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We study the principles behind Nuclear Magnetic Resonance using a TeachSpin pulsed

Nuclear Magnetic Resonance (pNMR). We measured relaxation times (T1, T2, T
′

2) of hy-

drogen in liquid samples, with chemical composition containing hydrocarbons, by rotating

the samples nuclear spin, through various methods, and measuring the time it takes the

spins to equilibrate. Equilibrium is defined by the direction of a permanent magnetic field.

This procedure in this lab can be used to determine the chemical composition of any random

sample if there are known values for different samples.
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1. INTRODUCTION

Widely used in many fields of science, Nuclear Magnetic Resonance (NMR) has the ability to

characterize samples. The most notable application of magnetic resonance is a Magnetic Resonance

Imaging (MRI) machine which is heavily used in the medical field and widely known throughout

the public. The ability for NMR to measure local magnetic fields in atomic nuclei make it much

better than an ordinary magnetometer, which measures average field.

NMR is based off the principles of magnetic resonance. When a charged particle (in our case:

protons) is in the presence of a magnetic field, the particle experiences a torque. Thus the particle is

given angular momentum and precession occurs around the magnetic field (z-direction). When an

external field is applied, resonance conditions can be applied such that the particle processes - in the

x-y plane - around its original axis of field orientation - z-axis. Resonance occurs when the applied

field is of the same frequency as the frequency of the particle’s precession in the perpendicular

plane to the static magnetic field. The external field, in this case is a pulse of radio frequency (rf).

From quantum mechanics we know that there are discrete energy levels corresponding to the spin

of a particle around a static magnetic field, B0. These energy levels are spaced by ∆E = ~γB0

where γ = µ/J~ ,is the gyromagnetic ratio and J is the spin of the nucleus. The frequency of

precession is given by the Lamour frequency,

ωL = γB0. (1)

It should be noted here that we are dealing with elements that are spherically symmetric with

respects to the electron distribution. This is why we concern ourselves with the nuclear spin,

otherwise the nuclear spin would be a small perturbation on the total spin of the atomic sample.

In this experiment to have a signal of detectable magnitude we deal with samples that are proton

abundant. These samples will give a strong NMR signal.

By applying resonance conditions in terms of an rf pulse, we are able to flip the spin’s projection

from the z-axis to the x-y plane. Once flipped, the particle will precess around the z-axis at the

Lamour frequency, if the applied frequency is on resonance. Because we have a moving charged

particle, the particle will give off an EMF which can be detected by a pick-up coil.

When the rf pulse is applied, energy is given to the system. The spin states, who want to return

back to the equilibrium - spin orientated along the z-axis - will exchange thermal energy with

each other until they return back to the z-axis. Due to the inhomogeneous field of the permanent
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magnet, B0, different spin-states, after being rotated to the x-y plane, will begin precessing with

different angular velocities because they observe different magnetic fields. Once the spin-states

exchange energy they align back to the z-axis, there will be no EMF detected by the pick-up coil

and thus our signal decreases to zero. The time it takes for the spin states to go back to equilibrium

is called the relaxation time. The next section will discuss the evolution of the spin-states for three

different pulse schemes.

2. PROCEDURE

It is first important to understand the two types of rf pulses applied produced by the TeachSpin

pulsed NMR. We define that the permanent magnetic field in this system produced the permanent

magnet is orientated in the +z direction. The magnetic field produced, B0, can be varied by

changing the applied current. From the TeachSpin pNMR, a π/2 pulse, referred to as an A pulse,

will temporarily flip the net magnetization of the spins to the x-y plane if the frequency of the rf

field is resonant. A π pulse, referred to as a B pulse, will temporarily flip the net magnetization to

the -z-direction assuming the spin states were originally aligned in the z-axis. This can pictured

on a sphere, defined as the Bloch sphere, with the north and south poles corresponding to spins

aligned in the z-axis and -z - axis respectively, and spins aligned along the equator are in the x-y

plane. Thus a π/2 pulse will move spins originally from the north pole (z-axis) to the equator (x-y

plane) and a π will orient the spins from the north pole to the south pole.

