
 1

Abstract

Games are a way to easily develop and test

autonomous driving systems on virtual roads with
changing conditions. In this paper, we present a
convolutional neural network, as well as a
reinforcement learning heuristic, that takes as input
the raw video feed of the game and outputs turning
decisions, while valuing speed first and safety
second. Tasked with operating only one dimension of
control (turning), the trained neural net can complete
a test course in as fast as 33 seconds, slightly slower
than the human performance of 28-30s.

1. Introduction
A growing success of Artificial Neural Networks in

the research field of Autonomous Driving, such as
the ALVINN (Autonomous Land Vehicle in a Neural
Network) and recent commercial solutions from
MobileEye, Google, and others prove that the
flexibility of neural networks can outperform their
traditional computer vision counterparts, especially in
high noise and uncertain situations [7]. In addition,
the capability for neural nets to learn on top of
existing classification nets offer exciting abilities for
research to stack and aggregate various network
schemes to improve a Neural Network’s decision
making accuracy [12].

In addition to being a complex decision-making
paradigm, Autonomous Driving is complicated by the
practicalities in gathering real-world data. It takes
many hours of driving to train any initial model, and
substantially longer to test and reinforce-learn the
model to reach acceptable accuracy. Moreover,
testing autonomous vehicles forces researchers to
take risks and are often a source of logistical red tape.
We turn to a common source of high fidelity
simulation, gaming, and train our Neural Network to
race against other vehicles in the Star Wars Episode I
Podracer racing game.

Using the game as our simulation environment, we
develop a convolutional neural network to control the
player’s vehicle in real-time by generating a single
turning tendency per frame, discussed in Section 4.
We train weights for this CNN through three studies:
offline, online and reinforcement learning, which we
will also discuss in Section 4. Section 5 and 6 will
offer our conclusions on the topic, as well as insights
into future research directions.

2. Related Work
Simple Neural Networks have been used to great

effect in the field of Autonomous Driving. The
flexibility of the technique has seen it used in
multiple ways. A surprisingly simple three layer
feed-forward network, for instance, can be used to
reliably detect pedestrians from a depth-map obtained
via stereo camera matching; Zhao’s 5-hidden-neuron
three-layer-net achieved around 85% accuracy and
3% misidentification rate [3]. From CMU, the
ALVINN [6] (autonomous land vehicle in a neural
network) uses a separate three-layer Feed-Forward
Neural Network structured at (1217 input, 29 hidden,
45 output) neurons to achieve very stable navigation
at 1m/s. ALVINN’s approach to driving as a
classification approach was very similar to our own,
as the 45 output units directly influenced the steering
of the vehicle, but the speed was fixed to 1m/s due to
processing speed and safety concerns. A purely
simulated environment allowing for failure and
accidents will have no such drawbacks.

Now This is Podracing - Driving with Neural Networks

Alexander Dewing
Stanford University

adewing@stanford.edu

Xiaonan Tong
Stanford University

xiaonan@stanford.edu

 2

One perceived drawback to learning in synthetic
situations is the incapability to apply the model to
real world. However, significant amount of research
has paved the way for transitioning from simulated
training to real-world results. Deep visual-motor
representations can be translated from synthetic to
reality through methods such as Generalized Domain
Alignment to minimize the difference [13]. The
fluidity of neural networks permits a portion of the
neural network to be transplanted through Transfer
Learning [12], and used as a feature extractor to pre-
train and build more complex networks. In
application, this will help a realistic self-driving car
start with better awareness of the world, improve its
learning speed, and obtain a better outcome by the
end of its training. The graphics capability of modern
games is outstripping that of typical simulators, and
frequently the two are joined together seamlessly. For
instance, the popular trucking game EuroTruck
Simulator 2 was recently used as a testing bed to
examine the effects of graded auditory warnings on
human truck drivers while playing the game [2].
These effects all suggest the maturity of modern
graphics and rendering.

3. Infrastructure

3.1. Game and Engine Modification

Our chosen target game is available for multiple
platforms, and for reasons of compatibility, we chose
to run the Nintendo64 edition inside an emulator.
Requiring source code availability and high
compatibility, we opted for the Mupen64Plus
emulator [5]. In order to permit flexible loading and
unloading of user or neural-net control modules, we
modified the emulator to bind to a TCP socket, and
pass video frames to any connected client. In return,
the clients could issue keystrokes back into the
emulator corresponding to that frame. We also
implemented functionality to dump compressed video
and keystroke logs to disk when recording

functionality is enabled. As the emulator has over a
decade of code history, capturing the framebuffer
was nontrivial: the graphics emulation originally
targeted 3dfx Voodoo graphics cards from the late
1990s, with wrappers on top of wrappers ultimately
supporting OpenGL in a scheme that was unfamiliar
to us, with recent OpenGL experience.

