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I Introduction

A fundamental attribute of capitalist economies is their propensity to undergo

cyclical periods of expansion and contraction in output. The modern study of

economic cycles was initiated in 1819 by Jean Charles Léonard de Sismondi,

who posited that business activity did not maintain a consistent equilibrium

between supply and demand, but instead alternated between periods of positive

and negative growth due to mismatches in production, consumption and labor

market dynamics. Around the same period, Thomas Malthus proposed that

bouts of economic stagnation (“gluts”) were structural to capitalism, and arose

from disparities in wealth distribution and consumption preferences among la-

borers, landowners, and capitalists. Before Sismondi and Malthus, classical

economists relied on exogenous forces, e.g., war and famine, to rationalize the

presence of cyclical behavior, or more commonly, ignored short-run dynamics

altogether.

Today, a prevailing view among economists is that expansions and recessions

represent unobserved variables to be estimated according to the data (Fossati

2016). While policy-oriented economists seek to explain and reconcile issues

brought on by unexpected shifts in the business cycle, econometric approaches

concentrate on identifying economic peaks and troughs, as well as predicting

turning points. To this end, business cycle practitioners address four related

questions:

1. Given sufficient hindsight, which periods can be classified as expansionary

versus recessionary?

2. Based on the most recent economic data, what is the current state of the

economy?

3. Which economic indicators are predictive of future regime shifts?

4. What is the extent and time horizon for which one can reliably forecast

regime changes?
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For much of the 20th century, efforts were focused primarily on the first

question, with economists Arthur Burns and Wesley Mitchell standing out as

modernizing the field with their 1946 book, Measuring Business Cycles. Prior to

the book’s publication, business cycle dating methodologies often viewed cycli-

cal behavior from a literalist perspective (i.e., as exhibiting a fixed duration

and amplitude), and sought to identify such patterns in a small set of variables

deemed representative of the broader economy (Zarnowitz 1992). Burns and

Mitchell, in contrast, observed cyclical fluctuations as “recurrent but not pe-

riodic” and “widely diffused over the economy” - views that not only remain

well-accepted today, but also continue to drive new research. To determine

chronologies for expansions and recessions, the two economists identified in-

dividual turning point dates across a large, diverse set of economic variables,

and then analyzed the distribution of these dates to arrive at a reference date

signaling the turning point for the broader economy.

The National Bureau of Economic Research (NBER), a private, nonprofit

institution founded by Wesley Mitchell in 1920, stands today as the de facto

authority in classifying periods of expansion and recession. To facilitate this

effort, NBER established the Business Cycle Dating Committee (BCDC) in 1978

to issue public statements regarding the start and end of recessionary periods,

which are defined as “significant decline[s] in economic activity spread across

the economy” that last “from a few months to more than a year.” Eschewing

the use of a fixed rule to classify recessions, NBER economists instead rely on

internal judgment over “the behavior of various measures of broad activity” -

namely, gross domestic product, employment, personal income, retail sales and

industrial production. Since 1980, the BCDC has issued 10 press releases, with

business cycle peak and trough date announcements released between 6 and 21

months following their actual occurrence.

Although NBER’s stature as a centralized, nonpartisan authority averts the

possibility of having competing sets of expansion and recession dates and ensures

conflicting political or financial motives do not influence the task at hand, the
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institution’s implicit cost function stands in contrast to other economic stake-

holders. Specifically, because the BCDC is concerned foremost with maintaining

accurate business cycle dating chronologies in the face of noisy economic data

and multiple ex post revisions 1, their inclination towards conservatism increases

requirements for confirmatory data in the months following initial detection of

a regime shift. Evidently, this presents considerable uncertainty in the public

sphere in the interim periods between when turning points occur and when they

are officially announced.

Since regime shifts influence the activities of individuals, investors, employers

and policymakers, such groups might weigh other considerations above NBER’s

primary focus on accuracy. A university economist, for example, might value

transparency and reproducibility above all else, leading to demand for dating

methods that rely on explicit quantitative rules and/or statistical models. In-

vestors, for their part, often place a premium on access to advanced knowledge

before it becomes embedded in market consensus. As a result, a portfolio man-

ager might prefer more timely warnings of impending regime changes to guide

investment decisions - even if such information is accompanied by occasional

false signals. Firms and individuals, in contrast, might place equal weighting on

both timeliness and accuracy to inform decisions regarding employment, bud-

geting and financing, given their relatively higher costs associated with acting

on inaccurate information.

As a result of these differing preferences, econometricians have devoted con-

siderable effort to devising methods of classifying economic expansions and re-

cessions independent of NBER’s official proclamations. These techniques have

generally fallen into three categories - dating, forecasting and nowcasting. Dat-

ing methodologies, in following the legacy set by Burns and Mitchell, seek to

apply explicit rules and/or quantitative models to economic data in order to

classify expansions and recessions in near-complete agreement with NBER’s

1Q4 2015 US GDP, for instance, was announced to be 0.7% four weeks following the quarter
end. By March 2016, the Commerce Department revised this figure to 1.4%, a nearly 100%
increase
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official dates (see, for example, Harding and Pagan 2003; Chauvet and Piger

2008; Stock and Watson 2010). Accomplishing this feat generally requires wait-

ing for an extended period following the detection of a turning point to min-

imize or eliminate false signals. Forecasting methodologies estimate when the

next regime shift will occur via statistical models and a carefully-selected set

of leading and coincident indicators. Empirically, such approaches have gen-

erally focused on 3-12 month horizons, as out-of-sample performance tends to

deteriorate beyond that horizon (Berge 2013). Nowcasting techniques, an inter-

mediate step between retroactively dating business cycles and forecasting new

ones, classify whether the economy is currently in an expansion or recession

based on real-time data releases. Their primary raison d’etre is to take advan-

tage of the lag between the start and end dates of recessions and their official

announcement by NBER in providing an advanced (albeit still reliable) signal

of impending regime shifts.

