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I. LIMITATIONS OF MICROSCOPIC APPROACHES.

• We deal with very large amounts of atoms in everyday scale 1030. It is impossible to

solve these many equations of motion, it is even harder to define the initial conditions.

• Most of dynamics we are dealing with is chaotic. Chance plays a very important

role everywhere around us. This means that the outcome of a certain process is very

susceptible to slightest changes in the initial conditions in external perturbations etc.

Chaos: information which is not significant at present determines the future. Usually

chaos is opposite to dissipation associated with the loss of information. Connections

of statistical physics and information is coming!

• Quantum mechanics is even more complex. The Hilbert space is exponentially large.

Take e.g. 100 particles in 200 lattice sites. The size of the Hilbert space for (spinless)

fermions is 200!/(100!)2 1050 and for bosons 300!/(200!100!) 1080 for bosons. The

amount of particles in the Universe is 1050. It is fundamentally impossible to simulate

dynamics microscopically for even this small system. Also the typical level spacing

is exponentially small: impossible to resolve levels during life time of universe. No

Schrödinger cat state is possible!!! Also any tiny perturbation will can mix these levels

- quantum chaos.

• Yet we have compelling evidence that often phenomenological macroscopic approaches

work very well: fluid and gas dynamics - airplanes and, newton’s equations for collec-

tive degrees of freedom and phenomenological friction - cars, trains, etc, phenomeno-

logical Ohm’s laws (based on kinetic equations) - electronics, many predictions based

on statistics and probability in biology and chemistry and so on.

The main subject of statistical physics is understanding the connection between micro-

scopics and behavior of large macroscopic systems. Many things are already understood but

many still remain a mystery even now. Despite statistical physics is so old, it is now an area

of very active research by many people.
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II. PROBABILITY AND STATISTICS

Good book Feller. Suppose we have a set S, discrete or continuous. Probability p(s ∈ S)

is a map to real axis, which satisfies the following properties:

• p(s) ≥ 0 - probability can not be negative.

• p(S) = 1 - we will get some outcome withe the probability one

• If s1
⋂

s2 = 0 then p(s1|s2) = p(s1) + p(s2).

One has to differentiate between probability and statistics. The latter is the analysis of

events which already happened. Example toss a coin. Before the process the probability

of ”head” or ”tail” is 50%. However after the coin is tossed it is definite outcome. Physics

definition: probability is a preassigned chance of a certain outcome, statistics is what we

measure.

Intuitive definition of probability: do many (N) identical experiments. Suppose that the

outcome s happened Ns times. Then probability of Ns is

p(s) = lim
N→∞

Ns

N
. (1)

A. Discrete Sets.

Assume now that our set S is a discrete set of numbers. Then the normalization requires

that
∑
s

p(s) = 1. (2)

Next we introduce some important concepts. Expectation value of s or mean or average

is

s =
∑
s

sps. (3)

This average satisfies simple equalities:

s1 + s2 = s1 + s2, (4)

If a is some constant then

as = as. (5)
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Variance is defined as

δs2 = (s− s)2 = s2 − (s)2 (6)

Very important result to remember. Variance tells us about the width of distribution. Note

that variance is in general not additive:

(s1 + s2)2 − (s1 + s2)
2 = δs2

1 + δs2
2 + 2s1s2 − 2s1s2. (7)

The two events are called independent if s1s2=s1s2. Then the variance is additive. Example

what is the probability that we will get a sequence a ”head” and a ”tail”. The answer is

obviously 1/4 = 1/2 ∗ 1/2. These two event are independent. What is the probability that

in a sequence of three tosses we will get (i) 2 out of 3 heads and (ii) the last toss is the

head. By simple counting we will get that p(i− ii) = 1/4 while p(i) = 3/8 and p(ii) = 1/2.

Note p(i− ii) > p(i) ∗ p(ii) because these events are not independent. In fact one can prove

that p(i− ii) = p(i) ∗ p(ii|i) = 3/8 ∗ 2/3 = 1/4. The quantity p(ii|i) is called a conditional

probability: what is the probability of ii given i happened.

Higher moments of s are defined as expectation values of corresponding powers of s. The

best (unbiased) statistical estimate for the variance:

δs2 ∼ 1

M − 1

M−1∑

i=1


si − 1

M

∑

j

sj




2

. (8)

Indeed if we compute expectation value of δs2 we find:

δs2 =
1

M − 1

∑

i

s2
i −

1

M(M − 1)

∑

i,j

sisj = s2 − (s)2. (9)

Examples of discrete distributions.

Binomial distribution. Imagine that we have a process (a coin toss) with the probability

of success p and probability of failure q such that p + q = 1. Note that for the coin toss

p = q = 1/2. Suppose we perform the process N times. What is the probability of finding n

successes and N − n failures? First let us solve a simpler problem. What is the probability

of having first n successes and next N − n failures? The answer is obviously pnqN−n. Now

let is find the number of independent configurations of n successes and N − n failures, each

having the same probability. First let us choose the positions for ”successes”. The number

of ways we can distribute them is N(N − 1) . . . (N − n + 1). But there is over-counting so
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we need to divide by n! because all permutations within successes are equivalent so the net

result is

P (n) =
N !

n!(N − n)!
pnqN−n. (10)

Note that
∑

P (n) = (p + q)N so the name is binomial distribution. The coefficients are the

binomial coefficients. Let us compute expectation value and variance:

n =
∑
n

n
N !

n!(N − n)!
pnqN−n = Np

∑
n

(N − 1)!

(n− 1)!(N − 1− (n− 1))!
pn−1q(N−1)−(n−1) = pN

(11)

as it should be.

n2 =
∑
n

n2 N !

n!(N − n)!
pnqN−n =

∑
n

(n− 1 + 1)
N !

(n− 1)!(N − n)!
pnqN−n = N(N − 1)p2 + Np

(12)

Therefore

δn2 = Np(1− p) (13)

Note that δn/n =
√

1−p
p

1√
N
→ 0. This justifies intuitive definition of probability. If N → 0

the distribution is highly peaked near the average. This is a cartoon version of the central

limit theorem which plays the key role in statistical physics.

Poisson distribution. This is another very important distribution in statistics. It describes

variety of phenomena from radioactivity to statistics of defective items. It can be obtained

from Poisson distribution when p → 0, N →∞ such that pN = const. Derivation: assume

that the probability of decay of a nucleus per unit time is Γ. What is the probability that

we will detect n decayed nucleus during time t. Solution:let us split the interval t into

subintervals δt and let M = t/δt to be the number of such intervals. The probability that

there will be decay during a particular interval is δp = Γδt. Correspondingly the probability

there is no decay is 1− Γδt. First let us evaluate the probability that the the nucleus does

not decay at all:

P0(t) = (1− Γδt)M = (1− Γt/M)M → exp[−Γt] (14)

This is of course the formula for the radio active decay. Now let us find the probability that

n nucleus decayed, we assume that n is small compared to the total number of nucleous

Pn(t) = (Γδt)n(1− Γδt)M−n M !

n!(M − n)!
→ (Γt)n

n!
exp[−Γt] (15)

Let us denote Γt = λ. Then

Pn =
λn

n!
exp[−λ]. (16)
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Homework. Prove that this distribution is normalized. Find the mean and the variance

as a function of λ. Discuss how the Poisson distribution looks like for large and small

values of λ. Example from Rutherford paper of 1920, flying bomb hits London, statistics

of permutations in chromosomes after X-ray radiation and many more: pages 160-161 from

Feller.

Homework. Problems from Feller.

1. How many random digits one needs to get in order that the probability to have at

least one ”7” there is 90%?

2. What is the probability that six random people have birthdays within the same two

months and the other 10 months are birthday free?

3. A book of 500 pages contains 100 missprints. Estimate the probability that at least

one page contains 5 missprints.

B. Continuous distributions.

Now assume that the set S represents a continuous set of numbers, e.g. rational or

complex numbers. We will use x to denote them. Then the probability satisfies

∫

S
p(x)dx = 1. (17)

For concreteness let us use x to be a 1D set of real numbers. The quantity p(x) is called the

probability density function. One also defines the cumulative probability function

P (x) =
∫ x

−∞
p(x′)dx′ (18)

This function has following properties: P (x → −∞) = 0, P (x → ∞) = 1, P (x) is a

nondecreasing function of x. Expectation value of any function is defined (as in the discrete

case)

〈F (x)〉 =
∫ ∞

−∞
dxp(x)F (x) (19)
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Note that if y is a monotonic function of x we can change variables from y to x. The

conservation of probability requires that p(x)dx = p(y)dy. Therefore

p(y) = p(x)

∣∣∣∣∣
dx

dy

∣∣∣∣∣ . (20)

In general (for arbitrary nonmonotonic function) one can define p(y) as

p(y) =
∫ ∞

−∞
p(x)δ(y(x)− y)dx. (21)

Example: let us take a Gaussian distribution:

p(x) =
1√
2π

e−x2/2 (22)

Let us change the variables to y = x2. Then according to Eq. (21) we have

p(y) = 0 for y <= 0

p(y) =
2√
2πy

exp[−y/2] for y > 0. (23)

A very useful concept is the characteristic function:

p̃(k) = 〈exp[−ikx]〉 =
∫

dx exp[−ikx]p(x). (24)

The probability density is the inverse Fourier transform of the characteristic function. One

can use also other transforms, e.g. Bessel function instead of exponential, or any other

complete set of functions. Note that the characteristic function is the generator of the

moments of the distribution:

p̃(k) =
∑
n

(−ik)n

n!
〈xn〉. (25)

Similarly

exp[ikx0]p̃(k) =
∑
n

(−ik)n

n!
〈(x− x0)

n〉. (26)

The logarithm of the characteristic function generates cumulant expansion of the distribu-

tion:

ln p̃(k) =
∑
n

(−ik)n

n!
〈xn〉c (27)

The first four cumulants have special names: mean, variance, skewness, kurtosis and they

are defined in the following way

〈x〉c = 〈x〉, (28)
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〈x2〉c = 〈x2〉 − 〈x〉2, (29)

〈x3〉c = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3, (30)

〈x4〉c = 〈x4〉 − 4〈x3〉〈x〉+ 3〈x2〉2 + 12〈x2〉〈x〉2 − 6〈x〉4. (31)

(32)

Skewness characterizes the degree of asymmetry of the distribution. Dimensionless number

is ξ = 〈x3〉c/(〈x2〉c)3/2. These cumulants are similarly defined for discrete distributions.

Homework: 1. Work out ξ for the binomial distribution as a function of N . What happens

to ξ for large N. 2. Repeat for Poisson distribution, look carefully at the limit when the

mean becomes large. 3. Find first three cumulants for the exponential distribution: p(x) =

λ exp[−λx], x ≥ 0 and p(x) = 0 otherwise.

Examples of continuous distributions Exponential distribution:

p(x) = λ exp[−λx] (33)

describes the probability density of a nuclei to decay at moment x (if x is interpreted as a

time). The parameter λ plays the role of the decay rate. Normal distribution - probably

most important in statistics:

p(x) =
1√
2πσ

exp

[
−(x− x0)

2

2σ2

]
. (34)

The parameters x0 and σ2 are the mean and the variance respectively. It has all other

cumulants higher than second equal to zero. Characteristic function

p̃(k) = exp

[
−ikx0 − k2x2

2

]
(35)

so that indeed ln p̃(k) = −ikx0 − k2x2/2.

One can also define joint probability distribution of multiple variables: p(x1, x2, ...). The

probability density factorizes if and only if the random variables are independent.

Central limit theorem. Suppose that we are dealing with independent random variables xi

having the same distribution with all moments being finite. Then in the limit when number

of these variables is large the distribution of their sum X =
∑N

i=1 xi approaches gaussian

distribution with mean Nx0 and variance Nσ2, i.e.

p(X) → 1√
2πNσ

exp

[
−(X −Nx0)

2

2Nσ2

]
. (36)
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The theorem is also true if the variables are not equally distributed then the mean and

the variance are the sum of individual means and variances. The theorem is also true for

weakly dependent variables, where quantities like 〈xixj〉 − 〈xi〉〈xj〉 decay sufficiently fast

with |i− j|, i.e. the variables, which are far from each other are almost independent. In this

case, however, the variance will not be the sum of the variances.

Sketch of proof. We showed that the mean and the variance are additive for independent

variables. In order to show that the distribution approaches gaussian it is sufficient to prove

that higher order cumulants of X vanish. Let us define a new variable

y =
X −Nx0

σ
√

N
. (37)

Then clearly 〈y〉c = 0, 〈y2〉c = 1. It is straightforward to verify that higher order cumulants

satisfy:

〈yn〉c = 〈xn〉c N

Nn/2
(38)

They vanish in the limit N →∞ for all n > 2.

Example: Take Poisson distribution

p(n) =
λn

n!
exp[−λ] (39)

Recall that this distribution is obtained from binomial distribution with λ = pN . We are

interested in the limit λ → ∞. Use saddle point approximation and Stirling’s formula and

treat n as a continuous variable:

p(n) ≈ 1√
2πn

exp[n log λ− n log n + n− λ]. (40)

Now expand near n = λ up to second order. Then we get

p(n) ≈ 1√
2πλ

exp

[
−(n− λ)2

2λ

]
. (41)

QED.

Application: a random walk. Assume that we have a random walker who randomly makes

a step to the left of two the right. Find the probability distribution of a position of a random

walker after large number of steps. Solution: Each step changes the position of a walker

either by ∆x = +1 or by ∆x = −1 so the mean displacement per step is x0 = 0 and the

variance is σ2 = 1/2 + 1/2 = 1. By the central limit theorem after N = t (interpret N as
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time) steps the distribution is Gaussian with the probability

p(x) ≈ 1√
2πt

exp

[
−x2

2t

]
. (42)

This is the famous formula for diffusion. It generalizes to arbitrary number of dimensions.

Remarks. The central limit theorem is valid only if all variables have finite moments.

If this is not the case the sum can still converge but to a non-gaussian Levi distribution.

The central limit theorem is useless when we are interested by rare events, i.e.by the tails of

the distribution (like maxima). Instead we get completely different extreme value statistics

distributions.

III. MICROSCOPIC ENSEMBLES, ERGODICITY

As we discussed it is virtually impossible to describe large macroscopic systems determin-

istically. Due to many various factors we can use only probabilistic description, i.e. there

is a function f(x,p, t) of all coordinates and momenta of all particles, which describes the

probability of a system to occupy a certain microscopic state. Thus the average of any

observable is:

〈Ω(t)〉 =
∫

dxdpΩ(x,p, t)f(x,p, t)dxdp. (43)

Note by x and p we understand all phase space coordinates, discrete (like e.g. magneti-

zation) or continuous. In quantum statistical mechanics one have to distinguish between

two averages (often a source of confusion!): quantum mechanical average and statistical

(probabilistic) average. The first one is related to fundamental uncertainty of QM which

states that even if we have a complete knowledge about the wave-function of the system -

we have intrinsically probabilistic description about the system: e.g. we can not possibly

measure coordinates and momenta of a particle. Statistical average is related to the fact

that we do not know the wave function of the system (or this wave function might not exist

at all due to mixing with the environment). Then we have statistical uncertainty about the

wave-function itself. General description of mixed states (states not described by a single

wave function) is given by a density matrix. There are many ways to introduce it. Let us

use the one which emphasizes its statistical nature. Assume that the system is described by

some wave function with statistically random coefficients

|Ψ〉 =
∑
m

am|ψm〉, (44)
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where |m〉 is some basis. Then expectation value of any observable is

Ω =
∑
m,n

a?
namΩn,m. (45)

Note that in order to measure the expectation value we have to perform many experiments.

But for each experiment an and am are randomly chosen according to some statistical prob-

ability distribution. So in practice we have to do both quantum and statistical average and

it is very hard to distinguish between them (though sometimes it is possible - HBT effect -

examples later!). Then

〈Ω〉 ≡ 〈Ω〉 =
∑

ρm,nΩn,m = Tr(ρΩ), (46)

where ρnm = 〈c?
ncm〉. Note that for a pure state we have (ρρ)nm =

∑
n,p,m c?

ncpc
?
pcm = c?

ncm =

ρnm. For non-pure states this does not hold.

Density matrix in quantum statistical physics plays the same role as the distribution

function f(x,p) in classical statistical physics. Instead of integral over phase space we are

dealing with sum over Hilbert space. Diagonal elements of the density matrix play the role

of probability of occupying certain microscopic state: ρnn = 〈c?
ncn〉.

Homework. Consider a system of two spins. Find its density matrix in two situations:

(i) both spins are in the state (| ↑〉+ | ↓〉)/√2 and (ii) each spin is in either | ↑〉 or | ↓〉 state

with equal probability. Find ρ2 in both situations. What do you get for pure state (i), for

mixed state (ii)?

Unless I mention explicitly that we are dealing only with classical or quantum

systems averaging over classical statistical distribution immediately translates

to averaging over density matrix in quantum statistical physics and vice versa.

Ergodic hypothesis: in macroscopic systems average over equilibrium ensemble describing

equilibrium is equivalent to time average, i.e.

〈Ω〉 = lim
T→∞

1

T

∫ t

0
Ω(t)dt (47)

The RHS of this equation is statistical average over many realizations of the experiment. The

LHS is the time average of a single realization. Ergodic hypothesis is the conjecture. There

is no microscopic proof (as far as I know). There is a subtlety in quantum case, because

measurement itself has a back-action: it introduces additional statistical uncertainty into

the system by randomly projecting the system in the one of the eigenstates of the observable.

Usually measurements destroy pure states and make them mixed states.
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Fermi Pasta Ulam Problem. Ergodic hypothesis is a very natural concept. We are

implicitly dealing with it all time. E.g., if we measure equilibrium fluctuations of voltage we

do not care if we average over time or we start over voltmeter again and again. However, this

hypothesis is very hard to prove. The first numerical attempt to do this was by Fermi Pasta

and Ulam at Los Alamos National lab using one of the first computers. They considered a

FIG. 1 FPU report: the abstract and the main conclusion

1D system of coupled oscillators with a weak nonlinearity (see Fig. 1). They initially excited

the lowest mode with k = 2π/L and expected that after some time because of nonlinearity

the energy will be equipartitioned between different modes (as we will learn later in the

course). However, what they found was quite opposite: after a sufficiently long time the

energy almost completely returned to the first mode. This is like in movies you destroy some

object and then magically it reorganizes back to the same shape. Typically you need some



14

FIG. 2 FPU report: time dependence of the energy of first several modes.

divine form like Fairy to do this. However, here it happened without such intrusion. People

later understood why this happened: 1D nonlinear systems can be almost exactly described

by nonlinear excitations (solitons), which in many respects behave as noninteracting objects.

Thus they do not cause thermalization. This example was understood. But even now we

know very little about which systems are ergodic and which are not. This is a subject of

active research.

Statistical independence. Imagine that we split a large system into two subsystems. Each

subsystem is not independent. However, it knows about another subsystem only because of

surface effects. Those effects should be small if the subsystems are small too. Therefore we

expect that the two subsystems approximately independent from each other. This means

that the distribution function should approximately factorize: f(x,p) ≈ f1(x1,p1)f2(x2,p2)
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(the same should be true about density matrix - the latter should be roughly block diago-

nal). This in turn implies that logarithm of the distribution function is roughly additive:

ln f(x,p) ≈ ln f1(x1,p1) + ln f2(x2,p2). So the log of the distribution function should know

only about additive quantities. As we know from the previous chapter statistical indepen-

dence means that fluctuations of all additive thermodynamic quantities (like energy) should

become small in large systems.

