 4. Modified partial safety factors and load combination factors with reliability method. 
 
* * * * * * * * 

Example 5. Load combination factors for snow and wind loads 
 
The reference period is assumed to be =T 1 year and the corresponding target reliability index 

tβ =4.3. The statistical data are shown in table 5. Note that snow load only occurs in the period 
November – March. The same limit state function as in example 1 is used. 
 
 Load Distribution Coefficient of 

Variation 
jτ  jr  

1Q  Snow  Gumbel 0.4 1τ =15 days (nov-mar) 1r =10 

2Q  Wind  Gumbel 0.4 2τ =1 day 2r =360 
Table 5. Statistical data. 
 
In load combination 1 (snow load dominating) 1Q  and 2Q  have the distribution functions )( 1max,1

qFQ  

and ( ) 24/1
22 )()(

max,22
qFqF QQ C

= .  
 
In load combination 2 (wind load dominating) 1Q  and 2Q  have the distribution functions 

( ) 10/1
11 )()(

max,11
qFqF QQ C

=  and ( ) 360/150
2 )(

max,2
qFQ .  

 
The design values for the two load combinations corresponding to tβ =4.3 and the associated load 
combination factors obtained by (14) are shown in table 6. Note that the load combination factor for 
snow is much larger than the load combination factor for wind. 
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 Load Load combination 1 Load combination 2 Load combination factor 
Snow *

1,1q =3.70 *
1,2q =3.06 

*
1,1

*
1,2

1 q
q

=ψ =0.83 

Wind *
2,1q =0.23 *

2,2q =0.95 
*

2,2

*
2,1

2 q
q

=ψ =0.24 

Table 6. Load combination factors with reliability method. 
 
* * * * * * * * 
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Note 11: Example: Fatigue / Reliability-Based Inspection Planning 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University  
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 

1 Introduction 
 
This note gives an introduction to the main steps in a probabilistic fatigue analysis and inspection 
planning for welded joints. As example tubular joints in fixed offshore platforms of the steel jacket 
type are considered, but the probabilistic modeling is general and can be used for other types of 
structures. Initially the fatigue loading is described, here as an example wave loading. Next stress 
analysis is considered. Based on a spectral analysis the stress spectra for critical points (hot spots) in 
the joint can then be determined using an influence matrix approach. From the stress spectra stress 
ranges can be determined and the number of stress cycles can be estimated, e.g. by the Rainflow 
counting method. 
 
Two models for the fatigue strength are described, namely the classical SN approach and a fracture 
mechanics approach where the size of the crack is compared with a critical crack length, e.g. the 
thickness of the tubular member. The basic steps in a reliability analysis with respect to fatigue and 
in reliability-based inspection planning is described and illustrated. Part of this note is based on EFP 
[1].  
 

2 Fatigue loading 
 
The most important load for fatigue failure of welded offshore structures is wave loading. Current is 
insignificant because the time variation is very slow compared with wave loading. The fatigue load 
due to wind excitation can contribute by 10-15 % of the total fatigue load but usually it is of minor 
importance. In this section we therefore concentrate on wave loading. 
 
The statistical properties of sea waves are most often modeled using so-called short-term sea states. 
The duration of a sea state is normally taken as 3 hours. Within each sea state the wave elevation is 
assumed modeled by a stationary, Gaussian stochastic process )}({ tη . The wave elevation )(tη  is 
assumed Normal distributed with expected value 0=ηµ  and standard deviation ησ . The auto-
spectrum of )}({ tη  can be modeled by a number of different spectra, e.g.  
 
• Pierson-Moskowitz 
• JONSWAP 
 
The Pierson-Moskowitz spectrum has the following form 
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where ω  is the cyclical frequency, SH  is the significant wave height and ZT  is the zero up-crossing 
period. The parameters SH  and ZT  are constant within each sea state. In figure 1 a typical wave 
spectrum is shown. 
 

 
Figure 1. Pierson-Moskowitz spectrum. 
 

ZT [sec] 

SH [m]    
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12

10.5-11.0     +
10.0-10.5     + +
9.5-10.0    1 +
9.0-9.5    1 +
8.5-9.0   + 1 +
8.0-8.5   1 1 1 +
7.5-8.0   1 2 1 +
7.0-7.5   2 2 1 +
6.5-7.0   + 2 3 1 +
6.0-6.5   1 5 4 2 1
5.5-6.0   3 7 5 1 1
5.0-5.5   1 9 11 5 2 1
4.5-5.0   3 18 13 7 2 1
4.0-4.5   1 11 25 10 7 2 1
3.5-4.0   3 22 30 8 4 1
3.0-3.5   1 20 35 25 5 3 2
2.5-3.0   3 51 42 18 3 1 1
2.0-2.5   15 70 30 15 3 1 
1.5-2.0   5 71 58 20 10 2 1 
1.0-1.5   23 91 38 10 3 1  
0.5-1.0   7 32 16 6 3 1  
0.0-0.5   1 1 2 1   
Table 1. Representative scatter diagram for central North Sea. Numbers are probabilities in parts per 
thousand. +: 0.0<probability<0.0005. 
 
Long-term observations of the sea are usually performed by observing the sea surface for 20 min-
utes every third hour. For each observation SH  and ZT  are estimated. The relative number of pairs 
of SH  and ZT  can be represented in so-called scatter diagrams, see table 1. Based on the observa-
tions it is also possible to fit the long-term distribution functions for SH , e.g. by a Weibull distribu-
tion  
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where γ , 0H  and CH  are parameters. 
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From table 1 it is seen that SH  and ZT  are dependent. Based on the observations a long-term distri-
bution function for ZT  given SH  can be fitted, for example by a two-parameter Weibull distribu-
tion  
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where )(1 Shk  and )(2 Shk  are functions of Sh . In [2] the following models are obtained based on 
data from the Northern North Sea ( Sh  in meters). 
 
