National Aeronautics and Space Administration

Nuclear Thermal Propulsion: An Overview of NASA Development Efforts

Ryan Wilkerson| Presented at Missouri S&T | 1031.19

Nuclear Thermal Propulsion Background

How do we assess engine performance?

Thrust

 $\frac{Rocket \ Thrust \ Equation}{F = \dot{m} \ V_e + (p_e - p_o)A_e}$

Equivalent Velocity $V_{eq} = V_e + \frac{(p_e - p_o)A_e}{\dot{m}}$ $F = \dot{m} V_{eq}$

> <u>Thrust is an indicator of how</u> <u>hard an engine can push</u>

Specific Impulse

 $\frac{Total \ Impulse}{I = F\Delta t = mV_e}$

 $\frac{Specific \ Impulse}{I_{sp} = \frac{I}{mg_o} = \frac{V_{eq}}{g_o} = \frac{F}{\dot{m}g_o}}$

Specific impulse indicates how efficiently an engine uses propellant

NA S

	Chemical Engines					Advanced Propulsion	
	SRB-SS	SRB-SLS	F-1	J-2	RS-25	Ion NEP	NTP
Sea Level Thrust (klbf)	2800	3600	1800	109.3	418	-	-
Vacuum Thrust (klbf)	-	-	2020.7	232.3	512.3	2E-5 - 2E-2	25-250
Sea Level ISP (s)	242	269	269.7	200	366	-	-
Vacuum ISP (s)	-	-	303.1	421	452.3	2000-8000	800-1000
Propellant	PBAN-APCP	PBAN-APCP	LO2/RP-1	LO2/LH2	LO2/LH2	Xe	LH2

		с	Advanced Propulsion				
	SRB-SS	SRB-SLS	F-1	J-2	RS-25	Ion NEP	NTP
Sea Level Thrust (klbf)	2800	3600	1800	109.3	418	-	-
Vacuum Thrust (klbf)	-	-	2020.7	232.3	512.3	2e-5 - 2e-2	25-250
Sea Level ISP (s)	242	269	269.7	200	366	-	-
Vacuum ISP (s)		-	303.1	421	452.3	2000-8000	800-1000
Propellant	PBAN-APCP	PBAN-APCP	LO2/RP-1	LO2/LH2	LO2/LH2	Xe	LH2

Space Shuttle

<section-header><complex-block>

		с	Advanced Propulsion				
	SRB-SS	SRB-SLS	F-1	J-2	RS-25	Ion NEP	NTP
Sea Level Thrust (klbf)	2800	3600	1800	109.3	418	-	-
Vacuum Thrust (klbf)	-	-	2020.7	232.3	512.3	2E-5 - 2E-2	25-250
Sea Level ISP (s)	242	269	269.7	200	366	-	-
Vacuum ISP (s)	-		303.1	421	452.3	2000-8000	800-1000
Propellant	PBAN-APCP	PBAN-APCP	LO2/RP-1	LO2/LH2	LO2/LH2	Xe	LH2

Space Launch System

NA S

		с	Advanced Propulsion				
	SRB-SS	SRB-SLS	F-1	J-2	RS-25	Ion NEP	NTP
Sea Level Thrust (klbf)	2800	3600	1800	109.3	418		
Vacuum Thrust (klbf)	-	-	2020.7	232.3	512.3	2E-5 - 2E-2	25-250
Sea Level ISP (s)	242	269	269.7	200	366		-
Vacuum ISP (s)	-	-	303.1	421	452.3	2000-8000	800-1000
Propellant	PBAN-APCP	PBAN-APCP	LO2/RP-1	LO2/LH2	LO2/LH2	Xe	LH2

Mars Transit Vehicle

Ion Engine

There are many uses for nuclear power in space

Radioisotope Thermal Electric Generators

Nuclear Electric Propulsion

Electricity Generation to Power Thruster

Nuclear Thermal Propulsion

NASA

Direct Heating of Propellant to Provide Thrust

Nuclear thermal rocket engine

Specific Impulse (revisited)

$$I_{sp} = \frac{F}{mg_o} = \frac{1}{g_o} \sqrt{\left[\frac{2\gamma}{\gamma - 1}\frac{RT}{M}\right] \left[1 - \frac{p_e}{p_c}\right]^{\frac{\gamma - 1}{\gamma}}}$$
$$I_{sp} \propto \sqrt{\frac{T}{M}}$$

-NTP engines produce thrust by heating propellant using a nuclear core -propellant temperature directly correlates to I_{sp}

-core power and temperature determine exhaust temperature and therefore I_{sp}

NTP mission proposals, from the moon to Mars

Design Transition from Single Large NTR to Clustered Smaller Engines Supplying Modest Electrical Power

Reusable Lunar Transfer Vehicle using Single 75 klb_f Engine -- SEI (1990-91)

"Bimodal" NTR Earth Return Vehicle using Clustered 15 klb_f / 25 kW_e Engines -- Mars DRM 1.0 (1993)

Expendable TLI Stage for First Lunar Outpost Mission using Clustered 25 klb_f Engines -- "Fast Track Study" (1992)

Zero-Gravity Crewed MTV uses 3 - 25 klbf NTR Engines & PVA Auxiliary Power – Mars (2009)

Artificial Gravity BNTR Crewed Transfer Vehicle also using Clustered 15 klb_f / 25 kW_e Engines -- Mars DRM 4.0 (1999)

