NPS Learning in Place

Algebra I

Week 1 April 6-10	Factoring Day 1-5
Week 2 April 20-24	Factoring Day 6-10

Name \qquad School \qquad Teacher \qquad

Day 1: Factoring Using the GCF

Notes

Factoring:
GCF: The greatest common factor is the largest factor that divides all terms evenly Step 1: Look at the coefficient: determine the GCF and write it down.
Step 2: Look at the variable. The variable must be common to all term to be a GCF
Step 3: If variable is common to all terms, take the one with the smallest exponent
Step 4: Divide all terms by the GCF to get the remainder in parenthesis and simplify Step 5: Check the result by using the distributive property

Example 1: Factor the following polynomials by finding the greatest common factor.

$$
15 x^{2} y+5 x y^{2}-25 x^{3}
$$

Step 1: ($15,5,25$) GCF: 5
Step 2: x is the only variable common to all terms
Step 3: x

> GCF: 5x

Step 4: $5 \times\left(\frac{15 x^{2} y}{5 x}+\frac{5 x y^{2}}{5 x}-\frac{25 x^{3}}{5 x}\right)$

Answer: $5 x\left(3 x y+y^{2}-5 x^{2}\right)$

Example 2: Factor the following polynomials by finding the greatest common factor.

$$
6 a^{3} b-8 a^{4}+10 a^{2} b
$$

Step 1: $(6,8,10)$ GCF: 2
Step 2: a is the only variable common to all terms
Step 3: a^{2} is the a with the smallest exponent

$$
\text { GCF: } \mathbf{2 a} \mathbf{a}^{2}
$$

Step 4: $2 a^{2}\left(\frac{6 a^{3} b}{2 a^{2}}-\frac{8 a^{4}}{2 a^{2}}+\frac{10 a^{2} b}{2 a^{2}}\right)$
Answer: $2 a^{2}\left(3 a b-4 a^{2}+5 b\right)$

Step 5: Check

$2 a^{2}(3 a b)-2 a^{2}\left(4 a^{2}\right)+2 a^{2}(5 b)$

$$
6 a^{3} b-8 a^{4}+10 a^{2} b
$$

Day 1: Factoring Using the GCF

Factor each expression by factoring out the GFC	2. $9 x^{2}-3 x$	3. $21 b-15 a$
1. $x y$		
4. $27 y^{3}+18 y^{2}$	5. $12 x^{2}-16 x$	6. $28 x^{5}-7 x^{2}$
7. $2 x^{2} y-2 x y$	8. $8 m^{3}+16 m^{2} n$	9. $4 b^{3}+2 b^{2}+8 b$
10. $4 x y^{2}+24 x^{2} y^{6}-36 x^{4} y$	11. $14 c^{2} d-2 c d^{2}+10 c d$	12. $6 x^{2} y^{3}+9 x y^{4}+18 y^{5}$
13. $2 a^{2}+12 a b+6 b^{2}$	$14.8 x^{4}-28 x^{3} y^{3}-6 x^{2} y^{2}$	$15.6 a^{4} b-10 a^{3} b^{2}-6 a^{2} b^{3}$

Day 2: Finding Factors Sums and Differences
Example 1: Find two factor whose product is 12 and whose sum is 7
Step 1 factors of 12: 1, 2, 3, 4, 6, 12
Step 2 Product of 12 : ($1 \bullet 12$), ($2 \bullet 6$), (3 • 4)
Step 3 Sum of 7: $(1+12),(2+6),(3+4)$
Answer: 3 and 4
Example 2: Find two factors whose product is $\mathbf{- 6}$ and whose sum is 1 Step 1 Factors of $-6:-3,-2,-1,1,2,3$
Step 2 Product of -6 : (-3 • 2), (-2 • 3), (-1 • 6), ($1 \bullet-6$), ($2 \bullet-3$), ($3 \bullet-2$)
Step 3 Sum of 1: ($-3+2$), $(-2+3),(-1+6),(1+(-6)),(2+(-3)),(3+(-2))$
Answer: - 2 and 3

Directions: Find two factors whose product and sum is as indicated:

