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ABSTRACT 

Mobile malware samples damage the system and can lead to sensitive information leakage and huge monetary loss. Withthe 

increasing popularity of Android smart phones, the number of malware attacks on the Android platform has alsoincreased. 

In the first quarter of 2020, around 0.5 million new malware samples were detected per month. Keeping theirthreats in 

mind, in this paper, we propose a novel network traffic-based Android malware detection model namedNTDroid. The model 

is trained on network traffic files by selecting the best set of features using a mutual-informationbased feature selection 

algorithm. Further, the model employs machine learning classifiers to detect malicious apps. Theexperimental results 

demonstrate that the proposed model can efficiently distinguish between normal traffic and malicioustraffic with an 

accuracy of 99.99%. 
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1. INTRODUCTION 

According to a recent report [1], 48.41% of the world population has access to smart phones now, and it’s expected 

to become 62.21% by the end of 2021. This fact highlights the up surging popularity of smart phones in the world. 

Smartphone’s provide a simple way to connect to the World Wide Web, i.e., the Internet. There are a lot of mobile 

operating systems in the market like Android, iOS, KaiOS, etc. Out of all these operating systems, Android is the 

most popular choice, with a market share of 71.9% [2].  

 The growing number of Smartphone users across the globe has sparked interest in attackers as well. The 

total number of new malware samples by March 2020 was around 0.5 million per month [3]. Recently a new 

malware [4] has been identified that disguises itself as a system update and steals sensitive information in the 

background. This example points to the security vulnerabilities in smart phones and how easy it is for attackers to 

steal sensitive information. Trojans, ransomware, mobile bots are some common portable malware that can damage 

the operating system, leak the data or cause huge monetary loss, etc. 

1.1. Motivation 

Due to the increasing popularity of Android smart phones, it has become a major target for attackers. According to 

a mobile security firm [5], there are over 29,000 malicious applications for Android in active use as of 2020. 

Whereas, there were only 14500 malicious applications in 2019. The obvious reason for increasing attacks on 

Android OS is the high number of users, the open architecture of Android, and the availability of third-party 

applications. Due to these vulnerabilities and the presence of a large number of malicious applications in the market 
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we need a highly accurate mechanism to detect such malicious apps. Several detection mechanisms have been proposed in 

the literature for Android malware detection. Some of the works have designed static defense solutions that aim to analyze 

static components of apps like manifest file, Java code, etc, and do not involve the execution of apps. Hence, stealthier 

samples that can download malicious components at update time evade static detection. Therefore, dynamic solutions are 

preferred over static ones to detect stealthier samples. In dynamic features, system calls and network traffic features have 

been used in Android malware detection. However, the research has reported that system calls give relatively lower 

accuracy in malicious apps detection on Android. Hence, in this work, we have aimed to analyze network traffic features 

for effective Android malware detection. 

1.2. Contributions 

To address the above-mentioned problems, we propose a novel network traffic-based malware detection system on 

Android that can detect malicious applications using machine learning classifiers. The key contributions made in this paper 

are summarized below: 

 We captured the network traces of malware and normal dataset using the packet capturing apps such as 

tpacketCapture. 

 After collecting the network traces, we extracted 21 network traffic features from both malware and normal 

dataset. Further, we applied a mutual information-based feature selection algorithm to select the best set of 

features, and remove redundant or irrelevant features. 

 Thereafter, to identify the malicious network behaviour, we proposed a novel malware detection model based 

on the selected features using machine learning algorithms.  

1.3. Organization 

The rest of the paper is structured as follows. We summarize the related works in the field of Android malware detection in 

Section 2. The detailed methodology of the model NTDroid is explained in Section 3. We discuss the results obtained from 

the proposed approach in Section 4 and conclude with future work directions in Section 5. 

