Nucleic Acids

NMR Spectroscopy

Markus W. Germann Departments of Chemistry and Biology Georgia State University

NMR of Nucleic Acids 1

- 1) Primary Structure of DNA and RNA
- 2) Resonance Assignment of DNA/RNA by Homonuclear NMR
 - A) ¹H Chemical shifts
 - B) Assignment of exchangeable protons
 - C) Assignment of non-exchangeable proton
 - D) Typical NOEs in helical structures
 - E) Correlation between non-exchangeable and exchangeable protons

NMR Spectroscopy is an Important Method for Structural Studies of Nucleic Acids:

PDB Holding, March 21, 2012

Technique	Molecule				
	Proteins	Nucleic Acids	Protein/Nucleic Acid Complexes	Other	
X-ray Diffraction	65'703	1'266	3'331	-	70'302
NMR	8'163	933	228	-	9'331
Other ¹⁾	430	24	122	-	492
total	74'294	2'223	3'681	-	80'264

1) EM, Hybrid, other

http://www.rcsb.org/pdb

Common Pyrimidine Bases

Numbering

Common Purine Bases

•

Numbering

Alternate Bases & Modifications (small selection):

Inosine Base: Hypoxanthine

O6 Me Guanosine H

6 Dimethyl aminopurine

 $H_N H$

Ν

N

2 Aminopurine

Н

7 deaza Adenosine

Xanthosine H

2Amino Adenosine

Nebularine

HETERO BASE PAIRS

Germann et al., Methods in Enzymology (1995), 261, 207-225. Nucleic acids: structures, properties, and functions (2000) By Victor A. Bloomfield, Donald M. Crothers, Ignacio Tinoco HOMO BASE PAIRS

Germann et al., Methods in Enzymology (1995), 261, 207-225. Nucleic acids: structures, properties, and functions (2000) By Victor A. Bloomfield, Donald M. Crothers, Ignacio Tinoco

Structure Determination:

I) Assignment

II) Local Analysis

•glycosidic torsion angle, sugar puckering, backbone conformation base pairing

III) Global Analysis•sequential, inter strand/cross strand, dipolar coupling

Chemical shift ranges in nucleic acids

	DNA	F	RNA
H1' H2' H2'' H3' H4' H5' H5''	5-6 2.3-2.9(A,G) 1.7-2.3(T,C) 2.4-3.1(A,G) 2.1-2.7(T,C) 4.4-5.2 3.8-4.3 3.8-4.3 3.8-4.3	H1' H2' H3' H4' H5' H5''	5-6 4.4-5.0 4.4-5.2 3.8-4.3 3.8-4.3 3.8-4.3 3.8-4.3
C1 ' C2 ' C3 ' C4 ' C5 '	83-89 35-38 70-78 82-86 63-68	C1 ' C2 ' C3 ' C4 ' C5 '	87-94 70-78 70-78 82-86 63-68
RO H ₅	$H_{4'}$ $H_{4'}$ $H_{2''}$ $H_{2''}$ $H_{2''}$ $H_{2''}$ $H_{2''}$	RO H	H ₄ ' H ₄ ' H ₀ H ₁ ' H ₁ ' H ₁ '
2	"-Deoxy- β -D-Ribose		β-D-Ribose

Adenine			Guanine			
Н2	7.5-8	C2	152-156	_	– C2	156
H8	7.7-8.5	C8	137-142	н8	7.5-8.3 C8	131-138
N6H	5-6/7-8	N6	82-84	N1H	12-13.6 N1	146-149
_	_		_	N2H	5-6/8-9 N2	72-76
		C4	149-151		C4	152-154
		C5	119-121		C5	117-119
		C6	157-158		C6	161
		N1	214-216		N1	146-149
		N3	220-226		N3	167
		N7	224-232		N3 N7	228-238
		N9	166-172		N9	166-172
Thvmid	ine		Uridine		Cytidine	
			0114110			
H6 6.9	9-7.9 C6 13	7-142	H6 6.9-7.9 C6	5 137-142	H6 6.9-7.9	C6 136-144
Me5 1.0)-1.9 Me5 15	-20	H5 5.0-6.0 C5	5 102-107	H5 5.0-6.0	C5 94-99
N3H 13-	-14 N3 150	5	N3H 13-14 N3	8 156-162		N3 210

-

C2

C4

C5

N1

154

169

102-107

142-146

—

154

169

144

95-112

—

C2

C4

C5

N1

N4H 6.7-7/81-8.8 N4 94-98

C2 159

C4 166-168

N1 150-156

C5 94-99

No Structure Required!

Often, depending on the question asked, a full structure determination is not required

- ➤ Does it form a duplex?
- > Which base pairs are thermo labile?
- > Which base pair is which... assignment?
- \succ Is the loop structured?
- Structure

DNA Hairpin

Thermal lability

"New" DNA constructs

> Do the duplexes form, is there base pairing?

