[C] Communication
[CN] Connections
[ME] Mental Mathematics and Estimation
[PS] Problem Solving
[R] Reasoning
[T] Technology

The Glance Across the Grades: Kindergarten to Grade 9 Mathematics resource is a compilation of the outcomes into suggested categories or learning targets. These learning targets sort the outcomes and allow teachers to preview the outcomes across grade levels. It should be noted that this is only one way to sort the outcomes across the grades; however, this breakdown will enable teachers to differentiate teaching within each strand of the curriculum. This resource can assist teachers in

- deepening understandings of the mathematics strands and outcomes
- facilitating purposeful teaching
- identifying the continuum of student learning across the learning targets
- monitoring individual student learning and being able to specifically discuss his or her progress and identify learning gaps
- differentiating instruction
- building essential connections to learning within and between the learning targets

The big ideas, located under each learning target, are statements of an idea that is central to the learning of mathematics and makes instruction purposeful. The big ideas are compilations from the work of Marian Small, John Van de Walle, and Randall I. Charles.

STRANDS

012 NUMBER

- Counting
- Representation of Whole Numbers
- Representation of Rational Numbers
- Operations with Whole Numbers
- Addition/Subtraction
- Multiplication/Division
- Operations with Rational Numbers

PATTERNS AND RELATIONS

- Patterns
- Patterning and Algebraic Thinking
- Variables and Equations
- Algebraic Representations with Expressions
- Algebraic Representations with Equations

SHAPE AND SPACE

1) Measurement

- Length
- Area
- Volume (Capacity)
- Mass (Weight)
- Time
- Angles
- 3-D Objects and 2-D Shapes
- Identifying, Sorting, Comparing, and Constructing
- Transformations
- Position and Motion

STATISTICS AND PROBABILITY

1) Data Analysis

- Collection, Organization, and Analysis of Data
- Chance and Uncertainty - Probability

GLANCE ACROSS THE GRADES

[C]	Communication	[PS]	Problem Solving
[CN] Connections	[R]	Reasoning	
[ME] Mental Mathematics	[T]	Technology	
	and Estimation	[V]	Visualization

Big Ideas

Number Strand
 - Counting

- Counting tells how many or how much.
- Numbers are related to each other through a variety of number relationships.
- Quantities can be estimated by using referents.
- Representation of Whole Numbers
- Representation of Rational Numbers
- Quantities can be represented concretely, pictorially, and symbolically
- There are different but equivalent representations of numbers.
- Benchmark numbers are useful for comparing, relating, and estimating numbers
- Our number system is based on patterns (place value).
- Classifying numbers provides information about their characterity
- Operations with Whole Numbers (Addition/Subtraction)
- Operations with Rational Numbers
- The four operations are intrinsically related.
- The four operations are intrinsically related.
- Flexible methods of calculation require a strong understanding of the operations and properties of the
operations.
- There are a variety of appropriate ways to estimate sums, differences, products, and quotients, depending on
the context and the numbers involved.
Personal strategies and algorithms provide flexible and efficient methods of calculating that vary depending on the context and the numbers involved.

Patterns and Relations Strand

- Patterns
- Patterning and Algebraic Thinking
- Patterns can be represented in a variety of ways.
- Relationships can be described and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways.
- Data can be arranged to highlight patterns and relationships.

- Variables and Equations

- Algebraic Representations with Expressions
- Algebraic Representations with Equations
- Algebra, with the use of symbols or variables, expressions, and equations, is a tool for generalizing arithmeti and representing mathematical situations and patterns in our world.
- The equal sign describes the balance that exists between the quantities on either side of the equal sign.
- Equality and inequality are used to express relationships between two quantities.

Relationships between quantities can be described using rules involving variables.

Shape and Space Strand

- Measurement

- Length / Area / Volume (Capacity) / Mass (Weight) / Time / Angles
- It is necessary to understand the attributes of the object before anything can be measured.
- Measurement involves a selected attribute of an object (length, area, mass, volume, capacity) and a comparison of the object being measured against non-standard and standard units of the
The longer the
The longer the unit of measure, the fewer units it takes to measure the object.
- The use of standard measurement units simplifies communication about the size of objects.

