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Introduction

Vision

The goal of this open-source number theory textbook is to gather up all the core subfields of
number theory into one text. By making it open-source, everyone will be able to contribute
in terms of adding new material and improving existing material, and tailor it to their own
learning or teaching.

It is an era of mass collaboration, in mathematics and many other fields. I aim to follow
the example of other successful online textbooks such as CRing and the Stacks Project.
Because we all are good at different subfields, we will be able to achieve much more if each
person writes notes on an area they have studied well. For instance, I have found that one
of the best ways to learn a semi-advanced topic is to find an undergraduate thesis on it:
because the author has spent a long time thinking on the subject, had long conversations
with advisors, and taken time to lay out the big motivations and deeper connections.

The philosophy behind this textbook is the following. If you’d like to contribute to this
work I’d recommend following these guidelines.

1. Take a problem-oriented approach. In other words, give motivation behind abstract
theory by relating them to interesting, concrete problems.

2. Create a user-friendly learning resource: Start each chapter by telling the reader
why the material matters, what problems in number theory it solves, and how it fits
into the big picture.1 For instance, class field theory gives a way to understand field
extensions through information intrinsic to the field, it gives framework for reciprocity
laws (among many other things, see chapter 29), and it is part of the larger Langlands
program. Give a summary of the takeaway ideas after the chapter, and exercises that
help the reader conceptually grasp the material. Always motivate proofs, especially
long hard ones, and tell the reader why the big theorems matter. Make connections
between different ways of approaching a particular problems. Highlight recurring tech-
niques.

(These points have not all been implemented in the chapters here, but it is what I’m
shooting for.)

1I learned this style from Patrick Winston. You can see it in action in his textbook on Artificial Intelli-
gence.
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3. Be a self-contained work: This means that proofs should refer to theorems in the
text itself, possibly from a previous part (for instance, refer to the Algebraic Number
Theory section in the Class Field Theory section.) (I may eventually move some of
the material into appendices, such as the complex analysis background required for
analytic number theory.)

4. Connect up elementary with advanced number theory, and offer a road map of the
subject.

Some more notes:

1. All material is under a creative commons license.

2. This will be posted open-source on my website, http://web.mit.edu/˜holden1/
www/math/notes.htm.

3. Please contribute! You will be credited. It doesn’t have to be finished/polished stuff—
after all, it takes much less time to edit material that’s already written than to write
it myself.

4. Much of this is in very rough shape right now.

5. Email suggestions and corrections to holden1@mit.edu.

6. (*) denotes optional material. (†) denotes theorems that will be made obsolete by
stronger theorems later (for example, the 𝑝 ≡ 1 (mod 𝑛) case of Dirichlet’s theorem),
and so can be skipped.

This file was last updated June 12, 2014.
Contributors: Holden Lee, Oleg Muskarov, Teo Andrica
Thanks for proofreading: Delong Meng, Timo Keller
For a list of references, see refs.bib.
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Chapter 1

Factorization and Divisibility

1 Divisibility

1.1 The division algorithm

2 Primes

3 LCM and GCD

3.1 The Euclidean algorithm

4 Look at the exponent

Theorem 1.4.1: We have that

ord𝑝(𝑛!) =
∞∑︁
𝑘=1

�
𝑛

𝑝𝑘

�
=

�
𝑛

𝑝

�
+

�
𝑛

𝑝2

�
+ · · ·

Given that 𝑛 =
∑︀𝑟
𝑘=0 𝑎𝑘𝑝

𝑘, find

ord𝑝(𝑛!) =
𝑛−∑︀𝑟

𝑖=0 𝑎𝑖
𝑝− 1

.

Proof.

Example 1.4.2 (AMC ??): Let 𝑥 and 𝑦 be positive integers such that 7𝑥5 = 11𝑦13. The
minimum possible value of 𝑥 can be written in the form 𝑎𝑐𝑏𝑑 where 𝑎, 𝑏, 𝑐, 𝑑 are positive
integers. Compute 𝑎+ 𝑏+ 𝑐+ 𝑑.
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Chapter 2

Modular Arithmetic

1 Modular Arithmetic

Let 𝑎, 𝑏 be integers and let 𝑚 be a positive integer. We say that 𝑎 and 𝑏 are congruent
modulo 𝑚 if 𝑚 divides 𝑎− 𝑏. This is denoted as 𝑎 ≡ 𝑏 mod 𝑚. If 𝑚 does not divide 𝑎− 𝑏,
then we write 𝑎 ̸≡ 𝑏 mod 𝑚. The relation 𝑎 ≡ 𝑏 for integers 𝑎, 𝑏 has many of the same
properties as the relation 𝑎 = 𝑏.

Proposition 2.1.1: The following properties hold for integers 𝑎, 𝑏, 𝑐 and positive integers
𝑚.

1. 𝑎 ≡ 𝑎 mod 𝑚;

2. If 𝑎 ≡ 𝑏 mod 𝑚, then 𝑏 ≡ 𝑎 mod 𝑚;;

3. If 𝑎 ≡ 𝑏 mod 𝑚 and 𝑏 ≡ 𝑐 mod 𝑚, then 𝑎 ≡ 𝑐 mod 𝑚;

4. If 𝑎𝑖 ≡ 𝑏𝑖 mod 𝑚 for 1 ≤ 𝑖 ≤ 𝑛, then 𝑎1 + 𝑎2 + · · ·+ 𝑎𝑛 ≡ 𝑏1 + 𝑏2 + · · ·+ 𝑏𝑛 mod 𝑚;

5. If 𝑎+ 𝑏 ≡ 𝑐 mod 𝑚, then 𝑎 ≡ 𝑐− 𝑏 mod 𝑚;

6. If 𝑎 ≡ 𝑏 mod 𝑚, then 𝑎+ 𝑐 ≡ 𝑏+ 𝑐 mod 𝑚;

7. If 𝑎𝑖 ≡ 𝑏𝑖 mod 𝑚, then 𝑎1𝑎2 · · · 𝑎𝑛 ≡ 𝑏1𝑏2 · · · 𝑏𝑛 mod 𝑚;

8. If 𝑎 ≡ 𝑏 mod 𝑚, then 𝑎𝑐 ≡ 𝑏𝑐 mod 𝑚;

9. If 𝑎 ≡ 𝑏 mod 𝑚, then 𝑎𝑛 ≡ 𝑏𝑛 mod 𝑚 for all positive integers 𝑛;

10. If 𝑎 ≡ 𝑏 mod 𝑚 and 𝑓(𝑥) is a polynomial with integer coefficients, then 𝑓(𝑎) ≡ 𝑓(𝑏)
mod 𝑚.

Proof. The above properties can be proven as follows:

1. 𝑚 | 𝑎− 𝑎 = 0 for all 𝑚.
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2. As 𝑚 | 𝑎− 𝑏, 𝑎− 𝑏 = 𝑘𝑚. Then 𝑏− 𝑎 = (−𝑘)𝑚, so 𝑏 ≡ 𝑎 mod 𝑚.

3. As 𝑚 | 𝑎− 𝑏, 𝑏− 𝑐, we have 𝑚 | (𝑎− 𝑏) + (𝑏− 𝑐) = 𝑎− 𝑐. Hence 𝑐 ≡ 𝑎 mod 𝑚.

4. As 𝑚 | 𝑎𝑖 − 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛, we have 𝑚 | (𝑎1 − 𝑏1) + (𝑎2 − 𝑏2) + · · ·+ (𝑎𝑛 − 𝑏𝑛). Hence
𝑎1 + 𝑎2 + · · ·+ 𝑎𝑛 ≡ 𝑏1 + 𝑏2 + · · ·+ 𝑏𝑛 mod 𝑚.

5. As 𝑚 | (𝑎+ 𝑏)− 𝑐, we have 𝑚 | 𝑎− (𝑐− 𝑏). Hence 𝑎 ≡ 𝑐− 𝑏 mod 𝑚.

6. As 𝑚 | 𝑎 − 𝑏 and 𝑚 | 𝑐 − 𝑐, we have 𝑚 | (𝑎 − 𝑏) + (𝑐 − 𝑐) = (𝑎 + 𝑐) − (𝑏 + 𝑐). Hence
𝑎+ 𝑐 ≡ 𝑏+ 𝑐 mod 𝑚.

7. As 𝑚 | 𝑎𝑖− 𝑏𝑖, we have 𝑎𝑖− 𝑏𝑖 = 𝑡𝑖𝑚 for integers 𝑡𝑖 and 1 ≤ 𝑖 ≤ 𝑛. Hence 𝑎1𝑎2 · · · 𝑎𝑛 =
(𝑏1+𝑡1𝑚)(𝑏2+𝑡2𝑚) · · · (𝑏𝑛+𝑡𝑛𝑚). Expanding the left side gives the form 𝑏1𝑏2 · · · 𝑏𝑛+𝑡𝑚
for some integer 𝑡. Hence 𝑎1𝑎2 · · · 𝑎𝑛 ≡ 𝑏1𝑏2 · · · 𝑏𝑛 mod 𝑚.

8. If 𝑚 | 𝑎− 𝑏, then 𝑚 | 𝑐(𝑎− 𝑏) = (𝑐𝑎)− (𝑐𝑏). Hence 𝑐𝑎 ≡ 𝑐𝑏 mod 𝑚.

9. Set 𝑎𝑖 = 𝑎 and 𝑏𝑖 = 𝑏 for 1 ≤ 𝑖 ≤ 𝑛 and use result 7.

10. Set 𝑓(𝑥) = 𝑐0+𝑐1𝑥+· · ·+𝑐𝑛𝑥𝑛. Then 𝑓(𝑎)−𝑓(𝑏) = 𝑐1(𝑎−𝑏)+𝑐2(𝑎2−𝑏2)+· · ·+𝑐𝑛(𝑎𝑛−𝑏𝑛).
All of these terms are divisible by 𝑎 − 𝑏, hence 𝑎 − 𝑏 | 𝑓(𝑎) − 𝑓(𝑏). As 𝑚 | 𝑎 − 𝑏, we
have thus 𝑚 | 𝑓(𝑎)− 𝑓(𝑏). Hence 𝑓(𝑎) ≡ 𝑓(𝑏) mod 𝑚 as desired.

Proposition 2.1.2: 1. If 𝑎 ≡ 𝑏 mod 𝑚, then gcd (𝑎,𝑚) = gcd (𝑏,𝑚).

2. 𝑎 ≡ 𝑏 mod 𝑚 if and only if 𝑎 and 𝑏 have the same remainder upon division by 𝑚.

3. 𝑎 ≡ 𝑏 mod 𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛 if and only if 𝑎 ≡ 𝑏 mod lcm (𝑚1,𝑚2, · · · ,𝑚𝑛).

4. If 𝑘𝑎 = 𝑘𝑏 mod 𝑚, then 𝑎 ≡ 𝑏 mod
(︁

𝑚
gcd (𝑚,𝑘)

)︁
. In particular, if gcd (𝑚, 𝑘) = 1, then

𝑎 ≡ 𝑏 mod 𝑚.

Proof. We show the desired results as follows:

1. As 𝑎 ≡ 𝑏 mod 𝑚, we have 𝑚 | 𝑎 − 𝑏, and thus 𝑎 − 𝑏 = 𝑡𝑚 for some integer 𝑡.
Let 𝑑1 = gcd (𝑎,𝑚), 𝑑2 = gcd (𝑏,𝑚). Then 𝑑1 | 𝑎,𝑚, so 𝑑1 | 𝑎 − 𝑡𝑚 = 𝑏. Hence
𝑑1 | gcd (𝑏,𝑚) = 𝑑2. We may similarly show 𝑑2 | 𝑑1. As 𝑑1, 𝑑2 > 0, we have thus
𝑑1 = 𝑑2.

2. Let 𝑎 = 𝑚𝑞1+𝑟1, 𝑏 = 𝑚𝑞2+𝑟2, where 0 ≤ 𝑟1, 𝑟2 < 𝑚. Then 𝑎−𝑏 = 𝑚(𝑞1−𝑞2)+(𝑟1−𝑟2).
We have 𝑎 ≡ 𝑏 mod 𝑚 iff 𝑚 | 𝑎 − 𝑏, which is in turn equivalent to 𝑚 | 𝑚(𝑞1 − 𝑞2) +
(𝑟1 − 𝑟2). This is equivalent to 𝑚 | 𝑟1 − 𝑟2. As |𝑟1 − 𝑟2| < 𝑚, we have 𝑚 | 𝑟1 − 𝑟2 iff
𝑟1 − 𝑟2 = 0, or 𝑟1 = 𝑟2. This achieves the desired result.
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3. If 𝑚𝑖 | 𝑎 − 𝑏 for 1 ≤ 𝑖 ≤ 𝑛, then 𝑎 − 𝑏 is a common multiple of the 𝑚𝑖 and hence is
divisible by lcm (𝑚1,𝑚2, · · · ,𝑚𝑛). On the other hand, if lcm (𝑚1,𝑚2, · · · ,𝑚𝑛) | 𝑎− 𝑏,
then 𝑚𝑖 | 𝑎− 𝑏 for all 𝑖. This proves our result.

4. Let 𝑑 = gcd (𝑚, 𝑘). Write 𝑘 = 𝑑𝑘1,𝑚 = 𝑑𝑚1; then gcd (𝑚1, 𝑘1) = 1. As 𝑘(𝑎− 𝑏)/𝑚 =
𝑘1(𝑎 − 𝑏)/𝑚1 is an integer, and as gcd (𝑚1, 𝑘1) = 1, we must have 𝑚1 | 𝑎 − 𝑏. As
𝑚1 =

𝑚
gcd (𝑚,𝑘)

, we achieve the desired result.

Problem 2.1.3: Verify the following congruences:

1. 270 + 370 ≡ 0 mod 13;

2. 32009 ≡ 3 mod 10;

3. (20719 − 41)10 ≡ 24 mod 100;

4. 22
5 ≡ −1 mod 641.

Proof. 1. We have 26 ≡ −1 mod 13. Hence 270 = 24 · (26)11 ≡ −24 ≡ 10 mod 13.
We have 33 ≡ 1 mod 13. Hence 370 = 3 · (33)23 ≡ 3 · 123 ≡ 3 mod 13. Hence
270 + 370 ≡ 10 + 3 ≡ 0 mod 13.

2. We have 34 = 81 ≡ 1 mod 10. Hence 32009 = 3 · (34)502 ≡ 3 · 1502 ≡ 3 mod 10.

3. We have 74 = 2401 ≡ 1 mod 100. Hence 20719 ≡ 719 = 73 · (74)4 ≡ 73 · 14 = 343 ≡ 43
mod 100. Hence 20719 − 41 ≡ 2 mod 100. But then (20719 − 41)10 ≡ 210 = 1024 ≡ 24
mod 100.

4. We have 641 = 5 · 27 + 1 = 54 + 24. Hence 5 · 27 ≡ −1 mod 641 and 54 ≡ −(24)
mod 641. Then we have 22

5
= 232 = 24 · (27)4 ≡ −(54)(27)4 = −(5 · 27)4 ≡ (−1)5 = −1

mod 641.

Remark 2.1.4: If we define the Fermat numbers as in the lecture on greatest common
divisors and least common multiples, it may be verified that 𝐹0, 𝐹1, · · · , 𝐹4 are prime. The
above result shows that 𝐹5 is not prime; it has been computed that none of 𝐹5 through 𝐹20

are prime. It is still an open question as to whether there are any 𝑘 > 4 for which 𝐹𝑘 is
prime.

Problem 2.1.5: Find the last digit of:

1. 22312 − 4415;

2. 91003 − 7902 + 3801.

7
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Proof. 1. We have 22312 ≡ 312 ≡ (34)4 ≡ 13 ≡ 1 mod 10. Similarly, 4415 ≡ 415 ≡ (45)3 ≡
43 ≡ 4 mod 10. Hence 22312 − 4415 ≡ 1− 4 ≡ 7 mod 10, so its last digit is 7.

2. We have 91003 ≡ (−1)1003 ≡ −1 ≡ 9 mod 10. In addition, 7902 ≡ 49451 ≡ (−1)451 ≡ −1
mod 10. Finally, 3801 ≡ 3 · (34)200 ≡ 3 · 1200 ≡ 3 mod 10. Hence 91003 − 7902 + 3801 ≡
(−1)− (−1) + 3 ≡ 3 mod 10, so the last digit is 3.

Problem 2.1.6: Prove that for integers 𝑥, 𝑦 and prime 𝑝, we have (𝑥+𝑦)𝑝 ≡ 𝑥𝑝+𝑦𝑝 mod 𝑝.

Proof. The binomial theorem gives (𝑥+𝑦)𝑝 =
(︀
𝑝
0

�
𝑥𝑝𝑦0+

(︀
𝑝
1

�
𝑥𝑝−1𝑦1+· · ·+

(︀
𝑝
𝑝−1

�
𝑥1𝑦𝑝−1+

(︀
𝑝
𝑝

�
𝑥0𝑦𝑝.

As proved in the previous day’s lecture, 𝑝 |
(︀
𝑝
𝑘

�
for 1 ≤ 𝑘 ≤ 𝑝−1. Hence 𝑝 | (𝑥+𝑦)𝑝−(𝑥𝑝+𝑦𝑝),

so (𝑥+ 𝑦)𝑝 ≡ 𝑥𝑝 + 𝑦𝑝 mod 𝑝.

Problem 2.1.7: Show that if 𝑝 is a prime and 0 ≤ 𝑘 ≤ 𝑝−1 is an integer, then
(︀
𝑝−1
𝑘

�
≡ (−1)𝑘

mod 𝑝.

Proof. The case 𝑘 = 0 is trivial. If 𝑘 ≥ 1, we have 𝑝− 1 ≡ −1 mod 𝑝, 𝑝− 2 ≡ −2 mod 𝑝,
and so on till 𝑝 − 𝑘 ≡ −𝑘 mod 𝑝. Hence

(︀
𝑝−1
𝑘

�
𝑘! = (𝑝 − 1)(𝑝 − 2) · · · (𝑝 − 𝑘) ≡ (−1)𝑘𝑘!

mod 𝑝. As gcd (𝑝, 𝑘!) = 1, we have thus
(︀
𝑝−1
𝑘

�
≡ (−1)𝑘 mod 𝑝.

Residue Classes
Given 𝑚 a positive integer, we say that two integers 𝑎 and 𝑏 belong to the same residue

class modulo 𝑚 if 𝑎 ≡ 𝑏 mod 𝑚 - that is, if they have equal remainder upon division by 𝑚.
Congruence modulo 𝑚 divides the set of integers Z into 𝑚 disjoint residue classes, commonly
denoted by 𝑎+𝑚Z for 𝑎 = 0, 1, · · · ,𝑚− 1 and defined as 𝑎+𝑚Z = {𝑎+𝑚𝑘 : 𝑘 ∈ Z}.

A set 𝑆 of integers is called a complete set of residue classes modulo 𝑚 if for each
0 ≤ 𝑖 ≤ 𝑚− 1 there is some 𝑠 ∈ 𝑆 such that 𝑠 ≡ 𝑖 mod 𝑚. It is obvious that any set 𝑆 of
𝑚 consecutive integers is a complete set of residue classes modulo 𝑛 for all 1 ≤ 𝑛 ≤ 𝑚.

Problem 2.1.8: Prove that:

1. 𝑛2 ≡ 0, 1 mod 3;

2. 𝑛2 ≡ 0,±1 mod 5;

3. 𝑛2 ≡ 0, 1, 2, 4 mod 7;

4. 𝑛3 ≡ 0,±1 mod 9;

5. 𝑛4 ≡ 0, 1 mod 16.

Proof. 1. For all 𝑛, 𝑛 = 0,±1 mod 3. Hence 𝑛2 ≡ 0, 1 mod 3.

2. For all 𝑛, 𝑛 ≡ 0,±1,±2 mod 5. Hence 𝑛2 ≡ 0, 1, 4 ≡ 0, 1,−1 mod 5.

3. For all 𝑛, 𝑛 ≡ 0,±1,±2,±3 mod 7. Hence 𝑛2 ≡ 0, 1, 4, 2 mod 7.
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4. For all 𝑛, 𝑛 = 3𝑘, 3𝑘 ± 1. If 𝑛 = 3𝑘, then (3𝑘)3 = 27𝑘3 ≡ 0 mod 9. If 𝑛 = 3𝑘 ± 1,
then 𝑛3 = 27𝑘3 ± 27𝑘2 + 9𝑘 ± 1 ≡ ±1 mod 9. Hence for all 𝑛, 𝑛3 ≡ 0,±1 mod 9.

5. If 𝑛 = 2𝑘, then 𝑛4 = 16𝑘4 ≡ 0 mod 16. If 𝑛 = 2𝑘 + 1, then 𝑛2 = 1 + 4𝑘 + 4𝑘2 =
1 + 4𝑘(𝑘 + 1). Since 𝑘(𝑘 + 1) is even for all 𝑘, we may write 𝑘(𝑘 + 1) = 2𝑠. Hence
𝑛2 = 1 + 8𝑠. Thus 𝑛4 = 64𝑠2 + 16𝑠+ 1 ≡ 1 mod 16.

Problem 2.1.9: Prove that if 𝑝 | 𝑥2 + 𝑦2, where 𝑝 = 3 or 𝑝 = 7, then 𝑝 | 𝑥 and 𝑝 | 𝑦.

Proof. We first deal with the case 𝑝 = 3. If 3 | 𝑥, then 3 | 𝑦, and vice versa. Suppose that
3 | 𝑥2+ 𝑦2 and 3 - 𝑥, 𝑦. Then 𝑥2+ 𝑦2 ≡ 0 mod 3, and 𝑥2, 𝑦2 ̸= 0 mod 3. Hence 𝑥2 ≡ 𝑦2 ≡ 1
mod 3, so 𝑥2 + 𝑦2 ≡ 2 mod 3. Contradiction; hence 3 | 𝑥, 𝑦. Now we take the case 𝑝 = 7.
If 7 | 𝑥, then 7 | 𝑦, and vice versa. If 7 | 𝑥2 + 𝑦2, but 7 - 𝑥, 𝑦, then we have 𝑥2 + 𝑦2 ≡ 0
mod 7 and 𝑥2, 𝑦2 = 1, 2, 4 mod 7. We may check that no two of {1, 2, 4} add to 0 modulo
7. Contradiction; hence 7 | 𝑥, 𝑦.

Problem 2.1.10: Let 𝑎 and 𝑚 be positive integers. Then 𝑆 = {1 · 𝑎, 2 · 𝑎, · · · ,𝑚 · 𝑎} is a
complete set of residue classes modulo 𝑚 iff gcd (𝑎,𝑚) = 1.

Proof. Suppose that gcd (𝑎,𝑚) = 1. If 𝑆 is not a complete set of residue classes modulo
𝑚, then we have 𝑖𝑎 ≡ 𝑗𝑎 mod 𝑚 for 𝑖 ̸= 𝑗. Hence 𝑚 | 𝑎(𝑖 − 𝑗). As gcd (𝑎,𝑚) = 1, we
have 𝑚 | 𝑖 − 𝑗. But as 𝑖 > 1 and 𝑗 < 𝑚, we have −(𝑚 − 1) < 𝑖 − 𝑗 < 𝑚 − 1. Hence
𝑖 − 𝑗 = 0, so 𝑖 = 𝑗. Contradiction; hence 𝑆 is a complete set of residue classes modulo
𝑚. Now assume that 𝑆 is a complete set of residue classes modulo 𝑚, and suppose that
𝑑 = gcd (𝑎,𝑚) > 1. Set 𝑎 = 𝑑𝑎1,𝑚 = 𝑑𝑚1, where gcd (𝑎1,𝑚1) = 1 and 𝑚1 < 𝑚. Then
we have 𝑚1𝑎 = 𝑚1𝑎1𝑑 = 𝑎1(𝑚1𝑑) = 𝑎1𝑚 ≡ 𝑚𝑎 ≡ 0 mod 𝑚. Hence 𝑆 cannot contain 𝑚
distinct elements modulo 𝑚, so 𝑆 cannot be a complete set of residue classes modulo 𝑚.
Contradiction; hence gcd (𝑎,𝑚) = 1.

Problem 2.1.11: For any positive integer 𝑚, any integer 𝑎 with gcd (𝑎,𝑚) = 1, and any
integer 𝑏, there is some integer 𝑥 with 𝑎𝑥 ≡ 𝑏 mod 𝑚. The set of all such 𝑥 form a residue
class modulo 𝑚.

Proof. By the previous result, the set 𝑆 = {𝑎 · 1, 𝑎 · 2, · · · , 𝑎 ·𝑚} is a complete set of residue
classes modulo 𝑚. Hence there is exactly one element 𝑥1 ∈ 𝑆 with 𝑎 · 𝑥1 ≡ 𝑏 mod 𝑚. Now
we must only show that the solution set to this congruence is a residue class modulo 𝑚.

If we have some 𝑥2 ∈ Z with 𝑎𝑥2 ≡ 𝑏 mod 𝑚, then we have 𝑎𝑥1 ≡ 𝑎𝑥2 mod 𝑚. Hence
as gcd (𝑎,𝑚) = 1, we have 𝑥1 ≡ 𝑥2 mod 𝑚. Thus 𝑥1, 𝑥2 are in the same residue class
modulo 𝑚. Conversely, if 𝑥1 and 𝑥2 are in the same residue class modulo 𝑚, then we have
𝑥1 ≡ 𝑥2 mod 𝑚. Hence 𝑏 ≡ 𝑎𝑥1 ≡ 𝑎𝑥2 mod 𝑚, so 𝑎𝑥2 ≡ 𝑏 mod 𝑚. It follows that the set
of solutions to 𝑎𝑥 ≡ 𝑏 mod 𝑚 forms a residue class modulo 𝑚.

Problem 2.1.12: Find all solutions to the congruence:

9
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1. 2𝑥 ≡ 3 mod 5;

2. 3𝑥 ≡ 1 mod 10;

3. 15𝑥 ≡ 5 mod 20.

Proof. We give the following solutions:

1. As 𝑥 = 4 satisfies the congruence, and as gcd (2, 5) = 1, the solution set is the residue
class 4 + 5Z.

2. As 𝑥 = 7 satisfies the congruence, and as gcd (3, 10) = 1, the solution set is the residue
class 7 + 10Z.

3. As gcd (15, 20) ̸= 1, we must reduce the congruence to a different modulus. We may
reduce the congruence to 3𝑥 ≡ 1 mod 4, as 4 = 20

gcd (5,20)
. Then 𝑥 = 3 satisfies this

congruence; hence the solution set is the residue class 3 + 4Z.

10
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Problems

1. Prove the congruences:

(a) 225 + 326 ≡ 2 mod 11;

(b) 13682 ≡ 1 mod 7;

(c) (21103 − 1336)2 ≡ 4 mod 11;

(d) 211·31 ≡ 2 mod 11 · 31

2. Determine the last two digits of:

(a) 7129;

(b) 22910 + 3710.

3. Determine all natural numbers 𝑛 such that:

(a) 5 | 2𝑛 + 3𝑛;

(b) 7 | 3𝑛 − 2.

4. Prove that the sequence 𝑎𝑛 = 2𝑛 − 3 for 𝑛 ≥ 0 has infinitely many terms divisible by
5 and infinitely many terms divisible by 13 but no terms divisible by 5 · 13.

5. Determine all integers 𝑥, 𝑦, 𝑧 with:

(a) 𝑥2 + 𝑦2 = 32008;

(b) 𝑥4 + 𝑦4 + 𝑧4 = 2100.

6. Let 𝑝1 < 𝑝2 < · · · < 𝑝31 be prime numbers such that 30 evenly divides 𝑝41+𝑝
4
2+· · ·+𝑝431.

Determine 𝑝1, 𝑝2, and 𝑝3.

7. Determine all solutions of the congruence:

(a) 5𝑥+ 2 ≡ 0 mod 11;

(b) 10𝑥+ 25 ≡ 0 mod 215;

8. Determine all primes 𝑝 and 𝑞 such that 𝑝+ 𝑞 = (𝑝− 𝑞)3.

9. Let 𝑎 be an odd integer. Prove that 𝑎2
𝑚
+ 22

𝑚
and 𝑎2

𝑛
+ 22

𝑛
are relatively prime for

all distinct positive integers 𝑛 and 𝑚.

10. Determine all positive integers for which 𝑛! + 5 is a perfect cube.

11. Prove that if 𝑎 ≡ 𝑏 mod 𝑛 then 𝑎𝑛 ≡ 𝑏𝑛 mod 𝑛2. Is the converse true?

12. Determine all 𝑛 such that 1! + 2! + · · ·+ 𝑛! is a perfect power.

2 Chinese remainder theorem

11
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Chapter 3

Arithmetical Functions

arith-f

1 Arithmetical functions

Definition 3.1.1: An arithmetical function is a function 𝑓 defined on N.

1. If

arith-f-mult𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) (3.1)

for every 𝑚 and 𝑛 relatively prime, then 𝑓 is multiplicative.

2. If (3.1) holds for every 𝑚,𝑛 ∈ N, then 𝑓 is completely multiplicative.

Note that if 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑚𝑚 is the prime factorization of 𝑛, then

𝑓(𝑛) =

⎧⎨⎩𝑓(𝑝𝑎11 ) · · · 𝑓(𝑝𝑎𝑚𝑚 ) if 𝑓 is multiplicative,

𝑓(𝑝1)
𝑎
1 · · · 𝑓(𝑝𝑚)𝑎𝑚 if 𝑓 is completely multiplicative.

13
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2 Number of divisors

3 Totient

4 Sum of divisors

5 Möbius function

6 Sums of digits

7 Finite calculus

Theorem 3.7.1 (Summation by parts, Abel summation): sum-parts Suppose that 𝑢 is an
arithmetic function, and let

𝑈(𝑥) =
∑︁
𝑛≤𝑥

𝑢(𝑥).

Then for 𝑚,𝑛 ∈ N
𝑛∑︁

𝑥=𝑚

𝑢(𝑥)𝑣(𝑥) = 𝑈(𝑛)𝑣(𝑛)− 𝑈(𝑚− 1)𝑣(𝑚− 1)−
𝑛∑︁

𝑥=𝑚

𝑈(𝑥− 1)(𝑣(𝑥)− 𝑣(𝑥− 1)).

If 0 ≤ 𝑎 < 𝑏 and 𝑣 has continuous derivative on 𝑎 < 𝑥 < 𝑏, then∑︁
𝑎≤𝑥≤𝑏

𝑢(𝑥)𝑣(𝑥) = 𝑈(𝑏)𝑣(𝑏)− 𝑈(𝑎)𝑣(𝑎)−
∫︁ 𝑏

𝑎
𝑈(𝑥)𝑣′(𝑥).

Proof. We imitate the proof of integration by parts. For a function 𝑓 define the function

Δ−(𝑓) = 𝑓(𝑥)− 𝑓(𝑥− 1).

This is the discrete analogue of differentiation. It is the inverse of summation in the sense
that by telescoping,

𝑛∑︁
𝑥=𝑚

Δ−(𝑓) = 𝑓(𝑛)− 𝑓(𝑚− 1). (3.2)

Note that Δ−(𝑈) = 𝑢. We have the “product rule”

Δ−(𝑢𝑣) = 𝑢(𝑥)𝑣(𝑥)− 𝑢(𝑥− 1)𝑣(𝑥− 1)

= (𝑢(𝑥)− 𝑢(𝑥− 1))𝑣(𝑥) + 𝑢(𝑥− 1)(𝑣(𝑥)− 𝑣(𝑥− 1))

= Δ−(𝑢)𝑣 + 𝐸−𝑢Δ−(𝑣)

where 𝐸− is the left shift operator (𝐸−𝑓)(𝑥) = 𝑓(𝑥− 1). Replacing 𝑢 by 𝑈 and rearranging
gives

𝑢𝑣 = Δ−(𝑈𝑣)− 𝐸−𝑈Δ−(𝑣).

14
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Summing over 𝑚 ≤ 𝑥 ≤ 𝑛 and telescoping using (3.2) gives

𝑛∑︁
𝑥=𝑚

𝑢(𝑥)𝑣(𝑥) = 𝑈(𝑛)𝑣(𝑛)− 𝑈(𝑚− 1)𝑣(𝑚− 1)−
𝑛∑︁

𝑥=𝑚

𝑈(𝑥− 1)(𝑣(𝑥)− 𝑣(𝑥− 1)).

When 𝑣 has continuous derivative, noting 𝑈(𝑡) = 𝑈(⌊𝑡⌋), we have

𝑛∑︁
𝑥=𝑚

𝑈(𝑥− 1)(𝑣(𝑥)− 𝑣(𝑥− 1)) =
𝑛∑︁

𝑥=𝑚

∫︁ 𝑥

𝑥−1
𝑈(𝑡)𝑣′(𝑡) 𝑑𝑡

=
∫︁ 𝑛

𝑚−1
𝑈(𝑡)𝑣′(𝑡) 𝑑𝑡.

For general 𝑎, 𝑏, since 𝑈 is constant on (⌊𝑏⌋ , 𝑏) and (𝑎, ⌊𝑎⌋+ 1),∑︁
𝑎<𝑥≤𝑏

𝑢(𝑥)𝑣(𝑥) =
⌊𝑏⌋∑︁

𝑥=⌊𝑎⌋+1

𝑢(𝑥)𝑣(𝑥)

= 𝑈(⌊𝑏⌋)𝑣(⌊𝑏⌋)− 𝑈(⌊𝑎⌋)𝑣(⌊𝑎⌋) +
∫︁ ⌊𝑏⌋

⌊𝑎⌋
𝑈(𝑡)𝑣′(𝑡) 𝑑𝑡

= 𝑈(𝑏)𝑣(𝑏)− 𝑈(𝑎)𝑣(𝑎) +
∫︁ 𝑏

𝑎
𝑈(𝑡)𝑣′(𝑡) 𝑑𝑡

Interesting: (Putnam ??) Suppose that 𝑎 is a real number such that all numbers
1𝑎, 2𝑎, 3𝑎, . . . are integers. Prove that 𝑎 is also an integer.

15
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Chapter 4

Multiplication modulo 𝑛

1 Introduction

In Chapter 2 you learned how modular arithmetic works: you fix a number 𝑛, and then
compute by taking all integers modulo 𝑛, that is, you throw away all information except the
remainder when dividing by 𝑛. This system obeys all the “rules” we expect it to, and is
especially well-behaved when 𝑛 is a prime.

There is a lot of similarity between addition and multiplication modulo 𝑛, but it seems
multiplication is less “transparent.” Compare the following.

1. We saw how we could use modular arithmetic to solve problems such as: what is the
last digit of 7 · 2011? What is the last digit of 72011?

You probably see immediately the first answer is 7. To solve the second problem we
looked for a repeating pattern in the powers of 7 modulo 10: 1, 7, 9, 3, . . . We have
74 ≡ 1 (mod 10), so the “cycle” repeats after every 4 times, and 72011 ≡ 73 ≡ 3
(mod 10).

Making an analogy, note that if look at the sequence 7, 2 · 7, 3 · 7, . . . we get back to 0
after 10 steps, while in the sequence 7, 72, 73 we get back to 1 after 4 steps. It’s easy to
understand how the cycle repeats when we add repeatedly (i.e., multiply), but what
about when we multiply repeatedly (i.e., take powers)?

In general, given 𝑎 (mod 𝑛), how many times do we have to multiply 𝑎 by itself to get
back to 1 (what is the “order” of 𝑎 modulo 𝑛)? How does this depend on 𝑎 and 𝑛? Is
there some general rule that determines the order?

2. We have the notion of inverses. For instance, what is the additive inverse of 7 modulo
19, i.e., what do we add to 7 to get 0 modulo 19? It is simply −7 ≡ 12 (mod 19),
because

7 + 12 ≡ 0 (mod 19).

What is the multiplicative inverse of 7 modulo 19, i.e., what do we multiply 7 by to
get 1 modulo 19? You might have to think a bit more on this one—it is 11 (mod 19),

17
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because

7 · 11 = 77 ≡ 1 (mod 19).

In this chapter you will learn to completely determine the multiplicative structure of
the integers modulo 𝑛. In Section 2, we will make formalize the notion of the order of an
element: how many times we have to multiply a number to get back to 1 modulo 𝑛. We
will develop a toolbox of basic theorems: Euler’s Theorem and Fermat’s Little Theorem in
Section 3 and Wilson’s Theorem in Section 8. Euler’s Theorem will give us 𝑚 such that
𝑎𝑚 ≡ 1 (mod 𝑛).

We will use these theorems to solve a variety of problems in Section 4. For instance
(keepin in the theme of repeating patterns) we will explain why the period of the repeating
decimals 1

17
and 1

19
are 16 and 18:

1

17
= . 0588235294117647⏟  ⏞  

16

1

19
= . 052631578947368421⏟  ⏞  

18

.

At this point we find that a lot of the stuff we’ve been doing works in a much more abstract
setting, that of groups. In Section 5 we recast all the theorems in the language of group
theory, and in this way give a way think about the similarities behind addition and multi-
plication modulo 𝑛. With the language of group theory, we give a complete characterization
of the multiplicative structure of Z/𝑛Z in Sections 6 and 7.

Finally we give two applications, to primality testing (Section ??) and basic cryptography
(Section ??).

2 Order of an element

sec:order

We’ve seen that the values taken by a powers of an element modulo 𝑛 form a repeating
pattern, and under certain relative primality conditions, start each cycle at 1. For example,

30 ≡ 1 (mod 5)

31 ≡ 3 (mod 5)

32 ≡ 4 (mod 5)

33 ≡ 2 (mod 5)

34 ≡ 1 (mod 5)

35 ≡ 3 (mod 5),

so the powers of 3 cycle 1, 3, 4, 2, . . . modulo 5. In particular, we get back to 1 in 4 steps:
34 ≡ 1 (mod 5). Hence we call 4 the order of 3:

18
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Definition 4.2.1: Let 𝑛 > 1 and let 𝑎 be an integer relatively prime to 𝑎. The order of 𝑎
modulo 𝑛 is the smallest positive integer 𝑚 such that 𝑎𝑚 ≡ 1 (mod 𝑛). In symbols,

ord𝑛(𝑎) = min {𝑚 ∈ N : 𝑎𝑚 ≡ 1 (mod 𝑛)} .

For example,
ord5(3) = 4.

Note that we place the modulus as an
Note that the order is well-defined for all 𝑎 relatively prime to 𝑛: Indeed, there are only a

finite number of residues modulo 𝑛, so two powers of 𝑎 must be equal modulo 𝑛. So suppose
0 < 𝑚1 < 𝑚2 and

𝑎𝑚1 ≡ 𝑎𝑚2 (mod 𝑛).

Since 𝑎 is relatively prime to 𝑛, we can take inverses to find 𝑎𝑚2−𝑚1 ≡ 1 (mod 𝑛).
Our first result is that the set of all positive integers 𝑘 for which 𝑎𝑘 ≡ 1 (mod 𝑚) is

completely determined by its smallest element, i.e. the order. In the case above, the set of
all 𝑚 such that 3𝑚 ≡ 1 (mod 5) is exactly the set of multiples of 4.

Proposition 4.2.2: Let 𝑛 > 1 and 𝑎 ⊥ 𝑛.

1. The set of 𝑚 such that 𝑎𝑚 ≡ 1 (mod 𝑛) is exactly the set of multiples of ord𝑛(𝑎). In
other words,

𝑎𝑚 ≡ 1 (mod 𝑛) ⇐⇒ ord𝑛(𝑎) | 𝑚.

2. The numbers
1, 𝑎, . . . , 𝑎ord𝑛(𝑎)−1

are all distinct, and every power of 𝑎 is congruent to one of these.

Proof. Let 𝑑 = ord𝑛(𝑎).

1. The reverse direction is easy: If 𝑑 | 𝑚, then write 𝑚 = 𝑑𝑘. We have

𝑎𝑚 ≡ (𝑎𝑑)𝑘 ≡ 1𝑘 ≡ 1 (mod 𝑛).

Conversely, suppose that 𝑎𝑚 ≡ 1 (mod 𝑛). We use the same technique as [gcd?],
noting that we picked ord𝑛(𝑎) to be the least positive integer with this property. Using
division with remainder, write

𝑚 = 𝑑𝑘 + 𝑟, 0 ≤ 𝑟 < 𝑚.

We have
𝑎𝑟 = 𝑎𝑚−𝑑𝑘 = 𝑎𝑚𝑎−𝑑𝑘 ≡ 𝑎𝑚 ≡ 1 (mod 𝑛).

Since 𝑑 is the least positive integer for which 𝑎𝑑 ≡ 1 (mod 𝑛), and 0 ≤ 𝑟 < 𝑑, we must
have 𝑟 = 0. Hence 𝑑 | 𝑚.1

1For another way to phrase this proof, see Problem 8.1.
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2. For the second part, writing 𝑚 = 𝑑𝑘 + 𝑟 as above we note that

𝑎𝑑𝑘+𝑟 = (𝑎𝑑)𝑘𝑎𝑟 ≡ 𝑎𝑟 (mod 𝑛).

If 0 ≤ 𝑟1 < 𝑟2 < ord𝑛(𝑎), then 0 < 𝑟2 − 𝑟1 < ord𝑛(𝑎) implies 𝑎𝑟2−𝑟1 ̸≡ 1 (mod 𝑛) and
hence 𝑎𝑟1 ̸≡ 𝑎𝑟2 (mod 𝑛).

Now we have an abstract description of the numbers 𝑚 such that 𝑎𝑚 ≡ 1 (mod 𝑛). We
know there is some positive integer with this property, and that all others are multiples of
that number. But we would like something more concrete: is there some 𝑚 depending on 𝑛,
so that we will always have 𝑎𝑚 ≡ 1 (mod 𝑛)? The next section will answer that question.

3 Euler’s theorem and Fermat’s little theorem

sec:euler-thm

Theorem 4.3.1 (Euler’s theorem): euler-theorem Let 𝑛 > 1 be an integer. For any integer 𝑎
relatively prime to 𝑛, ord𝑛(𝑎) | 𝜙(𝑛) and

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

Corollary 4.3.2 (Fermat’s little theorem): flt Let 𝑝 be a prime. For any integer 𝑎,

𝑎𝑝 ≡ 𝑎 (mod 𝑝).

If 𝑎 ̸≡ 0 (mod 𝑝), then
𝑎𝑝−1 ≡ 1 (mod 𝑝).

Let 𝐺 be the set of invertible residues modulo 𝑛. We present two proofs.

Proof 1. Let 𝑚𝑎 denote the function 𝐺→ 𝐺 defined by

𝑚𝑎(𝑔) = 𝑎𝑔.

Note that this is an invertible function as its inverse is

𝑚−1
𝑎 (𝑔) = 𝑎−1𝑔.

Hence it is a bijection 𝐺→ 𝐺. This means that the elements 𝑎𝑔, 𝑔 ∈ 𝐺 are an reordering of
the elements of 𝐺. Hence ∏︁

𝑔∈𝐺
𝑎𝑔 ≡

∏︁
𝑔∈𝐺

𝑔 (mod 𝑛).

Dividing both sides by
∏︀
𝑔∈𝐺 𝑔 and noting |𝐺| = 𝜙(𝑛) gives

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).
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Proof 2. The main idea is that there are 𝜙(𝑛) possible invertible residues modulo 𝑛, and
so the number of elements in the set 𝐻 := {𝑎𝑚 mod 𝑛 : 𝑚 ∈ N} must be a divisor of 𝜙(𝑛).
To show this we show that “translates” of this set cover all 𝜙(𝑛) nonzero residues without
overlap. The fact that 𝐻 has nice multiplicative structure will be essential.

First note the following facts.

1. 1 ∈ 𝐻. (This is because 1 = 𝑎0.)

2. If ℎ ∈ 𝐻 then ℎ−1 ∈ 𝐻. (If ℎ ≡ 𝑎𝑚 (mod 𝑛) then ℎ−1 ≡ 𝑎−𝑚 (mod 𝑛).)

3. If ℎ1, ℎ2 ∈ 𝐻 then ℎ1ℎ2 ∈ 𝐻. (If ℎ𝑗 ≡ 𝑎𝑚𝑗 (mod 𝑛) then ℎ1ℎ2 ≡ 𝑎𝑚1+𝑚2 (mod 𝑛).)

Given two nonzero residues 𝑏, 𝑐 modulo 𝑝, we write 𝑏 ∼ 𝑐 if 𝑏
𝑐
∈ 𝐻. We claim that ∼ is an

equivalence relation. We check the following.

1. 𝑏 ∼ 𝑏: This holds by item 1 above, since 𝑏
𝑏
= 1.

2. If 𝑏 ∼ 𝑐 then 𝑐 ∼ 𝑏: This holds by item 2 above, since 𝑏
𝑐
= 𝑐

𝑏
.

3. If 𝑏 ∼ 𝑐 and 𝑐 ∼ 𝑑 then 𝑏 ∼ 𝑑: This holds by item 3 above since 𝑏
𝑑
= 𝑏

𝑐
· 𝑐
𝑑
.

Thus 𝐺 is split into equivalence classes. If 𝐶 is an equivalence class and 𝑐 is any element in
𝐶, then we have

𝐶 = {𝑑 : 𝑑 ∼ 𝑐} =
⌉︀
𝑑 :

𝑑

𝑐
∈ 𝐻

«
= {𝑐ℎ : ℎ ∈ 𝐻} .

Since multiplication by 𝑐 is invertible, 𝐶 has |𝐻| elements. (It is the RHS that suggests the
sets 𝐶 are “translates” of 𝐻.)

Thus, letting [𝐺 : 𝐻] denote the number of equivalence classes, we have

|𝐺| = [𝐺 : 𝐻]|𝐻|.
Hence |𝐻| divides |𝐺| = 𝜙(𝑛). But by Proposition 4.2.2(2), |𝐻| = ord𝑛(𝑎). Since ord𝑛(𝑎) |
𝜙(𝑛), by Proposition 4.2.2(1), we get

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

Although the first proof is shorter, the first reveals hints at some important ideas with
broad generalizations, which we will discuss in Section 5.

Proof of Corollary 4.3.2. Since 𝜙(𝑝) = 𝑝−1 and the invertible residues modulo 𝑝 are exactly
the nonzero residues, we get

𝑎𝑝−1 ≡ 1 (mod 𝑝)

for 𝑎 ̸≡ 0 (mod 𝑝). Multiplying by 𝑎 gives the first statement for 𝑎 ̸≡ 0 (mod 𝑝). If 𝑎 ≡ 0
(mod 𝑝) the first statement obviously holds.

