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Abstract. These are notes on General Relativity (GR) and Gravity.

As of March 23, 2015, I find that the Central Lectures given by Dr. Frederic P. Schuller for the WE Heraeus International

Winter School to be, unequivocally, the best, most lucid, and well-constructed lecture series on General Relativity and

Gravity. Instead of reinventing the wheel, I write these notes to build upon and supplement the video lectures and tutorials

already created by them. This includes my corrections, comments, relations to other aspects of theoretical physics, and code

implementing calculations in GR.

It should be noted that for symbolic computation, I heavily use the SageManifolds v.0.7 package for Sage Math. My goal

in this area is this: we see a concept or idea from GR and we go from the equation on the blackboard or textbook and into

(Python/Sage Math) code that immediately computes a calculation.

I keep these notes available online, openly accessible, and free for anyone, anytime (with your (financial) help and con-

tribution at Tilt/Open or Patreon, which is a subscription service). I want to keep these notes openly accessible because I

want to encourage anyone to freely edit, copy, and make their own notes in the spirit of open-source software.

I continuously update these notes and post them here ernestyalumni.wordpress.com

The stated goal of the WE Heraeus International Winter School on Gravity and Light is to take the student from an

introduction to the research frontier (cf. http://www.gravity-and-light.org/lectures). I want to get myself and other

students or ambitious non-academic (maybe he or she is a working professional who had studied physics before in college,

went to work in another field, maybe even, gasp, investment banking or mobile app developer, but still is curious and

passionate about physics and want to contribute) equipped with all the tools available to do research, do calculations, to

design experiments or collect data. Again, we’re not here to reinvent the wheel. I’m not trying to make a General Relativity

appreciation class, but this is a serious attempt towards training to do research.
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Part 1. WE Heraeus International Winter School on Gravity and Light

Introduction (from EY)

The International Winter School on Gravity and Light held central lectures given by Dr. Frederic P. Schuller. These

lectures on General Relativity and Gravity are unequivocally and undeniably, the best and most lucid and well-constructed

lecture series on General Relativity and Gravity. The mathematical foundation from topology and differential geometry

from which General Relativity arises from is solid, well-selected in rigor. The lectures themselves are well-thought out and

clearly explained.

Even more so, the International Winter School provided accompanying Tutorial Sessions for each of the lectures. I had

given up hopes in seeing this component of the learning process ever be put online so that anyone and everyone in the world

could learn through the Tutorial process as well. I was afraid that nobody would understand how the Tutorial or “Office

Hours” session was important for students to digest and comprehend and work out-doing exercises-the material presented

in the lectures. This International Winter School gets it and shows how online education has to be done, to do it in an

excellent manner, moving forward.

For anyone who is serious about learning General Relativity and Gravity, I would simply point to these video lectures and

tutorials.

What I want to do is to build upon the material presented in this International Winter School. Why it’s important to

me, and to the students and practicing researchers out there, is that the material presented takes the student from an

introduction to the research frontier. That is the stated goal of the International Winter School. I want to dig into and

help contribute to the cutting edge in research and this entire program with lectures and tutorials appears to be the most

direct and sensible route directly to being able to do research in General Relativity and Gravity. -EY 20150323

1. Lecture 1: Topology

1.1. Lecture 1: Topological Spaces.

Definition 1. Let M be a set.

A topology O is a subset O ⊆ P(M), P(M) power set of M : set of all subsets of M . satisfying

(i) ∅ ∈ O, M ∈ O

(ii) U ∈ O, V ∈ O =⇒ U
⋂
V ∈ O

(iii) Uα ∈ O, α ∈ A =⇒
(⋃

α∈A Uα
)
∈ O
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O} utterly useless

Definition 2. Ostandard ⊆ P(Rd)

EY : 20150524

I’ll fill in the proof that Ostandard is a topology.

Proof. ∅ ∈ Ostandard

since ∀ p ∈ ∅, ∃ r ∈ R+: Br(p) ⊆ ∅ (i.e. satisfied “vacuously”)

Suppose U, V ∈ Ostandard.

Let p ∈ U
⋂
V . Then ∃ r1, r2 ∈ R+ s.t. Br1(p) ⊆ U

Br2(p) ⊆ V

Let r = min {r1, r2}.
Clearly Br(p) ⊆ U and Br(p) ⊆ V . Then Br(p) ⊆ U

⋂
V . So U

⋂
V ∈ Ostandard.

Suppose, Uα ∈ Ostandard, ∀α ∈ A.

Let p ∈
⋃
α∈A Uα. Then p ∈ Uα for at least 1 α ∈ A.

∃ rα ∈ R+ s.t. Brα(p) ⊆ Uα ⊆
⋃
α∈A Uα. So

⋃
α∈A Uα ∈ Ostandard �

1.2. 2. Continuous maps.

1.3. 3. Composition of continuous maps.

1.4. 4. Inheriting a topology. EY : 20150524

I’ll fill in the proof that given f continuous (cont.), then the restriction of f onto a subspace S is cont. If you want a

reference, check out Klaus Jänich [2, pp. 13, Ch. 1 Fundamental Concepts, Sec. Continuous Maps]

If cont. f : M → N , S ⊆M , then f |S cont.

Proof. Let open V ⊆ N , i.e. V ∈ ON i.e. V in the topology ON of N .

f |−1
S (V ) = {m ∈M | f |S (m) ∈ V }

Now f−1(V ) = {m ∈M |f(m) ∈ V }.
So f−1(V )

⋂
S = f |−1

S (V )

Now f cont. So f−1(V ) ∈ ON .

and recall OS | := {U
⋂
S|U ∈ OM}.

so f−1(V )
⋂
S = f |−1

S (V ) ∈ OS i.e. f |−1
S (V ) open.

=⇒ f |S cont. �

Topology Tutorial Sheet

filename : main.pdf

The WE-Heraeus International Winter School on Gravity and Light: Topology

EY : 20150524
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What I won’t do here is retype up the solutions presented in the Tutorial (cf. https://youtu.be/_XkhZQ-hNLs): the

presenter did a very good job. If someone wants to type up the solutions and copy and paste it onto this LaTeX file, in

the spirit of open-source collaboration, I would encourage this effort.

Instead, what I want to encourage is the use of as much CAS (Computer Algebra System) and symbolic and numerical

computation because, first, we’re in the 21st century, second, to set the stage for further applications in research. I use

Python and Sage Math alot, mostly because they are open-source software (OSS) and fun to use. Also note that the

structure of Sage Math modules matches closely to Category Theory.

In checking whether a set is a topology, I found it strange that there wasn’t already a function in Sage Math to check each

of the axioms. So I wrote my own; see my code snippet, which you can copy, paste, edit freely in the spirit of OSS here,

titled topology.sage:

gist github ernestyalumni topology.sage

Download topology.sage

Loading topology.sage, after changing into (with the usual Linux terminal commands, cd, ls) by

sage: load(‘‘topology.sage’’)

Exercise 2: Topologies on a simple set.

Question Does O1 := . . . constitute a topology . . . ?.

Solution: Yes, since we check by typing in the following commands in Sage Math:

emptyset in O_1

Axiom2check(O_1) # True

Axiom3check(O_1) # True

Question What about O2 . . . ?.

Solution: No since the 3rd. axiom fails, as can be checked by typing in the following commands in Sage Math:

emptyset in O_2

Axiom2check(O_2) # True

Axiom3check(O_2) # False

2.

3.

4.

5.

6.

7. Lecture 7: Connections

∇Xf = Xf = (df)(X) but (not quite)

X : C∞(M)→ C∞(M)

df : Γ(TM)→ C∞(M)

∇X : C∞(M)→ C∞(M)
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∇X : C∞(M) C∞(M)

∇X :
TMp ⊗ T ∗Mq i.e.(

p

q

)
tensor field

TMp ⊗ T ∗Mq i.e.(
p

q

)
tensor field

...
...

7.1. Directional derivatives of tensor fields. manifold with connection is quadruple (M,O,A,∇)

topology O

atlas A

Consider chart (U, x) ∈ A

Definition 3. ∀ pair (X, (p, q)− tensor field) ≡ (X, (p, q)− TF ),

connection ∇ on smooth manifold (M,O,A)

∇ : (X, (p, q)− TF )→ (p, q)− TF s.t.

(i) ∇Xf = Xf

(ii) ∇X(T + S) = ∇XT +∇XS

(iii)

∇X(T (ω, Y )) = (∇XT )(ω, T ) + T (∇Xω, Y ) + T (ω,∇XY )

“Leibnitz” rule.