   )07.0exp(05.6)(1 SS hhk =      (4) 
   )21.0exp(35.2)(2 SS hhk =      (5) 
 
Generally the distribution functions for SH  and ZT  are dependent on the wave direction Θ . If eight 
directions (N, NE, E, SE, S, SW, W, NW) with probabilities of occurrence 8,...,2,1,   =Θ iP

i
 are 

used, then the distribution function for SH  is written according to (2) 
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,0,

,0exp1),(     iHh ,0≥    , 8,...,2,1=i   (6) 

 
The parameters in (3)-(5) can be considered independent of the direction. Together with the pa-
rameters in (6) for the 8 directions the probabilities 8,...,2,1,   =Θ iP

i
 for waves in the eight direc-

tions constitute the data for the long-term stochastic model. 
 
Measurements of the directional characteristics of the wave elevation show a variation of both the 
mean direction and a spread with frequency. The spreading of the waves can result in a significant 
reduction in the wave loading. The directional spectra are assumed modeled by 
 
   )()(),( ΘΨ=Θ ωω ηηηη SS      (7) 
 
where the spreading function )(ΘΨ  e.g. can be modeled by 
 

   ( )
( ) ( )( )[ ] s
s
s 25.0cos

5.0
1

2
1)( Θ−Θ

+Γ
+Γ

=ΘΨ
π

    (8) 

 
Γ  is the Gamma-function, s  is a constant and Θ  is the mean direction. Usually s =1 is used in 
practice. 
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3 Stress Analysis 
 
Above it is described how the wave load can be described by the spectral density )(ωηηS  and the 
distribution functions )(hF

SH
 and )|(| SZHT htF

SZ
. Next, it is of interest to calculate the spectral den-

sity )(ωσσS  for the stresses in a critical hot spot. One way to calculate )(ωσσS  is to perform a sto-
chastic response analysis to find the cross-spectral density functions )(ω

lkSS
S  for the cross-sectional 

forces in a given structural element and then calculate )(ωσσS  as described below. Details of such 
an analysis can be found in e.g. Langen & Sigbjørnson [3].  
 
The cross-spectral density functions )(ω

lkSS
S  can be obtained from 

 
   )()()()( * ωωωω ηηηη SHHS

jilk FFSS =      (9) 
 
where )(ωηiF

H  is the transfer function from wave elevation to cross-sectional force no i  and * de-
notes complex conjugate.  
 

 
 
Figure 2. Calculation of influence coefficients  (from [4]) 
 
In order to illustrate the procedure the K-joint in figure 2 is considered. The cross-sectional forces 
on the joint can be determined using a beam model of the structure. These forces will be in equilib-
rium. A local stress analysis of the joint can therefore be performed by fixing one of the cross-
sections (see figure 2) and applying the cross-sectional forces from the beam model as external 
loads on the joint. The cross-sections where the forces are determined should be located in some 
distance from the joint in order to be able to apply the cross-sectional loads as distributed line loads 
on a shell element model of the joint, i.e. the stress distribution is unaffected by the joint. 
 
The local fatigue inducing hot spot stress σ  in a critical point, namely the principal stress perpen-
dicular to the crack, see figure 3 is estimated by 
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where N  is the number of cross-sectional forces applied as loads to the joint (=18 in figure 4 where 
each cross-section has 6 degrees of freedom). kα  is the coefficient of influence giving the stress in 
the critical point for a unit load kS . 
 

 
 
Figure 3. Stress variation through thickness (from [4]). 
 
Based on the cross spectral densities for the cross-sectional forces the auto spectral density of the 
fatigue hot spot stress σ  can be determined from, see also figure 4 
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Figure 4. Illustration of calculation of spectral density of hot-spot stresses. 
 
For computational reasons it is more convenient to calculate the cross spectral densities )(ω

lkSS
S  of 

the load effects first. Next, when the auto-spectral density of a stress is required this can be calcu-
lated using (11). If the result of the spectral analysis had been the auto-spectral density of the fa-
tigue stress, a new spectral analysis would be required whenever the fatigue stress in a new location 
is needed. This would be rather unfortunate, as a full spectral analysis is very time consuming. 
  
The location of the most critical hot spots is usually not known in advance. Therefore 8 (or 12) 
points located as shown in figure 2 are investigated. The auto-spectral density functions are deter-
mined for each location and a fatigue analysis is performed as described in the following sections. 
This is done for the 8 points in the brace and for the corresponding 8 points on the intersection in 
the chord. 
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4 Fatigue strength 

4.1 SN approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Experimental SN results for circular K-joint. From EC3 background document [7]. 
 
Assuming that the fatigue damage is accumulated linearly in an interaction free manner the damage 
accumulation law attributed to Palmgren [5] and Miner [6] can be applied. Failure occurs when the 
accumulated damage exceeds 1, i.e. the failure criteria is  
 

   1
)(
≥∑

∆i i

i

N
n
σ

      (12) 

 
where in  is the number of stress cycles at a particular stress range level iσ∆  and )( iN σ∆  is the 
number of constant amplitude stress cycles at that stress range level which leads to failure. The 
summation in (12) is over the number of different stress range levels. )( iN σ∆  is usually deter-
mined on the basis of experiments and therefore has a random character, see figure 5.  
 
Most often a relationship of the type  
 

mKN −∆=∆ σσ )(    , 0>∆σ      (13) 
 
is assumed and the material parameters m  and K  are fitted to experimentally obtained data.  
 
It is seen from (12) and (13) that a limit state function can be written as 
 

   ∑ ∆−∆=
i

m
iinK

g σ1       (14) 
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or 
 

   ∑∆−∆=
i

m
iK

g σ1       (15) 

 
if the summation is over all individual stress range cycles. ∆  is a stochastic variable modeling the 
uncertainty related to application of the Miner rule for linear accumulation of damage from each 
stress cycle. Usually, ∆  has an expected value equal to 1. 
 