Product	Sum	Factors
-6	1	
36	-13	
-16	-6	
-4	0	
-33	8	
20	9	
6	-7	
81	-18	
-12	-1	
55	-56	
48	14	
100	25	
-49	0	
7	8	
3	-4	
-28	3	
21	10	
56	15	
-22	9	

Product	Sum	Factors
-56	1	
35	12	
-32	-3	
-24	5	
-42	-1	
6	-5	
14	-9	
1	2	
-6	5	
-121	0	
-32	14	
25	-24	
-40	6	
-52	-9	
-6	-5	
1	-2	
54	-15	
16	10	
-27	6	

Day 3: Factoring a trinomial in the form $a x^{2}+b x+c$
Notes

Step 1: Set up parenthesis with your variable in front. ($\mathrm{x} \quad$)($\mathrm{x} \quad$)
Step 2: set up

Step 3: Put the answers inside the parenthesis. (Watch signs)
Step 4: check your work by using the distributive property
Example: Factor $\mathrm{x}^{2}+2 \mathrm{x}-8$
Step 1: $(x \quad)(x \quad)$
Step 2:

Step 3: $(x-2)(x+4)$ Step 4:

$$
\begin{aligned}
& x(x+4)=x \bullet x+x \bullet 4=x^{2}+4 x \\
& -2(x+4)=-2 \bullet x-2 \bullet 4=-2 x-8 \\
& x^{2}+4 x-2 x-8 \\
& x^{2}+2 x-8
\end{aligned}
$$

Day 3: Factoring a trinomial in the form $a x^{2}+b x+c$

Multiply a \& c in the trinomials \& place the product on top. Place b on the bottom then factor.

1. $x^{2}+5 x-14$

Day 4: Factoring a trinomial in the form $a x^{2}+b x+c$

Directions: Factor each trinomial		
1. $x^{2}+14 x+24$	2. $x^{2}+9 x+20$	3. $x^{2}-6 x-16$
4. $x^{2}-8 x+7$	5. $x^{2}+9 x+20$	6. $x^{2}-8 x-9$
7. $x^{2}+4 x-5$	8. $x^{2}+5 x-36$	9. $n^{2}-15 n+44$
10. $y^{2}+y-30$	11. $x^{2}-16 x+55$	12. $x^{2}-13 x+12$

Day 4: Factoring a trinomial in the form $a x^{2}+b x+c$

Factor each quadratic. Find the matching answer in the word bank, then fill it in for the solution!
Don't \qquad
\#1
\#2 on my \qquad \#3
 \qquad
\qquad you \qquad \# of \qquad !

| 1. $x^{2}+13 x+40$ | 2. $x^{2}-5 x-50$ | |
| :--- | :--- | :--- | :--- |
| 3. $x^{2}+x-72$ | $4 . x^{2}+2 x-3$ | |
| 5. $x^{2}-1 x-72$ | | |
| 7. $x^{2}+5 x-14$ | $6 . x^{2}-15 x+50$ | |

Day 5: Factoring Polynomials with greatest common factors

Notes

Review Factoring using GCF
Example: $2 \mathrm{x}^{2}+\mathbf{2 x}-4 \quad$ You Try! Example: $2 \mathrm{x}^{2}+\mathbf{1 0 x}+12$
GCF: 2
Divide by the GCF
$2\left(\frac{2 x^{2}}{2}+\frac{2 x}{2}-\frac{4}{2}\right) \rightarrow 2\left(x^{2}+x-2\right)$

Factor using GFC
Example 1: $2 \mathrm{x}^{2}+2 \mathrm{x}-4$
Step 1 find GCF: 2
Step 2: Divide each term by the GCF
$2\left(\frac{2 x^{2}}{2}+\frac{2 x}{2}-\frac{4}{2}\right) \rightarrow 2\left(\mathrm{x}^{2}+\mathrm{x}-2\right)$
Step 3: Factor the trinomial inside the parenthesis
$2(x-1)(x+2)$

You Try!
Example 2: $3 \mathrm{x}^{2}-18 \mathrm{x}+15$

You Try!
Example 3: $6 \mathrm{x}^{2}+6 \mathrm{x}-36$

Day 5: Factoring Polynomials with greatest common factors

Factor each completely. (Remember to pull out the GCF first.)	
1. $3 r^{2}+21 r+30$	2. $2 p^{2}+14 p+24$
3. $2 x^{2}-16 x+30$	$4.3 n^{2}-9 n+6$

