

www.tjprc.org editor@tjprc.org

NTDROID: ANDROID MALWARE DETECTION USING NETWORK TRAFFIC

FEATURES

DEEPTI SINGH, KAPIL GUPTA, ANKUR SINGH & ANSHUL ARORA

Delhi Technological University, Delhi, India

ABSTRACT

Mobile malware samples damage the system and can lead to sensitive information leakage and huge monetary loss. Withthe

increasing popularity of Android smart phones, the number of malware attacks on the Android platform has alsoincreased.

In the first quarter of 2020, around 0.5 million new malware samples were detected per month. Keeping theirthreats in

mind, in this paper, we propose a novel network traffic-based Android malware detection model namedNTDroid. The model

is trained on network traffic files by selecting the best set of features using a mutual-informationbased feature selection

algorithm. Further, the model employs machine learning classifiers to detect malicious apps. Theexperimental results

demonstrate that the proposed model can efficiently distinguish between normal traffic and malicioustraffic with an

accuracy of 99.99%.

KEYWORDS: Mobile Network, Mobile Security, Malware Detection, Intrusion Detection

Received: Apr 07, 2021; Accepted: Apr 27, 2021; Published: May 07, 2021; Paper Id.: IJCNWMCJUN20211

1. INTRODUCTION

According to a recent report [1], 48.41% of the world population has access to smart phones now, and it’s expected

to become 62.21% by the end of 2021. This fact highlights the up surging popularity of smart phones in the world.

Smartphone’s provide a simple way to connect to the World Wide Web, i.e., the Internet. There are a lot of mobile

operating systems in the market like Android, iOS, KaiOS, etc. Out of all these operating systems, Android is the

most popular choice, with a market share of 71.9% [2].

 The growing number of Smartphone users across the globe has sparked interest in attackers as well. The

total number of new malware samples by March 2020 was around 0.5 million per month [3]. Recently a new

malware [4] has been identified that disguises itself as a system update and steals sensitive information in the

background. This example points to the security vulnerabilities in smart phones and how easy it is for attackers to

steal sensitive information. Trojans, ransomware, mobile bots are some common portable malware that can damage

the operating system, leak the data or cause huge monetary loss, etc.

1.1. Motivation

Due to the increasing popularity of Android smart phones, it has become a major target for attackers. According to

a mobile security firm [5], there are over 29,000 malicious applications for Android in active use as of 2020.

Whereas, there were only 14500 malicious applications in 2019. The obvious reason for increasing attacks on

Android OS is the high number of users, the open architecture of Android, and the availability of third-party

applications. Due to these vulnerabilities and the presence of a large number of malicious applications in the market

O
rig

in
a
l A

rticle
International Journal of Computer Networking,

Wireless and Mobile Communications (IJCNWMC)

ISSN (P): 2250–1568; ISSN (E): 2278–9448

Vol. 11, Issue1, Jun 2021, 1 – 12

 © TJPRC Pvt. Ltd.

2 Deepti Singh, Kapil Gupta, Ankur Singh & Anshul Arora

Impact Factor (JCC): 9.2992 NAAS Rating: 3.71

we need a highly accurate mechanism to detect such malicious apps. Several detection mechanisms have been proposed in

the literature for Android malware detection. Some of the works have designed static defense solutions that aim to analyze

static components of apps like manifest file, Java code, etc, and do not involve the execution of apps. Hence, stealthier

samples that can download malicious components at update time evade static detection. Therefore, dynamic solutions are

preferred over static ones to detect stealthier samples. In dynamic features, system calls and network traffic features have

been used in Android malware detection. However, the research has reported that system calls give relatively lower

accuracy in malicious apps detection on Android. Hence, in this work, we have aimed to analyze network traffic features

for effective Android malware detection.

1.2. Contributions

To address the above-mentioned problems, we propose a novel network traffic-based malware detection system on

Android that can detect malicious applications using machine learning classifiers. The key contributions made in this paper

are summarized below:

 We captured the network traces of malware and normal dataset using the packet capturing apps such as

tpacketCapture.