4.2 Fracture mechanics approach 
 
The most simple and generally applicable crack growth equation is due to Paris & Erdogan [8]: 
 

   mKC
dn
da )(∆=    , 0>∆K      (16) 

  
where a  is the crack size (depth), n  is the number of stress cycles, K∆  is the stress intensity factor 
range in a stress cycle. C  and m  are material constants. 
 

According to (16) a plot of 
dn
dalog  versus )log( K∆  should be linear but a typical plot obtained ex-

perimentally would be more like the one shown in figure 6. 
 

 
 
Figure 6. Crack growth rate as function of stress intensity factor. 
 
The agreement between (16) and experiments is seen to be reasonable in region II (almost linear) 
whereas (16) overestimates the crack growth rate in region I and underestimates the crack growth 
rate in region III. thK∆  is a threshold stress intensity range below which the crack will not grow. 

ICK  is the value of the stress intensity factor at which the crack becomes unstable and brittle frac-
ture takes place. The stress intensity factor (SIF) can be shown to have the form:  
 
   aaYK πσ∆=∆ )(       (17) 
 
where 
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)(aY  is a geometry function 
a  is the crack depth/length and 
σ∆  is the hot spot fatigue stress range. 

 
K∆  is a factor accounting for a redistribution of the hot spot fatigue stresses. The reason for this 

redistribution is the influence of the crack itself and other local geometry boundary conditions. 
 
By inserting (17) into (16) we obtain  
 

   ( )mmm aaCY
dn
da πσ )()( ∆=      (18) 

 
By integrating (18) we obtain assuming )(aY =1 (infinite plate solution) 
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where 0a  the initial crack depth/length. 
 
For offshore joints it is generally not sufficient to model cracks as being one-dimensional. This is 
because both the crack depth a  and the crack length c  influence the geometry function ),( caYY = .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Semi-elliptical surface crack in plate. 
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Consider a flat plate with a semi-elliptical surface crack under tension or bending fatigue loads, see 
figure 7. The depth of the crack is a  and its length is c2 , while the thickness of the plate is t . 
Shang-Xian [9] assumed that the growth rates at the deepest point A and the end point B of the 
crack follow independently the Paris & Erdogan equations: 
 

   m
aa KC

dn
da )(∆=    with 0)0( aa =      (20) 

   m
cc KC

dn
dc )(∆=    with 0)0( cc =      (21) 

 
The variation in the three-dimensional stress field is accounted for by the constants aC  and cC , 
while aK∆  and cK∆  denote respectively the ranges of the stress intensity factor at the deepest point 
A and the summit B, see figure 7. 
 
From the two coupled equations, the differential equation of the shape change is derived as  
 

   
m

a

c

a

c

K
K

C
C

da
dc









∆
∆

=    with 00 )( cac =      (22) 

 
together with 
 

   m
aa KCda

dn
)(

1
∆

=    with 0)( 0 =an      (23) 

 
(22) and (23) are solved numerically. 
 

4.3 Fatigue cycle counting 
 
The statistics of the amplitude or stress-ranges and the corresponding number of stress-ranges in a 
given time internal must be obtained in order to assess the fatigue damage.  
 
If the fracture mechanics approach (see section 4.2) is used, crack growth is governed by Paris' law. 
In order to illustrate how fatigue cracks can be counted a one-dimensional crack model is used in 
the following. Integration of (18) gives for constant stress-range amplitudes σ∆  
 

   ( ) nC
aaY

da m
a

a
m

c

  
)(0

σ
π

∆∫ =      (24) 

 
where 0a  and ca  are the initial and the final (critical) crack size, respectively. )(aY  is the geometry 
function, σ∆  is the constant amplitude stress-range and n  is the number of stress cycles during the 
considered time interval ],0[ T . A generalization to variable stress-range amplitudes can be obtained 
by using instead of mσ∆  the equivalent stress range to power m , ][ mE σ∆  
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neglecting any sequence effects. mσ∆  is treated as a stochastic variable and [.]E  denotes the expec-
tation operation.  
 
If SN curves (see section 4.1) are used to model the fatigue strength it is seen from (15) that also in 
this case the damage accumulation is governed by (25). 
 
For offshore structures the expectation (25) must be performed for a given sea state because the 
state term statistics of the stresses are conditional on the sea states. Therefore an expectation over 
all sea states must be performed: 
 

   ( )∑ Θ∆Θ=∑∆=∆
==

Sn

i
iiZiSiiZiS

n

i

m
i

m THTHP
n

E
1

m
,,,,

1
),,( ),,(1][ σσσ    (26) 

 
where Sn  is the number of non-zero boxes in the scatter diagram and ),,( ,, iiZiS THP Θ  is the prob-
ability having ( iiZiS TH Θ,, ,, ) corresponding to the i th box. ),,( ,, iiZiS TH Θ∆σ  is the corresponding 
stress range. 
 
 
 
 
 
 
 
 
 
 
Figure 8. Three examples of stress-variations around the mean stress level. 
 
Figure 8 shows three different sample curves of stress histories. The first case corresponds to con-
stant amplitude loading, where the stress-ranges are the same for all stress cycles. The second case 
corresponds to a stationary ideal narrow band Gaussian process. Again the stress cycle is easily de-
fined in terms of the stress process between two constitutive up-crossings of the mean value. The 
third case, which is the more general case with broad banded stress variation, is not quite as obvi-
ous. In this case one has to use counting methods. 
 
In section 4.3.1 narrow band stress spectra are considered. Next broad band spectra are considered. 
In section 4.3.2 and 4.3.3 it is shown how the range counting and the Rainflow counting methods 
can be used to estimate ][ mE σ∆  and the expected number of stress cycles n . 
 

