

Twin Cities ANSYS[®] User Meeting

November 2019

Stabilization Damping for Nonlinear Convergence

Stabilization	Constant
Method	Energy
Energy Dissipation Ratio	1.e-004
Activation For First Substep	No
Stabilization Force Limit	0.2

... within Epsilon

- 1. Epsilon FEA Introduction
- 2. Stabilization Overview
- 3. Stabilization Procedure
- 4. Stabilization Case Studies
- 5. Q&A

Intro to Epsilon

- Epsilon FEA provides engineering analysis (10 yrs!)
- Making Simulation Accurate

Epsilon

- In-depth knowledge of the tools
 - ANSYS[®] Suite of Multi-Physics software
- Experience with industry successes/failures
 - Aerospace, Rotating Machinery, Electronics, Manufacturing, Packaging, etc.
- We validate with calibration runs and hand-calcs
 - Experienced Assessing Discretization Error
- Making Simulation Affordable
 - Low hourly rates and/or fixed-price estimates
 - We use specialized experienced engineers
 - Detailed statements of work, scope and budget tracking
 - Automation (APDL, ACT, Journaling)

- Our customers need load-leveling with:
 - Analyst is a team-member, not a black-box
 - Interface with same Epsilon analyst to leverage past experiences
 - Open and frequent communication
 - Any new FEA methods/lessons learned are well communicated
 - Schedule/budget fidelity with frequent status updates
 - Achieved by using the right person, tools, and technical approach
- Our customers benefit from external expertise
 - We infuse up-to-date FEA methods/tools
 - Leverage other industries' FEA innovations
 - We share our knowledge, files, and lessons learned!
 - We help with tool selection, infrastructure advice

critical.

- Aids solver in converging rigid body motions
 - Force imbalance occurs resulting in high/infinite deflection
 - Still in static domain (time integration is off!)
 - Caused by pivoting, buckling, contact changes, etc.
- Stabilization is useful for analyses with stable beginning and end states but periods of instability
- STABILIZE command in APDL
 - Exposed in Workbench

Stabilization	Constant
Method	Energy
Energy Dissipation Ratio	1.e-004
Activation For First Substep	No
Stabilization Force Limit	0.2

- Stabilization is an alternative to Arc Length Method, allows for simulating instability with Newton-Raphson Method
 - See previous user meeting documentation "Nonlinear Convergence" from November 2010 on our website
 - See PADT's The Focus issue 14 from 2002
 - See Unstable Structures ANSYS documentation page

Epsilon Stabilization Damping Features

- 1. Adds numerical viscous damping to affected nodes
 - Internal to the solver
- 2. Damps "pseudo-velocity" of motion without requiring time step reduction to characterize highly nonlinear activity
- 3. Allows force-based loads to be used in analyses that would require displacement-based
- 4. Can be applied globally (all nodes) or to individual contact regions
 - Aids in detecting abrupt changes in contact
 - Can also be applied locally by reverting non-stabilized regions to legacy elements
- 5. Can be turned on/off between load steps or with restarts
- 6. Reduces number of iterations by allowing larger time steps
- 7. Does not preclude the use of any other solver controls/contacts
 - Arc Length Method does not support nonlinear contact

Stabilization Damping Limitations

- 1. Cannot simulate negative slope region of load-displacement response curve
 - Snap-through regions, etc.
 - Requires global stability in end-state for results to be viable
- 2. Possible to overdamp analyses with overly large time stepping or damping ratios
 - Can force convergence to a wildly inaccurate result
- 3. Damping dissipates energy from the model
 - Reduces accuracy, especially for nonlinear materials
- Helps with high-strain element distortion errors, but not ones caused by other (linear) contacts in the model

Global Stabilization Damping Procedure

- Enable global stabilization in the Analysis Settings
- Reduce or Constant application
 - Reduce will start at prescribed stabilization value and reduce linearly to zero by the end of solution
 - Constant applies stabilization through entire solution

