
NOTES ON SYLOW’S THEOREMS

MATH 113, SECTION 1

1. Notes on Sylow’s theorems, some consequences, and
examples of how to use the theorems.

Here are some notes on Sylow’s theorems, which we covered in class
on October 10th and 12th.

Textbook reference: Section 4.5.

1.1. Sylow’s theorems and their proofs.

Definitions. Let G be a group, and let p be a prime number.

• A group of order pk for some k ≥ 1 is called a p-group. A
subgroup of order pk for some k ≥ 1 is called a p-subgroup.
• If |G| = pα m where p does not divide m, then a subgroup of

order pα is called a Sylow p-subgroup of G.

Notation.

Sylp(G) = the set of Sylow p-subgroups of G

np(G) = the # of Sylow p-subgroups of G = |Sylp(G)|

Sylow’s Theorems. Let G be a group of order pα m, where p is a
prime, m ≥ 1, and p does not divide m. Then:

(1) Sylp(G) 6= ∅, i.e. Sylow p-subgroups exist!
(2) All Sylow p-subgroups are conjugate in G, i.e., if P1 and P2

are both Sylow p-subgroups, then there is some g ∈ G such that
P1 = g P1g

−1. In particular, np(G) = (G : NG(P )).
(3) Any p-subgroup of G is contained in a Sylow p-subgroup.
(4) np(G) ≡ 1 mod p.

We’ll prove each of the statements (1) through (4).

Proof of (1). By induction on |G|.

Base step: |G| = 1: in this case there are no prime factors in the
first place, so the statement of (1) is trivially true.
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Inductive hypothesis: Suppose (1) holds for all groups of order < n.

Inductive step: Let G be a group of order n. Let p be a prime that di-
vides n, and suppose n = pα m, where p does not divide m. We want to
show that there is a Sylow p-subgroup, i.e, a subgroup of G of order pα.

Two separate cases: p divides |Z(G)|, and p does not divide |Z(G)|.

Case (i): p divides |Z(G)|.

Then Cauchy’s Theorem =⇒ Z(G) has an element of order p, hence
a subgroup of order p, call it N . Note: N C G, since ∀n ∈ N, ∀g ∈
G, gng−1 = n ∈ N since n is in the center of G so it commutes with g.

G/N is a group of order n/p = pαm/p = pα−1m. Now pα−1m < n
so the inductive hypothesis =⇒ G/N has a Sylow p-subgroup, call it
P . That is, P ≤ G/N has order pα−1.

Now define P = {g ∈ G|gN ∈ P}.

P ≤ G: Check with the subgroup criterion: 1N is the identity in
G/N so 1N ∈ P . Therefore 1 ∈ P , so P 6= ∅. Now suppose g1, g2 ∈ P ,
i.e. g1N, g2N ∈ P . Then (g1g

−1
2 )N = (g1N)(g2N)−1 ∈ P since P is

closed under inverses and multiplication. Hence g1g
−1
2 ∈ P .

Also, N ≤ P , since for all n ∈ N , nN = N ∈ P . Therefore the
homomorphism

ϕ : P → P

g 7→ gN

is surjective (by construction), and kerϕ = P ∩N = N . First Isomor-
phism Theorem =⇒ P/N ∼= P . Hence |P | = (P : N) = |P |/|N | =⇒
|P | = |P ||N | = pα−1 p = pα.

Therefore P is a Sylow p subgroup of G.

Case (ii): p does not divide |Z(G)|.

Class Equation: |G| = |Z(G)|+
∑r

i=1(G : CG(gi)), where g1, . . . , gr ∈ G
are representatives of the distinct conjugacy classes of size > 1 (so the
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gi’s are NOT elements of Z(G)).

p can’t divide all of the terms (G : CG(gi)) since then it would di-
vide their sum, and since p also divides |G| it would force p to divide
|Z(G)|, which we’re assuming it doesn’t.