4.3.1 Narrow band spectra 
 
For a narrow-banded Gaussian process, the stress-ranges are Rayleigh distributed. The mean value 
in (25) is then 
 

   ( ) ( ) ( )2/122][ 0 mmE
mmm +Γ=∆σ      (27) 
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where 0m  is the zero'th spectral moment of the stress spectrum, )(ωσσS  ( 0m  is the standard de-
viation of the stress process). Generally, the i th moment is defined by (if )(ωσσS  is a two-sided 
spectrum): 
 

   ∫=
∞

0
)(2 ωωω σσ dSm i

i       (28) 

 
The number of stress cycles n  in the time interval ],0[ T  is estimated from 
 

   T
m
mTn

0

2
0 2

1
π

ν ==       (29) 

 
where 0ν  is the mean zero-crossing rate and 2m  is given by (28). Note that 2m  is equal to the 
standard deviation for the derivative process )}({ tσ& . 
 

4.3.2 Broad band spectra - range counting 
 
In the range counting method a half stress cycle is defined of the difference between successive 
local extremes, see figure 9. The range counting method uses only local information. Therefore in-
formation on larger stress cycles can be lost if small stress reversals are superimposed on the larger 
stress cycles. The method gives a lower bound on the fatigue damage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Range counting method. 
 
The mean number of stress cycles in a time interval ],0[ T  is equal to the mean number of local 
maxima in the time interval 
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where 4m  is given by (28). 
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Using a double envelope process to model the stress process it can be shown that, see [10] 
 

   ( ) ( ) ( )2/122][ 0 mmE
mmmm +Γ=∆ ασ     (31) 

 
where the regularity factor α  is defined by 
 

   
mmm

m
ν
να 0

40

2 ==       (32) 

 
(31) deviates from (27) by the factor mα . In the limit where the process is narrow banded (α =1) 
(31) and (27) are identical. 
 

4.3.3 Broad band spectra - Rainflow counting 
 
Rainflow counting is considered to give the most accurate predictions of the fatigue life when com-
pared to actual fatigue life results. Rainflow counting is widely used. Material hysterises loops are 
sometimes used to justify its use. Rainflow counting is illustrated in figure 10 where the largest cy-
cles are extracted first and the smaller cycles are considered to be superimposed on the larger cy-
cles, see [11] and [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Rainflow counting. 
 
The Rainflow counting method counts the number of stress cycles by converting a realization of the 
stress process )}({ tσ  to a point process of peaks and troughs as shown in figure 11. The peaks are 
identified by even numbers and the troughs by odd numbers. The following rules are imposed on 
"rain dropping on the roofs", so that cycles and half cycles are defined, see Wirshing & Sheheta 
[13]. 
 
1. A rain-flow is started at each peak and trough. 
2. When a rain-flow part started at a trough comes to a tip of the roof, the flow stops if the oppo-

site trough is more negative than that at the start of the path under consideration (e.g. in figure 
4.6, path [1-8], path [9-10], etc.]). For a path started at a peak, it is stopped by a peak which is 
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more positive than that at the start of the rain path under consideration (e.g. in figure 11, path 
[2-3], path [4-5] and path [6-7]). 

3. If the rain flowing down a roof intercepts a flow from the previous path, the present path is 
stopped, (e.g. in figure 4.6, path [3-3a], path [5-5a], etc.) 

4. A new path is not started until the path under consideration is stopped. 
 
Half-cycles of trough-originated range magnitudes ih  are projected distances on the x-axis (e.g. in 
figure 11, [1-8], [3-3a], [5-5a] etc.). If the realization of )}({ tσ  is sufficiently long, any trough-
originated half-cycle will be followed by another peak originated half-cycle of the same range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Illustration of Rainflow cycle counting applied to sample of )}({ tσ  (from [13]). 
 
Due to the complexity of the Rainflow algorithm it is very difficult to derive a density function σ∆f  
for the stress ranges and to estimate the number of stress cycles. 
 
However, based on extensive computer simulations, Dirlik [14] has derived empirical expressions 
for σ∆f : 
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where 
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Using (33) ][ mE σ∆  can be estimated numerically. 
 
The expected number of stress cycles n  is estimated by 
 
   Tn mν=        (40) 
 

4.4 Simple example 
 
From (19) and (24) it is seen that if )(aY =1 and Tn ν=  then failure can be modeled by the limit 
state function 
 

   2/)2(2/2/)2(
0 2

2 m
c

mmm aTCmag −− −∆
−

+= νσπ  

  
It is assumed that the parameters can be modeled by the values in table 2: 
 
 Variable Distribution Expected value Standard deviation 

1X  0a  E 0.1  

2X  ca  N 40 10 

3X  Cln  N -33 0.47 

4X  σ∆  W 60 10 
 ν  D 610  cycles / year  
 m  D 3  
Table 2. N: Normal, E: exponential, W: Weibull, D: deterministic. Dimensions in mm and N. 
 
T  [years] β  1α  2α  3α  4α  
2.5 5.50 0.49 -0.03 0.77 0.41 
5.0 4.38 0.52 -0.02 0.74 0.43 
7.5 3.78 0.53 -0.02 0.72 0.45 
10.0 3.32 0.54 -0.02 0.70 0.46 
12.5 2.99 0.55 -0.03 0.69 0.46 
15.0 2.72 0.56 -0.02 0.68 0.47 
17.5 2.50 0.57 -0.02 0.67 0.48 
20.0 2.31 0.58 -0.02 0.66 0.48 
22.5 2.15 0.58 -0.01 0.66 0.48 
25.0 2.00 0.59 -0.01 0.66 0.49 
Table 3. Reliability index and sensitivity coefficients 1α ,…, 4α  at different times. 
 
The results of a reliability analysis is shown in table 3. It is seen that the reliability index β  de-
creases from 5.50 to 2.00 when T  increases from 2.5 year to 25 years. Further it is also seen, that 

0a , Cln  and σ∆  are the most important stochastic variables in this example. 
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5 Example: Reliability analysis of fatigue critical details 
The example presented in this section is based on the results in [1]. 4 joints in steel jacket structure 
is selected, see [15]. The reliability analyses are carried out on the basis of the traditional SN-
approach and on the basis of a fracture mechanics model of the crack growth. Subsequently the 
fracture mechanical model is calibrated to give the same probability distribution function for the 
time to failure as the SN-approach. Finally, the fracture mechanics model is used to determine an 
optimal plan for inspection of the selected joints, see section 6. The optimal plan is determined on 
the basis of simple reliability updating where it is assumed that no crack is detected by the inspec-
tions. 
 