Remark 4.3.3: The converse of Fermat’s little theorem is not true: if 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for
all 𝑎, then 𝑝 is not necessarily prime. For example, 211·31 ≡ 2 mod 11 · 31, but 11 · 31 is not
a prime. Indeed, there are certain numbers 𝑛 such that for all integers 𝑎, we have 𝑎𝑛 ≡ 𝑎
mod 𝑛 with 𝑛 not a prime. Such numbers are called Carmichael numbers, and the first few
are given by 𝑛 = 561, 1105, 1729, 2465.
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4 Examples

sec:mod-ex

4.1 Using Euler’s theorem

Without further ado, we give some applications of Fermat’s little theorem and Euler’s theo-
rem. The first, most popular application is in finding large powers modulo a certain number.
While before, we had to evaluate 𝑎, 𝑎2, 𝑎3, . . . until we got back to 1, our work is now shorter.

Example 4.4.1: Find 31006 (mod 2012).
The prime factorization of 2012 is 22 · 503, so 𝜙(2012) = 2 · 502 = 1004. As 3 is relatively

prime to 2012, by Euler’s Theorem

31006 ≡ 32 ≡ 9 (mod 2012).

“Find big power modulo 𝑛 problem”
“Tower of exponents problem”
Remark about “thinking backwards”

Example 4.4.2: Show that for all primes 𝑝 ≥ 7, the number 11 · · · 1⏟  ⏞  
𝑝−1

is divisible by 𝑝.

Solution. The key to this problem is writing an algebraic expression for 11 · · · 1⏟  ⏞  
𝑝−1

. By the

geometric series formula,

11 · · · 1⏟  ⏞  
𝑝−1

= 1 + 10 + · · ·+ 10𝑝−2 =
10𝑝−1 − 1

9
.

Because 𝑝 - 10, by Fermat’s little theorem 4.3.2 we have

10𝑝−1 ≡ 1 mod 𝑝 =⇒ 𝑝 | 10𝑝−1 − 1.

Because gcd (9, 𝑝) = 1, we have (10𝑝−1 − 1)/9 ≡ 0 mod 𝑝 as desired.

4.2 Computing the order

The following proposition gives practical ways to compute the order of an element.

Proposition 4.4.3: Let 𝑛 > 1, let 𝑎 be an integer relatively prime to 𝑛, and set 𝑑 = ord𝑛(𝑎).

1. (Power of the base)

ord𝑛(𝑎
𝑘) =

𝑑

gcd (𝑑, 𝑘)
.
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2. (Multiplying the base) Let 𝑑 = ord𝑛(𝑎), 𝑐 = ord𝑛(𝑏). If gcd (𝑑, 𝑐) = 1, then ord𝑛(𝑎𝑏) =
𝑑𝑐.

3. (Multiplying the modulus) Let the prime factorization of 𝑛 be 𝑛 = 𝑝𝛼1
1 𝑝

𝛼2
2 · · · 𝑝𝛼𝑘

𝑘 . Let
𝑑𝑖 = ord𝑝𝛼𝑖

𝑖
(𝑎). Then

𝑑 = lcm(𝑑1, 𝑑2, . . . , 𝑑𝑘).

Warning: It is not necessarily true that ord𝑛(𝑎𝑏) = lcm(ord𝑛(𝑎), ord𝑛(𝑏)).

Proof. 1. Set 𝑚 = gcd (𝑑, 𝑘). Write 𝑑 = 𝑚𝑑1, 𝑘 = 𝑚𝑘1, where gcd (𝑑1, 𝑘1) = 1. Set
𝑡 = ord𝑛(𝑎

𝑘). Then we have

(𝑎𝑘)𝑑1 = 𝑎𝑚𝑘1𝑑1 = (𝑎𝑑)𝑘1 ≡ 1 mod 𝑛.

Hence 𝑡 ≤ 𝑑1. On the other hand, 𝑎𝑘𝑡 = (𝑎𝑘)𝑡 ≡ 1 mod 𝑛. Then we have 𝑑 | 𝑘𝑡, hence
𝑑1 | 𝑘1𝑡. As 𝑑1, 𝑘1 are relatively prime, we have 𝑑1 | 𝑡, hence 𝑑1 ≤ 𝑡. It follows that
𝑡 = 𝑑1 as desired.

2. Set 𝑒 = ord𝑛(𝑎𝑏). Then we have (𝑎𝑏)𝑒 ≡ 1 mod 𝑛. Hence (𝑎𝑐𝑒)(𝑏𝑐𝑒) = 𝑎𝑐𝑒(𝑏𝑐)𝑒 ≡
𝑎𝑐𝑒 ≡ 1 mod 𝑛. Hence 𝑑 | 𝑐𝑒. As gcd (𝑑, 𝑐) = 1, we have 𝑑 | 𝑒. Analogously, we have
(𝑎𝑑𝑒)(𝑏𝑑𝑒) = (𝑎𝑑)𝑒𝑏𝑑𝑒 ≡ 𝑏𝑑𝑒 ≡ 1 mod 𝑛. Hence 𝑐 | 𝑑𝑒, so 𝑐 | 𝑒. As gcd (𝑑, 𝑐) = 1, we
have 𝑑𝑐 | 𝑒. However, we have (𝑎𝑏)𝑑𝑐 = (𝑎𝑑)𝑐(𝑏𝑐)𝑒 ≡ 1 · 1 = 1 mod 𝑛. Hence 𝑑𝑐 = 𝑒 as
desired.

3. Set 𝑒 = ord𝑛(𝑎𝑏). Then we have (𝑎𝑏)𝑒 ≡ 1 mod 𝑛. Hence (𝑎𝑐𝑒)(𝑏𝑐𝑒) = 𝑎𝑐𝑒(𝑏𝑐)𝑒 ≡
𝑎𝑐𝑒 ≡ 1 mod 𝑛. Hence 𝑑 | 𝑐𝑒. As gcd (𝑑, 𝑐) = 1, we have 𝑑 | 𝑒. Analogously, we have
(𝑎𝑑𝑒)(𝑏𝑑𝑒) = (𝑎𝑑)𝑒𝑏𝑑𝑒 ≡ 𝑏𝑑𝑒 ≡ 1 mod 𝑛. Hence 𝑐 | 𝑑𝑒, so 𝑐 | 𝑒. As gcd (𝑑, 𝑐) = 1, we
have 𝑑𝑐 | 𝑒. However, we have (𝑎𝑏)𝑑𝑐 = (𝑎𝑑)𝑐(𝑏𝑐)𝑒 ≡ 1 · 1 = 1 mod 𝑛. Hence 𝑑𝑐 = 𝑒 as
desired.

Problem 4.4.4: Let 𝑎 > 1 and 𝑛 be positive integers. Show that 𝑛 divides 𝜙(𝑎𝑛 − 1).

Proof. We have that the order of 𝑎 modulo 𝑎𝑛 − 1 is 𝑛. But we have ord𝑎𝑛−1(𝑎) | 𝜙(𝑎𝑛 − 1),
hence 𝑛 | 𝜙(𝑎𝑛 − 1) as desired.

Note that trying to use the formula for 𝜙(𝑚) in terms of the prime factorization of 𝑚
doesn’t work for this problem.

Problem 4.4.5: Determine all positive integers 𝑛 such that 𝑛 divides 2𝑛 − 1.

Proof. We shall show that 𝑛 = 1 is the only solution. Suppose that 𝑛 | 2𝑛 − 1 for 𝑛 > 1.
Then 𝑛 must be odd. Let 𝑝 be the least prime divisor of 𝑛; then 2𝑛 ≡ 1 mod 𝑝. Write
𝑑 = ord𝑝(2). Then 𝑑 > 1 and 𝑑 | 𝑛. Hence 𝑝 ≤ 𝑑 since 𝑝 is the least prime divisor (and hence
least divisor greater than 1) of 𝑛. But by Fermat’s little theorem, 2𝑝−1 ≡ 1 mod 𝑝. Hence
𝑑 | 𝑝− 1 - that is, 𝑑 ≤ 𝑝− 1. Hence 𝑝 ≤ 𝑝− 1. Contradiction; hence no such 𝑛 exist.
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Problem 4.4.6: Let 𝑎 be a positive integer, and let 𝑝, 𝑞 > 2 be primes with 𝑎𝑝 ≡ 1 mod 𝑞.
Prove that either 𝑞 | 𝑎− 1 or 𝑞 = 1 + 2𝑘𝑝 for some positive integer 𝑘.

Proof. Obviously we have gcd (𝑎, 𝑞) = 1. Write 𝑑 = ord𝑞(𝑎). Then we have 𝑑 | 𝑝, so 𝑑 = 1
or 𝑑 = 𝑝. If 𝑑 = 1, then 𝑎 ≡ 1 mod 𝑞, so 𝑞 | 𝑎− 1. If 𝑑 = 𝑝, then we have 𝑝 | 𝜙(𝑞) = 𝑞 − 1,
so 𝑞 = 1 + 𝑛𝑝 for some integer 𝑛. But as 𝑞 > 2 is a prime, 𝑞 must be odd. As 𝑝 is odd, we
must have 𝑛 even for 𝑞 to be odd. Writing 𝑛 = 2𝑘, we find 𝑞 = 1 + 2𝑘𝑝 as desired.

Problem 4.4.7: Let 𝑝, 𝑞 be primes with 𝑎𝑝−1 + 𝑎𝑝−2 + · · · + 𝑎 + 1 ≡ 0 mod 𝑞. Prove that
either 𝑞 = 𝑝 or 𝑞 ≡ 1 mod 𝑝.

Proof. If 𝑝 = 2 then either 𝑞 = 2 = 𝑝 or 𝑞 is odd and 𝑞 ≡ 1 mod 𝑝. The case 𝑝 > 2, 𝑞 = 2
is impossible since the left-hand expression is odd. Now we have the case where 𝑝 and 𝑞
are odd. Then we have 𝑎𝑝 − 1 = (𝑎 − 1)(𝑎𝑝−1 + 𝑎𝑝−2 + · · · + 𝑎 + 1), hence 𝑎𝑝 ≡ 1 mod 𝑞.
Thus either 𝑞 ≡ 1 mod 𝑝 or 𝑞 | 𝑎 − 1. If 𝑞 | 𝑎 − 1, then we have 𝑎 ≡ 1 mod 𝑞, hence
1𝑝−1 + 1𝑝−2 + · · ·+ 1 + 1 = 𝑝 ≡ 0 mod 𝑞, from which it follows that 𝑝 = 𝑞.

Problem 4.4.8: Let 𝑛 be an odd positive integer. Prove that if 𝑛 | 3𝑛 + 1 then 𝑛 = 1.

Proof. Obviously 𝑛 is not divisible by 3. Suppose that 𝑛 > 1 and let 𝑝 be the least prime
divisor of 𝑛; then 𝑝 ≥ 5. Write 𝑑 = ord𝑝(3). As 3𝑛 ≡ −1 mod 𝑛, we have 32𝑛 ≡ 1 mod 𝑝,
so 𝑑 | 2𝑛. As 3𝑝−1 ≡ 1 mod 𝑝, we have also 𝑑 | 𝑝 − 1. If 𝑑 is odd, then we have 𝑑 | 𝑛. As
𝑝 is the least divisor of 𝑛 greater than 1, we must have thus 𝑑 = 1. Hence 3 ≡ 1 mod 𝑝,
implying 𝑝 = 2. But 𝑝 ≥ 5; contradiction. Hence 𝑑 must be even. Write 𝑑 = 2𝑘; then 𝑘 | 𝑛,
and if 𝑘 > 1 then we have 1 < 𝑘 < 𝑑 < 𝑝, contradicting the fact that 𝑝 is the minimal
divisor of 𝑛 greater than 1. Hence 𝑑 = 2 and 32 ≡ 1 mod 𝑝, so 𝑝 = 2. Contradiction; hence
𝑛 = 1.

Problem 4.4.9: Let gcd (𝑎, 𝑏) = 1 with 𝑏 odd. Show that gcd (𝑛𝑎 + 1, 𝑛𝑏 − 1) ≤ 2 for any
natural number 𝑛.

Proof. Write 𝑙 = gcd (𝑛𝑎 + 1, 𝑛𝑏 − 1), and suppose that 𝑙 > 1. Write 𝑑 = ord𝑙(𝑛). Then we
have 𝑛𝑏 ≡ 1 mod 𝑙, so 𝑑 | 𝑏. Hence 𝑑 is odd. But then as 𝑛𝑎 ≡ −1 mod 𝑙, we have 𝑑 | 2𝑎.
Hence 𝑑 | 𝑎. If 𝑑 > 1 then we have 𝑑 | 𝑎, 𝑏, so gcd (𝑎, 𝑏) > 1. Contradiction; hence 𝑑 = 1.
Thus 𝑛𝑎 ≡ 1 mod 𝑙, hence 1 ≡ 1 mod 𝑙. Hence 𝑙 = 1 or 𝑙 = 2 as desired.

Problem 4.4.10 (IMO 1990/3): Determine all positive integers 𝑛 such that 𝑛2 divides
2𝑛 + 1.

Proof. Clearly 𝑛 = 1 is a solution. Suppose that 𝑛 > 1; then 𝑛 is odd. Let 𝑝 be the least
prime divisor of 𝑛, and write 𝑑 = ord𝑝(2). As 22𝑛 ≡ 1 mod 𝑝 we have 𝑑 | 2𝑛. As 2𝑝−1 ≡ 1
mod 𝑝 we have 𝑑 | 𝑝 − 1. If 𝑑 > 2, then let 𝑞 be a prime greater than 2 dividing 𝑑. Then
𝑞 | 2𝑛 and 𝑞 | 𝑝 − 1, contradicting the fact that 𝑝 is the minimal prime dividing 𝑛. But we
have 𝑑 > 1, hence 𝑑 = 2 so 𝑝 = 3.
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Write 𝑛 = 3𝑠𝑚, with 𝑠,𝑚 ≥ 1 and 3 - 𝑚. Suppose that 𝑠 > 1. Then we have

32𝑠 |
(︀
23

𝑠

+ 1
� (︀

23
𝑠(𝑚−1) − 23

𝑠(𝑚−2) + · − 23
𝑠

+ 1
�
.

But since 23
𝑠 ≡ −1 mod 3, we have 23

𝑠(𝑚−1)−23
𝑠(𝑚−2)+ ·−23

𝑠
+1 ≡ 1+1+ · · ·+1 = 𝑚 ̸≡ 0

mod 3. Hence 32𝑠 | 23𝑠 + 1.
We claim that for all 𝑠, we have 3𝑠+2 - 23𝑠 + 1. We may write

23
𝑠

+ 1 =

(︃
33

𝑠 −
(︃
3𝑠

1

)︃
33

𝑠−1 +

(︃
3𝑠

2

)︃
33

𝑠−2 − · · · −
(︃

3𝑠

3𝑠 − 2

)︃
32 +

(︃
3𝑠

3𝑠 − 1

)︃
31 − 1

)︃
+ 1.

But then we have 3𝑠+2 divides all terms in this expansion except
(︀

3𝑠

3𝑠−1

�
31; hence 3𝑠+2 - 23𝑠+1.

As we have 32𝑠 | 23𝑠 +1, we have thus 2𝑠 < 𝑠+2. Hence 𝑠 = 1, so 𝑛 = 3𝑚. Suppose that
𝑚 > 1. Let 𝑞 be the least prime divisor of 𝑚; then 𝑞 ≥ 5. Write 𝑒 = ord𝑞(2); then as we
have 22𝑛 ≡ 1 mod 𝑞, we have 𝑒 | 2𝑛 = 6𝑚. As 2𝑞−1 ≡ 1 mod 𝑞, we have also that 𝑙 | 𝑞 − 1.
Hence we cannot have 𝑙 | 𝑛, as this would contradict the fact that 𝑞 is the smallest prime
divisor of 𝑛. Thus as 𝑞 ≥ 5 we have 𝑙 = 3 or 𝑙 = 6, meaning that 𝑞 = 7. But in this case
we have 7 | 2𝑛 + 1; however, as 𝑛 = 3𝑚, we have 2𝑛 + 1 = (23)𝑚 + 1 ≡ 1𝑚 + 1 = 2 mod 7.
Contradiction; hence 𝑚 = 1, so 𝑛 = 3. Thus 𝑛 = 1, 3 are our only solutions.

Example 4.4.11: Let 𝑝, 𝑞, 𝑟 be distinct primes such that

𝑝𝑞 | 𝑟𝑝 + 𝑟𝑞.

Prove that either 𝑝 or 𝑞 equals 2.

Solution Suppose the relation holds but 𝑝 ̸= 2, 𝑞 ̸= 2. By Fermat’s Little Theorem,
𝑟𝑝 ≡ 𝑟 (mod 𝑝) and 𝑟𝑞 ≡ 𝑟 (mod 𝑞). Then since 𝑟 is relatively prime to 𝑝, 𝑞,

𝑟𝑝 + 𝑟𝑞 ≡ 0 (mod 𝑝) =⇒
𝑟𝑞−1 ≡ −1 (mod 𝑝)

𝑟𝑝 + 𝑟𝑞 ≡ 0 (mod 𝑞) =⇒
𝑟𝑝−1 ≡ −1 (mod 𝑞)

Since −1 ̸≡ 1 (mod 𝑝, 𝑞), we get

ord𝑝(𝑟) - 𝑞 − 1, ord𝑞(𝑟) - 𝑝− 1. (4.1)

Since

𝑟2(𝑞−1) ≡ 1 (mod 𝑝)

𝑟2(𝑝−1) ≡ 1 (mod 𝑞),

we get
ord𝑝(𝑟) | 2(𝑞 − 1), ord𝑞(𝑟) | 2(𝑝− 1). (4.2)

25



Number Theory, S4.6

For an integer 𝑛 let 𝑣2(𝑛) denote the highest power of 2 dividing 𝑛. Let 𝑥 = 𝑣2(ord𝑝(𝑟)) and
𝑦 = 𝑣2(ord𝑞(𝑟)). From relations in (4.1) and (4.2),

𝑥 = 𝑣2(2(𝑞 − 1)) = 𝑣2(𝑞 − 1) + 1

𝑦 = 𝑣2(𝑝− 1) + 1. (4.3)

By Fermat’s Little Theorem, ord𝑝(𝑟) | 𝑝− 1 and ord𝑞(𝑟) | 𝑞 − 1. Hence

𝑥 ≤ 𝑣2(𝑝− 1)

𝑦 ≤ 𝑣2(𝑞 − 1) (4.4)

Putting (4.3) and (4.4) together, we get 𝑥 ≤ 𝑦 − 1, 𝑦 ≤ 𝑥− 1, contradiction.

5 Groups

For the moment, it is helpful to “forget” where our set comes from and just work from the
basic axioms that it satisfies.

Definition 4.5.1: A group is a set 𝐺 together with a binary operation ∘, satisfying the
following properties:

1. (Associative law) For any 𝑎, 𝑏, 𝑐 ∈ 𝐺,

(𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐).

2. (Identity) There exists an element id, called the identity, such that for all 𝑎,

id ∘ 𝑎 = 𝑎 ∘ id = 𝑎.

3. (Inverses) For any 𝑎 there exists an element 𝑎′, called the inverse of 𝑎, such that

𝑎 ∘ 𝑎′ = 𝑎′ ∘ 𝑎 = id.

𝐺 is called an abelian group if additionally it satisfies the following.

4. (Commutativity) For all 𝑎, 𝑏 ∈ 𝐺, 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎.

We will be dealing exclusively with abelian groups.

Define order, exponent. Largest order IS the exponent (for abelian groups)
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6 Primitive roots

We now know that 𝑎𝜙(𝑛) ≡ 1 (mod 𝑛) for all 𝑎 relatively prime to 𝑛, and that ord𝑛(𝑎) | 𝜙(𝑛).
We can ask, does there exist 𝑎 for which ord𝑛(𝑎) is exactly 𝑛?

Equivalently, by the second part of Proposition 4.2.2, since there are 𝜙(𝑛) possible in-
vertible residues modulo 𝑛, this says that the powers of 𝑎 achieve every possible invertible
residue modulo 𝑛.

Definition 4.6.1: A primitive root modulo 𝑛 is an integer 𝑎 such that

ord𝑛(𝑎) = 𝜙(𝑛).

For example, 3 is a primitive root modulo 5, as ord5(3) = 4.

Theorem 4.6.2: Primitive roots exist modulo 𝑛 if and only if 𝑛 = 2, 4, 𝑝𝑘, or 2𝑝𝑘 for 𝑝 an
odd prime.

Moreover, if 𝑔 is a primitive root modulo 𝑝2, then it is a primitive root modulo 𝑝𝑘 and
2𝑝𝑘 for any 𝑘.

Proof. We will prove the “if” part of the theorem. The “only if” part will fall out from
Theorem 4.7.1 in the next section.

For 𝑛 = 2 or 4, we see that 1 and 3 are primitive roots, respectively.

Part 1: Now suppose 𝑛 = 𝑝 is prime. We note that by Fermat’s little theorem 4.3.2 that

𝑥𝑝−1 − 1 ≡ 0 (mod 𝑝)

for all nonzero residues 𝑥 modulo 𝑝.
Note that if there is are elements of order 𝑑1, . . . , 𝑑𝑘 then there is an element of order

lcm(𝑑1, . . . , 𝑑𝑘) (Proposition ??). Hence if 𝑑 is the maximal order of an element in (Z/𝑛Z)×,
then all orders must divide 𝑑. Hence

𝑥𝑑 − 1 ≡ 0 (mod 𝑝).

Now we need the following lemma.

Lemma 4.6.3: A nonzero polynomial 𝑓(𝑋) ∈ Z/𝑝Z[𝑋] of degree 𝑑 has at most 𝑑 roots.

Proof. We induct on the degree. If 𝑑 = 0 the assertion is clear. If 𝑓(𝑋) has a root, then

𝑓(𝑋) ≡ (𝑋 − 𝑎)𝑔(𝑋) (mod 𝑝)

for some 𝑔(𝑋) ∈ Z/𝑝Z[𝑋] of degree 𝑑 − 1. Now 𝑓(𝑋) ≡ 0 (mod 𝑝) implies that one of the
factors 𝑋 − 𝑎 or 𝑔(𝑋) is 0 modulo 𝑝: this is because there are no zerodivisors modulo 𝑝.
Hence the roots are 𝑎 and the roots of 𝑔(𝑋); the latter total at most 𝑑− 1 by the induction
hypothesis.
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Now 𝑥𝑑 − 1 = 0 can have at most 𝑑 roots modulo 𝑝, but we know all 𝑝 − 1 invertible
residues are roots. Hence 𝑑 ≥ 𝑝 − 1. But we know that the order of any element divides
𝑝− 1, so 𝑑 | 𝑝− 1 and we get 𝑑 = 𝑝− 1.

Part 2: Now we prove the theorem for 𝑝𝑘.
We first show that there is a primitive root modulo 𝑝2. Take a primitive root 𝑥 modulo

𝑝; suppose it is not primitive modulo 𝑝2. Now

𝑝− 1 = ord𝑝(𝑥) | ord𝑝2(𝑥) | 𝑝(𝑝− 1)

where the right-hand divisibility is strict. Hence ord𝑝(𝑥) = 𝑝− 1. Now note

ord𝑝2(𝑝+ 1) = 𝑝,

since (1 + 𝑝)𝑘 ≡ 1 + 𝑘𝑝 (mod 𝑝2) and this is 1 modulo 𝑝2 for the first time when 𝑘 = 𝑝. By
Proposition ??(2),

ord𝑝2(𝑥(𝑝+ 1)) = 𝑝(𝑝− 1) = 𝜙(𝑝2)

so 𝑥(𝑝+ 1) is a primitive root modulo 𝑝2.
Now suppose 𝑥 ∈ Z is a primitive root modulo 𝑝2. It attains every residue modulo 𝑝2 so a

fortiori it attains every residue modulo 𝑝, i.e. is primitive modulo 𝑝. We show by induction
that

𝑥𝑝
𝑘−1(𝑝−1) = 𝑝𝑘𝑗 + 1 (4.5)

for some 𝑗 not a multiple of 𝑝. For the case 𝑘 = 1, this is since 𝑥 is a primitive root modulo
𝑝, but 𝑥𝑝−1 ̸≡ 1 (mod 𝑝2). Suppose it proved for 𝑘; then

𝑥𝑝
𝑘(𝑝−1) = (𝑝𝑘𝑗 + 1)𝑝 = 1 +

(︃
𝑝

1

)︃
𝑝𝑘𝑗 +

(︃
𝑝

2

)︃
𝑝2𝑘𝑗 + · · · = 1 + 𝑝𝑘+1(𝑗 + 𝑝𝑗′)

for some 𝑗′. This shows the claim for 𝑘 + 1. Since

𝑝− 1 = ord𝑝(𝑥) | ord𝑝𝑘(𝑥) | 𝑝𝑘−1(𝑝− 1)

we know ord𝑝𝑘(𝑥) must be in the form 𝑝𝑗−1(𝑝−1) for some 𝑗. Equation (4.5) shows that 𝑗 = 𝑘.

Part 3: Note that 𝜙(2𝑝𝑘) = 𝜙(𝑝𝑘). Thus any primitive root modulo 𝑝𝑘 is automatically a
primitive root modulo 2𝑝𝑘.

Remark 4.6.4: Note the existence of a primitive root modulo 𝑛 is equivalent to the fact
that (Z/𝑛Z)× is generated by one element, i.e. is the cyclic group 𝐶𝜙(𝑛). Hence if there are
primitive roots modulo 𝑝𝑘 for all 𝑘, then the quotient maps

· · ·� (Z/𝑝3Z)× � (Z/𝑝2Z)× � (Z/𝑝Z)×

correspond to maps
· · ·� 𝐶𝑝2(𝑝−1) � 𝐶𝑝(𝑝−1) � 𝐶𝑝−1.

28



Number Theory, S4.8

Let 𝑔𝑘 be a generator for 𝐶𝑝𝑘−1(𝑝−1); the kernel of the map 𝐶𝑝𝑘−1(𝑝−1) � 𝐶𝑝𝑘−2(𝑝−1) must be

the cyclic group of order 𝑝 generated by 𝑔𝑝
𝑘−2(𝑝−1). Writing 𝑥 ≡ 𝑔𝑗𝑘 (mod 𝑝𝑘), the conditions

that 𝑥 mod 𝑝2 generates (Z/𝑝2Z)× translates into the fact that 𝑗 is relatively prime to both
𝑝(𝑝− 1), and hence that 𝑥 is a primitive root modulo 𝑝𝑘.

This rationalizes the last statement of the theorem, and suggests that it should be used
to prove the existence of primitive roots.

Remark 4.6.5: The proof of the first part can be generalized to the fact that all finite fields
have a primitive root. See Proposition ??.11.1.1(2).

7 Multiplicative structure of Z/𝑛Z
sec:mult-structure

Theorem 4.7.1:

1. Suppose 𝑝 ̸= 2 is prime. Then

(Z/𝑝𝑛Z)× ∼= 𝐶𝑝𝑛−1(𝑝−1).

2. For the case 𝑝 = 2, for 𝑛 ≥ 2 we have

(Z/2𝑛Z)× ∼= 𝐶2 × 𝐶2𝑛−2 .

Moreover, (Z/2𝑛Z)× is generated by −1, which has order 2, and 3, which has order
2𝑛−2. The isomorphism is given by (−1)𝑎3𝑏 ← [ (𝑎, 𝑏).

3. In general,
(Z/𝑝𝛼1

1 · · · 𝑝𝛼𝑛
𝑛 Z)× ∼=

∏︁
(Z/𝑝𝛼𝑘

𝑘 Z)×.

Proof. The first follows from existence of primitive roots modulo 𝑝𝑛.
For the second, we show by induction that for every 𝑘 ≥ 1,

32
𝑘

= 2𝑘+2𝑗 + 1

for some odd 𝑗. This is true for 𝑘 = 1 as 32 = 8 + 1. Suppose the above holds; then

32
𝑘+1

= (2𝑘+2𝑗 + 1)2 + 1 = 2𝑘+3(𝑗 + 2𝑘+1𝑗2) + 1,

showing the induction step.
Note ord2𝑛(3) must divide |(Z/2𝑛Z)×| = 2𝑛−1. The above then shows that ord2𝑛(3) =

2𝑛−2. Finally, note that for 𝑛 ≥ 3, no power of 3 is equal to −1 modulo 2𝑛: if so, then
by Theorem ??, 32

𝑛−3
= 3

1
2
ord2𝑛 (3) ≡ −1 (mod 2𝑛). However, 32

𝑛−3 ≡ 1 (mod 2𝑛−1) by the
above, so it is not congruent to −1 modulo 2𝑛.

The last follows from the Chinese Remainder Theorem.
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8 Wilson’s theorem

Wilson’s theorem is a multiplicative congruence of a slightly different kind.

Theorem 4.8.1 (Wilson’s theorem): A positive integer 𝑝 is prime if and only if

(𝑝− 1)! ≡ −1 (mod 𝑝).

Proof. We may easily verify that the theorem is true for 𝑝 = 2, 3, 4. Suppose that 𝑝 ≥ 5 is a
prime; consider the set 𝑆 = {2, 3, · · · , 𝑝 − 2}. We will show that for any 𝑠 ∈ 𝑆 there exists
some 𝑠′ ∈ 𝑆 with 𝑠𝑠′ ≡ 1 mod 𝑝. Indeed, given such 𝑠 we set 𝑠′ = 𝑠𝑝−2. Then we have that
𝑠𝑠′ = 𝑠𝑝−1 ≡ 1 mod 𝑝. Now if 𝑠′ /∈ 𝑆, then we have either 𝑠′ ≡ 1 mod 𝑝 or 𝑠′ ≡ −1 mod 𝑝.
If 𝑠′ ≡ 1 mod 𝑝, then 𝑠 ≡ 1 mod 𝑝. This is obviously impossible. Similarly, if 𝑠′ ≡ −1
mod 𝑝, then 𝑠 ≡ −1 mod 𝑝. This is similarly impossible; hence we have 𝑠′ ∈ 𝑆. Similarly,
if we have 𝑠, 𝑡 ∈ 𝑆 with 𝑠′ = 𝑡′, then 𝑠 = 𝑡. We may see that 𝑠𝑠′− 𝑡𝑡′ = (𝑠− 𝑡)𝑠′ ≡ 0 mod 𝑝.
As 𝑠′ ̸≡ 0 mod 𝑝, we must have 𝑝 | 𝑠− 𝑡. As |𝑠− 𝑡| < 𝑝, we thus have |𝑠− 𝑡| = 0 as desired.
Finally, 𝑠 ̸= 𝑠′; if 𝑠 = 𝑠′, then we have 𝑠𝑠′ = 𝑠2 ≡ 1 mod 𝑝, implying that 𝑝 | 𝑠 − 1 or
𝑝 | 𝑠+ 1. This cannot be true, as 𝑠 ̸≡ ±1 mod 𝑝; it follows that 𝑠 ̸= 𝑠′.

Now we are ready to prove Wilson’s theorem. As 𝑝 is odd, and as |𝑆| = 𝑝− 3, there are
an even number of elements in 𝑆. We pair these elements up into disjoint 2-element sets
{𝑠1, 𝑠′1}, {𝑠2, 𝑠′2}, · · · , {𝑠(𝑝−3)/2, 𝑠

′
(𝑝−3)/2}. These sets must contain all elements of 𝑆 exactly

once. Furthermore, when we take the product 𝑠1𝑠
′
1𝑠2𝑠

′
2 · · · 𝑠(𝑝−3)/2𝑠

′
(𝑝−3)/2 we will obtain 1,

as the product of each pair is congruent to 1 modulo 𝑝. Hence we have

(𝑝− 1)! = 1 · 2 · · · 𝑝− 1 ≡ 1 · 𝑠1𝑠′1𝑠2𝑠′2 · · · 𝑠(𝑝−3)/2𝑠
′
(𝑝−3)/2 · 𝑝− 1 ≡ 1 · 1 · −1 = −1 mod 𝑝

exactly as desired.

Problem 4.8.2: Let 𝑝 be a prime of the form 4𝑘+3, and let 𝑎1, 𝑎2, · · · , 𝑎𝑝−1 be consecutive
positive integers. Prove that these numbers cannot be partitioned into two sets such that
the products of the elements of the two sets are equal.

Proof. Suppose for a contradiction that there do exist sets 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑚}, 𝑌 =
{𝑦1, 𝑦2, · · · , 𝑦𝑛} such that the product of the elements of 𝑋 (denoted 𝑃 (𝑋)) and the product
of the elements of 𝑌 (denoted 𝑃 (𝑌 )) are equal. If any of the 𝑎𝑖 are divisible by 𝑝, then
exactly one of the 𝑎𝑖 may be divisible by 𝑝. In this case we have 𝑝 dividing exactly one of
𝑃 (𝑋), 𝑃 (𝑌 ), so these products cannot be equal.

Now if 𝑝 - 𝑎𝑖 for 𝑖 = 1, 2, · · · , 𝑝− 1, then 𝑎𝑖 ≡ 𝑖 mod 𝑝. Hence

[𝑃 (𝑋)]2 = 𝑃 (𝑋)𝑃 (𝑌 ) = 𝑥1𝑥2 · · ·𝑥𝑚𝑦1𝑦2 · · · 𝑦𝑛 = 𝑎1𝑎2 · · · 𝑎𝑝−1 ≡ 1 · 2 · · · 𝑝− 1 mod 𝑝.

But from this we immediately have [𝑃 (𝑋)]2 ≡ (𝑝−1)! ≡ −1 mod 𝑝; hence we have [𝑃 (𝑋)]2+
1 ≡ 0 mod 𝑝, so 𝑝 | [𝑃 (𝑋)]2 + 12. As 𝑝 is of the form 4𝑘 + 3, we have thus 𝑝 | 𝑃 (𝑋) and
𝑝 | 1. Contradiction; hence these numbers cannot be so partitioned.
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Problem 4.8.3: Let 𝑝 be a prime. Prove that the congruence 𝑥2 ≡ −1 mod 𝑝 has a
solution if and only if 𝑝 = 2 or 𝑝 is of the form 4𝑘 + 1.

Proof. If 𝑝 = 2, the conclusion is clear. If 𝑝 is of the form 4𝑘 + 3 and there does exist such
an 𝑥, then we have 𝑝 | 𝑥2 + 1, so 𝑝 | 𝑥, 𝑝 | 1. Contradiction; hence there are no solutions for
𝑝 = 4𝑘 + 3. Now if 𝑝 = 4𝑘 + 1, then set 𝑈 = (2𝑘)!. We claim that 𝑈2 ≡ −1 mod 𝑝. We
write

𝑈2 = 1 · 2 · · · (2𝑘) · (2𝑘) · (2𝑘 − 1) · · · 1
≡ 1 · 2 · · · (2𝑘) · (𝑝− 2𝑘)(−1)(𝑝− (2𝑘 − 1))(−1) · · · (𝑝− 1)(−1) mod 𝑝

≡ 1 · 2 · · · (2𝑘) · (2𝑘 + 1) · (2𝑘 + 2) · · · (4𝑘) · (−1)2𝑘

≡ (𝑝− 1)! ≡ −1 mod 𝑝

Hence there does exist some 𝑥 = 𝑈 with 𝑥2 ≡ −1 mod 𝑝.

Problem 4.8.4: Determine all positive integers 𝑝,𝑚 such that

(𝑝− 1)! + 1 = 𝑝𝑚.

Proof. Note that if 𝑝 ≤ 5, then we have the solutions (𝑝,𝑚) = (2, 1), (3, 1), (5, 2). Now
suppose that 𝑝 > 5. Then Wilson’s theorem gives the result that 𝑝 must be a prime. We
have 2 < (𝑝 − 1)/2 < 𝑝 − 1, hence (𝑝 − 1)2 | (𝑝 − 1)!. Hence (𝑝 − 1)2 | 𝑝𝑚 − 1, so
𝑝− 1 | 𝑝𝑚−1 + 𝑝𝑚−2 + · · · + 𝑝 + 1. It follows from work in previous lectures that 𝑝− 1 | 𝑚,
hence 𝑚 ≥ 𝑝− 1. Hence

𝑝𝑚 ≥ 𝑝𝑝−1 > 2 · 2 · 3 · 4 · · · (𝑝− 2) · (𝑝− 1) = 2(𝑝− 1)! > (𝑝− 1)! + 1,

hence there are no solutions for 𝑝 > 5. Thus the solutions given above are the only such
𝑝,𝑚.

Problem 4.8.5: Let 𝑝 be an odd prime, and let𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑝−1}, 𝐵 = {𝑏1, 𝑏2, · · · , 𝑏𝑝−1}
be complete sets of nonzero residue classes modulo 𝑝 - that is, if for some 𝑛 we have 𝑝 - 𝑛,
then there exist 𝑖, 𝑗 with 𝑛 ≡ 𝑎𝑖 ≡ 𝑏𝑗. Show that the set {𝑎1𝑏1, · · · , 𝑎𝑝−1𝑏𝑝−1} is not a
complete set of nonzero residue classes.

Proof. We have

𝑎1𝑎2 · · · 𝑎𝑝−1 ≡ 1 · 2 · · · 𝑝− 1 = (𝑝− 1)! ≡ −1 mod 𝑝.

Similarly, 𝑏1𝑏2 · · · 𝑏𝑝−1 ≡ −1 mod 𝑝. Wilson’s theorem implies that if any set 𝑆 is a complete
set of nonzero residue classes, then the product of all of its elements must be congruent to
−1 modulo 𝑝. But we have

(𝑎1𝑏1)(𝑎2𝑏2) · · · (𝑎𝑝−1𝑏𝑝−1) = (𝑎1𝑎2 · · · 𝑎𝑝−1)(𝑏1𝑏2 · · · 𝑏𝑝−1) ≡ (−1) · (−1) = 1 mod 𝑝.

As 𝑝 > 2, we have 1 ̸≡ −1 mod 𝑝. Hence {𝑎1𝑏1, · · · , 𝑎𝑝−1𝑏𝑝−1} cannot be a complete set of
nonzero residue classes modulo 𝑝.
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9 Problems

Some challenging problems on order.
(ISL 2000/N4) Find all solutions to 𝑎𝑚 + 1 | (𝑎+ 1)𝑛.
(IMO 2000/5) Does there exist an integer 𝑛 with 2000 prime divisors such that 𝑛 | 2𝑛+1?

+variant with squarefree
(IMO 1999/4) Solve: 𝑝 prime, 𝑥 ≤ 2𝑝, 𝑥𝑝−1 | (𝑝− 1)𝑥 + 1.
(ISL 1997) Let 𝑏 > 1,𝑚 ̸= 𝑛. If 𝑏𝑚 − 1 and 𝑏𝑛 − 1 have the same prime divisors then

𝑏+ 1 is a power of 2. (In fact, stronger thing.)
(TST 2003/3) Find all ordered triples of primes (𝑝, 𝑞, 𝑟) such that 𝑝 | 𝑞𝑟 + 1, 𝑞 | 𝑟𝑝 + 1,

and 𝑟 | 𝑝𝑞 + 1.
(IMO 2003/6) Prove that for any prime 𝑝 there is a prime number 𝑞 that does not divide

any of the numbers 𝑛𝑝 − 𝑝 with 𝑛 ≥ 1.
(MOSP 2007/5.4) Given positive integers 𝑎 and 𝑐 and integer 𝑏, prove that there exists

a positive integer 𝑥 such that 𝑎𝑥 + 𝑥 ≡ 𝑏 (mod 𝑐).

1. Let 𝑝 be a prime number. Find all natural numbers 𝑛 such that 𝑝 divides 𝜙(𝑛) and

such that 𝑛 divides 𝑎
𝜙(𝑛)
𝑝 − 1 for all positive integers 𝑎 relatively prime to 𝑛.
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Chapter 5

Diophantine equations

Stuff I want to include in this chapter

1. linear Diophantine equations

2. quadratic Diophantine equations

(a) Pell

(b) root flipping IMO 89/6. TST 02/6. Find in explicit form all ordered pairs of
positive integers (𝑚,𝑛) such that 𝑚𝑛− 1 | 𝑚2 + 𝑛2.

(c) sum of squares

(d) sum of 4 squares

3. techniques:

(a) size comparison, analytical methods

(b) taking modulo. enumerating solutions

(c) factoring (SFFT)

(d) infinite descent

(e) Iurie’s “parameterization” trick. (IMO ??/6: Let 𝑎 > 𝑏 > 𝑐 > 𝑑 be positive
integers and suppose

𝑎𝑐+ 𝑏𝑑 = (𝑏+ 𝑑+ 𝑎− 𝑐)(𝑏+ 𝑑− 𝑎+ 𝑐).

Prove that 𝑎𝑏+ 𝑐𝑑 is not prime.

(f) Constructing solutions

(g) geometric methods (Minkowski)
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1 Linear Diophantine Equations

An equation of the form
𝑎1𝑥1 + · · ·+ 𝑎𝑛𝑥𝑛 = 𝑏, (5.1)

where 𝑎1, . . . , 𝑎𝑛, 𝑏 ∈ Z is called linear diophantine equation.

Theorem 5.1.1: The equation (13.11) is solvable if and only if gcd(𝑎1, . . . , 𝑎𝑛) | 𝑏.

Proof. Let 𝑑 = gcd(𝑎1, . . . , 𝑎𝑛). If 𝑑 - 𝑏 the equation is not solvable. If 𝑑 | 𝑏 we denote

𝑎′𝑖 =
𝑎𝑖

𝑑
, 𝑏′ =

𝑏

𝑑
. Then gcd(𝑎′1, . . . , 𝑎

′
𝑛) = 1 and the generalized Bézout Lemma says that

there exist 𝑥′𝑖 such that 𝑎′1𝑥
′
1 + · · · + 𝑎′𝑛𝑥

′
𝑛 = 1, which implies 𝑎1𝑥

′
1 + · · · + 𝑎𝑛𝑥

′
𝑛 = 𝑑. We

obtain 𝑎1(𝑏
′𝑥′1) + · · ·+ 𝑎𝑛(𝑏

′𝑥′𝑛) = 𝑏′𝑑 = 𝑏.

Corollary 5.1.2: Let 𝑎1, 𝑎2 be relatively prime integers. If (𝑥01, 𝑥
0
2) is a solution to the

equation
𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏,

then all its solutions are given by⎧⎨⎩𝑥1 = 𝑥01 + 𝑎2𝑡

𝑥2 = 𝑥02 − 𝑎1𝑡
, 𝑡 ∈ Z.

Problem 5.1.3: Solve the equation

15𝑥+ 84𝑦 = 39.

Proof. The equation is equivalent to 5𝑥 + 28𝑦 = 13. A solution is 𝑦 = 1, 𝑥 = −3. All
solutions are of the form 𝑥 = −3 + 28𝑡, 𝑦 = 1− 5𝑡, 𝑡 ∈ Z.

Problem 5.1.4: Solve the equation

3𝑥+ 4𝑦 + 5𝑧 = 6.

Proof. The equation can be written as 3𝑥 + 4𝑦 = 6− 5𝑧, 𝑠 ∈ Z. A solution of 3𝑥 + 4𝑦 = 1
is 𝑥 = −1, 𝑦 = 1. So a solution of 3𝑥 + 4𝑦 = 6 − 5𝑠 is 𝑥0 = 5𝑠 − 6, 𝑦0 = 6 − 5𝑠. Hence all
solutions are ⎧⎨⎩𝑥 = 5𝑠− 6 + 4𝑡

𝑦 = 6− 5𝑠− 3𝑡

For any positive integer 𝑎1, . . . , 𝑎𝑛 with gcd(𝑎1, . . . , 𝑎𝑛) = 1 denote 𝑔(𝑎1, . . . , 𝑎𝑛) to be
the greatest positive integer 𝑁 for which the equation

𝑎1𝑥1 + · · ·+ 𝑎𝑛𝑥𝑛 = 𝑁

is not solvable in nonnegative integers. The problem of determining 𝑔(𝑎1, . . . , 𝑎𝑛) is known
as the Frobenius coin problem.
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Problem 5.1.5 (Sylvester, 1884): Let 𝑎, 𝑏 ∈ N and gcd(𝑎, 𝑏) = 1. Then 𝑔(𝑎, 𝑏) = 𝑎𝑏−𝑎− 𝑏.

Proof. Suppose 𝑁 > 𝑎𝑏− 𝑎− 𝑏. The solutions to the equation 𝑎𝑥+ 𝑏𝑦 = 𝑁 are of the form
(𝑥, 𝑦) = (𝑥0 + 𝑏𝑡, 𝑦0 − 𝑎𝑡), 𝑡 ∈ Z. Let 𝑡 be an integer such that 0 ≤ 𝑦0 − 𝑎𝑡 ≤ 𝑎 − 1. Then
(𝑥0+ 𝑏𝑡)𝑎 = 𝑁 − (𝑦0−𝑎𝑡)𝑏 > 𝑎𝑏−𝑎− 𝑏− (𝑎−1)𝑏 = −𝑎. Hence 𝑥0+ 𝑏𝑡 > −1, i.e. 𝑥0+ 𝑏𝑡 ≥ 0
and the equation has a nonnegative solution. Thus 𝑔(𝑎, 𝑏) ≤ 𝑎𝑏− 𝑎− 𝑏.

Now we shall show that the equation

𝑎𝑥+ 𝑏𝑦 = 𝑎𝑏− 𝑎− 𝑏

is not solvable in nonnegative integers. Otherwise we have

𝑎𝑏 = 𝑎(𝑥+ 1) + 𝑏(𝑦 + 1).

Since gcd(𝑎, 𝑏) = 1, we get 𝑎 | 𝑦 + 1, 𝑏 | 𝑥 + 1, thus 𝑦 + 1 ≥ 𝑎, 𝑥 + 1 ≥ 𝑏. We obtain
𝑎𝑏 = 𝑎(𝑥+ 1) + 𝑏(𝑦 + 1) ≥ 2𝑎𝑏, a contradiction.

2 Pythagorean Triples

A triple (𝑥, 𝑦, 𝑧) of integers is called Pythagorean if

𝑥2 + 𝑦2 = 𝑧2. (5.2)

Theorem 5.2.1: Any solution in positive integers of (13.12) has the form

𝑥 = (𝑚2 − 𝑛2)𝑘, 𝑦 = 2𝑚𝑛𝑘, 𝑧 = (𝑚2 + 𝑛2)𝑘

𝑥 = 2𝑚𝑛𝑘, 𝑦 = (𝑚2 − 𝑛2)𝑘, 𝑧 = (𝑚2 + 𝑛2)𝑘,

where

1. gcd(𝑚,𝑛) = 1, gcd(𝑥, 𝑦) = 𝑘.

2. 𝑚,𝑛 are of different parity.

3. 𝑚 > 𝑛 > 0, 𝑘 > 0.

Proof. Let gcd(𝑥, 𝑦) = 𝑘. Then 𝑥 = 𝑘𝑎, 𝑦 = 𝑘𝑏, gcd(𝑎, 𝑏) = 1. Then 𝑘2(𝑎2 + 𝑏2) = 𝑧2. We
get 𝑘 | 𝑧 and set 𝑧 = 𝑘𝑐. We obtain

𝑎2 + 𝑏2 = 𝑐2.

