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Abstract 

 
Games are a way to easily develop and test 

autonomous driving systems on virtual roads with 
changing conditions. In this paper, we present a 
convolutional neural network, as well as a 
reinforcement learning heuristic, that takes as input 
the raw video feed of the game and outputs turning 
decisions, while valuing speed first and safety 
second. Tasked with operating only one dimension of 
control (turning), the trained neural net can complete 
a test course in as fast as 33 seconds, slightly slower 
than the human performance of 28-30s. 
 
 

1. Introduction 
A growing success of Artificial Neural Networks in 

the research field of Autonomous Driving, such as 
the ALVINN (Autonomous Land Vehicle in a Neural 
Network) and recent commercial solutions from 
MobileEye, Google, and others prove that the 
flexibility of neural networks can outperform their 
traditional computer vision counterparts, especially in 
high noise and uncertain situations [7]. In addition, 
the capability for neural nets to learn on top of 
existing classification nets offer exciting abilities for 
research to stack and aggregate various network 
schemes to improve a Neural Network’s decision 
making accuracy [12]. 

In addition to being a complex decision-making 
paradigm, Autonomous Driving is complicated by the 
practicalities in gathering real-world data. It takes 
many hours of driving to train any initial model, and 
substantially longer to test and reinforce-learn the 
model to reach acceptable accuracy. Moreover, 
testing autonomous vehicles forces researchers to 
take risks and are often a source of logistical red tape. 
We turn to a common source of high fidelity 
simulation, gaming, and train our Neural Network to 
race against other vehicles in the Star Wars Episode I 
Podracer racing game.  

 

Using the game as our simulation environment, we 
develop a convolutional neural network to control the 
player’s vehicle in real-time by generating a single 
turning tendency per frame, discussed in Section 4. 
We train weights for this CNN through three studies: 
offline, online and reinforcement learning, which we 
will also discuss in Section 4. Section 5 and 6 will 
offer our conclusions on the topic, as well as insights 
into future research directions. 

2. Related Work 
Simple Neural Networks have been used to great 

effect in the field of Autonomous Driving. The 
flexibility of the technique has seen it used in 
multiple ways. A surprisingly simple three layer 
feed-forward network, for instance, can be used to 
reliably detect pedestrians from a depth-map obtained 
via stereo camera matching; Zhao’s 5-hidden-neuron 
three-layer-net achieved around 85% accuracy and 
3% misidentification rate [3]. From CMU, the 
ALVINN [6] (autonomous land vehicle in a neural 
network) uses a separate three-layer Feed-Forward 
Neural Network structured at (1217 input, 29 hidden, 
45 output) neurons to achieve very stable navigation 
at 1m/s. ALVINN’s approach to driving as a 
classification approach was very similar to our own, 
as the 45 output units directly influenced the steering 
of the vehicle, but the speed was fixed to 1m/s due to 
processing speed and safety concerns. A purely 
simulated environment allowing for failure and 
accidents will have no such drawbacks.  
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One perceived drawback to learning in synthetic 
situations is the incapability to apply the model to 
real world. However, significant amount of research 
has paved the way for transitioning from simulated 
training to real-world results. Deep visual-motor 
representations can be translated from synthetic to 
reality through methods such as Generalized Domain 
Alignment to minimize the difference [13]. The 
fluidity of neural networks permits a portion of the 
neural network to be transplanted through Transfer 
Learning [12], and used as a feature extractor to pre-
train and build more complex networks. In 
application, this will help a realistic self-driving car 
start with better awareness of the world, improve its 
learning speed, and obtain a better outcome by the 
end of its training. The graphics capability of modern 
games is outstripping that of typical simulators, and 
frequently the two are joined together seamlessly. For 
instance, the popular trucking game EuroTruck 
Simulator 2 was recently used as a testing bed to 
examine the effects of graded auditory warnings on 
human truck drivers while playing the game [2]. 
These effects all suggest the maturity of modern 
graphics and rendering. 