Historic Nuclear Thermal Propulsion Efforts

Rover/NERVA* era (1955-1972)

- 20 Rocket/reactors designed, built & tested at cost of ~1.4 B\$
- Engine sizes tested
 - 25, 50, 75 and 250 klb_f
- H₂ exit temperatures achieved
 2,350-2,550 K (Pewee)
- I_{sp} capability
 - 825-850 sec ("hot bleed cycle" tested on NERVA-XE)
 - 850-875 sec ("expander cycle" chosen for NERVA flight engine)
- Burn duration
 - > ~ 62 min (NRX-A6 single burn)
 - > 3.5 hrs (NRX-XE: 28 burns / accumulated burn time)
- Engine thrust-to-weight
 - ➤ ~3 for 75 klb_f NERVA
- "Open Air" testing at Nevada Test Site

The NERVA Experimental <u>Engine</u> (XE) demonstrated 28 start-up / shut-down cycles during tests in 1969.

Rover/NERVA* era (1955-1972)

- 20 Rocket/reactors designed, built & tested at cost of ~1.4 B\$
- Engine sizes tested
 - 25, 50, 75 and 250 klb_f
- H₂ exit temperatures achieved
 2,350-2,550 K (Pewee)
- I_{sp} capability
 - 825-850 sec ("hot bleed cycle" tested on NERVA-XE)
 - 850-875 sec ("expander cycle" chosen for NERVA flight engine)
- Burn duration
 - > ~ 62 min (NRX-A6 single burn)
 - > 3.5 hrs (NRX-XE: 28 burns / accumulated burn time)
- Engine thrust-to-weight
 - ➤ ~3 for 75 klb_f NERVA
- "Open Air" testing at Nevada Test Site

* NERVA: Nuclear Engine for Rocket Vehicle Applications

NRX-A6 (1972): Hydrogen exit temperature = 2556 K 1 hr.

Rover/NERVA Development Overview

Highest level of development status for any fuel with significant remaining challenges

Geometry – Extruded Hexagonal

- Length: 51 in.
- Flat-to-Flat: 0.75 in.
- 19 Coolant Channels
- Fabrication: Extrusion and Sinter

Fuel Compound

- UO₂
- UC₂

Emerging Fuels

- (U,Zr)C fuel web
- (U,Zr)C solid solution

Two major failure mechanisms were discovered through engine testing

Corrosion

Mechanical Failure

Graphite Matrix: Post Exposure

A4 A5 COMPARISON OF A4 &A5 CRACK PATTERNS @ STATION 20 200X

	NbC	ZrC	Graphite	Composite (U,Zr)C-C
CTE (µm/m⋅K)	7.0 - 7.2	7.6 - 7.7	3.0	6.0 - 6.7

TYPICAL Y-12

Historic U.S. Cermet Fuel Development (1957-1968)

Tubes expand in hot-gas pressure cycle

Tubes compressed onto pins in hot-gas pressure cycle (Pins subsequently leached out of tubes)

Tungsten-coated uranium dioxide

 \Rightarrow

articles

Fuel particle loading and vibratory

compaction

Acid leaching of molybdenum components

Hexagonai mandrels

Assembly of molybdenum can components

container

 \implies

Cermets fail from the inside out due to high temperature instability of ceramic fuel particles

-necessitates the need for fuel cladding

Successfully developed cermets prevented free oxygen loss and thermal stresses

Mass Loss Mitigation Parameters

- W-alloy Claddings
- Gd₂O₃ and ThO₂ stabilizers
- High fuel density to reduce free U, O migration
- Eliminate interparticle connectivity
- Spherical particles to allow for favorable interfaces at grain boundaries
- $UO_2 \rightarrow UN$ fuel particles

Solid-solution carbides have high melting temperature and exhibit high temperature stability

ZrC rich solid solutions show excellent resistance to hydrogen corrosion

History: USSR RD-04

History: USSR RD-0410 Carbide Fuel Development

The NTP fuel form development efforts of the former Soviet Union was comparable to United States efforts if not exceeded that of the United States.

Geometry – 'Twisted Ribbon'

- Length: ~100 mm
- Diameter: 2 mm
- Attempt to maximize heat transfer while maintaining fuel integrity

Fuel Compounds

- Fuel composition was focused on maximizing the operating temperature of the fuel
- <u>Carbide</u>
 - (U,Zr)C
 - (U,Zr,Nb)C
 - (U,Zr,Ta)C
- Carbonitride
 - (U,Zr)C,N

Reported ternary-carbide fuel performance of operation at 3100 K for up to 1 hr.

Carbide fuels <u>also</u> experience the most failure in the <u>mid-band</u> region where power densities are high and ductility low

Fueled Region

History: US Carbide Fuel Development

NERVA/Rover

Fuel element architecture that the Rover/NERVA program used for all their fuel compositions

Carbide (U,Zr)C fuels were tested in NF-1 and survived exposure to over 2700 K for 109 minutes under flowing hydrogen and irradiation.

Overview of NTP Fuel Timeline

Nuclear Materials Group – NASA MSFC

- Marvin Barnes
- Omar Mireles, Ph.D
- Omar Rodriguez, Ph.D
- Jhonathan Rosales, Ph.D
- Brian Taylor
- Martin Volz, Ph.D
- Ryan Wilkerson, Ph.D

