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CHAPTER 4

Number Theory:
Fermat’s Last Theorem

4.1 Introduction

On June 24, 1993, the New York Times ran a front-page story with the
headline “At Last, Shout of ‘Eureka!’ In Age-Old Math Mystery.” The
proverbial shout of “Eureka!” had echoed across the campus of Cambridge
University, England, just the day before. At the end of a series of lectures
at a small conference on the arcane subjects of “p-adic Galois Representa-
tions, Iwasawa Theory, and the Tamagawa Numbers of Motives,” Princeton
mathematician Andrew Wiles mentioned, almost as an afterthought, that
the results he had presented implied, as a corollary, that Fermat’s Last
Theorem was true. Via telephone and electronic mail, the news of what
many mathematicians called the most exciting event in twentieth-century
mathematics spread around the globe almost instantly. We will return to
these developments again at the end of this introductory section.

Fermat’s Last Theorem (FLT), the focus of all this commotion, is easily
stated, saying that the equation xn + yn = zn has no solution in terms
of nonzero integers x, y, z, if the integer exponent n is greater than two.
Until that day in June 1993 this statement might more appropriately have
been called a conjecture, since it had remained unproven, despite the ef-
forts of some of the world’s best mathematicians for three hundred years
since Pierre de Fermat’s bold claim during the first half of the seventeenth
century. Their efforts helped develop an entire new branch of mathematics.

Who was Fermat and what led him to make such a curious assertion?
The Frenchman Pierre de Fermat (1601–1665) was one of the truly great
figures in the history of mathematics. With his work he made essential con-
tributions to the transition from the classical Greek tradition to a wholly
new approach to mathematics, which took place in Europe during the sev-
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PHOTO 4.1. Wiles beside the Fermat memorial in Beaumont-de-Lomagne,
Fermat’s birthplace.

enteenth century. Much of the sixteenth and early seventeenth century was
devoted to translating into Latin, restoring, and extending mathematics
texts from classical Greece, such as the works of Euclid, Apollonius, Archi-
medes, Pappus, Ptolemy, and Diophantus of Alexandria. Fermat himself
undertook several such restoration projects, such as Apollonius’s Plane
Loci. Even in the early seventeenth century, they were viewed as the
pinnacle of mathematical achievement.

The mathematical community during the seventeenth century was quite
different from what it is today. There was nothing like a mathematical
profession, with professional standards and established methods of pub-
lication and communication. What is more, mathematics did not even
have a clear identity as a separate discipline, and there was no agree-
ment as to what it should be. Hardly anybody was making a living doing
mathematical research, and scholars pursued mathematics for a variety
of different reasons. The only mathematics taught at universities was
some basics necessary for degrees in law, medicine, or theology. Descrip-
tions of Fermat’s life usually emphasize that he was an “amateur,” which



4.1 Introduction 163

PHOTO 4.2. Fermat.

makes his accomplishments seem all the more astounding. But obviously
the term cannot really be meaningfully applied to the time period he
lived in.

Fermat received a law degree from the University of Orléans, France,
in 1631, after which he moved to Toulouse, where he lived the rest of his
life, traveling regularly to other cities. He practiced law and soon became
a “councillor” to the “Parlement,” the provincial High Court in Toulouse,
a position he kept until his death. Thus, his mathematical research was
done in his spare time, and there were long periods during his life when
his professional duties kept him from seriously pursuing research. There
are many indications that Fermat did mathematics partly as a diversion
from his professional duties, for personal gratification. While he enjoyed
the attention and esteem he received from many of his mathematical peers,
he never showed interest in publishing his results. He never traveled to the
centers of mathematical activity, not even Paris, preferring to communicate
with the scientific community through an exchange of letters, facilitated
by the theologian Marin Mersenne (1588–1648), in Paris, who served as a
clearing house for scientific correspondence from all over Europe.

The central mathematical influence in Fermat’s life was François Viète
(1540–1603) and his school in Bordeaux. He became acquainted with disci-
ples of Viète during a long stay in Bordeaux in the late 1620s. In 1591, Viète
had published his Introduction to the Analytic Art, the first in a series of
treatises, in which he outlined a new system of symbolic algebra, promising
a novel method of mathematical discovery. As he says in the introduction:
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There is a certain way of searching for the truth in mathematics that
Plato is said first to have discovered. Theon called it analysis, which
he defined as assuming that which is sought as if it were admitted
[and working] through the consequences [of that assumption] to what
is admittedly true, as opposed to synthesis, which is assuming what
is [already] admitted [and working] through the consequences [of that
assumption] to arrive at and to understand that which is sought.