Liouville’s theorem. In a closed system the distribution function is conserved along the

trajectories. Let us consider an element of the phase space dxdp. Let us now consider an

infinitesimal time step dt. Then this volume becomes dx′dp′. Note that x′a = xa + ẋadt and

similarly p′a = pa + ṗadt. This means that dx′a = dxa + ∂ẋa

∂xa
dxadt. From this we find that

dx′adp′a = dxadpa

[
1 +

(
∂ẋa

∂xa

+
∂ṗa

∂pa

)
dt

]
= dxadpa (48)

by Hamilton equations of motion: ẋa = ∂H/∂pa and ṗa = −∂H/∂xa. The Liouville’s

theorem implies that all the pure states are transformed from the point (x,p) to the point

(x′,p′) and the phase volume does not change. In practice this phase space volume of course

impossible to measure, but one can draw several formal consequences from this theorem. In

particular, because fdΓ = f ′dΓ′ (conservation of probability) we find that df/dt = 0. Note

that this is a full derivative: df/dt = ∂f/∂t +
∑

a
∂f
∂xa

ẋa + ∂f
∂pa

ṗa.

Consequences.

• Consider a statistical average of some observable Ω, which explicitly does not depend

on time. Then

d〈Ω
dt

=
∫

dΓ
∂f(x,p, t)

∂t
Ω(x,p) = −∑

a

∫
dΓΩ(,p)

(
∂f

∂xa

ẋa +
∂f

∂pa

ṗa

)

=
∑
a

∫
dΓf

(
∂Ω

∂xa

∂H

∂pa

− ∂Ω

∂pa

∂Ω

∂qa

)
= 〈{Ω, H}〉. (49)

If the Poisson brackets of the observable Ω with the Hamiltonian vanish (recall this

is true for all conserved quantities) then the corresponding average is a constant of

motion. This is a statement,, which is intuitively clear in any case.

• The equilibrium distribution function should satisfy {feq, H} = 0. Clearly any function

which depends only on H satisfies this requirement: {f(H), H} = 0. If we use this

choice then we imply that within the energy shall all states are equally probable. Note
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if there are additional conserved quantities than the stationary distribution function

can depend on all these quantities and still be stationary. This implies equipartition

between all possible phase space points satisfying the constraints.

Quantum Liouville’s theorem. Recall that ρnm(t) = 〈c?
n(t)cm(t)〉. Let us compute time

derivative of ρ:

ρ̇nm(t) = 〈ċ?
ncm + c?

nċm〉 = i(En − Em)ρnm(t) = iHnpρpm − iρnpHpm = i[H, ρ]. (50)

So

i
dρ

dt
= [ρ,H]. (51)

Let us check the observables corresponding to stationary operators commuting with

the Hamiltonian are conserved in time.

d〈Ω〉/dt = Tr [ρ̇Ω] = −iTr[ρHΩ−HρΩ] = −i〈[H, Ω]〉 = 0. (52)

The consequences of the quantum Liouville’s theorem are basically identical to those of

the classical Liouville’s theorem: (i) Stationary density matrix should commute with

the Hamiltonian. In turn this implies that it should be diagonalizable simultaneously

with the Hamiltonian and (ii) The density matrix, which is some functional of the

Hamiltonian and other conserved quantities automatically satisfies (i) and thus is

conserved in time.

IV. ENTROPY, TEMPERATURE, LAWS OF THERMODYNAMICS.

A. Statistical Entropy

One of the main postulates of the statistical physics is that the system tends to equally

populate all available states within the constraints of total available energy and possibly

other conserved quantities. In these situations one can introduce the entropy which is the

measure of available phase space Γ. Formally S = − ln Γ. (We will later give a more general

definition in the case when the probabilities to occupy different states are not equal).

Example: consider a system of spin 1/2 systems with total magnetization Mz = γ
∑

i S
z
i .

In isolated systems with no external magnetic field in the xy-plane then Mz is a conserved

quantity.
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Next let us assume that the system is in the external magnetic field so the energy of the

system is

U = −HMz = −Hγ
∑

i

Ŝz
i . (53)

Let us first find how the entropy is connected with magnetization (and thus) energy. We

need to find the phase space available for a given magnetization. We know the answer: it

comes from the binomial distribution:

Γ =
N !

N↑!N↓!
=

N !

(N/ + L/2)!(N/2− L/2)!
, (54)

where L = N↑ − N↓ = Mz/γ. This expression is quite cumbersome. Let us study its

logarithm, i.e. entropy. For simplicity we assume that L is small

S(L) = ln Γ(L) ≈ N ln N − N + L

2
ln

(
N + L

2

)
− N − L

2
ln

(
N − L

2

)
+O(ln N) (55)

Expanding the expression into the Taylor series in L we find

S(L) ≈ N ln 2− N + L

2

L

N
+

N − L

2

L

N
= N ln 2− L2

2N
= N ln 2− 1

N

(
U

γH

)2

. (56)

This function is of course strongly peaked around U = 0.

Now let us imagine that we split the system into two subsystems and let us ask in how

many ways we can distribute magnetization (energy) in a particular way U = U1 + U2 or

M z = M z
1 + M z

2 . Because systems are noninteracting clearly we have

Ω̃(U1, U2) = Ω1(U1)Ω2(U2) (57)

and

Ω(U) =
∑

U1

Ω̃(U1, U − U1). (58)

Assume that the first block contains N1 spins and the second block contains N2 spins. Then

S(U1, U − U1) ≈ N ln 2− 1

N1

(
U1

γH

)2

− 1

N2

(
U − U1

γH

)2

. (59)

Since S is extensive and total number of configurations (=probability) is exponential in S

the distribution is highly peaked near the maximum of the entropy (maximum number of

available configurations). To find the maximum we need to differentiate S with respect to

U1:
U?

1

N1

=
U?

2

N2

(60)
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thus U?
1 = UN1/N Thus we find that with the highest probability the magnetization is

uniformly distributed in the system. This result is of course what we anticipate from the

central limit theorem. But here it comes from the principle of maximum of entropy.

Note that the entropy is additive. Within the saddle point approximation

S(U) = N ln 2− 1

N

(
U

γH

)2

= S̃(U?
1 , U − U?

1 ). (61)

Lessons about entropy: entropy is additive. Within the postulate that all available

states are equally probable maximum of the entropy corresponds to the maximally probable

configuration.

B. Temperature

Now assume that we have two arbitrary systems in a contact with each other. Then quite

generally we can write

Ω(E) =
∑

E1

Ω1E1Ω2(E − E1) (62)

In equilibrium we require that sum is dominated by the maximum so

Ω(E) ≈ Ω1(E1)Ω2(E − E1) (63)

where
∂Ω1

∂E1

Ω2(E2) = Ω1(E1)
∂Ω2(E2)

∂E2

⇔ ∂S1

∂E1

=
∂S2

∂E2

. (64)

This derivative we call inverse temperature: ∂S(E)/∂E = 1/T . Thus the equilibrium

between the two subsystems immediately results in the requirement of constant temperature:

T1 = T2.

Let us return to our example. From Eq. (55) we find

1

T
=

1

2γH
ln

[
NγH − U

NγH + U

]
. (65)

Note that the minimum of the energy occurs at U = −NγH when all the spins are polarized

along the magnetic field. In this case we clearly have T = 0 (as well as S = 0) - there is

only one configuration corresponding to the minimal energy (well known statement from

quantum mechanics). Correspondingly this configuration corresponds to zero temperature.

Now assume that U = −NγH + δU . Then we have

T ≈ 2γH
1

ln
[

2NγH
δU

] (66)
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or in a more familiar form

δU ≈ N2γH exp
[
−2γH

T

]
. (67)

This is of course the familiar Boltzmann’s distribution. We can interpret Eq. (67) in the

following way. The energy required to excite a particular spin is 2γH. The probability of

this excitation is exp[−2γH/T ] (later we will return to a more general justification of this

postulate). The average energy (above the ground state) is then the probability of exciting

a particular state times the energy of each excitation times the total number of magnets.

Homework, due 10/02. Taking this interpretation of the probability compute the

distribution of energy in the system P (E). What is the name of this distribution function.

What are the fluctuation of the energy and magnetization? Discuss what happens as N

increases.

One can invert Eq. (55) without assumption about small temperature. Then

δU ≡ NγH + U = 2NγH
1

exp
[

2γH
T

]
+ 1

. (68)

As the energy further increases both entropy and temperature increase until we reach

maximally probable unconstrained configuration where S = N ln 2 and T = ∞. After that

the entropy starts to decrease and the temperature becomes negative. This is actually the

artifact of our model with bounded spectrum. Usually the energy spectrum is unbounded

from above and thus infinite temperature state corresponds to the infinite energy, so it can

not be reached. However, this example shows an important distinction between temperature

showing how entropy changes with energy and the energy itself.

Homework, due 10/02. Show that one can formally derive Eq. (68) by assuming

that the probabilities of spin pointing down and up satisfy Boltzmann’s distribution:

p↓/p↑ = exp[−2γH/T ] and of course p↓ + p↑ = 1. Repeat calculations for the previous

problem with this distribution. Does it become narrower or wider if at given N we increase

temperature? Explain.
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C. First law of thermodynamics.

Let us assume that the state of the system depends on some external parameter x, which

can be volume, magnetic field etc. If we do reversible (adiabatic) transformation on the

system the energy change is characterized by the work δW = Jδx. For the reversible process

the entropy can not change. One has to be a little careful that after such transformation

the microcanonical ensemble might not be any longer microcanonical, i.e. the idea that all

states at a fixed energy are equally probable does not quite work. However, for large systems

the fluctuations of all quantities including energy should remain small and thus we should

deal with the narrow energy distribution even after the transformation. Then we can write

∆S = 0 = S(E + Jδx, x + δx) ≈ ∂S

∂E

∣∣∣∣
x
Jδx +

∂S

∂x

∣∣∣∣
E
δx. (69)

Note that it is crucial that we have reversible process because otherwise we will heat the

system and the energy change will depend on the details of the process. Thus

∂S

∂x

∣∣∣∣
E

= −J

T
. (70)

Now for arbitrary process, where entropy can increase we have

dS =
∂S

∂E

∣∣∣∣
x
dE +

∂S

∂x

∣∣∣∣
E
dx =

dE

T
− Jdx

T
. (71)

Therefore

dE = TdS + Jdx. (72)

We thus can identify TdS with the heat. Note that −J is the generalized force.

Some justification of ∆S = 0 for a reversible process: In quantum mechanics if we change

external adiabatically (slowly) we do not cause transitions between energy levels. The energy

levels also generally stay adjacent to each other. So if we occupy them maximally within

some energy window then we will continue to do so thus entropy does not change. In classical

mechanics there are no transitions between orbits so the phase space also remains contingent

and the entropy does not change. Other justification is that if we have a macroscopic degree

of freedom and can change coupling between this degree of freedom and the system then we

should have some surface of constant entropy characterized by this coupling. The entropy

can not spontaneously change otherwise reversible motion is not possible. Note that large

degree of freedom bears very little entropy.
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D. Second law of thermodynamics

Now assume that we start from two systems. Each one is in equilibrium, but they are not

necessarily in equilibrium with each other. Then after any process the entropy can either

increase or stay the same.

The proof of this statement follows from the fact that at equilibrium (but the postulate

of the statistical physics) the system occupies the largest phase space volume, i.e.

Ω1(E
?
1)Ω2(E

?
2) ≥ Ω1(E1)Ω2(E2), (73)

where E1 and E2 are the energies of the systems 1 and 2 before they are brought to the

contact, while E?
1 and E?

2 are the equilibrium values of energy. Note that if no external work

is done then E?
1 + E?

2 = E1 + E2.

Consequence: Second law in the Clausius form. Assume that we put the systems in

contact for a short time so that the entropy change is small then

δS =

(
∂S1

∂E1

∣∣∣∣
x1

)
δE1 − ∂S2

∂E2

∣∣∣∣
x2

δE1 = δE1

(
1

T1

− 1

T2

)
≥ 0. (74)

So we see that the heat flows from hotter to colder body. Similarly the second law in the

Kelvin’s form immediately follows from the fact that the entropy does not change in the

adiabatic (reversible) cyclic process thus it can only increase if the process is irreversible.

Stability condition:
∂2S1

∂E2
1

+
∂2S2

∂E2
2

≤ 0 (75)

which implies that ∂T/∂Ex ≥ 0. This means that the heat capacity must be positive.

E. Third law of thermodynamics

Entropy is zero at zero temperature. We saw how the third law works at a particular

example. The third law of thermodynamics is purely quantum mechanical. It is related to

the fact that the lowest energy state is always non-degenerate.

V. PARTITION FUNCTION, CANONICAL ENSEMBLE, VON-NEUMANN ENTROPY

In the previous lecture we derived the properties of a spin system assuming it is isolated,

and therefore conserved energy. This means that we worked in the micro-canonical

ensemble.
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Our approach was to start from the energy and derive entropy and temperature as its

derivatives. However, this approach is not convenient. The total energy is something which

is usually hard to measure because we are usually dealing with open systems with unclear

boundaries. On the other hand temperature is something easy to measure. We know that if

we put a spin system (thermometer) to a contact with the reservoir then the temperatures of

both thermometer and the system will be the same. If the reservoir is big then presumably

the state of the reservoir will not be affected by the thermometer and the temperature will be

that of the reservoir. Once we start from temperature we can compute the magnetization and

compare it to what we measure. This way is actually also much easier for doing calculations.

Like dealing with energy usually assumes isolated system (where energy is conserved) and

thus with canonical ensembles, dealing with temperature assumes that there is an energy

exchange with environment. I.e. our (sub)system is a part of a bigger system. Then the

energy of the subsystem is not conserved and can fluctuate. Thus we have to deal with a

different ensemble, which is called canonical.

Return to our spin system. Consider a subsystem of the system with N1 spins in it (then

N −N2 systems) constitute environment. Now we assume that N1 ¿ N . We start from the

extreme situation where N1 = 1. Let us compute the phase space volumes corresponding to

each of these situations:

Ω↓ = Ω1(E1 = γH)Ω2(E − E1) ≈ exp

[
S2 +

∂S2

∂E2

(−γH)

]
= C exp[−γH/T ] (76)

similarly

Ω↑ = Ω1(E1 = −γH) = C exp[γH/T ] (77)

If we are interested only in the state of the particular spin we worry only about this numbers,

which give the probabilities to occupy “down” or “up” states. So we can write

p↑ =
1

Z
exp[γH/T ], p↓ =

1

Z
exp[−γH/T ], (78)

where

Z = exp[γH/T ] + exp[−γH/T ] =
∑
n

exp[−En/T ] (79)

is called the partition function. It is customary to introduce the notation β = 1/T .

With this partition function we can calculate various quantities. For example average

energy will be

〈E〉 =
∑
n

pnEn =
1

Z

∑
n

En exp[−βEn] = −∂ ln Z

∂β
. (80)
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Let us play with our specific example a bit more

Z = 2 cosh[βγH]. (81)

Then the mean energy of a single spin is

〈E〉 = −γH
sinh(βγH)

cosh(βγH)
= −γH +

2γH

exp[2βγH] + 1
. (82)

Exactly what we had before. At small magnetic fields (high temperatures) we get 〈E〉 ≈
−γ2H2

T
. The average magnetization is

〈Sz〉 = −〈E〉
γH

= tanh βγH (83)

The other important quantity is the magnetic susceptibility

χ =
∂M

∂H
= βγ2 1

cosh2(βγĤ)
. (84)

At large temperatures (small magnetic fields) we have χ ≈ γ2/T famous Curie law.

Specific heat:

C =
∂E

∂T
=

(βγH)2

cosh2(βγH)
(85)

Note that at small temperatures β À 1 the heat capacity is exponentially small: this is a

general property of gapped systems. In the opposite limit β ¿ 1 (T À 1) the heat capacity

is small again. This is related to the maximum in the density of states: we can not add

more energy to the system by increasing the temperature.

Homework, due 10/02. Consider a system of noninteracting spins with arbitrary

S: Sz = S, S − 1, ...,−S in a magnetic field with the Hamiltonian H = −hSz. Calculate

the partition function for this system at finite temperature. Calculate average energy,

magnetization, susceptibility and heat capacity. Discuss its behavior at large S. Now

consider a classical spin in the magnetic field with the energy E = −hSz = −hS cos θ.

Define the classical partition function Zcl =
∫

sin θdθdφ exp[−βE(θ, φ)]. Calculate the same

quantities as for the quantum problem. Compare your results with S = 1/2 quantum case

and large S quantum case. Discuss which of the computed quantities are similar for S = 1/2

and the classical case and which quantities are qualitatively different in these two situations.
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This single spin partition function is good for describing properties of a single spin. But

what if we are interested in two-spin observables or even observables which include many

spins. Then we have to consider larger subsystems. But the reasoning stays the same. The

probability of each microscopic configuration is given by the Boltzmann factor C exp[−βE ].

Indeed the corresponding contribution to the partition function is Ω1(E) exp[−βE ]. But

Ω1(E) is precisely the number of microscopic configurations of the subsystem 1 having the

energy E . So quite generally we can write

p(E) =
1

Z
exp[−βE ] (86)

Note that there is nothing special about energy except this is a conserved quantity (for

the total system). If there are other additive conserved quantities we should have similar

“Boltzmann’s” weights to them (everything follows from the expansion of entropy around

the maximum). For example if the total number of particles is allowed to fluctuate between

the subsystem and environment then

p(E ,N ) =
1

Z
exp[−β(E − µN )], (87)

where

Z =
∑

N

∑

E(N )

exp[−β(E − µN )], (88)

µβ = ∂S/∂N|E or µ = T∂S/∂N|E . So one can write

dE = TdS − µdN . (89)

One can write similar expressions if there are other additive conserved quantities (integrals

of motion). The corresponding distributions are caller generalized Gibbs ensembles. The

ensemble where only energy and number of particles are allowed to fluctuate (Eq. (87)) is

called grand canonical.

A. Entropy

Starting from temperature we managed to derive energy and reproduce our earlier results.

Next we need to find entropy. First let us make a formal derivation. We know that

TdS = dE ⇔ dS = βdE = d(βE)− Edβ. (90)
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Using that E = −d ln Z/dβ we find that S = βE + ln Z. The arbitrary integration constant

is fixed by the third law of thermodynamics S = 0 at T = 0. Let us introduce the notation

F = −T ln Z, free energy. Then we find that

S =
E − F

T
⇔ F = E − TS. (91)

From thermodynamics recall that F is defined as the free energy. Now we have its expression

through the partition function (note that both F and E are expressed through Z, which

in turn is the function of temperature. If we change temperature (keeping other external

parameters fixed) then

dF = dE − TdS − SdT = −SdT (92)

so we also find that

S = −∂F

∂T
=

∂(T ln Z)

∂T
, (93)

which of course agrees with our previous formula.

How about the probabilistic interpretation of the entropy? Let us again return to our

example and then generalize. Recall that for noninteracting spins

Z =
∏

j

∑
nj

exp[−βE
(n)
j ] =

(∑
n

exp[−βEn]

)N

(94)

So the free energy is

F = −TN ln

[∑
n

exp[−βEn]

]
(95)

and thus the entropy

S = −dF/dT = N ln(z)+
N

zT

∑
n

En exp[−βEn] = −N

z

∑
n

ln

[
exp[−βEn]

z

]
exp[−βEn] = −N

∑
n

pn ln pn,

(96)

where z is the partition function corresponding to the single spin and = pn = exp[−βEn]/z

is the probability to occupy this state. Note that we actually did not have to assume that

our subsystem contains a single spin. Generally we would have

S = −∑
n

pn ln pn, (97)

where pn = exp[−βEn]/Z. This is the von Neumann entropy for the system in thermal

equilibrium.