As

T ⊗ S(ω(1) . . . ω(p+r), Y(1) . . . Y(q+s)) = T (ω(1) . . . ω(p), Y(1) . . . Y(q)) · S(ω(p+1) . . . ω(p+r), Y(q+1) . . . Y(q+s))

so

∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗∇XS

(iv) ∇fX+ZT = f∇XT +∇ZT C∞-linear

7.2. New structure on (M,O,A) required to fix ∇. There are (dimM)3 many Γijk

Γijk : U → R

p 7→
(
dxi(∇ ∂

∂x

∂

∂xj
)

)
(p)

Now ∇ ∂
∂xm

(dxi) =?
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∇ ∂
∂xm

(dxi
(

∂

∂xj

)
︸ ︷︷ ︸

δij

)

︸ ︷︷ ︸

= (iii)

=
∂

∂xm
(δij) = 0

=
(
∇ ∂

∂xm
dxi
)( ∂

∂xj

)
+ dxi(∇ ∂

∂xm

∂

∂xj︸ ︷︷ ︸
Γqjm

∂
∂xq

) = 0

=⇒
(
∇ ∂

∂xm
dxi
)( ∂

∂xj

)
= −Γijm

∇ ∂
∂xm

dxi = −Γijmdx
j

Hence

(∇XY )i = X(Y i) + Γij m︸︷︷︸
last entry goes in direction of X

Y jXm

(∇Xω)i = X(ωi) +−ΓjimωjX
m

Note that for the immediately above expression for (∇XY )i, in the second term on the right hand side, Γijm has the last

entry at the bottom, m going in the direction of X, so that it matches up with Xm. This is a good mnemonic to memorize

the index positions of Γ.

summary so far:

(∇XY )i = X(Y i) + ΓijmY
jXm

(∇Xω)i = X(ωi) +−ΓjimωjX
m

similarly, by further application of Leibnitz

T a (1, 2)-TF (tensor field)

(∇XT )ijk = X(T ijk) + ΓismT
s
jkX

m − ΓsjmT
i
skX

m − ΓskmT
i
jsX

m

What is a Euclidean space:

(M = Rn,Ost,A) smooth manifold.

Assume (Rn, idRn) ∈ A and

(Γi(x))jk = dxi
(

(∇E) ∂

∂xk

∂

∂xj

)
!
= 0

7.3. Change of Γ’s under change of chart. (U, x), (V, y) ∈ A and U ∩ V 6= ∅

Γijk(y) := dyi
(
∇ ∂

∂yk

∂

∂yj

)
=
∂yi

∂xq
dxq

(
∇ ∂xp

∂yk
∂
∂xp

∂xs

∂yj
∂

∂xs

)
Note ∇fX is C∞-linear for fX

covector dyi is C∞-linear in its argument

=⇒ Γijk(y) =
∂yi

∂xq
dxq

(
∂xp

∂yk

[(
∇ ∂

∂xp

∂xs

∂yj

)
∂

∂xs
+
∂xs

∂yj

(
∇ ∂

∂xp

∂

∂xs

)])
=

=
∂yi

∂xq
∂xp

∂yk
∂

∂xp
∂xs

∂yj
δqs +

∂yi

∂xq
∂xp

∂yk
∂xs

∂yj
Γqsp(x)

(7.1) Γijk(y) =
∂yi

∂xq
∂2xq

∂yj∂yk
+
∂yi

∂xq
∂xs

∂yj
∂xp

∂yk
Γqsp(x)

Eq. (7.1) is the change of connection coefficient function under the change of chart (U ∩ V, x)→ (U ∩ V, y)
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7.4. Normal Coordinates.

Tutorial 7 Connections. Exercise 1. : True or false?

(a) • ∇fXY = f∇XY by definition so ∇fX = f∇X i.e. ∇X is C∞(M)-linear in X

• f ∈ C∞(M) is a (0, 0)-tensor field. ∇Xf = Xf ≡ X(f) by definition.

• If the manifold is flat, I’m assuming that means that the manifold is globally a Euclidean space, and by

definition, Γ = 0.

∇XY = Xj ∂

∂xj
(Y i)

∂

∂xi
+ ΓijkY

kXk ∂

∂xi
= Xj ∂Y

i

∂xj
∂

∂xi
+ 0

and similarly for any (p, q)-tensor field, i.e.

∇XT = Xj
∂T

i1...ip
j1...jq

∂xj

•
∇Xf = Xj ∂f

∂xj
= X · grad(f)

• ∀ (U, x) ∈ A, locally (after working out the first few cases, and doing induction, one can look up the expression

for the local form; I found it in Nakahara’s Geometry, Topology and Physics, Eq. 7.26, and it needs to

be modified for the convention of order of bottom indices for Γ:

∇νtλ1...λp
µ1...µq = ∂νt

λ1...λp
µ1...µq + Γλ1

κνt
κλ2...λp
µ1...µq + · · ·+ Γλpκνt

λ1...λp−1κ
µ1...µq − Γκµ1νt

λ1...λp
κµ2...µq − · · · − Γκµqνt

λ1...λp
µ1...µq−1κ

Clearly, ∇X is uniquely fixed ∀ p ∈M by choosing each of the (dimM)3 many connection coefficient functions

Γ.

(b) • ∇ : X(M)→ X(M)

∇ : (p, q)-tensor field 7→ (p, q)-tensor field

• By definition, ∇ satisfies the Leibniz rule.

•

•

•

Exercise 2. : Practical rules for how ∇ acts Torsion-free covariant derivative boils down to a connection coefficient

function Γ that is symmetric in the bottom indices.

•
∇Xf = X(f) = Xi ∂f

∂xi

•
(∇XY )a = Xi ∂Y

a

∂xi
+ ΓajkY

jXk

•
(∇Xω)a = Xi ∂ωa

∂xj
− ΓiakωiX

k

•
(∇mT )abc =

∂

∂xm
(T abc) + ΓaimT

i
bc − ΓibmT

a
ic − ΓjcmT

a
bj

•
(∇[mA)n] = (∇mA)n − (∇nA)m =

∂An
∂xm

− ΓinmAi −
(
∂Am
∂xn

− ΓimnAi

)
=
∂Am
∂xm

− ∂Am
∂xn

7



•
(∇mω)nr =

∂ωnr
∂xm

− Γinmωir − Γirmωni

Exercise 3. : Connection coefficients

Question .

The connection coefficient functions Γ in chart (U ∩ V, y) is given, in terms of chart (U ∩ V, x) as follows:

Recall Eq. (7.1)

Γijk(y) =
∂yi

∂xq
∂2xq

∂yj∂yk
+
∂yi

∂xq
∂xs

∂yj
∂xp

∂yk
Γqsp(x)

8. Lecture 8: Parallel Transport & Curvature (International Winter School on Gravity and Light

2015)

8.1. Parallelity of vector fields.

Definition 4. (1) parallely transported along smooth curve γ : R→M

if

(8.1) ∇vγX = 0

(2) A slightly weaker condition

is “parallel”

(∇vγ,γ(λ)X)γ(λ) = µ(λ)Xγ(λ)

8.2. Autoparallely transported curves.

Definition 5. curve γ : R→M is called

autoparallely transported if

(8.2) ∇vγvγ
!
= 0

8.3. Autoparallel equation.

∇vγvγ = 0

in summary:

(8.3) γ̈m(x)(λ) + (Γm(x))ab(γ(λ))γ̇a(x)(λ)γ̇b(x)(λ) = 0

8.4. Torsion.

Definition 6. torsion of a connection ∇ is the (1, 2)-tensor field

(8.4) T (ω,X, Y ) := ω(∇XY −∇YX − [X,Y ])

(Inside a cloud)

[X,Y ] vector field defined by

[X,Y ]f := X(Y f)− Y (Xf)

Proof. check T is C∞-linear in each entry

T (ω, fX, Y ) = ω(∇fXY −∇Y (fX)− [fX, Y ])

�
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Definition 7. A (M,O,A,∇) is called torsion-free if T = 0

In a chart

T iab := T

(
dxi,

∂

∂xa
,
∂

∂xb

)
= dxi(. . . )

= Γiab − Γiba = 2Γi[ab]

From now on, in these lectures, we only use torsion-free connections.

8.5. Curvature.

Definition 8. Riemann curvature of a connection ∇ is the (1, 3)-tensor field

(8.5) Riem(ω,Z,X, Y ) := ω(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

Proof. do it: C∞-linear in each slot. �

Tutorials Riemi
jab = . . .

Tutorial 8 Parallel transport & Curvature

Exercise 1.

Exercise 2. : Where connection coefficients appear

It was suggested in the tutorial sheets and hinted in the lecture that the following should be committed to memory.

Question : Recall the autoparallel equation for a curve γ.

