
Number Theory Background 

 

 Prime Numbers 

A prime number is an integer 2 or greater that is divisible by only 1 and itself, and no other positive 

integers. Prime numbers are very important to public key cryptography. 

 

Fermat's Theorem 

One really neat property of prime numbers is as follows: 

 

For all prime numbers p and positive integers a such that gcd(a, p) = 1, 

 

ap-1 ≡ 1 (mod p). 

 

The proof is as follows: 

 

Let S = {1, 2, 3, …, p-1} 

 

Now, let's create a set S' where each value is a value multiplied in S times an integer a, such that 

gcd(a, p) = 1. So S' looks like this: 

 

S' = {a, 2a, 3a, …, (p-1)a} 

 

It turns out that the remainders, when each value in S' is divided by p form the set S. 

 

To prove this, we must show the two following things about the set S': 

 

(a) No value in S' is divisible by p. 

(b) For all distinct items x and y in S', x and y leave different remainders when divided by p. 

 

The first is fairly easy to see. There's a theorem that if a prime number p divides into a product of 

integers ab, then either p divides evenly into a or p divides evenly into b. But if we take a look at 

the set of values in S', each is the product of a and an integer i, where i is in between 1 and p-1. It's 

clear that p does not divide any of these components. Thus, it follows that p can not divide any of 

the separate terms. These means that every item in S', when divided by p, leaves a remainder that 

is not 0, so the possible remainders are {1, 2, 3, …, p-1}. 

 

To see (b), let's do a proof by contradiction. Assume the opposite, that two distinct items in S' are 

equivalent mod p. It follows that there are integers i and j (1 ≤ i < j ≤ p-1) such that 

 

aj ≡ ai (mod p) 

 

Now, let’s do some algebra: 

 

aj - ai ≡ 0 (mod p) 

 

a(j - i) ≡ 0 (mod p) 



By definition of divisibility, we have that p | (a(j-i)). Since p is prime, it follows that either p | a or 

p | (j - i). The first is not possible because we are given that gcd(a, p) = 1. Thus, it follows that p | 

(j - i), but this contradicts the fact that j - i > 0 and j - i < p-2, since p does not divide any of these 

integers. This is a contradiction. It follows that ai and aj can not be equivalent mod p and that no 

pair of values in the set S' are equivalent mod p. 

 

Since none of the values of S' are equivalent to 0 mod p and there are p-1 values in S', it follows 

that the values of S' are equivalent to 1, 2, 3, …, p-1 mod p. Thus, the sets S and S' are equivalent 

mod p. 

 

Since the sets are equivalent mod p, their products are equivalent mod p. This gives us: 
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Subtract the term on the right over to the left: 
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Factor out (n-1)! from both of the products: 
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Applying the definition of product, we get: 

 
(𝑝 − 1)! (𝑎𝑝−1 − 1) ≡ 0 (𝑚𝑜𝑑 𝑝) 

 

By definition of divisibility, we have 𝑝| [(𝑝 − 1)! (𝑎𝑝−1 − 1)]. Since p is prime, it follows that 

either 𝑝|(𝑝 − 1)! or 𝑝|(𝑎𝑝−1 − 1). The former isn't true since (p-1)! Only has divisors in between 

1 and p-1, inclusive. It follows that the latter must be true. Writing this in its equivalent mod form 

we get: 

 
(𝑎𝑝−1 − 1) ≡ 0 (𝑚𝑜𝑑 𝑝) 

 

Adding 1 to both sides we get: 

 

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) 

 

 



Euler Phi Function 

First, let’s define the Euler (phi) function: 

 

(n) = the number of integers in the set {1, 2, ..., n-1} that are relatively prime to n. 

(p) = p –1 , for all prime numbers 

(pq) = (p-1)(q-1), where p and q are distinct primes. Here is a derivation of that result: 

 

We want to count all values in the set {1, 2, 3, ..., pq –1} that are relatively prime to pq. 

Instead, we could count all value in the set NOT relatively prime to pq. We can list these values: 

 

p, 2p, 3p, ... , (q-1)p 

 

q, 2q, 3q, ... (p-1)q 

 

Note that each of these values are distinct. To notice this, see that no number of the first row is 

divisible by q and no number on the second row is divisible by p. This ensures that there are no 

repeats on both rows. since p and q are relatively prime, in order for q to be a factor of a number 

on the first row, it would have to divide evenly into either 1, 2, 3, ... q-1. But clearly, it does not. 