3.2. Neural Network Infrastructure

In an effort to implement a turnkey neural network
and begin training quickly, we chose to base our
architecture off of a VGG network and used a
pretrained network acquired from the model zoo. The
network was the VGG_16 model from BMVC-2014
[11]. We shrunk the final output layers to correspond
to be a single neuron. Unfortunately, our training
machine, containing a Nvidia GTX 780, only
contained 3GB of VRAM, and was unable to reach
desired performance with memory-constrained batch
sizes. As a result, we ultimately shrunk the network
to limit the parameter count, allowing larger batch
sizes and faster training rates. The resulting neural
net is presented in Figure 1.

In contrast to the VGG_16 network in BMVC-
2014 [11], a standard Batch Normalization layer is
inserted before the first convolution to account for
the lack of mean image that VGG_16 provides. This
change fundamentally changes how the input 3-
channel 224x224 image is perceived by the
convolution layers, and removes the possibility of
transfer learning from pre-trained VGG weights. We
also dropped the fourth and fifth convolution layers
(originally duplicates of the third layer) for
simplicity’s sake. The fully connected layers are also
shrunk from 4096 neurons, to 1024 and 256 neurons
respectively.

Unfortunately, the modifications precluded the use
of the pre-trained model, so training began with a He-
initialized network [4]. Much of the processing logic
to interface race footage and user testing was most
easily implemented in Python, so we chose Theano as

Figure 1. The 14-layer Neural Network derived from VGG_16 [1]. Note the lack of three consecutive 512-deep convolution layers. The output of
the neural net denotes the net’s decision to turn left (0.0), right (1.0) or stay straight ahead (0.5). The decision making mechanism alters the output
by a random number of standard deviation 0.15, and issues left if x < 0.36, and right if x > 0.63, otherwise straight.

 3

the best framework for implementing our neural
network, and built on top of Lasagne [9] for ease of
use.

During our third study, which implemented
reinforcement learning, we upgraded our
visualizations to show live saliency maps,
reinforcement learning stack visualization, and
graphs of our objective metric. Screengrabs from this
UI are presented in Section 4.3.

4. Methodology

4.1. Study 1: Offline Learning

4.1.1 Methods
Our first study attempted to perform offline

learning against a large dataset of user-played
recordings. We played the game manually for
several hours, gathering approximately
300,000 video frames of training data and the
associated keyboard inputs as labels. In an
effort to prevent map-specific overfit, our
dataset contained footage from 10-15 maps
within the game. In Figure 2. Offline Training
progression, training lasted over 20 hours. Brief
analysis of this shows that we are not significantly
overfitting the training set, and that the neural net
responds well to unseen frames., we include a
chart of how the learning progressed through
55 epochs. Every 8th batch of raw data was
set aside to be the validation dataset. Races
consist of multiple loops, so it’s not a guarantee that
the NN have never seen the scenery from the
validation segments of the map, but it will suffice to
estimate the Neural Net’s response to frames it has
never seen before.

Training our simplified network for 40 epochs on
our entire dataset with slightly higher learning rate
than shown in Figure 2 resulted in initially
encouraging performance. We were able to achieve
approximately 80% training accuracy, with 70%
accuracy on the same validation set. Our hypothesis
was that this might be a hard accuracy wall, due to
the stochastic nature of on/off turning signals that
even a human will be hard-pushed to reproduce
perfectly. However, when this network was used to
control the vehicle in-game, the actions were
unintelligible: the vehicle would proceed in a straight
line until it hits a wall, then it turned in circles
forever in the opposite direction.

Analysis of saliency maps [10] revealed the issue
at play. Rather than generalizing to map and
environment features, the network learned the
orientation of the vehicle. This is visible in Figure 3,
where the region of strongest saliency is the vehicle,
not the track. The vehicle tilts left and right in
response to hard turns, and the network effectively

learned to read these features. The offline learning
nature of the network has inverted causality: the
vehicle should tilt in respond to control inputs, rather
than vise versa.

In response, we blacked out the pixels over the
vehicle (and the top UI including the time) and
continued training. As the network was initialized
with the result from the previous experiment, the

Figure 2. Offline Training progression, training lasted over 20 hours. Brief
analysis of this shows that we are not significantly overfitting the training
set, and that the neural net responds well to unseen frames. It is clear that
we’re not training at a high enough learning rate, which is rectified in a later
session.