3. Infrastructure 

3.1. Game and Engine Modification 

Our chosen target game is available for multiple 
platforms, and for reasons of compatibility, we chose 
to run the Nintendo64 edition inside an emulator. 
Requiring source code availability and high 
compatibility, we opted for the Mupen64Plus 
emulator [5]. In order to permit flexible loading and 
unloading of user or neural-net control modules, we 
modified the emulator to bind to a TCP socket, and 
pass video frames to any connected client. In return, 
the clients could issue keystrokes back into the 
emulator corresponding to that frame. We also 
implemented functionality to dump compressed video 
and keystroke logs to disk when recording 

functionality is enabled. As the emulator has over a 
decade of code history, capturing the framebuffer 
was nontrivial: the graphics emulation originally 
targeted 3dfx Voodoo graphics cards from the late 
1990s, with wrappers on top of wrappers ultimately 
supporting OpenGL in a scheme that was unfamiliar 
to us, with recent OpenGL experience. 

3.2. Neural Network Infrastructure 

In an effort to implement a turnkey neural network 
and begin training quickly, we chose to base our 
architecture off of a VGG network and used a 
pretrained network acquired from the model zoo. The 
network was the VGG_16 model from BMVC-2014 
[11]. We shrunk the final output layers to correspond 
to be a single neuron. Unfortunately, our training 
machine, containing a Nvidia GTX 780, only 
contained 3GB of VRAM, and was unable to reach 
desired performance with memory-constrained batch 
sizes. As a result, we ultimately shrunk the network 
to limit the parameter count, allowing larger batch 
sizes and faster training rates. The resulting neural 
net is presented in Figure 1.  

In contrast to the VGG_16 network in BMVC-
2014 [11], a standard Batch Normalization layer is 
inserted before the first convolution to account for 
the lack of mean image that VGG_16 provides. This 
change fundamentally changes how the input 3-
channel 224x224 image is perceived by the 
convolution layers, and removes the possibility of 
transfer learning from pre-trained VGG weights. We 
also dropped the fourth and fifth convolution layers 
(originally duplicates of the third layer) for 
simplicity’s sake. The fully connected layers are also 
shrunk from 4096 neurons, to 1024 and 256 neurons 
respectively. 

Unfortunately, the modifications precluded the use 
of the pre-trained model, so training began with a He-
initialized network [4]. Much of the processing logic 
to interface race footage and user testing was most 
easily implemented in Python, so we chose Theano as 

Figure 1. The 14-layer Neural Network derived from VGG_16 [1]. Note the lack of three consecutive 512-deep convolution layers. The output of 
the neural net denotes the net’s decision to turn left (0.0), right (1.0) or stay straight ahead (0.5). The decision making mechanism alters the output 
by a random number of standard deviation 0.15, and issues left if x < 0.36, and right if x > 0.63, otherwise straight. 
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the best framework for implementing our neural 
network, and built on top of Lasagne [9] for ease of 
use. 

During our third study, which implemented 
reinforcement learning, we upgraded our 
visualizations to show live saliency maps, 
reinforcement learning stack visualization, and 
graphs of our objective metric. Screengrabs from this 
UI are presented in Section 4.3. 

4. Methodology 

4.1. Study 1: Offline Learning 

4.1.1 Methods 
Our first study attempted to perform offline 

learning against a large dataset of user-played 
recordings. We played the game manually for 
several hours, gathering approximately 
300,000 video frames of training data and the 
associated keyboard inputs as labels. In an 
effort to prevent map-specific overfit, our 
dataset contained footage from 10-15 maps 
within the game. In Figure 2. Offline Training 
progression, training lasted over 20 hours. Brief 
analysis of this shows that we are not significantly 
overfitting the training set, and that the neural net 
responds well to unseen frames., we include a 
chart of how the learning progressed through 
55 epochs. Every 8th batch of raw data was 
set aside to be the validation dataset. Races 
consist of multiple loops, so it’s not a guarantee that 
the NN have never seen the scenery from the 
validation segments of the map, but it will suffice to 
estimate the Neural Net’s response to frames it has 
never seen before. 

Training our simplified network for 40 epochs on 
our entire dataset with slightly higher learning rate 
than shown in Figure 2 resulted in initially 
encouraging performance. We were able to achieve 
approximately 80% training accuracy, with 70% 
accuracy on the same validation set. Our hypothesis 
was that this might be a hard accuracy wall, due to 
the stochastic nature of on/off turning signals that 
even a human will be hard-pushed to reproduce 
perfectly.  However, when this network was used to 
control the vehicle in-game, the actions were 
unintelligible: the vehicle would proceed in a straight 
line until it hits a wall, then it turned in circles 
forever in the opposite direction. 