(a)

∇vγvγ = 0

(b)

∇vγvγ = ∇γ̇ ∂
∂xµ

vγ = γ̇ν∇∂νvγ = γ̇ν
[
∂vµγ
∂xν

+ Γρµνv
µ
γ

]
∂

∂xρ
= γ̇ν

[
∂γ̇ρ

∂xν
+ Γρµν γ̇

µ

]
∂

∂xρ
= 0

=⇒ γ̈ρ + Γρµν γ̇
µγ̇ν

as, for example, for F (x(t)),
dF (x(t))

dt
= ẋ

∂F

∂x
=

d

dt
F

so that

γ̇ν
∂vµγ
∂xν

=
d

dλ
vµγ =

d2

dλ2
γµ

Question : Determine the coefficients of the Riemann tensor with respect to a chart (U, x).

Recall this manifestly covariant definition

Riem(ω,Z,X, Y ) = ω(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

We want Rijab.

now

∇X∇Y Z = ∇X((Y µ
∂

∂xµ
Zρ + ΓρµνZ

µY ν)
∂

∂xρ
) = (Xα ∂

∂xα
(Y µ

∂

∂xµ
Zρ + ΓρµνZ

µY ν) + Γραβ(Y µ
∂

∂xµ
Zα + ΓαµνZ

µY ν)Xβ)
∂

∂xρ

For X = ∂a, Y = ∂b, Z = ∂j , then the partial derivatives of the coefficients of the input vectors become zero.

=⇒ ∇∂a∇∂b∂j =
∂

∂xa
(Γijb) + ΓiαaΓαjb

9



Now

[X,Y ]i = Xj ∂

∂xj
Y i − Y j ∂X

i

∂xj

For coordinate vectors, [∂i, ∂j ] = 0 ∀ i, j = 0, 1 . . . d.

Thus

Rijab =
∂

∂xa
Γijb −

∂

∂xb
Γija + ΓiαaΓαjb − ΓiαbΓ

α
ja

Question :Ric(X,Y ) := Riemm
ambX

aY b define (0, 2)-tensor?.

Yes, transforms as such:

EY developments. I roughly follow the spirit in Theodore Frankel’s The Geometry of Physics: An Introduction

Second Ed. 2003, Chapter 9 Covariant Differentiation and Curvature, Section 9.3b. The Covariant Differential of a Vector

Field. P.S. EY : 20150320 I would like a copy of the Third Edition but I don’t have the funds right now to purchase

the third edition: go to my tilt crowdfunding campaign, http://ernestyalumni.tilt.com, and help with your financial

support if you can or send me a message on my various channels and ernestyalumni gmail email address if you could help

me get a hold of a digital or hard copy as a pro bono gift from the publisher or author.

The spirit of the development is the following:

“How can we express connections and curvatures in terms of forms?” -Theodore Frankel.

From Lecture 7, connection ∇ on vector field Y , in the “direction” X,

∇ ∂

∂xk
Y =

(
∂Y i

∂xk
+ ΓijkY

j

)
∂

∂xi

Make the ansatz (approche, impostazione) that the connection ∇ acts on Y , the vector field, first:

∇Y (X) =

(
Xk ∂Y

i

∂xk
+ ΓijkY

jXk

)
∂

∂xi
= Xk

(
∇ ∂

∂xk
Y
)i ∂

∂xi
= (∇XY )i

∂

∂xi
= ∇XY

Now from Lecture 7, Definition for Γ,

dxi
(
∇ ∂

∂xk

∂

∂xj

)
= Γijk

Make this ansatz (approche, impostazine)

∇ ∂

∂xj
=
(
Γijkdx

k
)
⊗ ∂

∂xi
∈ Ω1(M,TM) = T ∗M ⊗ TM

where Ω1(M,TM) = T ∗M ⊗ TM is the set of all TM or vector-valued 1-forms on M , with the 1-form being the follow-

ing:

Γijkdx
k = Γij ∈ Ω1(M) i = 1 . . . dim(M)

j = 1 . . . dim(M)

So Γij is a dimM × dimM matrix of 1-forms (EY !!!).

Thus

∇Y = (d(Y i) + ΓijY
j)⊗ ∂

∂xi
10
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So the connection is a (smooth) map from TM to the set of all vector-valued 1-forms on M , Ω1(M,TM), and then, after

“eating” a vector Y , yields the “covariant derivative”:

∇ : TM → Ω1(M,TM) = T ∗M ⊗ TM

∇ : Y 7→ ∇Y

∇Y : TM → TM

∇Y (X) 7→ ∇Y (X) = ∇X(Y )

Now [
∂

∂xi
,
∂

∂xj

]
f =

∂

∂xi

(
∂

∂xj

)
− ∂

∂xj

(
∂

∂xi

)
= 0

(this is okay as on p ∈ (U, x); x-coordinates on same chart (U, x))

EY : 20150320 My question is when is this nontrivial or nonvanishing (i.e. not equal to 0).

[ea, eb] =?

for a frame (ec) and would this be the difference between a tangent bundle TM vs. a (general) vector bundle?

Wikipedia helps here. cf. wikipedia, “Connection (vector bundle)”

∇ : Γ(E)→ Γ(T ∗M ⊗ E) = Ω1(M,E)

∇ea = ωcabf
b ⊗ ec

f b ∈ T ∗M (this is the dual basis for TM and, note, this is for the manifold, M

∇fbea = ωcabec ∈ E

ωca = ωcabf
b ∈ Ω1(M)

is the connection 1-form, with a, c = 1 . . . dimV . EY : 20150320 This V is a vector space living on each of the fibers of E.

I know that Γ(T ∗M ⊗ E) looks like it should take values in E, but it’s meaning that it takes vector values of V . Correct

me if I’m wrong: ernestyalumni at gmail and various social media.

Let σ ∈ Γ(E), σ = σaea

∇σ = (dσc + ωcabσ
af b)⊗ ec with

dσc =
∂σc

∂xb
f b

=⇒ ∇Xσ =

(
Xb ∂σ

c

∂xb
+ ωcabσ

aXb

)
ec = Xb

(
∂σc

∂xb
+ ωcabσ

a

)
ec

9. Lecture 9: Newtonian spacetime is curved!

Axiom 1 (Newton I:). A body on which no force acts moves uniformly along a straight line

Axiom 2 (Newton II:). Deviation of a body’s motion from such uniform straight motion is effected by a force, reduced by

a factor of the body’s reciprocal mass.

Remark:

(1) 1st axiom - in order to be relevant - must be read as a measurement prescription for the geometry of space . . .

(2) Since gravity universally acts on every particle, in a universe with at least two particles, gravity must not be

considered a force if Newton I is supposed to remain applicable.
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9.1. Laplace’s questions. Laplace ∗ 1749

†1827

Q: “Can gravity be encoded in a curvature of space, such that its effects show if particles under the influence of (no other)

force we postulated to more along straight lines in this curved space?”

Answer: No!

Proof. gravity is a force point of view

mẍα(t) = Fα(x(t))

mẍα(t) = mfα︸︷︷︸
Fα

(x(t))

−∂αfα = 4πGρ (Poisson)

ρ mass density of matter

(EY : 20150330) You know this, F = Gm1m2/r
2

ẍα(t)− fα(x(t)) = 0

Laplace asks: Is this (ẍ(t)) of the form

ẍα(t) + Γαβγ(x(t))ẋβ(t)ẋγ(t) = 0

Conclusion: One cannot find Γ s such that Newton’s equation takes the form of an autoparallel.

�

9.2. The full wisdom of Newton I. use also the information from Newton’s first law that particles (no force) move

uniformly

introduce the appropriate setting to talk about the difference easily

insight: in spacetime uniform & straight motion is simply straight motion

So let’s try in spacetime:

let x : R→ R3

be a particle’s trajectory in space ←→ worldline (history) of the particle
X : R→ R4

t 7→ (t, x1(t), x2(t), x3(t)) :=

:= (X0(t), X1(t), X2(t), X3(t))

That’s all it takes:

Trivial rewritings:

Ẋ0 = 1

=⇒
Ẍ0 = 0

Ẍα − fα(X(t)) · Ẋ0 · Ẋ0 = 0
(α = 1, 2, 3) =⇒

a = 0, 1, 2, 3

Ẍa + ΓabcẊ
bẊc = 0

antoparallel eqn in spacetime

12



Yes, choosing Γ0
ab = 0

Γαβγ = 0 = Gammaα0β = Γαβ0

only: Γα00
!
= −fα

Question: Is this a coordinate-choice artifact?