The same argument will show that none of the values on the second row are divisible by p. 

 

Finally, we can count the number of values on this list. It’s (q-1) + (p-1) = p + q – 2. 

Now, in order to find (pq), we must subtract this value from pq –1 . So, we find: 

 

(pq) = (pq – 1) – (p + q – 2) = pq – p – q +1 = (p – 1)(q – 1). 

 

Now, let’s try to derive a more general result to calculate the  for all positive integers. 

 

First, we will extend our formula (p) = p –1 , for all prime numbers, to numbers of the form (pn). 

This extension is rather simple because for a number to NOT be relatively prime to pn, it must be 

divisible by p. Looking at the list: 1, 2, 3, …, p, …, pn-1, there are exactly pn-1 – 1 values on the 

list divisible by p. (These values are p, 2p, 3p, …, (pn-2 – 1)p.) Thus, we find that (pn) = pn – 1 – 

(pn-1 – 1) = pn – pn-1. 

 

Next, we generalize the result (pq) = (p – 1)(q – 1) = (p)(q) for two primes p and q to any 

number that is the product of relative prime values, m and n. This extension will take a bit more 

work. We must count the number of values in the set {1, 2, 3, …, mn – 1} that are relatively prime 

to mn. Let us write them out in a chart as follows: 

 

1  2  3  4  … m 

m+1  m+2  m+3  m+4 … 2m 

… 

(n-1)m+1 (n-1)m+2 (n-1)m+3 (n-1)m+4 nm 

 

We must “cancel out” any term in this grid that is NOT relatively prime to either m or n. 

First, let’s cancel out the terms NOT relatively prime to m. Quickly note that if some value r is 

NOT relatively prime to m, then km+r is not either. Thus, if there is some value r in between 1 and 



m inclusive that shares a common factor with m, then EVERY value in its column shares a 

common factor with m. Thus, there will be (m) columns that not canceled out. The other columns 

are completely canceled out. 

 

Now, consider the remaining columns. We need only to look for values that share a common factor 

with n in these columns. Each column takes the following form: 

 

r, m+r, 2m+r, 3m+r, …, (n-1)m+r. 

 

Now, we will prove that each of these numbers is distinct mod n. 

 

Assume to the contrary, that two values on the list are equivalent mod n. Let these two values be 

 

im+r and jm+r, for 0 ≤ i < j < n. Thus, we have: 

 

im + r ≡ jm + r (mod n) 

jm – im ≡ 0 (mod n) 

m(j – i) ≡ 0 (mod n) 

 

It follows that n divides evenly into m(i – j). But, we are given that gcd(m,n) = 1. This implies that 

n | (i – j). But, this is impossible because 0 < j – i < n. This is our contradiction. Thus, it follows 

that each of the n numbers on that list is not equivalent mod n. Thus, there is exactly 1 number for 

each residue class mod n in the list. It follows that EXACTLY (n) of these are divisible by n. 

Finally, if we take a look at the numbers not crossed out, there are exactly (m)(n) of them. 

 

Here is a quick example with m = 8 and n = 15. All crossed out numbers are underlined. We have 

(8) = 4 columns of numbers not crossed out. 

 
1 2 3 4 5 6 7 8 In each column there are 

9 10 11 12 13 14 15 16 (15) = 8 numbers not  
17 18 19 20 21 22 23 24 crossed out. 

25 26 27 28 29 30 31 32  

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 
57 58 59 60 61 62 63 64 

65 66 67 68 69 70 71 72 

73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 

89 90 91 92 93 94 95 96 

97 98 99 100 101 102 103 104 

105 106 107 108 109 110 111 112 

113 114 115 116 117 118 119 120 

 

Now, given these two results, we can derive a formula for (n) for any positive integer n. Given 

n’s prime factorization, one can simply calculate the phi function of each prime factor separately 

and multiply these all together. 

 

For example, (25x3x72) = (25)(3)(72) = (25 – 24)(3 – 1)(72 – 7) = 16(2)(42) = 1344. 



Euler’s Theorem 

Euler’s Theorem: If gcd(a,n) = 1, then a(n)  1 (mod n). 

 

Definition of a reduced residue system modulo n: A set of (n) numbers r1, r2, r3, ... r(n) such that 

ri  rj, for all 1  i < j  (n) with gcd(ri, n) = 1 for all 1  i  (n). 