D	etails of "Analysis Settings"	👻 🕈 🗖	×
	Large Deflection	On	~
	Inertia Relief	Off	1
+	Rotordynamics Controls	~]
+	Restart Controls]
Ξ	Nonlinear Controls]
	Newton-Raphson Option	Program Controlled]
	Force Convergence	Program Controlled	
	Moment Convergence	Program Controlled	
	Displacement Convergence	Program Controlled	
	Rotation Convergence	Program Controlled	
	Line Search	Program Controlled	
	Stabilization	Program Controlled 🔹 💌	
Ξ	Advanced		
	Inverse Option	N.	
	Contact Split (DMP) (Beta)	Off	
+	Output Controls		
+	Analysis Data Management		
+	Visibility		

- Choose Energy or Damping Method
 - Energy method sets amount of energy allowed to be dissipated by damping
 - Ratio must be tuned based on load magnitude and time step duration
 - Damping factor is calculated from energy dissipation ratio and average element size
 - Alternatively, manually set damping factor

We will vary these inputs in the case studies

Global Stabilization Damping Procedure

- Set Damping Factor/Dissipation Ratio
 - Default energy dissipation ratio of 1E-4 generally useful
 - Damping factor has no default value due to being model-specific, caution when using
- First substep activation
 - Only required for models beginning in an unstable state, avoid if possible
 - Can cause severe overdamping if not properly tuned
- Set Force Limit
 - Checks ratio of stabilization forces to internal forces
 - Does not have any affect on convergence/bisecting or solving, simply gives warnings when exceeded

Nonlinear Controls	
Newton-Raphson Option	Program Controlled
Force Convergence	Program Controlled
Moment Convergence	Program Controlled
Displacement Converge	Program Controlled
Rotation Convergence	Program Controlled
Line Search	Program Controlled
Stabilization	Reduce
Method	Damping
Damping Factor	0.1
Activation For First Su	Yes
Stabilization Force Limit	0.2

Contact Stabilization Damping Procedure

- Stabilization can be applied at nonlinear contacts only
- Useful for analyses with abrupt contact changes but general global stability
- Set damping factor within individual contacts
- No energy option, must calculate your own damping factor

D	etails of "Frictional - Multiple	To Geom\Wall" 👓 🔻 🖡 🗖	×
	Suppressed	No	^
-	Advanced		1
	Formulation	Program Controlled	
	Small Sliding	Program Controlled	1
	Detection Method	Program Controlled	
	Penetration Tolerance	Program Controlled]
	Elastic Slip Tolerance	Program Controlled]
	Normal Stiffness	Program Controlled	
	Update Stiffness	Program Controlled	
	Stabilization Damping Factor	0.	
	Pinball Region	Radius	
	Pinball Radius	0.25 in	
	Time Step Controls	None	
-	Geometric Modification		
	Interface Treatment	A Offset, No Ramping	
	Offset	0. in	
	Contact Geometry Correction	None	
	Target Geometry Correction	None	

We will compare contact damping to global damping in the case studies

Epsilon Stabilization Damping Results

- Stabilization Energy Result can plot Energy dissipation per element
- Allows checking for excessive damped energy as well as identifying damped areas
- Not compatible with contactonly damping

Case Study 1: Snap-Through Skipping Analysis

- Analysis begins in stable state, then as force overcomes frictional contact at latch, experiences a short period of instability before coming to a new stable state resting on fixed block
- No actual buckling "snap through" is occurring, but similar style forcedisplacement curve
- Representative of most model instabilities, such as due to buckling, material failure, abrupt contact changes, etc.
- Stabilization can be turned off for first substep
- Stabilization will help skip over the region where the main member becomes unloaded and pseudo-velocity becomes very high, as a result of a very high force controlled loading

Case Study 1: Snap-Through Skipping Analysis

- For baseline comparison, re-solved
 - Since the end-state is known, we can solve for this directly by skipping the first phase
- This will allow us to determine the effect of damping energy loss on results to a known control result
- Instabilities are localized to contact areas, so contact-only damping can also be used