Suppose that 𝑎 is an odd number. Then 𝑏 is even since otherwise 𝑐2 = 𝑎2 + 𝑏2 ≡ 2
(mod 4), a contradiction.

Thus 𝑐 is odd. We have
𝑏2 = (𝑐− 𝑎)(𝑐+ 𝑎),
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which is equivalent to �
𝑏

2

�2

=
𝑐− 𝑎
2

𝑐+ 𝑎

2
.

Note that gcd

(︃
𝑐− 𝑎
2

,
𝑐+ 𝑎

2

)︃
= 1. Otherwise there exists prime 𝑝 such that 𝑝 |

𝑐− 𝑎
2

,

𝑝 |
𝑐+ 𝑎

2
. We get 𝑝 |

𝑐− 𝑎
2
±
𝑐+ 𝑎

2
= 𝑐, 𝑎 which implies 𝑝 | 𝑏, a contradiction. Hence

𝑐− 𝑎
2

= 𝑛2,
𝑐+ 𝑎

2
= 𝑚2,

𝑏

2
= 𝑚𝑛

and we obtain

𝑐 = 𝑚2 + 𝑛2, 𝑎 = 𝑚2 − 𝑛2, 𝑏 = 2𝑚𝑛.

Problem 5.2.2: Solve in positive integers the equation

1

𝑥2
+

1

𝑦2
=

1

𝑧2
.

Proof. The equation is equivalent to

𝑥2 + 𝑦2 =
�𝑥𝑦
2

�2
.

We obtain that 𝑧 | 𝑥𝑦. Hence 𝑥2 + 𝑦2 = 𝑡2, 𝑡 =
𝑥𝑦

2
.

Let 𝑑 = gcd(𝑥, 𝑦, 𝑡). Therefore 𝑥 = 𝑎𝑑, 𝑦 = 𝑏𝑑, 𝑡 = 𝑐𝑑, gcd(𝑎, 𝑏, 𝑐) = 1. We get

𝑎2 + 𝑏2 = 𝑐2, 𝑧 =
𝑎𝑏𝑑

𝑐
.

Hence 𝑎, 𝑏, 𝑐 are pairwise relatively prime and we obtain that 𝑐 | 𝑑, which implies 𝑑 = 𝑘𝑐.
Thus

𝑥 = 𝑘𝑎𝑐, 𝑦 = 𝑘𝑏𝑐, 𝑡 = 𝑘𝑐2, 𝑧 = 𝑘𝑎𝑏.

We may assume that

𝑎 = 𝑚2 − 𝑛2, 𝑏 = 2𝑚𝑛, 𝑐 = 𝑚2 + 𝑛2

and we obtain

𝑥 = 𝑘(𝑚4 − 𝑛4), 𝑦 = 𝑘2𝑚𝑛(𝑚2 + 𝑛2), 𝑧 = 𝑘2𝑚𝑛(𝑚2 − 𝑛2).
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3 Size comparison and analytical methods

4 Reducing modulo 𝑛

5 Factoring

Proposition 5.5.1 (Simon’s favorite factoring trick, SFFT):

𝑥𝑦 + 𝑏𝑥+ 𝑎𝑦 + 𝑎𝑏 = (𝑥+ 𝑎)(𝑦 + 𝑏).

Example.

Example 5.5.2: Which numbers 𝑛 can be expressed as the difference of two squares?

Solution. We wish to solve
𝑥2 − 𝑦2 = 𝑛.

Factor this equation as
(𝑥+ 𝑦)(𝑥− 𝑦) = 𝑛.

Note that 𝑥+ 𝑦 and 𝑥− 𝑦 = (𝑥+ 𝑦)− 2𝑦 are of the same parity. If they are both odd, then
𝑛 is odd; if they are both even, then 𝑛 is divisible by 4.

Conversly, if 𝑛 is odd or 𝑛 is divisible by 4, then we can write 𝑛 = 𝑎𝑏 where 𝑎, 𝑏 are
factors of 𝑛 having the same parity. We wish to have 𝑎 = 𝑥+ 𝑦 and 𝑏 = 𝑥− 𝑦 so set

𝑥 =
𝑎+ 𝑏

2

𝑦 =
𝑎− 𝑏
2

.

Note these are integers by the assumption on 𝑎 and 𝑏.

6 Problems

(Analysis) (ISL 2004) Let 𝑏 ≥ 5 be an integer and define

𝑥𝑛 = (11 . . . 1⏟  ⏞  
𝑛−1

22 . . . 2⏟  ⏞  
𝑛

5)𝑏.

Prove that 𝑥𝑛 is a perfect square for all sufficiently large 𝑛 if and only if 𝑏 = 10.
Looking at prime divisors modulo stuff: (ISL 2006/N5) Find all pairs (𝑥, 𝑦) of integers

satisfying the equation
𝑥7 − 1

𝑥− 1
= 𝑦5 − 1.

(TST ??) Prove that for no integer 𝑛 is 𝑛7 + 7 a perfect square.
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Chapter 6

Quadratic residues

1 Quadratic residues

Definition 6.1.1: Let 𝑝 > 2 be a prime and 𝑎 an integer. The Legendre symbol
(︁
𝑎
𝑝

)︁
is

defined as follows. �
𝑎

𝑝

�
=

⎧⎪⎪⎨⎪⎪⎩1, if 𝑎 is a square modulo 𝑝 and 𝑝 - 𝑎
−1, if 𝑎 is not a square modulo 𝑝

0, if 𝑝|𝑎.
(6.1)

Note
(︁
𝑎
𝑝

)︁
is pronounced “𝑎 on 𝑝.” If 𝑎 is a square modulo 𝑝 we also say 𝑎 is a quadratic

residue modulo 𝑝.

Note that
(︁
𝑎
𝑝

)︁
depends only on the residue of 𝑎 modulo 𝑝, so we may think of

(︁
∙
𝑝

)︁
as a

map �∙
𝑝

�
: Z/𝑝Z→ {±1}.

The following offers a theoretical, although impractical, way to calculate
(︁
𝑎
𝑝

)︁
.

Lemma 6.1.2: For 𝑝 > 2, �
𝑎

𝑝

�
≡ 𝑎

𝑝−1
2 (mod 𝑝).

Note this gives the actual value of
(︁
𝑎
𝑝

)︁
since −1 ̸≡ 1 (mod 𝑝).

Proof. The lemma clearly holds for 𝑎 ≡ 0 (mod 𝑝). Now suppose 𝑎 ̸≡ 0 (mod 𝑝). Note that

𝑎
𝑝−1
2 ≡ ±1, since (𝑎

𝑝−1
2 )2 ≡ 1 (mod 𝑝) by Fermat’s Little Theorem.

First suppose 𝑎 is a square modulo 𝑝. Write 𝑎 ≡ 𝑏2 (mod 𝑝). Then

𝑎
𝑝−1
2 ≡ 𝑏𝑝−1 ≡ 1 (mod 𝑝)
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by Fermat’s Little Theorem.
Now suppose 𝑎

𝑝−1
2 = 1. Let 𝑔 be a primitive root modulo 𝑝. Then we can write 𝑎 ≡ 𝑔𝑘

(mod 𝑝) for some integer 𝑘. The hypothesis gives

𝑔
𝑘(𝑝−1)

2 ≡ 𝑎
𝑝−1
2 ≡ 1 (mod 𝑝).

Since 𝑔 is a primitive root, this implies 𝑝−1|𝑘(𝑝−1)
2

, i.e. 𝑘 is even. Then 𝑎 ≡ (𝑏
𝑘
2 )2 is a square

modulo 𝑝. 1

As a corollary of the preceding lemma, we obtain the following multiplicative property.

Proposition 6.1.3: For any integers 𝑎 and 𝑏 and any prime 𝑝 > 2,�
𝑎𝑏

𝑝

�
=

�
𝑎

𝑝

��
𝑏

𝑝

�
.

In other words, �∙
𝑝

�
: (Z/𝑝Z)× → {±1}

is a group homomorphism.

Proof. By Lemma 6.1.2, �
𝑎𝑏

𝑝

�
= (𝑎𝑏)

𝑝−1
2 = 𝑎

𝑝−1
2 𝑏

𝑝−1
2 =

�
𝑎

𝑝

��
𝑏

𝑝

�
.

The second statement follows from the first and the fact that
(︁
1
𝑝

)︁
= 1.

This means that to calculate
(︁
𝑎
𝑝

)︁
, we can factor 𝑎 into primes

𝑎 = 𝑞𝛼1
1 · · · 𝑞𝛼𝑛

𝑛

and find that �
𝑎

𝑝

�
=

�
𝑞1
𝑝

�𝛼1

· · ·
�
𝑞𝑛
𝑝

�𝛼𝑛

,

so it remains to find an easy way to evaluate 𝑞
𝑝
where both 𝑝 and 𝑞 are prime. We do this in

the next section.

1Alternatively, we can avoid the use of primitive roots as follows. In the first part we’ve shown that⌋︀
𝑎| 𝑎

𝑝−1
2 ≡ 1 (mod 𝑝)

{︀
⊆ (Z/𝑝Z)×2.

The set on the LHS has 𝑝−1
2 elements. Indeed, 𝑥𝑝−1 − 1 = 0 splits completely modulo 𝑝 and has distinct

roots, namely 1, . . . , 𝑝− 1 by Fermat’s little theorem. Then 𝑥
𝑝−1
2 − 1, as a factor of 𝑥𝑝−1− 1, must have 𝑝−1

2
distinct roots.
It suffices to show the set on the RHS has at most 𝑝−1

2 elements. This is true since for every 𝑎, 𝑎2 and

(−𝑎)2 are equal. Hence there are at most 𝑝−1
2 nonzero squares modulo 𝑝, namely 12, . . . ,

(︀
𝑝−1
2

�2
.
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2 Quadratic reciprocity

Quadratic reciprocity relates
(︁
𝑝
𝑞

)︁
with

(︁
𝑞
𝑝

)︁
, i.e., it gives a relationship between whether 𝑝 is

a square modulo 𝑞 and whether 𝑞 is a square modulo 𝑝. (See example. ADD.)

Theorem 6.2.1 (Quadratic reciprocity): Let 𝑝 ̸= 𝑞 be odd primes. Then�
𝑝

𝑞

��
𝑞

𝑝

�
= (−1)

𝑝−1
4

𝑞−1
4 .

In other words, �
𝑞

𝑝

�
=

⎧⎨⎩− (︁𝑝𝑞)︁ , 𝑝 ≡ 𝑞 ≡ 3 (mod 4)(︁
𝑝
𝑞

)︁
, otherwise.

For the prime 2, or when 𝑝 = −1, we use the following instead.

Theorem 6.2.2 (Complement to quadratic reciprocity): Let 𝑝 be an odd prime. Then�−1
𝑝

�
= (−1)

𝑝−1
2�

2

𝑝

�
= (−1)

𝑝2−1
8 .

In other words, �−1
𝑝

�
=

⎧⎨⎩1, 𝑝 ≡ 1 (mod 4)

−1, 𝑝 ≡ 3 (mod 4).�
2

𝑝

�
=

⎧⎨⎩1, 𝑝 ≡ ±1 (mod 8)

−1, 𝑝 ≡ ±3 (mod 8).

We know
(︁
𝑞
𝑝

)︁
≡ 𝑞

𝑞−1
2 (mod 𝑝) by Lemma 6.1.2. To prove quadratic reciprocity, we first

find an alternate way to express 𝑞
𝑝−1
2 .

Lemma 6.2.3 (Gauss’s lemma): For an integer 𝑎 and an odd prime 𝑝, define the least
residue of 𝑎 modulo 𝑝, denoted LR𝑝(𝑎), to be the element 𝑏 ∈

(︀
−𝑝

2
, 𝑝
2

�
such that

𝑎 ≡ 𝑏 (mod 𝑝).

(In other words, LR𝑝(𝑎) is the integer of smallest absolute value congruent to 𝑎 modulo 𝑝.)
Let 𝜇 be the number of elements of

⌋︀
𝑘𝑎| 1 ≤ 𝑘 ≤ 𝑞−1

2

{︀
such that LR𝑝(𝑎) < 0. Then

𝑎
𝑝−1
2 ≡ (−1)𝜇 (mod 𝑝)

Hence, �
𝑎

𝑝

�
= (−1)𝜇.
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Proof. We calculate the product

𝑎 · 2𝑎 · · ·
(︂
𝑝− 1

2
· 𝑎
)︂

modulo 𝑝 in two ways.

First, combining powers of 𝑎 we get

𝑎 · 2𝑎 · · ·
(︂
𝑝− 1

2
· 𝑎
)︂
≡ 𝑎

𝑝−1
2

(︂
𝑝− 1

2

)︂
! (mod 𝑎). (6.2)

Secondly, reducing each factor to the least residue first gives

𝑎 · 2𝑎 · · · 𝑝− 1

2
· 𝑎 ≡ LR𝑝(𝑎) · LR𝑝(2𝑎) · · ·LR𝑝

(︂
𝑝− 1

2

)︂
≡ (−1)𝜇|LR𝑝(𝑎)| · · ·

⃒⃒⃒⃒
LR𝑝

(︂
𝑝− 1

2

)︂⃒⃒⃒⃒
≡ (−1)𝜇

(︂
𝑝− 1

2

)︂
! (mod 𝑝). (6.3)

In the last step we used the fact that |LR𝑝(𝑎)|, . . . ,
⃒⃒⃒
LR𝑝

(︀
𝑝−1
2

�⃒⃒⃒
is a permutation of 1, . . . , 𝑝−1

2
.

To see this, note −LR𝑝(𝑚) = LR𝑝(−𝑚), so{︂
±LR𝑝(𝑘𝑎) : 1 ≤ 𝑘 ≤ 𝑝− 1

2

}︂
= {±LR𝑝(𝑘𝑎) : 1 ≤ 𝑘 ≤ 𝑝− 1}

=
{︂
−𝑝− 1

2
, . . . ,−1, 1, . . . , 𝑝− 1

2

}︂
.

Hence
⌋︀
±LR𝑝(𝑘𝑎) : 1 ≤ 𝑘 ≤ 𝑝−1

2

{︀
must contain one element from each pair ±1, . . . ,±𝑝−1

2
, as

needed.

Equating (6.2) and (6.3) and cancelling
(︀
𝑝−1
2

�
! gives the desired result.

The second statement follows because 1 ̸≡ −1 (mod 𝑝).

Now we prove quadratic reciprocity.

Proof of Theorem 6.2.1. The strategy is as follows.

1. Establish a correspondence between 𝑥 ∈
(︀
0, 𝑞

2

�
such that LR𝑝(𝑥𝑞) < 0, with lattice

points in a certain region (6.10). Similarly establish such a correspondence with 𝑦 ∈(︀
0, 𝑝

2

�
such that LR𝑞(𝑦𝑝) < 0. By Lemma 6.2.3,

(︁
𝑞
𝑝

)︁ (︁
𝑝
𝑞

)︁
is the total number of lattice

points in this region.

2. Pair up the points in the region. We will find that there is an odd point out exactly
when 𝑝 ≡ 𝑞 ≡ 3 (mod 4).
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Let

𝜇1 =
⃒⃒⃒⃒⌈︀
𝑥 ∈

�
0,
𝑞

2

�
: LR𝑞(𝑥𝑝)

}︀⃒⃒⃒⃒
𝜇2 =

⃒⃒⃒⃒⌈︀
𝑦 ∈

�
0,
𝑝

2

�
: LR𝑝(𝑦𝑞)

}︀⃒⃒⃒⃒
By Lemma 6.2.3, �

𝑝

𝑞

��
𝑞

𝑝

�
= (−1)𝜇1(−1)𝜇2 = (−1)𝜇1+𝜇2 . (6.4)

We would like to know the parity of 𝜇1 + 𝜇2.

Claim 6.2.4: There is a bijection between integers 𝑥 ∈
(︀
0, 𝑞

2

�
satisfying LR𝑞(𝑥𝑝) < 0 and

lattice points (𝑥, 𝑦) satisfying

0 < 𝑥 <
𝑞 + 1

2
(6.5)

0 < 𝑦 <
𝑝+ 1

2
(6.6)

−𝑞
2
< 𝑥𝑝− 𝑦𝑞 < 0. (6.7)

Proof. If (𝑥, 𝑦) satisfies the above inequalities, then inequality (6.7) gives that the the least
residue of 𝑥𝑝 is in

(︀
− 𝑞

2
, 0
�
.

Conversely, given such a 𝑥, choose 𝑦 so that 𝑦𝑞 is the closest multiple of 𝑞 to 𝑥𝑝. Then
LR𝑞(𝑥𝑝) = 𝑥𝑝− 𝑦𝑞, so inequality (6.7) follows. Moreover, this is the only value of 𝑦 that will
satisfy (6.7). Then (6.6) follows since (6.7) gives

0 <
𝑝

𝑞
𝑥 < 𝑦 <

𝑝

𝑞
𝑥+

1

2
<
𝑝

𝑞
· 𝑞
2
+

1

2
=
𝑝+ 1

2
.

Note (6.7) is equivalent to
𝑝

𝑞
𝑥 < 𝑦 <

𝑝

𝑞
𝑥+

1

2
. (6.8)

Applying the claim with 𝑝 and 𝑞 switched, and 𝑥 and 𝑦 switched, inequality (6.7) becomes
−𝑝

2
< 𝑦𝑞 − 𝑥𝑝 < 0, which rearranges to

𝑝

𝑞
𝑥− 𝑝

2𝑞
< 𝑦 <

𝑝

𝑞
𝑥. (6.9)

Noting that there are no points on the line 𝑦 = 𝑝
𝑞
𝑥 in the following region, we see that 𝜇1+𝜇2

equals the number of lattice points in the region ℛ defined by

0 < 𝑥 <
𝑞 + 1

2

0 < 𝑦 <
𝑝+ 1

2
(6.10)

𝑝

𝑞
𝑥− 𝑝

2𝑞
< 𝑦 <

𝑝

𝑞
𝑥+

1

2
.
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This region is symmetric around the point
(︀
𝑞+1
4
, 𝑝+1

4

�
. Indeed, making the change of variables

𝑥′ = 𝑥− 𝑞+1
4

and 𝑦′ = 𝑦 − 𝑝+1
4
, we get

−𝑞 + 1

4
< 𝑥′ <

𝑞 + 1

4

−𝑝+ 1

4
< 𝑦′ <

𝑝+ 1

4
𝑝

𝑞
𝑥′ −

�
𝑝

4𝑞
+

1

4

�
< 𝑦′ <

𝑝

𝑞
𝑥′ +

�
𝑝

4𝑞
+

1

4

�
.

Hence we can pair up the lattice points in ℛ by matching (𝑥, 𝑦) with
(︀
𝑞+1
2
− 𝑥, 𝑝+1

2
− 𝑦

�
(this corresponds to (𝑥′, 𝑦′)↔ (−𝑥′,−𝑦′)). The only point which would not be paired up is(︀
𝑞+1
4
, 𝑝+1

4

�
, but this is an integer if and only if 𝑝 ≡ 𝑞 ≡ 3 (mod 4). Thus 𝜇1 + 𝜇2 is odd iff

𝑝 ≡ 𝑞 ≡ 3 (mod 4). In light of (6.4), this proves the theorem.

Proof of Theorem 6.2.2. The fact that
(︁
−1
𝑝

)︁
= (−1) 𝑝−1

2 comes directly from Proposition 6.1.2.

To calculate
(︁
2
𝑝

)︁
, we can use Lemma 6.2.3 directly. In this case 𝜇 is the number of

elements in the set {2, 4, . . . , 𝑝 − 1} in the interval
(︀
𝑝
2
, 𝑝
�
. By casework, this is even when

𝑝 ≡ ±1 (mod 8) and odd when 𝑝 ≡ ±3 (mod 8).

Problems

1. (IMO 1996/4) The positive integers 𝑎, 𝑏 are such that 15𝑎+16𝑏 and 16𝑎−15𝑏 are both
squares of positive integers. What is the least possible value that can be taken by the
smaller of these two squares?

3 Jacobi symbol

44



Chapter 7

Continued fractions

1 Farey fractions

2 Continued fractions

3 Infinite continued fractions

To evaluate a purely periodic continued fraction ⟨𝑎0, . . . , 𝑎𝑛⟩, we need to solve

𝑥 = ⟨𝑎0, . . . , 𝑎𝑛, 𝑥⟩ .

We know we can write the right-hand side as 𝑎𝑥+𝑏
𝑐𝑥+𝑑

for some integers (in fact, nonnegative
integers) 𝑎, 𝑏, 𝑐, 𝑑. What are those integers? We will calculate a recursive formula for them.

Writing 𝑓𝑖(𝑥) = 𝑎𝑖 +
1
𝑥
, we would like to calculate 𝑓0(𝑓1(· · · 𝑓𝑛(𝑥) · · · )). Note we are

repeatedly applying rational functions of the form 𝑓(𝑥) = 𝑎𝑥+𝑏
𝑐𝑥+𝑑

. There is an easy way to
repeatly apply these types of functions, using matrices.

Note that �
𝑎 𝑏
𝑐 𝑑

��
𝑥
𝑦

�
=
𝑎𝑥+ 𝑏𝑦

𝑐𝑥+ 𝑑𝑦
=
𝑎
(︁
𝑥
𝑦

)︁
+ 𝑏

𝑐
(︁
𝑥
𝑦

)︁
+ 𝑑

so �
𝑎 𝑏
𝑐 𝑑

��
𝑥
𝑦

�
=

�
𝑥′

𝑦′

�
=⇒ 𝑓

�
𝑥

𝑦

�
=
𝑥′

𝑦′
. (7.1)

This immediately gives us the following.

Proposition 7.3.1: We have

⟨𝑎0, . . . , 𝑎𝑛, 𝑥⟩ =
𝑥′

𝑦′
where

�
𝑎𝑛 1
1 0

�
· · ·

�
𝑎0 1
1 0

��
𝑥
1

�
=

�
𝑥′

𝑦′

�
.

More explicitly,

⟨𝑎0, . . . , 𝑎𝑛, 𝑥⟩ =
ℎ𝑛𝑥+ ℎ𝑛−1

𝑘𝑛𝑥+ 𝑘𝑛−1

45



Number Theory, S7.5

where the ℎ𝑛, 𝑘𝑛 are defined by the recurrence

ℎ−2 = 0 ℎ−1 = 1 ℎ𝑖 = 𝑎𝑖ℎ𝑖−1 + ℎ𝑖−2

𝑘−2 = 0 𝑘−1 = 1 𝑘𝑖 = 𝑎𝑖𝑘𝑖−1 + 𝑘𝑖−2.

Proof. (Note that the explicit formula can also be proved directly, using induction. To make
the induction step, note ⟨𝑎0, . . . , 𝑎𝑛, 𝑥⟩ =

¬
𝑎0, . . . , 𝑎𝑛 +

1
𝑥

)︂
.

4 Rational approximations

5 Problems

Problems 1–7 are taken from the ARML Power Round 2007.

1. (a) Let 𝐾 be a positive integer greater than 1. Prove that the number of purely
periodic numbers with period 1 that are less than 𝐾 is 𝐾 − 1.

(b) Prove that there are infinitely many purely periodic numbers with period 2 that
are less than 2.

2. Is 3 −
√
6 purely periodic? What about 2 +

√
6? If so, give a representation; if not,

explain why not.

3. If 𝑥 =
¬
𝑎, 𝑏

)︂
and 𝑦 =

¬
𝑏, 𝑎

)︂
, what is 𝑥

𝑦
?

4. Assume that 𝑥 = ⟨𝑎0, . . . , 𝑎𝑘−1⟩ and 𝑦 = ⟨𝑎𝑘−1, . . . , 𝑎0⟩ are two purely periodic numbers
of period 𝑘. Show that if 𝑥 satisfies 𝐴𝑥2+𝐵𝑥+𝐶 = 0, then 𝑦 satisfies 𝐶𝑦2−𝐵𝑦+𝐴 = 0.

5. If 𝑥 is purely periodic, can 1
𝑥
be purely periodic? If yes, give an example; if not, give

a proof.

6. Suppose 𝐷 and 𝐸 are positive integers. Let 𝑥 = 𝐷 +
√
𝐸 and 𝑥 = 𝐷 −

√
𝐸. Prove

that if 𝑥 is purely periodic, then −1 < 𝑥 < 0. Is the converse true?

7. Suppose that 𝑛 is a positive integer that is not a perfect square.

(a) Show that there is at most one integer 𝑓(𝑛) so that 𝑓(𝑛)+
√
𝑛 is purely periodic.

Is there exactly one? What is the function 𝑓(𝑛)?

(b) For what values of 𝑛 is 1 +
√
𝑛 purely periodic? Find a purely periodic represen-

tation of 1 +
√
𝑛 for each of these values.

8. Two players 𝐴 and 𝐵 alternately take chips from two piles with 𝑎 and 𝑏 chips, respec-
tively. A move consists in taking a multiple of the other pile from a pile. The winner
is the one who takes the last chip in one of the piles. Find the conditions on 𝑎 and 𝑏
in which the first player has a winning strategy. Describe the strategy? (This is 12.34
in [Eng98].)
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Chapter 8

Unique factorization

1 Unique factorization domains

MOTIVATION
First, we define what exactly unique factorization means. Let 𝑅 be an integral domain.

Definition 8.1.1: An element 𝑎 ∈ 𝑅 is irreducible if it is not a unit, and its only factors
are units and associates. A unit is an invertible element in 𝑅, while an associate of 𝑎 is a
unit times 𝑎.

For the positive integers we often just say 𝑎 is irreducible if 𝑎 ̸= 1, and its only factors
are 1 and itself. However, if we work with the integers, then there will also be the factors
−1 and −𝑎, and we don’t want to view these as different. For example, 5 is irreducible over
the integers because its only factors are units, ±1, and associates, ±5.

Definition 8.1.2: A unique factorization domain (UFD) is a integral domain where
factoring terminates and every nonzero, nonunit element factors uniquely into irreducible
elements. That is, if

𝑎 = 𝑝1 . . . 𝑝𝑚 = 𝑞1 . . . 𝑞𝑛,

and 𝑝1, . . . , 𝑝𝑚, 𝑞1, . . . , 𝑞𝑛 are irreducible elements, then 𝑚 = 𝑛 and we can reorder the 𝑞𝑖’s
so that 𝑝𝑖 is an associate of 𝑞𝑖, for each 𝑖.

For example, we regard 6 = 2 · 3 = −2 · −3 as the same factorization.
Unique factorization doesn’t hold for all domains—for example, consider Z[

√
−5], that

is, numbers of the form 𝑎+ 𝑏
√
−5. Then

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3

are two factorizations of 6 into irreducible elements.
The notion of a prime is related to that of an irreducible element. People use them as

synonyms in elementary math—because they coincide for the integers—but the distinction
between them will be quite important for us.
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Definition 8.1.3: A prime in 𝑅 is an element 𝑝, not a unit, such that if 𝑝|𝑎𝑏 then 𝑝|𝑎 or
𝑝|𝑏.

This tells us that if a prime 𝑝 divides 𝑎, then no matter how we factor 𝑎, we can’t
avoid 𝑝 dividing one element of 𝑎. The connection between primes, irreducibles, and unique
factorization is given by the following.

Lemma 8.1.4: If 𝑅 is a ring where factoring terminates, and every irreducible element is
prime, then 𝑅 is a UFD. Conversely, in a UFD, every irreducible element is prime.

Proof. Suppose 𝑎 = 𝑝1 . . . 𝑝𝑚 = 𝑞1 . . . 𝑞𝑛 are two factorizations into irreducible elements.
Since 𝑝1 is irreducible, it is prime, and hence must divide one of the 𝑞𝑖. Since 𝑞𝑖 is irreducible,
its only factors are units and associates, so 𝑝1 must be associated with 𝑞𝑖. Then we can cancel
them, leaving a unit. Repeating this process, every factor in the left factorization is paired
with one in the right factorization.

For the converse, suppose 𝑝 is irreducible and 𝑝|𝑎𝑏. Then 𝑝𝑑 = 𝑎𝑏 for some 𝑑. Factoring
𝑎, 𝑏, and 𝑑 shows that 𝑝 must divide one of the factors of 𝑎 or 𝑏 by unique factorizaton.

(Note that primes are always irreducible, because if 𝑝 = 𝑎𝑏 were a proper factorization,
then 𝑝 - 𝑎 and 𝑝 - 𝑏.)

The main strategy for proving unique factorization is the following.

1. Show that the ring 𝑅 in question (here, 𝐾[𝑥]) admits division with remainder, with
some measure of size so that the remainder is smaller than the quotient.

2. Show that if we have division of remainder, then greatest common divisors exist,
and moreover that they have the nice property given by Bézout’s Theorem.

3. Show that this implies that all irreducible elements are prime, and hence 𝑅 is a UFD.

The advantage of such an abstract approach lies in the fact that it works for a variety of
different number systems. In particular, once we’ve shown items 2 and 3, then given any
ring, we only have to show that we can have division with remainder, and it will follow
that it is a UFD. This simultaneously shows unique factorization for Z, 𝐾[𝑥], and even
Z[𝑖] = {𝑎+ 𝑏𝑖|𝑎, 𝑏 ∈ Z}.1

In the language of abstract algebra, the above steps are phrased as follows:

1. 𝑅 is an Euclidean domain.

2. An Euclidean domain is a principal ideal domain.

3. A principal ideal domain is a unique factorization domain.

We now carry out this program.

1The converse is not true; a UFD is not necessarily a PID or Euclidean domain. For example Z[ 1+
√
−163
2 ]

is a UFD but not an Euclidean domain.
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1.1 Step 1: Euclidean domains

Definition 8.1.5: An integral domain 𝑅 is an Euclidean domain if there is a function
| · | : 𝑅→ N0 (called the norm) such that the following hold.

1. |𝑎| = 0 iff 𝑎 = 0.

2. For any nonzero 𝑎, 𝑏 ∈ 𝑅 there exist 𝑞, 𝑟 ∈ 𝑅 such that 𝑏 = 𝑎𝑞 + 𝑟 and |𝑟| < |𝑎|.

Note that both the integers Z and 𝐾[𝑥] are Euclidean domains. The norm on Z is simply
the absolute value, while the norm on 𝐾[𝑥] is the degree of the polynomial. Theorem 9.2.1
shows that 𝐾[𝑥] is an Euclidean domain.

1.2 Step 2: Euclidean domain =⇒ PID

We’d like to prove Bézout’s Theorem for an Euclidean domain, that given 𝑎, 𝑏 in 𝑅 there
exists a greatest common divisor 𝑔 and 𝑠, 𝑡 so that 𝑎𝑠+ 𝑏𝑡 = 𝑔. Rather than thinking of this
as an equation in variables 𝑠, 𝑡, we can think of it as an equation in sets (𝑎) and (𝑏), where
(𝑥) denotes the set of multiples of 𝑥. For two sets 𝑆, 𝑇 we define 𝑆+𝑇 = {𝑠+𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇};
then it turns out what we want is

(𝑎) + (𝑏) = (𝑔).

(See Lemma 8.1.8 below.)

Definition 8.1.6: An ideal in a ring 𝑅 is a subset 𝐼 such that if 𝑎, 𝑏 ∈ 𝐼 then 𝑟𝑎, 𝑎+ 𝑏 ∈ 𝐼
for any 𝑟 ∈ 𝑅. A principal ideal is an ideal generated by one element, that is, there is a 𝑎
such that 𝐼 = {𝑟𝑎|𝑟 ∈ 𝑅}. We write 𝐼 = (𝑎).

A principal ideal domain (PID) is a integral domain where every ideal is principal.

Theorem 8.1.7: An Euclidean domain is a PID.

Proof. Let 𝑅 be an Euclidean domain, 𝐼 ⊆ 𝑅 and ideal, and 𝑏 be the nonzero element of
smallest norm in 𝐼. Suppose 𝑎 ∈ 𝐼. Then we can write 𝑎 = 𝑞𝑏+ 𝑟 with 0 ≤ 𝑟 < |𝑏|, but since
𝑏 has minimal nonzero norm, 𝑟 = 0 and 𝑏|𝑎. Thus 𝐼 = (𝑏) is principal.

Lemma 8.1.8: A PID satisfies Bézout’s Theorem.

Proof. Let 𝑅 be a PID. Since every ideal in 𝑅 is principal, for every 𝑎, 𝑏 (not both 0) we
have (𝑎) + (𝑏) = (𝑑) for some 𝑑 ∈ 𝑅. (Note the sum of two ideals is an ideal—check this for
yourself.) This says there exist 𝑠, 𝑡 ∈ 𝑅 such that

𝑎𝑠+ 𝑏𝑡 = 𝑑.

From this, any divisor of 𝑎, 𝑏 must divide 𝑑. Furthermore, 𝑑 must divide both 𝑎 and 𝑏 since
𝑎 = 𝑎+0 and 𝑏 = 0+ 𝑏 are both in (𝑎)+(𝑏) = (𝑑). In other words, 𝑑 is the greatest common
divisor of 𝑎, 𝑏.
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1.3 Step 3: PID =⇒ UFD

Theorem 8.1.9: A PID is a UFD.

Proof. Suppose 𝑝 is irreducible; we show 𝑝 is prime. Suppose 𝑝|𝑎𝑏 but 𝑝 does not divide
𝑎. Then using Bezout’s Theorem and the fact that 𝑎 and 𝑝 are relatively prime, we get
𝑎𝑠+ 𝑝𝑡 = 1 for some 𝑠, 𝑡. Multiply by 𝑏 to get

𝑎𝑏𝑠+ 𝑝𝑡𝑏 = 𝑏.

Since 𝑝|𝑎𝑏|𝑎𝑏𝑠, 𝑝|𝑝𝑡𝑏, we have 𝑝|𝑏. This shows that irreducible elements are prime in Z.
It remains to show factoring terminates.2 Otherwise, there would be an infinite sequence

of nonassociated elements 𝑎1, 𝑎2, . . . ∈ 𝑅 such that 𝑎𝑖+1|𝑎𝑖. Then (𝑎1) ⊂ (𝑎2) ⊂ · · · . However,⋃︀
𝑖≥1(𝑎𝑖) is an ideal, so it is principal, say generated by 𝑏. Then 𝑏 ∈ (𝑎𝑖) for some 𝑖; this

implies that (𝑏) = (𝑎𝑖). Hence (𝑎𝑖) = (𝑎𝑖+1) = · · · , a contradiction.
Since irreducible elements are prime and every nonzero element of 𝑅 factors into irre-

ducibles, 𝑅 is a UFD.

Corollary 8.1.10: Z and 𝐾[𝑥] are UFDs.

2 Example: 𝑥2 + 𝑦2 = 𝑛

Theorem 8.2.1: Let 𝑛 be a positive integer. Then the equation

𝑥2 + 𝑦2 = 𝑛

has a solution in integers iff every prime 𝑝 ≡ 3 (mod 4) appears in 𝑛 with even exponent.
If 𝑛 = 2𝑎𝑝𝑏11 · · · 𝑝𝑏𝑘𝑘 𝑞

𝑐1
1 · · · 𝑞𝑐𝑚𝑚 where 𝑝𝑗 and 𝑞𝑗 are primes congruent to 1, 3 modulo 4, then

the equation 𝑥2 + 𝑦2 = 𝑛 has
4(𝑏1 + 1) · · · (𝑏𝑘 + 1)

solutions in integers.

Proof. Each solution to 𝑥2 + 𝑦2 = 𝑛 corresponds to a factoring (𝑥+ 𝑦𝑖)(𝑥− 𝑦𝑖) = 𝑛 over the
Gaussian integers Z[𝑖]. Thus the number of solutions is the number of 𝑧 such that 𝑧𝑧 = 𝑛,
or 4 times the number of nonassociated 𝑧 ∈ Z[𝑖] such that 𝑧𝑧 = 𝑛. (Two Gaussian numbers
are associated if they differ by a unit ±1,±𝑖, so 𝑥+𝑦𝑖,−𝑦+𝑥𝑖,−𝑥−𝑦𝑖, 𝑦−𝑥𝑖 are considered
the same.)

Now factor 𝑛 = 2𝑎𝑝𝑏11 · · · 𝑝𝑏𝑘𝑘 𝑞
𝑐1
1 · · · 𝑞𝑐𝑚𝑚 where 𝑝𝑗 and 𝑞𝑗 are primes congruent to 1, 3 modulo

4, respectively. From knowledge of factoring in Z[𝑖] we know that

1. 2 ramifies in Z[𝑖], that is, it is the product of two associated primes 1 + 𝑖, 1− 𝑖.
2This argument is not needed for our purposes: Both Z and 𝐾[𝑥] are Euclidean domains, and factoring

must terminate for them because factors always have smaller norm (absolute value and degree, respectively).
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2. The 𝑝𝑗 ≡ 1 (mod 4) split, that is, 𝑝𝑗 = 𝑧𝑗𝑧𝑗 where 𝑧 is prime in Z[𝑖] and not associated
to 𝑧.

3. The 𝑞𝑗 ≡ 3 (mod 4) remain prime.

Now if 𝑧𝑧 = 𝑛 and a Gaussian prime divides 𝑧, then its conjugate must divide 𝑧. Thus,
since we have unique factorization in Z[𝑖], each such 𝑧, up to multiplication by associates,
corresponds to a way of splitting the prime factors of 𝑛 into complex conjugate pairs. We
note the following:

1. The factors 𝑞𝑗 are their own conjugates, so 𝑧 and 𝑧 must each get 𝑞
𝑐𝑗/2
𝑗 . If one of the

𝑐𝑗 is odd there is no solution. So we suppose they are all even.

2. It doesn’t matter how the prime factors of 2𝑎 are split since they are all associates.

3. There are 𝑏𝑗+1 ways to split the factors of 𝑞
𝑏𝑗
𝑗 , since we can have either 𝑧

𝑏𝑗
𝑗 , or 𝑧

𝑏𝑗−1
𝑗 𝑧𝑗,...

or 𝑧
𝑏𝑗
𝑗 divide 𝑧. Thus there are (𝑏1+1) · · · (𝑏𝑘+1) solutions to 𝑧𝑧 = 𝑛 up to associates.

A similar argument works for the equations 𝑥2 + 2𝑦2 = 𝑛 and 𝑥2 + 𝑥𝑦 + 𝑦2 = 𝑛.

3 Problems

1. (The power of ideals) We rephrase some earlier results that used the “division with
remainder arguement” in terms of ideals.

(a) Let 𝑛 > 1 and 𝑎 be relatively prime to 𝑛. Show that

{𝑚 : 𝑎𝑚 ≡ 1 (mod 𝑛)}

is an ideal.

(b) Conclude Proposition 4.4.2.2.

2. For which 𝑛 does 𝑥2 + 2𝑦2 = 𝑛 have a solution? How many solutions are there? How
about 𝑥2 + 𝑥𝑦 + 𝑦2 = 𝑛?
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Chapter 9

Polynomials

1 Gauss’s argument

We’ve shown that 𝐾[𝑥] is a UFD, but the argument above does not show that Z[𝑥] is a
UFD, because division with remainder fails for Z[𝑥]. We will need a further argument. The
basic idea is that a polynomial factors in Z[𝑥] the same way it does in Q[𝑥], except with its
factors adjusted by constants so the coefficients are in Z.

Let 𝑅 be a UFD and let 𝐾 be the field of fractions of 𝑅. That is, 𝐾 consists of the
numbers 𝑎

𝑏
where 𝑎, 𝑏 ∈ 𝑅 and 𝑏 ̸= 0, and we say 𝑎

𝑏
= 𝑐

𝑑
iff 𝑎𝑑 = 𝑏𝑐. For example, Q is the

field of fractions for Z.

Definition 9.1.1: A nonzero polynomial 𝑓 ∈ 𝑅[𝑥] is said to be primitive if all its coeffi-
cients do not have a common proper divisor; equivalently, there does not exist a prime 𝑝 ∈ 𝑅
such that 𝑝|𝑓 .

Lemma 9.1.2: If 𝑅 is an integral domain, then so is 𝑅[𝑥].

Proof. Take any 𝑝, 𝑞 ∈ 𝑅[𝑥] not equal to 0. We can write

𝑝 =
𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑚 ̸= 0

𝑞 =
𝑛∑︁
𝑖=0

𝑏𝑖𝑥
𝑖, 𝑏𝑛 ̸= 0

Then the leading coefficient of 𝑝𝑞 is 𝑎𝑚𝑏𝑛𝑥
𝑚+𝑛. It is nonzero because since 𝑅 is an integral

domain, 𝑎𝑚, 𝑏𝑛 ̸= 0 imply that 𝑎𝑚𝑏𝑛 ̸= 0. Hence 𝑝𝑞 ̸= 0. This shows that 𝑅[𝑥] is an integral
domain.

Lemma 9.1.3 (Gauss’s lemma): (A) An element of 𝑅 is prime in 𝑅[𝑥] iff it is a prime in
𝑅. Hence if a prime 𝑝 of 𝑅 divides a product 𝑓𝑔 of polynomials in 𝑅[𝑥], then 𝑝|𝑓 or 𝑝|𝑔.
(B) The product of primitive polynomials in 𝑅[𝑥] is primitive.
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Proof. If 𝑝 ∈ 𝑅 is nonzero, and a prime in 𝑅[𝑥], then it is a prime in the subring 𝑅.

Conversely, let 𝑝 be any prime element in 𝑅. Then 𝑅/(𝑝) is an integral domain1 so by
lemma 9.1.2, 𝑅/(𝑝)[𝑥] is an integral domain.

Suppose 𝑝|𝑓𝑔 for 𝑓, 𝑔 ∈ 𝑅[𝑥]. Then in 𝑅/(𝑝)[𝑥], 𝑓𝑔 = 𝑓𝑔 = 0. Since 𝑅/(𝑝)[𝑥] is an
integral domain, either 𝑓 = 0 or 𝑔 = 0. In other words, either 𝑝|𝑓 or 𝑝|𝑔 in 𝑅[𝑥]. Thus 𝑝 is
a prime in 𝑅[𝑥].

If 𝑓, 𝑔 are primitive, then 𝑝 - 𝑓 and 𝑝 - 𝑔 for all primes 𝑝 ∈ 𝑅. Since 𝑝 is also prime in
𝑅[𝑥], 𝑝 - 𝑓𝑔. Hence 𝑓𝑔 is not divisible by any prime in 𝑅, and it is primitive.

Lemma 9.1.4: Every nonconstant polynomial 𝑓 ∈ 𝐾[𝑥] can be written uniquely (up to
multiplication by units) in the form 𝑓 = 𝑐𝑓0, where 𝑐 ∈ 𝐾 and 𝑓0 is a primitive polynomial
in 𝑅[𝑥].

Proof. Each coefficient 𝑎𝑖 of 𝑓 is in the form 𝑝𝑖
𝑞𝑖
, where 𝑝𝑖, 𝑞𝑖 ∈ 𝑅. We can find a nonzero

𝑡 ∈ 𝑅 such that 𝑡 is divisible by each denominator (for, example, take 𝑡 to be the product of
the denominators). Then we can write

𝑡𝑓 = 𝑓1,

where 𝑓1 ∈ 𝑅[𝑥]. Let 𝑠 ∈ 𝑅 be a greatest common divisor of the coefficients of 𝑓1. Then we
have

𝑓 =
𝑠

𝑡
𝑓0

in 𝐾[𝑥] where 𝑓0 ∈ 𝑅[𝑥] and the coefficients of 𝑓0 have no common divisor. This gives the
desired representation.

Next we check uniqueness. Suppose

𝑓 = 𝑐𝑓0 = 𝑐′𝑓 ′
0,

where 𝑐, 𝑐′ ∈ 𝐾 and 𝑓0, 𝑓
′
0 ∈ 𝑅[𝑥] are primitive. Multiply by an element of 𝑅 to “clear

denominators,” to reduce to the case where 𝑐, 𝑐′ ∈ 𝑅. Now take any prime 𝑝|𝑐. Since 𝑝 is
prime in 𝑅[𝑥], 𝑝|𝑐′ or 𝑝|𝑓 ′

0. The second is impossible since 𝑓 ′
0 is primitive. Hence 𝑝|𝑐′, and

we can cancel 𝑝. Continuing in this way, we get that 𝑐 and 𝑐′ share the same prime factors
with the same multiplicities. Hence 𝑐, 𝑐′ are associates.

Lemma 9.1.5: Let 𝑓0 be a primitive polynomial and let 𝑔 ∈ 𝑅[𝑥]. If 𝑓0|𝑔 in 𝐾[𝑥] then 𝑓0|𝑔
in 𝑅[𝑥].

1If 𝐼 is an ideal, then 𝑅/𝐼 is the quotient ring: Two elements 𝑎, 𝑏 in 𝑅 are considered to be the same in
𝑅/𝐼 if they differ by an element in 𝐼. Keep in mind the example 𝑅 = Z; then 𝑅/(𝑝) is simply the integers
modulo 𝑝.
Now 𝑅/(𝑝) is an integral domain, because if 𝑎𝑏 = 0 in 𝑅/(𝑝), then 𝑎𝑏 ∈ (𝑝), i.e. 𝑝 divides one of 𝑎, 𝑏. But

since 𝑝 is prime either 𝑝|𝑎 or 𝑝|𝑏, which translates back into 𝑎 = 0 or 𝑏 = 0 in 𝑅/(𝑝).

56



Number Theory, S9.1

Proof. If 𝑓0|𝑔 in 𝐾[𝑥], then we can write 𝑔 = 𝑓0ℎ where ℎ ∈ 𝐾[𝑥]. We need to show ℎ ∈ 𝑅[𝑥].
By lemma 9.1.4, we can write ℎ = 𝑐ℎ0, where 𝑐 ∈ 𝐾 and ℎ0 is primitive. Then 𝑔 = 𝑐𝑓0ℎ0.
By lemma 9.1.3, the product 𝑓0ℎ0 of primitive polynomials is primitive. We can write 𝑐 = 𝑠

𝑡
,

where 𝑠, 𝑡 ∈ 𝑅 have no common factors. If a prime 𝑝 in 𝑅 divides the denominator 𝑡 then
𝑝 - 𝑠 so 𝑝|𝑓0ℎ0, contradicting the fact that 𝑓0ℎ0 is primitive. Hence 𝑡 is a unit, and 𝑐 ∈ 𝑅.
Then ℎ = 𝑐ℎ0 ∈ 𝑅[𝑥], so 𝑓0|𝑔 in 𝑅[𝑥].

Lemma 9.1.6: Let 𝑓 be a nonzero element of 𝑅[𝑥]. Then 𝑓 is an irreducible element of
𝑅[𝑥] iff it is an irreducible element of 𝑅 or a primitive irreducible polynomial in 𝐾[𝑥].