On the basis of a deterministic analysis the joints and elements given in table 4 have been identified 
as being critical with respect to fatigue. The numbers given in table 4 refers to the numbering given 
in the report "Structure Identification, Platforms" [15]. 
 
Joint Element 
154050 111404 
152050 111424 
253050 52501 
253050 52006 

Table 4. Critical joints and elements. 

5.1 Evaluation of the equivalent stress range 
 
Both the SN-approach and the fracture mechanics approach are based on the evaluation of an 
equivalent stress range. The equivalent stress range is determined on the basis of the assumption 
that the stress history in a given sea-state can be modeled as a narrow band Gaussian process. This 
implies that for a given sea state the stress range, σ∆ , follows a Rayleigh distribution 
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where SH , ZT  and Θ  denotes the significant wave height, the wave period and the direction, 0m  is 
the 0th order spectral moment of the stress history. 
 
The long-term stress distribution can be determined from 
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where Sn  denotes the number of considered sea states and ( )iiZiS THP Θ,, ,,  is the probability of hav-
ing significant wave height iSH , , wave period iZT ,  and direction iΘ  in sea state no. i . 
 
The long-term stress distribution may be approximated by a Weibull distribution given by 
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The Weibull distribution may be fitted so that it corresponds to the long-term stress distribution in 
the 95 and 99 % quantiles. Using this approximation it can be found that 
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The number of cycles in a given period of time, ],0[ T , is given by 
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where ( )iiZiSii THmm Θ= ,, ,,,0,0  and ( )iiZiSii THmm Θ= ,, ,,,2,2  are spectral moments for sea state no. 
i . 
 
The spectral moments are determined by a spectral analysis, see [1]. The spectral moments deter-
mined are deterministic constants. However, due to the uncertainty related to the transfer function 
and the uncertainty related to the stress concentration factors the spectral moments must be modeled 
as stochastic variables. The uncertainty related to the spectral moments is introduced by 
 
   ∗= 0

2
0 mUUm SCFH       (47) 

 
where HU  and SCFU  are stochastic variables describing the random variation of the transfer func-
tion and the stress concentration factors and where ∗

0m  is the spectral moment determined by the 
spectral analysis where the mean values of the transfer function and stress concentration factors 
have been used. 
 
The uncertainty related to the spectral moments is taken into account by determining the joint dis-
tribution of the parameters k  and λ  in the Weibull model. 
 
Joint Element Hot spot k  [MPa] 

λ
1  

253050 52006 0 LN(10.5;1.93) 1.098 
253050 52006 90 LN(8.04;1.48) 1.085 
253050 52006 180 LN(9.41;1.73) 1.125 
253050 52006 270 LN(12.1;2.21) 1.083 
253050 52501 0 LN(9.80;1.80) 1.120 
253050 52501 90 LN(7.98;1.47) 1.092 
253050 52501 180 LN(9.24;1.70) 1.107 
253050 52501 270 LN(11.24;2.06) 1.086 
154050 111404 0 LN(1.81;0.331) 1.053 
154050 111404 90 LN(1.81;0.332) 0.095 
154050 111404 180 LN(8.12;1.49) 1.099 
154050 111404 270 LN(11.7;2.14) 1.093 
152050 111424 0 LN(7.55;1.39) 1.135 
152050 111424 90 LN(1.69;0.331) 1.131 
152050 111424 180 LN(1.70;0.313) 1.067 
152050 111424 270 LN(10.9;1.99) 1.125 
Table 5. Parameters for the equivalent stress range. 
 
The joint distribution of these variables is determined by simulation. For a given outcome of the 
variables HU  and SCFU  the parameters k  and λ  are determined. On the basis of a large number of 
simulations (here 1000 simulations), the joint distribution of the variables is determined. 
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For the joints and elements considered here the distributions of the parameters k  and λ  are given 
in table 5. 

5.2 SN-Approach 
The limit state function for reliability analysis using the SN-approach is written, see section 4.1: 
 

   ∑∆=−∆=
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m
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Dg
1

1 σ       (48) 

where ∆  is the damage limit corresponding to failure and D  models the accumulated damage dur-
ing the considered time interval, see (15). 
 
In table 6 and 7 the input parameters to the limit state function are given. 
 
Parameter Distribution / Value Unit 
∆  LN(1,0.3) - 
Kln  N(34.63,0.54) - 

k See table 5 MPa 

λ
1  

See table 5 - 

m  4.1 - 
n  See table 7 - 
Table 6. Distributions and values of the input to the probabilistic model. 
 
Joint 
 

Element Hot spot Number of cycles n  

253050 52006 270 5589061 
253050 52501 270 5632062 
154050 111404 270 5757739 
152050 111424 270 5760740 
Table 7. Number of cycles per year. 
 
In figure 12 the reliability index as a function of time is given for the four different joints and ele-
ments for the hot spot 270°. In figure 13 the squared alpha values of the three stochastic variables 
are shown. 

 
Figure 12. Reliability index as a function of time. 
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Figure 13. Sensitivity measures of the stochastic variables at time=25 years. 
 
The sensitivity measures are only shown for one of the joints, but they are very similar to the three 
other joints. The values do not change within time. It is seen that approximately 60% of the uncer-
tainty originate from the mean value of the Weibull distribution modeling the long term stress, k, 
30% from the logarithm of the material parameter, ln(K), and 10% from the damage limit corre-
sponding to failure, ∆. 
 
