
1

PHYS 331: Junior Physics Laboratory I

Notes on Digital Circuits

 Digital circuits are collections of devices that perform logical operations on two logical

states, represented by voltage levels. Standard operations such as AND, OR, INVERT,

EQUIVALENT, etc. are performed by devices known as gates. Groups of compatible gates can

be combined to make yes/no decisions based on the states of the inputs. For example, a simple

warning light circuit might check several switch settings and produce a single yes/no output.

More complicated circuits can be used to manipulate information in the form of decimal digits,

alphanumeric characters, or groups of yes/no inputs. These notes are intended to familiarize you

with the elementary principles of this field.

A. Analysis of asynchronous logic

 Suppose we have a statement which can be true or false, perhaps representing the

presence or absence of a particle, a light signal on or off, a voltage present or absent, or any other

binary possibility. For now we will ignore the physical meaning of the statement and ask how

one would decide the logical truth or falsehood of combinations of such statements, a subject

called combinatoric logic. If we denote the "truth value" of a statement A by 0 or 1, the standard

combinations are shown in the form of "truth tables" in Fig. 1. These basic combinations, or

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

AND

A

B
Q

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

OR

A

B
Q A

A Q

 0 1

 1 0

NOT

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

NAND

A

B
Q

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

NOR

A

B
Q

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

XOR

A

B
Q

Q

Fig. 1 Standard logic symbols and truth tables.

2

similar ones, have been implemented in electronic circuitry, where truth values can be

represented by different voltage levels. The standard circuit symbols are also shown in Fig. 1.

 By combining the basic operations we can construct other logical functions. For example,

suppose we wish to determine whether or not a particle has stopped in a target, using the

configuration of counters shown in Fig. 2. A particle passing through a counter makes the

corresponding output true, and we assume the particle has stopped in the target if A and B are

both true, but C is false. Formally, we want to know when the compound statement A • B •C is

true. An electronic implementation of the compound statement is also shown in Fig. 2, together

with a truth table. Examination of the truth table shows that A • B •C is true in exactly one

situation, which corresponds to the physically desired result.

 Sometimes it is not obvious how to write down the required expression and implement it.

You might discover an implementation using only standard operations by trial and error, but it is

possible to be more systematic. For example, suppose we wish to make an exclusive-OR

function using AND, OR and NOT gates. To do this we can try to combine some statements that

are true for exactly one combination of A and B. Consider the following:

 A • B is true only when A = 1 and B = 1

 A • B is true only when A = 1 and B = 0 (1)

 A •B is true only when A = 0 and B = 1

 A •B is true only when A = 0 and B = 0

The middle two lines are the A,B values for which the X-OR is true, so if we combine them with

an OR, we get the desired result,

A B C

beam

A

B

C

D

E

F

A B C D E F

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 0

Fig. 2 Logic to generate a stopping-particle signal and corresponding truth table.

3

 A! B = A •B() + A • B () (2)

This procedure, combining AND statements which are true for the desired true outputs, is

actually quite general, although it may generate very cumbersome expressions.

 It is sometimes desirable to transform a logical expression to some other form, perhaps to

simplify implementation or to take advantage of the devices available in a particular logic

family. Fortunately, the logical operators define an algebra, usually referred to as Boolean

algebra. The familiar commutative, associative and distributive properties hold:

 A + B = B+ A A • B = B • A (3)

 A • B •C() = A • B() • C A + B + C() = A+ B() + C (4)

 A • B + C() = A • B + A •C (5)

so one can use the normal rules of algebraic manipulation on logical expressions. Two theorems,

called DeMorgan's laws are particularly useful:

 A + B = A •B A• B = A + B (6)

As an example, suppose we wish to implement the exclusive-or expression using NAND gates,

which compute A • B . We first attack the A • B term by adding zero, using the distributive law

and then applying DeMorgan's law:

A • B = A • B + A • A

= A • A + B ()

= A • A • B()
 (7)

Doing the same with A •B , we arrive at

 A! B = B • A • B()[] + A • A • B()[] (8)

We then double-negate and apply DeMorgan again to get

4

 A! B = B • A • B()[] • A • A • B()[] (9)

which is the desired expression in terms of NAND functions. This circuit is shown in Fig. 3,

along with several other examples.