Analysis of saliency maps [10] revealed the issue 
at play. Rather than generalizing to map and 
environment features, the network learned the 
orientation of the vehicle. This is visible in Figure 3, 
where the region of strongest saliency is the vehicle, 
not the track.  The vehicle tilts left and right in 
response to hard turns, and the network effectively 

learned to read these features. The offline learning 
nature of the network has inverted causality: the 
vehicle should tilt in respond to control inputs, rather 
than vise versa. 

In response, we blacked out the pixels over the 
vehicle (and the top UI including the time) and 
continued training. As the network was initialized 
with the result from the previous experiment, the 

Figure 2. Offline Training progression, training lasted over 20 hours. Brief 
analysis of this shows that we are not significantly overfitting the training 
set, and that the neural net responds well to unseen frames. It is clear that 
we’re not training at a high enough learning rate, which is rectified in a later 
session. 

Figure 3. Saliency Map [10] for one training frame. Note the high 
intensity around the pod racer. 
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network converged fairly quickly, and within 5 
epochs converged to 70% training accuracy and 67% 
validation. Again, the network chose to learn 
ineffective features, and the in-game test-drive 
performance was as bad as the previous method. This 
time, the network became a horizon detector. While 
the vehicle tilts substantially during turns, so does the 
camera to a smaller degree. In Figure 4, the visible 
horizon edge is strongly detected on the 
left. 

We increasingly realized that the 
offline learning scheme was flawed, but 
attempted one last experiment by 
randomly rotating our blacked out 
training data ±15° before passing it into 
the training phase. Surprisingly, this 
experiment resulted in 90% training 
accuracy, which suggested very strong 
overfitting, even on our very large 
dataset. Equally surprising was the 55% 
validation accuracy, where 50% 
approximates random. Increasing 
regularization up to 100 times our 
previous value 0.0001, could not raise validation 
accuracy above 57%. Naturally, there was no 
semblance of intelligent control during testing. 

Throughout our first study, we concluded that the 
open-loop control model of offline learning was not 
going to evolve effective control algorithms for our 
vehicle. As the human test drivers achieved 
performance far better than the network initially, the 
footage covers a very small subset of the states that 
could be experienced by the neural net. The 
stochastic nature of control inputs paired with the 
large state space informed us of the need for feedback 
in our training procedures. 

4.2. Study 2: Online Learning 

Our online learning scheme was our first attempt to 
close the control loop of the neural net in training. In 
the new setup, the neural network (running a model 
trained in Study 1) would directly control the vehicle, 
but a human would define the ground-truth labels 
used for training. During each frame of the game, the 
frame would be randomly rotated and trained on 
using the human-supplied label in real time. We 
would only train when the user defined a turn (or 
defined straight with a third key), and ignore frames 
where the user found it unnecessary to override the 
network. Initially, training rates were exceptionally 
high to develop semblance of behavior quickly, but 
as the network improved, we reduced the rate from 
0.01 to 0.0004, which combined the ability to still 
meaningfully affect the network with a resistance to 
overwhelm existing behavior in the network. We also 

employed a low-pass filter on the user training labels. 
The filter was implemented as a sinc convolution 
with length of 7. The presence of the sinc noticeably 
improved learning performance by reducing the 
variance in control outputs, but the frequency 
parameters were not very sensitive. We settled on 
about 10% of the control decision being decided by ± 
3 frames from the initial frame. 

Very quickly, we were able to see 
the live evolution of behavior, such 
as basic wall avoidance. Within 
about 10 minutes of live training 
(about 14000 frames of play, of 
which training occurred on about 
10%), the neural network was able to 
finish its first unassisted lap on the 
Mon Gazza map, which represents 
our timing benchmark henceforth. 
The network still had a tendency to 
make 180° turns and start racing 
backwards, which would only be 
reset by sufficiently violent crashes 
where the game resets the vehicle. It 

is difficult for the network to realize that it is driving 
the wrong way because it was never trained against 
the eventuality. As such, the first lap completion took 
2 minutes and 12 seconds, a far cry from a typical 
human race time of 28-30 seconds. 

Another 10 minutes of training resulted in the 
network becoming sufficiently competent to 
complete a full 5-lap race unassisted. The first 
successful race time was 3:36 (average of 43 seconds 
/ lap), with a best lap time of 37 seconds, and the 
peak performance of all our online-trained networks 
was 3:25 (41 seconds / lap). For context, our best 
network from Study 3 was able to complete the race 
in 3:10 (38 seconds / lap). 