 Example of a "missed" second contact detection

10 substeps				Reduce			Constant						
Method	Value	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal		
Damping	0.05	2.49E+06	10.4	4.23E-03	84	496.65	2.46E+06	10.161	9.76E-03	90	488.85		
Damping	0.1	2.46E+06	10.233	8.27E-03	94	489.28	FAILED	FAILED	FAILED	255	FAILED		
Damping	0.2	2.45E+06	10.069	1.72E-02	87	484.86	4.21E+05	1.0024	5.64E-04	68	0.69		
Damping	0.25	4.21E+05	1.0024	3.15E-04	64	0.69	4.21E+05	1.0024	7.05E-04	72	0.69		
Damping	0.5	4.21E+05	1.0024	6.30E-04	68	0.69	4.22E+05	1.0024	1.84E-03	106	0.81		
Damping	0.8	FAILED	FAILED	FAILED	96	FAILED	2.42E+06	10.213	1.85E+00	241	479.86		
Energy	1.00E-04	2.45E+06	10.068	5.42E-03	74	484.96	2.51E+06	10.47	1.22E-02	87	499.43		
Energy	5.00E-04	4.21E+05	1.0024	4.14E-04	64	0.69	FAILED	FAILED	FAILED	186	FAILED		
Energy	1.00E-03	4.22E+05	1.0024	6.18E-04	148	0.91	4.22E+05	1.0024	2.88E-03	95	0.82		
Energy	1.00E-02	2.42E+06	10.225	2.11E+00	281	479.96	4.21E+05	1.0024	1.54E-02	93	0.78		
					Nominal	Values							
				Stress (psi)	Deformation	(in) # of itera	ations						
					1.0	024	62						

- Solving with 10 initial substeps
- Damping that is either too low or too high results in unconverged solves or missed contact detection
- Damping values do not correlate with number of iterations

4 substeps			-	Reduce			Constant						
Method	Value	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal		
Damping	0.05	FAILED	FAILED	FAILED	217	FAILED	FAILED	FAILED	FAILED	169	FAILED		
Damping	0.1	FAILED	FAILED	FAILED	164	FAILED	FAILED	FAILED	FAILED	203	FAILED		
Damping	0.2	FAILED	FAILED	FAILED	172	FAILED	4.21E+05	1.0024	1.32E-03	111	0.81		
Damping	0.25	FAILED	FAILED	FAILED	170	FAILED	FAILED	FAILED	FAILED	181	FAILED		
Damping	0.5	FAILED	FAILED	FAILED	170	FAILED	FAILED	FAILED	FAILED	159	FAILED		
Damping	0.8	4.22E+05	1.0024	1.48E-03	114	0.82	2.45E+06	10.15	6.49E-01	. 160	484.88		
Energy	1.00E-04	FAILED	FAILED	FAILED	218	FAILED	FAILED	FAILED	FAILED	195	FAILED		
Energy	5.00E-04	2.45E+06	10.118	4.87E-01	198	486.87	4.22E+05	1.0024	6.63E-03	78	0.83		
Energy	1.00E-03	4.22E+05	1.0024	1.03E-02	171	0.91	2.42E+06	10.214	2.15E+00	255	478.98		
Energy	1.00E-02	4.21E+05	1.0024	1.67E-02	39	0.72	2.38E+06	10.052	1.9046	124	468.55		
					Nominal	Values							
				Stress (psi)	Deformation	(in) # of itera	tions						
				4 18F+05	1 (024	63						

- Solve with 4 initial substeps rather than 10
- Damping that is either too low or too high results in unconverged solves or missed contact detection
- Very few damping values lead to convergence

Method	Value	Stress (psi)	Deformation (in)	# of iterations	% difference in stress from nominal
Contact Damping, 10 substeps	0.05	4.21E+05	1.0023	47	0.78
Contact Damping, 10 substeps	0.1	4.20E+05	1.0023	178	0.42
Contact Damping, 10 substeps	0.2	4.21E+05	1.0024	97	0.63
Contact Damping, 10 substeps	0.5	FAILED	FAILED	183	FAILED
Contact Damping, 1 substep	0.05	4.28E+05	1.0023	14	2.33
Contact Damping, 1 substep	0.1	FAILED	FAILED	32	FAILED
Contact Damping, 1 substep	0.2	4.31E+05	1.0023	17	3.00
Contact Damping, 1 substep	0.5	4.25E+05	1.0023	14	1.73
		Nomina	l Values		
S	Stress (ps	si) Deformatior	n (in) # of iteration	าร	
	4.18E+	05 1.	0024	63	