 Synthesis of desired logic functions can obviously become quite complex. Fortunately

there are far more sophisticated techniques available. Some of these can be found in the book by

Horowitz and Hill, and others in electrical engineering texts.

B. Time dependence

 In certain systems timing may become critical. Gates require a finite amount of time to

change their output in response to a change in the input signals (gate delay). In a complicated

circuit it may happen that the inputs to a particular gate have been processed through different

numbers of preceding stages, and may not arrive at the same time. This will cause the last gate to

produce an electrically correct but logically wrong output, at least transiently. In situations where

this causes problems it can be cured either by accurate matching of the signal delays, or by

clocking.

 The matching approach is used where the logic must handle events in "real time", as

required in a particle-counting experiment. The method is to add delay as needed to insure that

all possible signals require the same amount of time to propagate through each stage in the

system. Timed logic circuits are sometimes called "combinational" or "asynchronous" logic,

A

B

AND

OR

A

B

C

A

B

XOR

AND

OR

XOR

A

B

A

B

A

B

C

Fig 3 NAND/NOR implementation of some logic functions.

5

since they produce an output as quickly as possible after a change in input. Such circuits are

obviously very difficult to adjust if they are at all complex.

 The alternative to asynchronous logic is "synchronous" or "clocked" logic. In this scheme

an additional input, the clock, is provided at each logical stage. The circuits are designed to

accept input on, say, a low to high transition of the clock signal and to change output state on the

following high to low transition. This scheme always leads to valid inputs at each successive

stage as long as the clock period is longer than the longest propagation delay in the system. The

timing problem is then reduced to distributing the clock signal synchronously to all stages, at the

cost of a slower response to the inputs.

C. Flip-flops and counters

 Flip-flops are circuits that can be put into one of two stable states with a pulse applied to

a specified input. The circuit then remains in that state until another pulse is received. This

constitutes a form of memory, in that the circuit "remembers" that a pulse was applied sometime

in the past. An obvious application is in computer memory chips, where millions of flip-flops are

put on a single integrated circuit.

 The truth table for a simple example, called a set-reset (SR) flip-flop is shown in Fig. 4,

together with a realization using NOR gates. The operation of the SR can be understood by

reading through the truth table. If both S and R inputs are zero, the Q and Q outputs retain

whatever state they are in. If either S or R goes to 1, Q and Q change to the values indicated and

remain in that state when S or R returns to zero. If both S and R go to 1 the output is

indeterminate, so that combination of inputs is not allowed.

 The limitations of the SR flip-flop led to the development of several other types, of which

only the JK shown in Fig. 5 will be examined here. As indicated by the truth table, the J and K

inputs function like the S and R inputs to force a particular state of the flip-flop. A crucial

difference is that Q changes only after a pulse at the CLOCK input, and that the state is retained

until another pulse arrives, regardless of the J or K values. Holding both J and K in the true state

allows the flip-flop to be toggled between its two states by applying pulses to the single clock

input.

S

R

Q

Q
_

S R Q Q

0 0 no change

0 1 0 1

1 0 1 0

1 1 disallowed

Q

Q

_
S

R

_

Fig. 4 SR flip-flop and a realization in NOR gates.

6

 Since a JK flip-flop can hold a state, it is the basis of a one-bit memory, as illustrated in

Fig. 6. A pulse applied to Store causes Q to switch to the value at the input data line Data, and

hold the value until the next clock pulse. A group of flip-flops can be used to store several bits of

data on command, and is called a data latch or memory register.

 A binary counter can be made by connecting the output of one flip-flop to the clock input

of another. If the flip-flops are all configured to toggle, a chain of n flip-flops will have 2n

different output states. Each clock pulse arriving at the first flip-flop will either increment or

decrement the output state by one unit, depending on the device used. A counter can be used to

count the number of clock pulses arriving in a certain interval, to divide an input frequency by n,

or to provide one output pulse for 2n input pulses. (These last two applications are why counters

are sometimes referred to as dividers.) Standard ICs often provide additional inputs to set the

counter to a specific state, such as all-zeros, or to control the direction of counting.