3-D Objects and 2-D Shapes

- Identifying, Sorting, Comparing, and Constructing
- Two- and three-dimensional objects can be described, classified, and analyzed by their attributes.
- Transformations
- Position and Motion
- Shapes can be relocated and reoriented using mathematical procedures.
- Shapes can be described in terms of their location in a plane or in a space

Statistics and Probability Strand

- Data Analysis

- Collection, Organization, and Analysis of Data
- Data is gathered and organized in order to answer questions
- The question that needs to be answered determines the data that will be collected

The type of data determines the best way to organize and represent it.
Visual displays quickly reveal information about data.
Information from data representations is used to make references, to interpret, to draw conclusions, and to make predictions.

- Chance and Uncertainty
- Probability
- Probability involves the use of mathematics to describe the level of certainty that an event will
occur.
Probabilities, both theoretical and experimental, can be determined in different ways.

[C] Communication
CN] Connections
ME] Mental Mathematics and Estimation
[PS] Problem Solving

General Learning Outcome: Develop number sense

Specific Learning Outcomes
Representation of Whole Numbers

Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- Quantities can be represented concretely, pictorially, and symbolically. - There are different but equivalent representations of numbers. - Benchmark numbers are useful for comparing, relating, and estimating numbers. - Our number system is based on patterns (place value). - The position of a digit in a number determines the quantity it represents. - Classifying numbers provides information about their characteristics.	K.N.2. Subitize and name familiar arrangements of 1 to 6 dots (or objects). [C, CN, ME, V] K.N.3. Relate a numeral, 1 to 10 , to its respective quantity. [CN, R, V] K.N.4. Represent and describe numbers 2 to 10 in two parts, concretely and pictorially. [C, CN, ME, R, V] K.N.6. Compare quantities, 1 to 10 - using one-to-one correspondence - by ordering numbers representing different quantities. [$\mathrm{C}, \mathrm{CN}, \mathrm{V}$]	1.N.2. Subitize and name familiar arrangements of 1 to 10 dots (or objects). [C, CN, ME, V] 1.N.4. Represent and describe numbers to 20, concretely, pictorially, and symbolically. [C, CN, V] 1.N.5. Compare and order sets containing up to 20 elements to solve problems by using referents - one-to-one correspondence [C, CN, ME, PS, R, V] 1.N.7. Demonstrate, concretely and pictorially, how a number, up to 30 , can be represented by a variety of equal groups with and without singles. [C, R, V]	2.N.2. Demonstrate ifa number (up to 100) is even or odd. [C, CN, PS, R] 2.N.3. Describe order or relative position using ordinal numbers. [$\mathrm{C}, \mathrm{CN}, \mathrm{R}$] 2.N.4. Represent and describe numbers to 100, concretely, pictorially, and symbolically. [C, CN, V] 2.N.5. Compare and order numbers up to 100. [C, CN, R, V] 2.N.7. Illustrate, concretely and pictorially, the meaning of place value for numbers to 100. [C, CN, R, V]	3.N.2. Represent and describe numbers to 1000, concretely, pictorially, and symbolically. [C, CN, V] 3.N.3. Compare and order numbers to 1000. [CN, R, V] 3.N.5. Illustrate, concretely and pictorially, the meaning of place value for numerals to 1000 . [C, CN, R, V]	4.N.1. Represent and describe whole numbers to 10000, pictorially and symbolically. [C, CN, V] 4.N.2. Compare and order numbers to 10000. [C, CN]	5.N.1. Represent and describe whole numbers to 1000000. [C, CN, T, V]	6.N.1. Demonstrate an understanding of place value for numbers - greater than one million - less than onethousandth [C, CN, R, T] 6.N.7. Demonstrate an understanding of integers, concretely, pictorially, and symbolically. [C, CN, R, V]		8.N.1. Demonstrate an understanding of perfect squares and square roots, concretely, pictorially, and symbolically (limited to whole numbers). [C, CN, R, V]	9.N.1. Demonstrate an understanding of powers with integral bases (excluding base 0) and wholenumber exponents by - representing repeated multiplication using powers - using patterns to show that a power with an exponent of zero is equal to 1 - solving problems involving powers [$\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}$]

[C] Communication
[PS] Problem Solving
[CN] Connections

Representation of Rational Numbers

[C] Communication
[PS] Problem Solving
[ME] Connections
[R] Reasoning
ME] Mental Mathematics and Estimation

General Learning Outcome: Develop number sense.
Specific Learning Outcomes
Operations with Whole Numbers

[C]	Communication	[PS]	Problem Solving
[CN]	Connections	[R]	Reasoning
[ME]	Mental Mathematics	$[T]$	Technology
	and Estimation	[V]	Visualization