- Contact damping of 0.1 provides most accurate stress value at expense of number of iterations
- Single Substep has low iterations, but higher error
- Using program controlled time stepping, initial contact is ignored but secondary contact detected

Epsilon Case Study 2: No Initial Contact

- Analysis of a tubular frame, held with a simple pin support at bottom corner to allow rotations (as well as planar symmetry)
- Vertical force at upper rear corner to push frame into nearby wall with frictional contact
- Frame is not in initial contact with wall, and force magnitude is significant enough to raise the pseudo-velocity beyond manageable substep sizes
- Since frame begins from an unstable position, stabilization must be turned on for first substep
 - Alternatively, contact stabilization can be used to slow the initial contact

Epsilon Case Study 2: No Initial Contact

- For baseline comparison, solved without stabilization by rotating frame into initial contact
- Check for effects of time step length as well as plasticity

Linear Materials				Reduce			Constant				
	Time		Deformation	Stabilization Energy	# of	% difference in stress from		Deformation	Stabilization Energy	# of	% difference in stress from
Niethod	Stepping	Stress (psi)	(in)	(BIO)	iterations	nominal	Stress (psi)	(in)	(BIU)	iterations	nominal
Global Damping = 0.1	1s, 10 step	1.09E+06	3.411/	1.09E-03	145	6.05	1.09E+06	3.4152	1.8/E-03	130	5.98
Global Damping = 0.1	1s, 4 step	1.09E+06	3.4121	1.01E-03	161	6.05	1.09E+06	3.4146	1.78E-03	157	5.99
Global Damping = 0.1	1s, 1 step	9.33E+05	13	1.19E-01	65	-8.90	9.35E+05	13.061	. 0.116	64	-8.76
Global Damping = 0.1	4s, 10 step	1.09E+06	3.4155	3.12E-04	182	6.04	1.09E+06	3.4146	5.07E-04	180	6.03
Global Damping = 0.1	4s, 1 step	FAILED	FAILED	FAILED	30	FAILED	FAILED	FAILED	FAILED	30	FAILED
Global Energy Ratio = 1E-4	1s, 10 step	1.09E+06	3.4149	1.22E-02	103	6.04	1.09E+06	3.4149	1.05E-02	104	6.04
Global Energy Ratio = 1E-4	1s, 4 step	1.09E+06	3.4157	8.46E-02	118	6.04	1.09E+06	3.4139	6.49E-02	129	6.04
Global Energy Ratio = 1E-4	1s, 1 step	1.09E+06	3.4161	3.60E-01	146	6.03	6.48E+05	2.18	0.72431	12	-36.75
Global Energy Ratio = 1E-4	4s, 10 step	1.09E+06	3.4149	1.22E-02	103	6.04	1.09E+06	3.4149	1.05E-02	104	6.04
Global Energy Ratio = 1E-4	4s, 1 step	1.09E+06	3.4161	3.60E-01	146	6.03	6.48E+05	2.18	7.24E-01	12	-36.75
Contact Damping = 0.1	1s, 10 step	N/A	N/A	N/A	N/A	N/A	1.03E+06	3.442	. N/A	102	0.91
Contact Damping = 0.1	1s, 4 step	N/A	N/A	N/A	N/A	N/A	1.03E+06	3.4328	N/A	80	0.87
				Νοι	ninal Value	S					
			Stress	(psi) Deform	ation (in) #	of iterations					Γ
			1.02	E+06	3.413959		112				

- With program controlled time stepping (one substep), contact is often missed, or damped too highly
- Note that Energy Dissipation Ratio method is unaffected by time step lengths, but Damping Factor is
- Significantly less accurate than previous case study, likely due to extended sliding contact
- Contact Damping significantly more accurate stresses than global damping, but less accurate deformation
 - Due to maximum stress being far from contact area

AF: Copy of Linear Mats, Nonlinear Contact, Constant Energy, 4 Substep **Total Deformation** Type: Total Deformation Unit: in Time: 0 10/31/2019 2:25 PM 2.18 Max 1.9378 1.6956 1.4534 1.2111 0.9689 0.72668 0.48445 0.24223 0 Min