Let us try to get this answer purely probabilistically. Suppose we split the system into

many subsystems and will start filling it with particles. The probability of the particle to
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go to the subsystem 1 is p1 and so on. Of course the most probable configuration is that we

have Np1 particles in the first subsystem, Np2 particles in the second subsystem etc. Let

us find the number of ways Ω we can achieve the most probable configuration:

Ω =
N !

(Np1)!(Np2)! . . . (Npm)!
(98)

This is pure combinatorics: first we choose the first particle for the first subsystem: N -ways

then the second particle for the first subsystem: N − 1 ways and so on. Then we will

need to divide by number of equivalent permutations within each subsystem because this

permutations lead to equivalent configurations. Now let us use Stirling’s formula and take

the logarithm of the expression above:

S = ln Ω ≈ N ln N−N−∑
n

(pnN ln(pnN)−pnN) = N(ln N−∑
n

pn ln(Npn)) = −∑
n

pn ln pn.

(99)

So indeed the von Neumann entropy has a purely probabilistic nature.

Let us recall the whole story again. We started from the microcanonical ensemble and

the basic assumption that all states with the same energy are equally probable. We termed

entropy the logarithm of number of available microstates. Then by splitting the system into

a subsystem and environment we showed that microcanonical distribution naturally leads

to the canonical distribution for the subsystem where the probability to occupy a certain

microstate with energy E is proportional to exp[−βE ]. Then we computed the number of

ways one can distribute particles over these microstates took the logarithm and derived von

Neumann entropy.

Homework. Due 10/06. Derive the expression for the von Neumann entropy for

the spin one half system in the magnetic field and compare it with Eq. (55. Note that you

will have to express either von Neumann entropy through energy or the entropy given by

Eq. (55) through temperature.

B. Information theory and entropy.

Information theory was invented by Claude Shannon at AT&T Bell Labs beginning in

the 1940s. Information theory attempts to quantify the information content of messages
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and studies the reliability of transmission of that information over noisy channels of finite

frequency bandwidth.

What is information? Suppose you have a deck of cards. I randomly take on card the

question is how much information I can transmit by revealing what the card is. Think

the deck of cards being the next hot thing in Wall street. For how much you can sell this

information? If there is only one card in the deck then there is no information content - by

saying you took ace you do not say much if there is only one ace in the deck (by saying it

is oil you do not say much if you trade only with oil). Clearly the more cards in the deck

(the more trading areas you see) the more information you reveal by opening your card (the

better price you can get for revealing this information). So information should be monotonic

function of N - the number of cards in a deck.

I(N + 1) ≥ I(N) (100)

If you have another deck of M cards then if you reveal two cards one from first deck and one

from the second deck your information is additive. Your earning will add up. So we should

have

I(NM) = I(N) + I(M) (101)

The sensitive definition of I satisfying this is

I(N) = log2(N) (102)

The base 2 is just the tradition. So far we assumed that all outcomes are equally probable.

But suppose that one outcome has very large probability. Then by picking this outcome you

do not reveal much information. This outcome is almost expected. If the outcome is not

very probable you are revealing much more information but the probability of this outcome

is small. What is the sensible definition of the information in this case?

Suppose now that we are using a transmission line sending a signal encoded in zeros and

ones. Each zero occurs with the probability p and one with probability q. What is the

amount of information we transmit in N bits. Assume N is large. Obviously if p = 1 or

p = 0 our signal would consist of only zeros and one and we transmit no information. In

general we will have total number of zeros pN and total number of ones qN . The total

number of way we can arrange for having this many zeros and this many ones is

Γ =
N !

(Np)!(Nq)!
(103)
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The information encoded in a particular sequence is defined as I = log2 Γ (note that Γ plays

the role of number of cards in the deck) so

I = −N(p log2 p + q log2 q) (104)

So the information content per bit is I1 = −p log2 p− q log2 q. This obviously generalizes to

more outcomes:

I1 = −∑

i

pi log2 pi (105)

So the Shannon information is directly related to the von Neumann entropy.

C. Fluctuations of energy

Let us return to Boltzmann distribution and compute the energy fluctuations.

δE2 = 〈E2〉−〈E〉2 =
1

Z

∑
n

E2
n exp[−βEn]−

(
∂ ln Z

∂β

)2

=
∂2 ln Z

∂2β
= −∂E

∂β
= T 2∂E

∂T
= T 2CV .

(106)

Note that CV is the heat capacity. We put index V here to emphasize that this quantity

is computed at fixed external parameters like volume. We already saw that CV must be

positive in order to have stable equilibrium: maximum entropy versus minimum or saddle

point. Here we see that the same quantity CV determines the energy fluctuations in the

system. This is one of the examples of the fluctuation-dissipation theorem: fluctuations of

some quantity is related to a certain susceptibility of this quantity. We will return to this

issue in detail later.

Similarly in the grand canonical ensemble one can study fluctuations of the number of

particles. We need to change β to −βµ and repeat the analysis:

〈N〉 = T
∂ ln Z

∂µ
(107)

and

δN2 = T 2∂2 ln Z

∂µ2
= T

∂N

∂µ
= TV

∂n

∂µ
(108)

The latter quantity is called compressibility and we see that it must be positive in order

to ensure the equilibrium in the system. Recall the chemical potential is a measure of how

entropy of the system changes with the number of particles. We will see later that in ideal

gases chemical potential is related to the pressure. High pressure means a high desire of
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the system to expand, i.e. the system can gain a lot of entropy expanding. So positive

compressibility basically tells us that as we decrease volume of the system (increase n) we

necessarily increase pressure. We will derive this explicitly when we talk about ideal gases.

VI. THE IDEAL GAS. THERMODYNAMIC POTENTIALS.

So far we dealt with the situations where the Hilbert space was finite and the partition

function

Z =
∑
n

exp[−βEn] (109)

was well defined. What shall we do if the spectrum is continuous. Let us consider the ideal

one dimensional gas in the box of size L. Then from quantum mechanics we know that

En =
h̄2k2

n

2m
, (110)

where kn = 2πn/L. If L is large then for all practical purposes we can change summation

over n to integration over k. Note that

1 = δn =
L

2π
δk =

L

2πh̄
δp (111)

Therefore in this situations

Z =
∑
n

exp[−βEn] =
∫ dxdp

2πh̄
exp[−βp2/2m]. (112)

We could have guessed this result from the beginning except for the factor 2πh̄. In classical

physics it is arbitrary. But it is very convenient because it makes the partition function

dimensionless and connects quantum and classical partition functions. This expression ob-

viously generalizes to N -particles in d-dimensions

Z =
∏

i

∫ dxidpi

(2πh̄)d
exp[−βE(xi,pi)]. (113)

Let us now compute the partition function for the ideal gas

Z =

(∫ dxdp

(2πh̄)d
exp[−βp2/2m]

)N

=

(
V

(2πh̄)d

[∫ ∞

−∞
exp[−βp2/2m]dp

]d
)N

=

(
V

[
mT

2πh̄

]d/2
)N

.

(114)

From this we can define free energy

F = −T ln Z = −TN ln

(
V

[
mT

2πh̄

]d/2
)

, (115)
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similarly

E = −∂ ln Z

∂β
= NT

d

2
. (116)

So each particle has an average energy Td/2 (3/2T in three dimensions). This result we

could have obtained just using single particle Boltzmann’s probability distribution.

From usual thermodynamics we should remember that the pressure is defined as

P = −∂E

∂V
|S = −∂F

∂V
|T . (117)

So for the ideal gas we find

P = NT/V. (118)

Should sound familiar. Interestingly this is a very robust law: it does not depend on the

dimensionality, mass of the particles their structure etc. It relies only on the fact that the

particles are not interacting and the partition function is proportional to V N .

We can actually also define the pressure in a usual way from the principle of maximum

of the entropy. In the same way we defined temperature and chemical potential. Imagine

that we have two gases separated by a membrane which can move. We will allow for the

energy exchange to fix the temperature but will not allow for particle exchange. Then the

total V = V1 + V2 is fixed so we need to maximize the entropy with respect to V1. Thus

∂S1

∂V1

|N1,T =
∂S2

∂V2

|N2,T (119)

Let us make the formal definition

P = T
∂S

∂V
|T,N (120)

Now we can generally write (for the subsystem 1) that

dS1 =
∂S1

∂E1

|V1
dE1 +

∂S1

∂V1

|E1
dV1 =

1

T1

dE1 +
P1

T1

dV1 (121)

From this we indeed recover that

dE = TdS − PdV, dF = −SdT − PdV (122)

So the two definitions of the pressure coincide.

Homework, due 10/06. Consider a system of spins in a magnetic field. Define the

magnetization as m = −1/V (∂F/∂H). Illustrate explicitly that this magnetization is indeed

proportional to average Sz. Now define the magnetization in a different way using entropy.
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Assume that the magnet is split into two subsystems and the total magnetic flux coming

through this subsystems is fixed, i.e. H1A1 +H2A2 = const. Here A1 and A2 are the surface

areas of the subsystems. Now demand that the entropy is maximum of possible partitionings

of the flux between the subsystem. Show this should leave to a quantity which is identical

between the two subsystems. Show that this quantity (up to a prefactor) is the magnetization

defined in the beginning of the problem.

Homework from Kardar, due 10/06. 4.1, 4.2, 4.4,4.7, 4.11

A. Gibbs paradox.

The expression for the free energy we obtained has a problem: it is not extensive. Suppose

we increase the volume and the number of particles by a factor of two. Then N → 2N and

V → 2V so that F → 2F − TN ln 2. Note that the energy itself is extensive: E → 2E. So

does the heat capacity. Pressure which is ∂F/∂V is also not affected by this extra term.

Yet it is annoying since we rather deal with extensive quantities. Note that

F = E − TS (123)

since E is not affected by this extra term then the fact that F is not extensive means that

entropy is not extensive. This is quite contrary to our previous discussion and the spin chain

example.

To make the point even more transparent consider two subsystems containing identical

ideal gases at the same temperature and pressure. Suppose one gas contains N1 particles

and the other N2 particles. Then the initial entropy (while the gases are separated) is

S1 + S2 = −∂F1

∂T
− ∂F2

∂T
= N1 ln

(
V1

[
mT

2πh̄

]d/2
)

+ N2 ln

(
V2

[
mT

2πh̄

]d/2
)

+
d

2
(N1 + N2) (124)

Suppose that N1 = N2 = N/2 and V1 = V2 = V/2. Then

S1 + S2 = N ln
(

V

2
σ

)
+

Nd

2
, (125)

σ =
√

(mT/2πh̄)d. Let us pretend for a second and assume that gases in two parts are

different. Then when we mix them (remove the barrier) the entropy will definitely increase.

Clearly the final entropy is

S = N ln (V σ) +
Nd

2
(126)
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so the difference between the two is

∆Smix = S − S1 − S2 = N ln 2 (127)

This difference is called the mixing entropy. The fact that it is positive illustrates a well

known point that once we remove the barrier the particles will mix with each other and

never return to the original part of the container.

But what if the particles are identical? By removing the barrier we really did not do

anything so the entropy increase is not real. The problem with our definition of Z is that

we are over-counting states. We count the state where the particle 1 was in the phase space

point x1,p1 and the particle 2 was in the phase space point x2,p2 and vice verso as two

different states. But if the particles are indistinguishable this is one state. In quantum

mechanics this issue is naturally resolved because the wave function of identical particles is

always the superposition of say |1〈|2〉 and |2〉|1〉. So this state in quantum mechanics would

be counted once. So better definition of Z for identical particles is

Z =
1

N !

∏

i

∫ dxidpi

(2πh̄)d
exp[−βE(xi,pi)]. (128)

This gives additional contribution to the free energy which makes it extensive (without

affecting energy, heat capacity, pressure, etc.) After all this prefactor is just a constant. So

we get

F = −T ln Z = −TN ln

(
V

N

[
mT

2πh̄

]d/2
)
− TN, (129)

Now the free energy is explicitly extensive. So is the entropy

S = N ln
(

V

N
σ

)
+

N(d + 2)

2
. (130)

Note that whether we treat particles as identical or distinguishable is a matter of conve-

nience as long as our measurements (or interactions) are insensitive to differences between

them. Taking different isotopes should not result in any physical difference as long as there

is nothing which tells us that the isotopes are different. And indeed we saw that measurable

quantities like energy, heat capacity, pressure do not care about this extra term coming from

N !. We will return to this issue again when we will study quantum gases.

Let us compute heat capacity. From CV = dE/dT |V we find that

CV = N
d

2
. (131)
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Sometimes it can be of interest to know heat capacity when we fix pressure rather then

volume fixed. Note that the heat is defined as TdS (it is equal to dE if we fix the volume)

then

CP = T
dS

dT
|P =

(
∂E

∂T
|P + P

∂V

∂T
|P

)
=

∂(E + PV )

∂T
|P = N

d + 2

2
. (132)

Note the expression E+PV , which is called enthalpy is convenient thermodynamic potential

if we work at constant pressure.

B. Thermodynamic potentials. Relations between derivatives.

We already encountered energy and free energy F = E − TS. We know that they satisfy

dE = TdS − PdV, dF = −SdT − PdV (133)

From these relations we see that

P = −∂E

∂V

∣∣∣∣
S

= −− ∂F

∂V

∣∣∣∣
T

(134)

Usually the relations (133) are interpreted as that energy is the function of S and V , while

free energy is the function of T and V . Of course this is not literary true since S, T and V

are not independent variables but rather they are connected by the equation of state (see

Eq. (130)). It is just the matter if convenience: if temperature is fixed (and volume changes)

i.e. if we perform an isothermal process, then the free energy change is equal to −PdV . On

the other hand if the entropy is fixed (adiabatic process) than the change of energy is equal

to −PdV . On the other hand change of the energy in the first case and change of the free

energy in the second are more complicated. For example

E = F + TS = F − T
∂F

∂T
(135)

is explicitly defined as a function of temperature and volume.

We can assume that there is some other external parameter λ. Then obviously if we

change it infinitesimally we have

dE = TdS − PdV + Λdλ, (136)

where Λ = (∂E/∂λ)|S,V . Similarly

dF = −SdT − PdV + Λdλ. (137)
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Thus we see that Λ = (∂F/∂λ)T,V . We can interpret these equalities also in the following

way

δE|S,V = δF |T,V (138)

I.e. if we infinitesimally change some external parameter in the adiabatic process then the

change of the energy would be identical to the change of the free energy in the corresponding

isothermal process.

One can also introduce other potentials like enthalpy H = E + PV and Gibbs free

energy G = H − TS = E − TS + PV . We will obviously get dH = TdS + V dP and

dG = −SdT + V dP . These two potentials are convenient if we use S, P or T , P as

independent variables respectively.

Using general thermodynamic relations we can obtain identities between various quanti-

ties. For example
∂CV

∂V

∣∣∣∣
T

= T
∂2S

∂V ∂T
= −T

∂3F

∂T 2∂V
= T

∂2P

∂T 2

∣∣∣∣
V

(139)

Similarly we can find
∂CP

∂P

∣∣∣∣
T

= −T
∂2V

∂T 2

∣∣∣∣
P
. (140)

One can derive many similar relations like this.

Very often if we analyze various derivatives it is convenient to go from one set of variables

to another e.g. from S and V to T and P . This can be done using Jacobians:

∂(x, y)

∂(u, v)
≡

∣∣∣∣∣∣∣

∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v.

∣∣∣∣∣∣∣
(141)

Jacobians have a number of properties:

∂(x, y)

∂(x, v)
=

∂y

∂v

∣∣∣∣
x

(142)

also
∂(x, y)

∂(f, g)
=

∂(x, y)

∂(u, v)

∂(u, v)

∂(f, g)
. (143)

In particular

1 =
∂(x, y)

∂(x, y)
=

∂(x, y)

∂(u, v)

∂(u, v)

∂(x, y)
. (144)

Using these properties we can easily derive various thermodynamic relations. E.g.

CV = T
∂S

∂T

∣∣∣∣V = T
∂(S, V )

∂(T, V )
= T

∂(S, V )

∂(T, P )
/∂(T, V )/∂(T, P ) = T

(
∂S

∂T
|P

∂V

∂P
|T −

∂S

∂P
|T

∂V

∂T
|P

)
/(∂V/∂P )|T

(145)
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Next note that
∂S

∂P

∣∣∣∣
T

=
∂2G

∂T∂P
= −∂V

∂T

∣∣∣∣
T
. (146)

Thus we find

CP − CV = −T

(
∂V

∂T

∣∣∣∣
T

)2

/(∂V/∂P )|T (147)

Because as we found out earlier ∂P/∂V |T ≤ 0 we find that CP ≥ CV in accord to Eqs. (131)

and (132) for ideal gases. But now we see that this inequality is a general result of

thermodynamics. It is valid for quantum or classical systems, interacting or not.

Homework, due 10/13. Prove that

∂V

∂P

∣∣∣∣
S

=
CV

CP

∂V

∂P

∣∣∣∣
T
. (148)

Give a physical interpretation of this result. What does it mean? Check this relation explicitly

for an ideal gas.

C. Le Chatelet principle.

Le Chatelet principle: any external action stimulates process which reduces the action.

This principle is so general that it often goes beyond the realm of equilibrium statistical me-

chanics. The idea is very simple if no opposition to a certain external action is expected then

the corresponding process would likely happen by itself, without any need of the external

action. Look into society, biology. In some sense a third Newton law is in accord with this

principle. Let us see how this principle agrees with the main postulate of thermodynamics.

Consider a system consisting of two parts with e.g. volumes V1 and V2 such that V1 +

V2 = V . There is no particle exchange but there is a membrane so that V1 and V2 can

change keeping the total volume fixed. Instead of volume we can use any other parameter:

temperature, magnetization, etc. Now suppose we rapidly change V1: V1 → V1 + δV . Then

we let the system relax back to thermal equilibrium. Le Chatelet principle tells us that after

the system equilibrates δV1(∞) < δV . Let us prove this is the case. Then after the initial

change we have V2, P2 and T2 are unchanged while V1, P1, and T1 do change. After the

system relaxes to the equilibrium the pressures in both sides of the container will equilibrate.

During this process the total entropy of the system must increase. The volume V1 will then

have an additional change δV ′.
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Let us compute changes in the entropy of subsystems 1 and 2 after the system re-

equilibrates

δS1 =
∂S1

∂E1

∣∣∣∣
V1

δE1 +
∂S1

∂V1

∣∣∣∣
E1

δV ′

δS2 = − ∂S2

∂E2

∣∣∣∣
V2

δE1 − ∂S2

∂V2

∣∣∣∣
E2

δV ′ (149)

So we get

δS = δE1

(
1

T1

− 1

T2

)
+ δV ′

(
P1

T1

− P2

T2

)
. (150)

Let us assume for simplicity that T1 = T2 = T , i.e. we initially expanded the volume

isothermally. Then δS = (P1 − P2)/TδV ′ ≥ 0. Let us note that

P1 = P2 +
∂P1

∂V1

∣∣∣∣
T1

δV1 (151)

The derivative ∂P1/∂V1|T is always negative so we find that δV δV ′ < 0 i.e. the system

counter reacts on changing the volume by reducing this change.

Homework. Due 10/16. Leave extra time for this homework!!!.