General Learning Outcome: Develop number sense.
Specific Learning Outcomes

Operations with Whole Numbers

Mathem

Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3
- The four operations are intrinsically related. - Flexible methods of calculation in all operations involve decomposing and composing numbers in a wide variety of ways. - Flexible methods of calculation require a strong understanding of the operations and properties of the operations. - There are a variety of appropriate ways to estimate sums, differences, products, and quotients, depending on the context and the numbers involved. - Personal strategies and algorithms provide flexible and efficient methods of calculating that vary depending on the context involved.				3.N.11. Demonstrate an understanding of multiplication to 5×5 by - representing and explaining multipication using equal grouping and arrays - creating and solving problems in context that involve multiplication - modelling multiplication using concrete and visual representations, and recording the process symbolically - relating multiplication to repeated addition - relating multiplication to division [C, CN, PS, R] 3.N.12. Demonstrate an understanding of division by - representing and explaining division using equal sharing and equal grouping - creating and solving problems in context that involve equal sharing and equal grouping - modelling equal sharing and equal grouping using concrete and visual representations, symbolically - relating division to repeated subtraction - relating division to multiplication (limited to division related to multiplication facts to 5×5). [C, CN, PS, R]

General Learning Outcome: Develop number sense.

Specific Learning Outcomes
Operations with Rational Numbers

Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- The four operations are intrinsically related. - Flexible methods of calculation in all operations involve decomposing and composing numbers in a wide variety of ways.					4.N.11. Demonstrate an understanding of addition and subtraction of decimals (limited to hundredths) by - using compatible numbers - estimating sums and differences - using mental math strategies to solve problems.	5.N.11. Demonstrate an understanding of addition and subtraction of decimals (to thousandths), concretely, pictorially, and symbolically, by - using personal strategies - using the standard algorithms - using estimation	6.N.8. Demonstrate an understanding of multiplication and division of decimals (involving 1-digit whole-number multipliers, 1-digit natural number divisors, and multipliers and divisors that are multiples of 10), concretely, pictorially,	7.N.2. Demonstrate an understanding of the addition, subbraction, multiplication, and division of decimals to solve problems (for more than 1-digit divisors or 2-digit multipliers, technology could be used). [ME, PS, T]	8.N.2. Determine the approximate square root of numbers that are not perfect squares (limited to whole numbers). [$\mathrm{C}, \mathrm{CN}, \mathrm{ME}, \mathrm{R}, \mathrm{T}]$ 8.N.3. Demonstrate an understanding of percents greater than or equal to 0%. [CN, PS, R, V]	9.N.3. Demonstrate an understanding of rational numbers by - comparing and ordering rational numbers - solving problems that involve arithmetic operations on rational numbers [C, CN, PS, R, T, V]
- Flexible methods of calculation require a strong understanding of the operations and properties of the operations.					[C, ME, PS, R, V]	- solving problems [C, CN, ME, PS, R, V]	and symbolically, by - using personal strategies - using the standard algorithms - using estimation - solving problems [C, CN, ME, PS, R, V]	7.N.3. Solve problems involving percents from 1% to 100%. [C, CN, PS, ME, R, T] 7.N.5. Demonstrate an understanding of adding and subtracting positive	8.N.5. Solve problems that involve rates, ratios, and proportional reasoning. [$\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}$] 8.N.6. Demonstrate	9.N.5. Determine the square root of positive rational numbers that are perfect squares. [C, CN, PS, R, T] 9.N.6. Determine an approximate square
- There are a variety of appropriate ways to estimate sums, differences, products, and quotients, depending on the context and the numbers involved.								fractions and mixed numbers, with like and unlike denominators, concretely, pictorially, and symbolically (limited to positive sums and differences). [C, CN, ME, PS, R, V]	of multiplying and dividing positive fractions and mixed numbers, concretely, pictorially, and symbolically. [C, CN, ME, PS] 8.N.8. Solve problems involving positive	root of positive rational numbers that are non-perfect squares. [C, CN, PS, R, T]
- Personal strategies and algorithms provide flexible and efficient methods of calculating that vary depending on the context and the numbers involved.									$[\mathrm{C}, \mathrm{CN}, \mathrm{ME}, \mathrm{PS}, \mathrm{R}, \mathrm{T}, \mathrm{V}]$	

General Learning Outcome: Use patterns to describe the world and solve problems.