Proof. If 𝑓 ∈ 𝑅, then the only factors of 𝑓 in 𝑅[𝑥] are in 𝑅, so 𝑓 is irreducible in 𝑅 iff it is
irreducible in 𝑅[𝑥]. This proves the lemma for 𝑓 ∈ 𝑅. Now suppose 𝑓 ̸∈ 𝑅.

If 𝑓 ∈ 𝑅[𝑥] is a primitive polynomial irreducible in 𝐾[𝑥], then it is irreducible in 𝑅[𝑥].

If 𝑓 ∈ 𝑅[𝑥] is not primitive, then it is reducible in 𝑅[𝑥]. Thus it suffices to show if
𝑓 ∈ 𝑅[𝑥] is reducible in 𝐾[𝑥], then it is reducible in 𝑅[𝑥]. Suppose 𝑓 ∈ 𝑅[𝑥], and 𝑓 = 𝑔ℎ
is a proper factorization of 𝑓 in 𝐾[𝑥]. We can write 𝑔 = 𝑐𝑔0, ℎ = 𝑐′ℎ0 where 𝑐, 𝑐′ ∈ 𝐾 and
𝑔0, ℎ0 are primitive. Since 𝑔0 and ℎ0 are both primitive, so is 𝑔0ℎ0. Then 𝑓 = 𝑐𝑐′(𝑔0ℎ0), so by
uniqueness in lemma 9.1.4, 𝑐𝑐′ must be in 𝑅 (and is the gcd of the coefficients of 𝑓). Thus
𝑓 = (𝑐𝑐′)𝑔0ℎ0 is a proper factorization of 𝑓 in 𝑅[𝑥] as well, as needed.

Theorem 9.1.7: The ring 𝑅[𝑥] is a unique factorization domain.

Proof. It suffices to show that every irreducible element 𝑓 of 𝑅[𝑥] is a prime element, and that
factoring terminates. By Lemma 9.1.6, 𝑓 is either irreducible in 𝑅 or a primitive irreducible
polynomial in 𝐾[𝑥]. In the first case 𝑓 is prime in 𝑅 (𝑅 is a UFD) and hence prime in 𝑅[𝑥]
by Lemma 9.1.3.

In the second case, 𝑓 is primitive irreducible in 𝐾[𝑥], thus a prime in 𝐾[𝑥], since 𝐾[𝑥]
is a UFD. Hence 𝑓 |𝑔 or 𝑓 |ℎ in 𝐾[𝑥]. By Lemma 9.1.5, 𝑓 |𝑔 or 𝑓 |ℎ in 𝑅[𝑥]. This shows 𝑓 is
prime.

A polynomial 𝑓 ∈ 𝑅[𝑥] can only be the product of at most deg(𝑓) many polynomials 𝑝𝑖
of positive degree in 𝑅[𝑥] because the sum of the degrees of the 𝑝𝑖 must equal deg(𝑓). Factor
terminates for the factors of 𝑓 in 𝑅 because factoring terminates in the UFD 𝑅, and the
primes in 𝑅 dividing 𝑓 are the primes dividing every coefficient of 𝑓 .

Hence 𝑅[𝑥] is a UFD.

Corollary 9.1.8: Z[𝑥] is a UFD.

If 𝑅 is a UFD then 𝑅[𝑥1, . . . , 𝑥𝑛] is a UFD.

Proof. Since Z is a UFD, so is Z[𝑥]. The second statement follows from Theorem 9.1.7 by
induction.
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1.1 More Proofs

Theorem 9.1.9 (Chinese Remainder Theorem): If polynomials 𝑄1, . . . , 𝑄𝑛 ∈ 𝐾[𝑥] are pair-
wise relatively prime, then the system 𝑃 ≡ 𝑅𝑖 (mod 𝑄𝑖), 1 ≤ 𝑖 ≤ 𝑛 has a unique solution
modulo 𝑄1 · · ·𝑄𝑛.

Proof. Let 𝑄 = 𝑄1 · · ·𝑄𝑛. Note 𝑄𝑖 and
𝑄
𝑄𝑖

are relatively prime. Hence by Bézout’s Theorem
there exist 𝑓𝑖 and 𝑔𝑖 so that

𝑓𝑖𝑄𝑖 + 𝑔𝑖
𝑄

𝑄𝑖

= 1.

Now

(1− 𝑞𝑖𝑓𝑖)𝑅𝑖 = 𝑅𝑖𝑔𝑖
𝑄

𝑄𝑖

is congruent to 𝑅𝑖 modulo 𝑄𝑖, and zero modulo 𝑄𝑗 for 𝑗 ̸= 𝑖. Hence

𝑃 =
𝑛∑︁
𝑖=1

(1− 𝑞𝑖𝑓𝑖)𝑅𝑖

is the desired polynomial.
For uniqueness, suppose 𝑃1 and 𝑃2 satisfy the conditions of the problem. Then 𝑃1−𝑃2 is

zero modulo 𝑄𝑖. Since the 𝑄𝑖 are pairwise relatively prime, 𝑃1−𝑃2 ≡ 0 (mod 𝑄1 · · ·𝑄𝑛).

Theorem 9.1.10 (Rational Roots Theorem): Suppose that 𝑅 is a UFD and 𝐾 its fraction
field. (For instance, take 𝑅 = Z and 𝐾 = Q.) Suppose 𝑓(𝑥) = 𝑎𝑛𝑥

𝑛 + · · · + 𝑎0 ∈ 𝑅[𝑥] and
𝑎𝑛 ̸= 0. Then all roots of 𝑓 in 𝐾 are in the form

factor of 𝑎0
factor of 𝑎𝑛

.

In particular, if 𝑎𝑛 = ±1, then all roots of 𝑓 in 𝐾 are actually in 𝑅.

Proof. Write 𝑥 = 𝑟
𝑠
in simplest terms. Then multiplying through by 𝑠𝑛 gives

𝑎𝑛

�𝑟
𝑠

�𝑛
+ · · ·+ 𝑎1

�𝑟
𝑠

�
+ 𝑎0 = 0

𝑎𝑛𝑟
𝑛 = −𝑠(𝑎𝑛−1𝑟

𝑛−1 + · · ·+ 𝑎1𝑟𝑠
𝑛−2 + 𝑎0𝑠

𝑛−1).

Since 𝑠 and 𝑟 have no common factor, 𝑠 must divide 𝑎𝑛. (This uses the fact that 𝑅 is a
UFD—how?). Rewriting as

𝑎0𝑠
𝑛 = −𝑟(𝑎𝑛𝑟𝑛−1 + · · ·+ 𝑎1𝑠

𝑛−1)

makes it clear 𝑟 divides 𝑎0.

Remark 9.1.11: In particular, if 𝑎𝑛 = 1, then all roots of 𝑓 in 𝐾 are in 𝑅. A ring is said
to be normal if whenever 𝑡 ∈ 𝐾 is a root of a monic polynomial in 𝑅[𝑥], then 𝑡 ∈ 𝑅. Thus
the above shows that UFDs are normal.
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1.2 Problems

1. (Bézout bound) Let 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) ∈ C[𝑥, 𝑦]. Prove that either 𝑓, 𝑔 have a constant
nonzero factor, or they have finitely many zeros (𝑥, 𝑦) in common. (Hard: They have
at most deg(𝑓) deg(𝑔) common zeros.)

2. For a field 𝐾, let 𝐾(𝑥) be the field of rational functions, that is,

𝐾(𝑥) =

⌉︀
𝑝

𝑞
| 𝑝, 𝑞 ∈ 𝐾[𝑥]

«
.

Let 𝑓 and 𝑔 be rational functions such that 𝑓(𝑔(𝑥)) = 𝑥. Prove that 𝑓 and 𝑔 are both
in the form 𝑎𝑥+𝑏

𝑐𝑥+𝑑
with 𝑎𝑑 ̸= 𝑏𝑐.

In many ways, polynomials are similar to integers. Like integers, polynomials admit
division with remainder, existence of greatest common divisors, and unique factorization.

2 Main Theorems

In this section 𝐾 will stand for C (the complex numbers), R (the real numbers), Q (the
rational numbers), or Z/𝑝Z (the integers modulo 𝑝), while 𝑅 will stand for any one of the
before sets or Z (the integers). Note that the sets we label with 𝐾 all have multiplicative
inverses, i.e. are fields.

Our first result is that when we divide polynomials, we can be assured to get a remainder
with degree smaller than our divisor.

Theorem 9.2.1 (Division with remainder): If 𝑓, 𝑔 ∈ 𝐾[𝑥], then there exist polynomials
𝑞, 𝑟 ∈ 𝐾[𝑥] such that deg 𝑟 < deg 𝑔 and

𝑓 = 𝑞𝑔 + 𝑟.

If 𝑓, 𝑔 ∈ Z[𝑥] and 𝑔 is monic, then there exist 𝑞, 𝑟 ∈ Z[𝑥] such that deg 𝑟 < deg 𝑔 and

𝑓 = 𝑔𝑞 + 𝑟.

Proof. This is the division algorithm familiar from high school algebra class. Namely, if 𝑓
has leading term 𝑎𝑥𝑛 and 𝑔 has leading term 𝑏𝑥𝑚 with 𝑛 ≥ 𝑚, then 𝑓 − 𝑎

𝑏
𝑥𝑛−𝑚 has degree

less than 𝑓 . Thus we can keep subtracting multiples of 𝑔 from 𝑓 until the result has degree
less than deg 𝑔.

If 𝑔 is monic, then 𝑏 = 1 so at each stage we subtracted an integer polynomial multiple
of 𝑔, and both the quotient 𝑞 and the remainder 𝑟 will have integer coefficients.

Theorem 9.2.2 (Bézout): Given 𝑓, 𝑔 ∈ 𝑅[𝑥], there exists a polynomial ℎ, called the great-
est common divisor and denoted gcd(𝑓, 𝑔), such that the following hold:

1. ℎ divides both 𝑓 and 𝑔.
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2. If 𝑝 divides both 𝑓 and 𝑔 then 𝑝 divides ℎ.

Let 𝑓, 𝑔 ∈ 𝐾[𝑥]. There exist polynomials 𝑢, 𝑣 ∈ 𝐾[𝑥] so that 𝑢𝑓 + 𝑣𝑔 = gcd(𝑓, 𝑔).

(Note that ℎ is only determined up to a unit. We’ll “sweep this under the rug” and allow
any choice of ℎ up to that constant.)

To calculate the gcd, we often use the Euclidean algorithm. Given polynomials 𝑓 and 𝑔,
for any polynomial 𝑞 we have

gcd(𝑓, 𝑔) = gcd(𝑔, 𝑓 − 𝑞𝑔).

Supposing deg 𝑓 ≥ deg 𝑔, take 𝑞 so that 𝑓 − 𝑞𝑔 = 𝑟 has degree less than 𝑔, as in the division
algorithm; this reduces the degree of 𝑓 . Repeating this process decreases the degrees of the
polynomials; we eventually get to gcd(ℎ, 0) in which case the answer is seen to be ℎ.

Theorem 9.2.3 (Unique factorization): Every polynomial in 𝑅[𝑥] factors uniquely in 𝑅[𝑥],
up to constants. In fact, every polynomial in 𝑅[𝑥1, . . . , 𝑥𝑛] factors uniquely in 𝑅[𝑥1, . . . , 𝑥𝑛],
up to constants.

We give two more useful results.

Theorem 9.2.4 (Chinese Remainder Theorem): If polynomials 𝑄1, . . . , 𝑄𝑛 ∈ 𝐾[𝑥] are pair-
wise relatively prime, then the system 𝑃 ≡ 𝑅𝑖 (mod 𝑄𝑖), 1 ≤ 𝑖 ≤ 𝑛 has a unique solution
modulo 𝑄1 · · ·𝑄𝑛.

Theorem 9.2.5 (Rational Roots Theorem): Suppose 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛+ · · ·+𝑎0 is a polynomial

with integer coefficients and with 𝑎𝑛 ̸= 0. Then all rational roots of 𝑓 are in the form

factor of 𝑎0
factor of 𝑎𝑛

.

In particular, if 𝑎𝑛 = ±1, then all rational roots of 𝑓 are integers.

Here’s a cute application of Bézout’s Theorem:

Example 9.2.6: Let 𝑓, 𝑔 be polynomials with integer coefficients and with no common
factor. Prove that gcd(𝑓(𝑛), 𝑔(𝑛)), 𝑛 ∈ Z can only attain a finite number of values.

Solution. By Bézout’s Theorem, we have 𝑢(𝑥)𝑓(𝑥) + 𝑣(𝑥)𝑔(𝑥) = 1 for some 𝑢, 𝑣 ∈ Q[𝑥]
and nonzero. Clearing denominators of 𝑢 and 𝑣, we get 𝑢′(𝑥)𝑓(𝑥) + 𝑣′(𝑥)𝑔(𝑥) = 𝑘 for some
𝑢′, 𝑣′ ∈ Z[𝑥] and nonzero 𝑘 ∈ Z. Hence gcd(𝑓(𝑛), 𝑔(𝑛)) | 𝑘.

2.1 Problems

1. [1] Show by example we cannot always carry out division with remainder in Z[𝑥] and
that Bézout’s Theorem does not hold for Z[𝑥].
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2. [1] Compute the greatest common divisors in Z[𝑥]:

(a) gcd(𝑥6 − 𝑥5 − 𝑥2 + 1, 𝑥3 − 2𝑥2 + 2𝑥− 1).

(b) gcd(𝑥12 − 1, 𝑥8 + 1).

3. Find the greatest common divisor in Z[𝑥]:

(a) [2] gcd(𝑥𝑛 − 1, 𝑥𝑚 − 1).

(b) [2.5] gcd(𝑥𝑛 + 1, 𝑥𝑚 + 1).

Are your answers the same if we work in (Z/𝑝Z)[𝑥]?

4. [1.5] Let 𝑛 > 0 be an integer. Find the remainder upon division of 𝑥𝑛 + 𝑥𝑛−1 + · · ·+ 1
by:

(a) 𝑥2 + 1.

(b) 𝑥2 + 𝑥+ 1.

(c) 𝑥2 − 𝑥+ 1.

5. [2.5] Let 𝑓, 𝑔 be relatively prime polynomials with integer coefficients. Prove that there
exist nonzero polynomials 𝑢, 𝑣 with integer coefficients such that 𝑢𝑓 + 𝑣𝑔 = 𝑘 where 𝑘
is a nonzero integer.

Suppose that 𝑢1𝑓+𝑣1𝑔 = 𝑘0 and 𝑢1, 𝑣1 are integer polynomials with 𝑢1 =
∑︀𝑚
𝑖=0 𝑎𝑖𝑥

𝑖, 𝑣 =∑︀𝑛
𝑖=0 𝑏𝑖𝑥

𝑖, deg(𝑢1) < deg(𝑔), gcd(𝑎0, . . . , 𝑎𝑚, 𝑏0, . . . , 𝑏𝑛) = 1. Prove that 𝑘0 | 𝑘.

6. [3] Let 𝑓 : Q→ Q satisfy 𝑓(𝑓(𝑓(𝑥))) + 2𝑓(𝑓(𝑥)) + 𝑓(𝑥) = 4𝑥. and 𝑓(𝑓(· · · 𝑓(𝑥))) = 𝑥
where 𝑓 is taken 2009 times. Prove that 𝑓(𝑥) = 𝑥.

7. [3] (BAMO 2004) Find all polynomials 𝑓 with integer coefficients taking irrationals to
irrationals.

8. [5] (USAMO 1997/3) Prove that for any integer 𝑛, there exists a unique polynomial 𝑄
with coefficients in {0, 1, . . . , 9} such that 𝑄(−2) = 𝑄(−5) = 𝑛.

9. [2] For how many integers 𝑛 is 𝑛3+1000
𝑛−10

an integer?

10. [2] Suppose that 𝑓 and 𝑔 are integer polynomials such that 𝑓(𝑛)/𝑔(𝑛) is an integer for
infinitely many 𝑛 ∈ Z. Show that as polynomials, 𝑔(𝑥) divides 𝑓(𝑥).

11. [5] (IMO 2002/3) Find all pairs of integers 𝑚 > 2, 𝑛 > 2 such that there are infinitely
many positive integers 𝑎 for which 𝑎𝑛 + 𝑎2 − 1 divides 𝑎𝑚 + 𝑎− 1.
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3 Arithmetic Properties

In this section we concentrate on polynomials with integer coefficients. The following is a
simple but very useful idea.

Theorem 9.3.1: If 𝑃 has integer coefficients, then 𝑎− 𝑏 | 𝑃 (𝑎)− 𝑃 (𝑏) for all integers 𝑎, 𝑏.

Proof. Let 𝑚 = 𝑎− 𝑏. Then 𝑎 ≡ 𝑏 (mod 𝑚). Let 𝑃 = 𝑐𝑛𝑥
𝑛 + · · ·+ 𝑐1𝑥+ 𝑐0. Then

𝑐𝑛𝑎
𝑛 + · · ·+ 𝑐1𝑎+ 𝑐0 ≡ 𝑐𝑛𝑏

𝑛 + · · ·+ 𝑐1𝑏+ 𝑐0 (mod 𝑚)

giving 𝑃 (𝑎) ≡ 𝑃 (𝑏) (mod 𝑚), as needed.

Here is a typical application. Note the use of the extremal principle.

Example 9.3.2 (USAMO 1974/1): 𝑃 (𝑥) is a polynomial with integral coefficients. If 𝑎, 𝑏, 𝑐
are integers so that 𝑃 (𝑎) = 𝑏, 𝑃 (𝑏) = 𝑐, 𝑃 (𝑐) = 𝑎, prove that 𝑎 = 𝑏 = 𝑐.

Proof. If not, then no two are equal. Without loss of generality, assume that 𝑐 is between 𝑎
and 𝑏. Then

|𝑃 (𝑎)− 𝑃 (𝑏)| = |𝑐− 𝑏| < |𝑏− 𝑎|.

However, 𝑏− 𝑎 | 𝑃 (𝑏)− 𝑃 (𝑎), a contradiction.

Example 9.3.3: Let 𝑃 be a nonconstant polynomial with integer coefficients. Prove that
there is an integer 𝑥 so that 𝑃 (𝑥) is composite.

Proof. Take 𝑛 so that 𝑃 (𝑛) is nonzero. Suppose it is prime. For all 𝑘 ∈ Z, we have
𝑃 (𝑛) | 𝑃 (𝑛+ 𝑘𝑃 (𝑛))− 𝑃 (𝑛), and hence 𝑃 (𝑛) | 𝑃 (𝑛+ 𝑘𝑃 (𝑛)) . If 𝑃 (𝑥) is not composite for
any integer 𝑥, then 𝑃 (𝑛+ 𝑘𝑃 (𝑛)) is ±𝑃 (𝑛) or 0 for all 𝑘 ∈ Z. 𝑃 attains one of these values
infinitely many times, so must be constant, a contradiction.

One question we could ask is what values a polynomial can take modulo a given integer
𝑚 as 𝑥 ranges over the residues modulo 𝑚. (From Theorem 9.3.1 we know that the value
modulo 𝑚 depends only on 𝑥 modulo 𝑚.) We know by the Lagrange Interpolation formula
that we can manufacture a polynomial taking arbitrary values at a given set of points if we’re
allowed to divide—so it works for R,Q, and even Z/𝑝Z. However Lagrange Interpolation
will not work modulo 𝑚 for 𝑚 composite because in general we cannot divide modulo 𝑚
(for example, 2 has no inverse modulo 4). For instance, Theorem 9.3.1 already tells us that
given 𝑃 (𝑥), 𝑃 (𝑥 + 𝑝) cannot be any residue modulo 𝑝2; it can only be those residues that
are congruent to 𝑥 modulo 𝑝.

Example 9.3.4 (TST 2007/6): For a polynomial 𝑃 (𝑥) with integer coefficients, 𝑟(2𝑖 − 1)
(for 𝑖 = 1, 2, 3, . . . , 512) is the remainder obtained when 𝑃 (2𝑖 − 1) is divided by 1024. The
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sequence

(𝑟(1), 𝑟(3), . . . , 𝑟(1023))

is called the remainder sequence of 𝑃 (𝑥). A remainder sequence is called complete if it is a
permutation of (1, 3, 5, . . . , 1023). Prove that there are no more than 235 different complete
remainder sequences.

Solution. Step 1

For 𝑖 ∈ N, let

𝑃𝑖(𝑥) =
𝑖∏︁

𝑘=1

(𝑥− (2𝑘 − 1)).

(Define 𝑃0(𝑥) = 1.) By Problem 7, any polynomial with integer coefficients can be written
in the form

∑︀
0≤𝑖≤𝑛 𝑐𝑖𝑃𝑖(𝑥).

Step 2

Let 𝑎𝑖 =
∑︀∞
𝑘=0

�
𝑖
2𝑘

�
. We claim that 2𝑎𝑖 | 𝑃𝑖(𝑥) for all 𝑖 ∈ N and all odd 𝑥. For a prime 𝑝

and 𝑛 ∈ Z, denote by 𝑣𝑝(𝑛) the exponent of the highest power of 𝑝 dividing 𝑛 (by convention
𝑣𝑝(0) = ∞). For given odd 𝑥 let 𝑓(𝛼) be the number of values of 𝑘 (0 ≤ 𝑘 ≤ 𝑖 − 1) where
2𝛼 | 𝑥− 1− 2𝑘. Then

𝑣2(𝑃𝑖(𝑥)) =
𝑖−1∑︁
𝑘=0

𝑣2(𝑥− 1− 2𝑘) =
∞∑︁
𝛼=1

𝑓(𝛼)

since each 𝑘 with 2𝛼 || 𝑥− 1− 2𝑘 is counted 𝛼 times in either sum.

Since any set of 2𝛼−1 consecutive even integers has one divisible by 2𝛼, any set of 𝑖
consecutive even integers has at least

�
𝑖

2𝛼−1

�
integers divisible by 2𝛼. Hence 𝑓(𝛼) ≥

�
𝑖

2𝛼−1

�
,

and 𝑣2(𝑃𝑖(𝑥)) ≥
∑︀∞
𝛼=0

�
𝑖
2𝛼

�
as desired.

Note 𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 3, 𝑎3 = 4, 𝑎4 = 7, 𝑎5 = 8, and 𝑎𝑖 ≥ 10 for 𝑖 ≥ 6.

Step 3

Next, we claim that if 𝑃 (𝑥) =
∑︀

0≤𝑖≤𝑛 𝑐𝑖𝑃𝑖(𝑥) has a complete remainder sequence then
𝑐1 is odd. (𝑐0 obviously needs to be odd.) We have 4 | 𝑃 (4𝑘 + 𝑖) − 𝑃 (𝑖) for any integer 𝑖;
hence 𝑟(4𝑘 + 1) ≡ 𝑟(1) (mod 4) and 𝑟(4𝑘 + 3) ≡ 𝑟(3) (mod 4) for each 𝑘. In order for the
remainder sequence to be complete, we need 𝑟(1) ̸≡ 𝑟(3) (mod 4). But noting that 𝑎𝑖 ≥ 2
and 𝑃𝑖(𝑥) ≡ 0 (mod 4) for odd 𝑥 and 𝑖 ≥ 2, we have 𝑃 (3)−𝑃 (1) ≡ 𝑐1(𝑃1(3)−𝑃1(1)) ≡ 2𝑐1
(mod 4). Hence 𝑐1 is odd.

Step 4

Since for any odd 𝑥, 𝑃𝑖(𝑥) is divisible by 2𝑎𝑖 , if we mod out 𝑐𝑖 by 210−𝑎𝑖 , and delete the
terms with 𝑃𝑖 for 𝑖 ≥ 6 (where 𝑎𝑖 ≥ 10), we get a polynomial with the same remainder
sequence as 𝑃𝑖. If 𝑃 (𝑥) gives a complete remainder sequence, then 𝑐0 is odd, so there are 29

choices for it; 𝑐1 is odd, so there are at most 28 choices for 𝑐1 (mod 29) (𝑎1 = 1); for 2 ≤ 𝑖 ≤ 5
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there are at most 210−𝑎𝑖 choices for 𝑐𝑖 (mod 210−𝑎𝑖). Hence the number of complete remainder
sequences is at most

29 · 28 ·
5∏︁
𝑖=2

210−𝛼𝑖 = 29 · 28 · 27 · 26 · 23 · 22 = 235.

�
Rather than ask about polynomials with integer coefficients, we could ask about polyno-

mials with integer values, that is 𝑃 such that 𝑃 (𝑛) is an integer whenever 𝑛 is an integer.
It turns out that there is a nice description of such polynomials, as the following example
shows.

Theorem 9.3.5: Let 𝑓(𝑥) ∈ C[𝑥]. Then the following are equivalent:

a. For every 𝑥 ∈ Z, 𝑓(𝑥) ∈ Z.

b. For 𝑛+ 1 consecutive integers 𝑥, where 𝑛 is the degree of 𝑓 , 𝑓(𝑥) ∈ Z.

c. There are 𝑎0, 𝑎1, . . . , 𝑎𝑛 ∈ Z with

𝑓(𝑥) = 𝑎𝑛

(︃
𝑥

𝑛

)︃
+ 𝑎𝑛−1

(︃
𝑥

𝑛− 1

)︃
+ · · ·+ 𝑎0

(︃
𝑥

0

)︃
.

Here
(︀
𝑥
𝑛

�
is defined as

𝑥𝑛

𝑛!
=
𝑥(𝑥− 1) . . . (𝑥− (𝑛− 1))

𝑛!

Proof. The assertions (𝑎) ⇒ (𝑏) and (𝑐) ⇒ (𝑎) are clear (
(︀
𝑥
𝑖

�
are integers for all integers 𝑥

and nonnegative integers 𝑖, by combinatorial argument).
Suppose (b) holds. First assume that 𝑓(𝑥) takes on integer values at 0, 1, . . . , 𝑛. We

inductively build the sequence 𝑎0, 𝑎1, . . . so that the polynomial

𝑃𝑚(𝑥) = 𝑎𝑚

(︃
𝑥

𝑚

)︃
+ 𝑎𝑚−1

(︃
𝑥

𝑚− 1

)︃
+ · · ·+ 𝑎0

(︃
𝑥

0

)︃
matches the value of 𝑓(𝑥) at 𝑥 = 0, . . . ,𝑚. Define 𝑎0 = 𝑓(0); once 𝑎0, . . . , 𝑎𝑚 have been
defined, let

𝑎𝑚+1 = 𝑓(𝑚+ 1)− 𝑃𝑚(𝑚+ 1).

Noting that
(︀

𝑥
𝑚+1

�
equals 1 at 𝑥 = 𝑚 + 1 and 0 for 0 ≤ 𝑥 ≤ 𝑚, this gives 𝑃𝑚+1(𝑥) = 𝑓(𝑥)

for 𝑥 = 0, 1, . . . ,𝑚 + 1. Now 𝑃𝑛(𝑥) is a degree 𝑛 polynomial that agrees with 𝑓(𝑥) at
𝑥 = 0, 1, . . . , 𝑛, so they must be the same polynomial.

Now if 𝑓 takes on integer values for any 𝑛+ 1 consecutive values 𝑚, . . . ,𝑚+ 𝑛, then by
the argument above on 𝑓(𝑥 − 𝑚), 𝑓(𝑥) takes on integer values for all 𝑥; in particular, for
𝑥 = 0, 1, . . . , 𝑛. Use the above argument to get the desired representation in (c).
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The key idea here in both examples that once we know that 𝑃 (𝑥) = 𝑅(𝑥) at some points
𝑥1, . . . , 𝑥𝑛, then we can write

𝑃 (𝑥) = 𝑅(𝑥) + (𝑥− 𝑥1) · · · (𝑥− 𝑥𝑛)𝑄(𝑥). (9.1)

When we’re working over Q or R, (9.1) doesn’t put a restriction on other values of 𝑃 , but
when we’re working over Z or Z/𝑚Z, then it does. For instance, if we’re working over Z
and 𝑥1, . . . , 𝑥𝑛 are integers, then we know 𝑃 (𝑥) and 𝑅(𝑥) have to differ by a multiple of
(𝑥− 𝑥1) · · · (𝑥− 𝑥𝑛).

3.1 Problems

1. [1] Suppose 𝑃 is a polynomial with integer coefficients such that 𝑃 (0) and 𝑃 (1) are
both odd. Show that 𝑃 has no integer root.

2. [2] (Schur) Let 𝑃 be a nonconstant polynomial with integer coefficients. Prove that
the set of primes dividing 𝑃 (𝑛) for some integer 𝑛 is infinite.

3. [2] Polynomial 𝑃 (𝑥) has integer coefficients, and satisfies 𝑃 (2) = 18 and 𝑃 (3) = 20.
Find all possible integer roots of 𝑃 (𝑥) = 0.

4. [3] (Putnam 2008) Let 𝑝 be prime. Let ℎ(𝑥) be a polynomial with integer coefficients
such that ℎ(0), ℎ(1), . . . , ℎ(𝑝2−1) are distinct modulo 𝑝2. Show that ℎ(0), ℎ(1), . . . , ℎ(𝑝3−
1) are distinct modulo 𝑝3.

5. [4] (IMO 2006/5) Let 𝑃 (𝑥) be a polynomial of degree 𝑛 > 1 with integer coefficients
and let 𝑘 be a positive integer. Consider the polynomial

𝑄(𝑥) = 𝑃 (𝑃 (· · ·𝑃 (𝑃⏟  ⏞  
𝑘 times

(𝑥)))).

Prove that there are at most 𝑛 integers such that 𝑄(𝑡) = 𝑡.

6. [4] (MOSP 2001) Let 𝑓 be a polynomial with rational coefficients such that 𝑓(𝑛) ∈ Z
for all 𝑛 ∈ Z. Prove that for any integers 𝑚,𝑛, the number

lcm[1, 2, . . . , deg(𝑓)] · 𝑓(𝑚)− 𝑓(𝑛)
𝑚− 𝑛

is an integer.

7. [2] (Helpful for the next few problems) Let 𝑓(𝑥) ∈ 𝑅[𝑥], and let 𝑝0, 𝑝1, . . . be a sequence
of polynomials whose leading coefficients 𝑢0, 𝑢1, . . . are units (i.e. invertible), and
deg(𝑝𝑖) = 𝑖. Show that 𝑓 can be uniquely written in the form

𝑓(𝑥) = 𝑎𝑛𝑝𝑛(𝑥) + . . .+ 𝑎1𝑝1(𝑥) + 𝑎0𝑝0(𝑥).

In particular, this is true for 𝑝𝑖(𝑥) = 𝑥𝑖 = 𝑥(𝑥− 1) · · · (𝑥− 𝑖+ 1).
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8. [2.5] How many polynomials of degree at most 5 with integer coefficients satisfy 0 ≤
𝑃 (𝑥) < 120 for 𝑥 = 0, 1, 2, 3, 4, 5?

9. [4] (USAMO 1995/4) Suppose 𝑞0, 𝑞1, 𝑞2, . . . is an infinite sequence of integers satisfying
the following two conditions:

(a) 𝑚− 𝑛 divides 𝑞𝑚 − 𝑞𝑛 for 𝑚 > 𝑛 ≥ 0,

(b) there is a polynomial 𝑃 such that |𝑞𝑛| < 𝑃 (𝑛) for all 𝑛.

Prove that there is a polynomial 𝑄 such that 𝑞𝑛 = 𝑄(𝑛) for each 𝑛.

10. [5] (TST 2008/9) Let 𝑛 be a positive integer. Given an integer coefficient polynomial
𝑓(𝑥) define its signature modulo 𝑛 to be the ordered sequence 𝑓(1), . . . , 𝑓(𝑛) modulo
𝑛. Of the 𝑛𝑛 such 𝑛-term sequences of integers modulo 𝑛, how many are the signature
of some polynomial 𝑓(𝑥) if 𝑛 is a positive integer not divisible by the cube of a prime?
(Easier variant: if 𝑛 is not divisible hy the square of a prime)

11. [5] (variant of TST 2005/3) For a positive integer 𝑛, let 𝑆 denote the set of polynomials
𝑃 (𝑥) of degree 𝑛 with positive integer coefficients not exceeding 𝑛!. A polynomial 𝑃 (𝑥)
in set 𝑆 is called fine if for any positive integer 𝑘, the sequence 𝑃 (1), 𝑃 (2), 𝑃 (3), . . .
contains infinitely many integers relatively prime to 𝑘. Prove that the proportion of
fine polynomials is at most ∏︁

prime 𝑝≤𝑛

�
1− 1

𝑝𝑝

�
.

(Original statement: Prove that between 71% and 75% of the polynomials in the set
𝑆 are fine.)

12. [5] Suppose 𝑓(𝑥) is a polynomial of degree 𝑑 taking integer values such that

𝑚− 𝑛 | 𝑓(𝑚)− 𝑓(𝑛)

for all pairs of integers (𝑚,𝑛) satisfying 0 ≤ 𝑚,𝑛 ≤ 𝑑. Is it necessarily true that

𝑚− 𝑛 | 𝑓(𝑚)− 𝑓(𝑛)

for all pairs of integers (𝑚,𝑛)?

4 Polynomials in Number Theory

We give an interesting application of polynomials to number theory. Recall the following.

Theorem 9.4.1 (Vieta’s Theorem): Let 𝑟1, . . . , 𝑟𝑛 be the roots of
∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖, and let

𝑠𝑗 =
∑︁

1≤𝑖1<...<𝑖𝑗≤𝑛
𝑟𝑖1 · · · 𝑟𝑖𝑗 .

Then 𝑠𝑗 = (−1)𝑗 𝑎𝑛−𝑗

𝑎𝑛
.
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Theorem 9.4.2 (Wolstenholme): Prove that
(︀
𝑝𝑎
𝑝𝑏

�
≡
(︀
𝑎
𝑏

�
(mod 𝑝3) for prime 𝑝 ≥ 5.

Proof. By Fermat’s Little Theorem, 𝑥𝑝−1 ≡ 1 (mod 𝑝). Thus in Z/𝑝Z,

𝑥𝑝−1 − 1 ≡
𝑝−1∏︁
𝑖=1

(𝑥− 𝑖) (mod 𝑝). (9.2)

Write (𝑥− 1)𝑝−1 =
∑︀𝑝−1
𝑖=0 𝑎𝑖𝑥

𝑖. Then matching coefficients on both sides of (9.2) gives

𝑎𝑖 ≡ 0 (mod 𝑝) for all 1 ≤ 𝑖 < 𝑝− 1. (9.3)

Since 𝑝 ≥ 5, letting 𝑥 = 𝑝 gives

(𝑝− 1)! = (𝑥− 1)𝑝−1 = 𝑝𝑝−1 +

�
𝑝−2∑︁
𝑖=2

𝑎𝑖𝑝
𝑖

�
+ 𝑎1𝑝+ (𝑝− 1)!

since (−1)(−2) · · · (−𝑝+1) = (−1)𝑝−1(𝑝− 1)! = (𝑝− 1)!. Subtracting (𝑝− 1)! on both sides,

0 = 𝑝𝑝−1 +

�
𝑝−2∑︁
𝑗=2

𝑎𝑖𝑝
𝑖

�
+ 𝑎1𝑝.

Using (9.3), 𝑝3 | 𝑎𝑖𝑝𝑖 for 2 ≤ 𝑖 < 𝑝 − 1. Hence, since 𝑝 ≥ 5, 𝑝3 | 𝑝𝑝−1 +
∑︀𝑝−2
𝑖=2 𝑎𝑖𝑝

𝑖. Since 𝑝3

divides the LHS, 𝑝3 | 𝑎1𝑝 and 𝑝2 | 𝑎1. Now 𝑝3 | (𝑘𝑝)𝑝−1 +
(︀∑︀𝑝−2

𝑖=2 𝑎𝑖(𝑘𝑝)
𝑖
�
as well and we get

(𝑘𝑝− 1)𝑝−1 = (𝑥− 1)𝑝−1|𝑥=𝑝𝑘

= (𝑘𝑝)𝑝−1 +

�
𝑝−1∑︁
𝑗=2

𝑎𝑖(𝑘𝑝)
𝑖

�
+ 𝑎1𝑘𝑝+ (𝑝− 1)!

≡ (𝑝− 1)! (mod 𝑝3). (9.4)

Now, (︃
𝑝𝑎

𝑝𝑏

)︃
=

(𝑝𝑎)𝑝𝑏

(𝑝𝑏)!

=

∏︀𝑎
𝑖=𝑎−𝑏+1[(𝑝𝑖)(𝑝𝑖− 1)𝑝−1]∏︀𝑏
𝑖=1[(𝑝𝑖)(𝑝𝑖− 1)𝑝−1]

=
𝑎𝑏

𝑏!

[︃
𝑏∏︁
𝑖=1

[𝑝(𝑖+ 𝑎− 𝑏)− 1]𝑝−1

(𝑝𝑖− 1)𝑝−1

]︃
(9.5)

By (9.4), [𝑝(𝑖+ 𝑎− 𝑏)− 1]𝑝−1 ≡ (𝑝𝑖− 1)𝑝−1 (mod 𝑝3). Hence (9.5) becomes
(︀
𝑎
𝑏

�
modulo 𝑝3,

as needed.
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Theorem 9.4.3 (Lucas’s Theorem): Suppose that the base 𝑝 expansions of 𝑚 and 𝑛 are

𝑚 = (𝑚𝑘 . . .𝑚1𝑚0)𝑝,

𝑛 = (𝑛𝑘 . . . 𝑛1𝑛0)𝑝.

Then (︃
𝑚

𝑛

)︃
≡
(︃
𝑚𝑘

𝑛𝑘

)︃
· · ·

(︃
𝑚1

𝑛1

)︃(︃
𝑚0

𝑛0

)︃
.

Proof. We have the identity

(1 +𝑋)𝑚 = (1 +𝑋)𝑚𝑘𝑝
𝑘 · · · (1 +𝑋)𝑚1𝑝(1 +𝑋)𝑚0 .

Now take both sides modulo 𝑝 and use the fact that (1+𝑋)𝑝
𝑛 ≡ 1+𝑋𝑝𝑛 (mod 𝑝) to obtain

(1 +𝑋)𝑚 ≡ (1 +𝑋𝑝𝑘)𝑚𝑘 · · · (1 +𝑋𝑝)𝑚1(1 +𝑋)𝑚0 (mod 𝑝).

Now match the coefficients of 𝑋𝑛 on each side. The coefficient on the left hand side is
(︀
𝑚
𝑛

�
.

For the right hand side, note the only way to get the term 𝑋𝑛 is by choosing 𝑋𝑛𝑗𝑝
𝑗
from the

term (1 +𝑋𝑝𝑗)𝑚𝑗 , simply by uniqueness of base 𝑝 representation; the coefficient of 𝑋𝑛𝑗𝑝
𝑗
is(︀

𝑛𝑗

𝑚𝑗

�
. Hence the coefficient of 𝑋𝑛 on the right hand side is

(︀
𝑚𝑘

𝑛𝑘

�
· · ·

(︀
𝑚1

𝑛1

�(︀
𝑚0

𝑛0

�
. Equating the

coefficients gives the desired result.

Corollary 9.4.4: Let 𝑛 be a positive integer, and let 𝐵(𝑛) be the number of 1’s in the
binary expansion of 𝑛. Then the number of odd entries in the 𝑛th row of Pascal’s triangle
is 2𝐵(𝑛).

4.1 Problems

1. [3] Prove that for prime 𝑝 ≥ 5,

𝑝2|(𝑝− 1)!

�
1 +

1

2
+ · · ·+ 1

𝑝− 1

�
.

2. [3.5] (APMO 2006/3) Prove that for prime 𝑝 ≥ 5,
(︀
𝑝2

𝑝

�
≡ 𝑝 (mod 𝑝5).

3. [3.5] (ISL 2005/N3) Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 be positive integers. Suppose that the sum 𝑆 =
𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 divides both 𝑎𝑏𝑐 + 𝑑𝑒𝑓 and 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 𝑑𝑒 − 𝑒𝑓 − 𝑓𝑑. Prove
that 𝑆 is composite.

4. [5] (China TST 2009/3) Prove that for any odd prime 𝑝, the number of positive integers

𝑛 satisfying 𝑝 | 𝑛! + 1 is less than or equal to 𝑐𝑝
2
3 , where 𝑐 is a constant independent

of 𝑝.2

2Hint: A polynomial of degree 𝑛 over a field (such as Z/𝑝Z) can have at most 𝑛 zeros.
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5. [4-5] (TST 2002/2) Let 𝑝 be a prime number greater than 5. For any positive integer
𝑥, define

𝑓𝑝(𝑥) =
𝑝−1∑︁
𝑘=1

1

(𝑝𝑥+ 𝑘)2
.

Prove that for all positive integers 𝑥 and 𝑦 the numerator of 𝑓𝑝(𝑥)−𝑓𝑝(𝑦), when written
in lowest terms, is divisible by 𝑝3.

(MOSP 2007/2.2) Let 𝑑 be a positive integer. Integers 𝑡1, 𝑡2, . . . , 𝑡𝑑 and real numbers
𝑎1, . . . , 𝑎𝑑 are given such that

𝑎1𝑡
𝑗
1 + 𝑎2𝑡

𝑗
2 + · · ·+ 𝑎𝑑𝑡

𝑗
𝑑

is an integer for all integers 𝑗 with 0 ≤ 𝑗 < 𝑑. Prove that

𝑎1𝑡
𝑑
1 + 𝑎2𝑡

𝑑
2 + · · ·+ 𝑎𝑑𝑡

𝑑
𝑑

is also an integer.

5 Resultant

Definition 9.5.1: Let 𝑅 be a UFD, and let 𝐴(𝑥) = 𝑎𝑚𝑥
𝑚+· · ·+𝑎0 and 𝐵(𝑥) = 𝑏𝑛𝑥

𝑛+· · ·+𝑏0
be in 𝑅[𝑥]. Define

𝑀(𝐴,𝐵) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0 · · · · · · · · · 𝑎𝑚 0 0

0
. . .

. . .
. . .

. . .
. . . 0

0 0 𝑎0 · · · · · · · · · 𝑎𝑚
𝑏0 · · · · · · 𝑏𝑛 0 0 0

0
. . .

. . .
. . .

. . . 0 0

0 0
. . .

. . .
. . .

. . . 0
0 0 0 𝑏0 · · · · · · 𝑏𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the first 𝑛 rows contain the 𝑎𝑗 and the last 𝑚 rows contain the 𝑏𝑗. The resultant of
𝐴 and 𝐵 is

Res(𝐴,𝐵) = det(𝑀(𝐴,𝐵)).

Note that Res(𝐴,𝐵) is homogeneous of degree 𝑛 in 𝑎0, . . . , 𝑎𝑚 and homogeneous of de-
gree 𝑚 in 𝑏0, . . . , 𝑏𝑛. The main use of the resultant is that considering it as a function of
𝑎0, . . . , 𝑎𝑚, 𝑏0, . . . , 𝑏𝑛, it tells us when 𝐴 and 𝐵 have a common factor.

For homogeneous polynomails, we write 𝐴(𝑥, 𝑦) = 𝑎𝑚𝑋
𝑚 + · · · + 𝑎0𝑌

𝑚 and 𝐵(𝑥, 𝑦) =
𝑏𝑛𝑋

𝑛 + · · ·+ 𝑏0𝑌
𝑛 and define the resultant the same way.

Proposition 9.5.2:

1. Res(𝐴,𝐵) = 0 if and only if 𝐴 and 𝐵 have a common factor, i.e. have a common zero
in 𝐾.
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2. If 𝑎𝑚𝑏𝑛 ̸= 0, and 𝐴 = 𝑎𝑚
∏︀𝑚
𝑗=1(𝑋 − 𝛼𝑗), 𝐵 = 𝑏𝑛

∏︀𝑛
𝑘=1(𝑋 − 𝛽𝑘), then

Res(𝐴,𝐵) = 𝑎𝑛𝑚𝑏
𝑚
𝑛

𝑚∏︁
𝑗=1

𝑛∏︁
𝑘=1

(𝛼𝑗 − 𝛽𝑘).

3. There exist polynomials 𝐹,𝐺 ∈ 𝑅[𝑎0, . . . , 𝑏𝑛][𝑋] such that

𝐹𝐴+𝐺𝐵 = Res(𝐴,𝐵).

Proof.

1. 𝐴 and 𝐵 have a common factor in 𝐾[𝑋] if and only if there exist polynomials nonzero
polynomials 𝐶(𝑥) = 𝑐𝑚−1𝑋

𝑚−1 + · · · + 𝑐0 and 𝐷(𝑥) = 𝑑𝑛−1𝑋
𝑛−1 + · · · + 𝑑0 is 𝐾[𝑋]

such that 𝐴𝐶 = 𝐵𝐷 and deg𝐶 ≤ 𝑚 − 1 and deg(𝐷) ≤ 𝑛 − 1. Multiplying out
𝐴𝐶 = 𝐵𝐷 and treating it as a system of linear equations in the 𝑐𝑗 and 𝑑𝑗, we get
that the determinant of the coefficient matrix is ±Res(𝐴,𝐵). Thus there is a nonzero
solution if and only if Res(𝐴,𝐵) = 0.

2. First assume 𝑎𝑚 = 𝑏𝑛 = 1. We considering the coefficients 𝑎𝑘, 𝑏𝑘 and Res(𝐴,𝐵) as
functions of the roots, 𝛼1, . . . , 𝛼𝑚, 𝛽1, . . . , 𝛽𝑛. By Vieta’s formulas, 𝑎𝑚−𝑘 is homoge-
neous of degree 𝑘 in 𝛼1, . . . , 𝛼𝑚 and 𝑏𝑛−𝑘 is homogeneous of degree 𝑘 in 𝛽1, . . . , 𝑏𝑛. The
“big formula” for the determinant says that Res(𝐴,𝐵) is the sum of entries of the form∏︀𝑚+𝑛
𝑘=1 𝑀𝑘,𝜎(𝑘), where 𝑀 =𝑀(𝐴,𝐵).

∙ For 1 ≤ 𝑘 ≤ 𝑛, 𝑀𝑘,𝜎(𝑘) is either a polynomial of degree 𝜎(𝑘)− 𝑘 in the 𝛼𝑗 or zero,
and

∙ For 1 ≤ 𝑘 ≤ 𝑚, 𝑀𝑛+𝑘,𝜎(𝑛+𝑘) is a polynomial of degree 𝜎(𝑛+ 𝑘)− 𝑘 in the 𝛽𝑗.

Hence if
∏︀𝑚+𝑛
𝑘=1 𝑀𝑘,𝜎(𝑘) ̸= 0, then it has degree

𝑛∑︁
𝑘=1

(𝜎(𝑘)− 𝑘) +
𝑚∑︁
𝑘=1

(𝜎(𝑚+ 𝑘)− 𝑘) =
𝑚+𝑛∑︁
𝑘=1

𝜎(𝑚+ 𝑛)−
𝑛∑︁
𝑘=1

𝑘 −
𝑚∑︁
𝑘=1

𝑘 = 𝑚𝑛.

