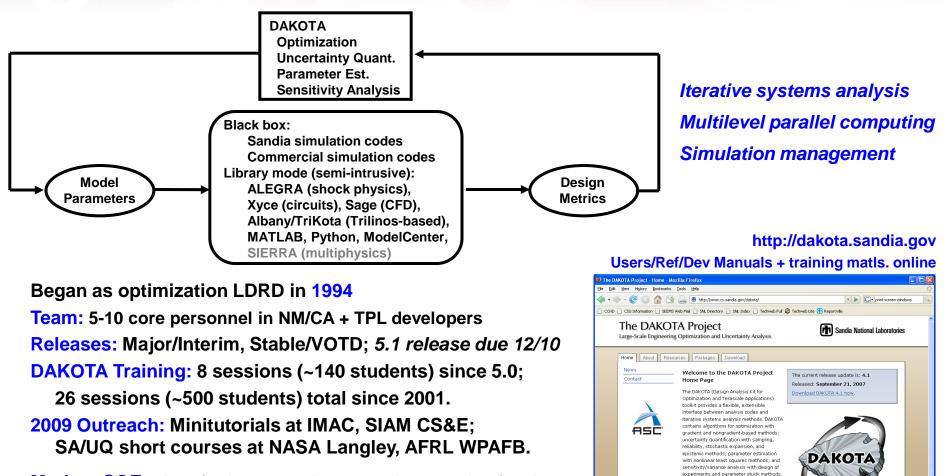


## **Overview of DAKOTA Project** (from the software perspective)

Michael S. Eldred

**Optimization and Uncertainty Quantification Department (1441)** 

NREL


**December 14, 2010** 

- Capability overview
- Advanced deployment efforts

Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



# **DAKOTA Project**



These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed

nteger nonlinear programming, or

FAQ

Privacy and Security - Site Conta-

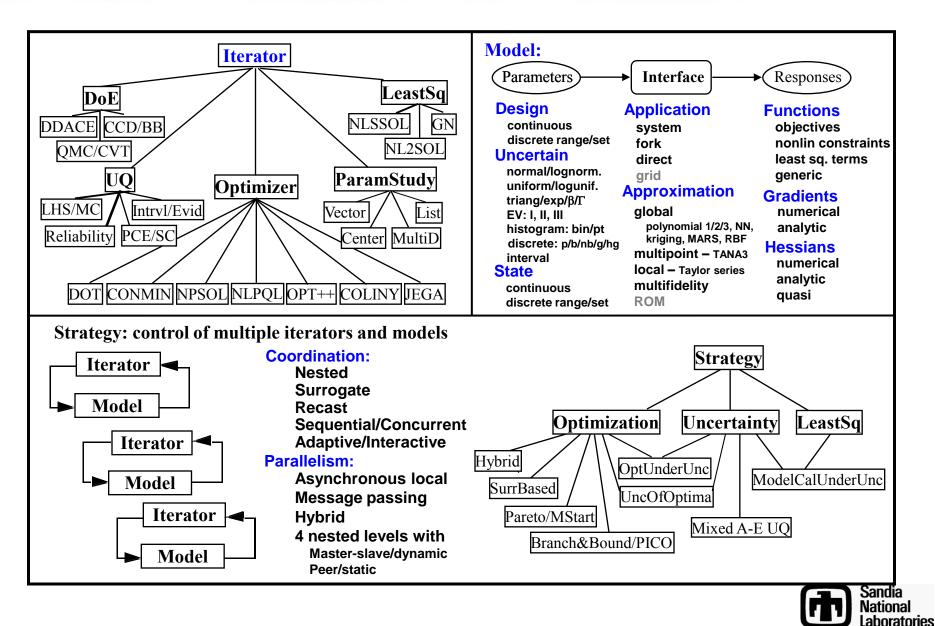
ocumentation

computational models on high performance computers

Package:

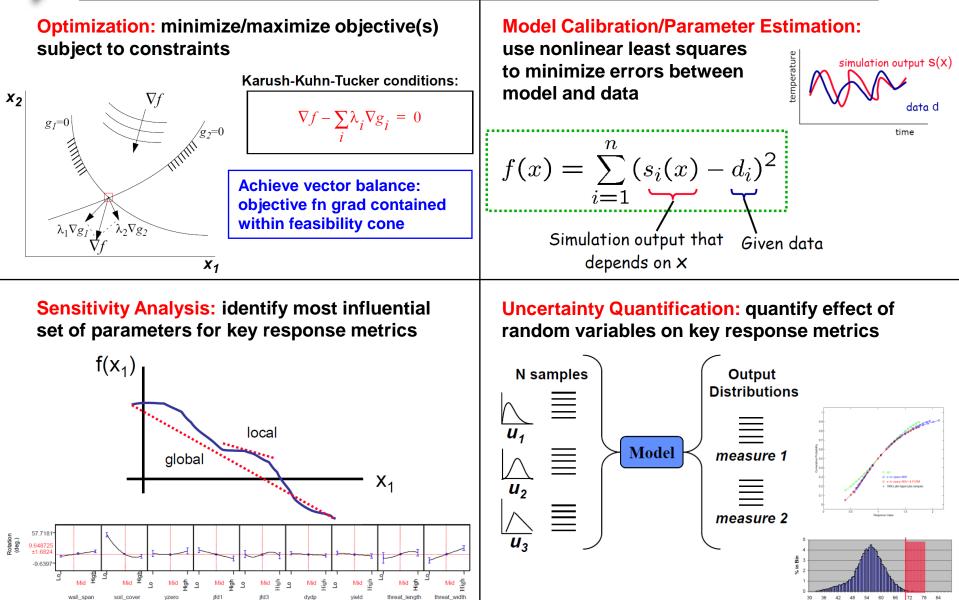
optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of

Download


License Release Notes Registration

Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing; subversion, TRAC, Cmake; Top 2008 SQE score

**GNU LGPL:** free downloads worldwide


(~6500 total ext. registrations, ~3500 distributions last yr.) Community development: open checkouts now avail (→ PSAAP) Community support: dakota-users, dakota-developers

## **C++ Framework**



## **Core Methods**





## **Uncertainty Quantification Algorithms @ SNL:** New methods bridge robustness/efficiency gap

|                         | Production                                                                                        | New                                                                                           | Under dev.                                      | Planned                                                       | Collabs.                                                     |
|-------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Sampling                | Latin Hypercube,<br>Monte Carlo                                                                   | Importance,<br>Incremental                                                                    |                                                 | Bootstrap,<br>Jackknife                                       | FSU                                                          |
| Reliability             | <i>Local:</i> Mean Value,<br>First-order &<br>second-order<br>reliability methods<br>(FORM, SORM) | Global: Efficient<br>global reliability<br>analysis (EGRA)<br>Reseach: Tailor                 | ing & Adaptivity                                | gradient-<br>enhanced<br>EGRA                                 | <i>Local:</i><br>Notre Dame,<br><i>Global:</i><br>Vanderbilt |
| Stochastic<br>expansion | Adv. Deployment<br>Fills Gaps                                                                     | Tailored polynomial<br>chaos & stochastic<br>collocation with<br>extended basis<br>selections | p-adaptive,<br>adjoint<br>gradient-<br>enhanced | h-adaptive,<br>hp-adaptive,<br>discrete,<br>multi-<br>physics | Stanford,<br>Purdue,<br>Austr. Natl.,<br>FSU                 |
| Other<br>probabilistic  |                                                                                                   | Random fields/<br>stochastic proc.                                                            |                                                 | Dimension reduction                                           | Cornell,<br>Maryland                                         |
| Epistemic               | Interval-valued/<br>Second-order prob.<br>(nested sampling)                                       | Opt-based interval<br>estimation,<br>Dempster-Shafer                                          | Bayesian                                        | Imprecise<br>probability                                      | LANL,<br>Applied<br>Biometrics                               |
| Metrics &<br>Global SA  | Importance factors,<br>Partial correlations                                                       | Main effects,<br>Variance-based<br>decomposition                                              | Stepwise regression                             |                                                               | UNM                                                          |

## **Generalized Polynomial Chaos Expansions**

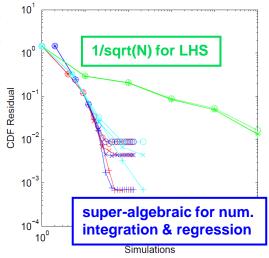
Approximate response w/ spectral proj. using orthogonal polynomial basis fns

| $R = \sum_{j=1}^{P} \alpha_{j} \Psi_{j}(\boldsymbol{\xi})$ |
|------------------------------------------------------------|
| $\overline{j=0}$                                           |