(i) Repeat the previous discussion for the situation where we initially change the volume in

the first subsystem adiabatically, i.e. conserving S1.

(ii) Consider a different situation. Assume that we heat the subsystem one at constant

volume increasing its temperature by δT . Prove that after re-equilibration the temperature

in the subsystem one will reduce.

(iii) Consider our Ising spin system in equilibrium at some fixed magnetization M . You

may assume that M ¿ N , where N is the total number of spins. Now imagine that in the

subsystem one consisting of half of the spins we increased the average magnetization by the

amount ∆M , which is not necessarily much smaller than M , such that the subsystem one is

in local thermal equilibrium (but not in equilibrium with the subsystem two). Calculate the

new magnetization and temperature in the system after the two subsystems re-equilibrate.

Do your results agree with the Le-Chatelet principle?

Let us discuss how CP > CV follows from the Le-Chatelet principle. Assume that we have

a gas at a fixed volume V and we heat it by temperature ∆T . Then we increase its energy

by the amount ∆Q = CV ∆T . By doing this we also increase its pressure. Now assume the

system is in the contact with the environment (no energy exchange). Then it will expand
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and cool until the pressures become identical. So in order to heat at constant pressure by

the same amount δT we need to do additional heating. Thus CP > CV .

Example of solution of the problem similar to homework. Let us prove that under condi-

tions (i) of the homework above that after adiabatic volume change in part 1 the relaxation

will cause pressure to change according to Le-Chatelet principle. Let us rewrite Eq. (150)

in the following way

δS ≈ −δE1
∆T

T 2
− ∆T

T 2
PδV1 +

∆P

T
δV1 = −∆T

T
δS1 +

∆P

T
δV1. (152)

Here we used the notation ∆T = T1− T2 is the temperature change due to initial change of

volume. Let us now note that

∆T =

(
∂T

∂V

)

S

∆V, ∆P =

(
∂P

∂V

)

S

∆V. (153)

From the Maxwell’s relation (obvious from dE = TdS − PdV ) we have
(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

(154)

Thus we obtain

δS ≈ ∆V

t

[(
∂P

∂S

)

V

δS1 +

(
∂P

∂V

)

S

δV1

]
=

∆V δP

T
≥ 0 (155)

Now we see that because ∆P and ∆V have opposite signs (it follows from the Eq. (148) and

the fact that compressibility is positive as well as CV and CP are also positive) δP and ∆P

must have opposite signs.

VII. INTERACTING SYSTEMS. HIGH TEMPERATURE EXPANSION

So far we were dealing with, in some sense, trivial situations of non-interacting systems.

In reality we always have to deal with systems with interactions. Then the partition function

can not be written as a product of partition functions corresponding to different degrees of

freedom. What shall we do in this situations? Of course one can try to do numerical simu-

lations. However, this is not always possible because we can simulate only a limited number

of degrees of freedom and in quantum systems we have to sample over the exponentially

large Hilbert space. It is often efficient to use a Monte-Carlo algorithm. There are however

subtleties in using Monte-Carlo. E.g. in quantum systems sometimes Monte-Carlo simula-

tions are not efficient because of the sign problem (one needs to evaluate average over many
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terms with opposite signs). Also we generally understand better qualitative properties if we

have analytic results.

A. Ising model.

We will try to use a different root of using perturbation theory. For now e stick purely to

classical systems. Suppose we have an ensemble of interacting spins with the Hamiltonian

(energy):

H = −h
∑

j

σj − 1

2

∑

ij

Jijσiσj = H0 +Hint, (156)

where σj = ±1 is the z-component of the spin. For practical purposes we will mostly deal

with the nearest neighbor interaction where Jij = J if i and j form pairs of nearest neighbors

in a d-dimensional lattice and zero otherwise. The factor of 1/2 is to avoid double counting

of all bonds. Note that for J = 0 our models reduces to the one we studied earlier in

Sec. IV.A (we now use slightly different notations).

We need to evaluate the partition function

Z =
∑

{σj}
exp[−βH], (157)

which as we know contains all information about equilibrium properties of our system. Let

us note that we expect qualitatively different behavior of the system depending on the value

of the product βJ (for simplicity we assume for now that h = 0). At high temperatures when

βJ ¿ 1 we expect that the interaction will be a small perturbation over the equilibrium

noninteracting state where all spins have random orientation independent of each other. In

the opposite limit we expect that all spins will align to minimize the energy and the state will

be ordered. So we can expect that as one changes βJ there can be a qualitative change in

behavior characterized by a spontaneous formation of magnetization 〈σ〉 will spontaneously

acquire some expectation value at small T . This qualitative change in behavior is called a

phase transition and we will come back to this important example later on.

For now we will be interested in a simpler question of understanding hat happens when

βJ ¿ 1. Let us rewrite the partition function in the following way

Z =
∑

{σj}
exp


β

2

∑

〈ij〉
Jijσiσj


 exp[−βH0({σj})] = Z0

〈
exp


β

2

∑

〈ij〉
Jijσiσj




〉

0

≡ Z0〈exp[−βHint]〉0,

(158)
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where Z0 is the noninteracting partition function, and 〈. . .〉0 is the expectation value weighted

with the noninteracting equilibrium probability distribution. We basically found an exact

identity that the interacting partition function Z is the product of the interacting partition

function Z0 and the average of the exponent of −β times interaction energy weighted with

non-interacting probability distribution. There is a similar expression in quantum mechanics,

but it is more subtle because H0 and H in general do not commute.

Since we assumed that βJ is small we can expand the exponent in Eq. (158) into the

Taylor series and find

Z ≈ Z0


1 +

β

2

∑

〈ij〉
Jij〈σiσj〉0 +

1

2!

β2

4

∑

〈ij〉0

∑

〈kl〉
JijJkl〈σiσjσkσl〉0 + . . .


 (159)

So the partition function can be written in terms of series of moments of Hint. Likewise we

can write the expansion for the free energy

F = −T ln Z = F0 − T ln〈exp[−βHint]〉0 = F0 − T
∑
n

(−β)n

n!
〈Hn

int〉c0. (160)

So expansion of the free energy is the cumulant expansion.

First let us evaluate Z and F to the leading order in J . Note that for i 6= j we have

〈σiσj〉0 = 〈σi〉0〈σj〉0, for i = j on the other hand 〈σ2
i 〉0 = 1. Therefore

Z ≈ Z0


1 +

β

2
[〈σ〉0]2

∑

i6=j

Jij +
β

2

∑

j

Jjj


 , (161)

where N is the total number of spins. For the nearest neighbor model on the cubic lattice

(with 2d nearest neighbors) we can simplify the expression above further

Z ≈ Z0

(
1 + βNJd [〈σ〉0]2

)
. (162)

Note that in the absence of external magnetic field 〈σ〉0 = 0 and there is no correction to

the partition function to the linear order in J . Likewise for the free energy we have

F ≈ F0 − JdN [〈σ〉0]2 . (163)

Using results from Sec. IV.A we find

F ≈ −TN ln 2 cosh βh− JdN tanh2 βh. (164)
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So for example the magnetization (recall last lecture: either differentiate the energy with

respect to h at a constant entropy or the free energy with respect to h at a constant tem-

perature)

M = − 1

V

∂F

∂h

∣∣∣∣
T

= n tanh βh + 2Jdnβ
sinh βh

cosh3 βh
. (165)

At high temperatures this yields

M ≈ nβh(1 + 2Jd/T ) (166)

at low temperatures the correction to the magnetization due to J is exponentially small.

Can you explain these results? What is the effective magnetic field each spins sees due to

interactions with other spins? Try to argue that at small βh the effective field is heff =

h + 2Jdβh. This should explain this result for the magnetization.

Let us move to the next order in J . We need to evaluate

〈∑
ij

∑

kl

JijJklσiσjσkσl〉0 (167)

To simplify our life we consider h = 0. Then note that the expectation value is non zero

only if i = k, j = l or i = l and j = k. This term gives a trivial contribution since 〈σ2
i 〉0 = 1.

So to the second order in βJ and at h = 0 for the nearest neighbor case we find

Z ≈ Z0

(
1 +

β2

8
N4dJ2

)
= 2N

(
1 +

β2J2Nd

2

)
(168)

Here we used the fact that there are 2d neighbors for each site and we have two possible

allowed permutations with i = k and i = l. For the free energy the expansion is similar

because at h = 0 the second cumulant of Hint is the same as the second moment.

F ≈ −TN ln(2)−N
J2d

2T
. (169)

From free energy we can compute quantities like entropy, energy, and specific heat.

S = −∂F

∂T
≈ N ln(2)−N

dJ2

2T 2
. (170)

The entropy decreases with J which indicates that the system is more ordered. Note that

this is true for both signs of J .

E = F + TS =≈ −TN ln(2)−N
J2d

2T
+ TN ln(2)−N

J2d

2T
= −N

J2d

T
. (171)
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Finally for the specific heat we have

C =
1

V

∂E

∂T
= n

J2d

T 2
(172)

Homework, due 10/23. Please allow for extra time to do this homework!Find

expansion of the partition function and the free energy for the Ising model up to the order J2

in non-zero magnetic field in one and two dimensions. Pay special attention to how various

terms scale with N . You should find some non-extensive contributions, proportional to N2

in the partition function, but if you do algebra correctly then such contributions should cancel

out in the cummulant expansion for the free energy. So that the free energy remains exten-

sive. You can assume N À 1. From your expansion find to the same order magnetization

and magnetic susceptibility. Interpret your results.

As an exercise let us compute the next correction. It is easy to convince oneself that there

is no contribution to Z and F in the order of J3. In the order of J4 we need to compute

1

4!24
(Jβ)4

∑

ij

∑

kl

∑
mn

∑
pq

〈σiσjσkσlσmσnσpσq〉0. (173)

This some is non-zero if and only if indices coincide pairwise. It is convenient to compute all

various contractions graphically. Each bond is represented by the line, horizontal or vertical.

One can show that only loops matter everything else combines into 2N(cosh βJ)Nd and the

expansion parameter is not βJ but tanh βJ .

Note that the only closed loops that matter are squares. There are 8 ways to arrange

for a square and there are 6 ∗ 23 = 48 ways to make various contractions j = k, l = m,

n = p, i = q (first choose the bond then each bond except the first one can be oriented in

an arbitrary way) like. So in total squares give the contribution 8 ∗ 48 = 384. And up to

the fourth order we get

Z ≈ coshNd(βJ)2N(1 + N tanh4 βJ) (174)

To see that only closed loops matter let us observe that

exp[βJσiσj] = cosh(βJ) + sinh(βJ)σiσj = cosh βJ(1 + σiσj tanh βJ). (175)

So the partition function is indeed written as

Z = coshNd(βJ)
∑

{σj}
(1 + tanh(βJ)σiσj). (176)
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Note that each link in the product appears once and thus repeated loops are excluded. You

can use this trick in your homework!

Computing the partition function in a non-zero magnetic field is not a very pleasant

exercise (see homework). This is so because once we introduce nonzero h the spin inversion

symmetry is gone and many terms, which are zero at h = 0 become nonzero. However, very

often we are not interested in full statistical information for arbitrary h. For example we

can be interested the response of the system to a weak magnetic field, which is characterized

by the magnetic susceptibility (per particle):

χ =
1

N

∂M

∂h
|h=0 = − 1

N

∂F 2

∂h2

∣∣∣∣
h=0

= − T

N

1

Z2

(
∂Z

∂h

∣∣∣∣
h=0

)2

+
T

N

1

Z

∂2Z

∂h2

∣∣∣∣
h=0

. (177)

Note that the first term in the sum is zero, because it is proportional to the square of

magnetization at h = 0, which is zero by symmetry. The second term gives

χ =
1

NT

1

Z

∑

{σij}

∑

ij

σiσj exp[−βH] =
1

T

∑

j

〈σjσ0〉 =
1

T
+

1

T

∑

j 6=0

〈σjσ0〉, (178)

where we used the fact the the system is translationally invariant. Note that the expectation

value is taken with respect to the full partition function. We know how to expand the

denominator in terms of J . We also need to expand the nominator in a similar fashion and

read the result.

In the zeros order in J we recover usual Curie susceptibility:

χ =
1

T
(179)

In the first order in J there is no correction to Z so we do not worry about the denominator.

In nominator only j which is the nearest neighbor contributes:

χ ≈ 1

T
+

J

2T 2

∑

j

∑

k,l

〈σjσ0σkσl〉0 =
1

T
+

2Jd

T 2
. (180)

This is of course what we had before. Let us go to the second order. In denominator we will

have to evaluate sums with six spins:

J2

8T 3

∑

j

∑

kl

∑
mn

〈σjσ0σkσlσmσn〉0. (181)

Note that in this sum each site should appear twice, otherwise the average is zero. There are

two types of terms. The first type is j = 0 and (k = m, l = n or k = n, l = m) (this terms
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is automatically excluded if we restrict summation to j 6= 0). This would correspond to a

disconnected graph where contractions in the sum coming from the partition functions are

independent of the external spins in the sum. Such terms are dangerous because they are

not-extensive (they contain extra factor of N). However such terms are precisely canceled

by similar terms in denominator Z. So we should not worry about such terms. This is

a general statement. The other terms are such where all indices are linked together It is

easy to check that in 1D there are only two possibilities to connect next nearest neighbors:

j = 2, k = 0, m = 1, l = 1, n = 2 (plus seven equivalent permutations) and similarly with

j = −2. In two dimensions there are 12 different permutations, in three dimensions there

are 6 + 24 = 30 permutations etc. So to the next order in J we find (to be specific let us

stick to two dimensions)

χ ≈ 1

T

(
1 +

4J

T
+

12J2

T 2
+ . . .

)
(182)

B. High temperature expansion for interacting gas.

Let us assume that we have a gas of weakly interacting particles described by the Hamil-

tonian:

H =
N∑

i=1

p2
i

2m
+

∑

i<j

U(qi − qj) (183)

For simplicity we assume that we include only two-body interactions. In dilute limit particles

are unlikely to meet at one point. Long range coulomb interactions can also be written in

this two-body form. Tho shorten the notations we will denote the last sum (interaction

energy) by U(q), where q spans coordinates of all particles.

We are going to use the same procedure as for the Ising model:

Z(T, V, N) = Z0(T, V, N)〈exp[−βU(q)]〉0 = Z0(T, V, N)
∑
n

(−β)n

n!
〈U(q)n〉0 (184)

and similarly

F (T, V, N) = F0(T, V, N) + T
∑
n

(−β)n

n!
〈U(q)n〉c0. (185)

Let us now compute the first and the second order corrections to the free energy. In the

first order in U the cumulant is equal to the expectation value:

〈U〉c0 =
∑

i<j

∫ d3qi

V

d3qj

V
U(qi − qj) =

N(N − 1)

2V

∫
ddqU(q). (186)
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Note that the factors of 1/V come from Z0 and since there is no coordinate dependence of

the non-interacting weight all coordinates are equally probable. So in the leading order in

interaction we are getting only the uniform shift.

The second order correction is written as the sum

〈U2〉c0 =
∑

i<j, k<l

[〈U(qi − qj)U(qk − ql)〉0 − 〈U(qi − qj)〉0〈U(qk − ql)〉0] . (187)

Note that there is no contribution to this sum if all indices i, j, k, l are different because

all coordinates are equally probable. If there is a one common index, e.g. i = k then the

same situation is again true. This is because we can choose this coordinate to be equal to

zero (by changing variables) and the two remaining coordinates j and l are again uniformly

distributed. So the average of the product again factorizes into the product of averages

(cf. with Ising model). The only nontrivial contribution comes from the situations where

i = k and j = l (note that because i < j and k < l there are no additional permutations

(alternatively we can include them adding extra factors of 1/2). So we find

〈U2〉0c =
N(N − 1)

2




∫ ddq

V
U2(q)−

(∫ ddq

V
U(q)

)2

 . (188)

Note that the second term is smaller than the first one by a factor of 1/V and can be ignored

in thermodynamic limit.

So up to the second order in U we have

F (T, V, N) ≈ F0(T, V, N) +
N2

2V

[∫
ddqU(q)− β

2

∫
ddqU(q)2

]
. (189)

This expression already allows us to calculate pressure, entropy, etc. Unfortunately it is

not very useful because interatomic potentials are typically very strong when particles are

close to each other. So the integrals diverge at short distances. In these situations instead

of expansion in U it is much better to expand in terms of density (small density corresponds

to the dilute noninteracting limit). The problem can be addressed by partially resumming

the series or by equivalently using the trick simiar to the one we used for the Ising model:

exp[−∑

i<j

Uij] =
∏

i<j

(1− 1 + exp[−Uij]) ≡
∏

i<j

[1 + fij], (190)

where fij = exp[−Uij]−1. Note that f is a much better expansion parameter than U because

when the interaction is weak then f essentially coincides with U while if interaction is strong
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f approaches −1 instead of ∞. Clearly each order in the expansion in fij brings us the extra

factor of 1/V - we need to integrate over more points, and extra factor of N because there

are more permutations, so we have the expansion in density as wanted. Physically this

cluster expansion means that we solve two particle problem exactly and expand only in the

number of events where more and more particles meat together within the interaction range.

For example in the leading order on density one sums only over the clusters consisting of

two different points i and j:

ln Z = ln Z0+
∑

n≥1

(−β)n

n!

N(N − 1)

2

∫ ddq

V
V (q)p+O

(
N3β2U3

V 2

)
= ln Z0+

N(N − 1)

2V

∫
ddqf(q)+O

(
N3β2U3

V 2

)

(191)

So we see that indeed the first term in the density expansion from re-summation of the series

coincides with the first term in the cluster expansion.

In higher orders in density we will find terms of the order of Nn2 etc. See Kardar for

formal rules and diagrams. We will stop our expansion at this order and find corrections to

the equation of state. We have

F (T, V, N) ≈ F0(T, V, N)− TN2

2V

∫
ddqf(q) (192)

Note that if the potential is weak and we expand f(q) to the second order in V we will

reproduce Eq. (189). Let us use the following model (van der Walls) potential:

U(r) =





∞ r < r0

−u0(r0/r)
6 r > r0

(193)

Then we find that

−
∫

d3qf(q) ≈ 4πr3
0

3
(1− βu0) , (194)

where we used high temperature expansion βu0 ¿ 1 to evaluate the integral. Therefore

F ≈ F0 +
N2

V

2πr3
0

3
(T − u0) = F0 + N

ΩN

2V
(T − u0), (195)

where Ω =
4πr3

0

3
is the excluded volume. Note that our expansion relies on the fact that

integral over the potential converges at long distances. So potential should decrease faster

than 1/r3. Otherwise the virial expansion does not work. We see that for short ranged

potential the small parameter is the ratio of the excluded volume and the volume.

From the free energy we can get pressure, entropy etc. In particular

P = −∂F

∂V T
=

NT

V
+

N2Ω

2V 2
(T − u0) + . . . = nT +

Ω

2
n2(T − u0) + . . . (196)
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This we can rearrange as

P +
u0Ω

2
n2 ≈ nT

1− Ωn/2
(197)

The correction in the denominator in the second term can be interpreted as the correction

to the volume. The factor of one half implies that this is the total excluded volume for

all particles: for the first nothing is excluded, for the last NΩ is excluded so we have Ω/2

on average per particle (remember the homework.) The correction to the pressure comes

from the interactions: the particles attract to each other so there is a lower pressure on the

boundaries. The equation above is the van der Waals equation with parameters a = u0Ω/2

and b = Ω/2. (See hand-waving derivation of the van der Waals equation in Kardar).