Now when 𝛼𝑗 = 𝛽𝑘, then by part 1, Res(𝐴,𝐵) = 0. Hence 𝛼𝑗 − 𝛽𝑘 divides Res(𝐴,𝐵).
By comparing degrees, we must have

Res(𝐴,𝐵) = 𝐶
𝑚∏︁
𝑗=1

𝑛∏︁
𝑘=1

(𝛼𝑗 − 𝛽𝑘).

To compute 𝐶, note that there is exactly one term in the determinant that gives
𝑎𝑛𝑚 = (𝛼1 · · ·𝛼𝑚)𝑛, so 𝐶 = 1. By scaling, the desired result holds for 𝑎𝑚, 𝑏𝑛 ̸= 0.
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3. We have

𝑀(𝐴,𝐵)

�
𝑋𝑚+𝑛−1

...
1

�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑋𝑛−1𝐴

...
𝐴

𝑋𝑚−1𝐵
...
𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Let 𝐶 denote the cofactor matrix of 𝑀(𝐴,𝐵). Multiplying by 𝐶𝑇 on both sides gives

Res(𝐴,𝐵)

�
𝑋𝑚+𝑛−1

...
1

�
= 𝐶𝑇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑋𝑛−1𝐴

...
𝐴

𝑋𝑚−1𝐵
...
𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Let the coefficients of 𝐹,𝐺 be given by the bottom row of 𝐶𝑇 . Then multiplying out
the matrices and looking at the bottommost entry gives the desired conclusion.
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Chapter 10

Field Theory

field An extension of a field 𝐹 is a field containing 𝐹 .

1. A number field is a subfield of C.

2. A finite field has finitely many element.

3. A function field is an extension of C(𝑡).

1 Algebraic elements

Definition 10.1.1: Let 𝐿 be an extension of 𝐾 and 𝛼 be an element of 𝐿. 𝛼 is algebraic
over 𝐾 if it is the zero of a polynomial in 𝐾[𝑥], and transcendental otherwise.

Note 𝛼 is transcendental if and only if the substitution homomorphism 𝜙 : 𝐾[𝑥]→ 𝐿 is
injective.

2 Degree of a field extension

Definition 10.2.1: The degree [𝐿 : 𝐾] is the dimension of 𝐿 as a 𝐾-vector space.

3 Fundamental theorem of algebra

Theorem 10.3.1: C is algebraically closed.

In other words, every nonconstant polynomial with coefficients in C has a zero. Equiva-
lently, every nonconstant polynomial with coefficients in C splits completely.

Proof. We first show that all polynomials with real coefficients are reducible over the complex
numbers, by induction on the highest power of 2 dividing the degree. For odd degree, the
the statement follows since the polynomial has different signs near at ±∞. Now assuming
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the induction hypothesis, suppose deg(𝑓) = 2𝑘𝑚 where 𝑘 is odd. Choose a splitting field 𝐿
of 𝑓 , and write 𝑃 (𝑥) = (𝑥− 𝑟1) · · · (𝑥− 𝑟𝑛). Consider the polynomial

𝑃𝑡(𝑥) =
∏︁

𝑖≤𝑖<𝑗≤𝑛
(𝑥− 𝑟𝑖 − 𝑟𝑗 − 𝑡𝑟𝑖𝑟𝑗).

Its degree is 𝑛(𝑛−1)
2

= 2𝑘−1𝑚(𝑛 − 1). Since its coefficients are symmetric polynomials in
the 𝑟𝑖, by hypothesis it has a complex zero, i.e. 𝑟𝑖 + 𝑟𝑗 + 𝑡𝑟𝑖𝑟𝑗 is real for some 𝑖, 𝑗. Since
this is true for infinitely many values of 𝑡, we must have that 𝑟𝑖 + 𝑟𝑗 + 𝑡𝑟𝑖𝑟𝑗 is real for all 𝑡
some 𝑖, 𝑗. This means 𝑟𝑖 + 𝑟𝑗 and 𝑟𝑖𝑟𝑗 are both real. Then 𝑟𝑖, 𝑟𝑗 are roots of the quadratic
𝑥2 − (𝑟𝑖 + 𝑟𝑗)𝑥+ 𝑟𝑖𝑟𝑗 so they are complex roots of 𝑃 (𝑥). This concludes the induction.

Next for an arbitrary polynomial 𝑃 (𝑥), consider the real polynomial 𝑃 (𝑥)𝑃 (𝑥). (We take
the conjugate of the coefficients, not 𝑥.) By the above, it factors entirely into linear factors.
𝑃 (𝑥) divides 𝑃 (𝑥)𝑃 (𝑥), so it splits as well.

4 Constructions
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Chapter 11

Finite fields

1 Finite fields

A finite field is a vector space over F𝑝 for some prime 𝑝, so has order 𝑞 = 𝑝𝑟. The (unique)
field of order 𝑞 is denoted by F𝑞.

Proposition 11.1.1:

1. The elements in a field of order 𝑞 are roots of 𝑥𝑞 − 𝑥 = 0 (everything is modulo 𝑝).

2. F×
𝑞 is a cyclic group of order 𝑞 − 1.

3. There exists a unique field of order 𝑞 up to isomorphism.

4. A field of order 𝑝𝑟 contains a subfield of order 𝑝𝑘 iff 𝑘 | 𝑟. (Note this is a relation
between the exponents, not the orders.)

5. The irreducible factors of 𝑥𝑞−𝑥 = 0 over F𝑝 are the irreducible polynomials 𝑔 ∈ F𝑝[𝑋]
whose degrees divide 𝑟.

6. For every 𝑟 there is an irreducible polynomial of degree 𝑟 over F𝑝.

Proof. 1. The multiplicative group F𝑞 of nonzero elements has order 𝑞 − 1. The order of
any element divides 𝑞 − 1 so 𝛼𝑞−1 = 1 for any 𝛼 ∈ F𝑞.

2. By the Structure Theorem for Abelian Groups, F×
𝑞 is a direct product of cyclic sub-

groups of orders 𝑑1 | · · · | 𝑑𝑘, and the group has exponent 𝑑𝑘. Since 𝑥
𝑑𝑘 − 1 = 0 has at

most 𝑑𝑘 roots, 𝑘 = 1 and 𝑑1 = 𝑞 − 1.

3. Existence: Take a field extension where 𝑥𝑞 − 𝑥 splits completely. If 𝛼, 𝛽 are roots of
𝑥𝑞 − 𝑥 = 0 then (𝛼+ 𝛽)𝑞 = 𝛼+ 𝛽. Since −1 is a root, −𝛼 is a root. The roots form a
field.
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Uniqueness: Suppose 𝐾,𝐾 ′ have order 𝑞. Let 𝛼 be a generator of 𝐾×; then 𝐾 = 𝐹 (𝛼).
The irreducible polynomial 𝑓 ∈ 𝐾[𝑋] with root 𝛼 divides 𝑥𝑞−𝑥. 𝑥𝑞−𝑥 splits completely
in both 𝐾,𝐾 ′, so 𝑓 has a root 𝛼′ ∈ 𝐾 ′. Then 𝐹 (𝛼) ∼= 𝐹 [𝑥]/(𝑓) ∼= 𝐹 (𝛼′) = 𝐾 ′.

4. F𝑝𝑘 ⊆ F𝑝𝑟 =⇒ 𝑘 | 𝑟: Multiplicative property of the degree.

F𝑝𝑘 ⊆ F𝑝𝑟 ⇐ 𝑘 | 𝑟: 𝑝𝑟 − 1 | 𝑝𝑘 − 1. Cyclic F×
𝑝𝑟 contains a cyclic group of order 𝑝𝑘.

Including 0, they are the roots of 𝑥𝑝
𝑘 − 𝑥 = 0 and thus form a field by 3a.

5. =⇒ : Multiplicative property.

⇐: Let 𝛽 be a root of 𝑔. If 𝑘 | 𝑟, by 4, F𝑞 contains a subfield isomorphic to 𝐹 (𝛽). 𝑔
has a root in F𝑞 so divides 𝑥𝑞 − 𝑥.

6. F𝑞 (𝑞 = 𝑝𝑟) has degree 𝑟 over F𝑝 and has a cyclic multiplicative group generated by an
element 𝛼. F𝑝(𝛼) has degree 𝑟 over F𝑝.

To compute in F𝑞, take a root 𝛽 of the irreducible factor of 𝑥𝑞−𝑥 of degree 𝑟; (1, 𝛽, . . . , 𝛽𝑟−1)
is a basis.

Let 𝑊𝑝(𝑑) be the number of irreducible monic polynomials of degree 𝑑 in F𝑝. Then by 2,

𝑝𝑛 =
∑︁
𝑑|𝑛
𝑑𝑊𝑝(𝑑).

By Möbius inversion,

𝑊𝑝(𝑛) =
1

𝑛

∑︁
𝑑|𝑛
𝜇
�𝑛
𝑑

�
𝑝𝑑.

Theorem 11.1.2: The Galois group 𝐺(F𝑞𝑟/F𝑞) is cyclic of order 𝑟 generated by the Frobe-
nius automorphism

𝜑(𝑥) = 𝑥𝑞.

Definition 11.1.3: Let 𝐿 be a field extension of 𝐾. An element 𝛼 ∈ 𝐾 such that 𝐿 = 𝐾(𝛼)
is a primitive element for the extension.

Theorem 11.1.4 (Primitive element theorem): Every finite extension of a field 𝐾 contains
a primitive element.

Proof. Need a general proof!

2 Quadratic reciprocity via finite fields

We work in F𝑝. Since
(︁
𝑝
𝑞

)︁
= 𝑝

𝑞−1
2 , we will explicitly find an element 𝛼 such that 𝛼2 = ±𝑝.

Then
(︁
𝑝
𝑞

)︁
= 𝛼𝑞−1.
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Let 𝜁𝑞 be a primitive 𝑞th root of unity and consider the Gauss sum

𝛼 =
𝑞−1∑︁
𝑗=1

�
𝑗

𝑞

�
𝜁𝑗𝑞 .

All inverses below are modulo 𝑞. We calculate 𝛼𝑞−1 in two different ways.

Step 1: We calculate

𝛼2 =
𝑞−1∑︁
𝑗=1

𝑞−1∑︁
𝑘=1

�
𝑗

𝑞

��
𝑘

𝑞

�
𝜁𝑗+𝑘𝑞

=
𝑞−1∑︁
𝑗=1

𝑞−1∑︁
𝑘=1

�
𝑗𝑘

𝑞

�
𝜁𝑗+𝑘𝑞

�∙
𝑞

�
is group homomorphism

=
𝑞−1∑︁
𝑠=0

�
𝜁𝑠𝑞

𝑞−1∑︁
𝑗=1

�
𝑗(𝑠− 𝑗)

𝑞

��
(11.1)

(When 𝑠 = 𝑗 the terms are 0.)

1. When 𝑠 ̸= 0, noting 1 − 𝑠𝑗−1 ranges over F𝑞 − {1} when 𝑠 ranges over F𝑞 − {0}, we
have

𝑞−1∑︁
𝑗=1

�
𝑗(𝑠− 𝑗)

𝑞

�
=

𝑞−1∑︁
𝑗=1

�−1
𝑞

��
𝑗2

𝑞

��
1− 𝑠𝑗−1

𝑞

�
=

𝑞−1∑︁
𝑗=1

(−1)
𝑞−1
2

�
1− 𝑠𝑗−1

𝑞

�
= (−1)

𝑞−1
2

��
𝑞−1∑︁
𝑗=0

�
𝑗

𝑞

��
−
�
1

𝑞

��
= −(−1)

𝑞−1
2 .

The last step comes from noting that there are as many quadratic residues as non-
residues.

2. When 𝑠 = 0, we have

𝑞−1∑︁
𝑗=1

�
𝑗(𝑠− 𝑗)

𝑞

�
=

�−1
𝑞

��
𝑗2

𝑞

�
(𝑞 − 1) = (−1)

𝑞−1
2 (𝑞 − 1).

Hence the sum (11.1) equals

(−1)
𝑞−1
2

�
(𝑞 − 1)−

𝑞−1∑︁
𝑗=1

𝜁𝑞

�
= (−1)

𝑞−1
2 𝑞
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and

𝛼𝑝−1 = (𝛼2)
𝑝−1
2 = [(−1)

𝑞−1
2 𝑞]

𝑝−1
2 = (−1)

𝑝−1
2

· 𝑞−1
2 𝑞

𝑝−1
2 = (−1)

𝑝−1
2

· 𝑞−1
2

�
𝑞

𝑝

�
.

Step 2:Since the Frobenius map is an endomorphism, we have that

𝛼𝑝 =
𝑞−1∑︁
𝑗=1

�
𝑗

𝑞

�𝑝
�
���
1

𝜁𝑝𝑗𝑞

=
𝑞−1∑︁
𝑗=1

�
𝑗𝑝−1

𝑞

�
𝜁𝑝𝑞 since 𝑝 ≡ 1 (mod 2)

=

�
𝑝

𝑞

� 𝑞−1∑︁
𝑗=1

�
𝑗

𝑞

�
𝜁𝑝𝑞

=

�
𝑝

𝑞

�
𝛼

so 𝛼𝑝−1 =
(︁
𝑝
𝑞

)︁
.

Equating the results of stpes 1 and 2 gives the result.

3 Chevalley-Warning

Lemma 11.3.1: ∑︁
𝛼∈F𝑞

𝛼𝑛 =

⎧⎨⎩0 if 𝑞 − 1 - 𝑛
1 if 𝑞 − 1 | 𝑛.

Proof. If 𝑞 − 1 | 𝑛 then 𝛼𝑛 = 1 for all 𝛼 ∈ F𝑞, so the sum is 0.
If 𝑞 − 1 - 𝑛 then (since F×

𝑞
∼= Z/(𝑞 − 1)Z) there exists 𝛽 ∈ F×

𝑞 such that 𝛽𝑛 ̸= 1.
Multiplication by 𝛽 is a bijection on F𝑞 so∑︁

𝛼∈F𝑞

𝛼𝑛 =
∑︁
𝛼∈F𝑞

(𝛼𝛽)𝑛𝛽𝑛
∑︁
𝛼∈F𝑞

𝛼𝑛.

Thus the sum must be 0.

Theorem 11.3.2 (Chevalley-Warning): Let 𝑓1, . . . 𝑓𝑘 ∈ F𝑞[𝑋1, . . . , 𝑋𝑛] be polynomials with

𝑘∑︁
𝑗=1

deg(𝑓𝑗) < 𝑛.

Let 𝑉 (𝑓1, . . . , 𝑓𝑘) = {(𝑥1, . . . , 𝑥𝑛) : 𝑓𝑗(𝑥1, . . . , 𝑥𝑛) = 0 for all 𝑛}. Then

|𝑉 (𝑓1, . . . , 𝑓𝑘)| ≡ 0 (mod 𝑝).

In particular, there is a nontrivial point in 𝑉 (𝑓1, . . . , 𝑓𝑘).
1

1This result says that finite fields are 𝐶1 fields.
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Proof. We engineer a polynomial that is 1 when 𝑥 ∈ 𝑉 (𝑓1, . . . , 𝑓𝑘) and 0 otherwise:

𝑃 (𝑋1, . . . , 𝑋𝑛) :=
𝑘∏︁
𝑗=1

(1− 𝑓𝑗(𝑋1, . . . , 𝑋𝑛)
𝑞−1).

Indeed,

𝑓𝑗(𝑥1, . . . , 𝑥𝑛)
𝑞−1 =

⎧⎨⎩1, 𝑓𝑗(𝑥1, . . . , 𝑥𝑛) ̸= 0

0, 𝑓𝑗(𝑥1, . . . , 𝑥𝑛) = 0
,

so

1− 𝑓𝑗(𝑥1, . . . , 𝑥𝑛)𝑞−1 =

⎧⎨⎩0, 𝑓𝑗(𝑥1, . . . , 𝑥𝑛) ̸= 0

1, 𝑓𝑗(𝑥1, . . . , 𝑥𝑛) = 0
,

and multiplying gives the desired conclusion.
Hence we can count the number of points in 𝑉 (𝑓1, . . . , 𝑓𝑛) as follows:

|𝑉 (𝑓1, . . . , 𝑓𝑛)| =
∑︁

(𝑥1,...,𝑥𝑛)∈F𝑛
𝑞

𝑃 (𝑥1, . . . , 𝑥𝑛). (11.2)

Note

deg𝑃 = (𝑞 − 1)
𝑘∑︁
𝑗=1

deg(𝑓𝑗) < (𝑞 − 1)𝑛

so each term in 𝑃 (𝑋1, . . . , 𝑋𝑛) is in the form

𝑋𝑎1
1 · · ·𝑋𝑎𝑛

𝑛

with 𝑎1 + · · ·+ 𝑎𝑛 < (𝑞− 1)𝑛; this means 𝑎𝑗 < 𝑞− 1 for some 𝑗. Then
∑︀
𝑥𝑗∈F𝑞

𝑥𝑎11 · · ·𝑥𝑎𝑛𝑛 ≡ 0
(mod 𝑝) by Lemma 11.3.1 so (after summing over the other 𝑥𝑖) this term contributes 0
modulo 𝑝 to the sum in 11.2. Summing over all terms gives the result.

Theorem 11.3.3 (Erdős-Ginzburg-Ziv): From any set of 2𝑛−1 integers there exist 𝑛 whose
sum is divisible by 𝑛.

Proof. We first prove the result for 𝑛 = 𝑝 prime.
Let 𝑆 = {𝑎1, . . . , 𝑎2𝑝−1}. Associate a subset 𝑇 to any (2𝑝− 1)-tuple (𝑥1, . . . , 𝑥2𝑝−1) ∈ F𝑝

where 𝑥𝑘 ̸= 0 iff 𝑎𝑘 ∈ 𝑇 . We will translate the condition on 𝑇 into equations in the 𝑥𝑘.
Consider

𝑓1(𝑥) := 𝑥𝑝−1
1 + · · ·+ 𝑥𝑝−1

2𝑝−1

𝑓2(𝑥) := 𝑎1𝑥
𝑝−1
1 + · · ·+ 𝑎2𝑝−1𝑥

𝑝−1
2𝑝−1

in F𝑝. The first equation is 0 iff |𝑇 | ≡ 0 (mod 𝑝), while the second is 0 iff
∑︀
𝑎∈𝑇 𝑎 ≡ 0

(mod 𝑝). We have deg 𝑓1 + deg 𝑓2 = 2(𝑝− 1) < 2𝑝− 1 so by Chevalley-Warning the number
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of solutions is a multiple of 𝑝. Since (0, . . . , 0) is a solution, there must be another one. That
solution must correspond to a subset of size 𝑝 and hence satisfies the required conditions.

Next suppose that the theorem holds for 𝑚,𝑛 relatively prime; we show it holds for 𝑚𝑛.
Given 𝑟 > 2𝑚 − 1 elements, by assumption there will be a subset 𝑇 of 𝑚 elements whose
sum is divisible by 𝑚. We start with a set 𝑆 of 2𝑚𝑛− 1 integers; continue to pick subsets of
size 𝑚 as described. After 𝑘 steps we will have 𝑚(2𝑛 − 𝑘) − 1 elements, so we will be able
to carry out 2𝑛− 1 steps and get

𝑇1, . . . , 𝑇2𝑛−1.

Let the sums of elements of these sets be 𝑡1, . . . , 𝑡2𝑛−1. By the hypothesis for 𝑛, we can find
a subset of 𝑛 elements, say 𝑡𝑗1 , . . . , 𝑡𝑗𝑛 with sum divisible by 𝑛. Then

𝑇𝑗1 ∪ · · · ∪ 𝑇𝑗𝑛

has 𝑚𝑛 elements and sum divisible both by 𝑚 and 𝑛, hence by 𝑚𝑛.

Problems

1. If 𝑘 is infinite and 𝑃 is a nonzero polynomial in 𝑘[𝑥1, . . . , 𝑥𝑛], then there exist 𝑡1, . . . , 𝑡𝑛
such that 𝑃 (𝑡1, . . . , 𝑡𝑛) ̸= 0.

Solution: Induct on 𝑛. For 𝑛 = 1, the polynomial can have at most 𝑛 roots so the
assertion holds. Suppose it’s proved for 𝑛−1 and 𝑃 ∈ 𝑘[𝑡1, . . . , 𝑡𝑛]. Since 𝑘[𝑡1, . . . , 𝑡𝑛−1]
has infinitely many elements, thinking of 𝑃 as a polynomial of 𝑡𝑛 with coefficients in
𝑘[𝑡1, . . . , 𝑡𝑛−1], some element in 𝑘[𝑡1, . . . , 𝑡𝑛−1] is not a zero of 𝑃 . Set 𝑡𝑛 to be this
element to get a nonzero element of 𝑘[𝑡1, . . . , 𝑡𝑛−1]. By the induction hypothesis we
can find values for 𝑡1, . . . , 𝑡𝑛−1 so that the polynomial does not evaluate to 0; substitute
these values into the polynomial for 𝑡𝑛 to get 𝑡𝑛.

4 Problems

1. (Harvard Quals, 2013/2.4)

(a) Let 𝐾/𝐹 be a field extension of degree 2𝑛+1 generated by 𝑡. Prove that for every
𝑐 ∈ 𝐾 there exists a unique rational function 𝑓 ∈ 𝐹 [𝑇 ] such that deg(𝑓) ≤ 𝑛 and
𝑐 = 𝑓(𝑡). (The degree of a rational function 𝑓 is the smallest 𝑑 such that 𝑓 = 𝑃

𝑄

for polynomials 𝑃 , 𝑄 each of degree at most 𝑑.)

(b) Deduce that if [𝐾 : 𝐹 ] = 3 then PGL2(𝐹 ) acts simply transitively by fractional
linear transformations on 𝐾∖𝐹 (the complement of 𝐹 in 𝐾). If |𝐹 | = 𝑞 < ∞,
compute PGL2(𝐹 ) directly, and verify that it equals |𝐾| − |𝐹 |.
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Chapter 12

Galois Theory

1 Galois groups and Galois extensions

Definition 12.1.1: The Galois group of an extension 𝐿/𝐾, denoted

Gal(𝐿/𝐾) = 𝐺(𝐿/𝐾)

is the group of field automorphisms of 𝐿 fixing 𝐾.

Also talk about stuff from an embedding point of view.

Definition 12.1.2: A Galois extension of 𝐾 is a normal, separable extension.

Theorem 12.1.3: Suppose 𝐿/𝐾 is a finite field extension. 𝐿/𝐾 is a Galois extension if and
only if

|𝐺(𝐿/𝐾)| = [𝐿 : 𝐾].

2 Fixed fields

Definition 12.2.1: Let 𝐻 be a group of automorphisms of a field 𝐾. The fixed field of
𝐻, 𝐾𝐻 , is the set of elements of 𝐾 fixed by every group element.

𝐾𝐻 = {𝛼 ∈ 𝐾 : 𝜎(𝛼) = 𝛼 for every 𝜎 ∈ 𝐻} .

The following relationship between 𝐻 and 𝐾𝐻 will be instrumental in proving the Fun-
damental Theorem of Galois Theory.

Theorem 12.2.2 (Fixed field theorem): 1. [𝐾 : 𝐾𝐻 ] = |𝐻|: The degree of 𝐾 over 𝐾𝐻

is the order of the group.

2. 𝐻 = 𝐺(𝐾/𝐾𝐻): 𝐾 is a Galois extension of 𝐾𝐻 with Galois group 𝐻.

Proof.
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3 Splitting fields

Definition 12.3.1: A splitting field of 𝑓 ∈ 𝐾[𝑋] over 𝐾 is an extension 𝐿/𝐾 such that

1. 𝑓 splits completely in 𝐾: 𝑓 = (𝑋 − 𝛼1) · · · (𝑋 − 𝛼𝑛), 𝛼𝑘 ∈ 𝐾.

2. 𝐿 = 𝐾(𝛼1, . . . , 𝛼𝑛).

A splitting field is a finite extension, and every finite extension is contained in a splitting
field.

The following shows that the splitting property of a splitting field is in a sense independent
of the polynomial chosen. This will help us relate splitting fields to Galois extensions.

Definition 12.3.2: A field extension 𝐿/𝐾 is normal if every polynomial 𝑔(𝑋) ∈ 𝐾[𝑋]
with one root in 𝐾 splits completely in 𝐾.

Theorem 12.3.3 (Splitting theorem): The normal extensions 𝐿/𝐾 are exactly the splitting
fields of polynomials in 𝐾[𝑋].

Move this to before Galois extensions so “normal” extension is defined.

Proof. Suppose 𝑔(𝑋) has the root 𝛽 ∈ 𝐾. Then 𝑝1(𝛼1, . . . , 𝛼𝑛) = 𝛽 for some 𝑝1 ∈ 𝐾[𝑋1, . . . , 𝑋𝑛].
Let 𝑝1, . . . , 𝑝𝑘 be the orbit of 𝑝1 under the symmetric group. Then

∏︀𝑘
𝑖=1(𝑋−𝑝𝑖(𝛼1, . . . , 𝛼𝑛)) ∈

𝐾[𝑋] by symmetry so it is divisible by 𝑔(𝑋), the irreducible polynomial of 𝛽.

The order of 𝐺 = 𝐺(𝐿/𝐾) divides [𝐿 : 𝐾], since

[𝐿 : 𝐾] = [𝐿 : 𝐿𝐺]⏟  ⏞  
|𝐺|

[𝐿𝐺 : 𝐾].

Theorem 12.3.4 (Characteristic properties of Galois extensions): For a finite extension
𝐿/𝐾, the following are equivalent. Merge with |𝐺| = [𝐿 : 𝐾]?

1. 𝐿/𝐾 is a Galois extension.

2. 𝐿𝐺(𝐿/𝐾) = 𝐿.

3. 𝐿 is a splitting field over 𝐾.

Proof. (1) ⇐⇒ (2): By the Fixed Field Theorem, |𝐺| = [𝐿 : 𝐿𝐺].
(1) ⇐⇒ (3): Let 𝛾1 be a primitive element for 𝐿 with irreducible polynomial 𝑓 . Let

𝛾1, . . . , 𝛾𝑟 be the roots of 𝑓 in 𝐿. There is a unique 𝐾-automorphism 𝜎𝑖 sending 𝛾1 ↦→ 𝛾𝑖
for each 𝑖 and these make up the group 𝐺(𝐿/𝐾). Thus the order of 𝐺(𝐿/𝐾) is equal to the
number of conjugates of 𝛾1 in 𝐿. Hence we get the following chain of equivalences.

1. 𝐿/𝐾 Galois
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2. |𝐺| = [𝐿 : 𝐿𝐺]

3. 𝑓 splits completely in 𝐾

4. 𝐾 is a splitting field.

Proposition 12.3.5 (Properties of the Galois group): If 𝐿/𝐾 is a Galois extension, and
𝑔 ∈ 𝐾[𝑋] splits completely in 𝐿 with roots 𝛽1, . . . , 𝛽𝑟, then

1. 𝐺 operates on the set of roots 𝛽𝑖.

2. 𝐺 operates faithfully if 𝐿 is a splitting field of 𝑔 over 𝐾.

3. 𝐺 operates transitively if 𝑔 is irreducible over 𝐾.

4. If 𝐿 is the splitting field of irreducible 𝑔, then 𝐺 embeds as a transitive subgroup of
𝑆𝑟.

4 Fundamental theorem of Galois theory

Theorem 12.4.1 (Fundamental theorem of Galois theory): Let 𝐿/𝐾 be a finite Galois
extension and let 𝐺 = 𝐺(𝐿/𝐾). Then there is a bijection between subgroups of 𝐺 and
intermediate fields, defined by

𝐻 ↦→ 𝐾𝐻

𝐺(𝐿/𝐾 ′)←[ 𝐾 ′.

Moreover, letting 𝐾 ′ = 𝐾𝐻 , 𝐾 ′/𝐾 is a Galois extension iff 𝐻 is a normal subgroup of 𝐺. If
so, then 𝐺(𝐾 ′/𝐾) ∼= 𝐺/𝐻. [Diagram here.]

Proof. Let 𝛾1 be a primitive element for 𝐾 ′/𝐾 and 𝑔 the irreducible polynomial for 𝛾1 over
𝐾. Let the roots of 𝑔 in 𝐾 be 𝛾1, . . . , 𝛾𝑟. For 𝜎 ∈ 𝐺, 𝜎(𝛾1) = 𝛾1, the stabilizer of 𝛾𝑖 is
𝜎𝐻𝜎−1. Thus 𝜎𝐻𝜎−1 = 𝐻 if and only if 𝛾𝑖 ∈ 𝐾 ′ = 𝐾𝐻 . 𝐻 is normal iff all 𝛾𝑖 ∈ 𝐿 iff 𝐾 ′/𝐾
Galois. Restricting 𝜎 to 𝐿 gives a homomorphism 𝜙 : 𝐺→ 𝐺(𝐾 ′/𝐾) with kernel 𝐻.

Definition 12.4.2: A normal basis of a Galois extension 𝐿/𝐾 is a basis in the form

{𝜎(𝛽) : 𝜎 ∈ 𝐺(𝐿/𝐾)}

for some 𝛽 ∈ 𝐿.

Theorem 12.4.3 (Normal basis theorem): Every Galois extension has a normal basis.
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Proof. Write 𝐺(𝐿/𝐾) = {𝜎1, . . . , 𝜎𝑚}. Consider two cases.

Case 1: 𝐾 is infinite. We show the following.

Lemma 12.4.4: If 𝑓 ∈ 𝐾[𝑋1, . . . , 𝑋𝑚] is such that 𝑓(𝜎1𝛼, . . . , 𝜎𝑚𝛼) = 0 for all 𝛼 ∈ 𝐸, then
𝑓 = 0.

Proof. Let 𝑋 = (𝑋1, . . . , 𝑋𝑚)
𝑇 ; we write 𝑓(𝑋) for 𝑓(𝑋1, . . . , 𝑋𝑚). Let 𝑌 = (𝑌1, . . . , 𝑌𝑚),

and define

𝑔(𝑌 ) = 𝑔

�
𝜎1𝛼1 · · · 𝜎1𝛼𝑚
...

. . .
...

𝜎𝑚𝛼1 · · · 𝜎𝑚𝛼𝑚

�
𝑋.

Then by assumption 𝑔(𝛼) = 0 for each 𝛼 ∈ 𝐾. Since 𝐾 is infinite 𝑔 is the zero polynomial.

Add proof. Note the matrix

� 𝜎1𝛼1 ··· 𝜎1𝛼𝑚

...
. . .

...
𝜎𝑚𝛼1 ··· 𝜎𝑚𝛼𝑚

�
is invertible (this is corollary of indep. of char

- ADD). Hence 𝑓 must also be the zero polynomial.

Let 𝐴 be the matrix with 𝑋𝑘 in entry (𝑖, 𝑗) if 𝜎𝑖 ∘ 𝜎𝑗 = 𝜎𝑘. Let

𝑓(𝑋1, . . . , 𝑋𝑚) = det(𝐴).

Note 𝑓(1, 0, . . . , 0) is the determinant of a permutation matrix (since given any 𝑔, ℎ in a
group, there is exactly one element 𝑘 and one element 𝑙 so that 𝑙𝑔 = 𝑔𝑘 = ℎ), so equals ±1.
This shows 𝑓 is not the zero polynomial. Therefore, by Lemma 12.4.4, there exists 𝛼 ∈ 𝐾
such that 𝑓(𝜎1𝛼, . . . , 𝜎𝑚𝛼) ̸= 0. Suppose that 𝑎1, . . . , 𝑎𝑚 ∈ 𝐾 and

𝑚∑︁
𝑘=1

𝑎𝑘𝜎𝑘(𝛼) = 0.

Then
𝑚∑︁
𝑘=1

𝑎𝑘𝜎𝑖𝜎𝑘(𝛼) = 0

for all 𝑖. Think of this as a system in the 𝑎𝑖. The matrix corresponding to this system is
det(𝐴) ̸= 0, so all the 𝑎𝑖 = 0. This shows that 𝜎𝑘(𝛼) are linearly independent.

Case 2: 𝐾 is a finite field. Then the Galois group is cyclic (Theorem ??); say 𝐺 = ⟨𝜎⟩. By
independence of characters, 𝐼, 𝜎, . . . , 𝜎𝑛−1 are linearly independent so the minimal polynomial
of 𝜎 is 𝑋𝑛 − 1. Consider 𝐿 as a 𝐾[𝜎] ∼= 𝐾[𝑋]/(𝑋𝑛 − 1)-module. By the structure theorem
for modules, we have

𝐿 ∼= 𝐾[𝑋]/(𝑝1)⊕ · · · ⊕𝐾[𝑋]/(𝑝𝑚)

for some polynomials (𝑝1) dividing 𝑋
𝑛 − 1 with 𝑝1 | · · · | 𝑝𝑚. Since the minimal polynomial

of 𝜎 is 𝑋𝑛− 1, we must have 𝑝𝑚 = 𝑋𝑛− 1. But [𝐿 : 𝐾] = 𝑛 so 𝑚 = 1 and 𝐿 ∼= 𝐾[𝑋].1 This
means there exists an element 𝛼 such that 𝛼, 𝜎𝛼, . . . , 𝜎𝑛−1𝛼 generate 𝐿 over 𝐾.

1Compare this to the proof of primitive elements in finite fields.
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5 Cubic and quartic equations

6 Quintic equations

Theorem 12.6.1 (Quintic impossibility theorem):

7 Inverse limits and profinite groups

To study infinite Galois groups, it is fruitful to view them as the “limit” of finite Galois
groups. Thus we first introduce the notion of an inverse limit. This gives infinite Galois
groups the structure of a profinite group, and its topology becomes important.

7.1 Limits

We will eventually care about limits not just for abelian groups but also topological groups,
modules, and so forth. To take care of all this in one fell swoop, we introduce a bit of
abstraction, via category theory.

Definition 12.7.1: A category 𝒞 is a collection of objects and morphisms (or maps).
Each morphism 𝜙 has a source and target object 𝐴 and 𝐵; let Hom𝒞(𝐴,𝐵) be the set of
morphisms from 𝐴 to 𝐵. There is a composition law

Hom𝒞(𝐴,𝐵)× Hom𝒞(𝐵,𝐶)→ Hom𝒞(𝐴,𝐶)

(𝛼, 𝛽) ↦→ 𝛽 ∘ 𝛼

satisfying the following:

1. For each object 𝐵 there exists an identity morphism 1𝐵 ∈ Hom𝒞(𝐵,𝐵) such that
1𝐵 ∘ 𝛼 = 𝛼 for any 𝛼 ∈ Hom𝒞(𝐴,𝐵) and 𝛽 ∘ 1𝐵 = 𝛽 for any 𝛽 ∈ Hom𝒞(𝐵,𝐶).

2. Composition is associative:

𝛾 ∘ (𝛽 ∘ 𝛼) = (𝛾 ∘ 𝛽) ∘ 𝛼

for any 𝛼 ∈ Hom𝒞(𝐴,𝐵), 𝛽 ∈ Hom𝒞(𝐵,𝐶), and 𝛾 ∈ Hom𝒞(𝐶,𝐷).

A morphism 𝛼 ∈ Hom𝒞(𝐴,𝐵) is an isomorphism if there exists 𝛽 ∈ Hom𝒞(𝐵,𝐴) such
that 𝛽 ∘ 𝛼 = 1𝐴 and 𝛼 ∘ 𝛽 = 1𝐵.

Example 12.7.2: 2 We can often think of the objects as sets, possibly endowed with extra
structure, and morphisms as maps between them preserving the structure.

2We have to be careful about the word “sets”... See [Mac71] for all the stuff we’re sweeping under the
rug.
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1. ((Sets)) Objects: sets. Morphisms: functions.

2. ((Rings)) Objects: rings. Morphisms: ring homomorphisms.

3. ((𝑅-mod)), where 𝑅 is a ring. Objects: 𝑅-modules. Morphisms: ring homomorphisms.

4. ((Groups)) Objects: groups. Morphisms: group homomorphisms.

(a) ((Ab Groups)) Objects: abelian groups. Morphisms: group homomorphisms.

5. ((Top)) Objects: topological spaces. Morphisms: Continuous maps.

6. ((Top Groups)) Objects: topological groups.3 Morphisms: Continuous homomor-
phisms.

However, objects in categories do not have to be sets. For instance, any poset 𝑆 can be
turned into a category, by letting the elements be the objects, and declaring a morphism 𝜙𝑖𝑗
whenever 𝑖, 𝑗 ∈ 𝑆 and 𝑖 4 𝑗.

Definition 12.7.3: Let 𝒞 be a category. Let {𝐴𝑖} and {𝜙𝑖𝑗} be a set of objects in 𝒞 and
homomorphisms between them.4 We say that ({𝐴𝑖}, {𝜙𝑖𝑗}) form a inverse (or projective)
system if the following two conditions are satisfied.

1. For every 𝐴𝑖 ̸= 𝐴𝑗 there exists 𝐴𝑘 such that there are morphisms 𝜙𝑘𝑖 : 𝐴𝑘 → 𝐴𝑖 and
𝜙𝑘𝑗 : 𝐴𝑘 → 𝐴𝑗.

𝐴𝑖

𝐴𝑘

𝜙𝑘
𝑖

>>

𝜙𝑖
𝑗   

𝐴𝑗

2. For every pair of maps 𝜙𝑗𝑘 : 𝐴𝑗 → 𝐴𝑘 and 𝜙′𝑗
𝑘 : 𝐴𝑗 → 𝐴𝑘 there exists a map5 𝛼𝑖𝑗 : 𝐴𝑖 →

𝐴𝑗 such that 𝜙𝑗𝑘 ∘ 𝜙𝑖𝑗 = 𝜙𝑗𝑘 ∘ 𝜙′𝑖
𝑗 .

In our applications there will only ever be one map 𝐴𝑖 → 𝐴𝑗, so the second condition is
empty.

Finally, we define the notion of inverse limit.

3Groups endowed with a topology such that multiplication is continuous on 𝐺×𝐺 and taking the inverse
is continuous.

4We’re allowed to have different maps between 𝐴𝑖 and 𝐴𝑗 ; however in our examples we usually won’t.
5called the equalizer
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Definition 12.7.4: Let {𝐴𝑖} and {𝜙𝑖𝑗} be a set of objects in 𝒞 and homomorphisms between
them. Suppose that {𝜙𝑖𝑗} is closed under composition.6 We say a sequence of maps 𝛼𝑖 : 𝐴→
𝐴𝑖 is compatible if for every map 𝜙𝑖𝑗 : 𝐴𝑖 → 𝐴𝑗 in our set of maps,

𝛼𝑗 = 𝜙𝑖𝑗 ∘ 𝛼𝑖.

The inverse limit
𝐴 = lim←−𝐴𝑖

is the unique object in 𝒞 (up to isomorphism) with compatible maps 𝛼𝑖, satisfying the
following universal mapping property (UMP): For every object 𝐵 with compatible maps 𝛽𝑖,
there is a map 𝜙 : 𝐵 → 𝐴 such that 𝛽𝑖 = 𝛼𝑖 ∘ 𝜙 for every 𝑖, i.e. the following commutes:

cone 𝐵

𝛽𝑖

��

𝜙
��

𝛽𝑗

��

𝐴
𝛼𝑖

��

𝛼𝑗

  

𝐴𝑖
𝜙𝑖
𝑗

// 𝐴𝑗.

(12.1)

This is a very abstract definition, but we will be able to construct 𝐴 explicitly in the
cases we care about. Uniqueness follows from the UMP; the inverse limit exists for all inverse
systems if and only if 𝒞 has products and equalizers. (See 18.705 notes.)

Theorem 12.7.5: inv-limit-comp-seq Suppose 𝒞 is ((Sets)), ((Groups)), ((𝑅-mod)), or ((𝑅-alg)).
If ({𝐴𝑖}, {𝜙𝑖𝑗}) is an inverse system, then lim←−𝐴𝑖 can be realized as the set of all sequences⌋︀

(𝑎𝑖) : 𝑎𝑖 ∈ 𝐴𝑖, 𝜙𝑖𝑗(𝑎𝑖) = 𝑎𝑗 for all 𝜙
𝑖
𝑗

{︀
,

with the natural module or algebra structure, as applicable.

Proof. Just verify that the UMP is satisfied.

Example 12.7.6: The ring of 𝑝-adic integers

Z𝑝 = lim←−Z/𝑝𝑛Z

is defined the inverse limit of ({Z/𝑝𝑛Z}𝑛∈Z, 𝜙𝑛𝑚) where 𝜙𝑛𝑚 : Z/𝑝𝑛Z → Z/𝑝𝑚Z, for 𝑛 ≥ 𝑚,
are the natural projection maps. An element of Z𝑝 can be thought of as a number modulo
arbitrarily high powers of 𝑝. We have an injective map Z →˓ Z𝑝, but there are elements of
Z𝑝 not in Z (think this through).

We will explore 𝑝-adics in depth in Chapter 20.

6Equivalently, the 𝐴𝑖 and 𝜙
𝑖
𝑗 are indexed by a category, i.e. there is a functor from a small category into

𝒞.
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Example 12.7.7: zhat Define ÒZ = lim←−Z/𝑛Z

as the inverse limit of ({Z/𝑛Z}𝑛∈Z, 𝜙𝑛𝑚), where the maps 𝜙𝑛𝑚 : Z/𝑛Z → Z/𝑚Z with 𝑚 | 𝑛
are given by projection.

In the next section we will interpret these limits not just as limit of groups, but of
topological groups.

7.2 Profinite groups

profinite We assume knowledge of topology (continuous maps, compactness, separation axioms,
connectedness, product topology, Tychonoff’s theorem).

Definition 12.7.8: A profinite group is a inverse limit lim←−𝑖∈𝐼 𝐺𝑖 of finite discrete topo-
logical groups 𝐺𝑖.

Suppose that 𝜙𝑖 : 𝐺→ 𝐺𝑖 are all surjective. The order #𝐺 of 𝐺 is the formal product∏︁
𝑝

𝑝max𝑖∈𝐼 𝑣𝑝(|𝐺𝑖|).

In other words it is the “least common multiple” of the |𝐺𝑖|.

We know that if we only consider the 𝐺𝑖 as groups, then by Theorem 12.7.5, the inverse
limit can be described as the the set of tuples (𝑔𝑖)𝑖∈𝐼 such that 𝜙𝑖𝑗(𝑔𝑖) = 𝑔𝑗 for every transition
map 𝜙𝑖𝑗 : 𝐺𝑖 → 𝐺𝑗. But we need to show that the inverse limit is well-defined when the 𝐺𝑖

are topological groups. We give a topology on the inverse limit of groups, lim←−𝑖∈𝐼 𝐺𝑖, so that it

satisfies the UMP for the inverse limit of topological groups. (In the category of topological
groups, homomorphisms must be continuous.)

Proposition 12.7.9: Give

𝐺 = lim←−
groups

𝐺𝑖

the following topology: Equip each finite group 𝐺𝑖 with the discrete topology and
∏︀
𝑖∈𝐼 𝐺𝑖

with the product topology. Then 𝐺 = lim←−𝑖∈𝐼 𝐺𝑖 is the closed subspace of
∏︀
𝑖∈𝐼 𝐺𝑖 of compat-

ible sequences; give it the subspace topology.

Then

𝐺 = lim←−
top. group

𝐺𝑖.

Proof. We show that 𝐺 satisfies the UMP.

First, note that the maps 𝜙𝑖 : 𝐺 → 𝐺𝑖 are continuous. Indeed for any open 𝑈𝑖 ∈ 𝐺𝑖,
letting 𝜋𝑖 be the projection map

∏︀
𝑖∈𝐼 𝐺𝑖, 𝜋

−1
𝑖 (𝑈𝑖) is open. Hence 𝜙−1

𝑖 (𝑈𝑖) = 𝜋−1
𝑖 (𝑈𝑖) ∩ 𝐺 is

open in 𝐺.
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Now let 𝐻 be a topological group with compatible maps 𝛽𝑖 : 𝐻 → 𝐺𝑖. In order for 12.1
to commute, we must define

𝜙(ℎ) = (𝛽𝑖(ℎ))𝑖.

This is a continuous map 𝛽𝑖 : 𝐻 →
∏︀
𝑖𝐺𝑖 because it is the product of continuous maps; it is

also a homomorphism. Its image is in 𝐺 ⊆ ∏︀𝑖𝐺𝑖 because the 𝛽𝑖 are compatible. Since 𝐺 is
given the subspace topology, 𝛽 is continuous, as desired.

The following characterizes the topology of profinite groups.

Proposition 12.7.10: A topological group 𝐺 is profinite iff it is compact, Hausdorff, and
totally disconnected.

Proof. First suppose 𝐺 = lim←−𝑖∈𝐼 𝐺𝑖 is profinite.

1.
∏︀
𝑖∈𝐼 𝐺𝑖 is compact by Tychonoff’s Theorem (an arbitrary product of compact spaces

is compact) so the closed subspace 𝐺 is compact.

2. Given 𝑔 = (𝑔𝑖) and ℎ = (ℎ𝑖), suppose 𝑔𝑖 ̸= ℎ𝑖. Partition 𝐺𝑖 into two sets 𝐴 and 𝐵
containing 𝑔𝑖 and ℎ𝑖, respectively. Then 𝛼

−1
𝑖 (𝑔𝑖) and 𝛼

−1
𝑗 (𝑔𝑗) are disjoint clopen (open

and closed) sets containing 𝑔 and ℎ, respectively. This shows that 𝐺 is Hausdorff and
totally disconnected.

The converse is left as an exercise (we won’t need it).

Profinite groups can be constructed from arbitrary abelian groups as follows.

Definition 12.7.11: Let 𝐺 be a group. Define the profinite completion of 𝐺 to beÒ𝐺 = lim←−
𝑁 normal of finite index

𝐺/𝑁

with the natural projection maps.

Example 12.7.12: This agrees with our definition of ÒZ in Example 12.7.7. In the profinite
topology of ÒZ, the subsets 𝑛ÒZ form a neighborhood base of 0.

8 Infinite Galois theory

Let Ω/𝐾 be an infinite Galois extension. We equip 𝐺(Ω/𝐾) with a topology by interpreting
it as a profinite group, as follows.

Proposition 12.8.1:
𝐺(Ω/𝐾) = lim←−

𝐿/𝐾 finite

𝐺(𝐿/𝐾),

where the limit is with respect to the quotient maps 𝐺(𝑀/𝐾)→ 𝐺(𝐿/𝐾).
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Proof. Identify the right side with compatible elements of
∏︀
𝐿/𝐾 𝐺(𝐿/𝐾) and send 𝜎 ∈

𝐺(Ω/𝐾) to (𝜎|𝐿)𝐿. This is a bijection because any element of Ω is in a finite extension over
𝐾, so specifying a map Ω → Ω is the same as specifying a compatible sequence of maps
𝐿→ 𝐿 for every finite Galois extension.