- $$\begin{split} \Psi_0(\boldsymbol{\xi}) &= \psi_0(\xi_1) \ \psi_0(\xi_2) &= 1 \\ \Psi_1(\boldsymbol{\xi}) &= \psi_1(\xi_1) \ \psi_0(\xi_2) &= \xi_1 \\ \Psi_2(\boldsymbol{\xi}) &= \psi_0(\xi_1) \ \psi_1(\xi_2) &= \xi_2 \\ \Psi_3(\boldsymbol{\xi}) &= \psi_2(\xi_1) \ \psi_0(\xi_2) &= \xi_1^2 1 \\ \Psi_4(\boldsymbol{\xi}) &= \psi_1(\xi_1) \ \psi_1(\xi_2) &= \xi_1\xi_2 \\ \Psi_5(\boldsymbol{\xi}) &= \psi_0(\xi_1) \ \psi_2(\xi_2) &= \xi_2^2 1 \end{split}$$
- Nonintrusive: estimate α<sub>j</sub> using sampling (expectation), pt collocation (regression), tensor-product quadrature, Smolyak sparse grids, or cubature (numerical integration)

using

$$\begin{array}{lll} \alpha_{j} & = & \displaystyle \frac{\langle R, \Psi_{j} \rangle}{\langle \Psi_{j}^{2} \rangle} & = & \displaystyle \frac{1}{\langle \Psi_{j}^{2} \rangle} \int_{\Omega} R \, \Psi_{j} \, \varrho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \\ \\ & & \\ \hline & & \\ \hline & & \\ \langle \Psi_{j}^{2} \rangle \, = & \displaystyle \prod_{i=1}^{n} \langle \psi_{m_{i}^{j}}^{2} \rangle \end{array}$$


## **Generalized PCE (Wiener-Askey + numerically-generated)**

• Tailor basis: optimal basis selection leads to exponential convergence rates

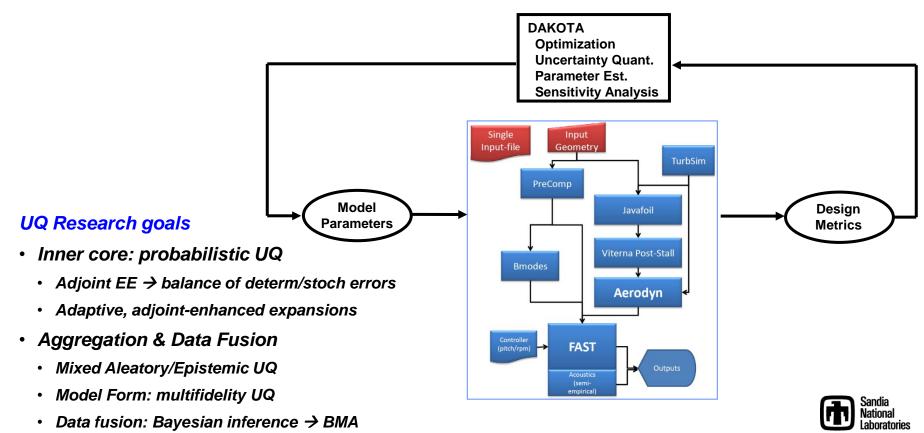
| Distribution | Density function                                                            | Polynomial                               | Weight function               | Support range      |
|--------------|-----------------------------------------------------------------------------|------------------------------------------|-------------------------------|--------------------|
| Normal       | $\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$                                   | Hermite $He_n(x)$                        | $e^{\frac{-x^2}{2}}$          | $[-\infty,\infty]$ |
| Uniform      | $\frac{1}{2}$                                                               | Legendre $P_n(x)$                        | 1                             | [-1, 1]            |
| Beta         | $\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$ | Jacobi $P_n^{(\alpha,\beta)}(x)$         | $(1-x)^{\alpha}(1+x)^{\beta}$ | [-1,1]             |
| Exponential  | $e^{-x}$                                                                    | Laguerre $L_n(x)$                        | $e^{-x}$                      | $[0,\infty]$       |
| Gamma        | $\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$                                 | Generalized Laguerre $L_n^{(\alpha)}(x)$ | $x^{lpha}e^{-x}$              | $[0,\infty]$       |

#### Additional bases generated numerically via Golub-Welsch

- Tailor expansion type/order/range:
  - Total order  $\rightarrow$  tensor and sum of tensor expansions
  - Dimension p-refinement: anisotropic tensor/sparse grids
  - Domain h-refinement: discretization of random domain