When used together in three distinct orders (Pπ then π/2 or π/2 then π pulse) we can measure

the three relaxation times which are defined in the following three sections. As described above we

can use A. Bloch’s equations[1] to describe the evolution of the system of spin states by viewing

them on the Bloch sphere. These solutions are completely analogous to the evolution of a two-

level energy state system of an atom under a time-dependent potential (i.e. atomic interaction

with lasers). Equations 2,3 and 4 represent the evolution of the spin-state system (not individual

spin-states) after an applied π/2 pulse.

dMz

dt
=
M0 −Mz

T1
(2)

dMx

dt
=
Mx

T2
(3)
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dMy

dt
=
−My

T2
(4)

As explained previously, the spin-state system will return back to equilibrium after some time

through exchange of thermal energy. It is the time taken to return to equilibrium, that corresponds

to various pulse orders, that is defined below.

2.1. Spin-Lattice Relaxation Time: T1

Solving Eq. (2) can be easily found by integrating and using the boundary condition that

Mz(t = 0) = 0 we find that

Mz(t) = M0(1− 2e−t/T1) (5)

where T1 is the spin-lattice relaxation rate and is shown graphically below.
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This value is measured by applying a π pulse to flip the spin to the -z-direction. At a time t

after the π pulse is applied a π/2 pulse is applied. By varying the time between the two pulses

we can measure T1. This can be understood conceptually as we increase t. If the π/2 pulse is
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applied immediately after the π pulse, the all the states will be rotated to the x-y plane, thus we

see a local maximum as we observe the amplitude in the pick-up EMF signal. If we increase t then

we allow more time for the spins to begin relaxing so when the π/2 pulse is applied not all the

spin states will rotated to the x-y plane thus our detected signal will decrease. At a certain time

t the spin states will have relaxed to the x-y plane, then by applying an A pulse the spin-states

are then oriented to the z-axis, and no signal is detected. At a later time the spin-state will have

relaxed past the x-y plane towards the z-axis, so if an A pulse is applied then these states will flip

past the z-axis into some orientation of the spin containing all three components, meaning there

is precession that the pick-up coil will detected. At an even greater time, all the spins have had

enough time to relax back to their equilibrium state, which we define as the z-axis, then an A pulse

will strictly orient them to the x-y plane and we observe another maximum in the detected signal.

Here the maximum hits an asymptote since so much time has passed the spin state are back at

equilibrium and until an A pulse is applied, the spin-states will remain oriented there.

As we vary t between the two pulses we can determine T1 by recording the amplitude of the

signal at each time step. T1 can also be used to determine T2 using the following equation:

1

T2
=

1

T ∗
2

+
1

T
′
2

(6)

where,

1

T
′
2

=
1

T
′′
2

+
1

2T1
(7)

Here, T2 is the Free Induction Decay (FID), T ∗
2 is the relaxation due to the inhomogeneous B

field (B0), T
′
2 is the spin echo decay, and T

′′
2 is the relaxation due to the spin-spin interaction.

2.2. Spin-Echo Decay: T
′

2

This spin echo decay is a relaxation rate that includes interactions between spin-states (T
′′
2 ) to

effect the total relaxation time. In liquids we find T
′′
2 � 2T1 and we neglect this term, for solids

this is not the case. In this limit, from Eq. (7), we find that

T
′
2 = 2T2. (8)
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By measuring this rate, we can eliminate unwanted effects of magnetic field inhomogeneities.

This can be measured by applying a single π/2 pulse followed by a series of π pulses. The resulting

decay of detected signal can be understood by the following function of τ which is the time between

the two pulses.

Mecho(τ) = M(0)e−τ/T
′
2 (9)
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The application of the initial π/2 pulse will orient the spins to the x-y plane as described.

Due to the inhomogeneous magnetic field, different protons see different fields and thus precess at

different rates. The inhomogeneity causes a range of precessions centered at some average rate.