Although the ancients propounded only [two kinds of] analysis, zetet-
ics and poristics, to which the definition of Theon best applies, I have
added a third, which may be called rhetics or exegetics. It is properly
zetetics by which one sets up an equation or proportion between a
term that is to be found and the given terms, poristics by which the
truth of a stated theorem is tested by means of an equation or pro-
portion, and exegetics by which the value of the unknown term in a
given equation or proportion is determined. Therefore the whole an-
alytic art, assuming this three-fold function for itself, may be called
the science of correct discovery in mathematics [172, pp. 11–12].

Viète’s work represents an important milestone in the transition from
ancient to modern mathematics, even though he was not a great influence
on the scientific community at the time, and his symbolic algebra was
soon eclipsed by the work of René Descartes (1596–1650). (More details
about Viète’s work can be found in [42] and [93]. The influence of Viète
on Fermat is described in detail in [113, Ch. II].) Fermat adopted Viète’s
symbolic algebra and adhered to it in all his writings. Viète’s theory of
equations formed the launching pad for Fermat’s work in number theory
and analysis.

While Fermat made very important contributions to the development of
the differential and integral calculus (see the analysis chapter and [113, Ch.
IV]), and to analytic geometry [113, Ch. III], his lifelong passion belonged
to the study of properties of the integers, now known as number theory,
and it is there that Fermat had the most lasting influence on the course of
mathematics in later centuries. His number-theoretic research is centered on
just a handful of themes, rooted in the classical Greek tradition, involving
the notions of divisibility and primality.

First, Fermat focused on the problem of finding perfect numbers, those
numbers that are equal to the sum of their proper divisors. For instance,
6 = 1+2+3 is perfect. This problem had already occupied the Pythagore-
ans, and the main classical Greek achievement is recorded as Proposition 36
in Book IX of Euclid’s Elements: If as many numbers as we please beginning
from a unit be set out continuously in double proportion, until the sum of all
becomes prime, and if the sum multiplied into the last make some number,
the product will be perfect. In modern terms, this proposition asserts that,
if 2n+1 − 1 is prime for some integer n ≥ 1, then 2n(2n+1 − 1) is a perfect
number (Exercise 4.1). (Why is this statement equivalent to Proposition
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36?) But the problem is far from solved, because it remains open whether
there are other perfect numbers not of this form. More importantly, how-
ever, to use the proposition to find perfect numbers, one needs an efficient
way to test whether a given number is prime. While Fermat made sub-
stantial progress on the latter, it was not until the eighteenth century that
Euler proved that all even perfect numbers are of the form given in Euclid’s
proposition. The question whether there are any odd perfect numbers re-
mains one of the important unsolved problems in number theory today. It
is known that there is no odd perfect number less than 10160 [71, p. 167].
For a historical survey of work on perfect numbers see [41, vol. I, Ch. 1],
[131, Ch. 5].

In any case, by Euclid’s proposition, every prime number in the sequence

22 − 1, 23 − 1, 24 − 1, . . . , 2n − 1, . . .

produces a perfect number. Such primes are now known as Mersenne
primes. Fermat’s major tool to test primality of these numbers is now
known as Fermat’s Theorem (sometimes called Fermat’s Little Theorem).
It says, in his own words:

Without exception, every prime number measures one of the powers
−1 of any progression whatever, and the exponent of the said power
is a submultiple of the given prime number −1. Also, after one has
found the first power that satisfies the problem, all those of which
the exponents are multiples of the exponent of the first will similarly
satisfy the problem [113, p. 295].

This theorem is stated today (Exercise 4.2) as follows:
Fermat’s Theorem: Given a prime number p and an integer a that is not
divisible by p, then ap−1 has remainder 1 under division by p. Furthermore,
there exists a least positive integer n such that an has remainder 1 under
division by p, n divides p − 1, and akn has remainder 1 under division by
p for all positive integers k.

How does this result help? First of all, observe that if 2n − 1 is prime,
then n itself has to be prime (Exercise 4.3). Fermat then drew the following
corollary from his theorem (Exercise 4.4), which greatly limits the number
of potential divisors of 2n − 1 to be checked.
Corollary: Let p be an odd prime, and q a prime. If q divides 2p− 1, then
q is of the form 2kp + 1 for some integer k.

For large primes p, this method will still be rather slow, and quicker
methods have since been developed [71, p. 171].