2. RELATED WORK 

Several studies have been carried out on Android malware detection using machine learning techniques. Because the 

proposed model aims to detect Android malware based upon dynamic traffic features, hence, we review the similar related 

works focusing on dynamic Android malware detection. The authors in [6] employed packet classification and counting 

techniques and detected malware by monitoring traffic to and from a network-connected host. The authors in [7] also 

proposed a network-based system for the detection of malware that protects users from network attacks. Yujie et al. [8] 

used traffic analysis and deep learning and introduced a rapid system to detect malware. They first collected the traffic 

generated by the Android apps and preprocessed it with third-party applications to remove impure traffic data. The authors 

in [9], [10], [11], and [12] also used network behavior analysis to detect Android malware. The authors in [13] 

incorporated host-based information along with network features to detect malware. Furthermore, Zhou et al. [14] 

proposed the construction of a traffic fingerprint that combines ML algorithms and can be used for encrypted traffic. The 
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authors in [15] suggested Hybrid Malware Detection Approach (HDMA) which takes into account features that display a 

similar pattern in network traffic. They used ensemble learners along with the XGBoost algorithm to get high accuracy. 

The authors in [16] proposed a malware detection system on the server-side, which consumed minimum mobile resources 

and combined ML algorithms with network traffic analysis. Wu et al. [17] applied the Bayesian classifier model for 

malware detection on network traffic data. Conti et al. [18] considered attacks that do not directly interact with the device 

but through the network side like Wi-Fi and used advanced ML techniques to detect malware. The authors in [19] proposed 

Locker-ransomware detection using comprehensive analysis of the transactions as well as ML algorithms. The authors in 

[20] suggested monitoring the application’s interactions and behavior to derive statistical features, which are later fed to 

ML classifiers for malware detection. The authors in [21] introduced “Mystique-S” for malware detection at runtime and 

under different user conditions, it automatically selects attack features. Moreover, the authors in [22] used conversation-

level features and proposed an Extra-tree classifier that outperforms other classifiers in terms of accuracy. The authors in 

[23] used an integrated two-layer detection system based primarily on neural networks to detect android malware 

accurately. Wang et al. [24] also proposed a multi-view neural network for malware detection. The authors in [25] applied 

NLP on HTTP flow text documents to detect Android malware. The authors in [26] discovered that the application layer 

traffic is dominated by HTTP and DNS traffic, accounting for more than 99% of all traffic. The malware samples were 

generated in a real internet environment. Manzano et al. [27] considered 10 ransomware families and 9 features related to 

time. The authors compared 3 ML algorithms- Random Forest, Decision Tree, and KNN for classifying ransomware. Pang 

et al. [28] identified four imbalanced algorithms to detect malware by using an imbalanced traffic dataset. The authors in 

[29] proposed a malware detection system with just 9 traffic feature measurements. The authors in [30] analyzed k-means 

and mini-batch k-means clustering algorithms to detect malware.  

Apart from analyzing network traffic, many authors have used Android OS's dynamic features for malware 

detection. Ribeiro et al. [31] introduced an IDPS, HIDROID, that analyses CPU usage, memory usage, battery, bandwidth, 

etc. The model is trained on benign data only and it issues an alert to the end-user whenever it detects an anomaly. The 

authors in [32] and [33] also proposed a similar model where the analysis is done on different levels. Moreover, Cai et al. 

[34] proposed “DroitCat”, which complements the existing malware detection as well as classification apps with the help 

of app-level profiling. The authors in [35] and [36] suggested the use of call graphs and API calls for detecting malware. 

Among various dynamic features for Android malware detection, network traffic gives relatively better accuracy as 

compared to other features. Hence, in this work, we aim to analyze network traffic for effective Android malware 

detection. 

3. METHODOLOGY 

In this section, we discuss the proposed NTDroid model to detect Android malware. Our approach can be broadly divided 

into four phases, as summarized in Figure 1, namely, 1) Data Collection, 2) Data Pre-processing, 3) Classifier Training and 

4) Predicting Anomalies. We discuss all the phases in detail in the following subsections. 

3.1. Data Collection 

Data collection is the first step in building malware detection models. Here we have used tpacketCapture app to capture 

normal traffic data from trending apps on the play store like WhatsApp, Pinterest, Maps, Uber, etc. For malware traffic 
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files we used an Android emulator and infected it with known malicious apps. In this way, we collected around 1 million 

packets each for malware and normal Android traffic in the form of pcap files. 

 

                                                        Figure 1: Proposed NTDroid Model System Design 

 

3.2. Data pre-processing 

The pcap files collected for malware and benign dataset are processed using Wireshark to extract traffic features as 

summarized in Table1. 

