

An integrated solution for KGD: At-speed wafer-level testing and full-contact wafer-level burn-in after flip chip bumping Yuan-Ping Tseng/ An-Hong Liu **TD** center

ChipMOS Technologies Inc. June 5, 2001

Outline

- Purpose of the study
- ChipMOS KGD integrated solutions
- Cost issues
- Challenges
- Applications and future development
- Conclusion

Purpose of the study

- An integrated solution for KGD.
- The shortest process flow for IC backend processing.
- The lower total backend processing cost.
- Meet the demand of high speed/ high frequency and light, thin, short, and small hand-held applications.
- Meet the future trend of continuous process shrink and 300mm technologies.

Known Good Dies

- KGD are bare dies or "bumped dies" without any traditional packaging.
- KGD must
 - Pass all back-end testing.
 - Pass burn-in processes
 - After redundancy repair on memory IC.
 - Guarantee for "GOOD" functions
 - Ready for applications, such as MCP, MCM, FCOB, 3D CSP, SOP, ...etc.

ChipMOS KGD solutions

- All testing after flip chip bumping
- At-speed wafer-level testing
- No probed mark testing
- Full-contact wafer-level burn-in
- Redundancy repair after flip chip bumping and wafer-level burn-in
- FCOB memory modules

$\begin{array}{c} \text{Major process flow (1)} \\ \hline Bumping & \Longrightarrow & WLBI & \Longrightarrow & WLT1 & \Rightarrow & Laser & \Longrightarrow \end{array} \end{array}$

Flip chip process flow:

•Design

- •(1st passivation)
- •Metal trace patterning
- •Metal trace deposition
- •2nd passivation
- •Bump base opening
- •UBM deposition
- •Bump patterning
- •Bump deposition
- •UBM etching

•Reflow

Major process flow (2)
Bumping
$$\Longrightarrow$$
 WLBI \Longrightarrow WLT1 \Rightarrow Laser \Rightarrow WLT2

Full contact wafer-level burn-in:

All testing after flip chip bumping

TSOP II	Flip chip	ChipMOS solutions
• W/S 1	• W/S 1	
• Laser repair	• Laser repair	
• W/S 2	• W/S 2	
• <u>Assembly</u>	• <u>Bumping</u>	Bumping
		• WLBI
• FT 1	• Die-level FT 1	• WLT 1
		• Laser repair
• B/I	• Die-level B/I	
• FT 2	• Die-level FT 2	• WLT 2
		• Wafer saw
• Laser marking	• Laser marking	• Laser marking
• FT 3	• Die-level FT 3	
 Inspect/ reform 	 Inspect/ reflow 	 Inspect

The shortest backend process flow!

All testing after flip chip bumping

• Benefits:

– Shortest processes flow

Bumping >> WLBI >> WLT 1 >> Laser >> WLT 2

- Lower backend cost
 - No investment for FT1, FT2, and FT3.
- Minimum turn around time for backend processes.
- Reduce the impact of probe cards pitch limitation by I/O redistribution.
- Lower backend cost for process shrink/ 300mm technologies.

At-speed wafer-level testing

• Benefits:

Testing frequency

No probed marks testing

- Benefits:
 - No extra cost in making testing bumps.
 - No impact of probe marks on Al pads or flip chip bumps.
 - Reliability improvement in packages/ modules assembly.

Testing bumps on dies or on scribe lines.

Full-contact wafer-level burn-in

- Benefits:
 - More cost effective
 - for process shrink
 - for 300mm technologies

• Comparison:

Items	Solutions	Advantages	Disadvantages			
Built-in	• Traditional prob	• • Low cost	• Extra wafer area			
circuit	card	 High throughput 	for built-in circuits			
	• Tester/ prober		• B/I cells only			
Full	• Special contact	• Good B/I quality	• High cost			
wafer	board	• Cost effective				
contact	• WLBI oven	Process shrink				
	system	300mm technologies				

Redundancy repair after FCB/ WLBI

- Benefit:
 - Yield gain for laser repair

During B/I	L	aser before B/I	Laser after B/I				
Passed >> Passed		Passed		Passed			
Passed >> Repairable		Failed		Passed			
Passed >> Failed		Failed		Failed			

Electrical simulation of FCOB

Condition:

- •Software: ANSOFT Maxwell Spicelink V4.5/ AutoCAD
- •Module: Boundary Element Method Quick 3D Parameter Extractor
- •Method: Quasi-TEM Method

AutoCAD 2D Outline Drawing/ Maxwell 3D Package Module

*: From pad to lead, including gold wire without considering the effect of the die.