 After collecting the network traces, we extracted 21 network traffic features from both malware and normal

dataset. Further, we applied a mutual information-based feature selection algorithm to select the best set of

features, and remove redundant or irrelevant features.

 Thereafter, to identify the malicious network behaviour, we proposed a novel malware detection model based

on the selected features using machine learning algorithms.

1.3. Organization

The rest of the paper is structured as follows. We summarize the related works in the field of Android malware detection in

Section 2. The detailed methodology of the model NTDroid is explained in Section 3. We discuss the results obtained from

the proposed approach in Section 4 and conclude with future work directions in Section 5.

2. RELATED WORK

Several studies have been carried out on Android malware detection using machine learning techniques. Because the

proposed model aims to detect Android malware based upon dynamic traffic features, hence, we review the similar related

works focusing on dynamic Android malware detection. The authors in [6] employed packet classification and counting

techniques and detected malware by monitoring traffic to and from a network-connected host. The authors in [7] also

proposed a network-based system for the detection of malware that protects users from network attacks. Yujie et al. [8]

used traffic analysis and deep learning and introduced a rapid system to detect malware. They first collected the traffic

generated by the Android apps and preprocessed it with third-party applications to remove impure traffic data. The authors

in [9], [10], [11], and [12] also used network behavior analysis to detect Android malware. The authors in [13]

incorporated host-based information along with network features to detect malware. Furthermore, Zhou et al. [14]

proposed the construction of a traffic fingerprint that combines ML algorithms and can be used for encrypted traffic. The

Ntdroid: Android Malware Detection Using Network Traffic Features 3

www.tjprc.org editor@tjprc.org

authors in [15] suggested Hybrid Malware Detection Approach (HDMA) which takes into account features that display a

similar pattern in network traffic. They used ensemble learners along with the XGBoost algorithm to get high accuracy.

The authors in [16] proposed a malware detection system on the server-side, which consumed minimum mobile resources

and combined ML algorithms with network traffic analysis. Wu et al. [17] applied the Bayesian classifier model for

malware detection on network traffic data. Conti et al. [18] considered attacks that do not directly interact with the device

but through the network side like Wi-Fi and used advanced ML techniques to detect malware. The authors in [19] proposed

Locker-ransomware detection using comprehensive analysis of the transactions as well as ML algorithms. The authors in

[20] suggested monitoring the application’s interactions and behavior to derive statistical features, which are later fed to

ML classifiers for malware detection. The authors in [21] introduced “Mystique-S” for malware detection at runtime and

under different user conditions, it automatically selects attack features. Moreover, the authors in [22] used conversation-

level features and proposed an Extra-tree classifier that outperforms other classifiers in terms of accuracy. The authors in

[23] used an integrated two-layer detection system based primarily on neural networks to detect android malware

accurately. Wang et al. [24] also proposed a multi-view neural network for malware detection. The authors in [25] applied

NLP on HTTP flow text documents to detect Android malware. The authors in [26] discovered that the application layer

traffic is dominated by HTTP and DNS traffic, accounting for more than 99% of all traffic. The malware samples were

generated in a real internet environment. Manzano et al. [27] considered 10 ransomware families and 9 features related to

time. The authors compared 3 ML algorithms- Random Forest, Decision Tree, and KNN for classifying ransomware. Pang

et al. [28] identified four imbalanced algorithms to detect malware by using an imbalanced traffic dataset. The authors in

[29] proposed a malware detection system with just 9 traffic feature measurements. The authors in [30] analyzed k-means

and mini-batch k-means clustering algorithms to detect malware.

Apart from analyzing network traffic, many authors have used Android OS's dynamic features for malware

detection. Ribeiro et al. [31] introduced an IDPS, HIDROID, that analyses CPU usage, memory usage, battery, bandwidth,

etc. The model is trained on benign data only and it issues an alert to the end-user whenever it detects an anomaly. The

authors in [32] and [33] also proposed a similar model where the analysis is done on different levels. Moreover, Cai et al.

[34] proposed “DroitCat”, which complements the existing malware detection as well as classification apps with the help

of app-level profiling. The authors in [35] and [36] suggested the use of call graphs and API calls for detecting malware.