So let gi be a representative of a conjugacy class of size > 1 such that
p does not divide (G : CG(gi)). By Lagrange’s theorem (G : CG(gi)) =
|G|/|CG(gi)| so if p doesn’t divide it, then all the factors of p in |G|
must be factors of |CG(gi)|, i.e., |CG(gi)| = pαk for some k.

Note: k has to be less than m, because the only way it can be m
is if |CG(gi)| = |G|, which would mean G = CG(gi), so every element
of G would have to commute with gi, which would mean gi ∈ Z(G),
and this is NOT the case.

So the inductive hypothesis applies to CG(gi), and it has a Sylow p-
subgroup of order pα. It’s also a subgroup of G, which makes it a Sylow
p-subgroup of G.

�

Proof of (2). From (1) we know that there’s some Sylow p-subgroup.
So let P1 be a Sylow p-subgroup of G.

Now let S = {P1, . . . , Pk} be the set of all distinct conjugates of P1.
In other words, for every g ∈ G, the subgroup gP1g

−1 is one of these
conjugates, and each Pi is equal to gP1g

−1 for some g ∈ G.

First we’ll show that p can’t divide k = |S|.

Let G act on S by conjugation, i.e., g · Pi = gPig
−1. The stabilizer

of Pi is the subgroup {g ∈ G|gPig−1 = Pi} which by definition is the
normalizer NG(Pi).

Since each of the Pi’s is conjugate to P1, everything is in the orbit
of P1, there’s only one orbit, which is all of S. So |S| = |orbit of P1| =
(G : NG(P1)) by the formula for orbit size.

Lagrange’s theorem says |G| = (G : NG(P1))|NG(P1)| which implies
that (G : NG(P1)) = |G|/|NG(P1)|. Now NG(P1) contains P1 as a
subgroup, so by Lagrange’s theorem, |NG(P1)| contains pα as a fac-
tor, which is the maximum power of p that it can have. So the ratio
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|G|/|NG(P1)| contains no factor of p. Therefore |S| contains no factor
of p, so p does not divide |S|.

Now we’ll argue that any Sylow p-subgroup has to be in S, so any
Sylow p-subgroup has to be conjugate to P1.

Let Q be any Sylow p-subgroup. Let Q act on S by conjugation.

Even without knowing what the orbits look like, we know that the
orbits of Q’s action partition S into disjoint orbits. So suppose the
distinct orbits are the orbits of Pi1 , Pi2 , . . . , Pij .

Then |S| = |orbit of Pi1|+ |orbit of Pi2|+ . . .+ |orbit of Pij |.

By the formula for orbits, |orbit of Pi| = (Q : stabilizer of Pi), so
by Lagrange’s theorem this number has to divide |Q| = pα. So the size
of each orbit can only be 1 or some power of p.

But we just showed that p doesn’t divide |S|, which means that we
can’t have p dividing the size of all of the orbits (since then p would
divide the sum of all the orbits, which is |S|).

Which means that there must be some orbit of size 1. Let’s say it’s
the orbit of Pm. So 1 = |orbit of Pm| = (Q : stabilizer of Pm), and the
stabilizer of Pm is {g ∈ Q|gPmg−1 = Pm} = {g ∈ Q|g ∈ NG(Pm)} =
Q ∩NG(Pm).

So |Q|/|Q ∩ NG(Pm)| = 1, which forces Q = Q ∩ NG(Pm). This says
every element of Q is also in NG(Pm), so Q ≤ NG(Pm).

Finally, Pm is a normal subgroup of its normalizer, and the order of
the quotient group NG(Pm)/Pm has no factors of p in it (since by La-
grange’s theorem |NG(Pm)/Pm| = |NG(Pm)|/|Pm| = |NG(Pm)|/pα and
pα is the maximum power of p possible for subgroups of G).