Now we give 𝐺(Ω/𝐾) the profinite topology. Equivalently, it is the topology such that a
neighborhood base of 1 is

𝐺(𝑆) = {𝜎 ∈ 𝐺(Ω/𝐾) : 𝜎𝑠 = 𝑠 for all 𝑠 ∈ 𝑆} , 𝑆 finite.

We next show surjectivity of the quotient map.

Proposition 12.8.2: Every homomorphism 𝜎 : 𝐿→ Ω extends to a homomorphism Ω→ Ω.
If 𝐿/𝐾 is Galois, then the restriction map 𝐺(Ω/𝐾)� 𝐺(𝐿/𝐾) is surjective.

Proof. Use Zorn’s lemma, as follows. Define a poset 𝑃 whose elements are pairs (𝑀,𝜙𝑀),
where 𝑀 is a field with 𝐿 ⊆ 𝑀 ⊆ Ω and 𝜙𝑀 is a homomorphism 𝑀 → Ω. Introduce a
partial ordering by saying

(𝑀,𝜙𝑀) 4 (𝑁,𝜙𝑁)

if 𝑀 ⊆ 𝑁 and 𝜙𝑁 |𝑀 = 𝜙𝑀 . If (𝑀𝑖, 𝜙𝑀𝑖
) is a chain (totally ordered subset), then it has a

maximal element in 𝑃 , namely, (︃⋃︁
𝑖

𝑀𝑖, 𝜙

)︃
where 𝜙 is defined as 𝜙(𝑥) = 𝜙𝑖(𝑥) if 𝑥 ∈ 𝑀𝑖. Thus by Zorn’s lemma 𝑃 has a maximal
element (𝑀,𝜙𝑀).

For any element 𝛼 ∈ Ω, by finite Galois theory (ref) we can extend (𝑀,𝜙𝑀) to (𝑀(𝛼), 𝜙𝑀(𝛼)).
By maximiality of 𝑀 , 𝑀 =𝑀(𝛼), i.e. 𝑀 = Ω.

The second part follows directly.

The following is the analogue of the fixed field theorem. Note that topology now plays a
role.

Theorem 12.8.3 (Fixed field theorem, infinite extensions): Suppose Ω/𝐾 is Galois and
𝐺 = 𝐺(Ω/𝐾).

1. 𝐺(Ω/𝐿) is closed, and Ω𝐺(Ω/𝐿) = 𝐿.

2. For every subgroup 𝐻 ⊆ 𝐺, 𝐺(Ω/Ω𝐻) = 𝐻.

Proof. 1. The sets𝐺(𝑆) are open of finite index, hence closed. Hence𝐺(Ω/𝐿) =
⋂︀

finite 𝑆⊆𝐿𝐺(𝑆)
is closed.

For the second part, note that for every finite Galois extension 𝑀/𝐿, we know

Ω𝐺(𝑀/𝐿) ∩𝑀 = 𝐿.

Since this is true for every such 𝑀/𝐿, and 𝐺(Ω/𝐿)� 𝐺(𝑀/𝐿) is surjective, the result
follows.
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2. It is clear that 𝐺(Ω/Ω𝐻) ⊇ 𝐻. By part 1, 𝐺(Ω/Ω𝐻) is closed, so it contains 𝐻.
FINISH...

Theorem 12.8.4 (Fundamental theorem of infinite Galois theory): There is a bijection
between closed subgroups of 𝐺 and intermediate fields 𝐿 with 𝐾 ⊆ 𝐿 ⊆ Ω.

𝐻 ↦→ Ω𝐻

𝐺(Ω/𝐿)←[ 𝐿.

We have the following.

1. This map is inclusion-reversing.

2. 𝐻 is open if and only if [Ω𝐻 : 𝐾] <∞. Then [𝐺 : 𝐻] = [Ω𝐻 : 𝐾].

3. 𝜎𝐻𝜎−1 corresponds to 𝜎𝑀 , so 𝐻 is normal if and only if Ω𝐻/𝐾 is Galois. Then
𝐺(Ω𝐻/𝐾) ∼= 𝐺/𝐻.

Note given closed, open iff of finite index.

Proofs! + Some more silly properties.

Example 12.8.5: We have

𝐺(F𝑝/F𝑝) = lim←−𝐺(Ω/F𝑝) = lim←−Z/𝑛Z == ÒZ.
Example 12.8.6: Let

Q(𝜁∞) := Q({𝜁𝑛 : 𝑛 ∈ N}).

Then
𝐺(Q(𝜁∞)/Q) = lim←−

𝑛∈N
𝐺(Q(𝜁𝑛)/Q) = lim←−(Z/𝑛Z)

× = ÒZ×

(Note that, by the Kronecker-Weber Theorem 24,24.7.2, Q(𝜁∞) = Qab.)
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Chapter 13

Arithmetic over Finite Fields

arith-over-ff This section is from my final paper in 18.784... need to integrate Our main goal in
this chapter is to find a way to find the number of solutions for equations over finite fields.
One problem we will look at in detail is, for a fixed 𝑏, how many solutions are there to

𝑏 = 𝑦𝑑1 + · · ·+ 𝑦𝑑𝑛

over a finite field? We encapsulate the number of representations as a sum of 𝑛 𝑑th powers
in a sum of orthonormal functions on F𝑞 called the additive characters 𝜒. We consider the
product

sum2

�∑︁
𝑦∈F𝑞

𝜒(𝑦𝑑)

�𝑛

=
∑︁

𝑦1,...,𝑦𝑛∈F𝑞

𝜒(𝑦𝑑1 + · · ·+ 𝑦𝑑𝑛). (13.1)

(The additive characters have the nice property that 𝜒(𝑎 + 𝑏) = 𝜒(𝑎)𝜒(𝑏).) Note (13.1) is
true for all characters. To extract out the coefficient of 𝜒(𝑏), we multiply by 𝜒(𝑏), average
over all distinct characters 𝜒, and take advantage of orthonormality to get

thesum𝑟𝑑,𝑛(𝑏) =
1

𝑞

∑︁
𝜒

⎧⎨⎩�∑︁
𝑦∈F𝑞

𝜒(𝑦𝑑)

�𝑛

𝜒(𝑏)

⎫⎬⎭ . (13.2)

In the next section we will give define and give properties of characters that help us esti-
mate (13.2).

1 Characters

To evaluate (13.2) it would be helpful if 𝜒(𝑦𝑑) = 𝜒(𝑦)𝑑. However, this cannot hold as we
defined 𝜒 so that it would preserve additive structure, not multiplicative structure. Thus to
evaluate (13.2) we would like to rewrite it as a sum of functions 𝜓 such that 𝜓(𝑎𝑏) = 𝜓(𝑎)𝜓(𝑏),
and such that the set of 𝜓 are orthonormal. Thus we will need both the concepts of additive
and multiplicative characters. We make this precise below.
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Definition 13.1.1: chardef Let 𝐺 be an abelian group. A character of 𝐺 is a homomorphism
from 𝐺 to C×. A character is trivial if it is identically 1. We denote the trivial character by
𝜒0 or 𝜓0.

Definition 13.1.2: Let 𝑅 be a given finite ring. An additive character 𝜒 : 𝑅+ → C is a
character 𝜒 with 𝑅 considered as an additive group. A multiplicative character 𝜓 : 𝑅× → C
is a character with 𝑅×, the units of 𝑅, considered as a multiplicative group.

The two cases we will be working with are 𝑅 = Z/𝑁Z (Section 1.1), and 𝑅 = F𝑞
(Section 1.2). We extend multiplicative characters 𝜓 to𝑅 by defining 𝜓(𝑥) = 0 for 𝑥 ∈ 𝑅∖𝑅×,
except we follow the convention of setting 𝜓0(0) = 1 when 𝑅 = F𝑞. Note that in any case
the extended 𝜓 still preserves multiplication.

We proceed to give an explicit description of characters for abelian groups. First, recall
the following theorem.

Theorem 13.1.3 (Structure Theorem for Abelian Groups): Let 𝐺 be a finite abelian group.
Then there exist positive integers 𝑚1, . . . ,𝑚𝑘 so that

𝐺 ∼= Z/𝑚1Z× · · · × Z/𝑚𝑘Z.

Theorem 13.1.4: char The group 𝐺 = Z/𝑚1Z × · · · × Z/𝑚𝑘Z has |𝐺| characters and each
is given by an element (𝑟1, . . . , 𝑟𝑘) ∈ Z/𝑚1Z× · · · × Z/𝑚𝑘Z:

𝜒𝑟1,...,𝑟𝑘(𝑛1, . . . , 𝑛𝑘) =
𝑘∏︁
𝑗=1

𝑒
2𝜋𝑖𝑟𝑗𝑛𝑗

𝑚𝑗 .

Moreover the set of characters Ò𝐺 form a multiplicative group isomorphic to 𝐺.1

Proof. It is easy to check that 𝜒 = 𝜒𝑟1,...,𝑟𝑘 is a homomorphism. Let 𝑒𝑗 be the element
in 𝐺 with 1 in the 𝑗th coordinate and 0’s elsewhere. Since 𝜒(𝑒𝑗)

𝑚𝑗 = 1, we must have

𝜒(𝑒𝑗) = 𝑒
2𝜋𝑖𝑟𝑗
𝑚𝑗 for some 𝑟𝑗. Each element of 𝐺 can be expressed as a combination of the 𝑒𝑗,

so this shows all characters are in the above form.
This shows that (𝑟1, . . . , 𝑟𝑘) ↦→ 𝜒𝑟1,...,𝑟𝑘 is surjective and hence an isomorphism.

Corollary 13.1.5: numchar Every finite abelian group 𝐺 has |𝐺| characters.

Theorem 13.1.6 (Orthogonality relations): orth Let 𝐺 be a finite abelian group and 𝜒𝑗,
1 ≤ 𝑗 ≤ 𝑛 be all characters of 𝐺. Then

1. (Row orthogonality) ⟨𝜒𝑗, 𝜒𝑘⟩ :=
1

|𝐺|
∑︁
𝑔∈𝐺

𝜒𝑗(𝑔)𝜒𝑘(𝑔) =

⎧⎨⎩0, 𝑗 ̸= 𝑘

1, 𝑗 = 𝑘
.

1This is a noncanonical isomorphism.
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2. (Column orthogonality)
𝑛∑︁
𝑗=1

𝜒𝑗(𝑔)𝜒𝑗(ℎ) =

⎧⎨⎩0, 𝑔 ̸= ℎ

|𝐺|, 𝑔 = ℎ
.

Proof. Write 𝐺 as Z/𝑚1Z× · · · × Z/𝑚𝑘Z. Let (𝑟1, . . . , 𝑟𝑘) and (𝑠1, . . . , 𝑠𝑘) be in 𝐺. Then

⟨𝜒𝑟1,...,𝑟𝑘 , 𝜒𝑠1,...,𝑠𝑘⟩ =
∑︁

(𝑝1,...,𝑝𝑘)∈𝐺

𝑘∏︁
𝑗=1

𝑒
2𝜋𝑖(𝑟𝑗−𝑠𝑗)𝑝𝑗

𝑚𝑗 yayy (13.3)

=
∑︁

(𝑝1,...,𝑝𝑘−1)∈𝐺

⎡⎣�𝑘−1∏︁
𝑗=1

𝑒
2𝜋𝑖(𝑟𝑗−𝑠𝑗)𝑝𝑗

𝑚𝑗

�
𝑚𝑘−1∑︁
𝑝𝑘=0

𝑒2𝜋𝑖(𝑟𝑘−𝑠𝑘)𝑝𝑘

⎤⎦ .insum (13.4)

If (𝑟1, . . . , 𝑟𝑘) = (𝑠1, . . . , 𝑠𝑘) then (13.3) evaluates to |𝐺|. Otherwise, we may assume without
loss of generality that 𝑟𝑘 ̸= 𝑠𝑘; then the inner sum in (13.4) evaluates to 0 by writing it as a
geometric series.

The proof for column orthogonality is similar.

The most useful case of row orthogonality is when we set 𝜒𝑘 = 𝜒0:

Corollary 13.1.7: sum0 If 𝜒 is a character of 𝐺 and 𝜒 ̸= 𝜒0 then∑︁
𝑔∈𝐺

𝜒(𝑔) = 0.

Having established the basic properties of characters of abelian groups, we now turn to
the specific cases Z/𝑁Z and F𝑞.

1.1 Dirichlet characters

For our applications, it is helpful to think of consider characters on Z/𝑁Z as functions on
Z. From Theorem 13.1.4, the additive characters are simply given by

𝜒𝑎(𝑔) = 𝑒
2𝜋𝑖𝑎𝑔

𝑁 .

Next we consider multiplicative characters.

Definition 13.1.8: A Dirichlet character of level 𝑁 is a function 𝜒 : Z→ C that induces
a group homomorphism

𝜒 : (Z/𝑁Z)× → C,

and such that 𝜒(𝑛) = 0 for any 𝑛 sharing a common factor with 𝑁 . In other words, it
induces a multiplicative character Z/𝑁Z→ C.

We say 𝜒 is principal if 𝜒(𝑛) = 1 for all (Z/𝑁Z)×, and primitive if 𝜒 does not induce
a group homomorphism (Z/𝑀Z)× → C for any 𝑀 < 𝑁 .

We say 𝜒 is even or odd if 𝜒(−1) = 1 or 𝜒(−1) = −1, respectively; we say 𝜒 is real
when im(𝜒) ⊂ R and say it is nonreal otherwise.
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Any character can be written uniquely as a product of a primitive character 𝜒1 of level
𝑀 | 𝑁 and the principal character of level 𝑁 :

𝜒 = 𝜒1𝜒0.

1.2 Characters on finite fields

field-char We give the additive and multiplicative characters on F𝑞 explicitly. We know that F×
𝑞

is cyclic; let 𝜉 be a generator.

Theorem 13.1.9 (Multiplicative characters of F𝑞): multc The multiplicative characters of F𝑞
are given by

𝜓𝑗(𝜉
𝑛) = 𝑒

2𝜋𝑖𝑗𝑛
𝑞−1

for 0 ≤ 𝑗 < 𝑞 − 1.

Proof. By identifying 𝜉 ∈ F×
𝑞 with 1 ∈ Z/(𝑞 − 1)Z, this follows directly from Theorem 13.1.4.

Describing the additive characters takes slightly more creativity, since it is inconvenient
to decompose F+

𝑞 into cyclic groups.

Theorem 13.1.10 (Additive characters of F𝑞): Suppose 𝑞 = 𝑝𝑟 with 𝑝 prime. The additive
characters of F𝑞 are given by

add𝜒𝑎(𝑔) = 𝑒
2𝜋𝑖
𝑝

tr(𝑎𝑔) (13.5)

for 𝑎 ∈ F𝑞 where2

tr(𝑔) = 𝑔 + 𝑔𝑝 + · · ·+ 𝑔𝑝
𝑟−1

.

Proof. The automorphisms of F𝑞 fixing F𝑝 are generated by the Frobenius automorphism 𝜎
sending 𝑔 to 𝑔𝑝. Since tr(𝑔) is fixed under this operation, it must be in the ground field F𝑝.
This makes (13.5) well-defined since only the value of tr(𝑎𝑔) modulo 𝑝 matters in (13.5). The
fact that 𝜒𝑎 is a homomorphism comes directly from the fact that 𝜎 is a homomorphism.

Since 𝜒1(𝑎𝑔) = 𝜒𝑎(𝑔), if 𝜒𝑎 = 𝜒𝑏 then 𝜒1(𝑎𝑔) = 𝜒1(𝑏𝑔) and 𝜒1((𝑎 − 𝑏)𝑔) = 0. However,
𝜒1 is not trivial (identically equal to 1) since there are at most 𝑝𝑟−1 values of 𝑔 such that
𝑔 + · · · + 𝑔𝑝

𝑟−1
= 0. Thus 𝑎 = 𝑏. This shows all characters in our list are distinct. Since we

have found |𝐺| characters we have found all of them.

Remark 13.1.11: In general, a 𝑛-dimensional complex representation of a group 𝐺 is a
homomorphism 𝜌 from 𝐺 into 𝐺𝐿𝑛(C), and the character 𝜒 of a representation is defined
by 𝜒(𝑔) = tr(𝜌(𝑔)). This coincides with Definition 13.1.1 for abelian 𝐺, if we just consider
1-dimensional representations, since 𝜌 is multiplication by a constant and 𝜒 is just that
constant.

2For the general definition of trace see Definition 14.14.2.1.
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The general case of Corollary 13.1.5 is replaced by the following: every finite group has a
number of irreducible characters equal to the number of conjugacy classes. The orthogonality
relations hold when we consider just irreducible characters, and with |𝐺| replaced by the size
of the centralizer of 𝑔 in the equation for column orthogonality.

2 Gauss Sums

gauss-sums To relate additive characters to multiplicative characters, we need to evaluate sums
in the form

gauss𝐺(𝜓, 𝜒) =
∑︁
𝑦∈𝑅×

𝜓(𝑦)𝜒(𝑦). (13.6)

where 𝜓 is a multiplicative character and 𝜒 is an additive character.
Suppose we wanted to write an additive character on F𝑞 in terms of multiplicative char-

acters. By row orthogonality, 1
𝑞−1

∑︀
𝜓∈̂︁F×

𝑞

𝜓(𝑦)𝜓(𝑔) equals 1 if 𝑦 = 𝑔 and is 0 otherwise. This

allows us to introduce multiplicative characters as follows: for 𝑦 ∈ F×
𝑞 ,

𝜒(𝑦) =
1

𝑞 − 1

∑︁
𝑔∈F×

𝑞

𝜒(𝑔)
∑︁
𝜓∈̂︁F×

𝑞

𝜓(𝑦)𝜓(𝑔)

=
1

𝑞 − 1

∑︁
𝜓∈̂︁F×

𝑞

𝜓(𝑦)
∑︁
𝑔∈F×

𝑞

𝜓(𝑔)𝜒(𝑔)

am =
1

𝑞 − 1

∑︁
𝜓∈̂︁F×

𝑞

𝐺(𝜓, 𝜒)𝜓(𝑦). (13.7)

The Gauss sums are the coefficients of the expansion of 𝜒 in terms of multiplicative charac-
ters. The next theorem tells us how to calculate Gauss sums.

Theorem 13.2.1: egau Let 𝜓0 and 𝜒0 denote the trivial multiplicative and additive characters
on F𝑞, respectively. Then for multiplicative and additive characters 𝜓 and 𝜒 on F𝑞, we have

𝐺(𝜓, 𝜒) =

⎧⎪⎪⎨⎪⎪⎩𝑞 − 1, 𝜓 = 𝜓0, 𝜒 = 𝜒0

−1, 𝜓 = 𝜓0, 𝜒 ̸= 𝜒0

0, 𝜓 ̸= 𝜓0, 𝜒 = 𝜒0

and

|𝐺(𝜓, 𝜒)| = √𝑞, 𝜓 ̸= 𝜓0, 𝜒 ̸= 𝜒0.

If 𝜓 is a nontrivial multiplicative character and 𝜒 is a primitive additive character on
Z/𝑁Z, then

|𝐺(𝜓, 𝜒)| =
√
𝑁.

97



Number Theory, S13.2

Proof. The first case is trivial. For the second case,

𝐺(𝜓0, 𝜒) =
∑︁
𝑦∈F×

𝑞

𝜒(𝑦) =

�∑︁
𝑦∈F𝑞

𝜒(𝑦)

�
− 1 = −1

by Corollary 13.1.7. The third case directly from Corollary 13.1.7 with 𝜓.

Now we consider the case case when 𝜓 is nontrivial, and either 𝜒 ̸= 𝜒0 (in the case
𝑅 = F𝑞) or 𝜒 is primitive (in the case 𝑅 = Z/𝑁Z), respectively. We have

|𝐺(𝜓, 𝜒)|2 =
∑︁

𝑔1,𝑔2∈𝑅×

𝜓(𝑔1)𝜓(𝑔2)𝜒(𝑔1)𝜒(𝑔2)

=
∑︁

𝑔1,𝑔2∈𝑅×

𝜓(𝑔−1
1 𝑔2)𝜒(𝑔2 − 𝑔1)

=
∑︁
ℎ∈𝑅×

∑︁
𝑔1∈𝑅×

𝜓(ℎ)𝜒(𝑔1(ℎ− 1)) setting ℎ = 𝑔−1
1 𝑔2

=
∑︁
ℎ∈𝑅×

𝜓(ℎ)

⎡⎣�∑︁
𝑔1∈𝑅

𝜒(𝑔1(ℎ− 1))

�
−

∑︁
𝑦∈𝑅∖𝑅×

𝜒(𝑦)

⎤⎦
=

∑︁
ℎ∈𝑅×

𝜓(ℎ)

�∑︁
𝑔1∈𝑅

𝜒(𝑔1(ℎ− 1))

�
by Corollary 13.1.7 with 𝜓

Now we note the following: when ℎ = 1 all terms in the inner sum are 1, so it equals 𝑞 or
𝑁 , respectively. When ℎ ̸= 1, consider two cases.

1. 𝑅 = F𝑞: As 𝑔1 ranges over F𝑞, 𝑔1(ℎ− 1) ranges over F𝑞.

2. 𝑅 = Z/𝑁Z: As 𝑔1 ranges over Z/𝑁Z, 𝑔1(ℎ − 1) ranges over a subgroup 𝐻 ⊆ Z/𝑁Z,
hitting each element 𝑁

|𝐻| times. Since 𝜒 is primitive, 𝜒|𝐻 is nontrivial.

In either case, Corollary 13.1.7 gives the inner sum to be 0. Hence |𝐺(𝜓, 𝜒)|2 evaluates to
𝜓(1)𝑞 = 𝑞 or 𝜓(1)𝑁 = 𝑁 , respectively.

We will need the following fact later on.

Proposition 13.2.2: gaussprop Let 𝑅 = F𝑞 or Z/𝑁Z. For 𝑎 ∈ 𝑅× and 𝑏 ∈ 𝑅,

𝐺(𝜓, 𝜒𝑎𝑏) = 𝜓(𝑎)𝐺(𝜓, 𝜒𝑏).
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Proof. Using the fact that 𝜒𝑐(𝑔) = 𝜒1(𝑐𝑔),

𝐺(𝜓, 𝜒𝑎𝑏) =
∑︁
𝑦∈𝑅×

𝜓(𝑦)𝜒𝑎𝑏(𝑦)

=
∑︁
𝑦∈𝑅×

𝜓(𝑦)𝜒𝑏(𝑎𝑦)

=
∑︁
𝑦∈𝑅×

𝜓(𝑎−1𝑦)𝜒𝑏(𝑦) replacing 𝑦 → 𝑎−1𝑦

= 𝜓(𝑎)−1
∑︁
𝑦∈𝑅×

𝜓(𝑦)𝜒𝑏(𝑦)

= 𝜓(𝑎)𝐺(𝜓, 𝜒𝑏)

3 Enumerating Solutions

We return to our original problem. Rather than just work with sums of 𝑑th powers, we work
with diagonal equations

diag𝑎1𝑦
𝑑1
1 + · · ·+ 𝑎𝑛𝑦

𝑑𝑛
𝑛 = 𝑏 (13.8)

where 𝑎𝑖 ∈ F×
𝑞 and 𝑑𝑖 ∈ N. First, note that because of the following lemma, we can restrict

to case where 𝑑𝑖|𝑞 − 1.

Lemma 13.3.1: gcd The multisets {𝑦𝑑|𝑦 ∈ F𝑞} and {𝑦gcd(𝑑,𝑞−1)|𝑦 ∈ F𝑞} are equal.

Proof. Let 𝜉 be a generator for F×
𝑞 , and write 𝑑 = 𝑘 gcd(𝑑, 𝑞 − 1) where gcd(𝑘, 𝑞 − 1) = 1.

Then removing the one occurrence of 0 in the two sets, we get {𝜉𝑗𝑑|0 ≤ 𝑗 < 𝑞 − 1} and
{𝜉𝑗 gcd(𝑑,𝑞−1)|0 ≤ 𝑗 < 𝑞 − 1}. The lemma follows from the fact that as multisets,

{𝑗𝑑 (mod 𝑞 − 1)|0 ≤ 𝑗 < 𝑞 − 1} = {𝑗 gcd(𝑑, 𝑞 − 1) (mod 𝑞 − 1)|0 ≤ 𝑗 < 𝑞 − 1}.

Indeed, each multiple of gcd(𝑑, 𝑞 − 1) appears 𝑞−1
gcd(𝑑,𝑞−1)

times on both sides.

As (13.8) always has the trivial solution when 𝑏 = 0, we just need to estimate the number
of solutions to (13.8) when 𝑏 ̸= 0.

Theorem 13.3.2: [?, 6.37]mainthm Fix 𝑏 ̸= 0, 𝑑𝑖|𝑞 − 1 and let 𝑁 be the number of solutions
to (13.8) when 𝑏 ̸= 0 is fixed. Then

|𝑁 − 𝑞𝑛−1| ≤ [(𝑑1 − 1) · · · (𝑑𝑛 − 1)− (1− 𝑞−
1
2 )𝑀(𝑑1, . . . , 𝑑𝑛)]𝑞

𝑛−1
2

where 𝑀(𝑑1, . . . , 𝑑𝑛) is the number of 𝑛-tuples in the set

𝑆 :=

{︃
(𝑗1, . . . , 𝑗𝑛) ∈ Z𝑛|1 ≤ 𝑗𝑖 ≤ 𝑑𝑖 − 1 and

𝑛∑︁
𝑖=1

𝑗𝑖
𝑑𝑖
∈ Z

}︃
.
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Note that we would expect 𝑁 to be close to 𝑞𝑛−1, because there are 𝑞𝑛 possible choices
for (𝑦1, . . . , 𝑦𝑛) and 𝑞 possible values for their sum.

Proof. We use the idea mentioned in the introduction. We have

𝑁 =
1

𝑞

∑︁
𝑦1,...,𝑦𝑛∈F𝑞 , 𝜒∈̂︁F+

𝑞

𝜒(𝑎1𝑦
𝑑1
1 + · · ·+ 𝑎𝑛𝑦

𝑑𝑛
𝑛 )𝜒(𝑏) =

1

𝑞

∑︁
𝑦1,...,𝑦𝑛∈F𝑞 , 𝜒∈̂︁F+

𝑞

𝜒(𝑎1𝑦
𝑑1
1 ) · · ·𝜒(𝑎𝑛𝑦𝑑𝑛𝑛 )𝜒(𝑏)

since by row orthogonality the inner sum is 1 if 𝑎1𝑦
𝑑1
1 + · · ·+𝑎𝑛𝑦𝑑𝑛𝑛 = 𝑏 and 0 otherwise. Note

that 𝜒0 contributes 𝑞𝑛 to the sum. Taking it out and factoring the remaining terms gives

N1𝑁 = 𝑞𝑛−1 +
1

𝑞

∑︁
𝜒∈̂︁F+

𝑞 ,𝜒 ̸=𝜒0

�
𝜒(𝑏)

𝑛∏︁
𝑗=1

∑︁
𝑦𝑗∈F𝑞

𝜒(𝑎𝑗𝑦
𝑑𝑗
𝑗 )

�
(13.9)

We write the sums of additive characters as sums of multiplicative characters using the
following lemma.

Lemma 13.3.3: ayn Let 𝜒 be a nontrivial additive character and 𝜆 a multiplicative character
of order 𝑑 dividing 𝑞 − 1. Then∑︁

𝑦∈F𝑞

𝜒(𝑎𝑦𝑑) =
𝑑−1∑︁
𝑗=1

𝜆(𝑎)𝑗𝐺(𝜆𝑗, 𝜒).

Proof. Note that 𝜆 exists since the group of multiplicative characters is isomorphic to Z/(𝑞−
1)Z by Theorem 13.1.4. Suppose 𝜒 = 𝜒𝑐. We write 𝜒 as a sum of multiplicative characters
using (13.7), get the Gauss sum to be independent of 𝑎 by using Proposition 13.2.2, and take
out the exponent as we were hoping to do:∑︁

𝑦∈F𝑞

𝜒(𝑎𝑦𝑑) =
∑︁
𝑦∈F𝑞

𝜒𝑎𝑐(𝑦
𝑑)

= 1 +
∑︁
𝑦∈F×

𝑞

𝜒𝑎𝑐(𝑦
𝑑)

= 1 +
1

𝑞 − 1

∑︁
𝜓∈̂︁F×

𝑞

∑︁
𝑦∈F×

𝑞

𝐺(𝜓, 𝜒𝑎𝑐)𝜓(𝑦
𝑑)

insummy = 1 +
1

𝑞 − 1

∑︁
𝜓∈̂︁F×

𝑞

𝜓(𝑎)𝐺(𝜓, 𝜒𝑐)
∑︁
𝑦∈F𝑞

𝜓(𝑦)𝑑 (13.10)

eq1 = 1 +
𝑑−1∑︁
𝑗=0

𝜆(𝑎)𝑗𝐺(𝜆𝑗, 𝜒) (13.11)

eq2 =
𝑑−1∑︁
𝑗=1

𝜆(𝑎)𝑗𝐺(𝜆𝑗, 𝜒) (13.12)
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Note (13.11) follows since by Corollary 13.1.7,
∑︀
𝑦∈F×

𝑞
𝜓(𝑦)𝑑 = 0 unless 𝜓𝑑 is the trivial

character, which is true iff 𝜓 is a power of 𝜆. In that case, the inner sum in (13.10) is 𝑞− 1.
In (13.12) we used 𝐺(𝜓0, 𝜒) = −1 (Theorem 13.2.1).

Using Lemma 13.3.3 and letting 𝜆𝑗 be the multiplicative character with 𝜆𝑗(𝜉
𝑡) = 𝑒

2𝜋𝑖𝑡
𝑑𝑗 we

rewrite (13.9) as

𝑁 − 𝑞𝑛−1 =
1

𝑞

∑︁
𝜒∈̂︁F+

𝑞 ,𝜒 ̸=𝜒0

�
𝜒(𝑏)

𝑛∏︁
𝑗=1

𝑑−1∑︁
𝑘=1

𝜆𝑗(𝑎𝑗)
𝑘𝐺(𝜆𝑘𝑗 , 𝜒)

�
=

1

𝑞

∑︁
𝜒∈̂︁F+

𝑞 ,𝜒 ̸=𝜒0

∑︁
(𝑘1,...,𝑘𝑛),1≤𝑘𝑖≤𝑑𝑖−1

𝜒(𝑏)𝜆1
𝑘1
(𝑎1) · · ·𝜆𝑛

𝑘𝑛
(𝑎𝑛)𝐺(𝜆1

𝑘1 , 𝜒) · · ·𝐺(𝜆𝑛𝑘𝑛 , 𝜒)

=
1

𝑞

∑︁
𝑐∈F×

𝑞

∑︁
(𝑘1,...,𝑘𝑛),1≤𝑘𝑖≤𝑑𝑖−1

𝜒𝑐(𝑏)𝜆1
𝑘1
(𝑎1) · · ·𝜆𝑛

𝑘𝑛
(𝑎𝑛)𝐺(𝜆1

𝑘1 , 𝜒𝑐) · · ·𝐺(𝜆𝑛𝑘𝑛 , 𝜒𝑐)

lotsofgauss =
1

𝑞

∑︁
(𝑘1,...,𝑘𝑛),1≤𝑘𝑖≤𝑑𝑖−1

𝐺(𝜆1
𝑘1 , 𝜒𝑎1) · · ·𝐺(𝜆𝑛𝑘𝑛 , 𝜒𝑎𝑛)

∑︁
𝑐∈F×

𝑞

𝜒𝑏(𝑐)𝜆1
𝑘1
(𝑐) · · ·𝜆𝑛

𝑘𝑛
(𝑐)

(13.13)

log2 =
1

𝑞

∑︁
(𝑘1,...,𝑘𝑛),1≤𝑘𝑖≤𝑑𝑖−1

𝐺(𝜆1
𝑘1 , 𝜒𝑎1) · · ·𝐺(𝜆𝑛𝑘𝑛 , 𝜒𝑎𝑛)𝐺(𝜆1

𝑘1 · · ·𝜆𝑛
𝑘𝑛
, 𝜒𝑏) (13.14)

where in (13.13) we used Proposition 13.2.2 twice, to get

𝜆𝑗
𝑘𝑗(𝑎𝑗)𝐺(𝜆𝑗

𝑘𝑗 , 𝜒𝑐) = 𝜆𝑗
𝑘𝑗(𝑐)𝜆𝑗

𝑘𝑗(𝑎𝑗)𝐺(𝜆𝑗
𝑘𝑗 , 𝜒1) = 𝜆𝑗

𝑘𝑗(𝑐)𝐺(𝜆𝑗
𝑘𝑗 , 𝜒𝑎𝑗).

Now we apply Theorem 13.2.1 to get that |𝐺(𝜆𝑘𝑖𝑖 , 𝜒𝑎𝑖)| =
√
𝑞. Note

(𝜆1
𝑘1 · · ·𝜆𝑛

𝑘𝑛
)(𝜉𝑡) = 𝑒

(2𝜋𝑖)
(︀

𝑘1
𝑑1

+···+ 𝑘𝑛
𝑑𝑛

�
𝑡

is the trivial character iff (𝑘1, . . . , 𝑘𝑛) ∈ 𝑆. Hence |𝐺(𝜆1
𝑘1 · · ·𝜆𝑛

𝑘𝑛
, 𝜒𝑏)| = 1 if (𝑘1, . . . , 𝑘𝑛) ∈ 𝑆

and
√
𝑞 otherwise. Using this and the triangle inequality, (13.14) becomes

|𝑁 − 𝑞𝑛−1| ≤ 1

𝑞
[𝑞

𝑛
2 |𝑆|+ 𝑞

𝑛+1
2 ((𝑑1 − 1) · · · (𝑑𝑛 − 1)− |𝑆|)],

proving the theorem.

4 Applications to Waring’s Problem

Now we derive Small’s bound for Waring’s constant 𝑔(𝑑, 𝑞), the minimum 𝑛 such that (13.8)
has a solution with 𝑑1 = · · · = 𝑑𝑛 = 𝑑 for all 𝑏. By Lemma 13.3.1, 𝑔(𝑑, 𝑞) = 𝑔(gcd(𝑑, 𝑞−1), 𝑞),
so it suffices to consider the case 𝑑|𝑞 − 1.
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First, note that sufficient condition for Waring’s constant to exist is that the set {𝑦𝑑|𝑦 ∈
F𝑞} is not contained in a proper subfield of F𝑞. Since this set is generated multiplicatively

by 𝜉𝑑, and any subfield is multiplicatively generated by 𝜉
𝑝𝑟−1

𝑝𝑘−1 for some 𝑘|𝑑, writing 𝑞 = 𝑝𝑟

with 𝑝 prime we need

badcond

𝑝𝑟 − 1

𝑝𝑘 − 1
- 𝑑 for every proper divisor 𝑘 of 𝑟. (13.15)

Apply Theorem 13.3.2 (dropping the term with 𝑀(𝑑1, . . . , 𝑑𝑛)) to get

aboutsame𝑁 ≥ 𝑞𝑛−1 − (𝑑− 1)𝑛𝑞
𝑛−1
2 (13.16)

This is positive when

yayit𝑞
𝑛−1
2 > (𝑑− 1)𝑛 ⇐⇒ 𝑛

2
(ln 𝑞 − 2 ln(𝑑− 1)) >

ln 𝑞

2
(13.17)

Thus we obtain the following bound for 𝑔(𝑑, 𝑞):

Theorem 13.4.1: thm51 Suppose 𝑑|𝑞 − 1 and 𝑞 > (𝑑− 1)2. Then

𝑔(𝑑, 𝑞) ≤
�

ln 𝑞

ln 𝑞 − 2 ln(𝑑− 1)
+ 1

�
.

Note that in particular, (13.17) for 𝑛 = 2 allows us to make the “inverse” statement that
if 𝑞 > (𝑑− 1)4, then the equation 𝑦𝑑1 + 𝑦𝑑2 = 𝑏 has a solution for any 𝑏 ∈ F𝑞. That is, for any
𝑑, in any sufficiently large finite field every element can be written as a sum of 2 𝑑th powers.
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Chapter 14

Rings of integers

ring-of-integers When we have a field extension 𝐿 of Q, we would like to define a ring of integers
for 𝐿, with properties similar to the ring Z ⊆ Q. We will define this ring of integers in a
slightly more general context.

1 Integrality

Definition 14.1.1: Let 𝐴 be an integral domain and 𝐿 a field containing 𝐴. An element of
𝑥 ∈ 𝐿 is integral over 𝐴 if it is the zero of a monic polynomial with coefficients in 𝐴:

𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0 = 0, 𝑛 ≥ 1, 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐴.

The integral closure of 𝐴 in 𝐿 is the set of elements of 𝐿 integral over 𝐴.

Example 14.1.2: The integral closure of Z in Q is simply Z itself (we see this more generally
in Proposition 14.1.8). Thus, integral closure generalizes the notion of what it means to be
an “integer” in other number fields. As we will see in Example 14.4.7, for 𝑑 squarefree, the

integral closure of Q(
√
𝑑) is Z[

√
𝑑] when 𝑑 ≡ 3 (mod 4) and Z

[︁
1+

√
𝑑

2

]︁
when 𝑑 ≡ 1 (mod 4).

Algebra is much nicer in integral extensions—which is why, for instance, we would study
Z
[︁
1+

√
−3

2

]︁
rather than just Z[

√
−3].

Theorem 14.1.3: Let 𝐿 be a field containing the ring 𝐴. Then the elements of 𝐿 integral
over 𝐴 form a ring.

Proof. We give two proofs. We need to show that if 𝑎, 𝑏 are algebraic over 𝐴 then so are
𝑎+ 𝑏 and 𝑎𝑏.
Proof 1: Let 𝑝, 𝑞 be the minimal polynomials of 𝑎, 𝑏, let 𝑎1, . . . , 𝑎𝑘 be the conjugates of 𝑎 and
𝑏1, . . . , 𝑏𝑙 be the conjugates of 𝑏. The coefficients of∏︁

1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

(𝑥− (𝑎𝑖 + 𝑏𝑗)),
∏︁

1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

(𝑥− (𝑎𝑖𝑏𝑗))
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are symmetric in the 𝑎𝑖 and symmetric in the 𝑏𝑗 so by the Fundamental Theorem of Sym-
metric Polynomials can be written in terms of the elementary symmetric polynomials in the
𝑎𝑖 and in the 𝑏𝑗, with coefficients in 𝐴. By Vieta’s Theorem these are expressible in terms
of the coefficients of 𝑝, 𝑞, which are in 𝐴. Hence these polynomials have coefficients in 𝐴.
They have 𝑎+ 𝑏, 𝑎𝑏 as roots, as desired.

Proof 2: We use the following lemma.

Lemma 14.1.4 (Criterion for integrality): criterion-for-integrality An element 𝛼 ∈ 𝐿 is integral
over 𝐴 if and only if there exists a nonzero finitely generated 𝐴-submodule of 𝐿 such that
𝛼𝑀 ⊆𝑀 . If so, then we can take 𝑀 = 𝐴[𝛼].

Example 14.1.5: For example, 1√
2
fails this criterion over Z—multiplying by it has the

effect of making 𝑀 “finer.”
√
2, however, is integral.

In the case 𝐴 = Z and 𝐵 = Q, 𝑎 ∈ Q is integral over Z iff 𝑎 ∈ Z. Indeed, 𝑎 ∈ Z satisfies
𝑥 − 𝑎, and if 𝑎 ̸∈ Z, then powers of 𝑎 contain arbitrarily large denominators so Z[𝛼] is not
finitely generated.

Proof. ⇒: If 𝛼 satisfies a monic polynomial of degree 𝑛, then𝐴[𝛼] is generated by 1, 𝛼, . . . , 𝛼𝑛−1.
⇐: Suppose 𝑀 is generated by 𝑣1, . . . , 𝑣𝑛. Then we can find a matrix 𝑇 with coefficients

in 𝐴 such that

𝛼

⎡⎢⎢⎣𝑣1...
𝑣𝑛

⎤⎥⎥⎦ = 𝑇

⎡⎢⎢⎣𝑣1...
𝑣𝑛

⎤⎥⎥⎦ .
Since 𝑣1, . . . , 𝑣𝑛 ̸= 0, 𝛼𝐼−𝑇 is singular, and det(𝛼𝐼−𝑇 ) = 0. This gives a monic polynomial
equation satisfied by 𝛼.

Now for 𝛼, 𝛽 ∈ 𝐿 and let 𝑀 = 𝐴[𝛼] and 𝑁 = 𝐴[𝛽]. Note

1. if 𝑀,𝑁 are finitely generated by {𝛼𝑖} and {𝛽𝑗}, then 𝑀𝑁 is finitely generated by
{𝛼𝑖𝛽𝑗}.

2. 𝛼𝛽𝑀𝑁 ⊆𝑀𝑁 and (𝛼 + 𝛽)𝑀𝑁 ⊆𝑀𝑁 .

Hence 𝛼𝛽 and 𝛼 + 𝛽 are integral over 𝐴 by Lemma 14.1.4 as needed.

For the rest of this chapter, 𝐴 is an integral domain, 𝐾 is its fraction field, 𝐿 is an
extension of 𝐾, and 𝐵 is the integral closure of 𝐴 in 𝐿.

aklb 𝐿 𝐵

𝐾 𝐴

(14.1)
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Definition 14.1.6: 𝐴 is integrally closed or normal if its integral closure in 𝐾 = Frac(𝐴)
is itself.

Proposition 14.1.7: If 𝐿 is algebraic over 𝐾 then every element of 𝐿 can be written as
𝑏
𝑎
where 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴. Thus 𝐿 = Frac(𝐵). In particular, for any extension 𝐿/Q,

Frac(O𝐿) = 𝐿.

Proof. Given 𝛼 ∈ 𝐿, suppose that it satisfies the equation

𝑃 (𝑥) := 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎0 = 0

with 𝑎0, . . . , 𝑎𝑛 ∈ 𝐾 and 𝑎𝑛 ̸= 0. Since Frac(𝐴) = 𝐾, by multiplying by an element of 𝐴 as
necessary we may assume 𝑎0, . . . , 𝑎𝑛 ∈ 𝐴. Then

𝑎𝑛−1
𝑛 𝑃

�𝑥
𝑑

�
:= 𝑥𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛𝑎𝑛−2𝑥
𝑛−2 + · · ·+ 𝑎𝑛−1

𝑛 𝑎0.

Hence 𝑎𝑛𝛼 is integral over 𝐴, i.e. 𝑎𝑛𝛼 ∈ 𝐵. This shows 𝛼 is in the desired form.
For the last part, take 𝐾 = Q and 𝐴 = Z.

For short we call (14.1) the “AKLB” setup if we further assume 𝐴 is integrally closed in
𝐾. In the usual case, 𝐴 is the integral closure of Z in 𝐾. in this case, we write 𝐴 = O𝐾 .

1

When 𝐹 = Q, the algebraic closure of Q, 𝑎 ∈ Q is called an algebraic number and 𝑎 ∈ OQ
is an algebraic integer.

Theorem 14.1.8 (Rational Roots Theorem): rational-roots-thm A UFD is integrally closed.

Proof. Suppose 𝑅 is a UFD with field of fractions 𝐾. Let 𝑥 ∈ 𝐾 be integral over 𝑅; suppose
𝑥 satisfies

𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · ·+ 𝑎0 = 0

where 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝑅. Write 𝑥 = 𝑝
𝑞
where 𝑝, 𝑞 ∈ 𝑅 are relatively prime. Then multiplying

the above by 𝑞𝑛 gives

𝑝𝑛 + 𝑎𝑛−1𝑝
𝑛−1𝑞 + · · ·+ 𝑎1𝑝𝑞

𝑛−1 + 𝑎0𝑞
𝑛 = 0

𝑞(𝑎𝑛−1𝑝
𝑛−1 + · · ·+ 𝑎0𝑞

𝑛−1) = −𝑝𝑛

Thus 𝑞 | 𝑝, possible only if 𝑞 = 1. This shows 𝑥 ∈ 𝑅.

Note that in the definition of integrality, an element is integral if it is the zero of any
monic polynomial in 𝐴[𝑥]. However, it suffices to check that its minimal polynomial is in
𝐴[𝑥].

Proposition 14.1.9: integral-min-poly Let 𝐿 be an algebraic extension of 𝐾 and 𝐴 be integrally
closed. Then 𝛼 ∈ 𝐿 is integral over 𝐴 iff its minimal polynomial 𝑓 over 𝐾 has coefficients in
𝐴.

1Later on, when we take 𝐾 to be an extension of the 𝑝-adic field Q𝑝, we will use O𝐾 to denote the integral
closure of Z𝑝 in 𝐾.
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Proof. The reverse direction is clear. For the forward direction, note all zeros of 𝑓 are integral
over 𝐾 since they satisfy the same polynomial equation that 𝛼 satisfies. The coefficients of
𝑓 are polynomial expressions in the roots so are integral over 𝐴, and hence in 𝐴 (since they
are already in 𝐾).

Proposition 14.1.10 (Finite generation): finite-generation

1. Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 be rings. If 𝐵 is finitely generated as an 𝐴-module and 𝐶 is finitely
generated as a 𝐵-module, then 𝐶 is finitely generated as an 𝐴-module.

2. If𝐵 is integral over𝐴 and finitely generated as an𝐴-algebra, then it is finitely generated
as an 𝐴-module.

Proof.

1. Take products of generators.

2. Let algebra generators be 𝛽1, . . . , 𝛽𝑚. Then

𝐴 ⊆ 𝐴[𝛽1] ⊆ · · · ⊆ 𝐴[𝛽1, . . . , 𝛽𝑚]

is a chain of integral extensions, so item 2 follows from 1.

Combining this proposition with Lemma 14.1.4 we get the following:

Proposition 14.1.11 (Transitivity of integrality): integrality Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 be integral
domains and 𝐾, 𝐿, 𝑀 be their fraction fields.

1. If 𝐵 is integral over 𝐴 and 𝐶 is integral over 𝐵, then 𝐶 is integral over 𝐴.

2. Let 𝐴′ is the integral closure of 𝐴 over 𝐵 and 𝐴′′ be the integral closure of 𝐴′ over 𝐶.
Let 𝐴′′′ be the integral closure of 𝐴 in 𝐶.

3. The integral closure of 𝐴 is integrally closed.

Proof.