 

Theorem about reduced residue systems: If r1, r2, r3, ... r(n) is a reduced residue system modulo 

n, and gcd(a,n) = 1, then ar1, ar2, ar3, ... ar(n) is ALSO a reduced residue system modulo n. 

 

Proof: We need to prove two things in order to verify the theorem above: 

 

1) ari  arj, for all 1  i < j  (n) 

2) gcd(ari, n) = 1 for all 1  i  (n) 

 

Proof of 1: 

 

Assume to the contrary that there exist distinct integers i and j such that ari  arj (mod n). We can 

deduce the following: 

 

ari  arj (mod n) 

(ari - arj)  0(mod n). 

n | (a(ri – rj)) 

 

We know that gcd(a,n) = 1. Thus, based on a theorem proved earlier, it follows that 

n | (ri – rj). But, this infers that ri  rj (mod n). This contradicts our premise that r1, r2, r3, ... r(n) is 

a reduced residue system modulo n. Thus, we can conclude that ari  arj, for all 1  i < j  (n). 

 

Proof of 2:  

 

Since gcd(a,n)=1 and gcd(ri,n)=1, it follows that n shares no common factors with a or ri. Thus, it 

shares no common factors with their product and we can conclude that gcd(ari, n) = 1 for all 1  i 

 (n). 

 

Now, we will use this theorem to prove Euler’s theorem: 

 

Let r1, r2, r3, ... r(n) be a reduced residue system modulo n, and gcd(a,n)=1. Then we have that ar1, 

ar2, ar3, ... ar(n) is a reduced residue system modulo n. Since both are reduced residue systems 

modulo n, we know that the their products are equivalent mod n: 
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Thus, we have that n divides this product. But, we know that gcd(ri, n) = 1 for each value of i. Thus 

the first large product of (n) terms is relatively prime to n. It follows that n divides the last factor: 

 

n | (a(n) – 1) 

a(n)  1 (mod n), proving Euler’s Theorem. 

 

Wilson’s Theorem 

The theorem follows rather simply from some of our following work: 

 

(p – 1)! ≡ -1 (mod p) for all primes p. 

 

This result can be verified for p = 2. Now, let’s consider all odd p. Since each value 1, 2, …, p – 1 

is relatively prime to p, each has an inverse mod p. We know that the inverse of 1 is 1 and the 

inverse of p – 1 is p – 1. But, for each other value on the list, its inverse is different than itself.  

 

To see this, let’s directly set up an equation for a value k that is its own inverse mod p: 

 

k2 ≡ 1 (mod p) 

k2 – 1 ≡ 0 (mod p) 

(k – 1)(k + 1) ≡ 0 (mod p) 

 

This implies that p | (k – 1) or p | (k + 1). These are exactly the two values we have written above 

as having self inverses. 

 

Now, consider the product 

 

1 x 2 x 3 x 4 … x (p – 1) 

 

1 x ( p – 1) x (2 x 3 x 4 … x (p – 2)) 

 

Each of the terms in the second set of parentheses (there are an even number of them), have their 

inverses mod p in that set. We can pair up these values such that 

 

1 x ( p – 1) x (2 x 3 x 4 … x (p – 2))  ≡ 1 x (p – 1) x 1 x 1 … x 1 (mod p) 

     ≡ (p – 1) mod p 

     ≡ -1 (mod p) 

 



Primality Testing 

 

In order for a RSA system to be created, one needs a way of creating large prime numbers. The 

standard way to do this would be to generate a random odd integer and then test to see if it's prime 

or not. 

 

The difficulty with this method is that testing for primality is a time-consuming task. The standard 

method of trial division would take thousands of years with some of the numbers we want to deal 

with. Recently, there has been the discovery of a polynomial-time algorithm to test for primality, 

but for common everyday procedures, it is also too time-consuming. 

 

It turns out that the most practical solution to this problem is utilizing a probabilistic algorithm. A 

probablistic algorithm is one that doesn't ALWAYS return the correct answer, but does so with 

some probability. This may sound unacceptable, but amazingly enough, we can utilize a test that 

is 75% accurate to create an overall algorithm that is accurate nearly every time. 

 

Our key goal is to differentiate/categorize integers into one of two categories: prime or composite. 