Among various dynamic features for Android malware detection, network traffic gives relatively better accuracy as

compared to other features. Hence, in this work, we aim to analyze network traffic for effective Android malware

detection.

3. METHODOLOGY

In this section, we discuss the proposed NTDroid model to detect Android malware. Our approach can be broadly divided

into four phases, as summarized in Figure 1, namely, 1) Data Collection, 2) Data Pre-processing, 3) Classifier Training and

4) Predicting Anomalies. We discuss all the phases in detail in the following subsections.

3.1. Data Collection

Data collection is the first step in building malware detection models. Here we have used tpacketCapture app to capture

normal traffic data from trending apps on the play store like WhatsApp, Pinterest, Maps, Uber, etc. For malware traffic

4 Deepti Singh, Kapil Gupta, Ankur Singh & Anshul Arora

Impact Factor (JCC): 9.2992 NAAS Rating: 3.71

files we used an Android emulator and infected it with known malicious apps. In this way, we collected around 1 million

packets each for malware and normal Android traffic in the form of pcap files.

 Figure 1: Proposed NTDroid Model System Design

3.2. Data pre-processing

The pcap files collected for malware and benign dataset are processed using Wireshark to extract traffic features as

summarized in Table1.

Table 1: List of Extracted Features

Total Packet transferred Total Bytes transferred Packets Sent

Bytes sent Packets received Bytes received

Rel Start Duration Bits sent per second

Bits received per second Bytes transferred per second Packets transmitted per second

Packets sent per second Packets received per second Average packet size

Average packet size sent Average packet size Received
Ratio of incoming to outgoing

packets

Ratio of incoming to outgoing

Bytes
Average time between a packet sent

Average time between a packet

received

 This phase is further divided into two sub-phases namely, (1) Data Normalization and (2) Feature Selection. We

discuss them in detail in the next subsections.

3.2.1. Data Normalization

Normalization is a technique to scale all data on one common scale without losing information about the distribution of the

data. Many machine learning algorithms require data to be normalized to give a better prediction. Here we’ve used the Z-

score normalization, the z-score is calculated as

Where x is the data point, μ is the mean and σ is the standard deviation of data. So, we calculated the Z score for

each of the features.

Ntdroid: Android Malware Detection Using Network Traffic Features 5

www.tjprc.org editor@tjprc.org

3.2.2. Feature Selection

We have a set of 21 traffic features in the dataset, but not all features are required to train our detection model. Hence, we

use a mutual information-based feature selection algorithm to select relevant and most important features. We use mutual

information because it is a good estimator to check the dependency of the features. It is a non-negative value where a

higher number indicates a strong dependency of the random variables while zero indicates that the variables are mutually

independent. To calculate the mutual information, we have used the entropy-based k nearest neighbour algorithm as

proposed by authors in [37]. We then use the following algorithm suggested by Ambusaidi et al. [38] to obtain the best set

of features with minimum mutual redundancy. The mutual redundancy between two features fi and the feature set S can be

calculated as shown in Equation 1.

𝑀𝑅 =
1

|𝑆|
∑

MI(fi,fs)

MI(C,fi)𝑓𝑠 (1)

Where MI(fi, fs) represents the mutual information between fi and fs and C is the target class variable here. We calculate

GMI scores for all the features that intend to maximize MI(fi, C) while minimizing the mutual redundancies, MR. We use fi

to indicate features taken from the original feature set, and fs for features from the selected features subset, S.

GMI (fi) = MI(C,fi) - MR (2)

In Equation (2), if GMI(fi) is less than zero, then it means that the feature fi is not providing any relevant information for the

target variable C, and therefore we don’t add it to our selected feature subset. On the other hand, a positive value of GMI(fi)

implies that feature fi is important and relevant to C. The complete feature selection and the ranking procedure is described

in Algorithm 1. We use this Algorithm to select the relevant features to be used in the Detection phase.