Figure 3. Saliency Map [10] for one training frame. Note the high
intensity around the pod racer.

 4

network converged fairly quickly, and within 5
epochs converged to 70% training accuracy and 67%
validation. Again, the network chose to learn
ineffective features, and the in-game test-drive
performance was as bad as the previous method. This
time, the network became a horizon detector. While
the vehicle tilts substantially during turns, so does the
camera to a smaller degree. In Figure 4, the visible
horizon edge is strongly detected on the
left.

We increasingly realized that the
offline learning scheme was flawed, but
attempted one last experiment by
randomly rotating our blacked out
training data ±15° before passing it into
the training phase. Surprisingly, this
experiment resulted in 90% training
accuracy, which suggested very strong
overfitting, even on our very large
dataset. Equally surprising was the 55%
validation accuracy, where 50%
approximates random. Increasing
regularization up to 100 times our
previous value 0.0001, could not raise validation
accuracy above 57%. Naturally, there was no
semblance of intelligent control during testing.

Throughout our first study, we concluded that the
open-loop control model of offline learning was not
going to evolve effective control algorithms for our
vehicle. As the human test drivers achieved
performance far better than the network initially, the
footage covers a very small subset of the states that
could be experienced by the neural net. The
stochastic nature of control inputs paired with the
large state space informed us of the need for feedback
in our training procedures.

4.2. Study 2: Online Learning

Our online learning scheme was our first attempt to
close the control loop of the neural net in training. In
the new setup, the neural network (running a model
trained in Study 1) would directly control the vehicle,
but a human would define the ground-truth labels
used for training. During each frame of the game, the
frame would be randomly rotated and trained on
using the human-supplied label in real time. We
would only train when the user defined a turn (or
defined straight with a third key), and ignore frames
where the user found it unnecessary to override the
network. Initially, training rates were exceptionally
high to develop semblance of behavior quickly, but
as the network improved, we reduced the rate from
0.01 to 0.0004, which combined the ability to still
meaningfully affect the network with a resistance to
overwhelm existing behavior in the network. We also

employed a low-pass filter on the user training labels.
The filter was implemented as a sinc convolution
with length of 7. The presence of the sinc noticeably
improved learning performance by reducing the
variance in control outputs, but the frequency
parameters were not very sensitive. We settled on
about 10% of the control decision being decided by ±
3 frames from the initial frame.

Very quickly, we were able to see
the live evolution of behavior, such
as basic wall avoidance. Within
about 10 minutes of live training
(about 14000 frames of play, of
which training occurred on about
10%), the neural network was able to
finish its first unassisted lap on the
Mon Gazza map, which represents
our timing benchmark henceforth.
The network still had a tendency to
make 180° turns and start racing
backwards, which would only be
reset by sufficiently violent crashes
where the game resets the vehicle. It

is difficult for the network to realize that it is driving
the wrong way because it was never trained against
the eventuality. As such, the first lap completion took
2 minutes and 12 seconds, a far cry from a typical
human race time of 28-30 seconds.

Another 10 minutes of training resulted in the
network becoming sufficiently competent to
complete a full 5-lap race unassisted. The first
successful race time was 3:36 (average of 43 seconds
/ lap), with a best lap time of 37 seconds, and the
peak performance of all our online-trained networks
was 3:25 (41 seconds / lap). For context, our best
network from Study 3 was able to complete the race
in 3:10 (38 seconds / lap).

In an attempt to evaluate overfit, we took models
trained on Mon Gazza Speedway (a relatively narrow
and simple map), and tested them on a map with
different color scheme, track style, and a far larger
variety of terrain (Ando Prime). While the directly
implanted models were either unsuccessful or very
slow, only a small amount of training was needed to
re-fit the model for the new map. Usually, 3-5
minutes of training was sufficient to learn map-
specific behavior. As these retrained models were
then useless on the original map, we chose not to
further experiment with additional maps due to our
obviously inadequate regularization scheme, and
instead focus on further research on learning.

Closing the feedback by using online learning to
take ‘encouragements’ from the user was a
breakthrough that began to distill intelligent features
into our neural net. While able to complete tracks and
able to win first place against ‘medium’ ingame

Figure 4. Blocking out pod racer
creates tilt detection tendencies.

 5

computer opponents, this learning scheme was still
not able to replicate human capabilities.