A very surprising application of Fermat’s Little Theorem surfaced in the
1970s, when it was applied to the construction of very secure secret codes,
so-called public key cryptosystems. These have found ubiquitous uses in
information transfer in business and banking, including automatic teller
machines. For this and other applications of number theory see [153].
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Fermat then broadened his investigation of primality to numbers of the
form an + 1, for integers a and n. A letter to Mersenne, dated Christmas
Day 1640, suggests that he found a proof that such a number could be
prime only if a is even and n is a power of 2 (Exercise 4.5). Based on his
calculations, Fermat conjectured that in fact all numbers of the form 22n

+1
are prime. A proof of this conjecture seemed to elude him for many years,
until he wrote in a letter to his correspondent Carcavi in 1659 that he had
finally found it [113, p. 301]. In 1732, Leonhard Euler showed that 225

+ 1
is divisible by 641. Primes of this form are now known as Fermat primes.

Besides the study of perfect numbers, the other important source of
inspiration for Fermat’s number-theoretic researches was the Arithmetica
of Diophantus of Alexandria, who lived during the third century. He was
one of the last great mathematicians of Greek antiquity. The Arithmetica
is a collection of 189 problems relating to the solution of equations in one
or more variables taken to be fractions, originally divided into thirteen
books, of which only six are preserved [9].1 The solutions are presented in
terms of specific numerical examples, with rational numbers. An instance
of relevance to the present chapter is Problem 8 from Book II, taken from
[93, p. 166] (in modernized notation):

Problem II-8. To divide a given square number into two squares.
Let it be required to divide 16 into two squares. And let the first square = x2;
then the other will be 16−x2; it shall be required therefore to make 16−x2 = a
square. I take a square of the form (ax−4)2, a being any integer and 4 the root
of 16; for example, let the side be 2x−4, and the square itself 4x2 +16−16x.
Then 4x2 + 16 − 16x = 16 − x2. Add to both sides the negative terms and
take like from like. Then 5x2 = 16x, and x = 16/5. One number will therefore
be 256/25, the other 144/25, and their sum is 400/25 or 16, and each is a
square.

Clearing denominators, one easily obtains an integer solution to this type
of problem. In this vein, triples of integers x, y, z that satisfy the equation

x2 + y2 = z2

are called Pythagorean triples (Exercise 4.6). Examples are (3, 4, 5) and
(5, 12, 13). The search for Pythagorean triples goes back at least to the
Babylonians. Our first source in this chapter comes from Euclid’s Elements,
in which he gives a complete description of all (infinitely many) Pythag-
orean triples. Via the Pythagorean Theorem, such triples correspond, of
course, to right triangles with integer sides (Exercises 4.7, 4.8, 4.9).

Diophantus obtains challenging variations of this problem by requiring
solutions that satisfy extra conditions, such as Problem 6 in Book VI,

1In 1972, R. Rashed found four more books of the Arithmetica with 101 ad-
ditional problems in the library of the tomb of the Imam Resa in Mashad, Iran.
see [136, 155].
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PHOTO 4.3. Diophantus on equations, from a fourteenth-century manuscript.

which asks for a right triangle (with rational sides) such that the sum of
its area and one of the legs of the right angle is equal to a given number
[113, pp. 304 f.]. (See also [40, vol. II, pp. 176 ff.].) Fermat greatly extended
Diophantus’s method of “single and double equations,” as it was called,
and made it into a powerful weapon to solve most problems of this type.

Another line of research Fermat pursued, which was destined to be inves-
tigated in great depth by later generations of number theorists, again starts
with a problem from Diophantus’s Arithmetica. Problem 19 in Book III asks
for four numbers such that if any one of them is added to, or subtracted
from, the square of their sum, the result is a square. Diophantus reduces
the problem to finding four right triangles with a common hypotenuse. He
then proceeds to give a specific numerical solution [113, p. 315]. Now, the
edition of the Arithmetica that Fermat was basing his research on had been
published by Claude Gaspar Bachet de Méziriac in 1621. Bachet had de-
veloped an interest in mathematical recreations and puzzles and, drawn to
number theory, prepared a new translation from Greek into Latin, the sci-
entific lingua franca of the era, along with an annotation of the Arithmetica.
Bachet, in pursuit of a general solution to Problem 19, reduced the ques-
tion further to that of how to find numbers that were sums of two squares
in a prescribed number of ways. In his commentary, he gives some specific
answers but no general solution. Once again, Fermat’s genius brings forth
a complete solution to the problem. He uses the now common approach of
reducing the problem to considering prime numbers first, and building up
the general solution via the factorization of a given number into its prime
factors. Odd prime numbers can be divided into two classes, those of the
form 4k−1, for some integer k ≥ 1, and those of the form 4k+1. He shows
that primes of the former kind cannot be the sum of two squares, and play
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no role in the general solution. The solution is given as follows, in Fermat’s
own words.

A prime number, which exceeds a multiple of four by unity, is only
once [i.e., in one way] the hypotenuse of a right triangle, its square
twice, its cube three times, its quadratoquadrate [fourth power] four
times, and so on in infinitum.... [113, p. 316].