No, since Rα0β0 = − ∂
∂xβ

fα (only non-vanishing components) (tidal force tensor, − the Hessian of the force compo-

nent)

Ricci tensor =⇒ R00 = Rm0m0 = −∂αfα = 4πGρ

Poisson: −∂αfα = 4πG · ρ

writing: T00 = 1
2s

=⇒ R00 = 8πGT00

Einstein in 1912 ((((
(((hhhhhhhRab = 8πGTab

Conclusion: Laplace’s idea works in spacetime

Remark

Γα00 = −fα

Rαβγδ = 0 α, β, γ, δ = 1, 2, 3

R00 = 4πGρ

Q: What about transformation behavior of LHS of

ẍa + ΓabcẊ
bẊc︸ ︷︷ ︸

(∇vXvX)a︸ ︷︷ ︸
:=aa “acceleration vector”

= 0

9.3. The foundations of the geometric formulation of Newton’s axiom. new start

Definition 9. A Newtonian spacetime is a quintuple

(M,O,A,∇, t)

where (M,O,A) 4-dim. smooth manifold

t : M → R smooth function

(i) “There is an absolute space”

(dt)p 6= 0 ∀ p ∈M

(ii) “absolute time flows uniformly”

∇dt =︸︷︷︸
space of (0, 2)-tensor fields

0 everywhere

∇dt is a (0, 2)-tensor field

(iii) add to axioms of Newtonian spacetime ∇ = 0 torsion free

Definition 10. absolute space at time τ

Sτ := {p ∈M |t(p) = τ}
dt6=0−−−→M =

∐
Sτ

Definition 11. A vector X ∈ TpM is called
13



(a) future-directed if

dt(X) > 0

(b) spatial if

dt(X) = 0

(c) past-directed if

dt(X) < 0

picture

Newton I: The worldline of a particle under the influence of no force (gravity isn’t one, anyway) is a future-directed autoparallel

i.e.

∇vXvX = 0

dt(vX) > 0

Newton II:

∇vXvX =
F

m
⇐⇒ m · a = F

where F is a spatial vector field:

dt(F ) = 0

Convention: restrict attention to atlases Astratefied whose charts (U , x) have the property

x0 : U → R

x1 : U → R
...

...

x3

x0 = t|U =⇒
0

“absolute time flows uniformly”
= ∇dt

0 = ∇ ∂
∂xa

dx0 = −Γ0
ba a = 0, 1, 2, 3

Let’s evaluate in a chart (U , x) of a stratified atlas Asheet: Newton II:

∇vXvX =
F

m
in a chart.

(X0)′′ +((((
(((Γ0

cd(X
a)′(Xb)′stratified atlas = 0

(Xα)′′ + ΓαγδX
γ′Xδ′ + Γα00X

0′X0′ + 2Γαγ0X
γ′X0′ =

Fα

m
α = 1, 2, 3

=⇒ (X0)′′(λ) = 0 =⇒ X0(λ) = aλ+ b constants a, b with

X0(λ) = (x0 ◦X)(λ)
stratified

= (t ◦X)(λ)

convention parametrize worldline by absolute time

d

dλ
= a

d

dt

a2Ẍα + a2ΓαγδẊ
γẊδ + a2Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0 =

Fα

m

=⇒ Ẍα + ΓαγδẊ
γẊδ + Γα00Ẋ

0Ẋ0 + 2Γαγ0Ẋ
γẊ0︸ ︷︷ ︸

aα

=
1

a2

Fα

m

14



10. Lecture 10: Metric Manifolds

We establish a structure on a smooth manifold that allows one to assign vectors in each tangent space a length (and an

angle between vectors in the same tangent space).

From this structure, one can then define a notion of length of a curve.

Then we can look at shortest curves.

Requiring the that the shortest curves coincide with the straightest curves (wrt ∇) will result in ∇ being determined by

the metric structure.

g

straight = short

T = 0
 ∇ Riem

10.1. Metrics.

Definition 12. A metric g on a smooth manifold (M,O,A) is a (0, 2)-tensor field satisfying

(i) symmetry g(X,Y ) = g(Y,X) ∀X,Y vector fields

(ii) non-degeneracy: the musical map

[ : Γ(TM)→ Γ(T ∗M)

X 7→ [(X)

. . . is a C∞-isomorphism in other words, it is invertible.

11. Symmetry

EY : 20150321 This lecture tremendously and lucidly clarified, for me at least, what a symmetry of the Lie algebra is, and

in comparing structures (M,O,A) vs. (M,O,A,∇), clarified differences, and asking about differences is a good way to

learn, the difference between L and ∇, respectively.

11.1.

11.2. Important

11.3. Flow of a complete vector field. Let (M,O,A) smooth X vector field on M

Definition 13. A curve γ : I ⊆ R→M is called an integral curve of X

if

vγ,γ(λ) = Xγ(λ)

Definition 14. A vector filed X is complete if all integral curves have I = R EY: 20150321 (i.e. domain is all of R)

Ex. minute 48:30 EY : reall good explanation by F.P.Schuller; take a pt. out for an incomplete vector field.

Theorem 1. compactly supported smooth vector field is complete.

Definition 15. The flow of a complete vector field X is a 1-parameter family

hX = R×M →M

where γp : R→M

γ(0) = p

is the integral curve of X with

15



Then for fixed λ ∈ R
hXλ : M →M smooth

picture hXλ (S) 6= S( if X 6= 0)

11.4. Lie subalgebras of the Lie algebra (Γ(TM), [·, ·]) of vector fields.

(a) Γ(TM) = { set of all vector fields } C∞(M)-module = R-vector space

=⇒ [X,Y ] ∈ Γ(TM) [X,Y ]f := X(Y f)− Y (Xf)

(i) [X,Y ] = −[Y,X]

(ii) [λX + Z, Y ] = λ[X,Y ] + [Z, Y ]

(iii) [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

(Γ(TM), [·, ·]) Lie algebra

(b) Let X1 . . . Xs for s (many) vector fields on M , such that

Tutorial 11 Symmetry. Exercise 1. : True or false?

(a) •

• φ∗ : T ∗N → T ∗M i.e. φ∗ν(X) = ν(φ∗X) for smooth φ : M → N , so the pullback of a covector ν ∈ T ∗N
maps to a covector in T ∗M .

•

•

•

•

(b)

(c)

Exercise 2. : Pull-back and push-forward

Question . Let’s check this locally

φ∗(df)(X) = (df)(φ∗X) = (df)(Xi ∂y
j

∂xi
∂

∂yj
) = Xi ∂y

j

∂xi
∂f

∂yj
where φ∗X = Xi ∂y

j

∂xi
∂

∂yj

d(φ∗f)(X) = d(f(φ))(X) =
∂f

∂yj
∂yj

∂xi
dxi(X) = Xi ∂y

j

∂xi
∂f

∂yj

So

φ∗(df) = d(φ∗f) ∀ p ∈M, ∀X ∈ X(M)

The big idea is that this is a showing of the naturality of the pullback φ∗ with d, i.e. that this commutes:

Ω1(M) Ω1(N)

C∞(M) C∞(N)

φ∗

d

φ∗

d

Question .

(φ∗)
a
b := (dya)(φ∗(

∂

∂xb
))

16



Let g ∈ C∞(N)

φ∗

(
∂

∂xb

)
g =

∂xb

g
φ(p) =

∂

∂xb
gφx−1x(p) =

∂

∂xb
(gyy−1φx−1)(x) =

=
∂

∂xb
(gy−1(yφx−1(x(p)))) =

∂g

∂y

b
∣∣∣∣∣
y

∂ya

∂xb

∣∣∣∣
x

=
∂ya

∂xb
∂g

∂ya

Then

φ∗

(
∂

∂xb

)
=
∂ya

∂xb
∂

∂ya

and so

(φ∗)
a
b =

∂ya

∂xb

Question .

Exercise 3. :Lie derivative-the pedestrian way

Question . While it is true that ∀ p ∈ S2, for x(p) = (θ, ϕ), and (yix−1)(θ, ϕ) = (y1, y2, y3) ∈ R3 and that, at this point

p, (y1)2/a2 + (y2)2/b2 + (y3)2/c3 = 1, this doesn’t imply (EY: 20150321 I think) that, globally, it’s an ellipsoid (yet). In

the familiar charts given,

spherical chart (U, x) ∈ A and

(R3, y = idR3) ∈ B
it looks like an ellipsoid, but change to another choice of charts, and it could look something very different.

Question .

Equip (R3,Ost,B) with the Euclidean metric g, and pullback g.

Note that the pullback of the inclusion from R3 onto S2 for the Euclidean metric is the following:

i∗g

(
∂

∂θi
,
∂

∂θj

)
= g

(
i∗

∂

∂θi
, i∗

∂

∂θj

)
= g

(
∂xa

∂θi
∂

∂xa
,
∂xb

∂θj
∂

∂xb

)
= gab

∂xa

∂θi
∂xb

∂θj

With gab = δab, the usual Euclidean metric, this becomes the following:

gellipsoid
ij =

∂xa

∂θi
∂xa

∂θj

At this point, one should get smart (we are in the 21st century) and use some sort of CAS (Computer Algebra System). I

like Sage Math (version 6.4 as of 20150322). I also like the Sage Manifolds package for Sage Math.