 Since counters and flip-flops have inherent time dependence, truth tables do not provide

sufficient information about when changes of logic state occur. They can be supplemented by a

timing diagram, as given in Fig. 7 for a typical binary counter. Using the diagram, one can

decipher how the outputs QA...QD respond to pulse inputs on the "clear" and "clock" lines. Note,

for example, that QA always changes state on the falling (1!0) edge of the clock pulse.

CLEAR CLOCK J K Q Q
_

L X X X L H
H
H
H
H

L L
H L
L H
H H

Q Q
H L
L H

TOGGLE

0 0
_

J
K Q

Q
CLR

>CK _

Fig. 5 Circuit symbol and truth table for a JK flip-flop. The X means "don't care", in that

setting CLEAR low will force Q low regardless of other inputs.

J
K Q

Q
CLR

>CK _

Data

Store

H

Fig. 6 Implementation of a data latch with a JK flip-flop and an inverter. A pulse at Store

stores the data value at Data. CLR is held high to allow toggling.

7

 A more subtle timing issue is that there is a delay (see Table I) between the edge of the

clock pulse and the change in Q at each stage. These delays accumulate across stages, and may

result in an output count which is wrong until the change propagates through the last stage. A

delay of tens of nanoseconds to get the correct output would not affect human-read displays, but

might cause trouble with further logic circuits. Some counter chips are therefore designed to be

synchronous, using an internal signal to ensure that all outputs change to the final state together.

D. Logic families

 There are a number of commonly-available electronic logic families, as summarized in

Table I. (NIM logic is a special case included for completeness. It will be considered more fully

in the section on particle counting.) As you can see, the types differ in their elementary function

and in whether they respond to current or voltage signals. Fan-out refers to the ability of an

output to drive more than one subsequent input, but this is not usually a problem. From a design

perspective, the speed of operation is often a deciding factor, along with cost and the ability to

construct very complex single-chip circuits (Very Large Scale Integration).

 You should also be aware that there are many ready-made functions available in each of

the commercial logic families. These typically include multi-input gates, flip-flops, adder circuits

and even complete CPUs. There are also compatible interface circuits, such as display drivers,

transmission line drivers, analog to digital converters and so on. For reasons of simplicity and

reliability, you should make use of specialized units whenever possible.

 It is highly unlikely that you will ever need to build a logic function out of discrete

transistors, resistors etc., so for the present we will treat the circuits as black boxes. If you do a

clear

clock
Q

Q

Q

Q

A

B

C

D

Fig. 7 Timing diagram for an asynchronous binary counter. A dashed line shows

the time shift of outputs due to propagation delays.

8

lot of digital design you should gain at least a rough idea of how the functions are carried out by

the internal circuitry, since that will help you use the building blocks more effectively.

 It is highly unlikely that you will ever need to build a logic function out of discrete

transistors, resistors etc., so for the present we will treat the circuits as black boxes. If you do a

lot of digital design you should gain at least a rough idea of how the functions are carried out by

the internal circuitry, since that will help you use the building blocks more effectively.

E. Connecting gates

 In real logic systems one wants to connect several gates together, so we need to examine

what happens when we do this with the TTL circuits used in our lab exercises. When an output at

logic high, +5V, is connected to the input of a similar gate a small current will flow due to the

leakage currents of the input transistor in the driven gate. Since leakage currents are fairly small,

a TTL gate can in fact drive several inputs into the "high" logic range. The situation is a little

different for a low signal, since significant current must flow out of the driven input to hold it

within the "low" range. The output stage of the driving gate does this by turning on its output

transistor, thereby providing a relatively low-impedance path to ground. As a practical matter,

though, the transistor in the driving gate can only pass so much current, and this limits the

Table I. Summary of Gate Characteristics

Gate Type

 Charac. TTL ECL CMOS NIM(neg) NIM(pos)

 Basic func. NAND OR,NOR NOR - -

 Connection Current Voltage Voltage Current Voltage

 Logic 0 0.0 ! 0.8V -0.9V 0 ! 2V +1 ! -2mA 1.5 ! -2V

 1 2.5 ! 5.0V -1.8V 7 ! 10V 4 ! 12mA 3 ! 12V

 Fan-out 10 25 10-20 1 1-2

 Gate delay 15ns 3ns 70ns 10ns 500ns

 Advantages Standard Fast Low power Modules Modules

 Cheap Very cheap Flexible Flexible

 Noise VLSI Z=50"

 immunity

 Disadv. Can’t Noise Slow Costly Costly

 drive immunity Static Bulky Bulky

 cable -sensitive Fan-out

9

number of inputs that one circuit can drive to about 10. Similar considerations determine the

number of inputs that each output can drive in the other logic families.