A reliability level corresponding to a safety index of 3.7 will assure the required safety. From figure 
12 it is seen that this level is exceeded after approximately 5 years. Therefore it will be necessary to 
perform an inspection after 5 years in order to check the condition of the joint.  

5.3 Fracture Mechanics 
The crack growth is assumed to be described by (16) and (17). On the basis of analyses using a two-
dimensional crack growth model Kirkemo and Madsen [16] have found the following expression 
for the geometry function 
 

   ( )
t
aaY 7.008.1 −=       (49) 

where t  is the thickness of the plate. 
 
This expression is valid for a crack in a plate. For cracks in a tubular joint the stress intensity factors 
can be determined by multiplying by a correction factor determined by Smith and Hurworth [17] as 
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The probabilistic model is given in table 8. 
 
Parameter Distribution / Value Unit 
( )ACln  N(-31.5,0.77) - 

k  See table 5 Mpa 

λ
1  

See table 5 - 

m  3.2 - 
n  See table 7 - 
Table 8: Probabilistic model. 

Joint 152050, element 111424, hotspot 270

∆
ln(K)
k
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The probabilistic models for m  and AC  have been chosen such that the difference between the  
distribution functions for the time to fatigue failure using the fracture mechanical approach and the 
SN-approach is minimized.  
 
In figure 14 the results of the reliability analyses are shown. It is seen that the results of the analyses 
using the SN-approach are virtually identical to the results obtained on the basis of the fracture me-

chanics model. The analysis has been carried out for joint 253050, element 52006, hot spot 270o, 
i.e. the element with the largest mean stress range. 
Figure 14. Results of reliability analysis. 
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6 Inspection Planning 
 
The inspection planning is performed on the basis of the assumption that no cracks are detected by 
the inspections. Further, an inspection is carried out when the reliability with respect to the consid-
ered event decreases below a given acceptable limit. For a more detailed description of the method 
see [18]. 
  
The observation may be performed by three different methods 
• Magnetic Particle Inspection 
• Eddy Current 
• Close visual inspection 
 
Each of these inspection methods are associated with a given probability of detection depending on 
the size of the crack and depending on whether the inspection is carried out above or below water. 
As mentioned it is assumed that no crack is detected by the inspection, i.e. the crack is smaller than 
the detectable crack size. This event can be modeled by the following limit state function 
 
   daah −=        (51) 
 
where da  is the depth of the detectable crack. 
 
The distribution of the size of the detectable crack or the so-called POD-curve (Probability of De-
tection) depends on the inspection method. The distribution of the detectable crack can be modelled 
by an upward bounded Exponential distribution 
 
   ( ) ( )( )λ/exp10 aPaF dad

−−=      (52) 
 
where λ  and 0P  are model parameters which may be determined by tests. 
 
The inspection planning is carried out using an inspection method with the following parameters. 
 

0.1
mm 67,2

0

-1

=
=

P
λ

 

 
In figure 15 the results of the inspection planning are shown. On the basis of the probabilistic mod-
eling of the fatigue crack growth described an inspection plan has been determined in accordance 
with the methodology described in [19]. It is found that 4 inspections performed at year 4, 8, 15 and 
23 will ensure as sufficient safety for the considered joint throughout its anticipated service life of 
30 years.  
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Figure 15. Updated reliability assuming no-find inspection results. 
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Note 12: RELIABILITY UPDATING 
 
John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University  
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 
 
 

1 Introduction 
 
When new information it can be used to update the stochastic models and the estimates of the reli-
ability (probability of failure). In this note it is described how this updating can be performed when 
the new information consists of 
 
1. Observation of events described by one or more stochastic variables. The observation is mod-

eled by an event margin and the failure event by a safety margin. Updated / conditional prob-
abilities of failure can then be obtained, see section 2. 

2. Samples / measurements of a stochastic variable X . Updating can in this case be performed 
using Bayesian statistics, see section 3.  

 

2 Bayesian updating of stochastic variables 
 
In order to model the observed events an event function  
 
   )(XhH =        (1) 
 
is introduced. The event function h corresponds to the limit state function. The actual observations 
are considered as realizations (samples) of the stochastic variable H. This type of information can 
e.g. be 
 
• Inspection events such as measurements of the chloride content in concrete structures or meas-

urements of crack sizes in steel structures exposed to fatigue loading. The event margin can in-
clude the uncertainty related to the measurement.  

• Proof loading where a well defined load is applied to a structure and the level of damage (usu-
ally no damage is observed) is observed. 

• Repair events where a certain type of repair or maintenance has been performed. 
• No-failure events where the ‘simple’ observation that the structure / component considered is 

well-functioning after some time in use. 
 
It is assumed that these observations can be modeled by  
a. inequality events { }H ≤ 0 , i.e. it is observed that the observed quantity is less than or equal to 

some limit, or 
b. equality events }0{ =H , i.e. it is observed that the observed quantity is equal to some limit. 
 
If inequality events are used the updated probability of failure is estimated by  
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where )(XgM =  is the safety margin related to the limit state function )(xg  and ),...,( 1 nXX=X  
are stochastic variables. In (2) it is used that the probability of an event A given an event B (denoted 

P A B( ) ) is equal to P A B
P B

( )
( )
∩ . It is seen that )0)(0)(( ≤∩≤ XX hgP  is the probability of a parallel 

system with two elements. (2) can be evaluated by simulation or FORM/SORM methods, see Mad-
sen et al. [1]. 
 
Other observations can be modeled by equality events{ }H = 0 , i.e. it is observed that the observed 
quantity is equal to some limit. In this case the updated probability of failure can be estimated by, 
see Madsen et al. [1], Madsen [2] and Schall and Rackwitz [3] 
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Equation (3) can also be evaluated by FORM/SORM methods and can easily be generalized if more 
than one event is observed. In most software packages for reliability analysis efficient algorithms 
are available for solving this problem. 
 