I like Sage Math for the following reasons:

• Open source, so its open and freely available to anyone, which fits into my principle of making online education

open and freely available to anyone, anytime

• Sage Math structures everything in terms of Category Theory and Categories and Morphisms naturally correspond

to Classes and Class methods or functions in Object-Oriented Programming in Python and theyve written it that

way

and I like Sage Manifolds for roughly the same reasons, as manifolds are fit into a category theory framework thats written

into the Python code. e.g.

sage: S2 = Manifold(2, ’S^2’, r’\mathbb{S}^2’, start_index=1) ; print S2

sage: print S2

2-dimensional manifold ’S^2’

sage: type(S2)

<class ’sage.geometry.manifolds.manifold.Manifold_with_category’>
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With code (Ive provided for convenience; you can make your own as I wrote it based upon to example of S2 on the

sagemanifolds documentation website page), load it and do the following:

cf. https://github.com/ernestyalumni/diffgeo-by-sagemnfd/blob/master/S2.sage

http://sagemanifolds.obspm.fr/examples.html

sage: load("S2.sage")

sage: U_ep = S2.open_subset(’U_{ep}’)

sage: eps.<the,phi> = U_ep.chart()

sage: a = var(a)

sage: b = var(b)

sage: c = var("c")

sage: inclus = S2.diff_mapping(R3, {(eps, cart): [ a*cos(phi)*sin(the), b*sin(phi)*sin(the),c*cos(the) ]} , name="inc",latex_name=r’\mathcal{i}’)

sage: inclus.pullback(h).display()

inc_*(h) = (c^2*sin(the)^2 + (a^2*cos(phi)^2 + b^2*sin(phi)^2)*cos(the)^2) dthe*dthe - (a^2 - b^2)*cos(phi)*cos(the)*sin(phi)*sin(the) dthe*dphi

- (a^2 - b^2)*cos(phi)*cos(the)*sin(phi)*sin(the) dphi*dthe + (b^2*cos(phi)^2 + a^2*sin(phi)^2)*sin(the)^2 dphi*dphi

sage: inclus.pullback(h)[2,2].expr()

(b^2*cos(phi)^2 + a^2*sin(phi)^2)*sin(the)^2

A new open subset Uep was declared in S2, a new chart (Uep, (θ, φ)) was declared, the constants, a, b, c, were declared, and

the inclusion map given in the problem

y ◦ i ◦ x−1 : (θ, φ) 7→ (a cosφ sin θ, b sinφ sin θ, c cos θ)

Then the pullback of the inclusion map 〉 was done on the Euclidean metric h, defined earlier in the file

S2.sage

. Then one can access the components of this metric and do, for example,

simplify_full(),full_simplify(), reduce_trig()

on the expression.

In Python, I could easily do this, and give an answer quick in LaTeX:

sage: for i in range(1,3):

....: for j in range(1,3):

....: print inclus.pullback(h)[i,j].expr()

....: latex(inclus.pullback(h)[i,j].expr() )

....:

c^2*sin(the)^2 + (a^2*cos(phi)^2 + b^2*sin(phi)^2)*cos(the)^2

(EY: I’ll suppress the LaTeX output but this sage math function gives you LaTeX code)

and so

i∗g = c2 sin (the)
2

+
(
a2 cos (φ)

2
+ b2 sin (φ)

2
)

cos (the)
2
dθ ⊗ dθ+

−2
(
a2 − b2

)
cos (φ) cos (the) sin (φ) sin (the) dθ ⊗ dφ+

+
(
b2 cos (φ)

2
+ a2 sin (φ)

2
)

sin (the)
2
dφ⊗ dφ

Question .

sage: polar_vees = eps.frame()

sage: X_1 = - sin(phi) * polar_vees[1] - cot( the ) * cos(phi) * polar_vees[2]

sage: X_2 = cos( phi ) * polar_vees[1] - cot( the ) * sin( phi) * polar_vees[2]

sage: X_3 = polar_vees[2]

sage: X_2.lie_der(X_1).display()

(cos(the)^2 - 1)/sin(the)^2 d/dphi

sage: X_3.lie_der(X_1).display()

cos(phi) d/dthe - cos(the)*sin(phi)/sin(the) d/dphi
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sage: X_3.lie_der(X_2).display()

sin(phi) d/dthe + cos(phi)*cos(the)/sin(the) d/dphi

Indeed, one can check on a scalar field feps ∈ C∞(S2):

sage: f_eps = S2.scalar_field({eps: function(’f’, the, phi ) }, name=’f’ )

sage: (X_1( X_2(f_eps)) - X_2(X_1(f_eps) ) ).display()

U_{ep} --> R

(the, phi) |--> -D[1](f)(the, phi)

sage: X_2.lie_der(X_1) == -X_3

True

sage: X_3.lie_der(X_1) == X_2

True

sage: X_3.lie_der(X_2) == -X_1

True

=⇒ [Xi, Xj ] = −εijkXk

So spanR{X1, X2, X3} equipped with [ , ] constitute a Lie subalgebra on S2 (It’s closed under [ , ]

12. Integration

12.1.

12.2.

12.3. Volume forms.

Definition 16. On a smooth manifold (M,O,A)

a (0,dimM)-tensor field Ω is called a volume form if

(a) Ω vanishes nowhere (i.e. Ω 6= 0 ∀ p ∈M)

(b) totally antisymmetric

Ω(. . . , X︸︷︷︸
ith

, . . . , Y︸︷︷︸
jth

. . . ) = −Ω(. . . , Y︸︷︷︸
ith

, . . . , X︸︷︷︸
jth

. . . )

In a chart:

Ωi1...id = Ω[i1...id]

Example (M,O,A, g) metric manifold

construct volume form Ω from g

In any chart: (U, x)

Ωi1...id :=
√

det(gij(x))εi1...id

where Levi-Civita symbol εi1...id is defined as ε123...d = +1

ε1...d = ε[i1...id]

19



Proof. (well-defined) Check: What happens under a change of charts

Ω(y)i1...id =
√

det(g(y)ij)εi1...id =

=

√
det(gmn(x)

∂xm

∂yi
∂xn

∂yj
)
∂ym1

∂xi1
. . .

∂ymd

∂xid
ε[m1...md] =

=
√
|detgij(x)|

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣det

(
∂y

∂x

)
εi1...id =

√
detgij(x)εi1...idsgn

(
det

(
∂x

∂y

))
�

EY : 20150323

Consider the following:

Ω(y)(Y(1) . . . Y(d)) = Ω(y)i1...idY
i1
(1) . . . Y

id
(d) =

=
√

det(gij(y))εi1...idY
i1
(1) . . . Y

id
(d) =

=

√
det(gmn(x))

∂xm

∂yi
∂xn

∂yj
εi1...id

∂yi1

∂xm1
. . .

∂yid

∂xmd
Xm1 . . . Xmd =

=

√
det(gmn(x))

∂xm

∂yi
∂xn

∂yj
det

(
∂y

∂x

)
εm1...mdX

m1 . . . Xmd =

=
√

det(gmn(x))

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣det

(
∂y

∂x

)
εm1...mdX

m1 . . . Xmd =

=
√

det(gmn(x))εm1...mdsgn

(
det

(
∂x

∂y

))
Xm1 . . . Xmd = sgn(det

(
∂x

∂y

)
)Ωm1...md(x)Xm1 . . . Xmd

If det
(
∂y
∂x

)
> 0,

Ω(y)(Y(1) . . . Y(d)) = Ω(x)(X(1) . . . X(d))

This works also if Levi-Civita symbol εi1...id doesn’t change at all under a change of charts. (around 42:43 https://youtu.

be/2XpnbvPy-Zg)

Alright, let’s require,

restrict the smooth atlas A
to a subatlas (A↑ still an atlas)

A↑ ⊆ A

s.t. ∀ (U, x), (V, y) have chart transition maps y ◦ x−1

x ◦ y−1

s.t. det
(
∂y
∂x

)
> 0

such A↑ called an oriented atlas

(M,O,A, g) =⇒ (M,O,A↑, g)

Note: associated bundles.

Note also: det
(
∂yb

∂xa

)
= det(∂a(ybx−1)) ∂yb

∂xa is an endomorphism on vector space V . ϕ : V → V

detϕ independent of choice of basis

g is a (0, 2) tensor field, not endomorphism (not independent of choice of basis)
√
|det(gij(y))|
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Definition 17. Ω be a volume form on (M,O,A↑) and consider chart (U, x)

Definition 18. ω(X) := Ωi1...idε
i1...id same way ε12...d = +1

ε[... ]

one can show

ω(y) = det

(
∂x

∂y

)
ω(x) scalar density

12.4. Integration on one chart domain U .

Definition 19.