He then investigates products of primes of the form 4n + 1, and without
indication of his method of proof, Fermat then makes the (correct) claim
that, if n = n′pa1

1 pa2
2 · · · par

r , where the pi are primes of the form 4k+1, and
n′ is composed of prime factors of the form 4k− 1, then n2 can be written
as a sum of two squares in

1
2 [(2a1 + 1)(2a2 + 1) · · · (2ar + 1)− 1]

ways [113, pp. 318 f.]. (See also [177, p. 71].) Today results of this kind form
part of what we call the theory of quadratic forms. An excellent book on
sums of squares is [80].

At the time, Fermat did not reveal the proof of this result. Only some
years later, in 1659, in a letter to Christian Huygens (1629–1695), the
inventor of the pendulum clock, did he finally reveal the method he had
used to prove this and many other spectacular results, which he called the
“method of infinite descent.” He illustrates it for Huygens by outlining a
proof that there is no right triangle whose area is a square integer. If there
were such a triangle, then he could construct another right triangle whose
area is square, but smaller than the area of the first triangle. In turn, he
could begin with the newly constructed triangle and find yet another one
with smaller area a square, and so on. But since this process, which results
in smaller and smaller positive integers, cannot go on forever, one could
not have been able to find the first triangle that got it started. While this
method would seem to be suitable only for proving negative results, that
certain things are impossible, Fermat was able to adapt it to prove positive
statements, such as the above assertion that every prime of the form 4k+1
is a sum of squares.

It seems that the same method allowed him to prove that there is no
cube that is a sum of cubes, nor a fourth power that is the sum of two
fourth powers. Earlier, he had sent these two problems to other mathemati-
cians as challenge problems. When, in 1670, Fermat’s son Samuel published
an edition of Bachet’s translation of the Arithmetica, which contained all
the annotations his father had made in it, one can find the following as
Observation 2:

No cube can be split into two cubes, nor any biquadrate into two
biquadrates, nor generally any power beyond the second into two of
the same kind [177, p. 104].
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PHOTO 4.4. Frontispiece from Samuel Fermat’s edition.

In other words, Fermat claims that the equation xn + yn = zn has no
nonzero integer solutions when n is greater than 2. Tantalizingly, he added
that the margin was too narrow to contain the truly remarkable proof, an
explanation used by him also elsewhere to explain the absence of a proof.
This most famous marginal note has become known as “Fermat’s Last
Theorem” and has occupied mathematicians ever since, culminating in the
proof by Andrew Wiles. Naturally, the question whether Fermat indeed
had a proof or just naively assumed that his method of infinite descent
would generalize for all exponents has been much discussed. Following are
the opinions of two of the leading mathematicians of the twentieth century.
First, André Weil remarks:

As we have observed...the most significant problems in Diophantus
are concerned with curves of genus 0 or 1. With Fermat this turns
into an almost exclusive concentration on such curves. Only on one
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PHOTO 4.5. Fermat’s marginal comment.

ill-fated occasion did Fermat ever mention a curve of higher genus,
and there can hardly remain any doubt that this was due to some
misapprehension on his part, even though, by a curious twist of fate,
his reputation in the eyes of the ignorant came to rest chiefly upon
it. By this we refer of course to the incautious words “et generaliter
nullam in infinitum potestatem” in his statement of “Fermat’s last
theorem” as it came to be vulgarly called.... How could he have
guessed that he was writing for eternity? We know his proof for
biquadrates...he may well have constructed a proof for cubes, similar
to the one which Euler discovered in 1753...he frequently repeated
those two statements...but never the more general one. For a brief
moment perhaps, and perhaps in his younger days...he must have
deluded himself into thinking that he had the principle of a general
proof; what he had in mind on that day can never be known [177,
p. 104].

A more cautious opinion was expressed by L.J. Mordell [126, p. 4]:

Mathematical study and research are very suggestive of mountaineer-
ing. Whymper made seven efforts before he climbed the Matterhorn
in the 1860s and even then it cost the lives of four of his party. Now,
however, any tourist can be hauled up for a small cost, and perhaps
does not appreciate the difficulty of the original ascent. So in math-
ematics, it may be found hard to realise the great initial difficulty of
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making a little step which now seems so natural and obvious, and it
may not be surprising if such a step has been found and lost again.