Van der Waals isotherms have a fundamental flaw that they have a region of negative

compressibility: the isotherm P (V ) can be non-monotonic. Thus we can find that

1

κ
= − 1

V

(
∂P

∂V

)

T

=
nT

(1− nb)2
− 2an2 (198)

If b is negligible we see that at T ≈ 2an we get unstable regions.

The correct phase diagram can be obtained from these isotherms using Maxwell’s con-

struction. Note that

Φ = E − TS + PV (199)

is the function of T , P , and N (in the sense as we discussed earlier). This implies that

µ =

(
∂Φ(P, T,N)

∂N

)

T,P

(200)

Because T and P are not extensive we can integrate this equality and we see that µN =

E−TS+PV . Therefore Ω = E−TS−µN = −PV . Note that dΩ = −SdT−PdV −Ndµ =

−PdV − V dP therefore

SdT + Ndµ = V dP (201)

If we are on isotherm we can obtain the chemical potential and thus Φ by integrating

dµ =
V

N
dP (202)

along the isotherm. Because the curve is anisotropic we will get three possible values for

the chemical potential at the same value of T and P . So the chemical potential is not a

unique function of T and P . This indicates there is a phase coexistence (another possibility

of course is that van der Walls equations are not very accurate). Which of the phases is
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FIG. 3 Van der Waals isotherm for a particular set of parameters a = b = 0.1, N = 1. The dashed

line illustrates Maxwell construction.

correct? In equilibrium if we keep T and P fixed then Φ should be minimal (we will prove

this statement later). So we want to choose the minimal µ. The phase transition occurs

when to values of the chemical potential intersect:

∆µ =
∫ V

N
dP = 0, (203)

where the integral is taken along the path A → B → C → D, which is nothing but the

difference of the areas above and below straight line connecting points A and D. This is the

value of the pressure where the phase transition between liquid and gas occurs. In between

we have a coexistence region.

Homework, due 11/06. Problems from Kardar, chapter 5: 5.1, 5.2, 5.4, 5.5, 5.10.

You will need to look through Sec. 4.8 to solve the problem 5.5.
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VIII. NONINTERACTING QUANTUM SYSTEMS

Let us first compute the grand canonical partition function for a single degree of freedom:

Z~k =
Nmax∑

N~k
=0

e−(ε~k−µ)β (204)

the upper limit of the sum really depends on whether our particles are fermions or bosons.

For bosons the sum stretches to infinity, and we get:

ZB
~k

=
∞∑

N~k
=0

e−(ε~k−µ)β =
1

1− e−(ε~k−µ)β
(205)

For fermions only up to 1, since there could be at most one particle in the same quantum

state:

ZF
~k

=
1∑

N~k
=0

e−(ε~k−µ)β = 1 + e−(ε~k−µ)β. (206)

For many particles we have to take the double sum over all states and all occupations of

the states (note that we are not summing over different permutations each quantum state

is counted once)

Ω = −T ln Z =
∑

k

Ωk, (207)

where Ωk = −T ln(1 + exp[−βεk]) for fermions and Ωk = T ln(1− exp[−βεk]) for bosons.

From the thermodynamic potential Ω we can find energy:

E = −∂lnZ

∂β
=

∑

k

εknk, (208)

where

nk =
1

exp[β(εk − µ)]± 1
(209)

is the distribution function of fermions “+” sign or bosons “−” sign.

The two distributions are called Fermi-Dirac and Bose-Einstein respectively. For a fixed

number of particles we must have

N =
∑

k

nk (210)

This equality can be also derived directly by differentiating Ω with respect to µ. Clearly

for bosons we must have µ ≤ 0, where 0 is the minimal possible energy. If the bosons

are interacting this is no longer true. The classical Boltzmann’s statistic is obtained when
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nk ¿ 1 which means that the argument of the exponent is large and positive (large negative

chemical potential). Then both for fermions and bosons we have

nk ≈ exp[−β(εk − µ)]. (211)

For bosons there is also another classical limit corresponding to classical waves. TO be

specific consider a single oscillator with the Hamiltonian

H =
p2

2m
+

mω2

2
q2 (212)

Then the classical partition function

Zvib =
∫ dpdq

2πh̄
exp[−βH] =

T

h̄ω
. (213)

This partition function gives e.g. equipartitioning of different energies. The quantum parti-

tion function is

Zq
vib =

exp[−βh̄ω/2]

1− exp[−βh̄ω]
(214)

In the limit βh̄ω ¿ 1 this function becomes identical to the classical one. So now the

classical wave (vibrational) limit corresponds to large mode occupancy. The same is true

if we have many modes. If the occupancy per mode is large we can treat these modes as

classical waves. If the occupancy per mode is small we treat them as particles. We will be

more specific later when we discuss superfluidity.

A. Noninteracting Fermions

Let us now focus on noninteracting fermions. It turns out that despite Coulomb interac-

tions the free fermion model is very adequate for describing metals.First let us analyze the

zero temperature limit What does this function look like at zero temperature? Assuming

that our energy spectrum stretches from zero up, (which we can always do by setting the

lowest energy eigenvalue in the problem to zero), if µ < 0 then:

f(ε~k) =
1

e(ε~k−µ)/T + 1
→ 0 (215)

since the exponent is large. For positive µ it becomes:

f(ε~k) =
1

e(ε~k−µ)/T + 1
=





1 ε~k < µ

0 ε~k > µ
(216)
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It is a step like function. Only states below the chemical potential are occupied, we call the

chemical potential in this case - the Fermi energy. Let’s calculate it. We equate the number

of states up to the fermi energy. In the case of a spherically-symmetric dispersion, we can

write the k-integral very simply:

n = (2s + 1)

kF∫

0

ddk

(2π)d
= (2s + 1)

∫ EF

0
ρ(ε)dε = (2s + 1)Ωd

1

(2π)d

kd
F

d
, (217)

where we included the factor of 2s+1 to take into account spin degeneracy, ρ(ε) is the single

particle density of states:

ρ(ε) =
∫ ddk

(2π)d
δ(ε− ε(k)) = Ωd

(√
2m

2πh̄

)d

εd/2−1 (218)

Sometimes the spin factor 2s + 1 is included in ρ. In three dimensions we have

n =
(2s + 1)

4π
k2

F (219)

We can of-course write this in terms of energy:

n =
(2s + 1)

4π

2mEF

h̄2 (220)

This defines the fermi energy, but the cool thing lies in the k-space determination: upto a

factor of π and the spin-related degeneracy, the fermi wave number, kF , is just the inverse

inter-particle distance (by Pauli principle). In a metal, usually there is just one particle per

atom. The distance between atoms is of the order of 5Å. What is the Fermi energy?

n =
1

(2π)3

4π

3
k3

F · 2 ≈
1

π3
k3

F (221)

and using the famous near-law of the state of Indiana: π = 3. Actually, it was π = 3.2, and

the bill almost got through in the year of 1897. It passed a first reading, but not a second

one. The final result is then:

kF = π
1

a
=

π

5 · 10−10m
(222)

and energy:

EF =
h̄2π2

2 · 10−30kg(5 · 10−10m)2
≈ 2 · 10−19J = 1.25eV = 1.5 · 104K. (223)

Indeed the fermi energy of most metals is very high, and is of the order of between 104 and

105 K. A more amazing number is the fermi velocity:

vF =
h̄kF

m
=

πh̄

ma
≈ 106m/s (224)
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Quite fast for something that is actually at zero temperature!

Let us next compute pressure:

−PV = Ω(T, µ, V ) = −T (2s+1)
∑

~k

ln (Zk) = −V (2s+1)
∫ ddk

(2π)d
ln

(
1 + e−(ε~k−µ)β

)
(225)

At very small temperatures the integrand in the expression above is 0 for ε~k > µ = EF and

is dominated by the exponent in the opposite case so we find that in three dimensions

P ≈ (2s + 1)
∫

ε~k<Ef

d3k

(2π)3
(Ef − ε~k) ≈

2

5
nEf . (226)

To find this result we used that

n = (2s + 1)
∫ ∫

ε~k<Ef

d3k

(2π)3
(227)

Another useful property of the ideal Fermi gas is the isothermal compressibility:

κ = − 1

V

(
∂V

∂P

)

T,N

=
1

n

(
∂n

∂P

)

T,N

=
1

n

(
∂n

∂µ

)

T

(
∂µ

∂P

)

T

. (228)

Recall that SdT + Ndµ = V dP therefore

κ =
1

n2

(
∂n

∂µ

)

T

. (229)

At zero temperature the compressibility is equal to

κ(T = 0) =
1

n2
ρ0(Ef ) =

3

2nEf

=
3

5

1

P
. (230)

It is very hard to compress fermions at high densities.

We can relate compressibility also to number fluctuations. Recall that (see Eq. (108))

∂n

∂µ

∣∣∣∣
T

=
1

TV

(
〈N〉2 − 〈N〉2

)
⇒ κ =

n

T

δN2

N
(231)

For the ideal Fermi gas we have

δN2 =
∑

k

f(ε~k)− f 2(ε~k) (232)

Clearly the fluctuations come only from energies close to Ef because if f(ε~k) = 0 and

f(ε~k) = 1 we have f − f 2 ≈ 0.

Homework, due to 11/13. Show that Eqs. (231) and (232) reproduce the result (230).
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Another important quantity is the entropy:

S = −∂Ω

∂T

∣∣∣∣
µ,V

(233)

Using the explicit form of the thermodynamic potential we can find

S = V
∫

dερ0(ε) [ln (1 + exp[−β(ε− µ)]) + β(ε− µ)f(ε− µ)] = −V
∫

dερ0(ε) [f(ε) ln(f(ε)) + (1− f(ε)) ln(1− f(ε))] .

(234)

One can recognize that this is indeed the usual von-Neumann entropy where f(ε) serves as

the probability that the state is occupied and 1− f(ε) corresponds the probability of having

the empty state.

Specific heat:

cv =
T

V

∂S

∂T

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

= −
∫

dερ0(ε)(ε− µ)2∂f(ε)

∂ε
. (235)

The specific heat is also determined by energies close to µ. It vanishes in the zero-

temperature limit.

Sommerfeld expansion. Suppose now we want to analyze our thermodynamic functions

at small but finite temperature. We need to be able to evaluate integrals like

I = −
∫ ∞

0
dεG(ε)

∂f(ε)

ε
. (236)

There is a general way to do this using Sommerfeld expansion. Note that if we have a low

temperature T ¿ EF then the Fermi-Dirac distribution is 1 or 0 outside a region |E−µ| <∼ 2T

so that the derivative of the Fermi fnction is essentially zero. If the temperature is small

compared to Ef then this region is very narrow. Note that in metals where Ef 104K room

temperatures satisfy this criterion T ¿ Ef . So it makes sense to expand various smooth

quantities into Taylor series around E = µ:

G(ε) ≈ G(µ) + G′(µ)(ε− µ) + . . . (237)

With the exponential accuracy in EF /T the integral over ε can be extended to −∞. Then

it is easy to see that

I(T ) ≈ ∑

n≥0

bnT n ∂Gn

∂εn

∣∣∣∣
ε=µ

, (238)

where

bn = − 1

n!

∫ ∞

−∞
dxxn ∂f(x)

∂x
. (239)
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The integrals above are tabulated:

b0 = 1, b2 =
π2

6
, b4 =

7π4

360
. (240)

As an example of using the Sommerfeld expansion let us compute energy (per unit volume)

as a function of temperature and from this heat capacity and entropy:

E =
∫

dερ(ε)εf(ε) (241)

Let us integrate by parts. Introduce the notation

G(ε) =
∫ ε

0
ε′ρ(ε′)dε′ (242)

Then

E = G(ε)f(ε)
∣∣∣∣
∞

0
−

∫ ∞

0
dεG(ε)

∂f

∂ε
(243)

The first terms is clearly zero and the second is of precisely the form (236). So we find

E ≈ G(µ) +
π2

6
T 2d2G

dε2

∣∣∣∣
µ

=
∫ µ

0
ερ(ε) +

π2

6
T 2(ρ(µ) + µρ′(µ)) (244)

Note that the second term is of the order T 2 so there we can safely substitute µ by EF . In

the first term we can not do it because µ itself also acquires corrections of the order of T 2.

Indeed

n =
∫

dερ(ε)f(ε) ≈
∫ µ

0
ρ(ε)dε +

π2

6
T 2ρ′(µ) (245)

But n is independent of temperature (we want to find energy vs. temperature at fixed N

and V ). Note that
∫ EF
0 ρ(ε)dε = n and writing µ = Ef + δµ we find

n ≈ n + ρ(EF )δµ +
π2

6
T 2ρ′(EF ). (246)

Therefore up to T 2 we have

δµ ≈ −π2

6
T 2ρ′(EF )

ρ(EF )
(247)

Note that if the density of states increases with E then the correction to the chemical

potential is negative. This is so because if we keep chemical potential constant, by broadening

Fermi function, we would populate more higher energy states than deplete lower energy

states. Now we can find energy (per unit volume)

E ≈ EF + δµEF ρ(EF ) +
π2

6
T 2(ρ(EF ) + EF ρ′(EF ))) ≈ EF +

π2

6
T 2ρ(EF ) (248)
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Thus the heat capacity is

cv =
∂E

∂T

∣∣∣∣
V,N

≈ π2

3
Tρ(EF ) =

π2

2
n

T

EF

, (249)

where the last equality is true for the free fermions in three dimensions. This is in accord

with our previous estimates. Note that

cv = T
∂S

∂T
. (250)

Because cv is linear in T we find that at low temperatures S ≈ cv.

Homework, due to 11/13. Problems from Chapter 7 of Kardar, 7.6, 7.8, 7.17

B. Noninteracting electrons in magnetic field.

1. Pauli Susceptibility of an electron gas

There are two effects of the magnetic field on electrons: orbital - vector potential couples

to the momentum via the term (p− e/cA)2/2m and to the spin via the term

Ĥspin = −gµB
~h · ~̂σ = −gµBhσz, (251)

where we chose the spin-quantization access along the magnetic field. Now, spin up has

less energy then spin down. The chemical potential of the electron gas is still the same for

the two spins, but this implies that the fermi energy - which here we distinguish from the

chemical potential by saying that it is the kinetic energy up to which electron states are

filled - is not the same for the two electron flavors.

For down electrons, the total energy is:

E↓ = ε~k + hgµB (252)

while

E↑ = ε~k − hgµB (253)

Now we need to find the chemical potential at which the up and down systems are at

equilibrium. Formally we can do this by requiring that

n =
∫ ∞

0
ρ(ε)

1

exp[β(ε + gµBh− µ)]
+

∫ ∞

0
ρ(ε)

1

exp[β(ε− gµBh− µ)]
(254)
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Here ρ(ε) is the density of states for spinless particles (i.e. not multiplied by 2s + 1 = 2).

Note that at zero temperature and small magnetic fields the density of states can be treated

as a constant so

n ≈ ρ(EF )(µ− gµBh + µ + gµBh) = 2µρ(EF ). (255)

Therefore there is no correction to the chemical potential in the linear order in h therefore

µ ≈ EF . This means EF↑ ≈ EF − gµBh and EF↓ ≈ EF + gµBh. This relations can be

understood also in the following way. Since the energy shift for up is minus that of down,

some electrons from the high-energy down spins, would flip to point in the direction of the

magnetic field. This will happen until we have

EF↑ − EF↓ = 2hgµB (256)

After that it is already energetically unfavorable to flip flop electrons.

So we have an excess of upspins, and we can easily calculate how many:

n↑ − n↓ =

µ+hgµB∫

µ−hgµB

ρ(ε)dε = 2ρ(EF )hgµB (257)

and the excess spin magnetization is:

gµB(n↑ − n↓) = 2ρ(EF )h(gµB)2 (258)

So the susceptibility is:

χPauli = 2ρ(EF )(gµB)2 = 3n
(gµB)2

EF

. (259)

It is a direct measure of the density of states at the Fermi surface. Free electron spins

tend to point in the direction of the field, but don’t actually have magnetization in zero

field. Hence this is called paramagnetism.

Homework, due 11/13. Assume that temperature is small compared to EF but finite.

Find the temperature correction to the magnetization (still to the linear order in h. Argue

that this result can be also understood using picture of two fermi gases (up and down)

where we start from the unpolarized state and flip electrons until the free energy reaches the

minimum.
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Now, in addition to this effect there is also going to be an orbital effect on the general

magnetization, and the question rises - how do we measure the Pauli susceptibility alone?

This is done using the Knight shift - The energy level of nuclear spins are coupled to the

electronic spins through the contact term of the hyper-fine hamiltonian of an atom. This

coupling is much stronger than the coupling of nuclei to a raw magnetic field (since their

Bohr magneton is three orders of magnitude smaller than that of the electron’s). Using NMR

one can get very accurate readings of nuclear energy levels, and there one see’s precisely this

quantity.

2. Orbital effects of a magnetic field - Shubnikov-De-Haas-van Alpen oscillations and Landau

diamagnetism

Note that classically there is no diamagnetism. The partition function of free classical

electron gas is

Z =
1

N !

[∫ dpdq

(2πh̄)3
exp[−β(p− e/cA)2/2m]

]
. (260)

The vector potential or the magnetic field can be removed by a simple change of variables

p → p + e/cA. However, quantum mechanically the situation is quite different. Quantum

mechanically we can introduce a new energy scale h̄ωc, where

ωc =
eB

mc
(261)

is the cyclotron frequency, which is the frequency of rotation of a classical particle in a

magnetic field (recall mω2R = e/cωRB so that ω = eB/(mc)). In SI units there is no c

in denominator. Since the energies must be quantized into multiples of that frequency we

expect that at least at small temperatures T ¿ h̄ωc there will be a strong difference between

quantum and classical pictures. The discrete energy levels of electrons in magnetic field are

called Landau-levels. Like in an Harmonic oscillator, the allowed energy eigenvalues of a

particle in a magnetic field are:

En =
(

1

2
+ n

)
h̄ωc (262)

In two dimensions, instead of having a flat density of states, we suddenly have a comb like

shape with spikes at these energies.

We can estimate the degeneracy of each level for each spin NL from a simple argument.

(Let us do it in 2D for simplicity). The total number of states with and without magnetic
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field should be the same therefore

NL = A
∫

0≤ε~k≤h̄ωc

d2k

(2π)2
=

A

2πh̄2mh̄ωc =
A

2πh̄2mh̄
eB

mc
=

Φ

Φ0

, (263)

where Φ = Ah is the total magnetic flux and

Φ0 =
2πh̄c

e
(264)

is the flux quantum. There is an alternative semiclassical explanation to why the Landau

level degeneracy is such. When you let an electron go in a closed orbit, the phase of the

wave function (by gauge invariance) acquires the value:

ϕ ∼ e

h̄

∫
d~l · ~A = 2π

Φ

h/e
(265)

Whenever ϕ is a multiple of 2π, the electron can be at rest. So each electron orbit should

encircle at least one flux quantum. The area of each orbit is therefore Φ0/B. So the total

number of electrons we can fit to area A is thus NL = A/(Φ0/B) = Φ/Φ0.

A magnetic field is like a flux density. The most useful way is to think about it as the

field for a given 2d fluxon density:

B =
Φ0

b
(266)

as it turns out, for each landau level, there is a density of states which is exactly b - just as

though there is one electronic state for each fluxon. This means that the density of states

function for an electron gas in 2d is (ignoring spin) :

ρ(ε) =
∞∑

n=0

δ(ε− (
1

2
+ n)h̄ωc)

B

Φ0

(267)

The integer quantum hall effect occurs when the number of electrons fits exactly an

integer number of landau levels. We define the filling factor:

ν =
n

B/Φ0

(268)

ν tells us how many landau levels are full. The Qauntum-Hall effects occur when ν hits the

magic numbers 1, 2, 3 . . . for integer, and a variety of rational fractions - most notably 1/3,

for which Laughlin Stoermer and Tsui won their nobel prize for.