While the question of when the next recession will occur is typically viewed

as more interesting than whether the economy is currently facing one, addressing

the former presents a number of challenges. First, few variables hold predictive

value beyond the 6 month mark, with the slope of the yield curve2 and corpo-

rate credit spreads standing out as primary candidates (see, for example, Stock

and Watson 1989; Estrella and Mishkin 1996; Dueker 1997; Rudebusch and

Williams 2008; Berge 2013). Second, even with an optimal variable selection,

out-of-sample recession probabilities might yet fail to breach the 50% decision

threshold3 commonly used in the literature - a trait seen, among others, in Stock

and Watson 1989’s coincident index model famously missing the 1990-91 reces-

sion when the authors used it in real-time(Hamilton 2011, Katayama 2013).

This downside arises in part because not all turning points are presented alike

in the data, posing a vulnerability when future recessions do not mirror historic

2Usually defined as the 10-year minus 3-month US treasuries
3Because models in the literature generally produce probability-based outputs, it is up to

the analyst to decide on a threshold value and/or decision rule to guide when to officially
recognize a given period as recessionary
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behavior across a limited set of predictors4. Finally, numerous past forecasting

studies have conflated in-sample fit with out-of-sample performance (an error

made mathematically explicit in Hansen 2008) while not adequately evaluating

the latter. This can be especially problematic from an academic perspective,

because look-ahead bias - i.e., basing predictions on data not available to the

analyst at the time of model estimation - is easy to encounter under ex post

out-of-sample testing, and can produce spurious results that would not hold

under more rigorous evaluation designs.

One response to the dilemmas above has been increased focus on evaluating

and furthering the development of nowcasting models. While recent innovations

in nowcasting have gained media attention for providing advanced estimates of

GDP and inflation5, their practical use dates back to at least the 1980s (Fitzger-

ald and Miller 1989). In the business cycle literature, such methodologies have

conventionally taken one of two forms: logit/probit regressions6, and Markov-

switching models. Efforts to improve real-time recession predictions have been

generally focused on analyzing which variables hold the most predictive value

under a given model, and making incremental improvements to existing method-

ologies.

Recently, predictive models developed in the artificial intelligence and sta-

tistical learning disciplines have shown promising results in a variety of applica-

tions, e.g., online shopping recommendations, securities trading, self-driving ve-

hicles, etc. As a result, researchers from a number of different quantitative fields

have adapted machine learning techniques to address data-related problems in

their respective domains. While some progress has been made by economists

in this regard, considerable work remains in understanding the extent to which

4One present concern, for example, is that following the Federal Reserve’s unprecedented
era of zero interest rate policy (ZIRP) in response to the 2007-09 financial crisis, the yield
curve cannot technically invert without short duration treasury rates being raised materially
above the zero lower bound

5See, for example, the Atlanta Federal Reserve’s GDPNow model, and MIT’s Billion Price
Project

6Logit and probit models are often grouped interchangeably because their underlying cu-
mulative density functions (logistic for the former, and normal for the latter) tend to produce
similar probability outputs
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the current set of standard econometric techniques can be improved upon or

expanded. Consequently, this paper seeks to address the following:

1. How does the performance of conventional econometric models compare

with those seen in the machine learning literature for nowcasting US re-

cessions?

2. What advantages, if any, might machine learning techniques offer with

respect to modeling nonlinear behavior across the business cycle?

3. Can ensembles of models produce out-of-sample performance surpassing

that of each model individually?

The remainder of this paper proceeds as follows. Section II provides an

overview of developments in the business cycle forecasting and nowcasting lit-

erature before considering recent work in applying machine learning techniques

in this setting. In section III, treatment is given on the statistical and intuitive

properties of the machine learning models evaluated in this study. Namely,

this includes k-nearest neighbors (kNN), support vector machines (SVM), naive

Bayes, random forests, gradient boosted trees, and artificial neural networks

(ANN). Section IV features model performance comparisons for an out-of-sample

test period over 1/1980-8/2014 and discusses results.

II Literature Review

Over the past few decades, a majority of studies in the business cycle prediction

literature have implemented one of two models: logit/probit regressions, and/or

Markov switching models. While the origins of logit/probit models can be traced

back to the late 1800s (Cramer 2002), Markov-switching methodologies were in-

troduced to the field in J.D. Hamilton’s 1989 article, “A New Approach to

the Economic Analysis of Nonstationary Time Series and the Business Cycle.”

In it, Hamilton detailed a nonlinear technique for modeling economic regime
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changes as an unobserved first-order Markov process, with transition probabili-

ties from one regime to another inferred via observed macroeconomic data7. To

illustrate the model’s potential, Hamilton estimated US expansion and reces-

sion dates based on inferences from current and lagged GNP data to arrive at

a dating chronology independent of NBER. Using data from 3/1951-12/1984,

Hamilton’s model produced cyclical peak and trough dating estimates to within

± 2 quarters of the official NBER dates. As such, Hamilton 1989 provided an

initial demonstration for the inherent potential of Markov-switching models to

classify business cycle turning points in real-time.

Despite promising performance, Hamilton’s originally-specified model left

open a number of issues which have since been addressed through additional

developments. First, because GNP and GDP are published on a quarterly basis

and undergo considerable revisions following initial releases, a natural response

was to estimate the model using monthly economic variables. Filardo 1994 took

this approach, estimating a Markov-switching model on monthly industrial pro-

duction data while setting transition probabilities from one economic regime to

another as fixed across time (as was the case in Hamilton 1989). Despite a larger

set of observations (i.e., 1/1948-8/1992), Filardo found that recession probabil-

ities from the originally-specified model failed to cross the 50% threshold for

five of the nine recessions tested in-sample. This disappointing performance,

however, was ameliorated by instead using Stock and Watson 1989’s composite

leading indicator index as the explanatory variable, and allowing regime tran-

sition probabilities to change across time. Filardo concluded the latter model

to have produced both the most optimal in-sample fit (measured according to

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC)),

while also yielding competitive results out-of-sample from 1/1989-12/1991.