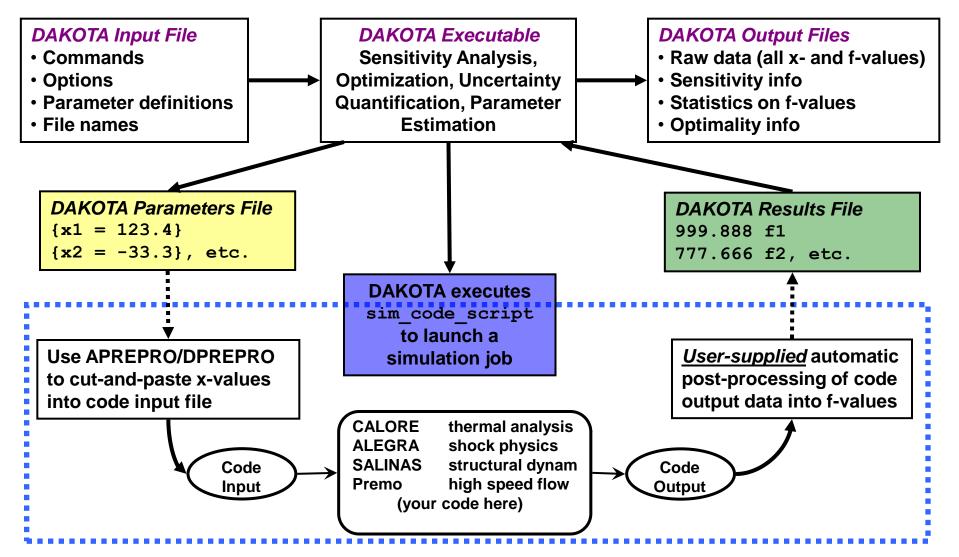


# **ASCR Wind Turbine UQ**


New DOE ASCR Project (Office of Science): FY2010-2012

Short term:

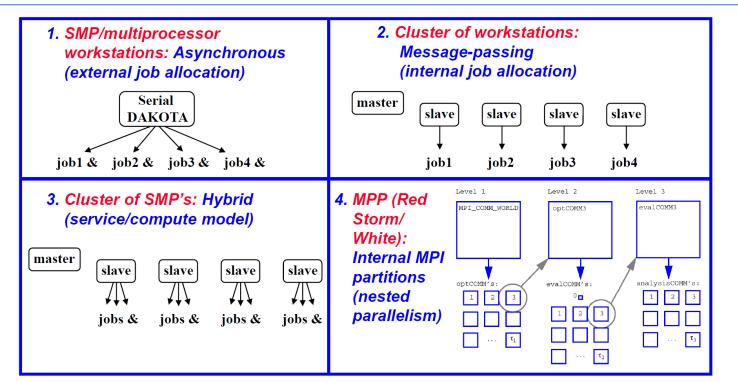
• MATLAB management of NREL design tool ensemble ("EOLO", Sandia wind group)


#### Longer term:

• CFD with Joe (Stanford) and FSI with SIERRA/Aria (Sandia)






## **Simulation Management (Black Box case)**





## Parallelism Options: Multicore Desktops to MPP

- 1. Algorithmic coarse-grained: concurrency in data requests:
  - Iterators: Gradient-based, Nongradient-based, Surrogate-based
  - Strategies with concurrent Iterators: Multi-start, Pareto, Hybrid
  - Nested Models: OUU/MCUU, Mixed UQ
- 2. Algorithmic fine-grained: computing the internal linear algebra of an opt. algorithm in parallel
- 3. *Fn eval coarse-grained:* concurrent execution of separable simulations within each fn. eval.
- 4. Fn eval fine-grained: parallelization of the solution steps within a single analysis code

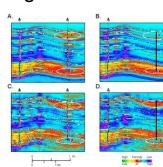




# Deployment

## Impact Sandia missions

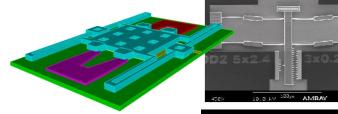
- Technology insertion
  - ASC milestones
  - Early adopters

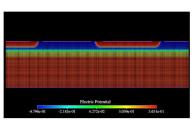

## **Partnerships**

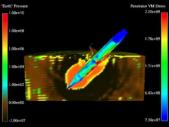
- Government: LLNL, LANL, ORNL, INL, NASA, DOD
- Industry: Lockheed Martin, Goodyear, Exxon Mobil
- University: MIT, Cornell, CU Boulder, Vanderbilt, USC, FSU, Notre Dame, VPISU, UNM
  - CSRI students/postdocs, faculty sabbaticals
  - ASC PSAAP: UT Austin (Bayesian), Purdue (cubature),
     UIUC (adaptive collocation), Caltech (global opt.), Michigan (gradient-enhanced interpolation), Stanford (adaptive collocation)