1. For 𝛾 ∈ 𝐶, let 𝑏𝑖 be the coefficients of the minimal polynomial of 𝐶 over 𝐵. Then 𝛾 is
integral over 𝐴[𝑏0, . . . , 𝑏𝑚], so by Proposition 14.1.10, item 2, 𝐴[𝑏0, . . . , 𝑏𝑚, 𝛾] is finitely
generated over 𝐴. Since 𝛾𝐴[𝑏0, . . . , 𝑏𝑚, 𝛾] ⊆ 𝐴[𝑏1, . . . , 𝑏𝑚, 𝛾], by Lemma 14.1.4, 𝛾 is
integral over 𝐴.

2. By item 1 applied to 𝐴 ⊆ 𝐴′ ⊆ 𝐴′′, 𝐴′′ is integral over 𝐴 so 𝐴′′ ⊆ 𝐴′′′. Conversely, any
element 𝑎 ∈ 𝐴′′′ is integral over 𝐴 so a fortiori integral over 𝐴′′; thus 𝐴′′′ ⊆ 𝐴′′.

3. Follows from item 2 applied to 𝐴 = 𝐵 = 𝐶.
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2 Norms and Traces

Let 𝐵 be a free 𝐴-module of rank 𝑛. Then any element 𝛽 ∈ 𝐵 defines an 𝐴-linear map 𝑚𝛽

(or [𝛽]), multiplication by 𝛽. It is helpful to think of 𝛽 as a linear map because then we can
apply results from linear algebra.

Definition 14.2.1: trace-det-char The trace, determinant, and characteristic polynomial of 𝑚𝛽

are called the trace, norm, and characteristic polynomial of 𝛽.

These are computed by choosing any basis of 𝑒1, . . . , 𝑒𝑛 for 𝐵 over 𝐴, and then computing
the action of 𝛽 on this basis.

Proposition 14.2.2 (Elementary properties): nm-elem-pr The following hold (𝑎 ∈ 𝐴; 𝛽, 𝛽′ ∈
𝐵):

1. tr(𝛽 + 𝛽′) = tr(𝛽) + tr(𝛽′)

2. tr(𝑎𝛽) = 𝑎tr(𝛽)

3. tr(𝑎) = 𝑛𝑎

4. Nm(𝛽𝛽′) = Nm(𝛽) · Nm(𝛽′)

5. Nm(𝑎) = 𝑎𝑛

Proposition 14.2.3 (Behavior with respect to field extensions): ntr-fext Suppose 𝐿/𝐾 is a
degree 𝑛 field extension, 𝑀 is a finite extension of 𝐿, and 𝛽 ∈ 𝐿.

1. (Relationship with roots of minimal polynomial) If 𝑓(𝑋) is the minimal polynomial
of 𝛽 over 𝐾 and 𝛽1, . . . , 𝛽𝑚 are the roots of 𝑓(𝑋) = 0 in a Galois closure of 𝐾, then
letting 𝑟 = [𝐿 : 𝐾(𝛽)] = 𝑛

𝑚
,

(a) char𝐿/𝐾(𝛽) = 𝑓(𝑋)𝑟

(b) tr𝐿/𝐾(𝛽) = 𝑟(𝛽1 + · · ·+ 𝛽𝑚)

(c) Nm𝐿/𝐾(𝛽) = (𝛽1 · · · 𝛽𝑚)𝑟

2. (Relationship with embeddings) Suppose 𝐿 is separable over𝐾,𝑀 is a Galois extension
of 𝐾, and 𝜎1, . . . , 𝜎𝑛 are the set of distinct embeddings 𝐿→𝑀 fixing 𝐾. Then

(a) tr𝐿/𝐾(𝛽) = 𝜎1(𝛽) + · · ·+ 𝜎𝑛(𝛽)

(b) Nm𝐿/𝐾(𝛽) = 𝜎1(𝛽) · · ·𝜎𝑛(𝛽)

In particular, this is true when 𝐿 = 𝑀 is a Galois extension of 𝐾, and we can think
of the 𝜎𝑘 as simply the elements of 𝐺(𝐿/𝐾).
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3. (Transitivity of trace and norm) Suppose 𝛽 ∈𝑀 and 𝑀/𝐾 is separable.2 Then

(a) tr𝑀/𝐾(𝛽) = tr𝐿/𝐾(tr𝑀/𝐿(𝛽))

(b) Nm𝑀/𝐾(𝛽) = Nm𝐿/𝐾(Nm𝑀/𝐿(𝛽))

4. (Integrality) Assume AKLB. If 𝛽 ∈ 𝐵, then the coefficients of char𝐿/𝐾(𝛽), and hence
tr𝐿/𝐾(𝛽) and Nm𝐿/𝐾(𝛽), are integral over 𝐴. In particular, if 𝐴 is integrally closed in
𝐿 then they are in 𝐴.

Proof.

1. If 𝑟 = 1, i.e. 𝐾[𝛽] = 𝐿, then by the Cayley-Hamilton Theorem, 𝑓(𝑚𝛽) = 0. Since
𝑓(𝑋) is irreducible, 𝑓(𝑋) | char𝐿/𝐾(𝛽). However, these are monic polynomials of the
same degree so they are equal.

In the general case, take a basis 𝑥𝑖 of 𝐾[𝛽] over 𝐾 and a basis 𝑦𝑗 of 𝐿 over 𝐾[𝛽]. Then
𝑥𝑖𝑦𝑗 form a basis of 𝐿 over 𝐾, and the matrix of 𝑚𝛽 with respect to this basis is 𝑛
copies of 𝐴. This proves (a), which implies the rest of the statements.

2. Let 𝛽1, . . . , 𝛽𝑚 be the conjugates of 𝛽. There are 𝑚 distinct imbeddings 𝐾(𝛽) → 𝑀 ;
they each take 𝛽 to a different 𝛽𝑘. Each of these imbeddings extend to 𝑟 := [𝐿 :
𝐾(𝛽)] = 𝑛

𝑚
imbeddings 𝐿→𝑀 . Now use item 1.

3. Note that for any finite extensions 𝐾 ⊆ 𝐿 ⊆ 𝑁 with 𝑁 Galois, an imbedding 𝐿 →˓ 𝑁
fixing 𝐾 can be extended to a 𝐾-automorphism on 𝑁 , and so be considered an element
of the set 𝐺(𝑁/𝐾)/𝐺(𝑁/𝐿).3

Let 𝑁 be a Galois extension containing 𝑀 . By item 2,

tr𝑀/𝐾(𝛽) =
∑︁

𝜎∈𝐺(𝑁/𝐾)/𝐺(𝑁/𝑀)

𝜎(𝛽)

tr𝐿/𝐾(tr𝑀/𝐿(𝛽)) = tr𝐿/𝐾

� ∑︁
𝜎∈𝐺(𝑁/𝐿)/𝐺(𝑁/𝑀)

𝜎(𝛽)

�
=

∑︁
𝜏∈𝐺(𝑁/𝐾)/𝐺(𝑁/𝐿)

∑︁
𝜎∈𝐺(𝑁/𝐿)/𝐺(𝑁/𝑀)

𝜏(𝜎(𝛽))

where in the second sum we take arbitrary representatives 𝜏 ∈ 𝐺(𝑁/𝐾) and 𝜎 ∈
𝐺(𝑁/𝐿). These are equal because for any choice of these representatives,

{𝜎 ∈ 𝐺(𝑁/𝐾)/𝐺(𝑁/𝑀)} = {𝜏𝜎 | 𝜏 ∈ 𝐺(𝑁/𝐾)/𝐺(𝑁/𝐿), 𝜎 ∈ 𝐺(𝑁/𝐿)/𝐺(𝑁/𝑀)}

when considered in 𝐺(𝑁/𝐾)/𝐺(𝑁/𝑀) (i.e. as imbeddings 𝑀 →˓ 𝑁 fixing 𝐾). The
same is true of the norm.

2The last condition is not necessary. TODO: Find a proof of the general case.
3Using the primitive element theorem, write 𝐿 = 𝐾(𝛽). The imbeddings 𝐿→ 𝑁 are those taking 𝛽 to a

conjugate; there are [𝐿 : 𝐾] imbeddings. But we know 𝐺(𝑁/𝐾)/𝐺(𝑁/𝐿) = [𝐿 : 𝐾], so all of the imbeddings
must be extendable. We also use this fact (in addition to a counting argument) in the proof of 2.
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4. The minimal polynomial of 𝛼 has coefficients in 𝐴, by Proposition 14.1.9. Hence the
result follows from item 1.

3 Discriminant

Definition 14.3.1: disc-df If 𝐵 is a ring and free 𝐴-module of rank 𝑚, and 𝛽1, . . . , 𝛽𝑚 ∈ 𝐵,
then their discriminant is

𝐷(𝛽1, . . . , 𝛽𝑚) = det[tr𝐵/𝐴(𝛽𝑖𝛽𝑗)]1≤𝑖,𝑗≤𝑚.

Proposition 14.3.2: disc-basis If the change of basis matrix from 𝛾𝑖 to 𝛽𝑖 is 𝑇 , then

𝐷(𝛾1, . . . , 𝛾𝑚) = det(𝑇 )2 ·𝐷(𝛽1, . . . , 𝛽𝑚).

Proof. Let 𝑀1 and 𝑀2 be the matrices of the bilinear form

(𝛼, 𝛼′) = tr𝐵/𝐴(𝛼𝛼
′)

with respect to the bases (𝛽1, . . . , 𝛽𝑚) and (𝛾1, . . . , 𝛾𝑚), respectively. Then, using the change
of basis formula for bilinear forms,

𝐷(𝛽1, . . . , 𝛽𝑚) = det(𝑀1)

𝐷(𝛾1, . . . , 𝛾𝑚) = det(𝑀2)

𝑀2 = 𝑇 𝑡𝑀1𝑇

det(𝑀2) = det(𝑇 )2 · det(𝑀1)

from which the result follows.

Consider the discriminant of an arbitrary basis of 𝐵 over 𝐴. By the above fact, this is
well-defined up to multiplication by the square of a unit. The residue in 𝐴/(𝐴×)2 is called
the discriminant disc(𝐵/𝐴). The discriminant also refers to the ideal of 𝐴 this element
generates.

Note disc(𝐵/𝐴) can be thought of as the determinant of the matrix of the bilinear form
(𝛽, 𝛽′) = tr𝐵/𝐴(𝛽𝛽

′).

Proposition 14.3.3 (Criterion for integral basis): crit-int-basis Let 𝐴 ⊆ 𝐵 be integral domains
and 𝐵 be a free 𝐴-module of rank 𝑚 with disc(𝐵/𝐴) ̸= 0. Then 𝛾1, . . . , 𝛾𝑚 ∈ 𝐵 form a basis
for 𝐵 as an 𝐴-module iff

(𝐷(𝛾1, . . . , 𝛾𝑚)) = (disc(𝐵/𝐴))

as ideals.

111



Number Theory, S14.3

Proof. Let 𝛽𝑖 be a basis. If the change of basis matrix from 𝛾𝑖 to 𝛽𝑖 is 𝑇 , then by Proposi-
tion 14.3.2,

𝐷(𝛾1, . . . , 𝛾𝑚) = det(𝑇 )2 ·𝐷(𝛽1, . . . , 𝛽𝑚) = det(𝑇 )2 disc(𝐵/𝐴)

Now 𝛾𝑖 is basis iff 𝑇 is invertible, iff det(𝑇 ) is a unit, iff (𝐷(𝛾1, . . . , 𝛾𝑚)) = (disc(𝐵/𝐴)).

Proposition 14.3.4 (Discriminants and Field Extensions): disc-and-fe

1. (Relationship with embeddings) Let 𝐿 be separable finite over 𝐾 of degree 𝑚, and
𝜎1, . . . , 𝜎𝑚 be the embeddings of 𝐿 into a Galois extension 𝑀 fixing 𝐾. Then for any
basis 𝛽1, . . . , 𝛽𝑚 of 𝐿 over 𝐾,

𝐷(𝛽1, . . . , 𝛽𝑚) = det(𝜎𝑖𝛽𝑗)
2 ̸= 0.

2. (Nondegeneracy of trace pairing) If 𝐵 is free of rank 𝑚 over 𝐴 (with fraction fields
𝐾,𝐿 as above), then the pairing

(𝛽, 𝛽′) ↦→ tr(𝛽𝛽′)

is a perfect 𝐾-bilinear pairing, and disc(𝐵/𝐴) = disc(𝐾/𝐿) ̸= 0.

Here perfect means that the map 𝑎 ↦→ (𝑏 ↦→ (𝑎, 𝑏)) is an isomorphism 𝐿→ 𝐿*, and similarly
for 𝑏 ↦→ (𝑎 ↦→ (𝑎, 𝑏)). This is equivalent to saying that the bilinear form is nondegenerate.

Proof. Use Proposition 14.2.3(1b), and that 𝜎𝑘, det are both multiplicative. Inequality fol-
lows from independence of characters:

Let 𝐺 be a group, 𝐹 a field. Then the homomorphisms 𝐺→ 𝐹× are linearly independent.

Thus for 𝐾 of degree 𝑚 over Q, we can talk of disc(O𝐾/Z).
A closely related quantity to the discriminant is the different.

Definition 14.3.5: Assume AKLB, and suppose 𝐿/𝐾 is a finite separable extension. The
codifferent of 𝐵 with respect to 𝐴 is

𝐵* = {𝑦 ∈ 𝐿 | tr(𝑥𝑦) ∈ 𝐴 for all 𝑥 ∈ 𝐵}.

The different of 𝐵 with respect to 𝐴 is

D𝐵/𝐴 = (𝐵*)−1.

In other words, it is the largest 𝐵-submodule satisfying tr(𝐸) ⊆ 𝐴.

Note that D𝐵/𝐴 = (𝐵*)−1.
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Remark 14.3.6: two-def-disc We will define the discriminant in general, when 𝐵 is not neces-
sarily a free 𝐴-module, in Chapter 22. The relationship between the two definitions is the
following: Let p be an ideal in 𝐴. Then 𝐴p is a principal ideal domain (in fact, a DVR). Let
𝑆 = 𝐴 − p; then 𝑆−1𝐵 is free over 𝑆−1𝐴 by the structure theorem for modules. We have
(disc(𝑆−1𝐵/𝑆−1𝐴)) = (p𝐴p)

𝑚(p) for some 𝑚(p). Then

disc(𝐵/𝐴) =
∏︁
p

p𝑚(p).

4 Integral bases

Proposition 14.4.1 (Finite generation of integral extensions): fgoie Let 𝐴 be integrally closed
and 𝐿 separable of degree 𝑚 over 𝐾. There are free finite 𝐴-submodules 𝑀 and 𝑀 ′ of 𝐿
such that 𝑀 ⊆ 𝐵 ⊆ 𝑀 ′. 𝐵 is a finitely generated 𝐴-module if 𝐴 is Noetherian, and free of
rank 𝑚 if 𝐴 is a PID.4

Proof. Let {𝛽1, . . . , 𝛽𝑚} ⊆ 𝐵 be a basis for 𝐿 over 𝐾. Take a basis 𝛽′
𝑖 so that tr(𝛽𝑖𝛽

′
𝑗) = 𝛿𝑖𝑗.

Then
𝐴𝛽1 + · · ·+ 𝐴𝛽𝑚 ⊆ 𝐵 ⊆ 𝐴𝛽′

1 + · · ·+ 𝐴𝛽′
𝑚.

The second inclusion follows because if 𝛽 ∈ 𝐵, then writing 𝛽 =
∑︀
𝑗 𝑏𝑗𝛽

′
𝑗, we have that

𝑏𝑖 = tr(𝛽𝛽𝑖) ∈ 𝐴. (In other words, the 𝛽′
𝑖 form a basis for the codifferent 𝐵*, which contains

𝐵.)Move some of the stuff on codiff?
If 𝐴 is Noetherian, then 𝑀 ′ is finitely generated, so its submodule 𝐵 is finitely generated

over 𝐴. If 𝐴 is a PID, then by the Structure Theorem for Modules (over PIDs),𝑀 is a direct
sum of cyclic modules and a free module. Since it is contained in a free module of rank 𝑚
and contains a free module of rank 𝑚, it must be free of rank 𝑚.

The following is immediate:

Theorem 14.4.2: If 𝐾 is finite over Q (i.e. a number field), then O𝐾 is a finitely generated
Z-module. It is the largest subring that is finitely generated over Z.

Definition 14.4.3: A basis for O𝐾 as a Z-module is called an integral basis.

Proposition 14.4.4: disc-calc Suppose 𝐾 has characteristic 0 (so 𝐿 separable over 𝐾), 𝐿 =
𝐾[𝛽], and 𝑓 is the minimal polynomial of 𝛽 over 𝐾. Let 𝑓(𝑋) =

∏︀
(𝑋 − 𝛽𝑖) in the Galois

closure of 𝐿. Then

𝐷(1, 𝛽, . . . , 𝛽𝑚−1) =
∏︁

1≤𝑖<𝑗≤𝑚
(𝛽𝑖 − 𝛽𝑗)2 = (−1)𝑚(𝑚−1)/2 · Nm𝐿/𝐾(𝑓

′(𝛽)).

This is called the discriminant of 𝑓 .5

4Alternative proof: proceed as in 5.8.
5This gives an alternative proof of the perfect pairing.
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Proof. Note the 𝛽𝑖 are conjugates of 𝛽; assume 𝛽 = 𝛽1.
By Proposition 14.3.4, we have

𝐷(1, 𝛽, . . . , 𝛽𝑚−1) =

⃒⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒ 1 𝛽1 · · · 𝛽𝑚−1

1

1 𝛽2 · · · 𝛽𝑚−1
2

...
...

. . .
...

1 𝛽𝑚 · · · 𝛽𝑚−1
𝑚

⃒⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
2

=
∏︁

1≤𝑖<𝑗≤𝑚
(𝛽𝑖 − 𝛽𝑗)2,

where the last statement follows by evaluating the Vandermonde determinant.
For the second equality, note by Proposition 14.2.3(1c) that

Nm𝐿/𝐾(𝑓
′(𝛽)) = Nm𝐿/𝐾((𝛽1 − 𝛽2) · · · (𝛽1 − 𝛽𝑚)) =

∏︁
1≤𝑖≤𝑚

∏︁
1≤𝑗≤𝑚, 𝑗 ̸=𝑖

(𝛽𝑖 − 𝛽𝑗)

= (−1)
𝑚(𝑚−1)

2

∏︁
1≤𝑖<𝑗≤𝑚

(𝛽𝑖 − 𝛽𝑗)2.

Proposition 14.4.5: If 𝐾 = Q[𝛼], 𝛼 ∈ O𝐾 , and 𝐷(1, 𝛼, . . . , 𝛼𝑚−1) = disc(O/Z) then
{1, 𝛼, . . . , 𝛼𝑚−1} is an integral basis.

Proof. Using change-of-basis and the correspondence between index and determinant,

𝐷(1, 𝛼, . . . , 𝛼𝑚−1) = disc(O𝐾/Z) · [O𝐾 : Z[𝛼]]2.

Now disc(O𝐾/Z) ∈ Z so [O𝐾 : Z[𝛼]] = 1.

Theorem 14.4.6 (Stickelberger’s Theorem): stickelberger

1. Let 𝑠 is the number of complex (nonreal) embeddings 𝐾 → C. Then

sign[disc(𝐾/Q)] = (−1)𝑠/2.

2. disc(O𝐾/Z) ≡ 0 or 1 (mod 4).

Proof. 1. Write 𝐾 = Q[𝛼] by the Primitive Element Theorem and 𝛼1, . . . , 𝛼𝑟 be the real
conjugates and 𝛽1, 𝛽1, . . . , 𝛽𝑠, 𝛽𝑠 be the complex conjugates. By Proposition 14.4.4,

sign(𝐷(1, 𝛼, . . . , 𝛼𝑚−1)) = sign

� ∏︁
1≤𝑗≤𝑠

(𝛽𝑗 − 𝛽𝑗)2
�

=
∏︁

1≤𝑗≤𝑠
𝑖2 = (−1)𝑠/2.

2. Let 𝛼1, . . . , 𝛼𝑚 be an integral basis. Let 𝑃 and −𝑁 be the sum of the terms in the
expansion of det(𝜎𝑖𝛼𝑗) corresponding to even and odd permutations, respectively:

𝑃 =
∑︁

even 𝜋∈𝑆𝑚

𝑚∏︁
𝑖=1

𝜎𝑖𝛼𝜋(𝑖)

𝑁 =
∑︁

odd 𝜋∈𝑆𝑚

𝑚∏︁
𝑖=1

𝜎𝑖𝛼𝜋(𝑖).
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Then

disc(O𝐾/Z) = det(𝜎𝑖𝛼𝑗)
2

= (𝑃 −𝑁)2

= (𝑃 +𝑁)2 − 4𝑃𝑁.

Take 𝜎 ∈ 𝐺(𝐾gal/Q). Note composition by 𝜎 permutes the 𝜎𝑖, say by 𝜈. Then

𝑃 =
∑︁

even 𝜋∈𝑆𝑚

𝑚∏︁
𝑖=1

𝜎𝑖𝛼𝜈−1𝜋(𝑖)

𝑁 =
∑︁

odd 𝜋∈𝑆𝑚

𝑚∏︁
𝑖=1

𝜎𝑖𝛼𝜈−1𝜋(𝑖)

and hence 𝜎 permutes {𝑃,𝑁}. Hence 𝜎 fixes 𝑃 +𝑁,𝑃𝑁 and they are rational. Since
they are integral over Z they are integers. Thus the above is congruent to 0 or 1 modulo
4.

Example 14.4.7 (Quadratic extensions): quadratic-extensions Any quadratic extension of Q is in
the form Q(

√
𝑚) for some squarefree integer 𝑚. We find the ring of integers of Q(

√
𝑚).

Consider two cases.

1. 𝑚 ≡ 2, 3 (mod 4): The minimal polynomial of
√
𝑚 is 𝑋2 −𝑚, so

disc(1,
√
𝑚) = (

√
𝑚− (−

√
𝑚))2 = 4𝑚.

Note disc(1,
√
𝑚)

disc(Q(
√
𝑚)/Q)

must be a square by Proposition 14.3.2 so disc(Q(
√
𝑚)/Q) equals 𝑚

or 4𝑚. However, by Stickelberger’s Theorem, disc(Q(
√
𝑚)/Q) ≡ 0, 1 (mod 4). Hence

disc(Q(
√
𝑚)/Q) ̸= 𝑚 and disc(Q(

√
𝑚)/Q) = 4𝑚. By Proposition 14.3.3, 1,

√
𝑚 is an

integral basis.

2. 𝑚 ≡ 1 (mod 4): Note 1+
√
𝑚

2
is integral with minimal polynomial 𝑋2 −𝑋 − 𝑚−1

4
, so

disc

�
1,

1 +
√
𝑚

2

�
=

�
1 +
√
𝑚

2
− 1−

√
𝑚

2

�2

= 𝑚.

Since 𝑚 is squarefree, disc(Q(
√
𝑚)/Q) = 𝑚 and Proposition 14.3.3 says 1, 1+

√
𝑚

2
is an

integral basis.

The following tells us about integral bases for products of fields. Can we generalize from
Q to extensions of Q?
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Proposition 14.4.8: disc-compositum Suppose that 𝐾,𝐿 are field extensions of Q such that

[𝐾𝐿 : Q] = [𝐾 : Q][𝐿 : Q].

Let 𝑑 = gcd(disc(𝐾/Q), disc(𝐿/Q)). Then

1. O𝐾 ⊆ 𝑑−1O𝐾O𝐿.

2. If O𝐾𝐿 = O𝐾O𝐿, then disc(𝐾𝐿/Q) = disc(𝐾/Q)[𝐿:Q] disc(𝐿/Q)[𝐾:Q].

In particular, COROLLARY.

Proof. Let {𝛼1, . . . , 𝛼𝑚} be an integral basis for 𝐾 and {𝛽1, . . . , 𝛽𝑛} be an integral basis for
𝐿. By the degree assumption, we know that {𝛼𝑖𝛽𝑗} is a basis for 𝐾𝐿 over Q. Any element
of 𝐾𝐿 integral over Q can be written as

ga-integral𝛾 =
∑︁

1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑚

𝑎𝑖𝑗
𝑟
𝛼𝑖𝛽𝑗 (14.2)

where gcd(𝑟, gcd(𝑎𝑖𝑗)) = 1.

We need to show that 𝑟 | 𝑑. Let 𝑥𝑖 =
∑︀𝑛
𝑗=1

𝑎𝑖𝑗
𝑟
𝛽𝑗. We will turn (14.2) into a system of

equations by considering all embeddings 𝐾 →˓ C, solve for the 𝑥𝑖 using Cramer’s rule, and in
this way show that each 𝑥𝑖 is an algebraic integer in 𝐿 divided by a bounded denominator.

Note given embeddings 𝜎𝐾 : 𝐾 →˓ C and 𝜎𝐿 : 𝐿 →˓ C, there is exactly one embedding
𝜎𝐾𝐿 : 𝐾𝐿 →˓ C such that restricts to 𝜎𝐾 and 𝜎𝐿. It is clearly unique if it exists. To
show existence, write 𝐾 = Q(𝛼) ∼= Q(𝑥)/(𝑓(𝑥)) by PET, and note that the characteristic
polynomial of 𝑓 does not change upon passing to 𝐿 because of the degree assumption. Hence
𝐾𝐿 = 𝐿(𝛼) = 𝐿(𝑥)/(𝑓(𝑥)), and in extending 𝜎𝐿 to 𝜎𝐾𝐿, we are allowed to send 𝛼 = 𝑥 to
𝜎𝐿(𝛼).

Fix an embedding 𝜎 : 𝐿 →˓ C, and let 𝜎1, . . . , 𝜎𝑚 be all embeddings 𝐾 →˓ C. Then
applying 𝜎𝑘 to 14.2 we obtain the system of equations

𝑚∑︁
𝑖=1

𝜎𝑘(𝛼𝑖)𝑥𝑖 = 𝜎𝑘(𝛾), 1 ≤ 𝑘 ≤ 𝑚.

By Cramer’s rule, letting 𝐷 = det[(𝜎𝑘(𝛼𝑖))𝑘,𝑖] we get 𝐷𝑥𝑖 = 𝐷𝑖 where 𝐷𝑖 has the 𝑖th column
of 𝐷 replaced by (𝜎𝑘(𝛼𝑖))

𝑚
𝑘=1. Note that 𝐷 and 𝐷𝑖 are both algebraic integers. Using

disc(O𝐾/Z) = 𝐷2 (Proposition 14.3.4), we get

disc(O𝐾/Z)𝑥𝑖 = 𝐷𝐷𝑖.

Hence disc(O𝐾/Z)𝑥𝑖 is an algebraic integer (in O𝐿). Since the 𝛽𝑗 are an integral basis for
O𝐿, this forces 𝑟 | disc(O𝐾/Z). Similarly, 𝑟 | disc(O𝐿/Z), as needed.
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Now we prove the second part. Choose (𝛼1, . . . , 𝛼𝑚) a basis for 𝐾/Q and (𝛽1, . . . , 𝛽𝑛) a
basis for 𝐿/Q. Then (𝛼𝑗𝛽𝑘)1≤𝑗≤𝑚,1≤𝑘≤𝑛 is a basis for 𝐾𝐿/Q. For 𝛾 ∈ 𝐾𝐿, let (𝛾)𝑗,𝑘 denote
the coordinate of 𝛼𝑗𝛽𝑘 in 𝛾. Then the 𝑚𝑛×𝑚𝑛 matrix

[tr(𝛼𝑖1𝛽𝑖2𝛼𝑖′1𝛽𝑖′2)] =

⎡⎣ ∑︁
1≤𝑗≤𝑚,1≤𝑘≤𝑛

(𝛼𝑖1𝛽𝑖2𝛼𝑖′1𝛽𝑖′2𝛼𝑗𝛽𝑘)𝑗,𝑘

⎤⎦
=

⎡⎣ ∑︁
1≤𝑗≤𝑚,1≤𝑘≤𝑛

(𝛼𝑖1𝛼𝑖′1𝛼𝑗)𝑗(𝛽𝑖2𝛽𝑖′2𝛽𝑘)𝑘

⎤⎦
=

⎡⎣ ∑︁
1≤𝑗≤𝑚

∑︁
1≤𝑘≤𝑛

(𝛼𝑖1𝛼𝑖′1𝛼𝑗)𝑗(𝛽𝑖2𝛽𝑖′2𝛽𝑘)𝑘

⎤⎦
= [tr(𝛼𝑖1𝛼𝑖′1)]⊗ [tr(𝛽𝑖2𝛽𝑖′2)].

Taking determinants and using

det(𝐴⊗𝐵) = det(𝐴)𝑛 det(𝐵)𝑚, 𝐴 ∈𝑀𝑚×𝑚, 𝐵 ∈𝑀𝑛×𝑛

we get
disc(𝐾𝐿/Q) = disc(𝐾/Q)[𝐿:Q] disc(𝐿/Q)[𝑀 :Q].

[ADD an algorithm for computing integral bases]

5 Problems

1. Suppose that 𝑓 ∈ Z[𝑥] is irreducible and has a root of absolute value at least 3
2
. Prove

that if 𝛼 is a root of 𝑓 then 𝑓(𝛼3 + 1) ̸= 0.

2. Let 𝑎1, . . . , 𝑎𝑛 be algebraic integers with degrees 𝑑1, . . . , 𝑑𝑛. Let 𝑎
′
1, . . . , 𝑎

′
𝑛 be the con-

jugates of 𝑎1, . . . , 𝑎𝑛 with greatest absolute value. Let 𝑐1, . . . , 𝑐𝑛 be integers. Prove
that if the LHS of the following expression is not zero, then

|𝑐1𝑎1 + . . .+ 𝑐𝑛𝑎𝑛| ≥
�

1

|𝑐1𝑎′1|+ · · ·+ |𝑐𝑛𝑎′𝑛|

�𝑑1𝑑2···𝑑𝑛−1

.

For example,

|𝑐1 + 𝑐2
√
2 + 𝑐3

√
3| ≥

�
1

|𝑐1|+ |2𝑐2|+ |2𝑐3|

�3

.

3. Let 𝑝 be a prime and consider 𝑘 𝑝th roots of unity whose sum is not 0. Prove that the
absolute value of their sum is at least 1

𝑘𝑝−2 .
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Chapter 15

Ideal factorization

factorization

1 Discrete Valuation Rings

Definition 15.1.1: Let 𝐾 be a field. A discrete valuation on 𝐾 is a surjective function
𝑣 : 𝐾× → Z such that for every 𝑥, 𝑦 ∈ 𝐾×,

1. 𝜋 is a group homeomorphism: 𝑣(𝑥𝑦) = 𝑣(𝑥)𝑣(𝑦).

2. 𝑣(𝑥+ 𝑦) ≥ min(𝑣(𝑥), 𝑣(𝑦)).

We set 𝑣(0) =∞.
A discrete valuation ring (over Z) is a local integral domain 𝑅 (not a field), whose

fraction field has a discrete valuation 𝑣.
An element 𝑡 with 𝑣(𝑡) = 1 is a uniformizing parameter.

Proposition 15.1.2: Suppose 𝑅 is a DVR with fraction field 𝐾. Let 𝑣 be the valuation on
𝐾.

1. The units are exactly the elements with 0 valuation:

𝑅× = 𝑣−1(0).

2. Its maximal idea is the set of elements with positive valuation.

m = {𝑥 : 𝑣(𝑥) > 0} .

3. 𝑅 is a PID with ideals m𝑛 = {𝑥 : 𝑣(𝑥) ≥ 𝑛} = (𝑡𝑛) for 𝑛 ∈ N.

4. 𝑅 is a UFD; any element can be written uniquely in the form 𝑢𝑡𝑛 where 𝑢 is a unit.
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Lemma 15.1.3: Let 𝐴 be a local domain with maximal ideal m principal and nonzero. If⋂︀
𝑛≥0m

𝑛 = 0 then 𝐴 is a DVR.

Theorem 15.1.4: Let (𝐴,m) be a Noetherian local domain. The following conditions are
equivalent.

1. 𝐴 is a DVR.

2. 𝐴 is a normal domain of dimension 1. (Dimension 1 means that the longest chain of
prime ideals is 2: p0 ⊆ p1.) (Since 𝐴 is local this means it has only two prime ideals.)

3. 𝐴 is a normal domain of depth 1. (There is a nonzero 𝑥 ∈ 𝐴 with m ∈ Ass(𝐴/ ⟨𝑥⟩).)

4. 𝐴 is a regular local ring of dimension 1. (Regular means its maximal ideal is generated
by a number of elements equal to its dimension. So here it means m is principal.)

5. m is principal and nonzero.

Proof. Note (5) =⇒ (1) uses Krull Intersection Theorem: For 𝑅 a Noetherian ring, a an
ideal, and 𝑀 a finitely generated module (esp. when 𝑀 = 𝑅), then there exists 𝑥 ∈ a such
that

(1 + 𝑥)
∞⋂︁
𝑛=0

a𝑛𝑀 = 0.

2 Dedekind Domains

Definition 15.2.1: A Dedekind domain is a normal Noetherian integral domain 𝐴 such
that every nonzero prime ideal is maximal.

Proposition 15.2.2: A local integral domain is Dedekind iff it is a DVR.

Proposition 15.2.3: For every nonzero prime ideal p in a Dedekind domain 𝐴, the local-
ization 𝐴p is a DVR. (Locally, Dedekind domains are DVR’s.)

(The converse, i.e. if 𝐴p is a DVR for every p, then 𝐴 is Dedekind, holds using Serre’s
criterion.)

Theorem 15.2.4 (Unique factorization of prime ideals): uf-dedekind Let 𝐴 be a Dedekind
domain. Every proper nonzero ideal of 𝐴 can be written uniquely as a product of prime
ideals.

Proof. Let a be a proper nonzero ideal of 𝐴.
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1. If 𝐴 is Noetherian, then every ideal a ⊆ 𝐴 contains a product b =
∏︀
p𝑟𝑘𝑘 of nonzero

prime ideals: Otherwise, choose a maximal counterexample a (possible since 𝐴 is
Noetherian). Since a is not prime, there exist 𝑥, 𝑦 ̸∈ a such that 𝑥𝑦 ∈ a. By the
maximality assumption both a+(𝑥) and a+(𝑦) contain a product of prime ideals, and
so does a ⊇ (a+ (𝑥))(a+ (𝑦)).

2. By the Chinese Remainder Theorem

𝐴/b ∼=
∏︁
𝑘

𝐴/p𝑟𝑘𝑘

via the natural map.

3. If p is a maximal ideal in a ring 𝐴, and q = p𝐴p, then the natural map 𝐴/p𝑚 →
(𝐴/p𝑚)p = 𝐴p/q

𝑚 is an isomorphism. (Indeed, it is injective because p is prime and
surjective because any 𝑠 ∈ 𝐴− p is invertible modulo p𝑚, on account of (𝑠)+ p𝑚 = 𝐴.)
Thus ∏︁

𝑘

𝐴/p𝑟𝑘𝑘
∼=
∏︁
𝑘

𝐴p𝑘/q
𝑟𝑘
𝑘 .

(This is where we use the fact that nonzero prime ideals are maximal.)

4. Combining the above, we get a one-to-one correspondence between ideals in 𝐴 contain-
ing b, and ideals in

∏︀
𝑘 𝐴p𝑘/q

𝑟𝑘
𝑘 . All ideals in the last ring are in the form

∏︀
𝑘 q

𝑠𝑘
𝑘 /q

𝑟𝑘
𝑘 ,

so a is of the form
∏︀
𝑘 q

𝑠𝑘
𝑘 . Moreover, different prime ideals containing b correspond to

different
∏︀
𝑘 q

𝑠𝑘
𝑘 /q

𝑟𝑘
𝑘 , which are different for different 𝑠𝑘, giving uniqueness.

Corollary 15.2.5: uf-dedekind-cor Let 𝐴 be a Dedekind domain.

1. If a =
∏︀

p p
𝑟𝑘
𝑘 and b =

∏︀
p p

𝑠𝑘
𝑘 are ideals in 𝐴 and p is a nonzero prime ideal then

a ⊇ b ⇐⇒ 𝑟𝑘 ≥ 𝑠𝑘 for all 𝑘

⇐⇒ a𝐴p ⊇ b𝐴p for all p.

2. If a ⊃ b ̸= 0 are ideals in 𝐴 then a = b + (𝑎) for some 𝑎 ∈ 𝐴. In particular, if 𝑏 ∈ a
then there exists 𝑎 ∈ 𝐴 such that a = (𝑎, 𝑏); i.e. each ideal is generated by at most
two elements.

3. (Inverses) Let a ̸= 0 be an ideal of 𝐴. There exists a nonzero ideal a* such that aa* is
principal.

(a) We can choose a* so aa* = (𝑎) for given 𝑎 ∈ a.

(b) Alternatively we can choose a* to be relatively prime to a given ideal c ̸= 0.

Proof. 1. The forward direction was shown in the course of the theorem. The reverse
directions are easy.
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2. Choose any 𝑎 ∈ a∖{0}. By unique factorization, we can write

(𝑎) = p𝑢11 · · · p𝑢𝑟𝑟
a = p𝑣11 · · · p𝑣𝑟𝑟

for primes p1, . . . , p𝑟 and 𝑢𝑗 ≥ 𝑣𝑗 ≥ 0. Now choose 𝑏𝑗 ∈ p
𝑣𝑗
𝑗 ∖p

𝑣𝑗+1
𝑗 . By the Chinese

remainder theorem we can choose 𝑏 such that 𝑏 ≡ 𝑏𝑗 (mod p
𝑣𝑗+1
𝑗 ) for all 𝑗. Since

ordp𝑗(𝑏𝑗) = 𝑣𝑗, by item 1, the highest power of p𝑗 dividing (𝑏) is 𝑣𝑗. The highest power
of p𝑗 dividing (𝑎) is 𝑢𝑗 ≥ 𝑣𝑗, so the highest power of p𝑗 dividing (𝑎, 𝑏) is 𝑣𝑗. Now for
a prime q ̸∈ {p1, . . . , p𝑟}, we have 𝑎 ̸∈ q (else q would divide a), so q does not divide
(𝑎, 𝑏). We conclude

(𝑎, 𝑏) = p𝑣11 · · · p𝑣𝑟𝑟 ,

as needed.

3. (a) follows from item 1; for (b), use item 2 and 3(a) to write a = ac+(𝑎) = ac+ aa* =
a(c+ a*).

Theorem 15.2.6: extension-dedekind Assume AKLB, and 𝐾/𝐿 is finite separable. If 𝐴 is a
Dedekind domain, then so is 𝐵. In particular, taking 𝐴 = Z and 𝐾 = Q, every ring
of integers in a finite separable extension of Q is Dedekind. [Separability is not needed.
TODO: proof of general case, Janusz I.6.1]

Proof.

1. 𝐵 is noetherian: By Proposition 14.14.4.1, 𝐵 is a finitely generated 𝐴-module, hence
a Noetherian 𝐴-module, hence Noetherian as a ring.

2. 𝐵 is integrally closed by Proposition 14.14.1.11(2).

3. Every nonzero prime ideal q of 𝐵 is maximal: Take a nonzero 𝛽 ∈ q and let its minimal
polynomial be 𝑥𝑛+𝑎𝑛−1𝑥

𝑛−1+ · · ·+𝑎𝑛. Then 𝑎𝑛 = −𝛽𝑛−· · ·−𝑎1𝛽 ∈ 𝛽𝐵∩𝐴 ⊆ q∩𝐴.
This shows q ∩ 𝐴 ̸= 0; since 𝐴 is Dedekind and q ∩ 𝐴 is prime, q ∩ 𝐴 is maximal and
𝐴/q is a field. Since 𝐵 is integral over 𝐴, 𝐵/q is integral over 𝐴/q.

Lemma 15.2.7: int-dom-field An integral domain 𝐵 containing a field 𝑘 and algebraic over
𝑘 is a field.

Proof. Let 𝛽 ∈ 𝐵 be nonzero. Then 𝑘[𝛽] is a finite dimensional vector space and the
multiplication-by-𝛽 map 𝑚𝛽 : 𝑘[𝛽] → 𝑘[𝛽] is injective, hence surjective. Thus there
exists 𝛽′ so 𝛽𝛽′ = 1, i.e. 𝛽 has an inverse.
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The lemma shows 𝐵/q is a field. Hence q is maximal.

Alternatively, this follows directly from “lying-over” and “going up” for integral exten-
sions.

Theorem 15.2.8: ok-dedekind Suppose 𝐾 is a finite extension of Q. Then unique factorization
of ideals holds in O𝐾 .

Proof. Combine Theorem 15.2.4 and Theorem 15.2.6.

3 Primary decomposition*

[ADD: Commutative algebra generalization, and a new proof of unique ideal factorization]

4 Ideal class group

Let 𝐴 be a Dedekind domain with fraction field 𝐾.

Definition 15.4.1: A fractional ideal of 𝐴 is a nonzero 𝐴-submodule of 𝐾 such that
𝑑a ∈ 𝐴 for some 𝑑 ∈ 𝐴.

A principal fractional ideal is one of the form

(𝑏) := 𝑏𝐴 := {𝑏𝑎|𝑎 ∈ 𝐴}.

The product of two fractional ideals is

ab =
⌋︀∑︁

𝑎𝑖𝑏𝑖|𝑎𝑖 ∈ a, 𝑏𝑖 ∈ b
{︀
.

Note that given a nonzero 𝐴-submodule of 𝐾, it is finitely generated iff it is a fractional
ideal. (Take common denominators of the generators.)

We can extend unique factorization to fractional ideals, in the same way that we can
extend unique factorization from Z to Q.

Theorem 15.4.2: The set Id(𝐴) of fractional ideals is a free abelian group on the set of
prime ideals. Thus each fraction ideal can be uniquely written in the form

a =
∏︁
p

p𝑟p .

Proof. Freeness follows from unique factorization (Theorem 15.2.4) and existence of inverses
follows from Corollary 15.2.5(3a).

Now we are ready for the following definition.
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Definition 15.4.3: Let 𝑃 (𝐴) be the group of principal ideals of 𝐴. The ideal class group
Cl(𝐴) is Id(𝐴)/𝑃 (𝐴). Its order is the class number.

The ideal class group and class number of 𝐾 are defined as the ideal class group and
class number of O𝐾 .

Note that we have an exact sequence

0→ 𝑃 (𝐴)→ 𝐼(𝐴)→ Cl(𝐴)→ 0.

The class number is 1 iff all 𝐴 is a PID. Thus in some sense it measures how far 𝐴 is
from being a PID.

Alternatively there is an exact sequence

1→ O×
𝐾 → 𝐾× → 𝐼𝐾 → Cl𝐾 → 1

where the map 𝐾× → 𝐾 is given by 𝑎 ↦→ (𝑎).

Theorem 15.4.4 (Approximation Theorem): Let 𝑥1, . . . , 𝑥𝑚 ∈ 𝐴, and p1, . . . , p𝑚 be distinct
prime ideals. For any 𝑥 ∈ N, there is 𝑥 ∈ 𝐴 such that

ordp𝑖(𝑥− 𝑥𝑖) > 𝑛

for all 𝑖.

Proof. Immediate from the Chinese Remainder Theorem.

5 Factorization in extensions

Assume AKLB, with 𝐴 Dedekind and 𝐿/𝐾 finite separable. A prime ideal p ⊂ 𝐴 will factor
in 𝐵:

p𝐵 = P𝑒1
1 · · ·P𝑒𝑔

𝑔 .

We say 𝑒𝑖 is the ramification index of P𝑖. For P | p, we write 𝑒(P/p) for the ramification
index and 𝑓(P/p) for the residue class degree [𝐵/P : 𝐴/p].

1. If 𝑒𝑘 > 1 for some 𝑘, p is ramified in 𝐵.

(a) If 𝑔 = 1 and 𝑒1 > 1, p is totally ramified.

(b) When |𝐴/p| = 𝑝𝑛, 𝑝 prime, and 𝑝 - [𝐵/P : 𝐴/p], then p is tamely ramified.

2. If 𝑒𝑖 = 𝑓𝑖 = 1 for all 𝑖, p splits completely.

3. If p𝐵 stays prime, p is inert.

Lemma 15.5.1: div-int A prime ideal P divides p iff P ∩𝐾 = p.

124



Number Theory, S15.5

Theorem 15.5.2 (Degree equation): deg-eq Let 𝑚 = [𝐿 : 𝐾] and suppose p𝐵 = P𝑒1
1 · · ·P𝑒𝑔

𝑔 .
Then

𝑔∑︁
𝑖=1

𝑒𝑖𝑓𝑖 = 𝑚.

If 𝐿/𝐾 is Galois, then all the 𝑒𝑖 are equal and all the 𝑓𝑖 are equal. Letting 𝑒 and 𝑓 denote
these common values,

𝑒𝑓𝑔 = 𝑚.

Proof. We show both sides of the equation equal dim𝐴/p(𝐵/p𝐵).
For the LHS, by the Chinese Remainder Theorem 𝐵/p𝐵 ∼=

∏︀𝑔
𝑖=1𝐵/P

𝑒𝑖
𝑖 so

deg-eq-1 dim𝐴/p(𝐵/p𝐵) =
𝑔∑︁
𝑖=1

dim𝐴/p(𝐵/P
𝑒𝑖
𝑖 ). (15.1)

Consider the filtration
𝐵 ⊃ P𝑖 ⊃ · · · ⊃ P𝑒𝑖

𝑖 .

There are no ideals between any two consecutive ideals by Corollary 15.2.5 (the first iff), so
there are no proper 𝐵/P𝑖-ideals (i.e. subspaces) of P

𝑟
𝑖/P

𝑟+1
𝑖 . Hence dim𝐵/P𝑖

(P𝑟
𝑖/P

𝑟+1
𝑖 ) = 1

and dim𝐴/p(P
𝑟
𝑖/P

𝑟+1
𝑖 ) = 𝑓𝑖. Thus

deg-eq-2 dim𝐴/p(𝐵/P
𝑒𝑖
𝑖 ) = 𝑒𝑖𝑓𝑖. (15.2)

Combining (15.1) and (15.2) give

dim𝐴/p(𝐵/p𝐵) =
𝑔∑︁
𝑖=1

𝑒𝑖𝑓𝑖.