Additional research has sought to reconcile the Markov-switching model with

7While Hamilton was the first to apply this technique in a macroeconomic time series
setting, Markovian approaches for modeling unobserved regime changes based on observed
data were originally developed in the 1960s (Kouemo 2011) and applied to speech recognition
in the 1970s (Rabiner 2015). In the statistical learning literature, these models are known as
Hidden Markov Models (HMM)
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Burns and Mitchell’s observation that recessions are widely dispersed across the

economy and can be inferred from the co-movements of leading and coinci-

dent indicators during cyclical turning points (see Chauvet 1996; Diebold and

Rudebusch 1996; Layton 1996; Chauvet and Hamilton 2005; Chauvet and Piger

2008; Chauvet and Senyuz 2012). In recognition of this trait, independent de-

velopments from Diebold and Rudebusch 1996 and Chauvet 1998 extended the

Markov-switching model through the inclusion of dynamic factors, a technique

for identifying common behavior across a large set of economic indicators to gen-

eralize their co-movements into a small set of variables known as factors (Stock

and Watson 2010b). As a result, additional indicators available at monthly

and daily frequencies could be used to estimate models with further lead time

ahead of NBER announcements, while at the same time maintaining model

parsimony (Diebold and Rudebusch 1996; Chauvet 1996; Aruoba, Diebold and

Chiara 2008). Today, incorporating a dynamic factor or first principal compo-

nent variable with autoregressive lags to estimate business cycle turning points

is considered standard practice in the Markov-switching literature.

Aside from efforts to extend the Markov-switching model’s practical use,

econometricians have also evaluated its performance in real-time regime classi-

fication. Chauvet and Piger 2008 took this approach by comparing a dynamic

factor Markov-switching model (DFMS) based on NBER’s four monthly coin-

cident indicators (nonfarm employment, industrial production, real manufac-

turing and trade sales, and real personal income excluding transfer payments,

henceforth referred to as the ”Big 4 NBER indicators”) to the Harding and Pa-

gan algorithm (MHP) - a nonparametric technique for detecting cyclical turning

points according to local minima and maxima present in each indicator. Using

a data set with values as they were initially published prior to revision, the re-

searchers observed superior results from the DFMS model, with expansion and

recession dates falling “within one month, and never more than two months,

from the corresponding NBER date” (Chauvet and Piger 2008).

In arriving at these results, Chauvet and Piger incorporated a “two-step”
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approach for detecting cyclical peaks. Specifically, this entailed waiting for the

probability of recession to breach an 80% threshold and remain above this line

for three consecutive months for a new recession to be recognized by the model.

Thereafter, the initial month this threshold was breached would be defined as

a peak date in the business cycle. Given these measures, the DFMS model was

found to produce no false signals, though with the caveat that cyclical peak

dates tended to be identified after an NBER announcement was made. On the

other hand, troughs were called on average 8 months ahead of NBER, signaling

a potential application for economic agents more interested in the end of a

recession than the beginning (e.g., value-oriented investment managers).

Parallel to the development and evaluation of Markov switching models,

econometricians have also published a number of studies evaluating logit/probit

models in predicting recessions. Estrella and Mishkin 1996, for instance, found

that a probit model based on the yield curve outperformed models with more

expansive factor-based indices of leading and coincident indicators in forecasting

out-of-sample recessions 2-6 quarters ahead, while producing competitive (albeit

inferior) results at the 1 quarter horizon.

Dueker 1997 compared static, dynamic8 and Markov coefficient-switching

probit models based on the yield curve to forecast recessions 3-12 months ahead,

and concluded that the lattermost tended to produce only marginal improve-

ments in log-likelihood for all forecast periods except the 12 month horizon.

However, because the author appeared neither to control for look-ahead bias

nor implement out-of-sample results, these results should be taken with a gen-

erous level of skepticism.

Birchenhall, Jessen, Osborn and Simpson 1999 compared logit and Markov

switching models for 1 and 3 month forecasts, and found “substantially more

accurate business-cycle regime predictions” for the former. However, their out-

of-sample test period included only one recession (1990-91), and as such, did

not provide an adequate period for performance comparison across models.

8Dynamic logit models feature autoregressive recession lags as predictors and allow the lag
order to evolve through the iterated forecasting period
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Kauppi and Saikkonen 2008 analyzed static and dynamic probit models

based on the yield curve to forecast both in and out-of-sample recessions 1-

6 quarters ahead, with the former producing superior results on 1-4 quarter

horizons while the latter generated “at least” equal performance for longer hori-

zons.

Rudebusch and Williams 2008 compared yield curve-babsed probit models

to recession probability surveys given by the Society of Professional Forecasters

(SPF), and found the former to outperform the latter on all horizons beyond

one quarter. The authors considered this result especially ”puzzling” given that

economists’ interest in the yield curve as predictive of future recessions emerged

around the 1980s.

Katayama 2010 examined the use of univariate, bivariate and trivariate logis-

tic regression models to predict out-of-sample recessions 6 months ahead, while

also considering the effect of different cumulative density functions (CDFs) on

prediction accuracy. Similar to results from previous predictor comparison stud-

ies, the author found that a trivariate model based on the yield curve (given

here as the 10 year Treasury minus Federal Funds rate), 3 month change in S&P

500, and nonfarm employment offered the best overall performance with respect

to the logged probability score (LPS) and quadratic probability scores (QPS)9.

Notably, Katayama also found superior predictive performance through the use

of Laplace and Gumbel CDFs (as opposed to more commonly-used normal and

logistic CDFs used in conventional probit and logit models, respectively).