 Example of an overdamped analysis

High stabilization energy and low accuracy

Linear Materials				Reduce				Constant				
Method	Time Stepping	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal	
Global Damping = 0.1	1s, 10 step	1.51E+05	17.694	9.14E-02	640	6.34	1.51E+05	17.694	1.13E-01	668	6.36	
Global Damping = 0.1	1s, 4 step	1.51E+05	17.692	9.15E-02	740	6.29	1.51E+05	17.692	1.13E-01	757	6.35	
Global Damping = 0.1	1s, 1 step	1.51E+05	17.692	9.18E-02	756	6.28	1.51E+05	17.693	0.11354	698	6.33	
Global Damping = 0.1	4s, 10 step	1.51E+05	17.692	2.37E-02	674	6.26	1.51E+05	17.692	2.93E-02	695	6.27	
Global Damping = 0.1	4s, 1 step	1.51E+05	17.692	2.37E-02	699	6.26	1.51E+05	17.692	2.93E-02	713	6.25	
Global Energy Ratio = 1E-4	1s, 10 step	1.51E+05	17.695	8.51E-02	684	6.31	1.51E+05	17.694	1.10E-01	799	6.29	
Global Energy Ratio = 1E-4	1s, 4 step	FAILED	FAILED	FAILED	53	FAILED	FAILED	FAILED	FAILED	71	FAILED	
Global Energy Ratio = 1E-4	1s, 1 step	FAILED	FAILED	FAILED	60	FAILED	FAILED	FAILED	FAILED	69	FAILED	
Global Energy Ratio = 1E-4	4s, 10 step	1.51E+05	17.695	8.51E-02	684	6.31	1.51E+05	17.694	1.10E-01	799	6.29	
Global Energy Ratio = 1E-4	4s, 1 step	FAILED	FAILED	FAILED	60	FAILED	FAILED	FAILED	FAILED	69	FAILED	
Contact Damping = 0.1	1s, 10 step	N/A	N/A	N/A	N/A	N/A	1.47E+05	17.686	N/A	693	3.79	
Contact Damping = 0.1	1s, 4 step	N/A	N/A	N/A	N/A	N/A	1.47E+05	17.686	N/A	556	3.79	
			Stress	Nor (psi) Deform	minal Values ation (in) # (s of iterations	585					

- Bilinear material properties required a higher Energy Dissipation Ratio (1E-• 3) for convergence
- Similar accuracy to linear case, contact damping less effective at increasing • accuracy

BP: Bilinear, Nonlinear Contact, Constant Damping Total Deformation Type: Total Deformation Unit: in

Time: 1 10/31/2019 2:45 PM

🛑 17.694 Max

Bilinear Deformation

Case Study 3: Inherently Unstable Models

- Same tubular frame as Case Study 2, with wall removed
- Model has a large pivot/rigid body response to applied load – no nonlinear contacts
- Unstable equilibrium point does exist

Case Study 3: Inherently Unstable Models

- Can be solved without stabilization by applying load in equivalent vector to deformed shape
- Still requires use of weak springs for inherent instability (very low reaction force)

Linear Materials				Reduce					Constant		
	Time		Deformation	Stabilization Energy	# of	% difference in stress from		Deformation	Stabilization Energy	# of	% difference in stress from
Method	Stepping	Stress (psi)	(in)	(BTU)	iterations	nominal	Stress (psi)	(in)	(BTU)	iterations	nominal
Global Damping = 0.1	1s, 10 step	9.31E+05	13.053	2.05E-01	100	0.01	9.31E+05	13.053	2.09E-01	91	0.06
Global Damping = 0.1	1s, 4 step	9.31E+05	13.037	1.95E-01	78	-0.02	9.29E+05	13.05	2.03E-01	79	-0.18
Global Damping = 0.1	1s, 1 step	FAILED	FAILED	FAILED	10	FAILED	FAILED	FAILED	FAILED	10	FAILED
Global Damping = 0.1	4s, 10 step	9.30E+05	13.049	1.04E-01	95	-0.13	9.30E+05	13.049	1.06E-01	94	-0.14
Global Damping = 0.1	4s, 1 step	FAILED	FAILED	FAILED	18	FAILED	FAILED	FAILED	FAILED	11	FAILED
Global Energy Ratio = 1E-4	1s, 10 step	9.32E+05	13.05	4.02E-01	62	0.12	9.29E+05	13.075	4.86E-01	57	-0.21
Global Energy Ratio = 1E-4	1s, 4 step	9.31E+05	13.043	6.51E-01	62	-0.01	9.30E+05	13.015	8.82E-01	52	-0.17
Global Energy Ratio = 1E-4	1s, 1 step	FAILED	FAILED	FAILED	81	FAILED	5.04E+05	0.83794	0.36625	4	-45.82
Global Energy Ratio = 1E-4	4s, 10 step	9.32E+05	13.05	4.02E-01	62	0.12	9.29E+05	13.075	4.86E-01	57	-0.21
Global Energy Ratio = 1E-4	4s, 1 step	FAILED	FAILED	FAILED	81	FAILED	5.04E+05	0.83794	0.36625	4	-45.82
				Nor	ninal Value	S					
			Stress	(psi) Deform	ation (in) #	of iterations					
			9.31	E+05 13.0	05192775		50				