4.3. Study 3: Reinforcement Learning

Reinforcement learning requires an objective
function, and we opted to use vehicle velocity as the
input feature to a local objective heuristic. To that
end, we preprocess the game UI and perform OCR on
the velocity indicator. The preprocessing steps are
color segmentation (select blue digits), affine
transformation (straighten digits), digit separation,
and resampling. The open-source Tesseract OCR
engine[8] resulted in unacceptable performance on
the output from all of these steps, so instead, the final
OCR is achieved through a small secondary neural
net presented in Figure 5. Initially, this model was
initialized from a MNIST-trained network, though
surprisingly, the unrefined results were worse than
random (6% accuracy on 100 manually labeled
characters). Hence, we needed to train the model on
our specific digit dataset which apparently differed
substantially from handwritten digits. We built a
framework for extracting digits from the game
recordings and labeling them quickly. Using a dataset
of 1000 hand-labeled digits, we were able to achieve
100% accuracy using the above network. This is not
surprising, as there is only mild noise in the UI
coloration and therefore little noise in the input to the
network.

The Reinforcement Learning method is built on top
of a history Queue. As each frame is processed, it is
added to a variable length queue, the length of which
is determined by the current vehicle speed (between 3
and 24 frames at 0~500 speed). The history
variability allows for vehicle to have a semblance of
reaction speed – a faster vehicle should react earlier
than a slow vehicle, so a history frame should stay
longer in the queue. After training each frame, we
pop off every frame that exceed this length, and train
it based on the following performance heuristic.

Our performance heuristic was tuned extensively
as we watched the behaviors that each iteration
encouraged. Initially, we convolved acceleration with
a sawtooth to form our heuristic. This resulted in

heavy penalties for immediate deceleration and more
modest penalties for decisions that led to deceleration
several frames into the future. On the converse,
positive acceleration-inducing decisions were
selected positively.

We implemented reinforcement learning by setting
a frame-by-frame learning rate to our goodness
heuristic. Good behavior (goodness>0) would be
trained positively, and bad behavior trained
negatively to diffuse the decision. Our peak learning
rates were substantially lower than in Study 2. We
settled on the learning rate of 0.00001 as a balance
between meaningful learning and the quality
limitations of the heuristic.

At this point, the race times of the reinforcement-
learned network were meaningfully worse than the
model from Study 2 from which it inherited its
initialization. Race times could not break 3:45 (9
second degradation).

We quickly realized that since most decisions are
to continue straight ahead (and most of these
positively reinforce due to lack of obstacles), the
network was encouraged to strengthen straight
behavior to the point of never turning. To counter this
behavior, we reinforce straight decisions with a
weight 100x lower than turns. We also capped the
negative learning rate for turns during rapid
deceleration (crashes), to prevent the unlearning of
all turning behavior. These tunings were able to
reduce the performance gap to about parity (3:38),
but still improvements eluded us.

A few subtler tunings were able to substantially
improve our performance. Acceleration after a
collision would be very positive due to rapid
acceleration, overwhelming actual good driving.
Accordingly, we weight accelerating with a quadratic
of speed, to encourage acceleration at high velocity,
without encouraging acceleration at low velocity
(recovery, not necessarily good). Finally, we discard
all training frames below a low velocity threshold, as
the control regime in the game appears markedly
different (turning is vastly less sensitive), to prevent
training to a different turning model in an atypical
regime. These modifications, combined with hours of
reinforcement training, were able to reduce race

Figure 5. Digit-Parsing CNN Architecture. Each digit is processed through affine transformation and sliced apart, then classified via CNN and recombined.

 6

times to our best race time of 3:10 (38 seconds / lap),
with a best lap time of 33 seconds.

5. Feature Analysis
Reviewing saliency maps offers further insight into

the feature detection pipeline of the neural net.
Consider Figure 6, where the obvious decision is to
turn right away from the wall (as the network did
choose). The positive saliency map (right turn
selection) has detected wall-like structures on the left
strongly, as well as characteristics of the plain track
on the right. It makes sense that walls to your left and
open track to your right suggests a right turn. Also
interesting is the negative map. Its strong indicators
are the walls in a distance, towards the right of the
screen, which would typically mean they’re on the
right of the track.

Also of note are the other obstacles the network
fails to avoid. When approaching the object in Figure
7 from the side, the vehicle easily avoids it, but when,
by bad luck, it approaches it head on, the network

Figure 7. Screenshot of final monitoring UI implemented in PyGame [6]. In (A), we show the Neural network input, the output by
the Neural network, and the decision made by the stochastic process described in Figure 1. At (B), we visualize the reinforcement
learning history, with the recent frames on the bottom. Each frame bubbles up to the top, where a green shade denotes positive
training, and red denotes negative training. The small white fader denotes the speed of each frame, whereas the blue fader shows
how hard we are learning (or unlearning) a frame. At (C), we visualize the real time saliency of the neural network input, which
gives a huge insight into how the Neural Network is parsing the scene and what data it found important. Other features are
shortkeys to force an online-training on the current frame, pausing the neural net, or entering into REPL mode to do surgery on
python objects (such as layer activation of the neural net, or manually request an offline-training loop). (D) is the game window.
Video available at https://www.youtube.com/watch?v=58XjxOqHlws

Figure 6. Neither negative nor positive saliency took
significant notice of the huge pillar in front of the pod
racer, leading to this head-on crash.