Hamilton 2011 surveyed historical efforts at forecasting US recessions, as well

as more recent developments in nowcasting methodologies. Similar to Hamilton

1989, a Markov-switching model with GDP as the explanatory variable was im-

plemented for classifying business cycle regimes. Under this approach, recession

starting dates were recognized on average one month within their announcement

9For observations t = 1, . . . , T , St = 0 if NBER expansion, St = 1 if NBER recession,
and p̂t := model recession probability at time t, LPS is defined as 1

T

∑T
t=1(St − p̂t)2, and

compares both model accuracy as well as probability calibration. Similarly, QPS is defined as
− 1

T

∑T
t=1[St log(p̂t) + (1−St) log p̂t)], and is analogous to the mean-squared error for binary

classification accuracy.
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by NBER, while expansion starts were identified on average three months prior

to announcement. Hamilton also considered Markov models based on multiple

monthly indicators (e.g., the a dynamic factor of the Big 4 NBER variables as in

Chauvet and Piger 2008), but reasoned that while higher frequency data could

provide ”additional useful information” in classifying regimes, caution should be

warranted under real-time applications given monthly indicators’ more volatile

probability outputs relative to models based on quarterly data.

Owyang, Piger and Wall 2013 found that a probit model combining both

national and state-level predictors through Bayesian Model Averaging (BMA)

produced “substantially” better out-of-sample results than those based solely on

national data for 0-1 month recession predictions, though results across models

tended to converge at the 2-3 month horizon. Given that some states’ business

cycles tend to lead national data while others lag, and since this relationship

might reasonably be expected to evolve across time, the study represented a

novel approach at incorporating a large set of correlated variables with little a

priori knowledge on the predictive value of each variable individually10.

Fossati 2016 compared the performance of static and dynamic probits to

Markov switching models in nowcasting business cycle regimes, with separate

models for “small data” and “big data” factors11. Implementing an out-of-

sample test based on real-time data, the economist found that static logit and

Markov switching models based on the “small data” factor produced the most

attractive LPS and QPS. However, Fossati concluded that the “best” model

should be decided by the analyst’s individual cost function for accuracy ver-

sus timeliness. In this regard, static probit models performed optimally with

respect to detecting cyclical peaks and troughs sooner, but at the expense of

more volatile probability outputs (and in turn, false positives). Markov switch-

10Other methodologies for handling large sets of multicollinear predictors have also been
implemented by econometricians. Ridge regression, one such example, imposes a shrinkage
parameter on closely-related variables to avoid model overfitting. See, for example, Exterkate,
Groenen, Heik and Dijk 2013

11Fossati defined the “small data” variable as a dynamic factor based on monthly growth
in the Big 4 NBER variables, and the “big data” factor as the first principal component of “a
balanced panel of 102 monthly US macroeconomic time series” (Fossati 2016)
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ing models, for their part, tended to lag in calling recessions, but produced

probabilities more heavily clustered around 0 and 1. Finally, in contrast to

Kauppi and Saikkonen 2008, Fossati found dynamic probit models to yield in-

ferior performance both in and out-of-sample.

With respect to applying techniques from machine learning to classify busi-

ness cycle regimes, the econometric literature has been more sparse. While

researchers have considered learning techniques in relative isolation, there has

not been, to the author’s knowledge, any comprehensive analysis comparing

multiple different methodologies. With that said, articles analyzing machine

learning methodologies in economics date back to the 1990s, with publications

increasing in the last decade.

Vishwakarma 1994 analyzed a four-layer neural network using the Big 4

NBER variables to date US business cycle regimes from 1965-1989. While this

model produced a business cycle dating chronology closely matching that of

NBER, the study published in-sample results only. (While Vishwakarma men-

tioned conducting a short out-of-sample test from 1/1990-12/1992, these results

were not published in the study.) Consequently, the paper more so illustrated

neural networks’ potential use in retroactively dating business cycles rather than

classifying current regimes or forecasting turning points.

Gonzalez 2000 also evaluated the use of neural networks in macroeconomic

time series, but with a focus on regression12. To illustrate their potential, Gonza-

lez conducted an out-of-sample test to predict next-quarter growth in Canadian

real GDP from 3/1996-6/1998, and compared the predictions to those from a lin-

ear regression model developed by the Canadian Department of Finance. Both

models used a basket of leading and coincident indicators, including employment

growth, consumer confidence, long-duration interest rates, and the government’s

budgetary balance as a percentage of GDP. To assure model parsimony and de-

ter overfitting, Gonzalez implemented a single hidden layer with two units in

the neural network topology. (This setup was chosen according to results from

12Like many machine learning models, neural networks can be used for both recession and
classification purposes
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cross-validation.) In the forecast period, the neural network model produced

a mean-squared error (MSE) of 0.0774, compared with the regression model’s

0.1295. In discussing the neural network’s 40% reduction in MSE, Gonzalez con-

cluded that significant nonlinear relationships between the set of predictors and

real GDP were likely present. However, due to their slower computation times,

trial-and-error-based protocol for optimizing network topology, and “black-box”

nature of producing forecasts without straightforward interpretations, Gonzalez

cautioned that neural networks should be viewed a complement (rather than

replacement) of existing linear forecasting models.

Qi 2001 evaluated neural networks in forecasting US recessions 1-8 quarters

ahead, and was (according to the author) only the second study to apply the

model to the business cycle literature after Vishwakarma 1994. The author

conducted forecasts using a similar observation period, forecast horizon and

variable selection as Estrella and Mishkin 1998 to ensure results were compara-

ble13. The study’s universe of predictors under consideration included “interest

rates and spreads, stock price indexes, monetary aggregates, individual macro

indicators, [and] indexes of leading indicators, both by themselves and in some

plausible combinations” (Qi 2001). Out-of-sample testing was conducted from

3/1972-3/199514. For predicting turning points one quarter ahead, a univari-

ate model based on Stock and Watson 1989 leading indicator index was ranked

highest, followed closely by stock returns for the NYSE and S&P 500. Similar

to other studies, Qi found the yield curve to be the single best indicator of fu-

ture recessions at the 2-6 quarter horizon, but found that further performance

improvements were possible by featuring additional variables. Tellingly, the set

of “best” predictors was found to evolve through the decades, illustrating the

potential for methodologies that can extract a predictive signal from a large set

of macro indicators.