➢ Does the unusual base pair form?

WNV-RNA

Fibrinogen Specific DNA Aptamer

Figure 2: 12% Native PAGE to observe mobilities of Ap90. Ap90 is compared to single stranded oligomers of various lengths. The lanes were loaded from the smallest to the largest sequences with Lane A-E containing the 10-mer, 18-mer, 30-mer, 50-mer, and the 90-mer respectively. Lane F contains the aptamer Ap90. The smear in lane F encompassing a large range of DNA sizes (~90 nucleotides - ~30 nucleotides) indicates that the aptamer has multiple conformations.

Hamilton & Germann 2011

Solvent Suppression

The presence of an intense solvent resonance necessitates an impractical high dynamic range. 110 M vs <1mM (down to 5-10 uM) To overcome this problem several methods are currently applied:

1) Presaturation

- 2) Observing the FID when the water passes a null condition after a 180 degree pulse.
- 3) Suppression of broad lined based on their T_2 behavior.
- 4) Selectively excitation, with and without gradients
- 5a) Use of GRASP to select specific coherences thereby excluding the intense solvent signal. In this case the solvent signal never reaches the ADC. This allows the observation of resonances that are buried under the solvent peak.
- 5b) Use of GRASP to selectively dephase the solvent resonance (WATERGATE)
- 5c) Excitation sculpting

- Presaturation field strength: 20-40 Hz corresponds to a 6-12ms 90deg pulse
- Pros: Easy to set up Excellent water suppression
- Cons: Resonances under water signal! (T variation) Labile protons not visible (some GC pairs may be)

Selective Excitation

Selective rf pulse on solvent resonance followed by a gradient pulse to dephase the water signal.

This could be followed by a mild presaturation field. The selective rf pulse (1-2ms, depending on width to be zeroed) is usually of the gauss type.

The selective rf pulse z-gradient constructs could be repeated (WET).

Jump and return

Watergate

- Pros: Easy to set up Excellent water suppression (with proper setup as good as presat) Good for broad signals!
- Cons: Non uniform excitation Baseline not flat

Other sequences: 1331 etc

- Pros: Excellent water suppression Uniform excitation Baseline flat
 - Cons: May loose broad resonances

Exitation Sculpting

T.-L. Hwang & A.J. Shaka, J. Mag. Res. (1995), 112 275-279

Pros: Easy to set up Excellent water suppression "ok" for broad signals! Uniform excitation

Cons: May loose some intensity on very broad signals

Spectra: 1.5mM DNA in Water, Nanjunda, Wilson and Germann unpublished

Interesting structures have often broad imino protons. \rightarrow Most modern techniques obliterate them.

Jump and return to the rescue + supercooled conditions

Spring, A.M. & Germann, M.W., Anal. Biochem., 2012.

Structure Determination, NMR experiments:

- I) Assignment
- II) Local Analysis
 - •glycosidic torsion angle
 - •sugar puckering
 - backbone conformation
 - base pairing

NOESY, COSY, HSQC TOCSY.....

(NOE, <u>COSY</u>) (COSY, <u>COSY</u>, NOE, +) (COSY, +) (NOE, <u>COSY</u>)

III) Global Analysis
•sequential
•inter strand/cross strand
•dipolar coupling

(NOE, COSY) (NOE, <u>COSY</u>) (HSQC, <u>HSQC</u>)

Black: unlabeled, <u>Blue: labeled</u> DNA or RNA

Stereospecific Assignment

Deoxyribose

Structure Determination:

- I) Assignment
- II) Local Analysis

•glycosidic torsion angle, sugar puckering,backbone conformation base pairing

III) Global Analysis•sequential, inter strand/cross strand, dipolar coupling

Nucleic Acids have few protons.....

NOE accuracy

account for spin diffusion

Backbone may be difficult to fully characterize

especially α and ζ.

Dipolar couplings

Distance information determines the glycosidic torsion angle

How do we get distance information?
 Nuclear Overhauser effect (< 6Å)

Distance information determines the glycosidic torsion angle

How do we get distance information?
 Nuclear Overhauser effect (< 6Å)

Sugar puckering

The five membered furanose ring is not planar. It can be puckered in an envelope form (E) with 4 atoms in a plane or it can be in a twist form. The geometry is defined by two parameters: **the pseudorotation phase angle (P)** and the **pucker amplitude** (Φ).