(12.1)

∫
U

f :
(U,y)
=

∫
y(U)

ddβω(y)(y
−1(β))f(y)(β)

Proof. : Check that it’s (well-defined), how it changes under change of charts∫
U

f :
(U,y)
=

∫
y(U)

ddβω(y)(y
−1(β))f(y)(β) = =

(U,y)

∫
x(U)

∫
ddα

∣∣∣∣det

(
∂y

∂x

)∣∣∣∣ f(x)(α)ω(x)(x
−1(α)det

(
∂x

∂y

)
=

=

∫
x(U)

ddαω(x)(x
−1(x))f(x)(α)

�

On an oriented metric manifold (M,O,A↑, g)∫
U

f :=

∫
x(U)

ddα
√

det(gij(x))(x−1(α))︸ ︷︷ ︸
√
g

f(x)(α)

12.5. Integration on the entire manifold.

13. Lecture 13: Relativistic spacetime

Recall, from Lecture 9, the definition of Newtonian spacetime

(M,O,A,∇, t)

∇ torsion free

t ∈ C∞(M)

dt 6= 0

∇dt = 0 (uniform time)

and the definition of relativistic spacetime (before Lecture )

(M,O,A↑,∇, g, T )

∇ torsion-free

g Lorentzian metric(+−−−)

T time-orientation
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13.1. Time orientation.

Definition 20. (M,O,A↑, g) a Lorentzian manifold. Then a time-orientation is given by a vector field T that

(i) does not vanish anywhere

(ii) g(T, T ) > 0

Newtonian vs. relativistic

Newtonian

X was called future-directed if

dt(X) > 0

∀ p ∈M , take half plane, half space of TpM

also stratified atlas so make planes of constant t straight

relativistic

half cone ∀ p, q ∈M , half-cone ⊆ TpM

This definition of spacetime

Question

I see how the cone structure arises from the new metric. I don’t understand however, how the T , the time orientation,

comes in

Answer

(M,O,A, g) g
(←− +−−−)

requiring g(X,X) > 0, select cones

T chooses which cone

This definition of spacetime has been made to enable the following physical postulates:

(P1) The worldline γ of a massive particle satisfies

(i) gγ(λ)(vγ,γ(lambda), vγ,γ(λ)) > 0

(ii) gγ(λ)(T, vγ,γ(λ)) > 0

(P2) Worldlines of massless particles satisfy

(i) gγ(λ)(vγ,γ(λ), vγ,γ(λ)) = 0

(ii) gγ(λ)(T, vγ,γ(λ)) > 0

picture: spacetime:

Answer (to a question) T is a smooth vector field, T determines future vs. past, “general relativity: we have such a time

orientation; smoothness makes it less arbitrary than it seems” -FSchuller,

Claim: 9/10 of a metric are determined by the cone

spacetime determined by distribution, only one-tenth error

13.2. Observers. (M,O,A↑,∇, g, T )

Definition 21. An observer is a worldline γ with

g(vγ , vγ) > 0

g(T, vγ) > 0
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together with a choice of basis

vγ,γ(λ) ≡ e0(λ), e1(λ), e2(λ), e3(λ)

of each Tγ(λ)M where the observer worldline passes, if g(ea(λ), eb(λ)) = ηab =


1

−1

−1

−1


ab

precise: observer = smooth curve in the frame bundle LM over M

13.2.1. Two physical postulates.

(P3) A clock carried by a specific observer (γ, e) will measure a time

τ :=

∫ λ1

λ0

dλ
√
gγ(λ)(vγ,γ(λ), vγ,γ(λ))

between the two “events”

γ(λ0) “start the clock”

and

γ(λ1) “stop the clock”

Compare with Newtonian spacetime:

t(p) = 7

Thought bubble: proper time/eigentime τ

Application/Example.

M = R4

O = Ost

A 3 (R4, idR4)

g : g(x)ij = ηij ; T i(x) = (1, 0, 0, 0)i

=⇒ Γi(x) jk = 0 everywhere

=⇒ (M,O,A↑, g, T,∇) Riemm = 0

=⇒ spacetime is flat

This situation is called special relativity.

Consider two observers:
γ : (0, 1)→M

γi(x) = (λ, 0, 0, 0)i

δ : (0, 1)→M

α ∈ (0, 1) :δi(x) =

(λ, αλ, 0, 0)i λ ≤ 1
2

(λ, (1− λ)α, 0, 0)i λ > 1
2

let’s calculate:

τγ :=

∫ 1

0

√
g(x)ij γ̇

i
(x)γ̇

j
(x) =

∫ 1

0

dλ1 = 1

τδ :=

∫ 1/2

0

dλ
√

1− α2 +

∫ 1

1/2

√
12 − (−α)2 =

∫ 1

0

√
1− α2 =

√
1− α2

Note: piecewise integration

Taking the clock postulate (P3) seriously, one better come up with a realistic clock design that supports the

postulate. idea.

2 little mirrors
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(P4) Postulate

Let (γ, e) be an observer, and

δ be a massive particle worldline that is parametrized s.t. g(vγ , vγ) = 1 (for parametrization/normalization

convenience)

Suppose the observer and the particle meet somewhere (in spacetime)

δ(τ2) = p = γ(τ1)

This observer measures the 3-velocity (spatial velocity) of this particle as

(13.1) vδ : εα(vδ,δ(τ2))eα α = 1, 2, 3

where ε0, ε1, ε2, ε3 is the unique dual basis of e0, e1, e2, e3

EY:20150407

There might be a major correction to Eq. (13.1) from the Tutorial 14 : Relativistic spacetime, matter, and Gravitation,

see the second exercise, Exercise 2, third question:

(13.2) v :=
εα(vδ)

ε0(vδ)
eα

Consequence: An observer (γ, e) will extract quantities measurable in his laboratory from objective spacetime quantities

always like that.

Ex: F Faraday (0, 2)-tensor of electromagnetism:

F (ea, eb) = Fab =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


observer frame ea, eb

Eα := F (e0, eα)

Bγ := F (eα, eρ)ε
αβγ where ε123 = +1 totally antisymmetric

13.3. Role of the Lorentz transformations. Lorentz transformations emerge as follows:

Let (γ, e) and (γ̃, ẽ) be observers with γ(τ1) = γ̃(τ2)

(for simplicity γ(0) = γ̃(0)

Now
e0, . . . , e1 at τ = 0

and ẽ0, . . . , ẽ1 at τ = 0

both bases for the same Tγ(0)M

Thus: ẽa = Λbaeb Λ ∈ GL(4)

Now:

ηab = g(ẽa, ẽb) = g(Λmaem,Λ
n
ben) =

= ΛmaΛnb g(em, en)︸ ︷︷ ︸
ηmn

i.e. Λ ∈ O(1, 3)

Result: Lorentz transformations relate the frames of any two observers at the same point.
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“x̃µ − Λµνx
ν” is utter nonsense

Tutorial. I didn’t see a tutorial video for this lecture, but I saw that the Tutorial sheet number 14 had the relevant topics.

Go there.

14. Lecture 14: Matter

two types of matter

point matter

field matter

point matter

massive point particle

more of a phenomenological importance

field matter

electromagnetic field

more fundamental from the GR point of view

both classical matter types

14.1. Point matter. Our postulates (P1) and (P2) already constrain the possible particle worldlines.

But what is their precise law of motion, possibly in the presence of “forces”,

(a) without external forces

Smassive[γ] := m

∫
dλ
√
gγ(λ)(vγ,γ(λ), vγ,γ(λ))

with:

gγ(λ)(Tγ(λ), vγ,γ(λ)) > 0

dynamical law Euler-Lagrange equation

similarly

Smassless[γ, µ] =

∫
dλµg(vγ,γ(λ), vγ,γ(λ))

δµ g(vγ,γ(λ), vγ,γ(λ)) = 0

δγ e.o.m.

Reason for describing equations of motion by actions is that composite systems have an action that is the sum of

the actions of the parts of that system, possibly including “interaction terms.”

Example.