Since Q is a subgroup of NG(Pm), we can restrict the canonical ho-
momorphism π : NG(Pm)→ NG(Pm)/Pm to Q to get a homomorphism
π : Q → NG(Pm)/Pm, given by π(x) = xPm. Every non-identity ele-
ment of Q has order equal to some power of p. But the quotient group
contains no elements of order equal to a power of p, since it has no
factors of p at all. Therefore every element of Q that has order equal
to a power of p has to map to the identity element of the quotient



NOTES ON SYLOW’S THEOREMS 5

group. This means every element of Q maps to the identity element of
NG(Pm)/Pm.

In other words, for all x ∈ Q, xPm = Pm, which is equivalent to
x ∈ Pm. Therefore, Q ≤ Pm. But these are both Sylow p-subgroups so
they’re both of order pα, so Q is equal to Pm.

This shows that after all, Q is in S.
�

Before we go on to proving (3) and (4), we prove a Lemma that we’ll
use.

Lemma. Let P be a Sylow p-subgroup of G, and let Q be any p-
subgroup. Then Q ∩ P = Q ∩NG(P ).

Proof. P ≤ NG(P ) so automatically Q ∩ P ≤ Q ∩NG(P ).

We need to show Q ∩ P ≥ Q ∩NG(P ).

Instead of always writing out Q ∩NG(P ), let’s call it H.

Since it’s the intersection, H ≤ Q and H ≤ NG(P ). Since Q is a
p-subgroup, H is either trivial or it’s a p-subgroup as well (by La-
grange’s theorem).

Now we do the same thing we did towards the end of proving (2):

We know that P is a normal subgroup of NG(P ) and the order of
the quotient group NG(P )/P has no factors of p left in it. Since
H is a subgroup of NG(P ), we can restrict the canonical homomor-
phism π : NG(P ) → NG(P )/P to H and consider the homomorphism
π : H → NG(P )/P . That is, π(x) = xP .

Every element in H whose order is a power of p must map to the
identity element in NG(P )/P , since NG(P )/P has no elements whose
orders are powers of p.

Therefore, xP = P for all x ∈ H, i.e., for all x ∈ H, x ∈ P .

So H ≤ P . And since we already have H ≤ Q, we get H ≤ Q ∩ P .

Therefore (returning to what H is), Q ∩NG(P ) ≤ Q ∩ P . �
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Proof of (3). Let H be any p-subgroup of G. We want to show that
H ≤ Pi for some Pi in S.

So we let H act on S = {P1, . . . , Pk}, by conjugation.

We know that the orbits of this action will partition S. Suppose the
distinct orbits are the orbits of Pi1 , . . . , Pim , so

|S| = |orbit of Pi1|+ |orbit of Pi2|+ . . .+ |orbit of Pim|.

Then the orbit formula says that for any Pi in S, |orbit of Pi| =
(H : H ∩ NG(Pi)), since H ∩ NG(Pi) is the stabilizer of Pi under the
action of H.

So the size of each orbit has to divide |H|, which is a power of p.

Remember though that p doesn’t divide |S|, so we can’t have p dividing
all of the terms |orbit of Pi1|, . . . , |orbit of Pim| (or else p would divide
their sum, and therefore |S|).

So one of these orbits, say the orbit of Pij , has |orbit of Pij | = 1.

By the orbit formula, 1 = |orbit of Pij | = (H : H ∩ NG(Pij)). This
means H = H ∩NG(Pij), and since H is a p-subgroup the Lemma says
H ∩ NG(Pij) = H ∩ Pij . Therefore H = H ∩ Pij , so every element of
H is also in Pij , so H ≤ Pij , so our p-subgroup H is a subgroup of the
Sylow p-subgroup Pij .

So we have proved that any p-subgroup of G must be contained in
one of the Sylow p-subgroups of G.

�

Proof of (4). We need to show that |S| ≡ 1 mod p.

Write S = {P1, . . . , Pk} for the distinct Sylow p-subgroups of G.

Now let P1 act on S by conjugation.

So S becomes a disjoint union of orbits.

The orbit of P1 has size 1, since it consists only of P1 itself (since
for all x ∈ P1, xP1x

−1 = P1 as P1 is closed under multiplication by its
own elements!)
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If Pi 6= P1, then by the orbit formula, |orbit of Pi| = (P1 : P1∩NG(Pi)).