But those regime of small ν, ie, of high field, they are complex, and have a lot of structure,

which , unfortunately, lies beyond the scope of this class. We will concentrate on the

relatively simple, but nevertheless fascinating phenomena at low fields.
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Recall that in the case of the Pauli susceptibility, everything happens near the edge of

the fermi surface. Looking at the 2d electron gas, when we turn on a magnetic field, the

electronic states just bunch into delta-functions. All those states that are filled - instead of

being a continuum, they are just bunched together. Even if we turn on a spin-field, as in

the Pauli susceptibility, the depolarization occurs. It is clear that near the Fermi surface -

the thing that really matters once a field is on, is how filled the last landau level is. This is:

mod(ν) (269)

Every quantity of the system will depend strongly on mod(ν), but only weakly on what ν

is, or on the magnetic field. Thus, every quantity will undergo an oscillation, whenever ν

goes through 1. But This means:

ν =
∫

ε~k<EF

d2k

(2π2

Φ0

B
=

1

2π2

VKΦ0

B
, (270)

where VK is the area of the Fermi surface in the momentum space. Note that in 3D the

momentum orthogonal to magnetic field is conserved and thus we this area law for each

z-component of the wave vector. The largest effect to the oscillations will be whenever

the density of states is largest, i.e. when the area satisfying ν =integer reaches extremum

(maximum or minimum on the Fermi surface). So as a function of 1/B we’ll get oscillations

in any quantity that are with ’wave-length’:

∆(1/B) =
(2π)2

VKΦ0

(271)

which corresponds to 1/B changes that move ν to ν − 1. These oscillations are called

Shubnikov-De-Haas-Van-Alpen oscillations. This result is remarkable - if you measure the

resistance of a metal in a varying field, plot the result with respect to 1/B, we’ll see oscilla-

tions, which frequency, corresponds to the area enclosed in the fermi surface (note the shape

of the Fermi surface may not be necessarily a sphere in real crystals).

There’s another thing. Because the dispersion of the electrons changes, so does their

energy. In fact it rises:

E = E0 +
1

2
χLB2 (272)

The extra kinetic energy due to the magnetic field means also that the electrons, in their

orbits, produce a magnetization contrary to the external field and try to reduce it. This
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contribution to the magnetization is called Landau-diamagnetism. In the problem set you’ll

find:

χL = −1

3
χPauli (273)

in a free electron gas.

A bit of terminology - free spins tend to point at the direction of the external field,

but not to reorder ferromagnetically on their own - this is paramagnetism, and it implies

a negative magnetic energy. Diamagnetism is the opposite - the magnetic moment

tries to reduce the external field - which is diamagnetism. The difference between dia-

magnetism and AFM is that without a field there isn’t any spontaneous canted internal field.

Homework due 11/20. Landau diamagnetism

Begin Homework

Landau diamagnetism. The electrons are constrained to move in a plane, the electronic

states become Landau levels. Using that their energies are εn = h̄ωc(n + 1/2) and the

degeneracy of each level is AB/Φ0 find the energy increase per area due to magnetic field:

∆E ≈ −1

2
χlh

2 (274)

(where χL) is the Landau diamagnetic susceptibility. In this problem we will calculate it.

(a) What is the energy of the electron gas in a magnetic field B in terms of its temperature

and chemical potential? No need to evaluate the infinite sum yet. Ignore the Zeeman spin-

splitting due to the magnetic field. (b) To evaluate the total energy, it is necessary to convert

the sum to an integral. Prove the following approximation:

η
∞∑

n=0

f(η(n + 1/2)) ≈
∫ ∞

0
f(x)dx− η2

24

∫ ∞

0
f ′′(x)dx =

∫ ∞

0
f(x)dx +

η2

24
f ′(0) (275)

to second order in h. (c) Using the approximation of 1b, find χL for a noninteracting electron

gas. Assume T close to zero, but take the limit T → 0 only once you obtain an expression

for χL, i.e. consider the order of limits where the magnetic field vanishes first (at finite T )

and then temperature is set to zero.

End Homework
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C. Bose-Einstein statistics

The distribution for bosons is quite different from that of fermions, although the numerical

expression is quite similar:

n(ε) =
1

e(ε−µ)β − 1
(276)

The big difference comes from the minus sign. It is possible to have a divergence of the

distribution. The properties of bosonic gasses are mostly determined by what happens near

this divergence.

First consider two archetypical bosonic systems. Photons and phonons. and we will derive

the black body radiation formulas, and also the Debye theory for heat capacity. Both of

these are important examples for the success of quantum mechanics in explaining deviations

of experimental measurements from classical results.

1. Black body radiation

The phenomena of black-body radiation requires little introduction. By the end of the

nineteenth century, from observing hot metals, as well as stars, it was clear that:

• Hot bodies emit electromagnetic radiation that is unrelated to their spectrum.

• the maximum wavelength of the radiation is inversely proportional to their tempera-

ture:

λmT = constant (277)

which was known as Wien’s law.

• The total radiation emitted per unit area of a hot body (body hotter than its envi-

ronment) is given by:

I/A = σT 4 (278)

where σ = 5.67 · 10−8 W
m2K4 , which is known as Stefan’s law.

Let us try to understand this result classically. Like the wave function of a particle in

a box, the electromagnetic field has solutions of the maxwell equations, or the E-M wave

equation:
∂2 ~A

∂t2
= ∇2 ~A (279)
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which are ei~k·~x. There are two solutions for each k value - two polarizations ~n · ~k = 0.

Each value of ~k was considered to be a harmonic mode, and therefore, just like a spring,

each mode, by equipartition theorem gets:

〈εk〉 = T, (280)

where εk is the energy associated with each mode (It can be obtained from writing classical

energy density (E2 + B2)/8π in terms of modes in the box. Note these are purely classical

considerations.

The dispersion of light as we know:

ω = c|~k| (281)

and therefore the energy in the range ω, ω + dω is the number of modes in the spherical

shell k = ω/c to k + dk = (ω + dω)/c, times T :

f(T, ω)dω = 2 · 4πk2

(2π)3
dkT =

1

π2
T

ω2

c3
dω (282)

Now we need to integrate this expression over all modes and get

f(T ) =

∞∫

0

dω
1

π2
T

ω2

c3
→∞ (283)

So there is something wrong in this purely classical formulation. We need to use correct

Bose-Einstein distribution which does not give equipartition.

Instead of the equipartition theorem we need to put our better guess. Let’s calculate

quickly the partition function for a photonic state. A state can have one photon, two

photons, etc. Each photon in state k has energy:

ε~k = h̄ωk = h̄ck. (284)

The partition function is:

Z = 1 + e−ε~kβ + e−2ε~kβ . . . =
1

1− e−ε~kβ . (285)

Note that there is no chemical potential. The latter appeared because we needed to work

with fixed (or slightly fluctuating number of particles). Alternatively we split the system into

two subsystems and introduced chemical potential because we needed to maximize entropy
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with respect to exchanging particles between the two subsystems. That was the reason that

∂S/∂N1 had to be maximized and that derivative we called chemical potential. Here number

of photons is not conserved (like number of quanta in an oscillator) so we automatically some

over all occupancies of all modes without any constraints.

The number of photons in the state, is therefore like the BE distribution, only with µ = 0.

We differentiate the log with respect to β and obtain:

nk = −∂ ln Z

∂β
=

1

eε~kβ − 1
(286)

At this point let us look at this expression. If ε~k = h̄ωk is much smaller than T ,

ε~k = h̄ωk ¿ T, (287)

we can expand the exponential in a power series, and get:

nk ≈ T

ε~k
(288)

and therefore an energy:

ε~knk ≈ T, (289)

which is indeed equipartition. But if the energy is much larger than T :

ε~k = h̄ωk À T, (290)

the exponent in the denominator of the BE distribution will dominant over the 1, and we

would have:

ε~knk ≈ ε~ke
−ε~kβ (291)

Note that a very similar argument works in other situations. For instance, a diatomic

molecule has a rotational degree of freedom and also a vibrational degree of freedom. The

first excited state of the rotational degree of fredom is:

L2

2I
∼ h̄2

2md2
∼ 10−68

10−26(10−10)2
= 10−22J = 10K (292)

So in room temperature we can forget about quantization of angular momentum and treat

them classically (equipartition works). The vibrational degrees of freedom, that have a

spectrum very much like that of photons in a k state, will only get excited therefore when T

is of order of their energy. The frequency of chemical bonds is such, that they start playing
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a role at temperatures of the order of thousands of kelvins. So at room temperatures

vibrational degrees of freedom are completely frozen and do not contribute to e.g. specific

heat.

Using the correct Bose-Einstein distribution we find

f(T, ω)dω = 2 · 4πk2

(2π)3
dk

1

eε~kβ − 1
=

1

π2

ω2

c3
dω

ωh̄

eωh̄β − 1
(293)

This is the Planck formulae for the power spectrum of the black body. To get the total

energy density we need to integrate over all frequencies:

f(T ) =
1

π2

∞∫

0

ω2

c3
dω

1

eωh̄β − 1
(294)

by changing variables we can get all the dependencies outside the integral. The change of

variables is dictated by the exponent, and we define

x = ωβh̄ (295)

we then obtain

f(T ) =
1

π2

∞∫

0

ω2

(h̄βc)3
dω

1

ex − 1

1

β
=

T 4

π2h̄3c3

∞∫

0

dxx3 1

ex − 1
(296)

The integral above can be evaluated exactly:

∞∫

0

dxx3 1

ex − 1
=

π4

15
(297)

so that

f(T ) =
π2

15

T 4

c3h̄3 . (298)

From this density we still need to get the radiance per unit area. Assume that we have a

small hole in a black body. Then the average velocity of outgoing photons is

〈c⊥〉 =
c

4π

∫ π/2

0
dθ

∫ 2π

0
dφ sin θ cos θ =

c

4
. (299)

So the average flux of energy per unit area is

I =
c

4
f(T ) = σT 4, (300)

where

σ =
π2

60

k4
B

h̄3c2
= 5.67 10−8 W

m2K4
(301)
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We can also compute pressure by black body radiation:

P =
1

3

E

V
=

1

3
f ≈ 2.5 10−18 T 4 Pa, (302)

where 1/3 comes from the relativistic dispersion (there is also a Casimir pressure due to

zero point energy, which is beyond the scope of this course). Note that normal atmospheric

pressure is about 105 Pa.

2. Debye theory of heat-capacity of solids

Bose-Einstein statistics is closely related to the statistics of waves. Of course electro-

magnetic waves are one of the primary examples. Another important example are the

phonons or the sound waves in solids and liquids. We will concentrate on solid where

phonons are just lattice vibrations or displacement waves. Let’s consider a simple example

of a chain of masses and springs in 1d. Each mass has the equation of motion:

m
∂2xn

∂t2
= −κ(xn+1 − xn) + κ(xn − xn−1) (303)

And let us assume periodic boundary conditions - like the particle in the box, this is solved

by:

xn = eiqna−iωt (304)

and the dispersion relation becomes:

ω =

√
κ

m
(1− cos qa) (305)

where a is the lattice constant, and we use q as the wave vector.

Now, what is the range of q? Note that if we add 2π/a to q then the solution (304) will

not change so we can choose the range

−π < qa < π (306)

There is another reason of why we the domain of q is bounded. Let us compute the total

number of allowed q. The latter is quantized in units

dq =
2π

L
(307)
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If the modes are restricted to be between ±π/a, then we have:

g =
2π

a
/
2π

L
=

L

a
= N (308)

with N being the number of particles. That’s right! can’t have more modes than particles!

Another feature of the dispersion is the low q, or low a, behavior. When qa is small, we

can expand the cosine and obtain:

ω =

√
k

m
qa (309)

This implies that the force equation can also be approximated by:

m
∂2x

∂t2
= a2k

∂2x

∂r2
(310)

Note that here r is the physical location of the mass (instead of xn we use x(r) in the

continuum language) and x is its displacement from the equilibrium position. So e.g. x

is always small while r can be arbitrary number between 0 and L. We see that at low

frequencies, we can approximate lattice vibrations like a sound wave.

This equation is easily generalizable to higher dimensional solids:

∂2x

∂t2
= c2∂2x

∂r2
(311)

with c the speed of sound. In a solid though, there would be three sound modes for every k

- two transverse and one longitudinal. Except for that, sound is just like light!

Another comment before starting to work is that - every mode has its own frequency.

therefore each mode is like a quantum harmonic oscillator, with energies:

En = (n + 1/2)h̄ω (312)

This can be also understood if we work with momentum and coordinate operators and go

to normal modes using the quantum Hamiltonian. The nice thing about hamronic systems

is that quantum and classical equations of motion coincide. Now, let’s discuss the energy

stored in these vibrational modes in a 3d solid. We have the following info to go by:

• Generalizing from the 1-d example: we have a total number of 3N vibrational modes

- since we have 3N degrees of freedom.

• At low wave numbers or frequency, the dispersion is linear, and we can approximate

the vibrations as sound waves.
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• each mode acts like a quantum harmonic oscillator:

En = (n + 1/2)h̄ω (313)

n is the number of phonons in the state.

Let’s start with high temperatures. By high we mean temperature higher than the largest

energy of the phonon (corresponding to q = π/a in our case). Let us call this energy scale

as Debye temperature:

TD = αh̄
c

a
(314)

This is an approximation for the highest frequency that a vibrational mode can hold, α is a

numerical coefficient of order 1.

If T À TD, we can forget about quantum mechanics, and we have equipartition, T energy

in each mode.

U = 3NT (315)

this is called the Dulong and Petit law. This what we would get for light if the spectrum of

photons was bounded. The heat capacity at high-T is thus:

CV = 3N (316)

At very low temperatures we can use the sound-wave approximation because only small

frequency modes corresponding to small q are populated. Let us assume, for simplicity, that

the speed of sound for all three sound modes is the same, c, although they are unlikely to

be so. If we have three sound modes than, at low T , the energy density for phonons is just

like it is for photons:

U/V = 3

∞∫

0

4πω2dω

(2πc)3

h̄ω

eh̄ωβ − 1
=

π4

15

T 4

π2c3h̄3 , (317)

where the prefactor 3 corresponds to three different modes. This expression is very similar

to what we got for photons. The heat capacity now is the famous Debye law:

CV =
π4

5

T 3

π2c3h̄3 (318)

So the heat capacity is constant and high temperatures and rapidly decreases to zero as T 3

at low temperatures. In between we should get some kind of interpolation which is sensitive

to the details of the dispersion relations.
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3. Bose statistics in systems with conserved number of particles. Bose-Einstein condensation.

Recall that the occupation number per mode, according to Bose-Einestein statistics is

fb(ε) =
1

exp[β(ε− µ)]− 1
(319)

We need to find µ by fixing the total density of particles n:

n =
∫ ddq

(2π)d

1

exp[β(εq − µ)]− 1
. (320)

At high temperatures we expect µ to be large and negative. Indeed if this is so we have

n ≈ exp[βµ]
∫ ddq

(2π)d
exp[−β

h̄2q2

2m
] ≈ exp[βµ]

(
m

2π2h̄2

)d/2

T d/2
∫

ddξ exp[−ξ2] (321)

So we see that at large temperatures T À TD ≈ h̄2n2/d/(2m) indeed exp[βµ] ¿ 1. What

happens as T approaches the degeneracy temperature? Note that TD is the same object (up

to various factors of π) as the Fermi energy. This is the scale where de Broglie wavelength

associated with the average energy of the particles T is comparable to inter-particle spacing.

This is the regime when particle start to acquire wave-like phenomena, they can not be

treated as point objects any more. This is also the regime where statistics bosonic vs.

fermionic becomes important.

Obviously as T decreases chemical potential increases approaching zero. Eventually as

T → 0 it should reach the asymptotic value, which for bosons must be zero (since contrary

to fermions it can not cross it). So we must have

n →
∫ ddq

(2π)d

1

exp[βh̄2q2/(2m)]− 1
(322)

Note that in 1D and 2D this integral diverges at small q meaning that we should introduce

small negative chemical potential to make it convergent. As temperature goes to zero so

does chemical potential as T in 1D and as exp[−1/T ] in 2D. However in 3D this integral

converges. So the chemical potential vanishes at finite temperature such that

n ≈ ζ3/2

(
mT

(2πh̄)

)3/2

, (323)

which defines the temperature of Bose-Einstein condensation:

Tc =
(2πh̄)2

m

(
n

ζ3/2

)2/3

, (324)
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here ζ3/2 ≈ 2.612 is the zeta function:

ζm =
1

Γ(m)

∫ ∞

0

dxxm−1

exp[x]− 1
. (325)

As T becomes smaller than Tc we must have µ = 0 and one state (the ground state) gets

macroscopic occupation. Recall that we have to sum over all states (different k) rather then

integrate over them. The summation is equivalent to integration only if the function fbεk is

smooth. If one state is macroscopically occupied this is no longer true.

Below Tc the Bose gas has unusual properties. The population of excited modes does

not depend on the number of particles. So we are essentially dealing with an ensemble

where N is not conserved like phonons or photons. In other words the condensate is like a

reservoir of particles out of which we can take particles for free: it does not cost any entropy

or energy. The dispersion of this particles is quadratic (not linear) but it is an artifact of

non-interacting model. With interactions the dispersion becomes linear. The low energy

modes are macroscopically occupied so we can treat them as waves (in quantum mechanics

such modes are described by the coherent states where both number and phase can be well

defined). The gas pressure for T < Tc is

P =
2

3

∫ d3q

(2π)3

εq

exp[βεq]− 1
= Tζ5/2

1

λ3
D

∝ T 5/2 (326)

is independent on the number of particles. Here λD =
√

2πh̄/mT is the de Broglie

wavelength. This means for example that below Tc pressure is independent of volume

(again like in the case of photons).

Homework. Due 12/02. Read Chapters 7.1, 7.2 from Kardar. Re-derive Eqs.

(7.18)-(7.21) for two dimensions. Problems from Kardar: 7.13 (see also solution to problem

1.5 for Clausius-Clapeyron law), 7.15, 7.16

We will discuss relation of Bose-Einstein condensation and superfluidity in the next chap-

ter.

IX. BROKEN SYMMETRY: MEAN-FIELD AND VARIATIONAL APPROACH.

This section closely follows notes by S. Girvin (Yale).
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A. Ising model

Let us return back to the classical Ising model:

H = −J
∑

〈ij〉
σiσj − h

∑

i

σi. (327)

Recall that the magnetization

m = − 1

V

∂F

∂h
=

T

V

∂ ln Z

∂h
=

1

V

∑

j

σj (328)

In the absence of magnetic field the model has the spin-inversion symmetry σj → −σj: two

directions of spins are equivalent. However in the presence of magnetic field this symmetry

is broken. So h is the symmetry-breaking field.

Now let us introduce a very important concept of spontaneous symmetry breaking. When

h = 0 we must have m = 0. But what happens if h → 0 and V → ∞. We can have to

possible limits

lim
h→0

lim
V→∞

m (329)

and

lim
V→∞

lim
h→0

m (330)

The latter limit is always zero. But this is not true about the first one. If the first limit

is not-zero the system is said to be in spontaneously broken symmetry state. Clearly the

order of limits can be different if the free energy is a non-analytic function of h in the limit

V →∞.