S[γ] + S[δ] + Sint[γ, δ]

(b) presence of external forces

or rather presence of fields to which a particle “couples”

Example

S[γ;A] =

∫
dλm

√
gγ(λ)(vγ,γ(λ), vγ,γ(λ)) + qA(vγ,γ(λ))

where A is a covector field on M . A fixed (e.g. the electromagnetic potential)
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Consider Euler-Lagrange eqns. Lint = qA(x)γ̇
m
(x)

m(∇vγvγ)a +

˙(
∂Lint

∂ ˙m(x)

)
γ − ∂Lint

∂γm(x)︸ ︷︷ ︸
∗

= 0 =⇒ m(∇vγvγ)a = −qF amγ̇m︸ ︷︷ ︸
Lorentz force on a charged particle in an electromagnetic field

∂L

∂γ̇a
= qA(x)a,

˙(
∂L

∂ ˙m

)
γ = q · ∂

∂xm
(A(x)m) · γ̇m(x)

∂L

∂γa
= q · ∂

∂xa
(A(x)m)γ̇m

∗ = q

(
∂Aa
∂xm

− ∂Am
∂xa

)
γ̇m(x) = q · F(x)amγ̇

m
(x)

F ← Faraday

S[γ] =

∫
(m
√
g(vγ , vγ) + qA(vγ))dλ

14.2. Field matter.

Definition 22. Classical (non-quantum) field matter is any tensor field on spacetime where equations of motion derive

from an action.

Example:

SMaxwell[A] =
1

4

∫
M

d4x
√
−gFabFcdgacgbd

A (0, 1)-tensor field

= thought cloud: for simplicity one chart covers all of M

− for
√
−g (+−−−)

Fab := 2∂[aAb] = 2(∇[aA)b]

Euler-Lagrange equations for fields

0 =
∂L
∂Am

− ∂

∂xs

(
∂L

∂∂sAm

)
+

∂

∂xs
∂

∂xt
∂2L

∂∂t∂sAm

Example . . .

(∇ ∂
∂xm

F )ma = ja

inhomogeneous Maxwell

thought bubble j = qvγ

∂[aFb] − ()

homogeneous Maxwell

Other example well-liked by textbooks

SKlein-Gordon[φ] :=

∫
M

d4x
√
−g[gab(∂aφ)(∂bφ)−m2φ2]

φ (0, 0)-tensor field
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14.3. Energy-momentum tensor of matter fields. At some point, we want to write down an action for the metric

tensor field itself.

But then, this action Sgrav[g] will be added to any Smatter[A, φ, . . . ] in order to describe the total system.

Stotal[g,A] = Sgrav[g] + SMaxwell[A, g]

δA :=⇒ Maxwell’s equations

δgab :
1

16πG
Gab + (−2T ab) = 0

G Newton’s constant

Gab = 8πGNT
ab

Definition 23. Smatter[Φ, g] is a matter action, the so-called energy-momentum tensor is

T ab :=
−2√
−g

(
∂Lmatter

∂gab
− ∂s

∂Lmatter

∂∂sgab
+ . . .

)
− of −2√

g is Schrödinger minus (EY : 20150408 F.Schuller’s joke? but wise)

choose all sign conventions s.t.

T (ε0, ε0) > 0

Example: For SMaxwell:

Tab = FamFbng
mn − 1

4
FmnF

mngab

Tab ≡ TMaxwellab

T (e0, e0) = E2 +B2

T (e0, eα) = (E ×B)α

Fact: One often does not specify the fundamental action for some matter, but one is rather satisfied to assume certain

properties / forms of

Tab

Example Cosmology: (homogeneous & isotropic)

perfect fluid

of pressure p and density ρ modelled by

T ab = (ρ+ p)uaub − pgab

radiative fluid

What is a fluid of photons:

observe:

T ab
Maxwellgab = 0

T ab
p.f.gab

!
= 0

= (ρ+ p)uaubgab − p gabgab︸ ︷︷ ︸
4

↔ρp04p = 0

ρ = 3p
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p = 1
3ρ

Reconvene at 3 pm? (EY : 20150409 I sent a Facebook (FB) message to the International Winter School on Gravity and

Light: there was no missing video; it continues on Lecture 15 immediately)

Tutorial 14: Relativistic Spacetime, Matter and Gravitation. Exercise 2: Lorentz force law.

Question electromagnetic potential.

15. Lecture 15: Einstein gravity

Recall that in Newtonian spacetime, we were able to reformulate the Poisson law ∆φ = 4πGNρ in terms of the Newtonian

spacetime curvature as

R00 = 4πGNρ

R00 with respect to ∇Newton

GN = Newtonian gravitational constant

This prompted Einstein to postulate < 1915 that the relativistic field equations for the Lorentzian metric g of (relativistic)

spacetime

Rab = 8πGNTab��

However, this equation suffers from a problem

LHS: (∇aR)ab 6= 0

generically

RHS:

(∇aT )ab = 0

thought bubble: = formulated from an action

Einstein tried to argue this problem away.

Nevertheless, the equations cannot be upheld.

15.1. Hilbert. Hilbert was a specialist for variational principles.

To find the appropriate left hand side of the gravitational field equations, Hibert suggested to start from an action

SHilbert[g] =

∫
M

√
−gRabgab

thought bubble = “simplest action”

aim: varying this w.r.t. metric gab will result in some tensor

Gab = 0
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15.2. Variation of SHilbert.

0
!
= δ︸︷︷︸

gi

SHilbert[g] =

∫
M

[δ
√
−ggabRab︸ ︷︷ ︸

1

+
√
−gδgabRab︸ ︷︷ ︸

2

+
√
−ggabδRab︸ ︷︷ ︸

3

]

and 1 : δ
√
−g =

−(detg)gmnδgmn
2
√
−g

=
1

2

√
−ggmnδgmn

thought bubble

δdet(g) = det(g)gmnδgmn

e.g. from

det(g) = exp trln g

ad 2: gabgbc = δac
=⇒ (δgab)gbc + gab(δgbc) = 0

=⇒ δgab = −gamgbnδgmn

ad 3:
∆Rab =︸︷︷︸

normal coords at point

δ∂bΓ
m
am − δ∂mΓmab + ΓΓ− ΓΓ =

= ∂bδΓ
m
am − ∂mδΓmab =

= ∇b(δΓ)mam −∇m(δΓ)mab

=⇒
√
−ggabδRab =

√
−g

“if you formulate the variation properly, you’ll see the variation δ commute with ∂b” EY : 20150408 I think one uses the

integration at the bounds, integration by parts trick

Γi(x) jk − Γ̃i(x) jk are the components of a (1, 2)-tensor.

Notation: (∇bA)ig =: Aij;b

=⇒
√
−ggabδRab

=︸︷︷︸
∇g=0

√
−g(gabδΓmam);b −

√
−g(gabδΓmab);m =

√
−gAb;b −

√
−gBm,m

Question: Why is the difference of coefficients a tensor?

Answer:

Γi(y) jk =
∂yi

∂xm
∂xm

∂yj
∂xq

∂yk
Γm(x) ,nq +

∂yi

∂xm
∂2xm

∂yj∂yk

Collecting terms, one obtains

0
!
= δSHilbert =

∫
M

[
1

2

√
−ggmnδgmngabRab −

√
−ggamgbnδgmnRab + (

√
−gAa) ,a︸ ︷︷ ︸
surface

− (
√
−gBb) ,b︸ ︷︷ ︸

surface term

]

=

∫
M

√
−gδ gmn︸︷︷︸

arbitrary variation

[
1

2
gmnR−Rmn] =⇒ Gmn = Rmn − 1

2
gmnR

Hence Hilbert, from this “mathematical” argument, concluded that one may take

Rab −
1

2
gabR = 8πGNTab

Einstein equations

SE−H [g] =

∫
M

√
−gR
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15.3. 3. Solution of the ∇aT ab = 0 issue. One can show (→ Tutorials) that the Einstein curvature

Gab = Rab −
1

2
gabR

satisfy the so-called contracted differential Bianchi identity

(∇aG)ab = 0

15.4. Variants of the field equations.

(a) a simple rewriting:

Rab −
1

2
gabR = 8πGNTab = Tab

GN = 1
8π

Contract on both sides gab

Rab −
1

2
gabR = Tab||gab

R− 2R = T := Tabg
ab

=⇒ R = −T

=⇒ Rab +
1

2
gabT = Tab

⇐⇒ Rab = (Tab −
1

2
Tgab) =: T̂ab

Rab = T̂ab

(b)

SE−H [g] :=

∫
M

√
−g(R+ 2Λ)

thought bubble: Λ cosmological constant

History:

1915: Λ < 0 (Einstein) in order to get a non-expanding universe

>1915: Λ = 0 Hubble

today Λ > 0 to account for an accelerated expansion

Λ 6= 0 can be interpreted as a contribution

− 1
2Λg to the energy-momentum

“dark energy”

Question: surface terms scalar?

Answer: for a careful treatment of the surface terms which we discarded, see, e.g. E. Poisson, “A relativist’s

toolkit” C.U.P. “excellent book”

Question: What is a constant on a manifold?