By applying a π pulse the spins are allowed to regroup before dephasing again. After the π pulse

is applied the spins that now were ’ahead’ of the average are behind, and those that were ’behind’

the average are now ahead resulting in all the protons to catch up to the average or rephase. After,

the spins begin to dephase again. This is apparent by observing a maximum on the oscilloscope

after the application of a π pulse then a decrease in signal as the spins dephase. The procedure

done to determine T
′
2 was to applying a series of Pi pulses (on the order of tens of pulses) after

the initial π/2 pulse. In this way we observed the rise and fall of many maximas of an amplitude
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that would decay. By recording each maxima in time and then plotting those points T
′
2 can be

determined.

Another procedure to determine T
′
2, which was not done in this lab, is to vary the time between

the A and B pulses and to plot the the maximum as a function of time. Although not done, this

result should be the same as the result found from the procedure described in the paragraph above.

2.3. Free Induction Decay (FID): T2

We see that T2 is defined by Eq. (6). The Free Induction Decay (FID) is characteristic of

the spin-states angular velocities. By applying one π/2 pulse we can measure T2. We know that

once in the x-y plane, different protons will be influenced by different magnetic fields due to the

inhomogeneity of the permanent magnetic. Thus different protons will precess at different rates

around the z-axis which we defined as dephasing. In the process of dephasing the spin-states

exchange thermal energy within the system. This exchange of thermal energy causes the spin-

states to return to equilibrium causing the detected signal on the oscilloscope go from a maximum

after the π/2 pulse is applied to zero. The time it takes for the signal to decay to zero is the Free

Induction Decay time.

Measurements are done by fitting the data to the solution of Eq. (4). The solution is given as,

M(t) = M0e
−t/T2 . (10)



8

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Plotting M(t) as a Function of Time

Time (a.u)

M
(t

)

 

 
y = 2exp(−x), T

2
 = 1/e point

2.4. Experimental Set Up

To detect these parameters of a given sample a pNMR spectrometer from TeachSpin is used.

Samples in small vials are placed in the center of the permanent magnetic. When measuring

T1, T
∗
2 and T

′
2 the same procedure was applied for all samples. A diagram of the set up is shown

below.
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FIG. 1: A 3-d view of the pNMR apparatus is shown[2]. The receiver coil is oriented such a way as to detect

only the EMF given by the precessing protons.

The sample has its protons spins aligned with B0. By the application of the rf pulse, spins are

oriented in either the x-y plane from a π/2 pulse or are in the z or -z direction depending on their

original state by the application of a π pulse. As the spins precess, the resulting EMF is detected

by the receiver coils and sent to the oscilloscope. The circuit diagram for this set up is shown

below. It shows the path taken by the rf pulse and the received signal.
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FIG. 2: A diagram following the several signals in this experiment is shown[3].

Resonance was found applying aπ/2 pulse and changing the current applied to the permanent

magnetic field, B0, such that the detected signal was maximized. Then the frequency was adjusted

so that the mixed signal - a beat of both the rf and received signal - was minimized to a signal

peak, or a flat line. At resonance, if the width of the A pulse was increased to that of a π pulse,

we observed no FID detected signal verifying resonance. It was also done by observing the beat

frequency between the detected signal and the original rf frequency. On resonance, since the two

frequencies should be the same, then there is no detected beat. By observing the beat signal

decrease to zero we could also determine resonance conditions. By following the procedures in

Section [2] we can then measure the various relaxation times.

3. DATA AND ANALYSIS

In all the analysis, Matlab was used to extract the raw data and process it. In processing we

used three different fitting functions, corresponding to T1, T2 and T
′
2. respectively. We determine

the ”goodness” of our fit by obtaining a Reduced χ2 that is close to 1. The formula for the Reduced

χ2 is given by[4],

Reduced χ2 =

∑N
1

(y−f(x))2
σ2

N − ν
(11)

where N is the number of data points, y is the measured value, f(x) is the fitted value, σ is the

error and ν is the number of free parameters (three in this case of all fitting functions). The error
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σ was estimated by observing the average distance between the fit curve and the measured values.