N (Northern)

Ribose: ${}^{3}J_{H1'-H2'} \approx 1 \text{ Hz}$ (Angle ~ 90 deg) Deoxyribose: ${}^{3}J_{H1'-H2'} \approx 1.8 \text{ Hz}$

2'endo sugar H1', H2', H2", H3' region

3'endo sugar H1', H2', H2", H3' region

Sugar puckering

3'endo sugar

2'endo sugar

2'endo sugar H1', H2', H2" region

NO RELAXATION 2KX2K (Tdeff
; NMR-Sim sample spin syst ; Deoxyribose 2'endo S con
proton a 5.80 t=0.5 ;H1 proton b 2.30 t=0.5 ;H2 proton c 2.50 t=0.5 ;H2' proton d 4.90 t=0.5 ;H3'
couple a b 9.5 couple a c 5.8 couple b c -14.1 couple b d 5.5 couple c d 1.3 90

45

Sugar puckering

Usually (DNA) one observes equilibrium of the S and N forms sugar repuckering. Unless one form greatly dominates the local analysis requires quite a few parameters: P_N , P_S , Φ_N , Φ_S , f_S Several methods for analysis exist, graphical and the more rigorous simulation. In practice the desired outcome determines the effort to be made. Sums of the coupling constants are often easier to obtain.

$$f_{S} = (\Sigma 1' - 9.8)/5.9$$

See also our pure examples:
 $f_{s}=0$ and ~1 respectively

$$\sum 1' = J_{1'2'} + J_{1'2''}$$

$$\sum 2' = J_{1'2'} + J_{2'3'} + J_{2'2''}$$

$$\sum 2'' = J_{1'2''} + J_{2''3'} + J_{2'2''}$$

$$\sum 3' = J_{2'3'} + J_{2''3'} + J_{3'4'}$$

If fs < 50% $J_{1,2}$, < $J_{1,2}$, If fs ca 0% $J_{1,2}$, very small If fs > 70% $J_{1,2}$, > $J_{1,2}$,

Sugar puckering

;	con	trol	alphaT		
Nt	Σ1΄	f _S	Σ1΄	f _S	
G1	15.2	0.92	15.3	0.93	
C2	15.1	0.90	14.7	0.83	
G3	16.2	1.00	15.9	1.00	
A4	16.2	1.00	15.3	0.93	
A5	15.7	1.00	15.3	0.93	
T6	15.1	0.90	15.3	0.93	
T7	16.0	1.00	12.3	-	
C8	15.1	0.90	12.9	0.53	
G9	15.7	1.00	14.7	0.83	
C10	(14)	(0.7)	(14)	(0.7)	

MD calculation MD-Tar calculation

Aramini, et al., 1998, Nucleic Acid Research, 26, 5644-5654

Introduction to Cross-Correlated Relaxation

Relaxation in NMR

- \rightarrow determines experimental strategies and experiments
- \rightarrow dynamic and structural parameters

Mechanisms

- \rightarrow Dipole -dipole
- \rightarrow CSA (e.g. ³¹P at higher fields; proportional to B²)
- \rightarrow Scalar relaxation (first and second kind)
- \rightarrow paramagnetic, etc

Recently it became possible to use cross correlated relaxation (CCR) to directly measure bond angles without using a calibration curve as is needed for J's.

 $\overrightarrow{} DD - DD \\ \overrightarrow{} DD - CSA$

Sugar Puckering from Cross-Correlated Relaxation $\Gamma_{DD\text{-}DD}$

BioNMR in Drug Research (2003) Chapter 7 p147-178. Christian Griesinger

Sugar puckering: Summary

 → Coupling constants: COSY, E.COSY, low flip angle COSY Homonuclear, Heteronuclear
 → CT NOESY
 → CSA-DD and DD-DD cross correlated data

 \rightarrow ¹³C chemical shifts, in favorable cases

Some references

Szyperski, T., et al. (1998). JACS. 120, 821-822.

Measurement of Deoxyribose ³JHH Scalar Couplings Reveals Protein-Binding Induced Changes in the Sugar Puckers of the DNA.

Iwahara J, et al. (2001), J. Mag Res. 2001, 153, 262 An efficient NMR experiment for analyzing sugar-puckering in unlabeled DNA:. Couplings via constant time NOESY.

J. Boisbouvier, B. Brutscher, A. Pardi, D. Marion, and J.-P. Simorre (2000), J. Am. Chem. Soc. 122, 6779–6780 NMR determination of sugar-puckers in nucleic acids form CSA-dipolar cross correlated relaxation.

BioNMR in Drug Research 2003 Editor(s): Oliver Zerbe (Wiley-VCH)

Methods for the Measurement of Angle Restraints from Scalar, Dipolar Couplings and from Cross-Correlated Relaxation: Application to Biomacromolecules Chapter 7 p147-178. Christian Griesinger (also for α and ζ)

Backbone Experiments: CT-NOESY, CT-COSY

Bax, A., Tjandra, N., Zhengrong, W., (2001). Measurements of ¹H-³¹P dipolar couplings in a DNA oligonucleotide by constant time NOESY difference spectroscopy, *J. Mol. Biol.*, **19**, 367-270. 91.