In hindsight, Fermat was one of the great mathematical pioneers, who
built a whole new paradigm for number theory on the accomplishments
of classical Greece, and laid the foundations for a mathematical theory
that would later be referred to as the “queen of mathematics.” But, as is
the fate of many scientific pioneers, during his lifetime he tried in vain to
interest the scientific community in his number-theoretic researches. Af-
ter unsuccessful attempts to interest such leading mathematicians as John
Wallis (1616–1703), a very influential predecessor of Newton in England,
and Blaise Pascal (1623–1662) in Paris, Fermat made a last attempt to win
over Huygens, in the letter referred to above. He concludes the letter as
follows:

There in summary is an account of my thoughts on the subject of
numbers. I wrote it only because I fear I shall lack the leisure to
extend and to set down in detail all these demonstrations and meth-
ods. In any case, this indication will serve learned men in finding for
themselves what I have not extended, particularly if MM. de Carcavi
and Frénicle share with them some proofs by infinite descent that I
sent them on the subject of several negative propositions. And per-
haps posterity will thank me for having shown it that the ancients
did not know everything, and this relation will pass into the mind
of those who come after me as a “passing of the torch to the next
generation,” as the great Chancellor of England says, following the
sentiment and the device of whom I will add, “Many will pass by
and knowledge will increase” [113, p. 351].

Whether it was the sentiment of the times, or Fermat’s secretiveness about
his methods of discovery and proofs of results that he presented only as chal-
lenges, he was singularly unsuccessful in enticing the great minds among
his contemporaries to follow his path. It was to be a hundred years before
another mathematician of Fermat’s stature took the bait and carried on
Fermat’s work.

Leonhard Euler (1707–1783) was without doubt one of the greatest math-
ematicians the world has ever known. A native of Switzerland, Euler spent
his working life at the Academies of Sciences in St. Petersburg and Berlin.
His mathematical interests were wide-ranging, and included number theory,
which he is said to have pursued as a diversion, in contrast to the more
mainstream areas of research to which he contributed. It was Christian
Goldbach (1690–1764) who drew Euler’s attention to the works of Fermat,
beginning with their very first exchange, in 1729, initiated by Euler. In his
reply, Goldbach adds as a postscript: “Is Fermat’s observation known to
you, that all numbers 22n

+ 1 are primes? He said he could not prove it;
nor has anyone else done so to my knowledge” [177, p. 172]. Their cor-
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respondence was to last more than thirty years, until Goldbach’s death.
Goldbach was a well-traveled and well-educated man whose main intel-
lectual interests were languages and mathematics. He knew many of the
distinguished mathematicians of his time, including Nicolas (1687–1759)
and Daniel Bernoulli (1700–1782), both of whom obtained appointments
to the Academy in St. Petersburg, thanks to his efforts. They, in turn,
managed to get an appointment there for the young Euler.

A large part of Euler’s number-theoretic work consisted essentially in
a systematic program to provide proofs for all the assertions of Fermat
[177, p. 170], including Fermat’s Last Theorem (FLT). He provided the
first proof for exponent three, which is considerably harder than that for
four. The second original source in this chapter is Euler’s own proof for
exponent four.

There was only a small number of scholars during the second half of the
eighteenth century who were interested in pure mathematics. Fortunately,
one of them devoted part of his career to the pursuit of number theory.
In 1768, Joseph Louis Lagrange (1736–1813) became interested in number
theory and produced a string of publications on this subject during the
following decade; much of it was directly inspired by Euler’s work. No new
results on FLT emerged from his publications, however, but he carried on
the number-theoretic tradition, to be taken up by later researchers. La-
grange had become the successor of Euler at the Academy of Sciences in
Berlin, and inherited the role of foremost mathematician in Europe after
Euler’s death. (For a biographical sketch of Lagrange see the algebra chap-
ter.) In 1786, Lagrange left Berlin for Paris, where he was to spend the rest
of his life.

One of his colleagues there was Adrien-Marie Legendre (1752–1833), who
had attracted Lagrange’s attention four years earlier, when Legendre sent
him a prize-winning essay on ballistics [177, p. 324]. (See the geometry
chapter for more information on Legendre.) In 1785, Legendre submitted
to the Paris Academy an essay entitled Researches on Indeterminate Anal-
ysis, containing his first work on number theory, directly inspired by the
writings of Euler and Lagrange. By that time, Euler was dead and La-
grange was no longer actively working in this area. Legendre embarked on
an extensive number-theoretic research program, which resulted in a com-
prehensive treatment of number theory, published in 1798 as Essay on the
Theory of Numbers. It went through several editions, the final one appear-
ing in 1830 as Theory of Numbers. In the first and second editions Legendre
reproduces Euler’s proofs of FLT for exponents 3 and 4. Then, in an 1825
supplement to the second edition, he adds some work of his own, includ-
ing a proof for exponent 5. Legendre’s contribution to this case consists
in completing a partial proof given by the young German mathematician
Lejeune Dirichlet (1805–1859) in the same year.