Example 2.1 
Consider the following limit state function modeling crack growth of a crack with initial length 0a  
to the critical length ca . m  and C  are the parameters in Paris’ law. ν  is the number of stress cycles 
per year with stress range σ∆ . T  is the time in years. 
 

   2/)2(2/2/)2(
0 2

2 m
c

mmm aTCmag −− −∆
−

+= νσπ      

  
It is assumed that the parameters can be modeled by the values in table 1. 
 
 Variable Distribution Expected value Standard deviation 

1X  0a  Exponential 0.1  

2X  ca  Normal 50 5 

3X  Cln  Normal -33 0.47 

4X  σ∆  Weibull 60 10 
 ν  Deterministic 6 610  cycles / year  
 m  Deterministic 3  
Table 1. Stochastic model. Dimensions in mm and N. 
The annual reliability index )(Tβ  determined by  
 

( ))0)1,(()0),(()( 1 ≤−−≤Φ−= − TgPTgPT XXβ   
 
is shown in figure 1. It is seen that the annual reliability index becomes smaller than 4=β  at year 
14. 
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It is now assumed that the fatigue critical detail is inspected at time 1T =14 years with the result that 
no cracks were detected. The reliability of the inspection is described by the following POD-curve 
where da  models the smallest detectable crack size: 
 







−−==

b
aaFaPOD

da exp1)()(  

b  is a parameter modeling the expected value of da . It is assumed that b =1 mm. The inspection 
event (no cracks detected) is modeled by the event margin 
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The corresponding updated annual reliability index shown in figure 1 is determined by 
 

( ))0)()0)1,(()0)()0),(()( 1 ≤≤−−≤≤Φ−= − XXXX hTgPhTgPTUβ     , 1TT >  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Reliability indices as function of time in years. Full line: )(Tβ  and broken line: )(TUβ . 
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3 Bayesian updating of stochastic variables 
 
If possible Bayesian techniques should be used for parameter estimation because Bayesian estima-
tion gives an estimate of the statistical uncertainty related to the estimated parameters and because 
updating of the model when new information becomes available is easy. 
 
If observations of one (or more) of the stochastic variables X  are available, the probabilistic model 
can be updated and thereby also the probability of failure. Consider a stochastic variable X  with 
density function )(xf X . If q  denotes a vector of parameters defining the distribution for X , the 
density function of the stochastic variable X  can be written 
 
   ),( qxf X        (4) 
 
If X  is normally distributed then q  could contain the mean and the standard deviation of X . 
 
If the parameters q  are uncertain then ),( qxf X  can be considered as a conditional density function 
: )( Qxf X  and q  denotes a realization of Q. The initial density function for the parameters Q is 

denoted ( )′f Q q  and is denoted the prior density function. 
 
It is assumed that n observations (realizations) of the stochastic variable X  are available making up 
a sample ( )nxxx ˆ,...,ˆ,ˆˆ 21=x . The realizations are assumed to be independent. The updated density 
function ( )xqQ ˆf ′′  of the uncertain parameters Q given the realizations is denoted the posterior den-
sity function and is given by, see textbook on Bayesian statistics, e.g. Box & Tiao [4] and Lindley 
[5]  
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where ∏=
=

N

i
iXN xff

1
)ˆ()ˆ( qqx  is the probability density at the given observations assuming that the 

distribution parameters are q . The integration in (5) is over all possible values of q .  
 
The updated density function of the stochastic variable X given the realization x̂  is denoted the 
predictive density function and is defined by,  
 

qxqqx Q dfxfxf XX )ˆ()()ˆ( ′′∫=      (6) 
 
Given the distribution function for the stochastic variable X , the prior distribution is often chosen 
such that the posterior distribution will be of the same type as the prior distribution (a so-called con-
jugated prior). In the literature a number of prior, posterior and predictive distribution functions can 
be found, see e.g. Raiffa & Schlaifer [6], Aitchison & Dunsmore [7] and Rackwitz & Schrupp [8]. 
Some of these are shown in appendix A. 
 
By use of the Bayesian method presented here, both the physical uncertainty related to the consid-
ered variable as well as the statistical uncertainty related to the model parameters can be quantified. 
However, as mentioned the probabilistic model must also be formulated such that the measurement 
uncertainty and the model uncertainty are taken into account. 
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Due to the ability of Bayesian statistics to incorporate engineering judgement and experience into 
the statistical modeling, different reassessment engineers may reach different results due to the use 
of different statistical models. This may obviously be a serious obstacle for the use of such methods. 
Also in order to avoid this obstacle it is necessary to define and agree on a common basis for such 
analyses thus ensuring that reliability based reassessment analyses are performed on a consistent 
and comparable basis 
 
Example 3.1 
Consider a Normal distributed stochastic variable X  with expected value µ  and known standard 
deviation σ =3. Prior knowledge on µ  is modeled by a Normal distributed prior distribution with 
expected value 'µ =10 and standard deviation 'σ =4.  
 
Further it is assumed that n =5 observations are available: x̂ =(11.3,  12.4,  9.5,  10.7,  11.1) imply-
ing that x =10.9. The posterior distribution the becomes Normal with expected value ''µ  and stan-
dard deviation ''σ , see (A-4)-(A-5): 
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22

'
''''
σσ
σµσµ

+
+

=
n
xn =10.9    and    σ σ σ

σ σ
' ' '

'
2

2 2

2 2=
+n

=1.62   

 
The predictive distribution also becomes Normal distributed with expected value ''µ  and standard 
deviation '''σ , see (A-8) 
 

   µ σ µ σ
σ σ

' ' ' '
'

=
+

+

nx
n

2 2

2 2 =10.9   and     σ σ σ' ' ' ' '= +2 2 =3.26  

 
In figure 2 are shown the prior and posterior distributions for the expected value µ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Prior (full line) and posterior (broken line) distributions for the expected value µ . 
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In figure 3 is shown the predictive distribution for the stochastic variable X . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Predictive distribution for the stochastic variable X . 
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Appendix A. Bayesian updating of distribution functions 
 
A.1 Normal distribution with unknown mean 
 
The stochastic variable X  is normal distributed 
 

   f x f x x
X N( , ) ( , ) expµ σ µ σ

σ π
µ

σ
= = −

−















1
2

1
2

2
  (A-1) 

 
where f N  indicates a Normal distribution. The uncertain parameter is the mean Q1 = µ . 
 