In an attempt to evaluate overfit, we took models 
trained on Mon Gazza Speedway (a relatively narrow 
and simple map), and tested them on a map with 
different color scheme, track style, and a far larger 
variety of terrain (Ando Prime). While the directly 
implanted models were either unsuccessful or very 
slow, only a small amount of training was needed to 
re-fit the model for the new map. Usually, 3-5 
minutes of training was sufficient to learn map-
specific behavior. As these retrained models were 
then useless on the original map, we chose not to 
further experiment with additional maps due to our 
obviously inadequate regularization scheme, and 
instead focus on further research on learning. 

Closing the feedback by using online learning to 
take ‘encouragements’ from the user was a 
breakthrough that began to distill intelligent features 
into our neural net. While able to complete tracks and 
able to win first place against ‘medium’ ingame 

Figure 4. Blocking out pod racer 
creates tilt detection tendencies. 
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computer opponents, this learning scheme was still 
not able to replicate human capabilities. 

4.3. Study 3: Reinforcement Learning 

Reinforcement learning requires an objective 
function, and we opted to use vehicle velocity as the 
input feature to a local objective heuristic. To that 
end, we preprocess the game UI and perform OCR on 
the velocity indicator. The preprocessing steps are 
color segmentation (select blue digits), affine 
transformation (straighten digits), digit separation, 
and resampling. The open-source Tesseract OCR 
engine[8] resulted in unacceptable performance on 
the output from all of these steps, so instead, the final 
OCR is achieved through a small secondary neural 
net presented in Figure 5. Initially, this model was 
initialized from a MNIST-trained network, though 
surprisingly, the unrefined results were worse than 
random (6% accuracy on 100 manually labeled 
characters). Hence, we needed to train the model on 
our specific digit dataset which apparently differed 
substantially from handwritten digits. We built a 
framework for extracting digits from the game 
recordings and labeling them quickly. Using a dataset 
of 1000 hand-labeled digits, we were able to achieve 
100% accuracy using the above network. This is not 
surprising, as there is only mild noise in the UI 
coloration and therefore little noise in the input to the 
network. 

The Reinforcement Learning method is built on top 
of a history Queue. As each frame is processed, it is 
added to a variable length queue, the length of which 
is determined by the current vehicle speed (between 3 
and 24 frames at 0~500 speed). The history 
variability allows for vehicle to have a semblance of 
reaction speed – a faster vehicle should react earlier 
than a slow vehicle, so a history frame should stay 
longer in the queue. After training each frame, we 
pop off every frame that exceed this length, and train 
it based on the following performance heuristic.  

Our performance heuristic was tuned extensively 
as we watched the behaviors that each iteration 
encouraged. Initially, we convolved acceleration with 
a sawtooth to form our heuristic. This resulted in 

heavy penalties for immediate deceleration and more 
modest penalties for decisions that led to deceleration 
several frames into the future. On the converse, 
positive acceleration-inducing decisions were 
selected positively.  

We implemented reinforcement learning by setting 
a frame-by-frame learning rate to our goodness 
heuristic. Good behavior (goodness>0) would be 
trained positively, and bad behavior trained 
negatively to diffuse the decision. Our peak learning 
rates were substantially lower than in Study 2. We 
settled on the learning rate of 0.00001 as a balance 
between meaningful learning and the quality 
limitations of the heuristic. 

At this point, the race times of the reinforcement-
learned network were meaningfully worse than the 
model from Study 2 from which it inherited its 
initialization. Race times could not break 3:45 (9 
second degradation). 

We quickly realized that since most decisions are 
to continue straight ahead (and most of these 
positively reinforce due to lack of obstacles), the 
network was encouraged to strengthen straight 
behavior to the point of never turning. To counter this 
behavior, we reinforce straight decisions with a 
weight 100x lower than turns. We also capped the 
negative learning rate for turns during rapid 
deceleration (crashes), to prevent the unlearning of 
all turning behavior. These tunings were able to 
reduce the performance gap to about parity (3:38), 
but still improvements eluded us. 