By the time the second edition of Theory of Numbers appeared in 1808 it
had been made utterly obsolete by an amazing work by the young German
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mathematician Carl Friedrich Gauss (1777–1855), who in 1801 published
a book entitled Disquisitiones Arithmeticae (Arithmetical Investigations),
which laid much of the foundation of modern number theory. It contained
proofs of a number of results such as the Quadratic Reciprocity Theorem,
one of the fundamental facts about prime numbers, which had been con-
jectured by Euler and for which Legendre had provided an incorrect proof.
In it, Gauss developed the theory of congruence arithmetic, which is still
in use today. (See the Appendix to this chapter.) The Disquisitiones finally
established number theory as a mathematical theory with a coherent body
of results and techniques. And gradually some of the greatest mathemati-
cal minds of the nineteenth century fell under the spell of the new subject.
Its prosperity from then on was assured, with a plethora of new results
and methods coming forth continuously throughout the second half of the
nineteenth and the twentieth century.

Gauss’s view on FLT is summarized in a letter to his colleague W. Olbers,
dated March 21, 1816:

I do admit that the Fermat Theorem as an isolated result is of little
interest to me, since it is easy to postulate a lot of such theorems,
which one can neither prove nor refute. Nonetheless, it has caused me
to return to some old ideas for a great extension of higher arithmetic.
Of course, this theory is one of those things where one cannot pre-
suppose to what extent one will succeed in reaching goals looming in
the far distance. A lucky star must also preside, and my situation as
well as much detracting business do not allow me to indulge in such
meditations as during the lucky years 1796–1798, when I formed the
main parts of my Disquisitiones Arithmeticae.

Alas, I am convinced, that if luck contributes more than I am al-
lowed to hope for, and I succeed in some of the main steps in that
theory, then the Fermat theorem will appear in it as one of the least
interesting corollaries [151, p. 629].

But luck did not favor Gauss that time, and he never returned to seri-
ous number-theoretic investigations. Nonetheless, the Disquisitiones and its
congruence arithmetic immediately inspired a whole new line of attack on
FLT in its full generality, rather than one exponent at a time. In Paris, the
young Sophie Germain (1776–1831) devoured Gauss’s book, after having
studied Legendre’s Essay. She immediately perceived a way to use congru-
ence methods to get at a general proof of FLT, and devoted much of her
life to this ultimately unsuccessful effort. But she did succeed in proving
the first general result about FLT, and her approach to the problem was
pursued quite successfully by many researchers even into the 1980s.

The third original source in this chapter is the only result commonly
attributed to her, known as Sophie Germain’s Theorem. Germain never
published any of her work on FLT, and the only published reference to this
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theorem consists of a footnote in the above-mentioned supplement to Leg-
endre’s second edition of his Essay, which deals with FLT. Here we present
an excerpt from her handwritten manuscripts, archived in the Bibliothèque
Nationale, in Paris, and from unpublished correspondence with Gauss.

Fermat had already observed that it was sufficient to prove FLT for
exponent four and for odd prime exponents p (Exercise 4.10). Germain
proved that for such p, if there were nonzero numbers x, y, z such that

xp + yp = zp,

and in addition an auxiliary prime q satisfying certain properties, then p2

would have to divide one of the numbers x, y, z. She then proceeded to de-
velop an algorithm to find such auxiliary primes q, and used it successfully
for all primes less than 100. Her method for generating auxiliary primes is
easily applied to higher prime exponents, as was done by Legendre, who
extended the list to include all prime exponents up to 197. Consequently,
for any prime exponent less than 197, any solutions to the Fermat equation
would have to contain one number that is divisible by the exponent. This
result is the origin of a case distinction that has been made ever since. Solu-
tions to the Fermat equation such that xyz is not divisible by the exponent
are referred to as Case I solutions, the others as Case II.

While there were a number of women who played a significant role in the
development of mathematics before the time of Germain, such as Hypa-
tia, in classical Greece, or Maria Gaetana Agnesi, during the Renaissance,
Sophie Germain was the first woman in history who we know produced
significant original mathematical research, working in both number theory
and mathematical physics [79, 132]. An excellent biography of Germain is
[23].

By the middle of the nineteenth century, sophisticated new methods
were being applied to FLT. The chapter ends with a letter from the Ger-
man number theorist Ernst Kummer (1810–1893) to Joseph Liouville, in
Paris, in May 1847. The letter addresses the failure of unique factorization
into primes of certain complex numbers, similar to that of integers into
products of prime numbers. Several proposed proofs of FLT had tacitly as-
sumed that such unique factorization held in great generality, and Kummer
pointed out that he had obtained results to the contrary. Kummer’s study
of this problem through entirely new methods was a radical departure from
the work of his predecessors and marks one of the beginnings of algebraic
number theory. His main positive contribution to FLT was a proof that it
was true for certain prime exponents called regular. In particular, all primes
less than 100, except for 37, 59, 67, are regular.