We measured T1, T2 and T
′
2 for the following samples: Mineral Oil, Paraffin Oil, and an Unknown

Sample. In addition we also measured T1, T2 and T
′
2 for four concentrations of Fe(NO3)3 in water.

In the following sections examples of the data and fitting functions are shown for mineral oil. The

graphs and fitting functions for all of the samples measured can be found in the Appendix.

It should be noted that the resonance frequencies are not mentioned because of drifts in the

voltage to the permeant magnetic field. The same sample will have its resonance condition drift

over the course of hours, making day to day resonance conditions incomparable. Despite this the

overall measurements of the relaxation times did not change (as one would suspect) day to day,

which is not shown in this lab but was verified by the experimenters.

In addition, while the magnetization is a free parameter, the value found does not pertain to the

true magnetization of the sample. This is due to the procedure in which we measured the relaxation

times as well as editing done in the data analysis. Our focus was measuring the relaxation times

as stated and therefore the procedure followed the focus.

3.1. T1

The procedure to determine T1 is described in Section [2]. We find that by increasing the delay

between the B and A pulse the signal goes from a maximum to a minimum and back towards an

asymptote corresponding to the magnetization of the sample. This is shown mathematically below

and was the fitting function used.

Mz(t) = M(1− 2e−t/T1). (12)

Below are our measured results for both mineral oil.
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FIG. 3: Here the beginning set of points were reflected over the x-axis to get an exponential curve that hits

an asymptote. This procedure is done for all the following measurements of T1. Our fitting function gave

T1 = 20.59 ± 0.36 ms, with error = σ = 0.02 and a Reduced χ2 = 1.0177

To have improved the accuracy of this result, more data points near the asymptote should have

been taken. Points near V = 0 are removed because of the noise of the signal, where maximums

were measured that were not actual maximums of the signal.

The found values of T1 for the other samples can be found below in Section [3.4].

3.2. T2

As described in Section [2], once resonance was found we sent an A (π/2) pulse to the sample,

orienting the spins in the x-y plane. By measuring the decay of the signal we measure the Free

Induction Decay (FID). The following fitting function was used.

M(t) = M0e
−t/T2 (13)

Below is a graph showing our measurement of T2 for mineral oil.
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FIG. 4: The FID of mineral oil is shown. Note the measured data does not hit zero due to noise in the

electronics.

We found T2 to be 0.2949 ± 0.004 ms from a fitting function of σ = 0.023 and reduced χ2 =

1.0308.

The values of T2 for the other samples can be found below in Section [3.4].

3.3. T
′

2

We expect that the spin-echo decay time (T
′
2) be longer than the FID. This is because the

spin’s are constantly being flipped by a series of B pulses followed by a single A pulse whereas in

the FID only a single A pulse acts on the sample. In the case of the spin-echo decay the constant

application of a B pulse does not allow different spins to align together, because they are not given

the time to. This means they have less time to exchange thermal energy causing their rotation

back to the z-direction, and thus equilibrium, to take longer. This is verified by our data shown in

Section [3.4]

The following function was used to fit the data,

M(t) = M0e
−t/T2 (14)
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Below are our measured results for mineral oil.
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FIG. 5: The spin-echo decay for mineral oil.

Our fitting function returned a value of T
′
2 = 14.83 ± 0.78 ms for a σ = 0.025 and reduced χ2

= 1.0915. We do indeed note that this relaxation time is longer than the FID for mineral oil.

We will now look at these values for each sample tested and discuss.