Specific Learning Outcomes
Patterning and Algebraic Thinking

	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9

Glance Across the Grades: PATTERNS AND RELATIONS (Variables and Equations)

[C] Communication
[CN] Connections
[ME] Mental Mathematics and Estimation
[PS] Problem Solving
[R] Reasoning
[T] Technology
[V] Visualization

General Learning Outcome: Use patterns to describe the world and solve problems.

Specific Learning Outcomes
Algebraic Representations with Expressions

Algebraic Representations with Equations

General Learning Outcome: Use direct or indirect measurement to solve problems.

Glance Across the Grades: SHAPE AND SPACE (Measurement)

General Learning Outcome: Use direct or indirect measurement to solve problems.

Specific Learning Outcomes

[C] Communication
[PS] Problem Solving
[CN] Connections
[R] Reasoning
[ME] Mental Mathematics
and Estimation
$\begin{array}{ll}{[\mathrm{T}]} & \text { Technology } \\ {[\mathbf{V}]} & \text { Visualizatio }\end{array}$

Glance Across the Grades: SHAPE AND SPACE (Measurement)

General Learning Outcome: Use direct or indirect measurement to solve problems.
Specific Learning Outcomes
[C] Communication
[PS] Problem Solving
[ME] Mental Mathematics and Estimation
[R] Reasoning
${ }_{[T]}$ Technology
[V] Visualization

Specific Learning Outcomes									Volume (Capacity)	
Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRade 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- It is necessary to understand the attributes of the object before anything can be measured. - Measurement involves a selected attribute of an object (length, area, mass, volume, capacity) and a comparison of the object being measured against non-standard and standard units of the same attribute. - The longer the unit of measure, the fewer units it takes to measure the object. - The use of standard measurement units simplifies communication about the size of	K.SS.1. Use direct comparison to compare two objects based on a single attribute, such as ength (height), mass (weight), and volume (capacity). [C, CN, PS, R, V]	1.SS.1. Demonstrate an understanding of measurement as a process of comparing by - identifying attributes that can be compared - ordering objects - making statements of comparison - filling, covering, or matching [C, CN, PS, R, V]	2.SS.5. Demonstrate that changing the orientation of an object does not alter the measurements of its attributes $[C, R, V]$			5.SS.3. Demonstrate an understanding of volume by - selecting and justifying referents for the units cm^{3} or m^{3} estimating volume by using referents for cm^{3} or m^{3} measuring and (cm^{3} or m${ }^{3}$) - constructing rectangular prisms for a given volume C, CN, ME, PS, R, V] 5.SS.4. Demonstrate an understanding of capacity by - describing the relationship between mL and L selecting and justifying referents for the units mL or L - estimating capacity by using referents for mL or L measuring and recording capacity (mL or) [C, CN, ME, PS, R, V]	6.SS.3. Develop and apply a formula for determining the - perimeter of - area of rectangles - volume of right rectangular prisms [C, CN, PS, R, V]		8.SS.4. Develop and apply formulas for determining the olume of right prism and right cylinders. [C, CN, PS, R, V]	

Glance Across the Grades: SHAPE AND SPACE (Measurement)

General Learning Outcome: Use direct or indirect measurement to solve problems.
Specific Learning Outcomes
[C] Communication
[PS] Problem Solving [CN] Connections
[R] Reasoning
[ME] Mental Mathematics and Estimation
[T] Technology
[V] Visualization

Specific Learning O	omes								Mass (W	
Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- It is necessary to understand the attributes of the object before anything can be measured. - Measurement involves a selected attribute of an object (length, area, mass, volume, capacity) and a comparison of the object being measured against non-standard and standard units of the same attribute. - The longer the unit of measure, the fewer units it takes to measure the object. - The use of standard measurement units simplifies communication about the size of objects.	K.SS.1. Use direct comparison to compare two objects based on a single attribute, such as length (height), mass (weight), and volume (capacity). [$\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{V}$]	1.SS.1. Demonstrate an understanding of measurement as a process of comparing by identifying attributes that can be compared - ordering objects - making statements of comparison - filling, covering, or matching [C, CN, PS, R, V]	2.SS.2. Relate the size of a unit of measure to the number of units (limited to non-standard units) used to measure length and mass (weight). [C, CN, ME, R, V] 2.SS.3. Compare and order objects by length, height, distance around, and mass (weight) using nonstandard units, and make statements of comparison. [C, CN, ME, R, V] 2.SS.5. Demonstrate that changing the orientation of an object does not alter the measurements of its attributes. [$\mathrm{C}, \mathrm{R}, \mathrm{V}$]	3.SS.4. Demonstrate an understanding of measuring mass (g, kg) by selecting and justifying referents for the units g and kg - modelling and describing the relationship between the units g and kg - estimating mass using referents - measuring and recording mass [C, CN, ME, PS, R, V]						

[C] Communication
[CN] Connections
[ME] Mental Mathematics and Estimation
[PS] Problem Solving
[R] Reasoning
[T] Technology
[V] Visualization

General Learning Outcome: Use direct or indirect measurement to solve problems.