 In general, the drive capability of a gate is called the "fanout". Within one logic family

(TTL, ECL, CMOS, NIM ...) an output will always drive inputs up to the fanout, so electrical

compatibility is assured simply by counting inputs. Connections can sometimes be made

between families if the electrical characteristics are well understood, but it is usually necessary to

use special devices to "translate" logic levels.

 It is sometimes tempting to connect several outputs to one input in the hope of getting

some sort of summing action, but this is unlikely to work. Consider the situation where two

outputs are connected with one in a low state and the other high. The low output is trying to pull

the connection low, but the high output and the input of the next gate will supply substantial

current, perhaps exceeding the current sinking capability of the low output. Even if no damage

occurs, the result is likely to be abnormal logic levels and unpredictable results.

F. Conversion circuits

 For digital logic to be useful in many applications there must be a transformation to or

from continuously-variable "analog" signals. This function is the province of digital to analog,

D/A, or analog to digital, A/D, converters. The actual design of such circuits demands complex

tradeoffs among cost, speed and a multiplicity of possible error sources. Here we will mention

some of the basic principles so that you can rationally choose a commercial module when you

need it.

 The goal of a D/A is to convert a multi-bit binary number to a proportional voltage or

current. General purpose schemes typically involve switching voltage or current sources on or

off under digital control and adding the results. One example is shown in Fig. 8, in which a

-

+

R

Vo

V ref

R RR 2R

2R 2R 2R 2R

MSB LSB

Fig. 8 Digital to analog converter using an R-2R ladder network. The switches are controlled

by the digital input, from most to least significant bit.

10

cleverly-chosen resistor network provides a voltage proportional to the input number. A unity-

gain amplifier buffers the resistor network from whatever load we wish to connect. The accuracy

and speed of conversion will depend on resistor tolerances, the quality of the digitally-controlled

switches, and the properties of the amplifier.

 Analog to digital converters come in more varieties than D/As, but most designs depend

on a comparator. The comparator circuit accepts a reference voltage and the unknown voltage,

and produces a logical one output when the unknown exceeds the reference. The simplest A/D

implementations provide a reference voltage corresponding to each digital output and use one

comparator for each level. Logic circuitry determines the highest-level comparator that is at logic

one and produces a corresponding binary code. These parallel or "flash" converters are fast, but

become too cumbersome when high accuracy is needed. They do find use where speed is

paramount, as in reading out tracking chambers in high energy physics experiments.

 Successive-approximation converters use only one comparator in combination with a

D/A converter. The D/A is given a digital code and the output is compared to the unknown

voltage. The largest digital code that does not exceed the unknown is taken as the digital output

value. The conversion obviously takes time, but by using a binary search sequence only n trials

are needed for n-bit output, enabling a typical module to produce an eight to twelve bit

conversion in a few microseconds.

 Higher accuracy at lower speed is obtained from integrating converters, typified by single

and dual-slope methods. In the single-slope method a current source charges a capacitor. The

time required for the capacitor voltage to equal the unknown voltage is measured with a digital

clock, whose output is therefore proportional to the unknown voltage. Single-slope integration is

obviously sensitive to imperfections in the capacitor and comparator. Dual-slope integration

charges the capacitor for a fixed time with a current proportional to the unknown voltage. The

same capacitor is then discharged to zero by a known constant current. The discharge time, as

measured by a digital clock again, is the converted value. Now the exact capacitor value is

irrelevant, and the comparator only needs to detect zero voltage, which facilitates an automatic-

zeroing scheme. Because of the accuracy (up to 16 bits) and relative noise immunity, dual-slope

integration is used in all but the cheapest digital meters.