- Significant variations in accuracy depending on time stepping with little correlation
- Reduce method significantly more accurate than Constant in all cases
- Overdamped case exists using program controlled time stepping

Unit: in

Time: 0

0 Min

Case Study 3: Time Stepping **Effects on Accuracy**

- Example of an overdamped analysis
- High stabilization energy and low accuracy

Linear Materials				Reduce			Constant				
T Method S	Гіте Stepping	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal	Stress (psi)	Deformation (in)	Stabilization Energy (BTU)	# of iterations	% difference in stress from nominal
Global Damping = 0.1 1	1s, 10 step	1.45E+05	21.688	2.76E-01	398	0.08	1.45E+05	21.69	3.00E-01	397	0.10
Global Damping = 0.1 1	1s, 4 step	1.45E+05	21.688	2.77E-01	399	0.08	1.45E+05	21.69	3.01E-01	399	0.12
Global Damping = 0.1 1	1s, 1 step	1.45E+05	21.689	2.73E-01	393	0.11	1.45E+05	21.69	0.2967	384	0.11
Global Damping = 0.1 4	4s, 10 step	1.45E+05	21.687	1.22E-01	375	0.01	1.45E+05	21.687	1.29E-01	387	0.04
Global Damping = 0.1 4	4s, 1 step	1.45E+05	21.687	1.23E-01	387	0.01	1.45E+05	21.687	1.30E-01	385	0.03
Global Energy Ratio = 1E-4 1	1s, 10 step	1.45E+05	21.697	4.33E-01	417	0.04	1.45E+05	21.711	4.80E-01	420	0.03
Global Energy Ratio = 1E-4 1	1s, 4 step	FAILED	FAILED	FAILED	20	FAILED	FAILED	FAILED	FAILED	26	FAILED
Global Energy Ratio = 1E-4 1	1s, 1 step	FAILED	FAILED	FAILED	25	FAILED	FAILED	FAILED	FAILED	27	FAILED
Global Energy Ratio = 1E-4 4	4s, 10 step	1.45E+05	21.697	4.33E-01	417	0.04	1.45E+05	21.711	4.80E-01	420	0.03
Global Energy Ratio = 1E-4 4	4s, 1 step	FAILED	FAILED	FAILED	25	FAILED	FAILED	FAILED	FAILED	27	FAILED
				Nor	ninal Value	S					

Stress (psi) Deformation (in) # of iterations

310

1.45E+05 21.65429474

• Bilinear materials converged more often due to necessary bisecting

AS: Bilinear, No Contact, Constant Energy

Total Deformation Type: Total Deformation Unit: in Time: 1 10/31/2019 3:18 PM

21.711 Max 19.298

19.298 16.886 14.474 12.062 9.6492 7.2369 4.8246 2.4123 0 Min

Bilinear Deformation

- 1. Viable solution to momentarily unstable models
- 2. Ideal to use local contact damping when possible as opposed to global damping
- 3. Stabilization Energy dissipated does not necessarily correlate to lost accuracy
- Reduce method generally more accurate than Constant and less likely to produce overdamped/unconverged analyses
- 5. Energy dissipation can result in either over or under conservative stress predictions
- 6. As with all analyses, sanity checks very important

Input / Questions