Algorithm 1 Feature Selection algorithm based on Mutual information

Input: Feature set F

Output: Subset of selected features - S

Begin

Step 1. Initialize S as an empty set

Step 2. Calculate mutual information, MI(C, fi) ∀ fi ∊ F

Step 3. For Fi in F :

 For Fk in F:

 Calculate MI(Fi, Fk)

Step 4. Select the feature Fi such that

 MI(C;Fi) >= MI(C;Fk) where k = 1,.,n

 Add Fi in S

 Remove Fi from F

6 Deepti Singh, Kapil Gupta, Ankur Singh & Anshul Arora

Impact Factor (JCC): 9.2992 NAAS Rating: 3.71

Step 5. While set F is not empty:

 For fi in F:

 𝑀𝑅 =
1

|𝑆|
∑

MI(fi,fs)

MI(C,fi)𝑓𝑠

 GMI (fi)= MI(C,fi) – MR

 Select fk such that GMI (fk) ≥ GMI (fi) ∀ fi ∊ F

 Remove fk from F

 If GMI (fk) ≥ 0 :

Add fk to S

Step 6. Sort S based on the values of GMI obtained.

return S

3.3 Training

After feature selection, we obtain a subset of selected features. We aim to find the best set of features that could give better

accuracy as compared to any other set of features. However, Algorithm 1 does not convey anything about the optimal

number of features that could give better detection accuracy. Hence, to identify the optimal number of features, we start

with a top-ranked feature and record the training accuracy. Further, we add the second feature with the top-ranked one and

again record the training accuracy. Thereafter, we add the third-ranked feature with the top two features and record the

training accuracy. On similar lines, iteration by iteration, we add all 18 features and record their training accuracy. In the

end, we identify the best set of features that gives better training accuracy than any other set of features. The data set used

for training was kept separate from the testing set, which we have used in the next step.

3.4 Anomaly Detection

In this step, we use the saved trained models from the previous step to predict anomalies. From the testing set, we first

selected the optimal features as reported in the previous step, and then we fed this set into our trained classifiers to predict

the anomalies. We compare the predicted class labels with actual data and record the testing results for all classifiers.

4. RESULTS AND DISCUSSION

In this section, we discuss the results obtained from the proposed NTDroid model. First we highlight the selected features

based on their GMI score. Table 2 summarizes the list of 18 selected features.

Table 2: List of Selected Features

Packets received Ratio incoming to outgoing Bytes Packets sent per second

Packets sent Total Packets transferred Duration

Average time between a packet

received Bytes sent Bytes sent

Average packet size sent Average packet size Rel Start

Average packet size received Total Bytes transferred Bits sent per second

Ntdroid: Android Malware Detection Using Network Traffic Features 7

www.tjprc.org editor@tjprc.org

Ratio incoming to outgoing packets Packets received per second Average time between a packet sent

The proposed model now aims to find the best set of features, out of 18 ranked features, that can give better accuracy.

Table 3 summarizes the training accuracies from the proposed model. Note that we start with the top-ranked feature to find

the training accuracy and keep on adding the next features in the list. Here, Set-1 represents the accuracies with the top

ranked traffic feature. Set-2 represents the accuracies with top two ranked features. On the similar lines, Set-n, for any

value of n lying in the set [1,18], represents the accuracies with top n-ranked traffic features.

Table 3: Training Accuracies with Different Classifiers

Set of

Features

Training Accuracy (in %) With

Different Classifiers

 Ridge SGD KNN
Decision

Trees
SVM

Set-1 49.57 50.14 99.72 99.81 82.38

Set-2 52.07 50.47 99.92 99.95 83.55

Set-3 26.18 84.52 99.70 99.97 98.06

Set-4 33.08 47.89 99.85 99.94 98.82

Set-5 33.23 53.36 99.86 99.94 99.26

Set-6 36.43 71.81 99.83 99.95 99.42

Set-7 36.60 44.73 99.86 99.96 99.54

Set-8 36.40 49.72 99.87 99.96 99.48

Set-9 40.16 49.11 99.87 99.97 98.52

Set-10 40.59 48.26 99.88 99.97 98.46

Set-11 37.84 66.91 99.88 99.98 98.39

Set-12 36.21 63.78 99.87 99.97 98.48

Set-13 36.23 62.76 99.86 99.99 98.39

Set-14 35.99 63.20 99.87 99.98 98.48

Set-15 37.21 63.21 99.87 99.98 99.32

Set-16 42.41 69.01 99.82 99.98 99.29

Set-17 42.43 70.94 99.81 99.98 99.17

Set-18 42.25 71.27 99.82 99.98 99.32

8 Deepti Singh, Kapil Gupta, Ankur Singh & Anshul Arora

Impact Factor (JCC): 9.2992 NAAS Rating: 3.71

 As can be seen from the Table 3, KNN, Decision Trees and SVM classifiers give better training accuracy as compared