A few subtler tunings were able to substantially 
improve our performance. Acceleration after a 
collision would be very positive due to rapid 
acceleration, overwhelming actual good driving. 
Accordingly, we weight accelerating with a quadratic 
of speed, to encourage acceleration at high velocity, 
without encouraging acceleration at low velocity 
(recovery, not necessarily good). Finally, we discard 
all training frames below a low velocity threshold, as 
the control regime in the game appears markedly 
different (turning is vastly less sensitive), to prevent 
training to a different turning model in an atypical 
regime. These modifications, combined with hours of 
reinforcement training, were able to reduce race 

Figure 5. Digit-Parsing CNN Architecture. Each digit is processed through affine transformation and sliced apart, then classified via CNN and recombined. 
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times to our best race time of 3:10 (38 seconds / lap), 
with a best lap time of 33 seconds.  

 

5. Feature Analysis 
Reviewing saliency maps offers further insight into 

the feature detection pipeline of the neural net. 
Consider Figure 6, where the obvious decision is to 
turn right away from the wall (as the network did 
choose). The positive saliency map (right turn 
selection) has detected wall-like structures on the left 
strongly, as well as characteristics of the plain track 
on the right. It makes sense that walls to your left and 
open track to your right suggests a right turn. Also 
interesting is the negative map. Its strong indicators 
are the walls in a distance, towards the right of the 
screen, which would typically mean they’re on the 
right of the track.  

Also of note are the other obstacles the network 
fails to avoid. When approaching the object in Figure 
7 from the side, the vehicle easily avoids it, but when, 
by bad luck, it approaches it head on, the network 

Figure 7. Screenshot of final monitoring UI implemented in PyGame [6]. In (A), we show the Neural network input, the output by 
the Neural network, and the decision made by the stochastic process described in Figure 1. At (B), we visualize the reinforcement 
learning history, with the recent frames on the bottom. Each frame bubbles up to the top, where a green shade denotes positive 
training, and red denotes negative training. The small white fader denotes the speed of each frame, whereas the blue fader shows 
how hard we are learning (or unlearning) a frame. At (C), we visualize the real time saliency of the neural network input, which 
gives a huge insight into how the Neural Network is parsing the scene and what data it found important. Other features are 
shortkeys to force an online-training on the current frame, pausing the neural net, or entering into REPL mode to do surgery on 
python objects (such as layer activation of the neural net, or manually request an offline-training loop). (D) is the game window. 
Video available at https://www.youtube.com/watch?v=58XjxOqHlws  

Figure 6. Neither negative nor positive saliency took 
significant notice of the huge pillar in front of the pod 
racer, leading to this head-on crash. 

A B

C 

D 
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fails to see a giant obstacle right in front of it: the 
saliency of the center region is not strong.  

A final interesting characteristic of the 
reinforcement learning scheme is a performance 
oscillation. As the average velocity of the vehicle 
increases due to an improved model, wall scrapes 
become crashes with more negative learning rates. 
This neural net, being first-order in nature, will not 
realize that it was velocity and not turning decision 
that led to the crash. In effect, a better model lends to 
higher average speed, which lends to out-of-control 
turns that unlearns correct turning behavior. There 
appears to be a critical density of crashes (due to their 
associated strong learning parameters), which once 
passed, results in a cascade effect of poor learning 
decisions, reducing performance by up to 5 seconds / 
lap. Eventually, however, the system recovers and 
improves until the process begins anew. 

6. Conclusion 
We have demonstrated a very efficient learning 

system that utilized the advantage of offline, online 
and reinforcement learning, and achieved an 
autonomous driving neural net capable of issuing first 
order turning commands in response to visual cues at 
smooth framerates (20fps). Though the very nature of 
first order control and the lack of 
acceleration/deceleration puts a limit on how well the 
neural network can adapt to changing conditions, it is 
inevitably adapting to maximize the behavior that 
leads to a faster lap. 

7. Further Work 
For future work, a degree of acceleration control 

can be ceded over to the neural net as well, provided 
that relevant information (such as speed) is also fed 
in as input. Secondly, the use of RNN/LSTM layers 
would allow for learning second-order control 
parameters in an environment that has a performance 
cap on first-order controllers. A deeper neural net 
could also contribute positively by allowing for 
encoding of more complicated situations and map 
structures. Special attention could also be paid to the 
minimap in the top right corner, which the neural net 
has thus far ignored in favor of map specific features. 
It may be beneficial to ensemble our initial network 
with a network trained exclusively on the map 
display, which parallels a GPS in practice. 
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