Directions: Factor each polynomial. Look for a GCF first.	21. $4 w^{2}-52 w-120$	
19. $2 k^{2}-8 \mathrm{k}-90$	20. $\mathrm{x}^{3}+2 \mathrm{x}^{2}-48 \mathrm{x}$	
22. $2 \mathrm{x}^{2}+10 \mathrm{x}+8$		24. $5 \mathrm{~m}^{2}+30 \mathrm{~m}-35$
	23. $3 \mathrm{y}^{2}+24 \mathrm{y}+48$	

What Polynomial Tries Harder Than All The Rest?

Directions: Factor each of the quadratic expressions. Use your answer to solve the riddle!
O. $x^{2}-7 x-18$
M. $x^{2}+9 x+14$
R. $x^{2}+6 x+8$
A. $x^{2}-16 x+63$
L. $x^{2}-9 x+8$
I. $\quad x^{2}-15 x+36$

- $\quad x^{2}+5 x+6$
T. $\quad x^{2}+3 x-10$
N. $x^{2}-8 x+15$
! $\quad x^{2}-9 x+14$
$\overline{(x-9)(x-7)} \quad \overline{(x+5)(x-2)} \overline{(x+4)(x+2)} \overline{(x-12)(x-3)} \overline{(x+2)(x+3)}$

$$
\overline{(x-5)(x-3)} \overline{(x-9)(x+2)} \overline{(x+7)(x+2)} \overline{(x-12)(x-3)} \overline{(x-9)(x-7)} \overline{(x-8)(x-1)} \overline{(x-7)(x-2)}
$$

Day 7: Factoring Difference of Squares

*** Check first for a GCF
Step 1: Take the square root of the perfect squares to find a and b
Step 2: Plug a and b in $(a+b)(a-b)$
Step 3: Check to see if you eliminated the middle term
Example1: $81 x^{2}-36$
GCF: 9
$9\left(9 x^{2}-4\right) \rightarrow$ (Notice 9, x^{2}, and 4 are all perfect squares inside the parenthesis: **Don't take the square root of the GCF**)
Step 1: $9\left(\sqrt{9 x^{2}}-\sqrt{4}\right) \rightarrow a=3 x$ and $b=2$
Step 2: $9(3 x+2)(3 x-2)$
Step 3 Check: $9\left(9 x^{2}-6 x+6 x-4\right)$

$$
\begin{array}{r}
9\left(9 x^{2}-4\right) \\
81 x^{2}-36 \\
\hline
\end{array}
$$

Example 2: 32x $\mathbf{x}^{\mathbf{-}} \mathbf{7 2}$
GCF: 8
$8\left(4 x^{2}-9\right) \rightarrow$ (Notice 4, x^{2}, and 9 are all perfect squares inside the parenthesis: **Don't take the square root of the GCF ${ }^{* *}$)
Step 1: $8\left(\sqrt{4 x^{2}}-\sqrt{9}\right) \rightarrow a=2 x$ and $b=3$
Step 2: $8(2 x+3)(2 x-3)$
Step 3 Check: $8\left(4 x^{2}-6 x+6 x-9\right)$

$$
\begin{array}{r}
8\left(4 x^{2}-9\right) \\
32 x^{2}-72 \\
\hline
\end{array}
$$

You Try! $9 \mathrm{x}^{2}-16$

State whether each polynomial is a difference of two squares. If it is, factor the expression.

| 1.) $n^{2}-81$ | 2.) $a^{2}-121$ | 3.) $n^{2}+16$ |
| :--- | :--- | :--- | :--- |
| 4.) $9 x^{2}-144$ | 5.) $2 x^{2}-9$ | 6.) $4 w^{2}-9$ |
| 7.) $4 n^{2}-1$ | 8.) $1-16 x^{2}$ | 9.) $x^{4}-y^{2}$ |
| 10.) $9-c^{2}$ | 11.) $n^{3}-25$ | 12.) $16 x^{2}-6 y^{2}$ |
| 13.) $49-4 a^{2}$ | $a^{2} b^{2}-c^{4}$ | 15.) $4 x^{2} y^{2}-9 z^{2}$ |

Day 8: Factoring Trinomials

$$
a x^{2}+b x+c
$$

If "a cannot be factored out by GCF, we use the Slip and Slide Method Step 1: "Slip" a to the end of the trinomial and multiply by c
Step 2: Factor the new basic trinomial
Step 3: Divide both your factors by the value you "slipped" over in step 1

Step 4: Reduce fractions and "slide" any denominators up next to the variable.