And since P1 is a p-subgroup of G, the Lemma says P1 ∩ NG(Pi) =
P1 ∩ Pi. So in fact |orbit of Pi| = (P1 : P1 ∩ Pi).

By assumption P1 and Pi are different subgroups of G of the same
size, so |P1 ∩ Pi| has to be strictly smaller than |P1|. Therefore,
|P1|/|P1 ∩ Pi| = (P1 : P1 ∩ Pi) can’t be 1. Since it also has to di-
vide |P1| = pα, it must be a power of p. Therefore, |orbit of Pi| is a
power of p, so in particular p divides every orbit that’s not the orbit of
P1.

So now, going back to our equation for |S|, we see that |S| = |orbit of P1|+∑
|the other orbits| = 1 + px (since p divides every term in the sum∑
|the other orbits|, it also divides the whole sum).

|S| = 1 + px implies |S| ≡ 1 mod p.
�

1.2. Consequences that you need to know.

• np has to divide |G|/pα. Combining this with the condition that
np ≡ 1 mod p cuts down the number of candidates for np.
Reason: We know that if we take any Sylow p-subgroup P , then
np = (G : NG(P )) = |G|/|NG(P )|. Since NG(P ) contains P , its
order contains pα as a factor. So |G|/|NG(P )| has no factor of
p left in it.
• If a Sylow p-subgroup is a normal subgroup of G, it must be

the only one, i.e. np = 1. And vice versa, if np = 1, then the
one Sylow p-subgroup is a normal subgroup of G.
Reason: Sylow’s theorem says that we get all the Sylow p-
subgroups by picking one of them, call it P , and looking at all
the possible conjugates gPg−1. So np = 1 ⇐⇒ gPg−1 = P for
all g ∈ G ⇐⇒ P is a normal subgroup of G.
• In particular, ifG is abelian, any subgroup is normal. So abelian

groups have exactly one Sylow p-subgroup for each p. We’ll
have a lot more to say about finite abelian groups in a couple
more lectures.
• Sylow p-subgroups for different primes can only have trivial

intersection.
Reason: If p1, p2 are distinct primes, and P1 ∈ Sylp1(G), P2 ∈
Sylp2(G), then P1 ∩ P2 is a subgroup of both P1 and P2. So
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by Lagrange’s theorem its order has to divide |P1| and it also
has to divide |P2|, but of course with different primes the only
common factor they have is 1, so P1 ∩ P2 = 1, the identity
element of G.

1.3. Examples.

(1) Let G be a group of order pq where p, q are both prime, and
p < q. Then G has exactly one subgroup of order q, which is
therefore a normal subgroup of G.

Reason: Let’s work out nq using Sylow’s theorem. On the one
hand we know it has to divide pq/q = p. So it can only be 1 or
p. On the other hand it has to be congruent to 1 mod q. Since
p is greater than one and less than q it’s definitely less than
q + 1, so the only possibility for nq is 1. Therefore the Sylow
q-subgroup (which has order q) is the only one, so it’s a normal
subgroup of G.

(2) Let G be a group of order 12. Then either G has a normal
Sylow 3-subgroup, or else it’s isomorphic to A4.
Reason: 12 = 22 · 3. We know n3 has to divide 22 = 4, and it
also has to be congruent to 1 mod 3. So it can be either 1 or 4.
If n3 = 1, then G has a normal Sylow 3-subgroup.

If n3 = 4, then we know that the four Sylow 3-subgroups
are acted on by G, by conjugation. Let’s call the set S =
{P1, . . . , P4}. The action of G gives us a homomorphism ϕ :
G→ S4.

We’ll first show that ϕ is injective, then we’ll show that the
image of ϕ is A4. This will show that G ∼= imϕ = A4.

To show ϕ is injective, we need to show that kerϕ = 1.

kerϕ = {g ∈ G|gPig−1 = Pifor all Pi ∈ S}
= ∩4i=1NG(Pi).