Table 1: List of Extracted Features 

Total Packet transferred Total Bytes transferred Packets Sent 

Bytes sent Packets received Bytes received 

Rel Start Duration Bits sent per second 

Bits received per second Bytes transferred per second Packets transmitted per second 

Packets sent per second Packets received per second Average packet size 

Average packet size sent Average packet size Received 
Ratio of incoming to outgoing 

packets 

Ratio of incoming to outgoing 

Bytes 
Average time between a packet sent 

Average time between a packet 

received 

   

 This phase is further divided into two sub-phases namely, (1) Data Normalization and (2) Feature Selection. We 

discuss them in detail in the next subsections. 

3.2.1. Data Normalization 

Normalization is a technique to scale all data on one common scale without losing information about the distribution of the 

data. Many machine learning algorithms require data to be normalized to give a better prediction. Here we’ve used the Z-

score normalization, the z-score is calculated as 

 

Where x is the data point, μ is the mean and σ is the standard deviation of data. So, we calculated the Z score for 

each of the features. 
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3.2.2. Feature Selection 

We have a set of 21 traffic features in the dataset, but not all features are required to train our detection model. Hence, we 

use a mutual information-based feature selection algorithm to select relevant and most important features. We use mutual 

information because it is a good estimator to check the dependency of the features. It is a non-negative value where a 

higher number indicates a strong dependency of the random variables while zero indicates that the variables are mutually 

independent. To calculate the mutual information, we have used the entropy-based k nearest neighbour algorithm as 

proposed by authors in [37]. We then use the following algorithm suggested by Ambusaidi et al. [38] to obtain the best set 

of features with minimum mutual redundancy. The mutual redundancy between two features fi and the feature set S can be 

calculated as shown in Equation 1. 

𝑀𝑅 =
1

|𝑆|
∑

MI(fi,fs)

MI(C,fi)𝑓𝑠                                                                                                                                                   (1) 

Where MI(fi, fs) represents the mutual information between fi and fs and C is the target class variable here. We calculate 

GMI scores for all the features that intend to maximize MI(fi, C) while minimizing the mutual redundancies, MR. We use fi 

to indicate features taken from the original feature set, and fs for features from the selected features subset, S. 

GMI (fi) = MI(C,fi) - MR                                                                                                                                           (2) 

In Equation (2), if GMI(fi) is less than zero, then it means that the feature fi is not providing any relevant information for the 

target variable C, and therefore we don’t add it to our selected feature subset. On the other hand, a positive value of GMI(fi) 

implies that feature fi is important and relevant to C. The complete feature selection and the ranking procedure is described 

in Algorithm 1. We use this Algorithm to select the relevant features to be used in the Detection phase. 

Algorithm 1 Feature Selection algorithm based on Mutual information 

Input: Feature set F 

Output: Subset of selected features - S 

Begin 

Step 1. Initialize S as an empty set 

Step 2. Calculate mutual information, MI(C, fi) ∀ fi ∊ F 

Step 3. For Fi in F : 

       For Fk in F: 

             Calculate MI(Fi, Fk)  

Step 4. Select the feature Fi  such that 

  MI(C;Fi) >= MI(C;Fk) where k = 1,.,n 

  Add Fi in S 

  Remove Fi from F 
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Step 5. While set F is not empty: 

       For fi in F: 

  𝑀𝑅 =
1

|𝑆|
∑

MI(fi,fs)

MI(C,fi)𝑓𝑠  

  GMI (fi)= MI(C,fi) –  MR 

       Select fk  such that GMI (fk) ≥ GMI (fi) ∀ fi ∊ F 

       Remove fk from F 

       If GMI (fk) ≥ 0 : 

Add fk to S 

Step 6. Sort S based on the values of GMI obtained. 

return S 

3.3 Training 

After feature selection, we obtain a subset of selected features. We aim to find the best set of features that could give better 

accuracy as compared to any other set of features. However, Algorithm 1 does not convey anything about the optimal 

number of features that could give better detection accuracy. Hence, to identify the optimal number of features, we start 

with a top-ranked feature and record the training accuracy. Further, we add the second feature with the top-ranked one and 

again record the training accuracy. Thereafter, we add the third-ranked feature with the top two features and record the 

training accuracy. On similar lines, iteration by iteration, we add all 18 features and record their training accuracy. In the 

end, we identify the best set of features that gives better training accuracy than any other set of features. The data set used 

for training was kept separate from the testing set, which we have used in the next step. 