The prior density function is assumed to be a normal distribution: 
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The posterior density function of µ  then also becomes a normal distribution 
 
   f f Nµ µ µ µ σ'' ( $) ( ' ' , ' ')x =     (A-3) 
 
where 
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     (A-5) 

 
and the statistic x  is 
 

   x
n

xi
i

n
= ∑

=

1
1
$       (A-6) 

 
$ ( $ , $ ,..., $ )x = x x xn1 2 is n  test results. 
 
The predictive density function becomes a normal distribution 
 
   f x f xX N( $) ( ' ' , ' ' ')x = µ σ     (A-7) 
  
where 
 

   σ σ σ' ' ' ' '= +2 2      (A-8) 
 
 
 
 



Note 12: Reliability updating 

224 

A.2 Normal distribution with unknown standard deviation 
 
The stochastic variable X  is normal distributed 
 

   f x f x x
X N( , ) ( , ) expµ σ µ σ

σ π
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  (A-9) 

 
The uncertain parameter is the mean Q1 = σ . 
 
The prior density function is chosen as an Invers-Gamma-2 distribution 
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 (A-10) 

 
where f iγ 2  indicates an Invers-Gamma-2 distribution. 
 
The posterior density function becomes an Invers-Gamma-2 distribution 
 
   f f iσ γσ σ ω ν'' ( ) ( ' ' , ' ' )= 2     (A-11) 
 
where 
 
   ν ν ν' ' '= +       (A-12) 
 
   ω ω ν ων ν' ' ( ' ' ) / ' '= +      (A-13) 
 
and the statistic ω  is 
 

   ω
ν

µ
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=

1 2

1
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i
     (A-14) 

 
$ ( $ , $ , ... , $ )x = x x x1 2 ν are ν  test results. 
 
The posterior distribution function corresponding to (A-11) is the Invers-Gamma-2 distribution 
function 
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where 
 

   Γ( ) exp( )a t t dta= −∫ −
∞

1

0
     (A-16) 
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   Γ( , ) exp( )a b t t dtb= −∫ −
∞

1

0
    (A-17) 

 
The predictive density function becomes a Student distribution 
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where f S  indicates the Student distribution and B  is the beta function. 
 
 
A.3 Normal distribution with unknown mean and standard deviation 
 
The normal density function is 
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The uncertain statistical parameters are : ( , ) ( , )Q Q1 2 = µ σ . 
 
The joint prior density function is chosen as a Normal-Invers-Gamma-2 distribution 
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The posterior density function becomes also a Normal-Invers-Gamma-2 distribution 
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where 
 
   n n n' ' '= +       (A-22) 
 
   ( )x n x nx n' ' ' ' / ' '= +      (A-23) 
 
   ( )υ ν υ νυ ν′ ′ = + + + −' ' ' ' ' ' ' ' / ' 'n x nx n x2 2 2    (A-24) 

 
   ν ν δ ν δ δ' ' ' ( ' ) ( ) ( ' ' )= + + + −n n n     (A-25) 
 
and the statistics x  and υ  are 
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ν = −n 1 and $ ( $ , $ ,..., $ )x = x x xn1 2 are n  test results. 
 
The posterior distribution function for σ  becomes 
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The posterior distribution function for µ  given σ  becomes 
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x
nµ σ µσ
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The predictive density function becomes a Student distribution 
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A.4 Lognormal distribution 
 
The density function is 
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The Lognormal stochastic variable X  can be treated in the same way as a normal distributed vari-
able because Y X= ln  is normal distributed with standard deviation 
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and expected value 
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A.5 Gumbel distribution 
 
The distribution function is 
 
   F x u x uX ( , ) exp( exp( ( )))α α= − − −     (A-34) 
 
and the density function is 
 
   ( )f x u x u x uX ( , ) exp ( ) exp( ( ))α α α α= − − − − −    (A-35) 
 
The uncertain statistical parameter is : u  
 
The prior density is chosen as 
 
   ( )f u n u t u t nu

n' ( ')( ) exp ' ' exp( ) ' / ( ' )= −α α α Γ    (A-36) 
 
The posterior density function becomes 
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where 
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   t t t' ' '= +       (A-39) 
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$ ( $ , $ ,..., $ )x = x x xn1 2 are n  test results. 
 
The posterior distribution function becomes 
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The predictive density function becomes 
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The predictive distribution function becomes 
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A.6 Weibull distribution 
 
The distribution function is 
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and the density function is  
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The uncertain statistical parameter is : u . 
 
The prior density function is chosen as 
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The posterior density function becomes 
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where 
 
   n n n' ' '= +       (A-48) 
 
   t t t' ' '= +       (A-49) 
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$ ( $ , $ ,..., $ )x = x x xn1 2 are n  test results. 
 
The posterior distribution function becomes 
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The predictive density function becomes 
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The predictive distribution becomes 
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A.7 Exponential distribution 
 
The density function is 
 
   ( )f xX ( ) expλ λ λ= −      (A-54) 
 
The uncertain statistical parameter is : λ . 
 
The prior density function is chosen as a Gamma distribution 
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The posterior density function becomes a Gamma distribution 
 

   
( )

( )
f

h

h h

λ λ
ν λ ν λ''

'' ( '' )
( $)

' ' exp ' '
' '

x =
−−1

Γ
    (A-56) 

 
and the posterior distribution is  
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where 
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$ ( $ , $ ,..., $ )x = x x xn1 2 are n  test results. 
 
The predictive density function becomes an Invers-beta distribution 
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and the predictive distribution function becomes 
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where 
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