A B

C

D

 7

fails to see a giant obstacle right in front of it: the
saliency of the center region is not strong.

A final interesting characteristic of the
reinforcement learning scheme is a performance
oscillation. As the average velocity of the vehicle
increases due to an improved model, wall scrapes
become crashes with more negative learning rates.
This neural net, being first-order in nature, will not
realize that it was velocity and not turning decision
that led to the crash. In effect, a better model lends to
higher average speed, which lends to out-of-control
turns that unlearns correct turning behavior. There
appears to be a critical density of crashes (due to their
associated strong learning parameters), which once
passed, results in a cascade effect of poor learning
decisions, reducing performance by up to 5 seconds /
lap. Eventually, however, the system recovers and
improves until the process begins anew.

6. Conclusion
We have demonstrated a very efficient learning

system that utilized the advantage of offline, online
and reinforcement learning, and achieved an
autonomous driving neural net capable of issuing first
order turning commands in response to visual cues at
smooth framerates (20fps). Though the very nature of
first order control and the lack of
acceleration/deceleration puts a limit on how well the
neural network can adapt to changing conditions, it is
inevitably adapting to maximize the behavior that
leads to a faster lap.

7. Further Work
For future work, a degree of acceleration control

can be ceded over to the neural net as well, provided
that relevant information (such as speed) is also fed
in as input. Secondly, the use of RNN/LSTM layers
would allow for learning second-order control
parameters in an environment that has a performance
cap on first-order controllers. A deeper neural net
could also contribute positively by allowing for
encoding of more complicated situations and map
structures. Special attention could also be paid to the
minimap in the top right corner, which the neural net
has thus far ignored in favor of map specific features.
It may be beneficial to ensemble our initial network
with a network trained exclusively on the map
display, which parallels a GPS in practice.

References

[1] Chatfield, K., Simonyan, K., Vedaldi, A., &

Zisserman, A. Return of the devil in the details:
Delving deep into convolutional nets (2014). arXiv
preprint arXiv:1405.3531.

[2] Johan Fagerlönn, Stefan Lindberg, and Anna Sirkka.
2012. Graded auditory warnings during in-vehicle
use: using sound to guide drivers without additional
noise. In Proceedings of the 4th International
Conference on Automotive User Interfaces and
Interactive Vehicular Applications (AutomotiveUI
'12). ACM, New York, NY, USA, 85-91.

[3] L. Zhao and C. E. Thorpe. 2000. Stereo- and neural
network-based pedestrian detection. Trans. Intell.
Transport. Sys. 1, 3 (September 2000), 148-154.

[4] Kaiming He et al. (2015): Delving deep into
rectifiers: Surpassing human-level performance on
imagenet classification. arXiv preprint
arXiv:1502.01852

[5] MuPen64Plus. Retrieved from
https://github.com/mupen64plus 2015 (Linux)

[6] P. Shinners. 2011. PyGame - Python Game
Development.

[7] Pomerleau, D. A. (1989). Alvinn: An autonomous
land vehicle in a neural network (No. AIP-77).
CARNEGIE-MELLON UNIV PITTSBURGH PA
ARTIFICIAL INTELLIGENCE AND
PSYCHOLOGY PROJECT.

[8] R. Smith. 2007. An Overview of the Tesseract OCR
Engine. In Proceedings of the Ninth International
Conference on Document Analysis and Recognition -
Volume 02 (ICDAR '07), Vol. 2. IEEE Computer
Society, Washington, DC, USA, 629-633.

[9] S. Dielman et. al. 2015. Lasagne v2.0.1. doi:
10.5281/zenodo.27878

[10] Simonyan, K., Vedaldi, A., & Zisserman, A. (2013).
Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

[11] Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[12] Torrey, L., & Shavlik, J. (2009). Transfer learning.
Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and
Techniques, 1, 242.

[13] Tzeng, E., Devin, C., Hoffman, J., Finn, C., Peng, X.,
Levine, S., ... & Darrell, T. (2015). Towards
Adapting Deep Visuomotor Representations from
Simulated to Real Environments. arXiv preprint
arXiv:1511.07111.