If we can find a property that one group has that the other group doesn't (most of the time), then 

that can be our litmus test for categorizing integers. This isn't the most intuitive litmus test, but it 

turns to work out quite well. Earlier in these notes we found out that for all 1 < a < p, where p is 

prime, 

 

 ap-1 ≡ 1 mod p 

 

This is a statement true for all primes, but as it turns out, is false for most values of a, for most 

composites. (Remember for composite numbers, n, the correct exponent is phi(n), which is strictly 

less than n-1.) 

 

Thus, the intuitive idea for our algorithm for testing if n is prime or not is as follows: 

 

1) Pick a random value a, 1 < a < n. 

2) Calculate an-1 mod n. 

3) If the answer is not 1, answer composite. 

4) If the answer is 1, answer "probably prime." 

 

We know that if this calculation does not yield one, then the number we are testing is 

DEFINITIVELY composite, since ALL primes would yield one. 

 

But, if we get one, we can't be positive that the number is prime, since there are some composites 

paired with some values of a that result in an answer of one as well. 

 

It turns out that the probability this algorithm is incorrect when it answers "probably prime" is no 

more than 1/2 (unless we are dealing with Carmichael numbers). 

 

Thus, if we want to increase our confidence in the "probably prime" answer, we can simply repeat 

the test multiple times. Here is some pseudocode with the idea: 



 
boolean isPrime(int n) { 

  for (int i=0; i<50; i++) { 

     int a = rand()%n; 

     if (pow(a,n-1)%n != 1) 

       return false; 

  } 

  return true; 

} 

 

Basically, all we do is test 50 random values of a. If any of them triggers a value other than one, 

we can be sure the number is composite. The probability a composite number gives the answer of 

one 50 straight times is less than (.5)50.  

 

The only exception to this is a special set of (infrequent) numbers known as Carmichael numbers. 

These are composite numbers for which each value of a that is relatively prime to n always yields 

1 in this computation. 

 

To thwart Carmichael numbers, the Miller-Rabin test utilizes a further property of Fermat's 

theorem. In particular, each possible value a has an "order" mod p. The order is simply the smallest 

exponent that a must be raised to, to obtain 1 mod p. From this point on, the modular 

exponentiation values cycle. Here are a couple examples: 

 

21 = 2 mod 7   31 = 3 mod 7 

22 = 4 mod 7   32 = 2 mod 7 

23 = 1 mod 7   33 = 6 mod 7 

24 = 2 mod 7   34 = 4 mod 7 

25 = 4 mod 7   35 = 5 mod 7  (order of 2 mod 7 is 3, 

26 = 1 mod 7   36 = 1 mod 7    order of 3 mod 7 is 6.) 

 

Let k be the order of a mod p, for some prime p. What often happens is that ak/2 = -1 mod p = (p-

1) mod p, if k is even. (This is true for the second example above.) But, for Carmichael numbers, 

this property doesn't typically hold. 

 

The Miller-Rabin test utilizes this fact. Here is the algorithm for testing if n is prime: 

 

1. write n – 1 = 2km, where m is odd. 

2. choose a random a, 1 < a < n. 

3. Compute b = am mod n. 

4. if b == 1, answer probably prime and quit. 

5. for (i=0; i<k; i++) 

6.    if (b = -1 mod n) 

              answer probably prime and quit. 

       else 

   b = b2 mod n   (taken from Cryptography: Theory and Practice 

7. if you get here, answer "composite"       by Stinson) 

The basic rationale here is that if we look at the following list of numbers mod n: 



 

am, a2m, a4m, ... , a(n-1)/2 

 

for a prime number, either the first one will be 1, or one of the values on the list will be -1. If this 

isn't true, the number is definitively composite. Furthermore, these restrictions are more stringent 

than the original, so fewer composite numbers will be able to pass this test. In particular, this test 

thwarts Carmichael numbers. 

 

The error of this algorithm is at most 25% (better than the previously stated 50%). Thus, if we run 

this algorithm 50 times and it reports "probably prime", we can be sure with probability 1 – (.25)50 

that the number is indeed prime. 

        

 

  



Fast Modular Exponentiation 

 

In order to do all of the items mentioned in this lecture, it's necessary to calculate a modular 

exponentiation (with a rather large exponent) very quickly. 

 

The typical iterative algorithm: 

 
int modExp(int base, int exp, int n) { 

  int ans = 1; 

  for (int i=0; i<exp; i++) 

    ans = (ans*base)%n; 

  return ans; 

} 

 

Is too slow because the loop will run exp number of times, and that could be absolutely huge. 

(Think tens of thousands or years or more...) 