Specific Learning Outcomes

Time

[C] Communication
[CN] Connections
[ME] Mental Mathematics and Estimation
[PS] Problem Solving
[R] Reasoning
[T] Technology
[V] Visualization

Angles
General Learning Outcome: Use direct or indirect measurement to solve problems.
Specific Learning Outcomes

General Learning Outcome: Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.
Specific Learning Outcomes
Identifying, Sorting, Comparing, and Constructing

Big Ideas	kindergarten	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- Two- and threedimensional objects can be described, classified, and analyzed by their attributes.	K.SS.2. Sort 3-D objects using a single attribute [C, CN, PS, R, V] K.SS.3. Build and describe 3-D objects. [CN, PS, V]	1.SS.2. Sort 3-D objects and 2-D shapes using one attribute, and explain the sorting rule [C, CN, R, V] 1.SS.3. Replicate composite 2-D shapes and 3-D objects. [CN, PS, V] 1.SS.4. Compare 2-D shapes to parts of $3-D$ objects in the environment. [C, CN, V]	2.SS.6. Sort 2-D shapes and 3 -D objects using two attributes, and explain the sorting rule. [C, CN, R, V] 2.SS.7. Describe compare, and construct 3-D objects, including - spheres - cones - cylinders - prisms - pyramids $[\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{V}]$ 2.SS.8. Describe, compare, and construct 2-D shapes, including - triangles - squares - circles [$\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{V}$] 2.SS.9. Identify 2-D shapes as parts of 3-D objects in the environment. $[C, C N, R, V]$	3.SS.6. Describe 3-D objects according to the shape of their faces and the number of edges and vertices C, CN, PS, R, V] 3.SS.7. Sort regular and irregular polygons, including - triangles - quadrilaterals - pentagons - hexagons according to the number of sides. [C, CN, R, V]	4.SS.4. Solve problems involving 2-D shapes and 3-D objects [CN, PS, V] 4.SS.5. Describe and construct rectangular [C, CN, R, V]	5.SS.5. Describe and provide examples of edges and faces of 3-D objects, and sides of 2-D shapes, that are - parallel - perpendicular - vertical - horizontal [C, CN, R, T, V] 5.SS.6. Identify and sort quadrilaterals, including - rectangles - squares - trapezoids - parallelograms - rhombuses according to their attributes. [C, R, V]	6.SS.4. Construct and compare triangles, including - scalene - isosceles - right - obtuse - acute in different [C, PS, R, V] 6.SS.5. Describe and compare the sides and angles of egular and irregular [C, PS, R, V]	7.SS.3. Perform geometric constructions, including - perpendicular line segments - parallel line - perpendicular - perpendic - angle bisectors [CN, R, V]	8.SS.2. Draw and construct nets for 3-D objects. [C, CN, PS, V] 8.SS.5. Draw and interpret top, front, and side views of 3-D objects composed of right rectangular prisms $[\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{T}, \mathrm{V}]$	9.SS.2. Determine the surface area of composite 3-D objects to solve problems. [C, CN, PS, R, V] 9.SS.3. Demonstrate an understanding of similarity of polygons [C, CN, PS, R, V]

Glance Across the Grades: SHAPE AND SPACE (Transformations)
General Learning Outcome: Describe and analyze position and motion of objects and shapes.
Specific Learning Outcomes

Glance Across the Grades: STATISTICS AND PROBABILITY (Data Analysis)

General Learning Outcome: Collect, display, and analyze data to solve problems.
Specific Learning Outcomes
$\begin{array}{ll}{[C]} & \text { Communication } \\ {[C N]} \\ \text { Connections }\end{array}$
[PS] Problem Solving
[CN] Connections
[R] Reasoning
[ME] Mental Mathematics
and Estimation
[T] Technology
[V] Visualization