3.4 Anomaly Detection 

In this step, we use the saved trained models from the previous step to predict anomalies. From the testing set, we first 

selected the optimal features as reported in the previous step, and then we fed this set into our trained classifiers to predict 

the anomalies. We compare the predicted class labels with actual data and record the testing results for all classifiers. 

4. RESULTS AND DISCUSSION 

In this section, we discuss the results obtained from the proposed NTDroid model. First we highlight the selected features 

based on their GMI score. Table 2 summarizes the list of 18 selected features. 

Table 2: List of Selected Features 

Packets received Ratio incoming to outgoing Bytes Packets sent per second 

Packets sent Total Packets transferred Duration 

Average time between a packet 

received Bytes sent Bytes sent 

Average packet size sent Average packet size Rel Start 

Average packet size received Total Bytes transferred Bits sent per second 
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Ratio incoming to outgoing packets Packets received per second Average time between a packet sent 

 

The proposed model now aims to find the best set of features, out of 18 ranked features, that can give better accuracy. 

Table 3 summarizes the training accuracies from the proposed model. Note that we start with the top-ranked feature to find 

the training accuracy and keep on adding the next features in the list. Here, Set-1 represents the accuracies with the top 

ranked traffic feature. Set-2 represents the accuracies with top two ranked features. On the similar lines, Set-n, for any 

value of n lying in the set [1,18], represents the accuracies with top n-ranked traffic features.  

Table 3: Training Accuracies with Different Classifiers 

Set of 

Features 

Training Accuracy (in %) With 

Different Classifiers 

 Ridge SGD KNN 
Decision 

Trees 
SVM 

Set-1 49.57 50.14 99.72 99.81 82.38 

Set-2 52.07 50.47 99.92 99.95 83.55 

Set-3 26.18 84.52 99.70 99.97 98.06 

Set-4 33.08 47.89 99.85 99.94 98.82 

Set-5 33.23 53.36 99.86 99.94 99.26 

Set-6 36.43 71.81 99.83 99.95 99.42 

Set-7 36.60 44.73 99.86 99.96 99.54 

Set-8 36.40 49.72 99.87 99.96 99.48 

Set-9 40.16 49.11 99.87 99.97 98.52 

Set-10 40.59 48.26 99.88 99.97 98.46 

Set-11 37.84 66.91 99.88 99.98 98.39 

Set-12 36.21 63.78 99.87 99.97 98.48 

Set-13 36.23 62.76 99.86 99.99 98.39 

Set-14 35.99 63.20 99.87 99.98 98.48 

Set-15 37.21 63.21 99.87 99.98 99.32 

Set-16 42.41 69.01 99.82 99.98 99.29 

Set-17 42.43 70.94 99.81 99.98 99.17 

Set-18 42.25 71.27 99.82 99.98 99.32 
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        As can be seen from the Table 3, KNN, Decision Trees and SVM classifiers give better training accuracy as compared 

to SGD and Ridge classifiers. We get the best training accuracy of 99.99% with Decision Trees classifier. We get this 

accuracy on the set of 13 traffic features. Therefore, we use this set of 13 traffic features to detect anomalies in the given 

test set. The training results with this optimal feature set is summarized in Table 4. 

Table 4: Detection Accuracies with different Classifiers 

Classifiers KNN Decision Trees SVM 

Testing accuracies (in %) 99.8673 99.9902 97.3216 

 

Hence, we conclude that the proposed model detects Android malware with high accuracy of 99.99% on the best set of 13 

traffic features.   

5. CONCLUSION AND FUTURE WORK  

In this paper, we proposed a dynamic model named NTDroid that uses network traffic files to detect Android malware. 

First, we selected the best subset of features and ranked them using a mutual-information based feature selection algorithm. 

We then incrementally added the ranked features in our machine learning models, and recorded the training accuracies and 

saved the models giving the highest accuracy. We then used the saved trained models to predict anomalies on the test set 

and evaluated their performances based on their accuracies. The experimental results demonstrate that the proposed model 

has a promising performance in detecting Android malware with a detection accuracy of 99.99% with the best set of 13 

traffic features. However, not all samples generate network traffic. Hence, our model can be applied only to a subset of 

samples that generate network traffic. Therefore, in our future work, we will further try to incorporate other features as 

well such as static permissions so that we are able to detect all kinds of malicious applications.  
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