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In nowcasting, one wants to forecast a low frequency time
series, y, using observations of several higher frequency time
series, Z. A typical setting is:

y — quarterly real GDP growth.
Z — a broad cross section of higher frequency economic

indicators (e.g. weekly and monthly.)

Task: Find E[yN | Zt].
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DATA

I Release time stamps are essential.
I ALFRED is used in the study.
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MODELS

I Models are on the form

yN = wTF(Zt) + ε = wTX + ε.

We seek the projections F.
I Two popular approaches: MIDAS-type and Dynamic

Linear Factor models (DLM).
I The suggested approach is related to MIDAS.
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MIDAS

I Mixed-data sampling (MIDAS)1 projects the time series
onto each quarter

FMIDAS(Zt) = XMIDAS
t

by e.g. averaging the values. The prediction is
ŷN|t = wTXMIDAS

t .
I Fine for historical regression.
I Forecasting is more difficult due to the “ragged edge”

problem.

1Ghysels et al. (2004)
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MIDAS

ZN−2 XN−2 yN−2

ZN−1 XN−1 yN−1

Zt XN yN
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DYNAMIC MASKING
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DYNAMIC MASKING

I Simple idea: Construct regression features dynamically.
Similar to MIDAS but the ragged edge problem
disappears!

I Features are constructed for immediate use.
I The model is updated when data is updated.
I In both DLM and MIDAS the model is constant

throughout the quarter and only data is updated.
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ALGORITHM

1. Find shape of the data available today.
2. Mask out unavailable data from old data-vintages.
3. Use MIDAS-type projection of masked data onto each

quarter.
4. Regress on the masked data to get w.
5. Predict: ŷN|t = wTFMask

t

= wTXMask
t .
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Why Masking?

I Theoretical motivation
I Flexible and easy in implementation
I Good results
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Time t
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In general: θ̃ 6= θ!
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METHODS

Given XMask we predict ŷ = wTΦ(XMask).
I Regression: Φ is the identity and the estimates are

I wOLS ← arg minw‖y− wTFMask‖2,
I wRidge ← arg minw‖y− wTFMask‖2 + λ‖w‖2.

I Neural Network

ŷ = wTΦNN(XMask) =

M∑
k=1

wkh(θT
k XMask),

where h is the activation function.
I Kernel methods predict using training data:

ΦKernel(XMask) = k(XMask,XMask
Train ).
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WHY MASKING?

I Theoretical motivation
I Flexible and easy in implementation
I Good results
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Any remark, question or suggestion is welcomed!

jonas@math.kth.se
http://people.kth.se/∼jhallg/
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RAGGED EDGE3

1,6 are published with lags. 2,3,5 are preliminary. 4 is given:
interest rate.
Revision can take time:
In 2004 US revised the money supply (M2) series from January
1959 onwards2!

2Bouwman and Jacobs (2011)
3Wallis (1986)
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