to SGD and Ridge classifiers. We get the best training accuracy of 99.99% with Decision Trees classifier. We get this

accuracy on the set of 13 traffic features. Therefore, we use this set of 13 traffic features to detect anomalies in the given

test set. The training results with this optimal feature set is summarized in Table 4.

Table 4: Detection Accuracies with different Classifiers

Classifiers KNN Decision Trees SVM

Testing accuracies (in %) 99.8673 99.9902 97.3216

Hence, we conclude that the proposed model detects Android malware with high accuracy of 99.99% on the best set of 13

traffic features.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a dynamic model named NTDroid that uses network traffic files to detect Android malware.

First, we selected the best subset of features and ranked them using a mutual-information based feature selection algorithm.

We then incrementally added the ranked features in our machine learning models, and recorded the training accuracies and

saved the models giving the highest accuracy. We then used the saved trained models to predict anomalies on the test set

and evaluated their performances based on their accuracies. The experimental results demonstrate that the proposed model

has a promising performance in detecting Android malware with a detection accuracy of 99.99% with the best set of 13

traffic features. However, not all samples generate network traffic. Hence, our model can be applied only to a subset of

samples that generate network traffic. Therefore, in our future work, we will further try to incorporate other features as

well such as static permissions so that we are able to detect all kinds of malicious applications.

6. REFERENCES

1. MARCH 2021 MOBILE USER STATISTICS (Source: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world)

2. Sunita Kumawat, Anjali Kumawat & Anil Kumar Sharma, “Intrusion Detection System and Prevention System in Cloud

Computing using Snort”,International Journal of Computer Science Engineering and Information Technology Research

(IJCSEITR), Vol. 5, Issue 6, pp, 31-40

3. Mobile Operating System Market Share Worldwide (Source: https://gs.statcounter.com/os-market-share/mobile/worldwide)

4. Development of Android malware worldwide 2016-2020 (Source: https://www.statista.com/statistics/680705/global-android-

malware-volume)

5. Rajshekhar Tiwari & Manish Sharma, “Comparative Analysis of Trust Based and Intrusion Based Black Hole Prevention in

AODV in Manet”,International Journal of Computer Networking, Wireless and Mobile Communications (IJCNWMC), Vol. 4,

Issue 2,pp , 151- 158

6. New Android malware with full range of spying capabilities has been found (Source:

https://arstechnica.com/gadgets/2021/03/new-android-malware-with-full-range-of-spying-capabilities-has-been-found/)

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/680705/global-android-malware-volume
https://www.statista.com/statistics/680705/global-android-malware-volume
https://arstechnica.com/gadgets/2021/03/new-android-malware-with-full-range-of-spying-capabilities-has-been-found/

Ntdroid: Android Malware Detection Using Network Traffic Features 9

www.tjprc.org editor@tjprc.org

7. Tens of thousands of malicious Android apps flooding user devices By Joel (Source: https://www.techradar.com/news/tens-of-

thousands-of-malicious-android-apps-flooding-google-play-store)

8. Tariqahmad Sherasiya, Hardik Upadhyay & Hiren B Patel, “A Survey: Intrusion Detection System for Internet of

Things”,International Journal of Computer Science and Engineering (IJCSE), Vol. 5, Issue 2, pp, 91-98

9. L. E. Menten, A. Chen and D. Stiliadis, "Nobot: Embedded malware detection for endpoint devices," in Bell Labs Technical