We know that for each i, n3 = (G : NG(Pi)) = |G|/|NG(Pi)|, so
we have here that |NG(Pi)| = 12/4 = 3. Since Pi ≤ NG(Pi) and
|Pi| is also 3, it means Pi = NG(Pi). So in our case,

kerϕ = ∩4i=1Pi.
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The Pi’s happen, in this case, to be distinct groups of prime or-
der (their order is 3). A general and useful fact about distinct
groups of the same prime order is that they can only intersect
each other trivially. (Take for example two subgroups P1 and
P2 of order p, then the subgroup P1 ∩P2 has to have order 1 or
p. If it has order p then P1 = P2, so if P1 and P2 are not the
same subgroup, P1 ∩ P2 has to have order 1, i.e., it’s the trivial
subgroup.)

Applying this to our case we get kerϕ = 1. Therefore ϕ is
injective, and G ∼= imϕ.

Now G has 4 subgroups, P1, . . . , P4, of order 3. Each of these
subgroups has two elements of order 3 and the identity element.
The two elements of order three have to be different for each Pi
(since different Pi’s have only the identity element in common).
Therefore G contains 8 different elements of order 3.

Since G is isomorphic to imϕ, these 8 different elements of or-
der 3 have to map to 8 different elements of order 3 in S4. The
only elements of order three in S4 are 3-cycles. And 3-cycles
are even permutations, so are elements in A4.

So A4 ∩ imϕ is a subgroup of both A4 and imϕ with at least
8 elements. But since both A4 and imϕ have 12 elements, this
intersection subgroup has to also divide 12. The only factor of
12 that’s greater than or equal to 8 is 12. So A4 ∩ imϕ is a
subgroup of both A4 and imϕ of size 12, and since A4 and imϕ
only have 12 elements anyway, it means A4 ∩ imϕ = A4 = imϕ.

(3) Let G be a group of order 351. Then G has a normal Sylow
p-subgroup for some prime p dividing 351.

Reasoning: 351 = 33 · 13. So a Sylow 3-subgroup would have
order 33 = 27, and a Sylow 13-subgroup would have order 13.

Let’s start out with what n13 can be. n13 divides 27, and
n13 ≡ 1 mod 13. Only two possibilities: n13 = 1 or 27.

If n13 = 1, then the Sylow 13-subgroup is a normal subgroup of
G, and we’re done.

If n13 = 27, then we’re going to show that there can only
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be room for one Sylow 3-subgroup, and therefore the Sylow
3-subgroup is normal in G.

We’ll use the fact that distinct subgroups of order p for some
prime p can only have the identity element in their intersection.
(Suppose P1 and P2 are subgroups of order p. Then P1∩P2 ≤ P1

and P1 ∩ P2 ≤ P2. So |P1 ∩ P2| must be either 1 or p, and the
only way it can be p is if P1∩P2 = P1 and P1∩P2 = P2, making
P1 = P2. Therefore if P1 and P2 are not the same subgroup,
their intersection has order 1, so contains only the identity el-
ement. ) Do be warned, though, that this is only true about
subgroups of prime order, so this argument wouldn’t work if,
say, the Sylow 13-subgroups had order 132.

Since the Sylow 13-subgroups are subgroups of order 13, they
can only intersect each other at the identity element. Also, ev-
ery element of order 13 forms a subgroup of order 13, which has
to be one of the Sylow 13-subgroups.

Each Sylow 13 subgroup contains 12 elements of order 13 (every
element except for the identity). There are 27 Sylow 13 sub-
groups, so there are a total of 27× 12 = 324 elements of order
13 in G.

This leaves 351 − 324 = 27 elements of G that do not have
order 13. Since a Sylow 3-subgroup would have to have exactly
27 elements in it, this means that all these 27 elements form
a Sylow 3-subgroup, and it must be the only one (since there
aren’t any extra elements of G to use). So n3 = 1, and this
Sylow 3-subgroup must be normal in G.


