| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

## Nowcasting with Dynamic Data Masking and Regularized Regression

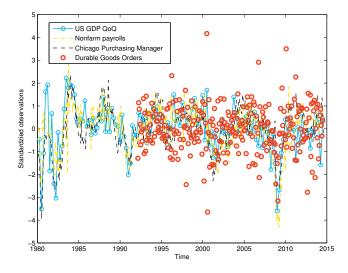
#### Erik Alpkvist<sup>1</sup> Jonas Hallgren<sup>2†</sup> Timo Koski<sup>2</sup> Johannes Siven<sup>1</sup> Ard den Reijer<sup>4</sup>

<sup>1</sup>GSA Capital London, UK

<sup>†</sup>Corresponding and presenting author <sup>2</sup>KTH, Royal Institute of Technology Stockholm, Sweden

<sup>4</sup>Sveriges Riksbank (Central Bank of Sweden) Stockholm, Sweden

CFE 2015 Dec 12, 2015, University of London


| Introduction | Models | Masking  | References |
|--------------|--------|----------|------------|
| ●00          | 0000   | 00000000 | 0          |
|              |        |          |            |

In *nowcasting*, one wants to forecast a low frequency time series, *y*, using observations of several higher frequency time series, *Z*. A typical setting is:

- y quarterly real GDP growth.
- *Z* a broad cross section of higher frequency economic indicators (e.g. weekly and monthly.)

Task: Find  $\mathbb{E}[y_N \mid Z_t]$ .

| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |
|              |        |          |            |



| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 00●          | 0000   | 00000000 | 0          |
| _            |        |          |            |

#### Data

- Release time stamps are essential.
- ALFRED is used in the study.



| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | ●000   | 00000000 | 0          |
|              |        |          |            |

## MODELS

Models are on the form

$$y_N = w^T F(Z_t) + \epsilon = w^T X + \epsilon.$$

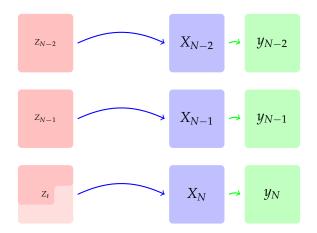
We seek the projections *F*.

- Two popular approaches: MIDAS-type and Dynamic Linear Factor models (DLM).
- The suggested approach is related to MIDAS.

| Introduction | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | ○●○○   | 00000000 | 0          |
| MIDAS        |        |          |            |

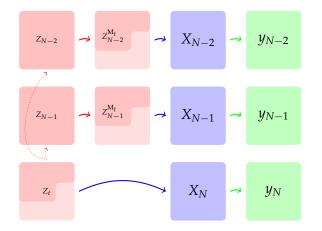
 Mixed-data sampling (MIDAS)<sup>1</sup> projects the time series onto each quarter

$$F^{\mathrm{MIDAS}}(Z_t) = X_t^{\mathrm{MIDAS}}$$


by e.g. averaging the values. The prediction is  $\hat{y}_{N|t} = w^T X_t^{\text{MIDAS}}$ .

- Fine for historical regression.
- Forecasting is more difficult due to the "ragged edge" problem.

<sup>&</sup>lt;sup>1</sup>Ghysels et al. (2004)


| Introduction<br>000 | Models<br>○○●○ | Masking<br>00000000 | References<br>0 |
|---------------------|----------------|---------------------|-----------------|
|                     |                |                     |                 |
|                     |                |                     |                 |

## MIDAS



| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

#### DYNAMIC MASKING



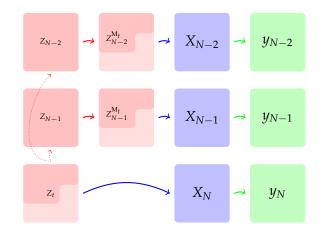
| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | ●0000000 | 0          |
|              |        |          |            |

#### DYNAMIC MASKING

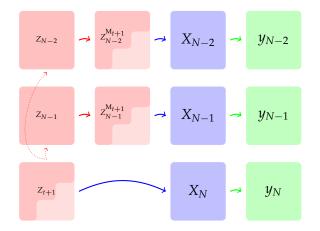
- Simple idea: Construct regression features dynamically. Similar to MIDAS but the ragged edge problem disappears!
- Features are constructed for immediate use.
- The model is updated when data is updated.
- In both DLM and MIDAS the model is constant throughout the quarter and only data is updated.

| Introduction | Models | Masking   | References |
|--------------|--------|-----------|------------|
| 000          | 0000   | o●ooooooo | 0          |
|              |        |           |            |

### Algorithm


- 1. Find shape of the data available today.
- 2. Mask out unavailable data from old data-vintages.
- 3. Use MIDAS-type projection of masked data onto each quarter.
- 4. Regress on the masked data to get *w*.
- 5. Predict:  $\hat{y}_{N|t} = w^T F_t^{\text{Mask}}$

| Introduction | Models | Masking   | References |
|--------------|--------|-----------|------------|
| 000          | 0000   | o●ooooooo | 0          |
|              |        |           |            |