To illustrate the idea let us consider spin system at very low temperature. First start

from two spins. Assume that J is very large both compared to h and to T . The two

favorable spin configurations are | ↑, ↑〉 and | ↓, ↓〉. The energy difference between them is

∆E = 4h. Once this energy difference becomes much smaller than temperature (at least

according to naive criterion) we obviously have m → 0. This happens at h ∼ T/4. Now

consider instead 4 spins. By the same argument the energy difference between two favorite

configurations | ↑, ↑, ↑, ↑〉 and | ↓, ↓, ↓, ↓〉 is ∆E = 8h so the spins become disordered at

h ≈ T/8. We see that as the number of spins increases the “naive” argument predicts that

spins remain ordered up to smaller and smaller fields, which vanish as the number of spins

become macroscopic. Similarly one can imagine that the times required to go from one

macroscopic configuration to another become exponentially long.



70

We will see later that the naive argument is qualitatively correct in dimensions higher

than one, where at small temperatures entropy is not important and we can focus only on the

two optimal-energy configurations. The ordering is clearly a collective effect. Noninteracting

spins will never order! At high temperatures T À J on the other hand spins are almost

independent from each other and weak magnetic field can not have a pronounced effect. So

we expect that there is a transition between ordered regime (where symmetry is sponta-

neously broken) and disordered regime. How do we find this transition? There are several

available tools: meanfield approach, variational approach, numerical simulations, analysis

of asymptotics of high-temperature expansion, renormalization group, exact solution for

solvable models, ... In this course we will focus on the first two methods.

1. Self-consistent meanfield approach.

When we did high temperature expansion in the Ising model we argued that each spin feels

an effective magnetic field heff = h(1+2Jd/T ) (see Eq. (166)). Note that this result can be

understood from self-consistent arguments: without interactions the average magnetization

per spin is h. Therefore to the lowest order the effect of interactions on a given spin with

say j = 0 is:

−J
∑

〈j0〉
σjσ0 ≈ −2Jdhσ0. (331)

Let us extend this argument below perturbation theory in J/T and assume that we can

substitute the true interaction term by the mean-field one:

−J
∑

〈j0〉
σjσ0 → −heffσ0 (332)

so the only result of all other spins on spin 0 is that the latter feels some effective average

field from the other neighboring spins. Clearly we are making an approximation because

the problem is correlated: what nearest neighbors of site 0 do depends on spin σ0 itself in a

complicated way. However, it is intuitively clear that in high-dimensions (large coordination

numbers) this effect should be small. Other spins have too many nearest neighbors to care

a lot about what a single spin is doing. However, at low dimensions, especially in 1D this

approximation is very crude, and in fact incorrect.

Clearly heff = 2Jd〈s〉 (assuming there is no external field) and

〈σ0〉 = tanh(βheff ) (333)
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To be consistent we must have

heff = 2Jd tanh(βheff ). (334)

because all spins should have the same average magnetization. Denoting βheff as x we see

that this equation becomes:

x = 2Jdβ tanh x (335)

It can be solved graphically. Clearly for 2Jdβ < 1 (high temperatures) we find that the

only solution is x = 0. While for 2Jdβ > 1 there are two additional solutions corresponding

to non-zero magnetization. In the limit β → 0 we obviously have the nonzero solutions at

x ≈ ±2Jdβ corresponding to 〈σ〉 ≈ ±1. It is intuitively clear that non-zero solutions are

the correct ones by continuity argument. In the next section we will give a more rigorous

justification to this statement.

B. Variational approach

From quantum mechanics we know that the energy of the ground state is larger than the

expectation value of the Hamiltonian in any state:

Egs ≤ 〈ψ|H|ψ〉 (336)

for any ψ. This statement serves as the basis for the variational principle, where we choose

any trial state with some unfixed parameters and minimize the expectation value of the

Hamiltonian with respect to this state. Can we generalize this principle to finite tempera-

tures? Obviously we are no longer minimizing energy because the entropy should play the

role.

It turns out that the generalization does exist and it can be formulated as follows. Let us

choose some arbitrary trial Hamiltonian H0. Then the corresponding grand potential (free

energy in the canonical case) satisfies the following inequality:

Ω ≡ −T ln Z ≤ Ωtr = Ω0 + 〈H −H0〉0, (337)

where the expectation value is taken with respect to the equilibrium partition function

corresponding to H0. Let us check that this variational principle reduces to (336) in the

zero temperature limit. In this case Ω = Egs, Ω0 = E0
gs so we have Egs ≤ 〈H〉0, which indeed
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follows from Eq. (336). The only difference is that the trial state is no assumed to be the

ground state of some particular trial Hamiltonian. This Hamiltonian can be always found

for any |ψ〉 by an appropriate choice of potential.

Let us prove this statement, first in the classical case.

Z =
∫

dxdp exp[−β(H0(x, p)− V (x, p))] =
1

Z0

〈exp[−βV (x, p)]〉0, (338)

where by x, p we schematically denoted all multi-dimensional phase space and V = H(x, p)−
H0(x, p). The function exp[−βv] is convex (it has a positive second derivative). For any

convex function we have f(v) ≤ f(v) (this is called Jensen’s inequality) in particular f((v1 +

v2)/2) ≤ (f(v1) + f(v2))/2. This most easily can be seen from the picture. The general

prove is beyond the purpose of this course, but for a particular exponential function we are

interested in the proof is very simple. Let us prove that

g(β) = 〈exp[−β(V − 〈V 〉0)]〉0 ≥ 1 (339)

To do this we note that

g(β) = g(0)+

β∫

0

dg

dβ′
dβ′ = g(0)−

β∫

0

〈
(V − 〈V 〉0) e−β′(V−〈V 〉0)

〉
0
dβ′ = g(0)−

β∫

0

〈
(V − 〈V 〉0)

(
e−β′(V−〈V 〉0) − 1

)〉
0
dβ′.

(340)

The integrand in the last expression is never positive so we see that g(β) ≥ g(0) = 1.

The proof in the quantum case is similar if V commutes with H0. Otherwise it is more

complicated but still correct (to prove the statement in general quantum case one can invoke

the matrix generalization of Jensen’s inequality for convex function: Tr(f(A) − f(B)) ≤
Tr [(A−B)f ′(B)]).

We can use Eq. (337) to build a variational approach at finite temperature: choose a

simple trial Hamiltonian with free parameters, from this find a trial thermodynamic potential

Ωtr. Minimize this partition function. The state where it is equal to minimal is closest to

the true equilibrium state of the system.

Let us apply this method to the Ising model

H = −J
∑

〈ij〉
σiσj. (341)

Let us choose a trial Hamiltonian to be noninteracting:

H0 = −λ
∑

j

σj, (342)
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where λ is the variational parameter. Then

Ω0 = −TN ln[2 cosh βλ], 〈H0〉0 = −λN tanh(βλ), 〈H〉 = −NJ2d

2
〈σ〉20 = −NJd tanh2(βλ).

(343)

Therefore

Ωtr = −TN ln[2 cosh(βλ)] + λN tanh(βλ)−NJd tanh2(βλ) (344)

Minimize with respect to λ:

−N tanh(βλ)+N tanh(βλ)+
Nλβ

cosh2(βλ)
−2NJdβ

tanh(βλ)

cosh2(βλ)
= 0, ⇔ βλ = 2Jdβ tanh(βλ).

(345)

The last equality exactly reproduces the mean field equation (335) with λ playing the role

of heff . But now we can immediately see that for 2Jdβ > 1 the broken symmetry solution

corresponds to the minimum of free energy. Indeed if we expand Ωtr(λ) around λ = 0 we

will find

Ωtr ≈ const + Nλ2

[
−β

2
+ β − J2dβ2

2

]
= const +

Nλ2β

2
[1− 2Jdβ] (346)

So we find that indeed for 2Jdβ > 1 the symmetry broken state has lower (trial) free energy

and thus this would be closer to the true equilibrium state). We can make the expansion to

the fourth order in λ and get that

Ωtrβ

N
≈ const +

α

2
λ2 +

γ

4
λ4, (347)

where α = 1 − 2βJd and γ = 8βJd/3 − 1. Note that near the transition 2βJd = 1 the

coefficient γ is positive γ ≈ (1/3) so the effective free energy has a Mexican-hat type

form. Because physically λ plays the role of magnetization we can view Ωtr(λ) as the

expansion of free energy as a function of magnetization, which is a particular example of

phenomenological Landau theory of phase transitions.

Homework, due 12/4/08 Compare the result for magnetic susceptibility obtained

from high temperature expansion and from meanfield approach up to the second order in

J/T . For the meanfield approach you need to assume that there is a small magnetic field h

and find the effective magnetic field (obtained self-consistently) to the linear order in h but

including corrections in J/T .
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Use variational approach to find Ωtr at fixed magnetization. Essentially you need to repeat

the steps but minimize Ωtr using magnetization m = 1/N
∑
〈 σj〉 as a Lagrange multiplier.

Derive Taylor expansion of Ωtr(m) to the second order in m, discuss your result.

C. Interacting many-particle systems.

1. Quick introduction to second quantization

When we deal with many-particle systems it is usually not very convenient to deal with a

many-body phase space. There is a much more convenient way to relabel many-particle basis

using (complete) single-particle basis and distribution of different particles in this basis. So

the eigenstates will be labeled by strings like this

|2, 0, 1, 3, 0, 0, 0, 1, . . .〉 (348)

for bosons and by strings like

|1, 0, 1, 1, 0, 0, 0, 1, . . .〉 (349)

for fermions. The numbers here indicate that e.g. the first state contains two particles in

the single-particle ground state, 0 particles in the first excited state, etc. If there are no

interactions, this basis labels eigenstates of the many-particle system. We actually used this

basis when we considered ideal quantum gases. However, if the systems are interacting this

basis does not describe energy eigenstates. Any Hamiltonian in this basis can be described by

matrix elements between different states. It turns out that the second quantized language

allows us to write these matrix elements in a very compact form. Let us introduce the

creation and annihilation operators denoted as a†j and aj, which are responsible for increasing

or decreasing number of particles in a given single-particle state. In principle the choice of

the matrix elements of this operators with other states is arbitrary. However, it it convenient

and conventional to stick to the following rules:

• For bosons we require that creation and annihilation operators corresponding to dif-

ferent single particle states commute with each other. This automatically gives us

symmetric wave-functions. E.g.

ψ(1, 3) = |1, 0, 1, 0, . . .〉 = a†1a
†
3|0, 0, 0, 0, . . .〉 = a†3a

†
1|0, 0, 0, 0, . . .〉 = ψ(3, 1). (350)
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Equivalently we have a†1a
†
3 = a†3a

†
1. Similarly for fermions it is convenient to choose

creation and annihilation operators corresponding to different states as anti commuting

ψ(1, 3) = |1, 0, 1, 0, . . .〉 = c†1c
†
3|0, 0, 0, 0, . . .〉 = −c†3c

†
1|0, 0, 0, 0, . . .〉 = −ψ(3, 1), (351)

or c†1c
†
3 = −c†3c

†
1. It is easy to check that similar (anti)commutation relations between

creation and annihilation operators, as well as annihilation and creation operators

ensure that all basis functions are always properly symmetrized.

• Now we need to decide what to do with commutation relations for aj and a†j corre-

sponding to the same single particle state. For bosons it is convenient to use the same

convention as for harmonic oscillators, i.e.

[aj, a
†
j] = aja

†
j − a†jaj = 1. (352)

This requirement immediately yields familiar matrix elements for the creation and

annihilation operators in the harmonic oscillator:

a†j|nj〉 =
√

nj + 1|nj + 1〉. (353)

This can be seen e.g. from normalization conditions:

〈1|1〉 = 〈0|aja
†
j|0〉 = 〈0|1− a†jaj|0〉 = 1 (354)

and

〈1|aja
†
j|1〉 = 〈0|ajaja

†
ja
†
j|0〉 = 〈0|aj(1 + a†jaj)a

†
j|0〉 = 1 + 〈0|(1 + a†jaj)(1 + a†jaj)|0〉 = 2

(355)

From this and normalization 〈2|2〉 = 1 we see that a†j|1〉 =
√

2|2〉. And so on. Similarly

we can find that aj|nj〉 =
√

nj|nj − 1〉. This commutation relations immediately yield

that nj = a†jaj is the number operator: a†jaj|nj〉 = a†j
√

nj|nj − 1〉 = nj|nj〉. So the

Hamiltonian of any noninteracting bosonic system can be written as

H =
∑

j

εjnj =
∑

j

εja
†
jaj (356)

Note that we never used any details of the Hamiltonian to write down this expres-

sion. Harmonic oscillator shows us an example how these operators can be explicitly

constructed from the coordinate and momentum operators.
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So bosonic operators satisfy

[ai, a
†
j] = δi,j (357)

• For fermions it is convenient to choose creation and annihilation operators correspond-

ing to the same state satisfying {cj, c
†
j} ≡ cjc

†
j + c†jcj = 1. We must also have

cjcj = c†jc
†
j = 0 because by Pauli exclusion principle it is impossible to have more

than one particle in the same state. This choice automatically yields c†j|0〉 = |1〉 and

cj|1〉 = |0〉. Indeed then 〈1|1〉 = 〈0|cjc
†
j|0〉 = 〈0|1 − c†jcj|0〉 = 1. The quantity c†jcj

also serves as the number operator so for the noninteracting particles the Hamilto-

nian still takes the form (356) with aj ↔ cj. Obtaining explicit form of the fermionic

operators is much less trivial than the bosonic. However, there is such a representa-

tion of fermionic operators through products of 2 × 2 matrices. This representation

is non-local; it was derived by Jordan and Wigner (you can search for Jordan-Wigner

transformation or look in e.g. Subir Sachdev, Quantum Phase Transitions).

• The form of the Hamiltonian (356) is consistent with our earlier expressions for the

average energy:

E = 〈H〉 =
∑

j

εjf(εj), (358)

where f(εj) is the bosonic or fermionic distribution function. Similarly one can check

that we can derive correct expressions for fluctuations of energy, etc.

• It is important to be able to change the basis and know how creation and annihilation

operators transform. Let us consider the following single-particle transformation:

|j〉 =
∑

k

Ujk|k〉, (359)

where U is some unitary matrix. On the other hand this is equivalent to

a†j|0〉 =
∑

k

Ujkb
†
k|0〉 (360)

We use notations bk to denote annihilation operators in the different basis. So

a†j = Ujkb
†
k, ⇔ aj = U †

kjbk (361)

or in the compact matrix notation a = bU †. Note that this unitary transformation

does not change commutation relations:

[a†j, ai] = UjkU
†
qi[b

†
k, bq] = UjkU

†
k,i = δji. (362)



77

For example if j stands for the (discrete) position and k stands for the momentum we

have

aj =
1√
L

∑

k

ak exp[ikj] (363)

• If we now write the single-particle Hamiltonian (or any other single particle operator)

in arbitrary basis than in the second quantized form it becomes:

H =
∑

hija
†
iaj, (364)

where hij are the matrix elements of the single particle Hamiltonian between the states

i and j. This can be obtained e.g. from the Eq. (356) and the unitary transformation

(361). This expression has a very clear interpretation: single particle operators can

annihilate a particle at one state and create at some other state, with which the matrix

element of the corresponding operator is nonzero. For example if the Hamiltonian has a

kinetic energy and some external potential then the off-diagonal part of H corresponds

to scattering between different momentum states.

• Our final ingredient is to add interactions to this picture. Typically we deal with two

body interactions corresponding to two-particle collisions. Then the corresponding

contribution to the Hamiltonian reads:

1

2

∑

ijkl

c†ic
†
jVij,klckcl, (365)

where Vij,kl is the matrix element of the interaction between the properly symmetrized

states where the two particles are in states |i〉, |j〉 and |k〉, |l〉 respectively. The factor

of 1/2 is usually written for convenience. Let us prove that this is indeed the case for

a stationary density density interaction:

V (x1, x2, . . . xN) =
∑

i<j

v(xj−xj) =
1

2

∑

i,j

v(xj−xj) = V =
1

2

∫
dx1dx2v(x1−x2)ρ(x1)ρ(x2),

(366)

where the sum is taken over all particle pairs and ρ(x) =
∑

i δ(x− xi). In the second

quantized language the density operator becomes simply a†(x)a(x). This is obvious if

we treat x as the discrete coordinate, then density is just the number operator (up to

volume factors) corresponding to the given position. So we have

V =
1

2

∫ ∫
dx1dx2v(x1−x2)a

†(x1)a(x1)a
†(x2)a(x2) =

1

2
v(0)N+

1

2

∫ ∫
dx1dx2a

†(x1)a
†(x2)v(x1−x2)a(x2)a(x1).

(367)
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Note that in this form the expression works both for bosons and for fermions. The

first term is trivial shift of energy and we can always eliminate it reabsorbing either

into the chemical potential (in grand canonical systems) or to the redefinition of the

ground state energy (in canonical systems). We will thus not worry about this term.

In the second term in this often convenient to go to the momentum basis. Then

V =
1

2L2

∑
q1,q2,q3,q4

a†q1
a†q2

a(q3)a(q4)
∫

dx1dx2v(x1−x2) exp[iq1x1 + iq2x2− iq3x2− iq4x1].

(368)

By changing variables to x = x1 − x2 and X = (x1 + x2)/2 we find that the integral

over X gives q1 + q2 = q3 + q4 - total momentum is conserved and the integral over x

gives the Fourier transform of v(x) so

V =
1

2

∑

k,p,q

a†k+qa
†
p−qv(q)apak (369)

The physical interpretation of this term is very simple. Interaction takes two particles

with momenta k and p and scatters them to the two-particles into two other states

conserving the total momentum (which is the consequence of the translational invari-

ance of the interaction. Note again that Eq. (369) is valid again both for bosons and

for fermions.

This is the end of our short introduction to the second quantization. We never used any

details from the Shrödinger first-quantized picture. The second quantized approach is very

powerful for the many-particle systems. It also gives very convenient way for seeing particle-

wave duality. As we will see later for classical waves (phonons, photons, condensates,...)

it is aj which becomes a classical field: aj ∼ √
ρj exp[iφj], where ρj is the density and

φj is the phase. One should not be deceived, by the simplicity of the interaction term

(369). It is a compact notation of the interaction operator in the exponentially large Hilbert

space. The problem of solving the Schrödinger equation is not becoming easier if we just

change notations. However, manipulations and building approximate schemes in the second

quantized form becomes much more transparent.

2. Interacting Fermi systems.

Both mean-field principle and the variational approach are straightforwardly generalized

to interacting quantum systems (in fact quantum or classical does not make a big difference,
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but quantum is more general). In general we are dealing not with ideal quantum or classical

gases but rather with systems with interactions. In the second quantized language we are

dealing with the Hamiltonians:

H = K + U, (370)

where

H =
∑

k

(εk − µ)c†kck (371)

and

U =
1

2

∫
drdr′ρ(r)u(r − r′)ρ(r′) =

1

2

∑

k,p,q

c†k+qc
†
p−qu(q)cpck. (372)

Understanding the properties of the system with the general hamiltonian H is the realm

of the condensed matter physics. Here I will flash several examples, showing how from

variational approach and mean-field theory we can understand many different phases and

phase transitions, from theory of Fermi liquids to such phenomena as crystallization and

superfluidity (superconductivity). The trick is to determine the possible broken phase and

write a simple trial Hamiltonian (or simple mean-field). For us simple means non-interacting.