Collection, Organization, and Analysis of Data

Big Ideas	KINDERGARTEN	GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5	GRADE 6	GRADE 7	GRADE 8	GRADE 9
- Data is gathered and organized in order to answer questions. - The question that needs to be answered determines the data that will be collected. - The type of data determines the best way to organize and represent it. - Visual displays quickly reveal information about data. - Information from data representations is used to make references, to interpret, to draw conclusions, and to make predictions.			2.SP.1. Gather and record data about self and others to answer questions. [C, CN, PS, V] 2.SP.2. Construct and interpret concrete graphs and pictographs to solve problems. [C, CN, PS, R, V]	3.SP.1. Collect first-hand data and organize it using - tally marks - line plots - charts - lists to answer questions. [C, CN, V] 3.SP.2. Construct, label, and interpret bar graphs to solve problems. [PS, R, V]	4.SP.1. Demonstrate an understanding of many-to-one [C, R, T, V] 4.SP.2. Construct and interpret pictographs and bar graphs involving many-to-one correspondence to draw conclusions. [$\mathrm{C}, \mathrm{PS}, \mathrm{R}, \mathrm{V}$]	5.SP.1. Differentiate between first-hand and second-hand data. [C, R, T, V] 5.SP.2. Construct and interpret double bar graphs to draw conclusions. [C, PS, R, T, V]	6.SP.1. Create, label, and interpret line graphs to draw conclusions $[C, C N, P S, R, V]$ 6.SP.2. Select, justify, and use appropriate methods of colied - questionnaires - experiments - databases - electronic media [C, PS, T] 6.SP.3. Graph collected data and analyze the graph to solve problems. [C, CN, PS]	7.SP.1. Demonstrate an understanding of central tendency and range by - determining the measures of central tendency (mean, median, mode) and range - determining the measures of central tendency to report findings [$\mathrm{C}, \mathrm{PS}, \mathrm{R}, \mathrm{T}]$ 7.SP.2. Determine the effect on the mean, median, and mode when an outlier is included in a data set. [C, CN, PS, R] 7.SP.3. Construct, label, and interpret circle graphs to solve problems C, CN, PS, R, T, V]	8.SP.1. Critique ways in which data are presented. [C, R, T, V]	9.SP.1. Describe the effect of - bias - use of language - ethics - time and timing - privacy - cultural sensitivity on the collection of data. [C, CN, R, T] 9.SP.2. Select and defend the choice of using either a population or a sample of a population to answer a [C, CN, PS, R] 9.SP. 3. Develop and implement a project plan for the collection, display, and analysis of data by - formulating a question for - choosing a data collection method that includes social considerations - selecting a population or a sample - displaying the data displaying the collected data in an appropriate manner - drawing conclusions to answer the question

Bibliography

Charles, Randall I. "Big Ideas and Understandings as the Foundation for Elementary and Middle School Mathematics." Journal of Mathematics Education Leadership 8.1 (2005): 9-24.
Manitoba Education. Kindergarten to Grade 8 Mathematics: Manitoba Curriculum Framework of Outcomes (2013). Winnipeg, MB: Manitoba Education, 2013.
Available online at www.edu.gov.mb.ca/k12/cur/math/framework_k-8/index.html.
Small, Marian. Big Ideas from Dr. Small: Creating a Comfort Zone for Teaching Mathematics: Grades K-3. Toronto, ON: Nelson Education Ltd., 2010.
_—.Big Ideas from Dr. Small: Creating a Comfort Zone for Teaching Mathematics: Grades 4-8. Toronto, ON: Nelson Education Ltd., 2009.
__. Making Math Meaningful to Canadian Students, K-8. 2nd ed. Toronto, ON: Nelson Education Ltd., 2013.
Van de Walle, John A., Sandra Folk, Karen S. Karp, and Jennifer M. Bay-Williams. Elementary and Middle School Mathematics: Teaching Developmentally. 3rd Canadian ed. Toronto, ON: Pearson Canada Inc., 2011.

Van de Walle, John A., LouAnn H. Lovin, Karen S. Karp, and Jennifer M. Bay-Williams. Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction for Grades Pre-K-2. Vol. 1. 2nd ed. Upper Saddle River, NJ: Pearson Education, Inc., 2014.
_ Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction for Grades 3-5. Vol. 2. 2nd ed. Upper Saddle River, NJ: Pearson Education, Inc., 2014.
__. Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction for Grades 6-8. Vol. 3. 2nd ed. Upper Saddle River, NJ: Pearson Education, Inc., 2014.