Inoue and Killian 2004 considered economic forecasting models where the set

13Despite methodological similarities, Qi 2001 evaluated predictive accuracy based on mean-
squared forecasting error, while Estralla and Mishkin 1998 used pseudo-R-squared

14The first observation in the data set was 6/1967
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of potential predictors is considered ”large”, albeit remains smaller than total

observations. Under situations where the universe of eligible variables is large

and contains a number of highly-correlated indicators, discerning which ones

hold the best predictive value out-of-sample can be computationally-intensive.

On the other hand, depending on the model used, including the entire set of

predictors might lead to overfitting. To address this dilemma, Inoue and Killian

applied a machine learning ensemble technique known as bootstrap aggregation

(“bagging”) to function as a variable selection method for such scenarios15.

In addition to reducing the possibility that a given model overfits the data,

bagging can also assist in reducing the variance of out-of-sample predictions; a

more rigorous treatment of this attribute can be found Breiman 1996.

In addition to modifying Breiman’s original bagging technique for selecting

predictors in a regression setting, Inoue and Killian also extended the method

to time series applications by incorporating a “block-of-blocks” bootstrap. In

time series data, temporal dependencies (i.e., autocorrelation) often exist in the

data. The block-of-blocks bootstrap attempts to reconcile this issue by dividing

the original sample into an initial set of non-overlapping blocks of consecutive

observations of size n, and then subdividing each of these block into sub-blocks of

size k < n. Resamples are generated by drawing with replacement the first-level

blocks of size n from the original set of observations, and then further sampling

with replacement a sub-block from each block drawn. Blocks of observations

are then concatenated together in the order they were drawn to form a new set

of observations.

To test the technique’s empirical validity in economic time series analy-

sis, Killian and Inoue evaluated a series of regression models to forecast CPI

inflation 1 and 12 months ahead based on an out-of-sample test period from

8/1983-7/200316. For their benchmark model, the researchers implemented an

dynamic autoregressive model with up to 12 lags of inflation used to predict fu-

15As it was originally proposed in Breiman 1996, bagging involves estimating a given model
on the original data as well as a large set of bootstrap resamples, and then averaging the
results to form the final model

16Observations started from 4/1971
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ture values17. For their bagged regression model, Killian and Inoue considered

26 macroeconomic variables in addition to the lagged inflation terms. To arrive

at this model, they proceeded according to the following steps:

1. From the unrestricted regression model, analyze each variable’s statistical

significance as being non-zero according to a two-sided t-test

2. Remove predictors that fail to show significance at the 5% level to form

the variable-restricted model

3. Perform 100 resamples of the original observations based on the block-of-

blocks bootstrap

4. Estimate the parameters of the variable-restricted model on each of these

100 resamples

5. Take an average of these 100 models to form the final bagged forecasting

model

To ensure a thorough evaluation at each step in the process, Killian and

Inoue measured the accuracy of the benchmark lagged CPI model compared

with the unrestricted model from step 1, the variable-restricted model from

step 2, and bagged model from step 5. Except the benchmark, each model was

estimated with a fixed number of lagged terms for the economic indicators, with

the range set at 1-6. At both 1 and 12 month horizons, the bagged regression

model produced the lowest root mean-squared error (RMSE) in a majority of the

lag orders tested. In some cases, the performance improvement was dramatic -

e.g., independent of the lag order specified, the highest ranked bagged model for

forecasting inflation 12 months ahead produced an approximate 20% reduction

in RMSE over the highest ranked unrestricted model.

Ng 2013 evaluated boosting - a machine learning ensemble technique similar

to bagging - in order to improve the out-of-sample performance of logit models

17AIC was used as the decision criteria for determining the lag order at each iteration in
the forecast
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in predicting recessions. In its most basic form, boosting is used to improve

the performance of a group of ”weak” models (defined as outputting predictions

only slightly more accurate than chance) through an iterative process as follows:

1. Take a sample of the data, with each given observation assigned a uniform

probability (”weighting”) of being drawn

2. Find a ”weak” model from the set of candidates that minimizes the train-

ing classification error ε

3. Reassign weightings such that observations that were misclassified by the

previous model are given a higher probability of being sampled in future

rounds

4. Repeat steps 2-3 until ε converges

5. Assign a final model by taking a weighted-vote of each ”weak” model’s

classification output based on accuracy

After modifying this approach to address time series-specific considerations

(e.g., autocorrelation), Ng analyzed univariate logit models based on a universe

of 132 monthly economic indicators to assess their their predictive utility for 3,

6 and 12 month ahead recession forecasts from 9/1986-12/201118. In line with

previous studies on the matter, Ng found that any one variable’s predictive value

tended to evolve throughout time, lending to the observation that each business

cycle presents unique behavior in the data. With that said, indicators generally

considered predictive in previous analyses, e.g., the yield curve, were found to

hold value in Ng 2013, although mining-based employment growth stood out as

an unusual candidate.

Berge 2014 compared four different model combination techniques for pre-

dicting recessions at the 0, 6, 12, 18 and 24 month horizon. This included an

equally-weighted model average, a BMA model, and linear and nonlinear boost-

ing models. Forecasts were based on an out-of-sample period from 1985-2013,

18The starting observation in the data was 3/1963
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with initial observations starting in 1970. Similar to other studies summarized

above, Berge found that real economic variables, e.g., the NBER Big 4, held a

majority of their predictive value under short-term horizons, e.g., the 0 and 3

month horizon. On the other hand, financial variables, e.g., the slope of yield

curve and corporate credit spreads, standing ahead of the group for predict-

ing recessions 6-24 months out. For the combination techniques, a nonlinear

boosted model was the most accurate model at every horizon tested.

Giusto and Piger 2016 compared a machine learning technique known as

learning vector quantization (LVQ) to the dynamic factor Markov switching

model for nowcasting recessions in real-time. Similar to Chauvet and Piger 2008,

the analysis was based on a real-time data set for the Big 4 NBER variables

as they initially released. Out-of-sample testing was conducted from 12/1976-

7/2013, with 2/1967 as the first observation in the data. The LVQ model

predicted business cycle peak and trough dates that were, on average, within

0.8 months of official NBER designations. Moreover, peaks and troughs were

detected 134 and 234 days, respectively, after their initial occurrence. The

DFMS model, on the other hand, identified cyclical peaks on average one month

after their official announcement by NBER, while detecting troughs on average

249 days within their initial occurrence. (For their part, NBER’s Business Cycle

Dating Committee announced recession and expansion start dates on average

224 and 446 days following their actual realization.) Consequently, the study

represents the potential of LVQ in particular, and machine learning approaches

in general, for real-time recession nowcasting.