**: From pad to bump including traces without considering the effect of the die.

***: FCOB as 1.

TSOPII

Footprint comparison of FCOB

•With same memory capacity:

•Same footprint (SO-DIMM):

Note: Use 0.20µm 64Mb SDRAM as examples.

Flip chip bumping vs. TSOP II

Flip chip bumping cost =

f(bumping, gross dies, wafer yield)

Assumptions:

- •Wafer yield: 90%
- •Bumping: 200USD/ wafer

•Gross dies:

Process(µm)	Gross die
0.25	500
0.20	600
0.17	1,000

Process(µm)

Wafer-level testing vs. TSOP II

Wafer-level testing cost = f(equipment, testing steps, throughput, wafer yield)

Cost (US\$)

Assumptions: •Gross die: 600 •TSOP II: W/S 1, W/S 2, FT 1/2/3 •WLT: WLT1, WLT2 •Wafer yield: 90% •Probing efficiency: 80%

•Cost per die: 5US\$

•Throughput gain & yield gain:

Testing	Testing Throughput		Yield gain					
speed	gain	TSOP II	Flip chip					
30MHz	0%	0%	0%					
50MHz	15%	0%	1.5%					
100MHz	30%	0%	3.0%					

Wafer-level B/I vs. TSOP II

Wafer-level burn-in cost =

f(equipment, gross dies, wafer yield, yield gain, die cost)

Cost (US\$)

Assumptions:

- •Burn-in time: 24hours
- •Wafer yield: 90%
- •Cost per die: 5US\$
- •Oven capacity: 13 wafers
- •Gross dies:

Process(µm)	Gross die
0.25	500
0.20	600
0.17	1,000

Process(µm)

Challenges (1)

- Flip chip bumping & I/O redistribution:
 - RLC for bumping and I/O redistribution design.
 - Possible defects caused by wafer saw
- At-speed wafer-level testing
 - Probe cards design for high speed applications.
 - Accuracy of tester during high speed testing.
 - Memory repair analysis during high-speed testing

Challenges (2)

- No probed mark testing
 - RLC effects of testing bumps and traces.
 - The impact of testing bumps during assembly.
- Full-contact wafer-level burn-in:
 - Number of contact points per wafer.
 - Contact quality
 - Contact coplanarity
 - CTE matching
 - Circuit isolation

Challenges (3)

- Redundancy repair after FCB/ WLBI:
 - Protection of fuses during FCB
 - Reliability of opened laser windows during package/ module assembly
- FCOB memory modules:
 - KGD issues
 - Pitch limitation of module PCB.
 - Reliability of FCOB.
 - Warpage of PCB during module assembly.
 - Accuracy of die attach
 - Underfill processes on modules.

Applications and future development

Applications	olications Current		Phase 2		Phase 3		Phase 4		Phase 5	
KGD type		Bumped		Al pad		Cu pad				
Devices		High speed		Other		Logic		CPU		BIST
		memory		memory		ASIC	•	DSP	•	Embedded
									•	SOC
Packaging		MCP	•	3D CSP		SOP				
Module		MCM		FCOB		FCOB				
assembly				MCM		SOM				

Note:

- 1. Current device/ packaging/ module: DDR SDRAM.
- 2. SOP: System On Package, the best alternative for SOC.

Conclusions

• ChipMOS KGD integrated solutions:

Noty Tseng/ John Liu, TD center

Questions & discussions