In the following century and a half, the number-theoretic world inched
ever closer to a complete proof of the theorem. Good surveys can be found
in [47, 137]. Many supporting partial results were achieved, such as the
result proved by A. Wieferich in 1909 that if there is a Case I solution for
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an exponent p, then p must satisfy the congruence

2p−1 ≡ 1 (mod p2).

In 1976, it was shown that FLT is true for all prime exponents less than
125,000. In 1992 this was extended to 4,000,000. Things really started to get
exciting in 1983, when the German mathematician Gerd Faltings proved the
so-called Mordell Conjecture, a result in algebraic geometry that implies
that for a given n ≥ 4, the equation xn + yn = zn has at most finitely
many pairwise relatively prime integer solutions, that is, where x, y, z have
no common divisors. Algebraic geometry concerns itself with the study of
the solution set to a system of polynomial equations, such as

y − x2 = 0,

z − x3 = 0.

The solution set to such a system depends, of course, on the type of
numbers one allows, such as rational or real numbers, in which cases
one may as well rewrite the Fermat equation by dividing both sides
by z to get the equation xp + yp = 1. Given a rational solution to
this equation, we obtain an integer solution to the Fermat equation by
clearing denominators. In the plane, the equation xp + yp = 1 has as
solution set a curve. And FLT is equivalent to the assertion that this
curve contains no points whose coordinates are rational numbers. Thus,
if one views FLT as a problem in algebraic geometry, one can bring to
bear on it many tools from this subject, in addition to number-theoretic
ones. The Mordell conjecture asserted that certain types of curves, such
as the curves xn + yn = 1, for n ≥ 5, have only finitely many ra-
tional points, and thus, in particular, the Fermat equation has only
finitely many integer solutions in which the numbers are pairwise relatively
prime.

Of course, Faltings’ result was still far from FLT. But it did allow A.
Granville and D. Heath-Brown to prove in 1985 that FLT holds for “most”
exponents n, in the sense that as n increases, the probability that FLT
fails for n approaches zero. Now the pace of results was quickening. Several
conjectures in number theory were made, each of which would imply FLT
if found true. One of those, the so-called Taniyama–Shimura conjecture,
named after two Japanese mathematicians, pertained to elliptic curves with
rational coefficients, which are curves defined by an equation of the type

y2 = ax3 + bx2 + cx + d,

such that the coefficients a, b, c, d are rational numbers with a 6= 0 and
the polynomial on the right side of the equation has distinct roots. The
conjecture asserted that such curves necessarily had to be modular. (It
is beyond the scope of this book to discuss this property in detail, and
the interested reader is advised to consult the excellent article [33], also
[117, 138, 158].) The reason that this conjecture, if proven true, would
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close the chapter on FLT was a result from the early eighties due to the
German mathematician Gerhard Frey. He showed that a nontrivial solution
to FLT would allow the construction of a certain elliptic curve with special
properties, which he thought would prevent it from being modular. These
elliptic curves, now called Frey curves, are constructed as follows. Given
a nontrivial solution ap + bp = cp for a particular exponent p ≥ 5, the
associated Frey curve is

y2 = x(x− ap)(x + bp).

In 1986, Ken Ribet, from Berkeley, completed the last step needed to con-
firm Frey’s intuition. Thus, all that was needed to complete the proof of
FLT was a proof of the Taniyama–Shimura conjecture.

In June of 1993, Princeton mathematician Andrew Wiles gave a series
of three lectures at the Isaac Newton Institute in Cambridge, England, in
which he outlined a proof of the Taniyama–Shimura conjecture for a certain
class of elliptic curves, including the Frey curves. Thus, a proof of Fermat’s
Last Theorem seemed complete, after more than 300 years. Wiles produced
a lengthy manuscript with the details of his extremely intricate and difficult
arguments, which he submitted to the scrutiny of several experts in the
field. After a lengthy silence from the refereeing committee, rumors of a
supposed gap in the proof alarmed the mathematics community, which
had already witnessed a false sense of triumph some years earlier, when a
purported proof turned out to be incomplete. Indeed, it was becoming clear
that Wiles’s proof contained a gap as well. Fortunately, in September of
1994, Wiles and Cambridge (UK) mathematician Richard Taylor managed
to circumvent this gap and produce a complete proof, which has since been
scrutinized very carefully and found to be complete and correct.