### Algorithm

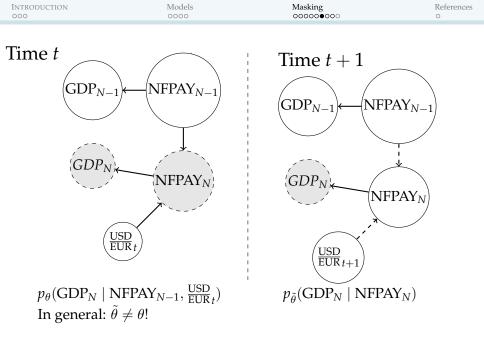
- 1. Find shape of the data available today.
- 2. Mask out unavailable data from old data-vintages.
- 3. Use MIDAS-type projection of masked data onto each quarter.
- 4. Regress on the masked data to get *w*.
- 5. Predict:  $\hat{y}_{N|t} = w^T F_t^{\text{Mask}} = w^T X_t^{\text{Mask}}$ .

| Introduction  | Models | Masking   | References |
|---------------|--------|-----------|------------|
| 000           | 0000   | 00●000000 | 0          |
| Time <i>t</i> |        |           |            |



| INTRODUCTION | Models | Masking   | References |
|--------------|--------|-----------|------------|
| 000          | 0000   | ooo●ooooo | 0          |
| Time $t + 1$ |        |           |            |




| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

# Why Masking?

| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

# Why Masking?

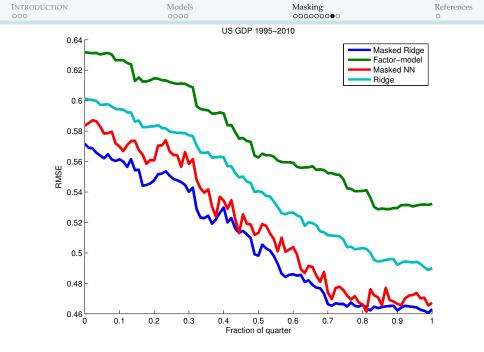
- Theoretical motivation
- Flexible and easy in implementation
- Good results



| INTRODUCTION<br>000 | Models<br>0000 | Masking<br>000000●00 | References<br>0 |
|---------------------|----------------|----------------------|-----------------|
|                     |                |                      |                 |
|                     |                |                      |                 |

## Methods

Given  $X^{\text{Mask}}$  we predict  $\hat{y} = w^T \Phi(X^{\text{Mask}})$ .


- Regression: Φ is the identity and the estimates are
  - $w^{\text{OLS}} \leftarrow \arg \min_{w} ||y w^T F^{\text{Mask}}||_2$ ,
  - $w^{\text{Ridge}} \leftarrow \arg\min_{w} ||y w^T F^{\text{Mask}}||_2 + \lambda ||w||_2.$
- Neural Network

$$\hat{y} = w^T \Phi^{\text{NN}}(X^{\text{Mask}}) = \sum_{k=1}^M w_k h(\theta_k^T X^{\text{Mask}}),$$

where h is the activation function.

► Kernel methods predict using training data:

$$\Phi^{\text{Kernel}}(X^{\text{Mask}}) = k(X^{\text{Mask}}, X^{\text{Mask}}_{\text{Train}})$$



| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

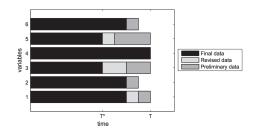
### WHY MASKING?

- Theoretical motivation
- ► Flexible and easy in implementation
- Good results

| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | 0          |
|              |        |          |            |

#### Any remark, question or suggestion is welcomed!

```
jonas@math.kth.se
http://people.kth.se/~jhallg/
```


| INTRODUCTION | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | ○          |
|              |        |          |            |

#### REFERENCES

- Doz, Catherine and Giannone, Domenico and Reichlin, Lucrezia A two-step estimator for large approximate dynamic factor models based on Kalman filtering. *Journal of Econometrics*, 164(1):,188–205, 2011.
- Kees E Bouwman and Jan PAM Jacobs. Forecasting with real-time macroeconomic data: the ragged-edge problem and revisions. *Journal of Macroeconomics*, 33(4):784–792, 2011.
- Eric Ghysels, Pedro Santa-Clara, and Rossen Valkanov. The MIDAS touch: Mixed data sampling regression models. *Finance*, 2004.
- Kenneth F Wallis. Forecasting with an econometric model: The ragged edge problem. *Journal of Forecasting*, 5(1):1–13, 1986.

| Introduction | Models | Masking  | References |
|--------------|--------|----------|------------|
| 000          | 0000   | 00000000 | •          |
|              | _      |          |            |

## RAGGED EDGE<sup>3</sup>



1,6 are published with lags. 2,3,5 are preliminary. 4 is given: interest rate.

Revision can take time:

In 2004 US revised the money supply (M2) series from January 1959 onwards<sup>2</sup>!

<sup>&</sup>lt;sup>2</sup>Bouwman and Jacobs (2011) <sup>3</sup>Wallis (1986)