The most general noninteracting Hamiltonian we can write is

H0 =
∑

k,k′
Λk,k′c

†
kck′ + Γk,k′c

†
kc
†
k′ + Γ?

k,k′ckck′ , (373)

where we treat Λk,k′ , Γk,k′ , and Γ?
k,k′ as variational parameters. This is substantially more

complicated than the simple Ising model because instead of one variational parameter we

have many. Yet the variational problem is much simpler than the exact one because instead

of exponentially large number of coefficients of the density matrix we have only a power law

number of terms.

Let us see what are the symmetries which can be broken within this trial Hamiltonian.

Let us write operators for the momentum and number:

P =
∑

k

h̄kc†kck, N =
∑

k

c†kck. (374)

Both operators commute with the full Hamiltonian. But note that

[P,H0] =
∑

k,k′
h̄(k − k′)Λk,k′c

†
kck′ + h̄(k + k′)Γk,k′c

†
kc
†
k′ + c.c. (375)

So we see that the translational symmetry is not broken if we insist that Λk,k′ = Λkδk,k′ ,

Γk,k′ = Γkδk,−k′ . This is more or less intuitively clear we can either kill and create a particle
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with the same momentum or create or kill the pair of particles with opposite momenta so

the total momentum is conserved. Similarly

[N,H0] = 2
∑

k,k′
Γk,k′c

†
kc
†
k′ + c.c. (376)

So the total number of particles is conserved (or the corresponding symmetry is non-broken)

is equivalent to having Γ ≡ 0.

3. Fermi liquid theory

Let us assume that there are no broken symmetries. Then the trial Hamiltonian is

H0 =
∑

k

(εk + Σk − µ)c†kck, (377)

where Σk is the self energy. For us it is just the variational parameter. Next we need to find

a trial free energy. We have several ingredients:

Ω0 = −T
∑

k

ln[1 + exp[−β(εk + Σk − µ)]], (378)

〈H0〉0 =
∑

k

(εk + Σk − µ)f(εk + Σk − µ), (379)

〈K〉0 =
∑

k

(εk − µ)f(εk + Σk − µ) (380)

The last ingredient is

〈U〉0 =
1

2

∑

k,p,q

vq〈c†k+qc
†
p−qcpck〉0. (381)

The only two possibilities that the expectation value above is nonzero are i) q = 0 and ii)

q = p− k so

〈U〉0 =
1

2
v(0)

∑

k,p

f(εk+Σk−µ)f(εp+Σp−µ)−1

2

∑

k,p

v(k−p)f(εk+Σk−µ)f(εp+Σp−µ). (382)

For bosons we will get the same result but with a “+” sign. Next we need to minimize the

trial free energy with respect to Σk. It is easy to verify that this minimization yields

Σk = v(0)
∑
p

f(εp + Σp − µ)−∑
p

v(p− k)f(εp + Σp − µ). (383)

For bosons there will be gain a “+” sign. This is a system of self-consistent equations which

needs to be solved. Still hard but much easier than the original problem. Combining all

ingredients we find that

Ωtr = −T
∑

k

ln[1 + exp[−β(εk + Σk − µ)]] +
1

2

∑

k

Σkf(εk + Σk − µ). (384)
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The trial free energy (thermodynamic potential) depends only on the combination εk + Σk.

Finding Σk requires solving complicated coupled nonlinear equations. Yet it is much easier

than solving the full problem. One can anticipate that at small k we have Σk = const+αk2:

the linear term in k must vanish because of inversion symmetry. Thus at small k we can

write that

εk + Σk ≈ h̄2k2

2m?
, (385)

where
m

m?
= 1 +

∂Σk

∂εk

∣∣∣∣
εk=0

. (386)

The quantity m? is called the effective mass. For liquid 4He it is equal to 1.58m. Similar

expansion can be made for interacting nearly degenerate fermions:

εk + Σk ≈ Ef +
h̄2kfk

m?
, (387)

where
m

m?
= 1 +

∂Σk

∂εk

∣∣∣∣
εk=Ef

. (388)

Note that the same equation (383) can be obtained using meanfield approach.

U =
1

2

∑

k,p,q

c†k+qc
†
p−qu(q)cpck → Umf =

1

2

∑

k,p,q

u(q)[c†k+q 〈c†p−qcp〉 ck+〈c†k+qck〉 c†p−qcp−c†k+qcp 〈c†p−qck〉−〈c†k+qcp〉 c†p−qck].

(389)

Note that if the translational symmetry is not broken the averages are non-zero only if q = 0

in the first two terms and p = k + q in the last two. So we have

Umf = u(0)
∑

k

[c†kck

∑
p

f(p)− c†kck

∑
p

u(k − p)f(p)]. (390)

From this we easily recover the equation (383) for the self energy. Note that the first

term in Eq. (390) is the classical mean-field potential: electrons feel effective potential from

the average density of other electrons surrounding it. This term called after Hartry. The

second (named after Fock) is the exchange contribution (negative for electrons and positive

for bosons). Note that for short range interactions v(q) = const. The Hartry and Fock

terms exactly cancel each other for fermions (electrons do not see each other due to Pauli

principle) and these two terms are equal to each other for bosons. So interactions for bosons

are enhanced compared to classical particles: Bose bunching, they like to be with each other.
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4. Examples of various broken symmetry states

We can now understand how to look into various symmetry broken states in interacting

electron (or boson) systems.

Broken translational symmetry. For example, if we use the trial Hamiltonian of the form

H0 =
∑

k

(εk − µ)c†kck + Σk,k+Qc†kck+Q + c.c. (391)

If the variational state with non-zero Σ is better then with zero Σ then we have a transition to

the charge density wave state. Within the mean-field approach this corresponds to nonzero

expectation value of

c†kck+Q (392)

In Fig. 4 we show the example of CDW in NaSe2. In classical gases crystals provide us with

CDW in NaSe2, 
K. Mc Elroy, U. of Colorado, Boulder

FIG. 4 Example of charge density wave transition NaSe2.

the example of systems with spontaneously broken translational symmetry. This phase is

characterized by divergent response to the perturbation

δH = λ
∫

dxρ(x) cos(Qx + θ) (393)

Broken time reversal symmetry: ferromagnetism We can break time reversal symmetry

resulting in ferromagnetism. The trial Hamiltonian would be

H0 =
∑

k

(εk − µ + Σ+
k )(c†k↑ck↑ + c†k↓ck↓) + Σ−

k (c†k↑ck↑ − c†k↓ck↓) (394)
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When Σ−
k becomes nonzero (or equivalently 〈c†k↑ck↑−c†k↓ck↓〉 becomes nonzero in the meanfield

language) then we have spontaneous magnetization. The ferromagnetism (as in the case of

the Ising model) can be understood as the divergent response to the magnetic field:

δH = h
∑

k

c†k↑ck↑ − c†k↓ck↓. (395)

Broken time reversal + translational symmetries: antiferromagnetism (or more generally

spin density waves). If we have a lattice then we can break both symmetries using the trial

Hamiltonian

H0 =
∑

k

(εk − µ + Σ+
k )(c†k↑ck↑ + c†k↓ck↓)

∑

j

(−1)jΣj(c
†
j↑cj↑ − c†j↓cj↓), (396)

where j enumerates different positions in the lattice. When Σj is non-zero we have divergent

response to a staggered magnetic field (which alternates signs between neighboring lattice

sites).

D. Broken number symmetry. Superfluids and superocnductors

Before we were dealing with the situations where N was always conserved so that in all

thermodynamic ensembles number was a diagonal operator. Also in all previous variational

examples the trial Hamiltonian was commuting with N and in the meanfield Hamiltonians

only number conserving quantities acquired expectation values.

1. Weakly interacting Bose gases.

But are there situations where the number symmetry is broken? We had a hint from

studying Bose-Einstein condensation in ideal Bose gases. Recall that active part of the

particles, which participated in specific heat, entropy, pressure etc. was insensitive to the

total number of particles which went to the condensate part. So for the active part of the

Bose gas below the condensation temperature the number symmetry is effectively broken.

Particles can appear from and disappear to the condensate.

Note that if the number of particles in the condensate is large then the corresponding

creation and annihilation operators can be treated as classical (complex) numbers. For

example

a|N〉 ≈
√

N |N − 1〉, a2|N〉 ≈
√

N(N − 1)|N − 2〉 ≈
√

N2|N − 2〉 ∼ N2|N − 2〉 (397)
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The last equality implies that the state with N − 2 particles is very similar to the original

state of N particles. One can also introduce phase, which is conjugate to number

|φ〉 =
∑

N≥0

exp[iφN ]|N〉 (398)

Clearly phase and number are like coordinate and momentum: when one is defined the other

is not. There is one subtlety that N ≥ 0 so the sum above is not the Fourier transform,

but this subtlety is not important when average N is large. When the modes are highly

occupied the best states to work with are the coherent states, where both number and

phase are defined. These states are analogues of the minimum uncertainty (gaussian) states

for coordinate-momentum. Formally these states are defined as eigenstates of annihilation

operators:

a|λ〉c = λ|λ〉c (399)

One can check by explicit calculation that the state |λ〉c can be written as the series:

|λ〉c = |0〉+
λ

1
a†|0〉+

λ2

2!
(a†)2|0〉+ . . . = exp[λa†]|0〉. (400)

Properly normalized coherent states are |λ〉c = exp[−|λ|2/2] exp[λa†]|0〉.
For the ideal Bose below Tc we concluded that all condensed particles should go to the

zero momentum mode. But because there is so huge degeneracy between states with different

N we can equally say that condensed particles are in the coherent state: |√N0 exp[iθ0]〉c,
where θ is some arbitrary phase. In this state a0 can be treated as a classical variable:

a0|
√

N0 exp[iθ0]〉c =
√

N0 exp[iθ0]|
√

N0 exp[iθ0]〉c. (401)

In the meanfield language we can say that a0 spontaneously acquired expectation value.

This corresponds to the broken global gauge symmetry. If we define the operator

S = exp
[
iχa†0a0

]
= exp [iχN ] , (402)

where N is the total number operator, then we have

Sa0S
† = exp[−iχ]a0. (403)

Normally the equilibrium state should be invariant under the global gauge transformations

since S commutes with the Hamiltonian. However, if the symmetry is broken then this is
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not longer the case and thus the equilibrium state can loose this invariance. This what

happens if the system picks the coherent state with a fixed phase. We can still define a

gauge-symmetry breaking perturbation

δH = −λ
∫

dx(eiθa†(r) + e−iθa(r)) (404)

and see when the response diverges, i.e. when this symmetry is spontaneously broken.

Clearly for the ideal Bose gas below Tc these gauge symmetry is broken. For example at

zero temperature the expectation value of the perturbation δH in the coherent state with

phase θ0 scales as −2λ
√

N cos(θ−θ0), while the same expectation value of this perturbation

in the number state is simply zero. In the limit N → ∞ the coherent (broken symmetry)

state with θ = θ0 obviously wins at arbitrarily small λ.

Let us now consider an interacting system and proceed with the variational calculation.

We assume that the zero momentum mode is in the coherent state |φ〉c and the rest are

described by the Hamiltonian

H0 =
∑

k 6=0

ξka
†
kak + λka

†
ka
†
−k + λ?

kaka−k (405)

The motivation for this (Bogoliubov) Hamiltonian is the following: (i) it is quadratic, (ii) it

preserves translational invariance but it breaks global gauge symmetry, (iii) it incorporates

our prior result that in the non-interacting limit bosons can condense into the lowest energy

mode, which is macroscopically occupied. All parameters here are variational. Physically

one can interpret the a†ka
†
−k terms as creating two particles from the condensate. They

should be thus multiplied by a2
0, but since the condensate is the coherent state these are just

multiplication by φ2.

To simplify derivation even more we can first keep only the k = 0 term and assume that

all the modes with k 6= 0 are empty. Since there is no entropy associated with one mode we

have Ω0 = 〈H0〉0 and so

Ωtr = 〈H〉0 = (ε0 − µ)|φ|2 +
u(0)

2
|φ|4 (406)

By minimizing with respect to the variational parameter φ we find

µ = ε0 + u(0)|φ|2. (407)

Recall that |φ|2 is actually the number of particles in the condensate.
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If we include quadratic terms the we have to deal with the Bogoliubov Hamiltonian. It

can be diagonalized by the Bogoliubov transformation

a†k = cosh θkα
†
k − sinh θkα−k, ak = cosh θkαk − sinh θkα

†
−k (408)

and the inverse transformation

α†k = cosh θka
†
k + sinh θka−k, αk = cosh θkak + sinh θka

†
−k (409)

Note that both α†k and a†k increase momentum by k. One can check that αk and α†k still

satisfy bosonic commutation relations.

Homework,optional. Prove that [α†k, α
†
q] = 0 and [αk, α

†
q] = δk,q.

Now we will try to choose θk so that anomalous terms cancel so that

H0 =
∑

k

Ekα
†
kαk. (410)

This is indeed possible if we choose

tanh(2θk) = −2
λk

ξk

(411)

If we now express Ωtr through θk and Ek (instead of λk and ξk and minimize it with respect

to these parameters we find

tanh 2θk =
−u|φ|2

εk − µ + 2u|φ|2 =
−u|φ|2

εk + u|φ|2 (412)

and

Ek =
√

ε2
k + 2u|φ|2εk (413)

At small k we get linear dispersion

Ek ≈
√

h̄2u0ρ0

m
k, (414)

where u0 = u(k = 0)L3 and ρ0 = |φ|2/L3. The latter is the condensate density.

This mode is in fact collective Goldstone mode corresponding to the slow variation of

phase. If we use a(r) ≈
√

ρ(r) exp[iθ(r)] and substitute this to the Hamiltonian then we will

find

H ≈
∫

dr
h̄2

8mρ0

|∇ρ|2 +
h̄2

2m
|ρ0||∇θ|2 +

U

2
ρ2. (415)
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One can check that a†(r) and a(r) being bosonic fields implies that ρ(r) and θ(r) are con-

jugate variables like coordinate and momentum. There are some subtleties involved, which

are not important for our purposes. Then the Hamiltonian above is equivalent to that of a

coupled Harmonic oscillators with the dispersion (413).

Superfluids have many fascinating properties. They all basically originate from (i) non-

dissipativity of the flow and (ii) flux (macroscopic phase) quantization: if we make a circle

then the phase θ should change by a multiple integer of 2π. Let us give a simple Landau

argument why there is no dissipation in superfluids. Assume that the fluid is flowing around

an obstacle, or conversely an obstacle is moving in a still superfluid. In order to create

excitation we need to satisfy energy and momentum conservation

Mv2

2
=

Mv′2

2
+ Eex(k)Mv = Mv′ + h̄k (416)

Solving these two and assuming that M is large we find

vh̄k = Eex (417)

so that

v ≥ Eex(k)

h̄k
(418)

If the ratio above has a minimum then the flow with velocities smaller than this minimum can

not lead to dissipation. In conventional liquids this minimum is always zero because there

are essentially zero energy transverse modes at arbitrary high momentum. In superfluids the

minimum is nonzero, it is called the Landau critical velocity (above this velocity superfluidity

becomes unstable). In the example we considered of a weakly interacting Bose gas the

Landau critical velocity is the same as the sound velocity. In general this is not true.

2. Weakly attractive Fermi gas. BCS theory of superconductivity.

From what we considered above it may seem that the superfluidity is a feature of Bosonic

particles. Indeed at zero temperature non-interacting Bose particles condense while the

non-interacting Fermions form highly energetic Fermi see. However, it turns out that at

low temperatures many metals become superconducting (superfluid) and the superfluidity

of fermions is very closely connected to superfluidity of bosons. It took many years before

the mechanism of superconductivity was understood by Bardeen, Cooper, and Schrieffer.
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Basically the mechanism behind superconductivity is still bosonic: fermions join into Cooper

pairs, i.e. weakly bound states, which in turn can superconduct. This is of course a very

loose explanation since the size of Cooper pairs is typically much bigger then interparticle

distance. So they can not be literally treated as bosonic particles. However, we won’t care.

We will just apply our standard mean field - variational argument and see what happens.

Also we ignore that Fermions are charged. For electromagnetic response (Meisnet effect)

this fact is crucial. However for establishing the mechanism of the frmionic superfluidity

and for the BCS theory the fact the fermions are charged is not important.

For simplicity we will assume that the interaction between fermions is local and the

Hamiltonian can be written as

H =
∑

k,σ

(εk − µ)c†k,σck,σ − U

2

∑
r

c†↑(r)c
†
↓(r)c↓(r)c↑(r), (419)

where σ =↑, ↓. Note that for the local interaction potential only electrons with opposite spins

can interact because of Pauli principle. The “−” sign in the Hamiltonian above explicitly

tells that the interactions are attractive (usually such U originates from electron-phonon

interactions). Similarly to the bosonic case we will consider the following trial Hamiltonian

H0 =
∑

k

ξkc
†
k,σck,σ +

∑

k

(λkc
†
k,↑c

†
−k,↓ + h.c.) (420)

This Hamiltonian preserves translational invariance and violates global gauge symmetry (or

global number conservation). It can be shown that in the meanfield language this variational

Hamiltonian is equivalent to

Hmf =
∑

k

(εk − µ)c†k,σck,σ + ∆c†k,↑c
†
−k,↓ + h.c., (421)

where

∆ = U/2 〈c↑(r)c↓(r)〉. (422)

One can find the spectrum of this Hamiltonian using the Bogoliubov transformation similar

to the bosonic case introducing new fermionic operators:

γ†k,↑ = cos θkc
†
k,↑ + sin θkc−k,↓, γk,↓ = cos θkck,↓ + sin θkc

†
−k,↑ (423)

and requiring that the Hamiltonian does not contain anomalous γ†k,↑γ
†
−k,↓ terms. There

is however a more elegant (but equivalent) way to find the spectrum using the Nambu

notations:

ψk,↑ = ck,↑, ψk,↓ = c†−k,↓. (424)
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One can check that ψ is a proper fermionic operator satisfying correct commutation relations.

In terms of ψ the mean field Hamiltonian is written as

Hmf =
∑

k

Hk, (425)

where

Hk = ψ†k,α

[
(εk − µ)σz

α,α′ + ∆σx
α,α′

]
ψk,α′ . (426)

The eigen energies are clearly the eigenvalues of the 2× 2 matrix:

Ek =
√

(εk − µ)2 + ∆2. (427)

And finally the self-consistency condition (422) gives

∆ =
U

V

∑

k

〈ψ†k,↑ψk,↓〉 =
U

V

∑

k

∆ tanh(β(εk − µ)/2

(εk − µ)
. (428)

At zero temperature this reduces to

1 = Uρ(EF )
∫ h̄ωD

0

dε√
ε2 + ∆2

, (429)

where h̄ωD is some high energy cutoff, which is usually the highest energy of the phonons

participating in the superconductivity. This gives

∆ ≈ 2h̄ωD exp

[
− 1

Uρ(EF )

]
¿ h̄ωD. (430)

Equation (428) can also be used to find the highest temperature above which there is no

solution with ∆ 6= 0. Thus temperature is given by

Tc ≈ 1.14h̄ωD exp

[
− 1

Uρ(EF )

]
. (431)

Let us make a couple of quick comments. By dimensional analysis (also analyzing the

behavior of the correlation function c†↑(r)c
†
↓(r

′)) one can estimate the size of the Cooper pair

as

ξ ∼ h̄vF

∆
À n1/3 (432)

The parameter, which justifies the mean field approximation, is the number of particles

within the coherent volume: nξ3 in typical metal superconductors this is a huge number so

the meanfield works very well.