Journal, vol. 16, no. 1, pp. 155-170, June 2011

10. V. Khatri and J. Abendroth, "Mobile Guard Demo: Network Based Malware Detection," 2015 IEEE

Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015

11. N. S. Chandolikar & V. D. Nandavadekar, “Investigation of Feature Selection and Ensemble Methods for 133 Performance

Improvement of Intrusion Attack Classification”,International Journal of Computer Science and Engineering (IJCSE), Vol. 2,

Issue 3, pp, 131-136

12. P. Yujie, N. Weina, Z. Xiaosong, Z. Jie, H. Wu and C. Ruidong, "End-To-End Android Malware Classification Based on Pure

Traffic Images," 2020 17th International Computer Conference on Wavelet Active Media Technology and Information

Processing (ICCWAMTIP), Chengdu, China, 2020

13. I. J. Sanz, M. A. Lopez, E. K. Viegas and V. R. Sanches, "A Lightweight Network-based Android Malware Detection System,"

2020 IFIP Networking Conference (Networking), Paris, France, 2020, pp. 695-703.

14. M. Zaman, T. Siddiqui, M. R. Amin and M. S. Hossain, "Malware detection in Android by network traffic analysis," 2015

International Conference on Networking Systems and Security (NSysS), Dhaka, Bangladesh, 2015

15. A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network traffic analysis in android based mobile devices”,

IEEE 8th International Conference on Next Generation Mobile Apps, Services and Technologies, 2014.

16. A. Arora, and S. K. Peddoju, “Minimizing Network Traffic Features for Android Mobile Malware Detection”, 18th ACM

International Conference on Distributed Computing and Networking, 2017.

17. K. Ariyapala, G. D. Hoang, N. A. Huynh, K. N. Wee and M. Conti, "A Host and Network Based Intrusion Detection for

Android Smartphone’s," 2016 30th International Conference on Advanced Information Networking and Applications

Workshops (WAINA), Crans-Montana, Switzerland, 2016

18. J. Zhou, W. Niu, X. Zhang, Y. Peng, H. Wu and T. Hu, "Android Malware Classification Approach Based on Host-Level

Encrypted Traffic Shaping," 2020 17th International Computer Conference on Wavelet Active Media Technology and

Information Processing (ICCWAMTIP), Chengdu, China, 2020

19. S. Rahmat, Q. Niyaz, A. Mathur, W. Sun and A. Y. Javaid, "Network Traffic-Based Hybrid Malware Detection for Smartphone

and Traditional Networked Systems," 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), New York, NY, USA, 2019

20. Shanshan Wang et al., "TrafficAV: An effective and explainable detection of mobile malware behavior using network traffic,"

2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, 2016

21. F. Wu, L. Xiao and J. Zhu, "Bayesian Model Updating Method Based Android Malware Detection for IoT Services," 2019

15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019

https://www.techradar.com/news/tens-of-thousands-of-malicious-android-apps-flooding-google-play-store
https://www.techradar.com/news/tens-of-thousands-of-malicious-android-apps-flooding-google-play-store

10 Deepti Singh, Kapil Gupta, Ankur Singh & Anshul

Arora

Impact Factor (JCC): 9.2992 NAAS Rating: 3.71

22. M. Conti, L. V. Mancini, R. Spolaor and N. V. Verde, "Analyzing Android Encrypted Network Traffic to Identify User Actions,"

in IEEE Transactions on Information Forensics and Security, vol. 11, no. 1, pp. 114-125, Jan. 2016

23. D. Su, J. Liu, X. Wang and W. Wang, "Detecting Android Locker-Ransomware on Chinese Social Networks," in IEEE Access,

vol. 7, pp. 20381-20393, 2019

24. S. Wei, Gaoxiang Wu, Ziyang Zhou and L. Yang, "Mining network traffic for application category recognition on Android

platform," 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 2015

25. Y. Xue et al., "Auditing Anti-Malware Tools by Evolving Android Malware and Dynamic Loading Technique," in IEEE

Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1529-1544, July 2017, doi:

10.1109/TIFS.2017.2661723.