III Model Descriptions

i Choice of Models under Consideration

This paper evaluates the out-of-sample performance of conventional economet-

ric models to more novel machine learning approaches for nowcasting reces-

sions from 1/1980-8/2014. The former group includes logistic regressions and
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Markov-switching models, while the latter considers k-nearest neighbors, sup-

port vector machines, naive Bayes, random forests, gradient-boosted trees and

artificial neural networks.

The selection criteria for machine learning techniques was based on results

from Caruana and Niculescu-Mizil 2006, which evaluated ten families of machine

learning models on 11 unique cross-sectional data sets to gauge out-of-sample

performance. Taking the mean from 8 different metrics to gauge predictive

accuracy, Caruana and Niculescu-Mizil observed the most compelling results

from bagged trees, random forests and neural networks.

ii Probability Calibration and Platt’s Scaling

To further improve accuracy, Caruana and Niculescu-Mizil 2006 implemented

a technique known as Platt’s scaling, which seeks to calibrate a given model’s

classification probability according to the distribution of empirical results ob-

served in the data set. Stated otherwise, if a given economy is in a recession

for 20% of the periods in the sample, a well-calibrated model should produce

recession probabilities of 90-100% in 20% of its predictions19.

Implementing Platt’s scaling on time series data is straightforward, and pro-

ceeds by the following process:

1. Partition the set of total observations according to an in-sample estimation

period and out-of-sample testing period.

2. Estimate the model of interest on the in-sample data in order to make

predictions for the out-of-sample data.

3. Take the set of predictions and partition it into another set according to

an in-sample estimation period pi and out-of-sample testing period p0.

4. Estimate a univariate logit model based on the original model’s produc-

tions from period pi in order to produce predictions new for p0. The

19As probabilities are continuous over the unit interval, this requires ”binning” the model’s
set of predictions, usually by increments of 0.1.
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outputs from this logit model are defined as Platt-scaled.

Caruana and Niculescu-Mizil found that this technique was able to further

improve out-of-sample performance beyond that observed in the initial models

tested. However, results were not uniform. For models producing well-calibrated

classification probabilities without additional measures, e.g., logistic regressions

and neural networks, little-to-no additional improvement in accuracy generally

took place20. However, models that tend to produce sub-optimal probability-

calibrations, e.g., support vector machines, witness improvements in accuracy

following Platt-scaling. (It is important to note that the eligible set of data for

use in the Platt-scaling process is far greater in cross sectional models than it

is for time series models, given the latter’s data dependency structure.)

Consequently, in addition to gauging out-of-sample recession nowcasting per-

formance from 1/1980-8/2014, this paper also analyzed whether Platt’s scal-

ing might further improve predictive accuracy for nowcasting recessions. As

such, the in-sample estimation period for this exercise took place from 1/1980-

12/2000, and the out-of-sample test period took place from 1/2001-8/2004.

However, due to time constraints, results were not published.

iii Schools of Thought in the Machine Learning Literature

To the uninitiated, the set of models featured in the machine learning literature

appears to be a disparate set of methodologies with no underlying organization

structure. This, however, is not entirely the case. In his 2015 book, The Mas-

ter Algorithm, computer science professor Pedro Domingos makes the provides

the following different schools of thought in machine learning based on their

underlying philosophical approaches:

1. Analogizers. Practitioners from this school of thought consider analo-

gous reasoning to be the primary means by which individuals use past

experiences to make assessments of the world. An example of this can

20The author readily acknowledges that using predictions from one logit model as the inputs
for another is likely to be an exercise in redundancy.
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be seen in financial markets, where investors might base interpretations

of current events according to similar episodes from the historical record.

The primary machine learning models developed from this approach - k-

nearest neighbors and support vector machines - form the quantitative

implementation behind analogous reasoning.

2. Bayesians. This approach incorporates Bayes’ Rule, which bases a given

event’s probability on prior evidence and updates these probabilities as

new information is encountered. Practitioners from this school have de-

veloped a number of machine learning models, including the naive Bayes

model, Hidden Markov models (equivalent to the Markov-switching tech-

niques discussed above), and Bayesian networks.

3. Symbolists. Here, the focus is on applying formal rules of logic to develop

predictive models. As such, symbolists’ primary model of choice is the

decision tree, which makes produces binary classifications according to a

series of nested if-statements. More advanced implementations of this idea

include random forests and boosted trees.

4. Connectionists. Practitioners in this group develop predictive method-

ologies based on mathematical models of the brain. Consequently, their

machine learning technique of choice is the artificial neural network. More

recently, connectionists have gained prominence in the development of

deep learning, an advanced class of neural network models featured in

such applications as facial recognition and self-driving vehicles.

5. Evolutionists. Under this paradigm, evolutionary processes provide the

framework for optimizing model performance. As a result, practitioners in

this school focus on developing genetic algorithms to ”evolve” competing

sets of models into a final model. In contrast to the models discussed

above, genetic algorithms are an optimization technique, not a predictive

model.
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Following the organization set out by Domingos, a discussion proceeds over

the properties of machine learning models in this study based on their respective

school of thought21.

Analogy-Based Approaches

k-Nearest Neighbors

One of the most straightforward techniques in machine learning, k-nearest neigh-

bors (kNN) are both intuitively simple and computationally fast. Consider a

set of observations t = 1, . . . , T from a binary class yt with predictive variables

x1,t, . . . , xn,t. For a new observation xi,T+h, the model simply considers the

classes of the nearest k neighbors in Euclidean space, with a majority vote de-

termining how the new observation is classified22. To improve out-of-sample

performance, a distance-weighted approach can also be taken, with historical

observations that lie closer to the new data point xi,T+h given a higher weight-

ing in the vote.