Example: Factor $2 x^{2}+x-6$

Step 1: Slip" a to the end of the trinomial and multiply by c

$$
\begin{gathered}
x^{2}+x-6(2) \\
x^{2}+x-12
\end{gathered}
$$

Step 2: Factor the new basic trinomial

Step 3: Divide both your factors by the value you "slipped" over in step 1

$$
\left(x-\frac{3}{2}\right)\left(x+\frac{4}{2}\right)
$$

Step 4: Reduce fractions and "slide" any denominators up next to the variable.

$$
(2 x-3)(x+2)
$$

Example 2: Factor $7 x^{2}+29 x+4$
Step 1: Slip" a to the end of the trinomial and multiply by c

$$
\begin{gathered}
x^{2}+29 x+4(7) \\
x^{2}+29 x+28
\end{gathered}
$$

Step 2: Factor the new basic trinomial

Step 3: Divide both your factors by the value you "slipped" over in step 1

$$
\left(x+\frac{1}{7}\right)\left(x+\frac{28}{7}\right)
$$

Step 4: Reduce fractions and "slide" any denominators up next to the variable.

$$
(7 x+1)(x+4)
$$

Factor each completely: Use slip and slide method	
1. $5 r^{2}+6 r+1$	2. $2 p^{2}+11 p+5$
3. $3 x^{2}-8 x+4$	$4.5 n^{2}-11 n-12$

FACTORING TRINOMIALS

$$
a x^{2}+b x+c
$$

If ' a ' cannot be factored out by GCF, we use a method called Slip \& Slide.

Step 1: "Slip" \qquad to the end of the trionomial and multiply by \qquad -.

Step 2: Factor this new basic trinomial.
Step 3: Divide both your factors by the value you "slipped" over in Step 1.
Step 4: Reduce fractions and "slide" any denominators up next to the variable.

Example 1	$2 x^{2}+5 x+3$		

Now you try!
Factor the following trinomials.

1. $4 \mathrm{x}^{2}-19 \mathrm{x}-5$	2. $6 \mathrm{k}^{2}+7 \mathrm{k}+2$	$3.8 \mathrm{y}^{2}-10 \mathrm{y}-3$

Factor each trinomial		2. $7 a^{2}+48 a+36$
$1.3 n^{2}+7 n-20$		3. $5 x^{2}-41 x-36$

Factoring Quadratice Word Search wiz

Answer the questions below, match your answers to the corresponding words and find them in the word search. Don't try to be sneaky - some words are deliberately hidden in the word search but don't need to be found.

K	E	L	J	B	I	C	Y	C	L	E	L	K	Z	T	C	L	F	R	J
A	E	Z	O	I	T	O	P	S	H	O	P	O	U	G	U	P	B	E	I
W	Y	R	Z	C	V	Q	I	A	W	H	B	Y	N	N	H	T	U	V	R
U	I	K	R	B	K	D	I	Z	X	M	X	S	G	D	P	V	S	S	W
U	I	P	O	H	U	E	A	G	S	B	L	S	T	F	O	A	R	H	C
I	P	I	J	O	B	F	R	H	S	E	W	Z	A	S	T	N	R	J	A
Q	A	N	S	L	T	Z	R	T	W	N	F	R	M	E	G	M	A	E	C
V	D	T	J	L	R	Y	T	R	E	X	Q	Y	L	W	J	S	T	M	T
V	T	E	N	Y	O	K	Z	O	U	W	D	L	Q	N	X	S	I	A	U
Z	Q	R	W	W	B	S	A	N	E	H	I	A	N	H	X	O	U	I	S
Z	F	E	T	O	O	I	U	N	U	T	E	P	P	X	P	B	G	L	G
B	O	S	S	O	T	U	D	A	E	Y	F	I	T	O	P	S	I	R	I
J	Q	T	C	D	Q	Y	E	B	E	A	C	H	G	G	G	D	H	V	Z
C	D	I	P	B	S	V	A	V	O	C	A	D	O	K	U	I	T	Z	K
T	D	R	A	Z	Z	I	L	B	E	U	T	N	R	E	M	A	E	Y	N