3.4. Summary and Correlations

Following the same procedure described above we measured the following values for each of our

seven samples. For simplicity, samples of different concentrations such as 0.05M of Fe(NO3)3 in

water is written as 0.05M.
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Sample T1 (ms) T
′
2 (ms) T2 (ms) T∗ (ms)

Mineral Oil 20.59 ± 0.36 14.83 ± 0.78 .2949 ± 0.004 0.3 ± 0.031

Paraffin Oil 31.11 ± 0.93 13.57 ± 0.2 0.4039 ± 0.0063 0.41 ± 0.012

Unknown Sample 21.17 ± 1.24 11.14 ± 0.3 0.4379 ± 0.0038 0.45 ± 0.024

0.05M 2.07 ± 0.118 1.389 ± 0.06 0.3992 ± 0.0039 0.56 ± 0.048

0.075M 0.6307 ± 0.0064 0.4266 ± 0.0562 0.3653 ± 0.0021 2.54 ± 0.669

0.1M 0.4116 ± 0.0065 0.4989 ± 0.0277 0.3813 ± 0.0025 1.61 ± 0.179

1.0M 0.06438 ± 0.00429 0.4116 ± 0.0247 0.3456 ± 0.0027 2.15 ± 0.258

The first thing to note is that, the unknown sample - which was originally believed to be

another concentration of Fe(NO3)3 - is probably paraffin oil with water or something close in

chemical composition. It may be paraffin oil, but with a smaller volume then the known vial of

paraffin oil resulting in the shorter relaxation times. This sample indicates the power of NMR as a

tool for characterizing samples. We immediately thought the unknown sample was a concentration

of Fe(NO3)3 but from the analysis we could immediately rule that off by testing several other

concentrations of Fe(NO3)3 in water.

Using the Eq. (6) we estimated T∗, which is the relaxation due to the inhomogeneous magnetic

field, for each sample shown. Theoretically this should be the same regardless of sample but we

find that this is not the case. It may be that different samples see a different inhomogeneous field

as a result of their own atomic properties. It could also be a byproduct of stray magnetic fields

from the laboratory, which are hardly consistent.

It is also interesting to note that T1 and T
′
2 do not relate corresponding to Eq. (8). In fact

for the first three samples - mineral oil, paraffin oil, and the unknown - it appears that T1 ' 2T
′
2.

This is a testament to the experimental errors including the DC drift in the permanent magnet.

Using this table, we can make a rough estimate for a function relating T1, T
′
2, T2 to different

concentrations of Fe(NO3)3 in water. This is shown below. Again, Matlab was used to fit to the

data points and provided a ’goodness’ of fit described by Eq. (11). For all three of these graphs

a boundary condition of T(0) = 100,000 was chosen in accordance with the trends of the graphs

where the relaxation time appear to diverge to infinity if the amount of concentration was zero. It

would make sense intuitively for the relaxation time to either be 0 or infinity for a concentration

of pure water making the relaxation time 0 or infinity. Following for each relaxation time 0.05M

of Fe(NO3)3 had a greater value than the other it would make little physical sense that even less

concentrations would have a weaker relaxation time. Thus the boundary condition was chosen to
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represent ”infinity” but allowed a return of actual values from the Matlab code.
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The fitting function used here is given by,

T1(M) = Ae−M/B (15)

where A = 105 ± 104 ms and B = 0.004637 ± 0.000285 M for T1(M). The fit had an error of

0.35 and a reduced χ2 = 1.52
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The fitting function used here is given by

T2(M) = Ae−M/B (16)

where A = 105 ± 104 ms and B = 0.004471 ± 0.000407 M for T2(M). The fit had an error of

0.4 and a reduced χ2 = 1.24
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The fitting function used here is given by

T
′
2(M) = Ae−M/B (17)

where A = 105 ± 104 ms and B = 0.004023 ± 0.000937 M for T1(M). The fit had an error of

0.3 and a reduced χ2 = 1.47

The large error in these data points is a result of having just one more data point than free

parameters. If this experiment were to be repeated, more concentrations of Fe(NO3)3 in water

would be tested to obtain a better fit. The graphs are intuitive by looking at if M → 0, we expect

the relaxation time to diverge to infinity. In addition if there were so many Fe(NO3)3 particles to

flip, and then observe their signal as they reach equilibrium it should be much faster for there are

more possible interactions between spin-states.
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4. CONCLUSION