Despite its simplicity, one of the primary disadvantages of the kNN model

is its susceptibility to deterioration in out-of-sample accuracy when the set of

predictors xi is large. This is because as the dimensionality of the variable space

increases, the neighborhood of any given new data point becomes less dense with

respect to observations in the sample. Consequently, implementing the kNN

model typically requires pre-selecting predictors according to their performance

in out-of-sample testing, or implementing a dimensionality-reduction technique

such as principal components analysis.

Support Vector Machines

This SVM model also takes an intuitive approach to classifying new observations

in a data set, though with an ingenious twist. As before, consider a set of

predictors xi,t, . . . , xn,t and a binary class yt ∈ {0, 1} . In the variable space,

assume there exists a linear boundary separating observations in class 0 from

21Note that genetic algorithms were not featured in this study, and as such, further consid-
eration is not taken

22Non-Euclidean spaces can also be implemented, though this is less common in the litera-
ture
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observations in class 1. In this case, only those observations at the nearest

margins of this boundary will determine where the boundary is placed in the

space. These observations form sets known as support vectors. As such, the

SVM model fits the linear separation boundary that maximizes the marginal

distance between support vectors associated with observations from classes 0

and 1.

A natural response to the description above is the question of how SVMs

address cases where the boundary between classes is not linearly separable. To

this end, the model takes an ingenious approach. Using a technique known as

the ”kernel trick”, the SVM maps the variable space into a higher dimension,

and then fits the separating hyperplane that maximizes the margin between

support vectors in this space. Thereafter, the space is mapped back to its

original dimension, where the decision boundary now takes a non-linear form.

Given this method of fitting a maximum margin boundary, SVMs are gen-

erally more prone to overfitting than other techniques. Consequently, their use

among machine learning practitioners has increased heavily since the model’s

initial popularized in the 1990s.

Bayesian Approaches

Naive Bayes

The naive Bayes model takes a first-principals approach to applying Bayes’ Rule

to binary classification. Given xi,t and yt as defined above, Bayes’ Rule provides

the conditional probability that a new observation yT+h is in class 1 as follows:

Pr(yT+h|xi) =
Pr(yT+h) Pr(xi|yT+h)

Pr(xi)

Pr(yT+h) is known as the prior probability of the outcome. Pr(xi,t) is the

probability of the predictor values. Pr(yT+h) Pr(xi|yT+h) is the conditional

probability of xi given yT+h.

While implementing Bayes’ for a multivariate set of predictors X would
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otherwise add considerable complexity to the simple formula given above, the

naive Bayes model circumvents this issue by assuming that the probabilities for

Pr(xi), i = 1, . . . , n are independent of each other. Consequently, we have

Pr(X|yT+h) =

n∏
i=1

Pr(xi|yT+h)

thus simplifying the computation immensely.

While this is assumption of independence is a strong one to make (especially

with respect to time series data), practical use of the model has shown it to

provide competitive performance in domains it should otherwise fail, e.g., spam

detection.

Symbolist Approaches

Decision Trees

Popularized by Leo Breiman in the 1980s, decision trees provide the foundation

for two popular machine learning models - random forests and boosted trees.

For continuous variables xi,t and binary yt as defined above, classification-based

decision trees operate by partitioning the space of predictors X according to a

series of nested logical rules that take a tree-based form.

To illusrate this idea, let’s consider a simple recession classification model

that features only one predictor - monthly growth in nonfarm employment

(NFP). Suppose we define the rule: if NFP < 0%, classify the current period as

a recession. Otherwise, classify it as an expansion.

Now consider a model that also incorporates monthly growth in industrial

production (IP). To this, we add the following: if NFP < 0% and IP < 0%,

classify the period as a recession. Let’s assume further that we think NFP is

more important than IP for predicting recessions. We could further state that if

NFP < 0% and IP > 0%, the current period should be classified as a recession,

while if NFP > 0% and IP < 0%, the current period could be classified as

an expansion. Finally, if NFP > 0% and IP > 0%, classify the period as an
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expansion.

In practice, while the mechanics of decision trees are accurately summarized

above, the actual approach for determining the value k such that xi,t > k forms a

given classification rule differs. Starting from the node at the top of the decision

tree and moving downward, the model forms each decision threshold by taking a

”greedy” approach - i.e., for the above model where NFP is topmost, we would

set k equal to the value that produces the most correctly-classified economic

regimes. This process would then reiterate at each node down the decision tree.

Consequently, the model partitions the variable space into a series of piecewise

linear decision boundaries.

Despite their ease of interpretation, decision trees tend to suffer in practical

use due to their proneness to overfitting the data. To address this dilemma, two

prominent approaches have been taken in the literature - random forests, and

boosted trees.

Random Forests and Boosted Trees

Random forests use bootstrap aggregation (an ensembling technique described

above) along with a random assignment of variables for each node to train a

group of decision trees (known as a forest) on a given set of observations before

combining each model’s prediction through a simple vote. This process operates

as follows:

1. Generate a bootstrap sample of the data, and use this sample to estimate

a decision tree

2. For each node in the decision tree, randomly select j < n of the original

predictors, and select predictor ĵ that produces the lowest classification

error in partitioning the variable space

3. Repeat steps 1-2 until some stopping criteria has been met

Boosted trees, for their part, operate on a similar basis as random forests,

but implement a boosting algorithm in place of bootstrap aggregation. In addi-

tion, they do not feature the random variable selection process used in random
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forest models.

Connectionist Approaches

Artificial Neural Networks

One of the few machine learning models studied in the business cycle liter-

ature, artificial neural networks (ANN) are popular in a number of domains

where model interpretation is given a low priority relative to predictive accu-

racy. ANNs feature a network of nodes known as neurons, with sets of nodes

grouped by layer. In its most basic form, this model is equivalent to linear

regression - i.e., explanatory variables are mapped to the input nodes, assigned

weightings based on the minimization of some cost function, and then summed

together to produce an output. More typically, however, ANNs feature at least

one hidden layer. (See figure on the following page for illustration.)