Answer:
∫ √
−gΛ = Λ

∫ √
−g1

[back to dark energy]

[Weinberg, QCD, calculated]

idea: 1 could arise as the vacuum energy of the standard model fields

Λcalculated = 10120 × Λobs

“worst prediction of physics”
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Tutorials: check that

• Schwarzscheld metric (1916)

• FRW metric

• pp-wave metric

• Reisner-Nordstrom

=⇒ are solutions to Einstein’s equations

in high school

mẍ+mω2x2 = 0

x(t) = cos (ωt)

ET: [elementary tutorials]

study motion of particles & observers in Schwarzscheld S.T.

Satellite: Marcus C. Werner

Gravitational lensing

odd number of pictures Morse theory (EY:20150408 Morse Theory !!!)

Domenico Giulini

Hamiltonian form Canonical Formulations

Key to Quantum Gravity

Tutorial 13 Schwarzschild Spacetime

EY : 20150408 I’m not sure which tutorial follows which lecture at this point.

The tutorial video is excellent itself. Here, I want to encourage the use of CAS to do calculations. There are many out

there. Again, I’m partial to the Sage Manifolds package for Sage Math which are both open-source and based on Python.

I’ll use that here.

Exercise 1. Geodesics in a Schwarzschild spacetime

Question Write down the Lagrangian.

Load “Schwarzschild.sage” in Sage Math, which will always be available freely here https://github.com/ernestyalumni/

diffgeo-by-sagemnfd/blob/master/Schwarzschild.sage:

sage: load("Schwarzschild.sage")

4-dimensional manifold ’M’

open subset ’U_sph’ of the 4-dimensional manifold ’M’

Levi-Civita connection ’nabla_g’ associated with the Lorentzian metric ’g’ on the 4-dimensional manifold ’M’

and so on.

Look at the code and I had defined the Lagrangian to be

L

. To get out the coefficients of L of the components of the tangent vectors to the curve, i.e. t′, r′, θ′, φ′, denoted

tp,rp,thp,php

in my .sage file, do the following:
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sage: L.expr().coefficients(tp)[1][0].factor().full_simplify()

(2*G_N*M_0 - r)/r

sage: L.expr().coefficients(rp)[1][0].factor().full_simplify()

-r/(2*G_N*M_0 - r)

sage: L.expr().coefficients(php)[1][0].factor().full_simplify()

r^2

sage: L.expr().coefficients(thp)[1][0].factor().full_simplify()

r^2*sin(th)^2

Question There are 4 Euler-Lagrange equations for this Lagrangian. Derive the one with respect to the function

t(λ)!.

sage: L.expr().diff(t)

0

This confirms that ∂L
∂t = 0

For d
dλ

∂L
∂t′ , then one needs to consider this particular workaround for Sage Math (computer technicality). One takes

derivatives with respect to declared variables (declared with var) and then substitute in functions that are dependent upon

λ, and then take the derivative with respect to the parameter λ. This does that:

sage: L.expr().diff( thp ).factor().subs( r == gamma1 ).subs( thp == gamma3.diff( tau ) ).subs( th == gamma3 ).diff(tau)\

....: .factor()

2*(2*cos(gamma3(tau))*gamma1(tau)*D[0](gamma3)(tau)^2 + 2*sin(gamma3(tau))*D[0](gamma1)(tau)*D[0](gamma3)(tau)

+ gamma1(tau)*sin(gamma3(tau))*D[0, 0](gamma3)(tau))*gamma1(tau)*sin(gamma3(tau))

Question Show that the Lie derivative of g with respect to the vector fields Kt :=
∂
∂t

.

The first line defines the vector field by accessing the frame defined on a chart with spherical coordinates and getting the

time vector. The second line is the Lie derivative of g with respect to this vector field.

sage: K_t = espher[0]

sage: g.lie_der(K_t).display() # 0, as desired

0

EY : 20150410 My question is this: ∀X ∈ Γ(TM) i.e. X is a vector field on M , or, specifically, a section of the tangent

bundle, then does

LXg = 0

instantly mean that X is a symmetry for (M, g)? LXg is interpreted geometrically as how g changes along the flow

generated by X, and if it equals 0, then g doesn’t change.

16.

17.

18.

19.

20.

21.

22. Lecture 22: Black Holes

Only depends on Lectures 1-15, so does lecture on “Wednesday”
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Schwarzschild solution also vacuum solution (from tutorial EY : oh no, must do tutorial)

Study the Schwarzschild as a vacuum solution of the Einstein equation:

m = GNM where M is the “mass”

g =

(
1− 2m

r

)
dt⊗ dt− 1

1− 2m
r

dr ⊗ dr − r2(dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

in the so-called Schwarzschild coordinates t r θ ϕ

(−∞,∞) (0,∞) (0, π) (0, 2π)

What staring at this metric for a while, two questions naturally pose themselves:

(i) What exactly happens r = 2m?

t r θ ϕ

(−∞,∞) (0, 2m) ∪ (2m,∞) (0, π) (0, 2π)

(ii) Is there anything (in the real world) beyond t→ −∞

t→ +∞

?

idea: Map of Linz, blown up

Insight into these two issues is afforded by stopping to stare.

Look at geodesic of g, instead.

22.1. Radial null geodesics. null - g(vγ , vγ) = 0

Consider null geodesic in “Schd”

S[γ] =

∫
dλ

[(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 − r2(θ̇2 + sin2 θϕ̇2)

]
with [. . . ] = 0

and one has, in particular, the t-eqn. of motion:

((
1− 2m

r

)
ṫ

).
= 0

=⇒ (
1− 2m

r

)
ṫ = k = const.

Consider radial null geodesics

θ
!
= const. ϕ = const.

From 2 and 2

=⇒ ṙ2 = k2 ↔ ṙ = ±k

=⇒ r(λ) = ±k · λ

Hence, we may consider

t̃(r) := t(±kλ)

Case A: ⊕
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dt̃

dr
=

˙̃t

ṙ
=

k(
1− 2m

r

)
k

=
r

r − 2m

=⇒ t̃+(r) = r + 2m ln |r − 2m|

(outgoing null geodesics)

Case b. ± (Circle around −, consider −):

t̃−(r) = −r − 2m ln |r − 2m|

(ingoing null geodesics)

Picture

22.2. Eddington-Finkelstein. Brilliantly simple idea:

change (on the domain of the Schwarzschild coordinates) to different coordinates, s.t.

in those new coordinates,

ingoing null geodesics appear as straight lines, of slope −1

This is achieved by

t̄(t, r, θ, ϕ) := t+ 2m ln |r − 2m|

Recall: ingoing null geodesic has

t̃(r) = −(r + 2m ln |r − 2m|) (Schdcoords)

⇐⇒ t̄− 2m ln |r − 2m| = −r − 2m ln |r − 2m|+ const.

∴ t̄ = −r + const.

(Picture)

outgoing null geodesics

t̄ = r + 4m ln |r − 2m|+ const.

Consider the new chart (V, g) while (U, x) was the Schd chart.

U︸︷︷︸
Schd

⋃
{ horizon } = V

“chart image of the horizon”

Now calculate the Schd metric g w.r.t. Eddington-Finkelstein coords.

t̄(t, r, θ, ϕ) = t+ 2m ln |r − 2m|

r̄(t, r, θ, ϕ) = r

θ̄(t, r, θ, ϕ) = θ

ϕ̄(t, r, θ, ϕ) = ϕ

EY : 20150422 I would suggest that after seeing this, one would calculate the metric by your favorite CAS. I like the Sage

Manifolds package for Sage Math.

Schwarzschild BH.sage on github
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https://github.com/ernestyalumni/diffgeo-by-sagemnfd/blob/master/Schwarzschild_BH.sage


Schwarzschild BH.sage on Patreon

Schwarzschild BH.sage on Google Drive

sage: load(‘‘Schwarzschild_BH.sage’’)

4-dimensional manifold ’M’

/Applications/Sage -6.6. app/Contents/Resources/sage/local/lib/python2 .7/site -packages/sage/geometry/manifolds/utilities.py:283: DeprecationWarning: simplify_radical is deprecated. Please use canonicalize_radical instead.

See http :// trac.sagemath.org /11912 for details.

expr = expr.simplify_radical ()

Levi -Civita connection ’nabla_g ’ associated with the Lorentzian metric ’g’ on the 4-dimensional manifold ’M’

Launched png viewer for Graphics object consisting of 4 graphics primitives

Then calculate the Schwarzschild metric g but in Eddington-Finkelstein coordinates. Keep in mind to calculate the set of

coordinates that uses t̄, not t̃:

sage: gI.display ()

gI = (2*m - r)/r dt*dt - r/(2*m - r) dr*dr + r^2 dth*dth + r^2*sin(th)^2 dph*dph

sage: gI.display( X_EF_I_null.frame ())

gI = (2*m - r)/r dtbar*dtbar + 2*m/r dtbar*dr + 2*m/r dr*dtbar + (2*m + r)/r dr*dr + r^2 dth*dth + r^2* sin(th)^2 dph*dph
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