We have shown that by applying different pulse sequences the spin-lattice relaxation time (T1),

FID time (T2), and spin-echo decay time (T
′
2) were determined for different samples. By analyzing

an unknown substance we related the relaxation times to other known values and determined

the unknown substance to be paraffin oil or something of very similar chemical composition. In

addition, comparisons between the relaxation times and amount of moles of Fe(NO3)3 in water

were made. While these determinations were made lacking an ample supply of data points, our

intuitions were satisfied. Overall the power of studying NMR for different samples and classifying

them based upon results is shown.
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6. APPENDIX

6.1. Graphs for T1

All the fitting functions are the same as in Eq. (12).
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FIG. 6: We estimated that T1 = 20.59 ± 0.36 ms for a fit of σ = 0.02 and reduced χ2 = 1.23
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FIG. 7: Here we found that T1 = 31.11 ± 0.93 ms for a fit of σ = 0.073 and reduced χ2 = 1.05
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FIG. 8: We estimated that T1 = 21.17 ± 1.24 ms for a fit of σ = 0.045 and reduced χ2 = 1.59
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FIG. 9: Here we found that T1 = 2.07 ± 0.118 ms for a fit of σ = 0.073 and reduced χ2 = 1.33
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FIG. 10: We estimated that T1 = 0.6307 ± 0.0064 ms for a fit of σ = 0.015 and reduced χ2 = 1.03
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FIG. 11: Here we found that T1 = 0.4116 ± 0.0065 ms for a fit of σ = 0.012 and reduced χ2 = 1.003
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FIG. 12: We estimated that T1 = 0.06438 ± 0.00429 ms for a fit of σ = 0.035 and reduced χ2 = 1.05
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6.2. Graphs for T
′
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FIG. 13: Here we found that T
′

2 = 14.83 ± 0.78 ms for a fit of σ = 0.025 and reduced χ2 = 1.09
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FIG. 14: Here we found that T
′

2 = 13.57 ± 0.2 ms for a fit of σ = 0.004 and reduced χ2 = 1.08
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FIG. 15: Here we found that T
′

2 = 11.14 ± 0.3 ms for a fit of σ = 0.012 and reduced χ2 = 1.37
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FIG. 16: Here we found that T
′

2 = 1.389 ± 0.06 ms for a fit of σ = 0.038 and reduced χ2 = 1.05
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FIG. 17: Here we found that T
′

2 = 0.4266 ± 0.0562 ms for a fit of σ = 0.04 and reduced χ2 = 1.30
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FIG. 18: Here we found that T
′

2 = 0.4989 ± 0.0277 ms for a fit of σ = 0.0165 and reduced χ2 = 1.01
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FIG. 19: Here we found that T
′

2 = 0.4116 ± 0.0247 ms for a fit of σ = 0.0105 and reduced χ2 = 1.11

6.3. Graphs for T2
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FIG. 20: Here we found that T2 = 0.2949 ± 0.004 ms for a fit of σ = 0.023 and reduced χ2 = 1.03
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FIG. 21: Here we found that T2 = 0.4039 ± 0.0063 ms for a fit of σ = 0.035 and reduced χ2 = 1.05
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FIG. 22: Here we found that T2 = 0.4379 ± 0.0038 ms for a fit of σ = 0.0065 and reduced χ2 = 1.02
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FIG. 23: Here we found that T2 = 0.3942± 0.0039 ms for a fit of σ = 0.012 and reduced χ2 = 1.12
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FIG. 24: Here we found that T2 = 0.3652 ± 0.0021 ms for a fit of σ = 0.01 and reduced χ2 = 1.09
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FIG. 25: Here we found that T2 = 0.3813 ± 0.0025 ms for a fit of σ = 0.0085 and reduced χ2 = 1.08
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FIG. 26: Here we found that T2 = 0.3456 ± 0.0027 ms for a fit of σ = 0.004 and reduced χ2 = 1.04