Despite the nomenclature, the process of producing predictions from ex-

planatory variables remains straightforward. After variables are mapped to the

input layer, weightings to each variable are assigned as in linear regression.

Weights of each variable are then mapped to the nodes in the hidden layer.

From here, an activation function is used to map these weightings into a final

output. This function usually takes the form of the logistic CDF as featured in

logit models.

Due to the functional composition implied in the above process, parameter

estimation for neural networks does not lend itself to straightforward calculus-

based cost minimization techniques seen in linear regression. Consequently, a

numerical optimization technique known as backpropagation is used. While

the particular details of this approach are beyond the scope of this paper, a few

points should be emphasized. First, the model is generally more computationally-

intensive than other machine learning techniques. Second, one pitfall from this

approach is that parameters may be estimated from local (rather than global)

minima to the cost function. As a result, neural networks can be prone to

unpredictable performance.
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Figure 1: Diagram of an Artificial Neural Network.

IV Out-of-Sample Performance Comparisons

To gauge how the machine learning models detailed above compare to more

conventional econometric techniques from the literature in nowcasting reces-

sions, an out-of-sample test was taken from 1/1980-8/201423. Variables were

chosen according to their predictive performance in the literature (e.g., Berge

2013), and included monthly growth rates in nonfarm payrolls (NFP), industrial

production (IP), real personal income excluding transfer payments (RPI), and

private sector payrolls (PRIV). In addition, the annual growth rate in headline

unemployment (UN), the yield curve (YLD), and the credit spread between

Moody’s BAA and AAA corporate bond yields (CORP) was also used in the

universe of predictors. In line with previous studies, single period lags were

taken for variables from the Big 4 NBER set, while 6, 9 and 12 month lags of

the yield curve and corporate credit spreads were implemented.

In order to prevent look-ahead bias, assumptions were made on when to

update the set of NBER recession dates. First, if an announcement was by

NBER of the starting date of a given recession, the analyst would assume that

all dates following the recession’s start through the announcement date would

23The starting observation in the sample was 1/1960

26



also be considered recessions. This feature is based both off the persistence

of economic regimes, as well as the lag given by NBER in announcing turning

points. Consequently, the set of NBER dates classified by economic regime

would be updated through the date of the most recent NBER announcement in

the model. In instances where one year passed following the announcement of

a business cycle trough, the analyst would assume observations from one year

prior to the model’s nowcast date were classified as expansions. This step was

implemented to handle long periods of economic expansion in the data.

To allow for relative and absolute comparisons, two approaches were taken

with respect to variable selection. First, each model was evaluated according to

a standard set of variables - i.e., NFP, IP and their single period lags. While

this approach was originally to be taken in recognition of past studies that have

analyzed the Big 4 NBER variables, it was determined that real manufacturing

and trade sales did not add any predictive value to the models evaluated (and in

many cases, was associated with performance declines), while RPI only yielded

marginal performance improvements in a subset of models.

After this initial evaluation, models were then tested based on the ”best”

variable subset for each model individually. For each model tested, the best

variable subset is as follows:

• kNN: NFP, IP, IP.L1, PRIV, YLD.L6, YLD.L12

• SVM: NFP, NFP.L1, IP, IP.L1, UN, YLD.L9

• Naive Bayes (NB): NFP, IP, IP.L1, PRIV, YLD.L6, YLD.L12

• Random Forest (RF): NFP, NFP.L1, IP, IP.L1,

• Boosted Trees (BT): PRIV, PRIV.L1, IP, IP.L1, UN, YLD.L9

• Markov Switching Model (HMM): NFP, NFP.L1, IP, IP.L1

• Logit (LOG): NFP, NFP.L1, IP, IP.L1, RPI, YLD12

In line with previous literature, the first principal component was taken for

the variables in the Markov switching model to maintain a univariate approach.
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In addition to the above models, two basic combination approaches were

taken. First, the classification output of each model was used to form a majority-

vote model (MV). Second, the probability outputs of each model were averaged

together to form an average-mean model (AP).

Results for the best variable selection tests are as follows:

BT HMM KNN LOG NB RF SVM MV AP
Precision 0.84 0.91 0.98 0.83 0.84 0.93 0.89 0.95 0.87

Recall 0.93 0.77 0.95 0.96 0.96 0.95 0.89 0.98 0.96
F-1 Score 0.88 0.83 0.96 0.89 0.90 0.94 0.89 0.96 0.92

Area Under ROC Curve 0.95 0.88 0.97 0.97 0.97 0.97 0.94 0.99 0.97

Table 1: Best Variable Selection Test Results

Unsurprisingly, for the models based on a subset of the Big 4 NBER, results

were less competitive:

BT HMM KNN LOG NB RF SVM MV AP
Precision 0.71 0.91 0.84 0.82 0.74 0.79 0.90 0.86 0.82

Recall 0.84 0.77 0.88 0.89 0.91 0.89 0.84 0.89 0.89
F-1.Score 0.77 0.83 0.86 0.85 0.82 0.84 0.87 0.88 0.85

Area Under ROC Curve 0.89 0.88 0.92 0.93 0.93 0.93 0.91 0.94 0.93

Table 2: NFP, NFP.L1, IP, IP.L1 Variable Test Results

From the results, we conclude the following. First, despite their simplicity,

logistic regressions stood up remarkably with respect to more novel techniques

from the machine learning literature. Second, the simple k-nearest neighbor

model outperformed every other model in the best variable selection test, while

placing in the top 3 for models under the fixed variable test. Third, performance

from the majority-vote model outperformed the top individual model in both

tests, speaking to the potential use for model combination approaches based on a

set of different methodologies. Finally, the performance from Markov switching

models was relatively poor, while also producing the slowest computation times.

Given that specifying the parameters for this model is a nontrivial exercise,

caution is warranted on attempts to conclude the inferiority of the Markov

switching model.
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