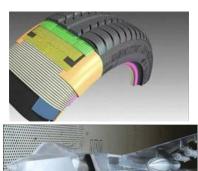
## Address core usability barriers

- JAGUAR
- Library embedding

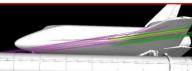




Jan/Feb 2010: 92% of DAKOTA invocations on SNL clusters were UQ or param studies, but new methods starting to reduce LHS dominance




| ■ dot_mmfd,               |
|---------------------------|
| npsol_sqp                 |
| list_parameter_study,     |
| optpp_fd_newton           |
| conmin_frcg,              |
| nond_global_reliability   |
| nond_stoch_collocation    |
| nond_local_reliability    |
| nl2sol                    |
| nond_polynomial_chaos     |
| multidim_parameter_study, |
| vector_parameter_study    |
| nond_sampling             |














## **Deployment Initiative: JAGUAR User Interface**

- Eclipse-based rendering of full DAKOTA input spec.
- Automatic syntax updates
- Tool tips, Web links, help
- Symbolics, sim. interfacing

- Flat text editor for experienced users
- Keyword completion
- Automatically synchronized with GUI widgets
- Simplified views for high-use applications ("Wizards")

| 🔗 Resource - proj1/mydak.i - Jaguar                                                                                                              | 🗖 Resource - JAGUAR/jaguar/misc_files/constropt.i - Jaguar 💦 🔲 🔀       | 🗖 Dakota LHS Wizard 📃 🗖 🔀                                               |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| <u>Eile Edit Navigate Project Window Help</u>                                                                                                    | <u>File Edit N</u> avigate <u>P</u> roject <u>Wi</u> ndow <u>H</u> elp |                                                                         |  |  |  |  |  |
| i 💼 • 🔚 🖻 i 월 - 祠 - 仲 - 中 -                                                                                                                      | i 📸 • 🔚 💩 i 🖢 - 🎘 - 🏷 🔶 - 🔿 -                                          | Specify Variables                                                       |  |  |  |  |  |
| 🖆 🍋 Resource                                                                                                                                     | 😰 🍋 Resource                                                           | Specify the table contents                                              |  |  |  |  |  |
| 🚖 Jaguar Editor 🔀                                                                                                                                | 🞇 *constropt.i 🛛 🗖 🗖                                                   |                                                                         |  |  |  |  |  |
| Problem definition and execution                                                                                                                 | # DAKOTA INPUT FILE - dakota_textbook.in  strategy                     | ✓ Uniform Uncertainty<br>✓ samples 100 60                               |  |  |  |  |  |
| Sections 📄 method                                                                                                                                | graphics                                                               | uniform_uncertain                                                       |  |  |  |  |  |
| To define a problem for DAKOTA to solve, you<br>must first define a model, a variable set, an<br>interface set and a response set. Then you must | single_method<br>method                                                |                                                                         |  |  |  |  |  |
| select a method that performs a task such as votimization. ModelCalibration ModelCalibration                                                     | max_iterations 50<br>convergence_tolerance 0.0001                      | Os lower_bounds*     Os upper_bounds*     A descriptors     descriptors |  |  |  |  |  |
| type filter text in model pointer                                                                                                                | dot_mmfd                                                               | 100 'density'                                                           |  |  |  |  |  |
| STRATEGY     Output verbosity                                                                                                                    | variables<br>continuous design 2                                       |                                                                         |  |  |  |  |  |
| MODEL Maximum iterations (Integer) Min: 0.0 Max: 0.0                                                                                             | initial point 0.9 1.1                                                  |                                                                         |  |  |  |  |  |
| 🖨 🌍 Model A (2/4) 📃 Maximum function evaluations (Integer) Min: 0.0 Max: 0.0                                                                     | lower_bounds 0.5 -2.9                                                  |                                                                         |  |  |  |  |  |
| ⊕ → nested (1/2)     □ Speculative gradients and Hessians                                                                                        | upper_bounds 5.8 2.9                                                   |                                                                         |  |  |  |  |  |
| Win: 0.0 Max: 0.0                                                                                                                                | descriptors 'x1' 'x2'                                                  |                                                                         |  |  |  |  |  |
| METHOD Constraint tolerance (Real)                                                                                                               | interface<br>analysis drivers 'text book'                              |                                                                         |  |  |  |  |  |
| E-W ModelCalibration (2/10)                                                                                                                      | direct                                                                 |                                                                         |  |  |  |  |  |
|                                                                                                                                                  | responses                                                              |                                                                         |  |  |  |  |  |
|                                                                                                                                                  | num_objective_functions 1                                              |                                                                         |  |  |  |  |  |
| • probability_levels (0/1)                                                                                                                       | num_nonlinear_inequality_constraints 2                                 | 1 Add row(s) First row                                                  |  |  |  |  |  |
| gen_reliability_levels (0/1)                                                                                                                     | numerical_gradients<br>method source                                   |                                                                         |  |  |  |  |  |
| e 🔩 variables                                                                                                                                    | dakota                                                                 | Opelete selected row(s)                                                 |  |  |  |  |  |
|                                                                                                                                                  | interval type                                                          |                                                                         |  |  |  |  |  |
| E G INTERFACE                                                                                                                                    | central                                                                | Duplicated selected row First row                                       |  |  |  |  |  |
|                                                                                                                                                  | fd_step_size 0.0001                                                    |                                                                         |  |  |  |  |  |
| 🖨 🇐 RespSet1 (4/5)                                                                                                                               | no_hessians                                                            | <ul> <li>Generate samples</li> </ul>                                    |  |  |  |  |  |
| num_least_squares_terms (0/6)                                                                                                                    | -                                                                      | Save input deck                                                         |  |  |  |  |  |
| analytic_gradients (0/0)                                                                                                                         |                                                                        |                                                                         |  |  |  |  |  |
| Impact: streamline problem set-up for user base, spanning novices to experts                                                                     |                                                                        |                                                                         |  |  |  |  |  |
| myddkil Problem Det                                                                                                                              |                                                                        |                                                                         |  |  |  |  |  |
|                                                                                                                                                  | ii a 🖉                                                                 | ⑦ < <u>Back</u> <u>N</u> ext > Einish Cancel                            |  |  |  |  |  |
| : U                                                                                                                                              |                                                                        |                                                                         |  |  |  |  |  |