 

Instead, we must make use of "intermediate" computations. For example, if I know that a5000 = 3 

mod n, I can immediately calculate that a10000 = 9 mod n, since 32 = 9 mod n. (Basically, all I am 

doing is squaring both sides of the first equation to yield the second equation.) This one quick step 

saved 5000 multiplications. Here's a quick algorithm that encompasses this idea: 

 
 int fastModExp(int base, int exp, int n) { 

  if (exp == 0) return 1; 

  if (exp == 1) return base%n; 

  if (exp%2 == 0) { 

    int temp = fastModExp(base, exp/2, n); 

    return (temp*temp)%n; 

  } 

  return (base*fastModExp(base, exp-1, n))%n; 

} 

 

The run-time of this algorithm is logarithmic in the value of the exponent, exp, instead of linear. 

This is a huge improvement. Consider exp = 1020, log 2 1020 = 66.4, which is much, much, much, 

much smaller than 100000000000000000000. 

 

  



Factoring Algorithms 

 

One of the ways that RSA could potentially be broken is through factoring the public key n. Once 

an opponent has this, they can go through the same steps the person creating the keys went through 

to obtain d. As of right now, there aren't any factoring algorithms that reliably factor a large 

composite number into its two prime components in a reasonable amount of time. Here we will 

look at two fairly elementary algorithms for factoring that are an improvement over trial division: 

 

The Fermat Factoring Algorithm is hinged upon the following factoring fact: 

 

x2 – y2 = (x + y)(x – y). 

 

Since we are assuming that our goal is to factor an integer that is the product of two large odd 

(prime) numbers, we know that the difference between the two factors will be even. Since this is 

the case, there MUST exist and x and y that satisfy the following equations: 

 

x + y = p 

x – y = q, N = pq, where N is the number of factor, and p and q are both large primes. 

 

Namely, x is the "halfway" point in between p and q, and y is the distance from this halfway point 

to both p and q. 

 

So the idea is as follows: Imagine you are trying to factor N = 26441. 

 

The first thing we know is that x > sqrt(26441), since we must solve 

 

N = 26441 = x2 – y2 = (x + y)(x – y), and y2 is positive. 

 

sqrt(26441) is 162.6. Thus, our first possible value for x is 163. Try it out: 

 

26441 = 1632 – y2 → y2 = 1632 – 26441 = 128 (Not a perfect square) 

 

Now, keep on trying successive values of x: 

 

1642 – 26441 = 455 (Not a perfect square) 

1652 – 26441 = 784 (This is 282, so we are done. x = 165, y = 28, p = 193, q = 137.) 

 

Thus, we find 26441 = 193 x 137. 

 

This algorithm will ALWAYS succeed, but sometimes, its run time will be prohibitive. In 

particular, the algorithm does well when the two factors are very close to each other in magnitude. 

It does poorly if they are far apart. Keep in mind that two twenty digit numbers, such as 1019 and 

9x1019 are very far apart. (The difference between the two is 8x1019.) 

 

 



The Pollard-Rho Factoring Algorithm works based on the notion of order previously described. 

But, unlike the Fermat algorithm, it may not succeed in all instances. The idea is to create a 

sequence of numbers that will eventually cycle, when considered mod n. If it cycles mod n, it must 

also cycle mod p, (where p is one of n's two distinct prime divisors.) Also, it is likely that the cycle 

mod p has a shorter length than the cycle mod n. If we can detect the cycle mod p (even though 

we don't know p), perhaps we can utilize that information to get p. Here's the algorithm: 

 

1. let a = 2, b = 2. 

2. while (true) { 

         a = a2 + 1 mod n 

         b = b2 + 1 mod n 

         b = b2 + 1 mod n 

         d = GCD(a – b, n) 

          if (1 < d && d < n) return d; 

          if (d == n) return failed; 

     } 

 

The basic idea is that both a and b are taken from the following sequence of numbers: 5, 26, 677, 

... In each iteration, a is the first number, then the second number, then the third number, etc and 

b is the second number, then the fourth numberm then the sixth number, etc. When we calculate a 

– b, we are calculating the difference between successive terms, then the second and fourth term, 

then the third and sixth term, etc. Essentially we are trying different cycle lengths in the sequence, 

it the very worst case, the sequence will cycle every n-1 values (which is an exceedingly long 

time), but in most instances it should cycle much more quickly. If the cycle for p is shorter, then 

the algorithm will work. 

 