26. M. K. A. Abuthawabeh and K. W. Mahmoud, "Android Malware Detection and Categorization Based on Conversation-level

Network Traffic Features," 2019 International Arab Conference on Information Technology, Al Ain, United Arab Emirates,

2019

27. J. Feng, L. Shen, Z. Chen, Y. Wang and H. Li, "A Two-Layer Deep Learning Method for Android Malware Detection Using

Network Traffic," IEEE Access, vol. 8, pp. 125786-125796, 2020.

28. S. Wang et al., "Deep and Broad Learning Based Detection of Android Malware via Network Traffic," 2018 IEEE/ACM 26th

International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 2018

29. S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao and M. Conti, "Detecting Android Malware Leveraging Text Semantics of

Network Flows," in IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1096-1109, May 2018

30. Z. Chen et al., "A First Look at Android Malware Traffic in First Few Minutes," 2015 IEEE Trustcom/BigDataSE/ISPA,

Helsinki, Finland, 2015

31. C. Manzano, C. Meneses and P. Leger, "An Empirical Comparison of Supervised Algorithms for Ransomware Identification

on Network Traffic," 2020 39th International Conference of the Chilean Computer Science Society (SCCC), Chile, 2020

32. Y. Pang et al., "Finding Android Malware Trace from Highly Imbalanced Network Traffic," 2017 IEEE International

Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and

Ubiquitous Computing (EUC), Guangzhou, China, 2017

33. A. H. Lashkari, A. F. A.Kadir, H. Gonzalez, K. F. Mbah and A. A. Ghorbani, "Towards a Network-Based Framework for

Android Malware Detection and Characterization," 2017 15th Annual Conference on Privacy, Security and Trust (PST),

Calgary, AB, Canada, 2017

34. A. Feizollah, N. B. Anuar, R. Salleh and F. Amalina, "Comparative study of k-means and mini batch k-means clustering

algorithms in android malware detection using network traffic analysis," 2014 International Symposium on Biometrics and

Security Technologies (ISBAST), Kuala Lumpur, Malaysia, 2014

35. J. Ribeiro, F. B. Saghezchi, G. Mantas, J. Rodriguez and R. A. Abd-Alhameed, "HIDROID: Prototyping a Behavioral Host-

Based Intrusion Detection and Prevention System for Android," in IEEE Access, vol. 8, pp. 23154-23168, 2020

36. A. Saracino, D. Sgandurra, G. Dini and F. Martinelli, "MADAM: Effective and Efficient Behavior-based Android Malware

Detection and Prevention," in IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83-97, 1 Jan.-Feb.

2018

Ntdroid: Android Malware Detection Using Network Traffic Features 11

www.tjprc.org editor@tjprc.org

37. S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song and H. Yu, "SAMADroid: A Novel 3-Level Hybrid Malware Detection

Model for Android Operating System," in IEEE Access, vol. 6, pp. 4321-4339, 2018

38. H. Cai, N. Meng, B. Ryder and D. Yao, "DroidCat: Effective Android Malware Detection and Categorization via App-Level

Profiling," in IEEE Transactions on Information Forensics and Security, vol. 14, no. 6, pp. 1455-1470, June 2019, doi:

10.1109/TIFS.2018.2879302.

39. H. Zhang, S. Luo, Y. Zhang and L. Pan, "An Efficient Android Malware Detection System Based on Method-Level Behavioral

Semantic Analysis," IEEE Access, vol. 7, pp. 69246-69256, 2019.

40. V.M. Afonso et al., ”Identifying Android malware using dynamically obtained features”, Journal of Computer Virology and

Hacking Techniques, vol. 11, pp.9-17,2015.

41. Kraskov, Alexander & Stögbauer, Harald & Grassberger, Peter. (2004). Estimating Mutual Information. Physical review. E,

Statistical, nonlinear, and soft matter physics. 69. 066138. 10.1103/PhysRevE.69.066138.

42. M. A. Ambusaidi, X. He, P. Nanda and Z. Tan, "Building an Intrusion Detection System Using a Filter-Based Feature

Selection Algorithm," in IEEE Transactions on Computers, vol. 65, no. 10, pp. 2986-2998, 1 Oct. 2016, doi:

10.1109/TC.2016.2519914.