On June 27, 1997, Andrew Wiles received the Wolfskehl Prize in
Göttingen, Germany. This prize had been established by the German math-
ematician Paul Wolfskehl (1856–1906), who had become fascinated by the
problem through the lectures and papers of Ernst Kummer. The first per-
son to give a correct proof of Fermat’s Last Theorem or a necessary and
sufficient criterion for those exponents for which the Fermat equation is un-
solvable in positive integers was to receive 100,000 German marks. (When
it was awarded to Wiles, it was valued at approximately $43,000.) The prize
triggered an initial deluge of incorrect proofs. (For details on the prize see
[7, pp. 1294–1303].)

One of the crowning achievements of twentieth-century mathematics, the
proof of Wiles and Taylor brings to an end an odyssey spanning almost four
centuries. At the same time, the advances in understanding that made the
proof possible have spawned fascinating new questions that will continue
to drive mathematics in the future, just as Fermat’s Last Theorem did in
the past. We are extremely fortunate to live during one of the most exciting
times in the whole history of mathematics, and all indications are that we
are in for a thrilling number-theoretic ride in the future.
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PHOTO 4.6. Wiles.

Exercise 4.1: Look up and understand the proof of Euclid’s proposition
about perfect numbers in his Elements. Use it to find as many perfect
numbers as you can.

Exercise 4.2: Explain how to translate Fermat’s statement of Fermat’s
Little Theorem into the modern version.

Exercise 4.3: Show that if n is a positive integer, and 2n − 1 is prime,
then n is also prime. Hint: Prove the equality

(2ab − 1)/(2a − 1) = 2a(b−1) + 2a(b−2) + · · ·+ 1.

Exercise 4.4: Use Fermat’s Little Theorem to prove the corollary that if
p is an odd prime and q is a prime that divides 2p−1, then q is of the form
2kp + 1 for some integer k.

Exercise 4.5: Suppose that an + 1 is prime. Show that a must be even
and n must be a power of 2. (Hint: Prove that if n = 2km, with m > 1
odd, then

(a2km + 1)/(a2k

+ 1) = a2k(m−1) − a2k(m−2) + a2k(m−3) − · · ·+ 1.)

Exercise 4.6: What integer Pythagorean triple results from Diophantus’s
solution to the problem of dividing a given square into two squares?
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Exercise 4.7: A primitive Pythagorean triple is one in which any two of
the three numbers are relatively prime. Show that every multiple of a Py-
thagorean triple is again a Pythagorean triple, and that every Pythagorean
triple is a multiple of a primitive one.

Exercise 4.8: Show that the sum of two odd squares is never a square,
and use this fact to conclude that all Pythagorean triples have an even leg.

Exercise 4.9: Look up the Euclidean algorithm and use it to decide
whether a Pythagorean triple is primitive or not.

Exercise 4.10: Show that FLT is true for all exponents n if it is true for
n = 4 and all odd prime numbers n.

4.2 Euclid’s Classification of Pythagorean Triples

A triple of positive integers (x, y, z) is called a Pythagorean triple if the
integers satisfy the equation x2 + y2 = z2. Such a triple is called primitive
if x, y, z have no common factor. For instance, (3, 4, 5) and (5, 12, 13) are
primitive triples, whereas (6, 8, 10) is not primitive, but is a Pythagorean
triple. The significance of primitive triples is that “multiples” of primi-
tive ones account for all triples (see Exercise 4.7 in the previous section).
The problem of finding Pythagorean triples occupied the minds of mathe-
maticians as far back as the Babylonian civilization. Analysis of cuneiform
clay tablets shows that the Babylonians were in possession of a systematic
method for producing Pythagorean triples [127, pp. 36 ff.].

For instance, the tablet catalogued as Plimpton 322 in Columbia Univer-
sity’s Plimpton Collection, dating from 1900–1600 b.c.e., contains a list of
fifteen Pythagorean triples as large as (12709, 13500, 18541). (Is this triple
primitive?) For a detailed discussion of this tablet see, e.g., [64], [129]. There
is reason to believe that the Babylonians might even have known the com-
plete solution to the problem [131, pp. 175–79]. Other civilizations, such
as those of China and India, also have studied the problem [93]. Clearly,
Pythagorean triples are related to geometry via the Pythagorean Theorem,
as a Pythagorean triple corresponds to a right triangle with integer sides.

The Pythagoreans, after whom the theorem is named, were an ancient
Greek school that flourished around the sixth century b.c.e. Aristotle says
that they “applied themselves to the study of mathematics, and were the
first to advance that science; insomuch that, having been brought up in it,
they thought that its principles must be the principles of all existing things”
[85, p. 36]. Their motto is said to have been “all is number” [20, p. 54].
The particular interest of the Pythagoreans in relationships between whole
numbers naturally led to the investigation of right triangles with integral
sides. Proclus, a later commentator, who taught during the fifth century
c.e. at the Neo-Platonic Academy in Athens, credits the Pythagoreans