## **Deployment Initiative: Embedding**

## Make DAKOTA natively available within application codes

- Streamline problem set-up, reduce complexity, and lower barriers
  - A few additional commands within existing simulation input spec.
  - Eliminate analysis driver creation & streamline analysis (e.g., file I/O)
  - Simplify parallel execution
- Integrated options for algorithm intrusion

## **SNL Embedding**

- Existing: Xyce, Sage, Albany (TriKOTA)
- New: ALEGRA, SIERRA (TriKOTA) → STK

#### **External Embedding**

- Existing: ModelCenter, university applications
- New: QUESO (UT Austin), R7 (INL)
- Expanding our external focus:
  - GPL  $\rightarrow$  LGPL; svn restricted  $\rightarrow$  open network

# barriers barriers t spec. g., file I/O) An end of the optimization of the optimiz

## ModelEvaluator Levels

#### Non-intrusive

ModelEvaluator: systems analysis

- · All residuals eliminated, coupling satisfied
- DAKOTA optimization & UQ

#### Intrusive to coupling

ModelEvaluator: multiphysics

- Individual physics residuals eliminated; coupling enforced by opt/UQ
- DAKOTA opt/UQ & MOOCHO opt.

#### Intrusive to physics

ModelEvaluator: single physics

Impact: eliminate custom set-up and support fully integrated opt. and UQ studies

# **Concluding Remarks**

## DAKOTA provides a variety of core algorithms for iterative analysis:

- Optimization

-- Sensitivity Analysis

- Calibration

-- Uncertainty quantification

#### As well as advanced capabilities for

- Multilevel parallel computing
- Manage multiple iterative methods, models of varying fidelity, nesting, recasting, etc.
- Emerging UQ methods: adaptive, adjoint-enhanced, multi-{fidelity,physics,scale}, mixed UQ
- Emerging algs. in other areas: OUU, SBO, MINLP, SA w/ PCE/SC, Nond. calibration

## Advanced deployment initiatives will "lower the bar" for adoption

- JAGUAR -- Library embedding

## Expanding from NNSA to include energy missions: Wind, NE

## Some lessons learned in open source framework development

- Bound your mission space and manage scope creep
  - Focus on your core strengths and provide flexible APIs for others to use
  - Be selective on strategic partnerships
- Establish a support hierarchy and manage it effectively
  - Small teams may need to rely on community support for bottom tier
- Utilize modern CS tools (svn/git, cmake/scons, Trac) to simplify collaborative development
- Manage quality through sponsorship and review of external contributions