Factor

| Q1) | $x^{2}+8 x+15$ | Q2) | $2 x^{2}+5 x+3$ | Q3) | $x^{2}-3 x-10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | Q4) $\quad x^{2}-5 x+6$

$$
\begin{array}{ccc}
(4 x-5)(x+1)=\text { Beach } & (3 x-2)(x-1)=\text { Robot } & (x-1)(x-4)=\text { Avocado } \\
(x+1)(x+3)=\text { Spirit } & (x+2)(x+7)=\text { Locker } & (2 x+3)(x+1)=\text { London } \\
(2 x-1)(2 x+5)=\text { Cactus } & (5 x-6)(x+1)=\text { Elephant } & (x-6)(x+7)=\text { Ipad } \\
(x+3)(x+5)=\text { Topshop } & (x+8)(x-8)=\text { Wendys } & (3 x-1)(x-2)=\text { Bicycle } \\
(4 x+1)(x-5)=\text { Lungs } & (3 x+7)(3 x-7)=\text { Guitar } & (x+2)(x+3)=\text { Blizzard } \\
(x+2)^{2}=\text { Surfing } & (x-5)(x+2)=\text { Satellite } & (2 x-5)(2 x+1)=\text { Spotify } \\
(x-2)(x-3)=\text { Pinterest } & (2 x+3)^{2}=\text { North } & (5 x+1)(x-6)=\text { Hollywood } \\
(2 x+5)(x+4)=\text { Boss } & (x+4)(x-4)=\text { Fireman } & (x+1)^{2}=\text { Email }
\end{array}
$$

Day 10: Factoring Practice

How Can Fishermen Save Gas ?

Factor each polynomial below. Find one of the factors in each column of binomials. Notice the letter next to one factor and the number next to the other. Write the letter in the box at the bottom of the page that contains the matching number.
(1) $4 n^{2}-49$
(3) $(n+1)$
(O) $(\boldsymbol{n}-3)$
(2) $n^{2}+8 n+12$
(11) $(n+2)$
(G) $(2 n-7)$
(2) $(n+8)$
(P) $(n-5)$
(3) $n^{2}-9 n+20$
(4) $n^{2}+16 n+64$
(9) $(2 n+7)$
(S) $(3 n-5)$
(5) $n^{2}+2 n-15$
(4) $(n+5)$
(Y) $(n+8)$
(6) $3 n^{2}-8 n+5$
(18) $(n-1)$
(K) $(3 n-1)$
(14) $(n-4)$
(A) $(n+6)$
(7) $a^{2}+4 a-21$
(1) $(a-5)$
(G) $(2 a+1)$
(13) $(a+7)$
(B) $(a-6)$
(8) $5 a^{2}+9 a-2$
(5) $(5 a+1)$
(P) $(a-3)$
(9) $2 a^{2}+11 a+15$
(7) $(a+2)$
(O) $(a+3)$
(10) $1-9 a^{4}$
(15) $(a-1)$
(I) $(5 a-1)$
(11) $a^{2}-11 a+30$
(12) $10 a^{2}-3 a-1$
(8) $\left(1-3 a^{2}\right)$
(16) $(2 a+5)$
(B) $(2 a-1)$
(N) $\left(1+3 a^{2}\right)$

(13) $8 u^{2}+19 u+6$
(10) $(u+3)$
(M) $(u+1)$
(12) $(2 u+9)$
(B) $(2 u+1)$
(17) $(u-3)$
(O) $(8 u+3)$
(3) $(5 u-2)$
(L) $(2 u-1)$
(6) $(3 u-14)$
(C) $(u-7)$
(15) $(u+2)$
(R) $(u-2)$
(17) $(3 u+10)$
(F) $(5 u-2)$
(14) $25 u^{2}-20 u+4$
(15) $3 u^{2}-11 u-14$
(16) $u^{2}-4 u-21$
(17) $6 u^{2}+17 u-10$
(18) $2 u^{2}+5 u-18$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