For the RHS, let 𝐴′ = (𝐴− p)−1𝐴 = 𝐴p and 𝐵
′ = (𝐴− p)−1𝐵. First note that

𝐴/p = Frac(𝐴/p) ∼= (𝐴/p)p = 𝐴′/p𝐴′

and
𝐵/p

(*)
= (𝐴− p)−1(𝐵/p𝐵) = 𝐵′/p𝐵′,

where in (*) we use the fact that all elements of 𝐴− p are invertible modulo p𝐵, on account
of 𝐴/p being a field. Note 𝐴′ is a a DVR and hence a PID. Since 𝐵 is finitely generated over
𝐴, and localization is exact, 𝐵′ is finitely generated over 𝐴′. Furthermore, 𝐵′ is 𝐴′-torsion
free. The previous three statements along with the Structure Theorem for Modules gives
that 𝐵′ ∼= 𝐴′𝑛 (as 𝐴′-modules) for some 𝑛. Perform the following operations:

𝐵′ ∼= 𝐴′𝑛

⊗𝐾
xx

∙/p∙

))

𝐾 ∼= 𝐿𝑛 𝐵′/p𝐵′ ∼= (𝐴′/p𝐴′)𝑛

𝐵/p𝐵 ∼= (𝐴/p)𝑛
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Hence

[𝐿 : 𝐾] = 𝑛 = dim𝐴/p𝐵/p𝐵

as needed.
Now suppose 𝐿/𝐾 is Galois. Then 𝐺(𝐿/𝐾) permutes the primes P dividing p. Since

𝑒(P/p) = 𝑒(𝜎P/p) and 𝑓(P/p) = 𝑓(𝜎P/p), it suffices to show 𝐺(𝐿/𝐾) acts transitively.
Suppose by way of contradiction that P and Q are not in the same orbit. By the Chinese

Remainder Theorem there exists 𝛽 ∈ Q− {𝜎P | 𝜎 ∈ 𝐺(𝐿/𝐾)}. Now

Nm𝐿/𝐾(𝛽) =
∏︁

𝜎∈𝐺(𝐿/𝐾)

𝜎(𝛽) ∈ Q ∩ 𝐴 = p ⊆ P,

the first because 𝛽 ∈ Q and the second because 𝛽 ∈ 𝐵 is integral over 𝐴 (which is integrally
closed in 𝐾). But 𝜎(𝛽) ̸∈ P so ∏︁

𝜎∈𝐺(𝐿/𝐾)

𝜎(𝛽) ̸∈ P,

a contradiction.

Note that the ramification indices and residue degrees multiply under field extension.

Proposition 15.5.3: ef-multiply Suppose that 𝑀/𝐿 and 𝐿/𝐾 are finite separable extensions
(with Dedekind ring of integers), and that Q | P | p are primes in 𝑀,𝐿,𝐾 respectively.
Then

𝑒(Q/p) = 𝑒(Q/P)𝑒(P/p)

𝑓(Q/p) = 𝑓(Q/P)𝑓(P/p)

Proof. The first comes from substituting the factorization of PO𝑀 in the factorization of
pO𝐿. The second comes from multiplicativity of degrees of field extensions.

6 Computing factorizations

Theorem 15.6.1 (Criterion for ramification): crit-ram Assume AKLB, with 𝐿/𝐾 finite, 𝐴
Dedekind, and 𝐵 free over 𝐴. (The last condition is satisfied when 𝐴 is a PID.) Then p
ramifies in 𝐿 iff p | disc(𝐵/𝐴). In particular, only finitely many prime ideals ramify.

Proof.

1. If 𝐴 is a ring, 𝐵 is a ring containing 𝐴 and admitting a finite basis {𝑒1, . . . , 𝑒𝑚} as
an 𝐴-module, and a is an ideal of 𝐴, then {𝑒1, . . . , 𝑒𝑚} is a basis for 𝐵/a𝐵 as a 𝐴/a
module, and 𝐷(𝑒1, . . . , 𝑒𝑚) = 𝐷(𝑒1, . . . , 𝑒𝑚) mod a. Hence

disc(𝐵/𝐴) mod p = disc((𝐵/p𝐵)/(𝐴/p)).
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Lemma 15.6.2: Let 𝑘 be a perfect field and 𝐵 be a 𝑘-algebra of finite dimension.
Then 𝐵 is reduced (has no nilpotent elements) iff disc(𝐵/𝑘) ̸= 0.

Proof. First suppose 𝛽 ̸= 0 is a nilpotent element of𝐵. Choose a basis 𝑒1 = 𝛽, 𝑒2, . . . , 𝑒𝑚
of 𝐵. Then 𝛽𝑒𝑖 is nilpotent, so has trace 0. The first row of (tr(𝑒𝑖𝑒𝑗)) is zero, so
disc(𝐵/𝑘) = det(tr(𝑒𝑖𝑒𝑗)) = 0.

Now suppose 𝐵 is reduced. By the Scheinnullstellensatz, ∩p primep = nil(𝑅) = {0}.
Since 𝐵/p is integral and algebraic over 𝑘, Lemma 15.2.7 shows it is a field. Hence p
is maximal, and different p are relatively prime. Let p1, . . . , p𝑟 be prime ideals of 𝐵.
By the Chinese Remainder Theorem, 𝐵/

⋂︀𝑟
𝑖=1 p𝑖 =

∏︀𝑟
𝑖=1𝐵/p𝑖 so

dim𝑘 𝐵 ≥ dim𝑘

(︃
𝐵/

𝑟⋂︁
𝑖=1

p𝑖

)︃
=

𝑟∑︁
𝑖=1

dim𝑘(𝐵/p𝑖) ≥ 𝑟.

Since dim𝑘 𝐵 is assumed finite, 𝐵 has only finitely many prime ideals, say p1, . . . , p𝑔.

Each𝐵/p𝑖 is a finite separable (as 𝑘 is perfect) extension of 𝑘, so by Proposition 14.14.3.4(2)
(nondegeneracy of trace pairing), disc((𝐵/p𝑖)/𝑘) ̸= 0. Since 𝐵 = 𝐵/∩𝑔𝑖=1 p𝑖 =

∏︀𝑔
𝑖=1 p𝑖,

by taking the union of the bases for 𝐵/p𝑖, we get disc(𝐵/𝑘) ̸= 0.

3. Let p𝐵 =
∏︀
𝑖P

𝑒𝑖
𝑖 . From the lemma, since 𝐴/p is perfect (as it is a finite field),

disc((𝐵/p𝐵)/(𝐴/p)) = 0

iff 𝐵/p𝐵 is not reduced. By the Chinese Remainder Theorem 𝐵/p𝐵 =
∏︀
𝑖𝐵/P

𝑒𝑖
𝑖 , and

this is nonreduced iff some 𝑒𝑖 > 1, i.e. p ramifies.

Theorem 15.6.3 (Computing the factorization of p𝐵): compute-fact-pB Assume AKLB, 𝐴 is
Dedekind and 𝐿/𝐾 is separable. Suppose 𝐵 = 𝐴[𝛼] and 𝑓(𝑋) is the minimal polynomial
of 𝛼 over 𝐾. Let p be a prime ideal in 𝐴, and suppose 𝑓(𝑋) factorizes into irreducible
polynomials modulo p as

𝑓(𝑋) ≡
𝑟∏︁
𝑖=1

𝑔𝑖(𝑋)𝑒𝑖 (mod p).

Then

p𝐵 =
𝑟∏︁
𝑖=1

(p, 𝑔𝑖(𝛼))
𝑒𝑖

is the prime factorization of p𝐵. Moreover, letting 𝑔𝑖 = 𝑔𝑖 mod p,

𝐵/(p, 𝑔𝑖(𝛼)) ∼= (𝐴/p)[𝑋]/(𝑔𝑖)

𝑓𝑖 = deg 𝑔𝑖.

Generalize to when p relatively prime to conductor.
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Proof. The map 𝑋 ↦→ 𝛼 gives an isomorphism

𝐴[𝑋]/(𝑓(𝑋)) ∼= 𝐵.

Modding out by p gives
𝑘[𝑋]/(𝑓(𝑋)) ∼= 𝐵/p.

This gives a correspondence between ideals in 𝑘[𝑋]/(𝑓(𝑋)) and ideals in 𝐵 containing p:

Maximal ideals of 𝑘[𝑋]/(𝑓(𝑋)) (𝑔𝑖)

←→Maximal ideals of 𝐵/p (𝑔𝑖(𝛼))

←→Maximal ideals of 𝐵 containing p (p, 𝑔𝑖(𝛼))

But the maximal ideals of 𝐵 containing p are exactly the prime ideals (since 𝐵 is Dedekind)
dividing p (Lemma 15.5.1).

Now
∏︀
(𝑔𝑖)

𝑒𝑖 = 0 but no power with smaller exponents is 0. Hence p𝐵 ⊇ ∏︀
(p, 𝑔𝑖)

𝑒𝑖 but
does not contain any power with smaller exponents, and equality holds.

Note that the condition that p be relatively prime to the conductor is somewhat pesky.
The problem is that the we may have prime ideals dividing p that are in the form (p, 𝑔(𝛼))
where 𝑔 does has coefficients with elements of p in the denominator. So looking at the
polynomial modulo p fails to capture this behavior. We can’t look at them modulo a power
of p either—because then we would not be in a field. The solution is to pass to the completion
with respect to p—we will do this in Chapter ??.

Example 15.6.4 (Quadratic extensions): quad-ext-primes

1.

Prime 𝑝 𝑥2 + 1 mod 𝑝 (𝑝)
2 (𝑥+ 1)2 Ramifies: (𝑖+ 1)2

𝑝 ≡ 1 (mod 4) factors since
(︁
−1
𝑝

)︁
= 1 Splits

𝑝 ≡ 3 (mod 4) irreducible since
(︁
−1
𝑝

)︁
= −1 Remains prime

2.

Prime 𝑝 𝑥2 + 2 mod 𝑝 (𝑝)

2 𝑥2 Ramifies: (
√
−2)2

𝑝 ≡ 1, 3 (mod 8) factors since
(︁
−2
𝑝

)︁
= 1 Splits

𝑝 ≡ 5, 7 (mod 8) irreducible since
(︁
−2
𝑝

)︁
= −1 Remains prime

3.

Prime 𝑝 𝑥2 + 𝑥+ 1 mod 𝑝 (𝑝)

3 (𝑥− 1)2 Ramifies:
(︁
−3+

√
−3

2

)︁2
𝑝 ≡ 1 (mod 3) factors since

(︁
−3
𝑝

)︁
=
(︀
𝑝
3

�
= 1 Splits

𝑝 ≡ 2 (mod 3) irreducible since
(︁
−3
𝑝

)︁
=
(︀
𝑝
3

�
= −1 Remains prime

Note we used quadratic reciprocity to translate the “square” condition into a modular condi-
tion on 𝑝. This is true in general for any quadratic ring: whether a prime 𝑝 splits is entirely
determined by a modular condition on 𝑝, because of quadratic reciprocity.
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Mention some geometrical intuition.

7 Decomposition and inertia groups

sec:decomposition-and-inertia Let 𝐿/𝐾 be a finite Galois extension, with residue fields 𝑙 and 𝑘.
For a prime p of 𝐾, we know that there are three kinds of behavior it could express when

we pass to 𝐿:

1. It can split into distinct primes P1, . . . ,P𝑔.

2. The primes have some residue degree 𝑓 = [O𝐿/P𝑗 : O𝐾/p] over p.

3. There can be ramification, the primes P𝑗 appearing with exponent 𝑒.

Moreover, [𝐿 : 𝐾] = 𝑒𝑓𝑔. We would like to separate these three kinds of behavior by defining
two intermediate extensions 𝐿𝐷(P) and 𝐿𝐼(P).

Definition 15.7.1: Let P | p be primes in 𝐿 and 𝐾.
The decomposition group of P is

𝐷𝐿/𝐾(P) = {𝜎 ∈ 𝐺(𝐿/𝐾) : 𝜎(P) = P} .

The inertia group of P is

𝐼𝐿/𝐾(P) = {𝜎 ∈ 𝐺(𝐿/𝐾) : 𝜎(𝛼)− 𝛼 ∈ P for all 𝛼 ∈ O𝐿} .

Equivalently, letting 𝑙, 𝑘 be the residue fields of 𝐿 and 𝐾, 𝐼𝐿/𝐾(P) is the kernel of the map
𝜀 : 𝐷(P)→ 𝐺(𝑙/𝑘).

We drop the subscript when there is no confusion. The main theorem is the following.

Theorem 15.7.2: decomposition-and-inertia Let 𝐿/𝐾 be a finite Galois extension with residue fields
𝑙, 𝑘, with 𝑙/𝑘 separable.1 Let P | p be primes of 𝐿 and 𝐾. Let 𝑒, 𝑓, 𝑔 be the ramification
index, residue class degree, and number of prime divisors of p in 𝐿.

Let P𝐷 = P ∩ 𝐿𝐷(P) and P𝐼 = P ∩ 𝐿𝐼(P) (the fixed fields of the decomposition and
inertia groups). Then the following hold.

1. [𝐿 : 𝐿𝐼(P)] = 𝑒 and P𝐼 totally ramifies in 𝐿/𝐿𝐼(P).

P𝐼O𝐿 = P𝑒.

2. [𝐿𝐼(P) : 𝐿𝐷(P)] = 𝑓 and P𝐷 remains inert in the extension 𝐿𝐼(P)/𝐿𝐷(P).

P𝐷O𝐿𝐼(P) = P𝐼

𝑓(P𝐼/P𝐷) = 𝑓.

Moreover, 𝐿𝐼(P)/𝐾 is Galois.

1If 𝑙/𝑘 is not assumed separable, then [𝐿 : 𝐿𝐼(P)] = 𝑒[𝑙 : 𝑘]𝑖, [𝐿
𝐼(P) : 𝐿𝐷(P)] = [𝑙 : 𝑘]𝑠, and [𝐿𝐷(P) : 𝐿] = 𝑔.
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3. [𝐿𝐷(P) : 𝐾] = 𝑔, and p splits completely in 𝐿𝐷(P) if 𝐿𝐷(P)/𝐾 is Galois2:

pO𝐿𝐷(P) = P1,𝐷 · · ·P𝑔,𝐷.

We have the following picture. By Galois theory, the groups on the right are the Galois
groups acting on each extension; we set 𝐺 = 𝐺(𝐿/𝐾).

P

total ramification

𝐿

𝑒 𝐼(P)

𝐺

P𝐼

inert

𝐿𝐼(P)

𝑓 𝐷(P)/𝐼(P)

P𝐷

totally split if Galois

𝐿𝐷(P)

𝑔 𝐺/𝐷(P) if Galois

p 𝐾

Remark 15.7.3: To study ramification, we can define subgroups of 𝐼(P) called ramification
groups and get fixed fields in between 𝐿 and 𝐿𝐼(P). See Chapter 22.

The rest of this section is devoted to the proof of Theorem 15.7.2. We keep the notations
and assumptions in the theorem.

7.1 Decomposition group

Proposition 15.7.4: The decomposition group 𝐷(P) has order 𝑒𝑓 , and for 𝜎 ∈ 𝐺(𝐿/𝐾),

𝐷(𝜎(P)) = 𝜎𝐷(P)𝜎−1.

Moreover, the following are equivalent:

1. 𝐷(P) is normal in 𝐺.

2. The groups 𝐷(Q) are equal for all Q | p.

3. 𝐿𝐷(P)/𝐿 is Galois.

Proof. Since 𝐷(P) is the stabilizer of P under the action of 𝐺 := 𝐺(𝐿/𝐾), |𝐺/𝐷(P)| is
simply the size of the orbit of 𝐺. This equals 𝑔 since 𝐺 acts transitively on the primes
P1, . . . ,P𝑔 above p. Hence

|𝐷(P)| = |𝐺|
|𝐺/𝐷(P)|

=
𝑛

𝑔
= 𝑒𝑓.

2This is actually an iff. Exercise!
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The second part follows from the fact that if 𝐺 acts on 𝑆 and 𝐺 is the stabilizer of 𝑠 ∈ 𝑆,
then 𝑡𝐺𝑡−1 is the stabilizer of 𝑡𝑠.

For the equivalences, use the second part and the fundamental theorem of Galois the-
ory 12.12.4.1.

We first show that P𝐷 is non-split in 𝐿 and prove item 3 of Theorem 15.7.2.
By the Fixed Field Theorem, 𝐷(P) = 𝐺(𝐿/𝐿𝐷(P)), and

decomp-ef[𝐿 : 𝐿𝐷(P)] = |𝐷(P)| = 𝑒𝑓. (15.3)

Since 𝐿/𝐿𝐷(P) is Galois, 𝐷(P) acts transitively on the primes of 𝐿 above P𝐷. However,
𝐷(P) stabilizes P; thus P is the only prime above P𝐷.

By the degree equation,

𝑒𝑓 = [𝐿 : 𝐿𝐷(P)] = 𝑒(P/P𝐷)𝑓(P𝐷/p).

By Proposition 15.5.3,

𝑒 = 𝑒(P/P𝐷)𝑒(P𝐷/p)

𝑓 = 𝑓(P/P𝐷)𝑓(P𝐷/p).

All equations are satisfied only when 𝑒 = 𝑒(P/P𝐷), 𝑓 = 𝑓(P/P𝐷), and 𝑒(P𝐷/p) =
𝑓(P𝐷/p) = 1.

If 𝐿𝐷(P) is Galois, then 𝑒(P𝐷/p) = 𝑓(P𝐷/p) = 1 are the same as the 𝑒 and 𝑓 values for
all primes in 𝐿𝐷(P) over 𝐿. Thus p is totally split over 𝐿.

7.2 Inertia group

First we study the homomorphism

𝜀 : 𝐷(P)→ 𝐺(𝑙/𝑘).

Proposition 15.7.5: Suppose P | p are primes in 𝐿 and 𝐾, and let 𝑘 and 𝑙 be the residue
fields of 𝐿 and 𝐾 with respect to P and p.

1. 𝑙/𝑘 is normal (and hence Galois if separable).

2. Let 𝜀 be the map 𝐷(P)→ 𝐺(𝑙/𝑘). Then 𝜀 is surjective.

Proof. Let 𝐺 = 𝐺(𝐿/𝐾).

1. We need to show that for 𝛼 ∈ 𝑙, its minimal polynomial over 𝑘 splits completely. Let
𝛼 be a lift to O𝐿 and let

𝑓(𝑋) =
∏︁
𝜎∈𝐺

(𝑋 − 𝜎(𝛼)) ∈ O𝐾 [𝑋].

Taking this modulo P gives a polynomial in 𝑘[𝑋] containing 𝛼 as a root and splitting
completely.

Thus 𝑙/𝑘 is normal, and hence Galois if it is separable.
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2. First note we may assume 𝑙/𝑘 is separable. Indeed, we have 𝐺(𝑙/𝑘) ∼= 𝐺(𝑙sep/𝑘)3.

It suffices to show that 𝜀(𝐷(P)) acts transitively on the conjugates of 𝛼 over 𝑘 (as
then the image has at least [𝑙 : 𝑘] = |𝐺(𝑙/𝑘)| elements). By the Chinese Remainder
Theorem, choose 𝛼 ∈ O𝐿 such that

𝛼 ≡

⎧⎨⎩𝛼 (mod P)

0 (mod P′), P′ ̸= P,P′ | p.

Define 𝑓 as in item 1. Then, noting that for 𝜎 ∈ 𝐺∖𝐷(P), we have 𝛼 ≡ 0 (mod 𝜎−1(P))
and hence 𝜎(𝛼) ≡ 0 (mod P),

𝑓(𝑋) =
∏︁

𝜎∈𝐷(P)

(𝑋 − 𝜎(𝛼))
∏︁

𝜎 ̸∈𝐷(P)

𝑥

=
∏︁

𝜎∈𝐷(P)

(𝑋 − 𝜀(𝜎)(𝛼))⏟  ⏞  
(*)

∏︁
𝜎 ̸∈𝐷(P)

𝑥 ∈ 𝑘[𝑥]

Now (*) is in 𝑘[𝑥], so is divisible by the minimal polynomial of 𝛼 over 𝑘. Given a
conjugate 𝛼′ of 𝛼, it divides (*), so equals (𝜀(𝜎))(𝛼) for some 𝜎.

Corollary 15.7.6: ses-inertia-decomp There is a short exact sequence

1→ 𝐼(P)→ 𝐷(P)→ 𝐺(𝑙/𝑘)→ 1,

i.e. 𝐷(P)/𝐼(P) ∼= 𝐺(𝑙/𝑘).

Note 𝐼(P) is normal in 𝐷(P) as it is a kernel, so 𝐿𝐼(P)/𝐾 is Galois.

Now we finish the proof of Theorem 15.7.2. The above corollary gives

|𝐷(P)/𝐼(P)| = |𝐺(𝑙/𝑘)| = [𝑙 : 𝑘] = 𝑓.

Since 𝐺(𝐿𝐼(P)/𝐿𝐷(P)) = |𝐷(P)/𝐼(P)| = 𝑓 , we get [𝐿𝐼(P) : 𝐿𝐷(P)] = 𝑓 . From (15.3) we get
[𝐿 : 𝐿𝐼(P)] = 𝑒.

We will apply Corollary 15.7.6 to 𝐿/𝐿𝐼(P). Note

𝐷𝐿/𝐿𝐼(P)(P) = 𝐼𝐿/𝐿𝐼(P)(P) = 𝐺(𝐿/𝐿𝐼(P)) = 𝐼(P)

since the fact that 𝐼(P) operates trivially on 𝑙/𝑘 implies that it operates trivially on 𝑙/𝜅(P𝐼).
Hence the corollary gives

𝐺(𝑙/𝜅(P𝐼)) = 1,

3From the Fixed Field Theorem 𝑙/𝑙𝐺(𝑙/𝑙sep) is Galois. But 𝑙/𝑙sep is purely inseparable and normal. Thus
we must have 𝑙 = 𝑙𝐺(𝑙/𝑙sep), i.e. every automorphism of 𝑙/𝑘 is trivial on 𝑙/𝑙sep.
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i.e. 𝑙 = 𝜅(P𝐼) and 𝑓(P/P𝐼) = 1. We know that P𝐷 is non-split in 𝐿, so

𝑒 = [𝐿 : 𝐿𝐼(P)] = 𝑒(P/P𝐼) 𝑓(P/P𝐼)⏟  ⏞  
=1

𝑓 = [𝐿𝐼(P) : 𝐿𝐷(P)] = 𝑒(P𝐼/P𝐷)𝑓(P𝐼/P𝐷).

Now

𝑒 = 𝑒(P/P𝐷) = 𝑒(P/P𝐼)𝑒(P𝐼/P𝐷)

𝑓 = 𝑓(P/P𝐷) = 𝑓(P/P𝐼)𝑓(P𝐼/P𝐷),

so we must have

𝑒(P/P𝐼) = 𝑒, 𝑓(P/P𝐼) = 1

𝑒(P𝐼/p) = 1, 𝑓(P𝐼/p) = 𝑓.

This finishes the proof.

7.3 Further properties and applications

Theorem 15.7.7: Let 𝑀/𝐾 be a Galois extension and 𝐿/𝐾 a subextension. Then

1.

𝐷𝑀/𝐿(P) = 𝐷𝑀/𝐾(P) ∩𝐺(𝑀/𝐿)

𝐼𝑀/𝐿(P) = 𝐼𝑀/𝐾(P) ∩𝐺(𝑀/𝐿).

2. If 𝐿/𝐾 is Galois, the following commutes and has exact rows and columns.

1

��

1

��

1

��

1 // 𝐼𝑀/𝐿
//

��

𝐼𝑀/𝐾
//

��

𝐼𝐿/𝐾 //

��

1

1 // 𝐷𝑀/𝐿
//

��

𝐷𝑀/𝐾
//

��

𝐷𝐿/𝐾
//

��

1

1 // 𝐺(𝑀/𝐿) //

��

𝐺(𝑀/𝐾) //

��

𝐺(𝐿/𝐾) //

��

1

1 1 1

Theorem 15.7.8: unram-in-compositum Let 𝐿/𝐾 and 𝐿′/𝐾 be finite extensions. Then p unramified
in 𝐿,𝐿′ if and only if p is unramified in 𝐿𝐿′.
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Make notation consistent

Proof. First we prove the result for 𝐿,𝐿′ Galois. Note that for any Galois extension 𝑀/𝐾,
with P | p primes in 𝑀 and 𝐾,

inertia-1-iff-unramified𝐼P = 1 ⇐⇒ p unramified in 𝑀. (15.4)

Now there is a injective homomorphism

Φ : 𝐺(𝐿𝐿′/𝐾) →˓ 𝐺(𝐿/𝐾)×𝐺(𝐿′/𝐾)

Φ(𝜎) = (𝜎|𝐿, 𝜎|𝐿′).

Take Q | p with Q a prime in 𝐿𝐿′, and let P = Q∩O𝐿 and P′ = Q∩O𝐿′ . Suppose 𝜎 ∈ 𝐼Q.
Then 𝜎(Q) = Q and hence, taking the intersections with O𝐿,O𝐿′ (which are fixed by 𝜎 since
𝐿,𝐿′ are Galois)

𝜎|𝐿(P) = P

𝜎|𝐿′(P′) = P′.

This shows 𝜎|𝐿 ∈ 𝐼P, 𝜎|𝐿′ ∈ 𝐼P′ ; by assumption and (15.4), we get (𝜎|𝐿, 𝜎|𝐿′) = (1, 1). By
injectivity of Φ, 𝜎 = 1. This shows 𝐼Q = 1, by (15.4) again, we get Q is unramified over p,
as needed.

Now consider the general case. Given P | p in 𝐿 and 𝐾, let Q be a prime above P in
the Galois closure 𝐿gal. Now (𝐿gal)𝐼Q(𝐿gal/𝐿) is a Galois extension containing 𝐿; since 𝐿gal is
the Galois closure of 𝐿, we get

𝐿gal = (𝐿gal)𝐼Q(𝐿gal/𝐿),

But [𝐿gal : (𝐿gal)𝐼Q(𝐿gal/𝐿)] is the ramification degree of Q/P; we see that it is 1, i.e. Q is
not ramified over P and hence not ramified over p. Thus 𝐿gal/𝐾 is unramified. Similarly,
𝐿′gal/𝐾 is unramified. By the above, 𝐿gal𝐿′gal/𝐾 is unramified, so 𝐿𝐿′/𝐾 is unramified.

8 Problems

sec:factorization-problems

1. A half-factorial domain (HFD) 𝐴 is an integral domain where any given factorization
of 𝑎 has the same length. Prove Carlitz’s Theorem:

Theorem 15.8.1 (Carlitz): The ring of integers O𝐾 is a HFD iff the class group has
order at most 2.

See AMM, 12/2011, for related results.

2. Show that if p splits completely in 𝐿𝐷(P), then 𝐿𝐷(P)/𝐿 is Galois.

Conclude that if p splits completely in 𝐿, then p splits completely in the Galois closure
𝐿gal.
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Chapter 16

The class group

class-group

1 Norms of ideals

Assume AKLB, 𝐴 is Dedekind, and 𝐿/𝐾 is separable. We generalize the definition of norm
to ideals, not just elements, so that it is a map Id(𝐵) → Id(𝐴) that is consistent with our
old condition, i.e.

Nm𝐿/𝐾((𝑎)) =
(︀
Nm𝐿/𝐾(𝑏)

�
.

Consider a principal ideal p = (𝑝) ⊆ 𝐴, and suppose it factors in 𝐵 as p𝐵 =
∏︀𝑔
𝑖=1P

𝑒𝑖 . We
want the norm to satisfy

norm-ideal-motivateNm𝐿/𝐾(𝑝) = Nm𝐿/𝐾(p𝐵) =
𝑔∏︁
𝑖=1

Nm𝐿/𝐾(P)𝑒𝑖 , (16.1)

since we want it to be multiplicative. But Nm(𝑝) = 𝑝𝑛 where 𝑛 = [𝐿 : 𝐾]. By the degree
equation, if Nm(P) = P𝑓𝑖 where 𝑓𝑖 = [𝐵/P𝑖 : 𝐴/p], then (16.1) will be satisfied. Hence we
make the following definition.

Definition 16.1.1: For P is a prime of 𝐵, let p = P ∩ 𝐴 and 𝑓(P/p) = [𝐵/P : 𝐴/p].
Define the norm of P to be

Nm𝐿/𝐾(P) = p𝑓(P/p).

This extends uniquely to a homomorphism Id(𝐴)→ Id(𝐵), since the ideal group is free.

Proposition 16.1.2 (Behavior with respect to field extensions):

1. For an ideal a ⊆ 𝐴,

Nm𝐿/𝐾(a𝐵) = a𝑚,

where 𝑚 = [𝐿 : 𝐾].
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2. If 𝐿/𝐾 is Galois and p ̸= 0 is a prime ideal of 𝐴, and P | p, then

Nm𝐿/𝐾(p) =
∏︁

𝜎∈𝐺(𝐿/𝐾)

𝜎P.

3. For any nonzero 𝛽 ∈ 𝐵, Nm𝐿/𝐾(𝛽𝐵) = Nm𝐿/𝐾(𝛽)𝐴. (I.e. this is consistent with our
previous definition.)

Compare the first two items to Chapter 14, Proposition 14.2.2(5) and Proposition 14.2.3(2b),
respectively.

Proof.

1. By the degree equation (Theorem 15.5.2), for p prime

Nm𝐿/𝐾(p𝐵) = Nm𝐿/𝐾

(︃∏︁
𝑖

P𝑒𝑖
𝑖

)︃
= p

∑︀
𝑖
𝑒𝑖𝑓𝑖 = p𝑚.

The general statement follows by multiplicativity of Nm𝐿/𝐾 .

2. 𝐺(𝐿/𝐾) acts transitively on {P1, . . . ,P𝑔}, so each P𝑖 occurs
𝑚
𝑔
= 𝑒𝑓 times in {𝜎P |

𝜎 ∈ 𝐺(𝐿/𝐾)}.

3. First suppose 𝐿/𝐾 is Galois. We use the description in terms of Galois conjugates
to relate the norms of elements with the norms of ideals. By part 2 and Proposi-
tion 14.14.2.3(2b), we have

Nm𝐿/𝐾(𝛽𝐵) ·𝐵 (2)
=

∏︁
𝜎∈𝐺(𝐿/𝐾)

𝜎(𝛽𝐵) =

� ∏︁
𝜎∈𝐺(𝐿/𝐾)

𝜎(𝛽)

�
𝐵

14.14.2.3
= Nm𝐿/𝐾(𝛽) ·𝐵.

Hence, Nm𝐿/𝐾(𝛽) ·𝐴 and Nm𝐿/𝐾(𝛽 ·𝐵) determine the same ideal in 𝐵. Since Id(𝐴)→
Id(𝐵) is injective, they are equal in 𝐴.

Now consider the general case. Let 𝑀 be the Galois closure of 𝐿 over 𝐾, let 𝐶 = O𝑀 ,
and let 𝑑 = [𝑀 : 𝐿]. Then the above, together with part 1 and Proposition 14.14.2.2(5),
give

Nm𝐿/𝐾(𝛽 ·𝐵)𝑑
(1)
= Nm𝑀/𝐾(𝛽 ·𝐵) = Nm𝑀/𝐾(𝛽) · 𝐴

14.14.2.2(5)
= Nm𝐿/𝐾(𝛽)

𝑑 · 𝐴.

Since Id(𝐵) is torsion-free, Nm𝐿/𝐾(𝛽 ·𝐵) = Nm𝐿/𝐾(𝛽) · 𝐴.

Definition 16.1.3: The numerical norm of a in O𝐾 is its index in the lattice of integers:

Na = [O𝐾 : a].

Note the following comparisons between the ideal and numerical norms.
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1. The ideal norm is defined for a field extension 𝐾/𝐹 while the numerical norm is defined
for any number field 𝐾/Q.

2. The ideal norm returns an ideal while the numerical norm returns an integer.

3. However, if we take the base field 𝐹 to be Q, and identify integers with the ideals they
generate, the two norms are equivalent. This is the content of the following proposition.

Proposition 16.1.4 (Relationship between ideal and numerical norm):

1. For any ideal a ⊆ O𝐾 ,
Nm𝐾/Q(a) = (N(𝑎)).

Therefore, N(𝑎𝑏) = N(𝑎)N(𝑏).

2. Let b ⊆ a ⊆ 𝐾 be fractional ideals. Then

[a : b] = N(a−1b).

In other words, the norm of an ideal is its index in the ring of integers.

Proof.

1. Write a =
∏︀
p𝑒𝑖𝑖 and let (𝑝𝑖) = Z ∩ p𝑖, 𝑓𝑖 = 𝑓(p𝑖/(𝑝𝑖)). By the Chinese remainder

theorem,
O𝐾/a ∼=

∏︁
𝑖

O𝐾/p
𝑒𝑖
𝑖 .

Since O𝐾/p
𝑒𝑖
𝑖 is a vector space over F𝑝𝑖 of dimension 𝑒𝑖𝑓𝑖, we find

Na = |O𝐾/a| =
∏︁
𝑖

𝑝𝑒𝑖𝑓𝑖𝑖 = Nm𝐾/Q(a).

Multiplicativity follows from the same property for the ideal norm.

2. We can multiply by an integer 𝑑 so that a and b are integral ideals. Then

[a : b] = [𝑑a : 𝑑b] =
[O𝐾 : 𝑑b]

[O𝐾 : 𝑑a]
=

N(𝑑b)

N(𝑑a)

(1)
= N(a−1b).

2 Minkowski’s Theorem

Theorem 16.2.1 (Minkowski): Let 𝑉 be a subset of R𝑛 that is convex and symmetric
around the origin (“centrally symmetric”). Let 𝐿 be a full lattice with fundamental par-
alleopiped 𝐷. If

𝜇(𝑇 ) > 2𝑛𝜇(𝐷)

then 𝑇 contains a point of 𝐿 other than the origin. If furthermore 𝐷 is compact, we can
weaken the hypothesis to

𝜇(𝑇 ) ≥ 2𝑛𝜇(𝐷).
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Proof. First note that if 𝑆 is a measurable set such that 𝜇(𝑆) > 𝜇(𝐷), then 𝑆 contains
two points 𝑎, 𝑏 such that 𝑎 − 𝑏 ∈ 𝐿. Indeed, we can tile the space with fundamental paral-
lelopipeds, and translate each of them to the origin. We consider the intersections of these
parallelopipeds with 𝑆. Since the sum of these volumes is 𝜇(𝑆) > 𝜇(𝐷), and they are all
packed in 𝐷, there must be overlap, i.e. unequal 𝑎, 𝑏 ∈ 𝑆 that were translated to the same
point. This implies 𝑎− 𝑏 ∈ 𝐿.

The set 𝑆 = 1
2
𝑇 has volume 1

2𝑛
𝑇 > 𝜇(𝐷). Hence by the above, there exist 1

2
𝑎 ̸= 1

2
𝑏 ∈ 𝑆

(𝑎, 𝑏 ∈ 𝑇 ) such that 1
2
𝑎 − 1

2
𝑏 ∈ 𝐿. Since 𝑇 is symmetric, −𝑏 ∈ 𝑇 ; since 𝑇 is convex,

1
2
(𝑎− 𝑏) ∈ 𝑇 . This is the desired lattice point.

Now suppose instead 𝑇 is convex and 𝜇(𝑇 ) ≥ 2𝑛𝜇(𝐷). Let 𝐿𝑛 be the set of lattice points
in
(︀
1 + 1

𝑛

�
𝑇 other than the origin. By the first part, 𝐿𝑛 is nonempty; since 𝑇 is bounded it

must be finite. We have that 𝐿𝑛 ⊆ 𝐿𝑚 when 𝑛 ≥ 𝑚. Hence

𝑇 ∩ 𝐿 =
∞⋂︁
𝑛=1

(︂
1 +

1

𝑛

)︂
𝑇 ∩ 𝐿 =

∞⋂︁
𝑛=1

𝐿𝑛 ̸= 𝜑.

Theorem 16.2.2 (Sums of four squares): (A digression, but nice to talk about)

3 Finiteness of the class number

finite-class There’s a more natural way to “transfer” the inner product on C𝑛 to R𝑟 × C𝑠...

We now show that the class number is finite (Theorem 16.3.6). The idea of the proof is
as follows.

1. Embed 𝐾 as a Q-vector space in R𝑟×C𝑠. Under the R-vector space isomorphism 𝐾⊗Q
R→ R𝑟×C𝑠, the ideal a is realized as a lattice 𝐿 in 𝑉 = R𝑟×C𝑠 (Proposition 16.3.1).
The norm on 𝐾 translates into a “norm” on 𝑉 .

2. Find an element in a of small norm (Theorem 16.3.2): Find a compact, symmetric
convex set in 𝑉 consisting of elements of norm at most 𝑅. Choosing 𝑅 large enough,
we can make sure 𝑉 has large volume. By Minkowski’s Theorem, 𝑉 contains an element
of 𝐿.

3. Using step 2, show that every ideal class contains an representative of norm at most a
constant (Theorem 16.3.5).

4. Show that there are a finite number of ideals with bounded norm (Lemma 16.3.7).

We first embed a as a full lattice using the embeddings of 𝐾, and find the volume of the
fundamental parallelopiped in terms of the discriminant (the discriminant is related to the
embeddings by Proposition 14.3.4).
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Let {𝜎1, . . . , 𝜎𝑟} be the real embeddings and {𝜎𝑟+1, �̄�𝑟+1, . . . , 𝜎𝑟+𝑠, �̄�𝑟+𝑠} be the complex
embeddings of 𝐾. This gives an embedding1

𝜎 : 𝐾 →˓ R𝑟 × C𝑠

𝜎(𝛼) = (𝜎1𝛼, . . . , 𝜎𝑟+𝑠𝛼).

Identify 𝑉 = R𝑟 × C𝑠 with R𝑛 using the basis {1, 𝑖} for C.

Proposition 16.3.1: ideal-lattice Let a be an ideal in O𝐾 . Then 𝜎(a) is a full lattice in 𝑉 and

the volume of its parallelopiped is 2−𝑠 · Na · |Δ𝐾 |
1
2 .

Proof. Let 𝛼1, . . . , 𝛼𝑛 be a basis for a as a Z-module. To prove that 𝜎(a) is a lattice,
we need to show 𝜎(𝛼1), . . . , 𝜎(𝛼𝑛) are linearly independent, i.e. the following has nonzero
determinant:

𝐴 =

�
𝜎1(𝛼1) · · · 𝜎𝑟(𝛼1) ℜ(𝜎𝑟+1(𝛼1)) ℑ(𝜎𝑟+1(𝛼1)) · · ·
𝜎1(𝛼2) · · · 𝜎𝑟(𝛼2) ℜ(𝜎𝑟+1(𝛼2)) ℑ(𝜎𝑟+1(𝛼2)) · · ·
...

...
...

...
...

. . .

�
To do this we relate this to the matrix

𝐵 =

�
𝜎1(𝛼1) · · · 𝜎𝑟(𝛼1) 𝜎𝑟+1(𝛼1) 𝜎𝑟+1(𝛼1) · · ·
𝜎1(𝛼2) · · · 𝜎𝑟(𝛼2) 𝜎𝑟+1(𝛼2) 𝜎𝑟+1(𝛼1) · · ·
...

...
...

...
...

. . .

�
.

Note det(𝐵) = ± disc(𝛼1, . . . , 𝛼𝑛)
1
2 ̸= 0. Let 𝐽 =

�
1
2

1
2𝑖

1
2
− 1

2𝑖

�
. Then

𝐴 = 𝐵

�
𝐼𝑟 0 0 · · ·
0 𝐽 0 · · ·
0 0 𝐽 · · ·
...

...
...

. . .

�
.

Using
disc(𝛼1, . . . , 𝛼𝑛) = [O𝐾 : a]2 · | disc(O𝐾/Z)|

we get that the volume of a fundamental parallelopiped for 𝐷 is

𝜇(𝐷) = | det(𝐴)| = 2−𝑠| det(𝐵)| = 2−𝑠| disc(𝛼1, . . . , 𝛼𝑛)|
1
2 = 2−𝑠 · Na · |Δ𝐾 |

1
2 .

(In particular, this is nonzero.)

1This is the canonical embedding 𝐾 →˓ 𝐾 ⊗Q R: Indeed, by Chinese Remainder

𝐾 ⊗Q R = Q[𝑥]/(𝑓(𝑥))⊗Q R =
𝑟∏︁

𝑖=1

R[𝑥]/(𝑥− 𝜎𝑖𝛼)×
𝑠∏︁

𝑗=1

(R[𝑥]/(𝑥− 𝜎𝑟+𝑗𝛼)(𝑥− 𝜎𝑟+𝑗𝛼)) ∼= R𝑟 × C𝑠.
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Theorem 16.3.2: ideal-representative Let a be a nonzero ideal in O𝐾 . Then a contains a nonzero
element 𝛼 of 𝐾 with

|Nm(𝛼)| ≤
(︂
4

𝜋

)︂𝑠 𝑛!
𝑛𝑛

Na|Δ𝐾 |
1
2 .

Proof. The norm on 𝐾 translates into the “norm”

Nm(𝑥1, . . . , 𝑥𝑟, 𝑧𝑟+1, . . . , 𝑧𝑟+𝑠) = |𝑥1| · · · |𝑥𝑟||𝑧𝑟+1|2 · · · |𝑧𝑟+𝑠|2.

However, Nx < 𝑟 is by no means a compact convex set. Fortunately, however, we note by
the AM-GM inequality that

norm-ineq-am-gm|Nm(x)| = |𝑥1| · · · |𝑥𝑟||𝑧𝑟+1|2 · · · |𝑧𝑟+𝑠|2 ≤
�∑︀𝑟

𝑘=1 |𝑥𝑘|+ 2
∑︀𝑠
𝑘=1 |𝑧𝑟+𝑘|

𝑛

�𝑛
. (16.2)

Defining the norm ‖·‖ on 𝑉 = R𝑟 × C𝑠 by

‖(𝑥1, . . . , 𝑥𝑟, 𝑧𝑟+1, . . . , 𝑧𝑟+𝑠)‖ =
𝑟∑︁

𝑘=1

|𝑥𝑖|+ 2
𝑠∑︁

𝑘=𝑟+1

|𝑧𝑖|,

and letting 𝐵(𝑡) = {𝑥 ∈ 𝑉 : ‖𝑥‖ < 𝑡}, 𝐵(Nm, 𝑡) = {𝑥 ∈ 𝑉 : |Nm(𝑥)| < 𝑡}, we see from (16.2)
that

norm-ineq-am-gm2𝐵(𝑡) ⊆ 𝐵
(︂
Nm,

𝑡𝑛

𝑛𝑛

)︂
. (16.3)

To apply Minkowski we need some computations.

Lemma 16.3.3: class-volume The volume of 𝐵(𝑡) = {𝑥 ∈ 𝑉 : ‖𝑥‖ < 𝑡} is

𝜇(𝐵(𝑡)) = 2𝑟−𝑠𝜋𝑠
𝑡𝑛

𝑛!
.

Proof. We write the complex variables as 𝑧𝑘 = 𝑥𝑘 + 𝑦𝑘𝑖. Let

𝐵′(𝑡) = {(𝑥1, . . . , 𝑥𝑟, 𝑥𝑟+1, 𝑦𝑟+1, . . . , 𝑥𝑟+𝑠, 𝑦𝑟+𝑠) ∈ 𝐵(𝑡) : 𝑥1, . . . , 𝑥𝑟 ≥ 0} .

Write 𝑑𝑉 = 𝑑𝑥1 · · · 𝑑𝑥𝑛. Using symmetry and a polar change of coordinates, we compute

volume1𝜇(𝐵(𝑡)) = 2𝑟
∫︁
𝐵′(𝑡)

𝑑𝑉 𝑑𝑥𝑟+1 𝑑𝑦𝑟+1 · · · 𝑑𝑥𝑟+𝑠 𝑑𝑦𝑟+𝑠 (16.4)

volume2 = 2𝑟
∫︁
𝑥1,...,𝑥𝑟≥0,

∑︀
𝑥𝑘+2

∑︀
𝜌𝑘≤𝑡

(𝜌𝑟+1 · · · 𝜌𝑟+𝑠) 𝑑𝑉 𝑑𝜌𝑟+1 𝑑𝜃𝑟+1 · · · 𝑑𝜌𝑟+𝑠 𝑑𝜃𝑟+𝑠

(16.5)

= 2𝑟−2𝑠
∫︁
𝑥1,...,𝑥𝑟≥0,

∑︀
𝑥𝑘+

∑︀
𝜌𝑘≤𝑡

(𝜌𝑟+1 · · · 𝜌𝑟+𝑠) 𝑑𝑉 𝑑𝜌𝑟+1 𝑑𝜃𝑟+1 · · · 𝑑𝜌𝑟+𝑠 𝑑𝜃𝑟+𝑠

= 2𝑟−2𝑠(2𝜋)𝑠
∫︁
𝑥1,...,𝑥𝑟≥0,

∑︀
𝑥𝑘+

∑︀
𝜌𝑘≤𝑡

(𝜌𝑟+1 · · · 𝜌𝑟+𝑠) 𝑑𝑉 𝑑𝜌𝑟+1 · · · 𝑑𝜌𝑟+𝑠

volume3 = 2𝑟−𝑠𝜋𝑠𝑡(𝑟+𝑠)+𝑠
1

((𝑟 + 𝑠) + 𝑠)!
(16.6)

= 2𝑟−𝑠𝜋𝑠
𝑡𝑛

𝑛!
.
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Note (16.4) follows by symmetry, (16.5) follows from polar change of coordinates, and (16.6)
follows from the lemma below.

Lemma 16.3.4:∫︁
𝑥𝑖≥0,

∑︀
𝑥𝑖≤𝑡

𝑥𝑎11 · · ·𝑥𝑎𝑚𝑚 𝑑𝑥1 · · · 𝑑𝑥𝑚 = 𝑡𝑚+
∑︀𝑚

𝑖=1
𝑎𝑖

Γ(𝑎1 + 1) · · ·Γ(𝑎𝑚 + 1)

Γ(𝑎1 + · · ·+ 𝑎𝑚 +𝑚+ 1)
.

Proof. Making the substitution 𝑥𝑖 = 𝑡𝑥′𝑖, 𝑑𝑥𝑖 = 𝑡 𝑑𝑥′𝑖, we find that the integral equals

𝑡𝑚+
∑︀𝑚

𝑖=1
𝑎𝑖
∫︁
𝑥𝑖≥0,

∑︀
𝑥𝑖≤1

𝑥𝑎11 · · ·𝑥𝑎𝑚𝑚 𝑑𝑥1 · · · 𝑑𝑥𝑚.

Hence it suffices to prove the lemma for 𝑡 = 1.
For 𝑚 = 1, note ∫︁ 1

0
𝑥𝑎 𝑑𝑥 =

1

𝑎+ 1
=

Γ(𝑎+ 1)

Γ(𝑎+ 2)
.

For 𝑚 = 2, let 𝐵(𝛼, 𝛽) =
∫︀ 1
0 𝑣

𝛼−1(1− 𝑣)𝛽−1 𝑑𝑣. We need to show 𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)
Γ(𝛼+𝛽)

. By
Fubini,

Γ(𝛼)Γ(𝛽) =
∫︁ ∞

0

∫︁ ∞

0
𝑠𝛼−1𝑒−𝑠𝑡𝛽−1𝑒−𝑡 𝑑𝑠 𝑑𝑡 =

∫︁ ∞

0

∫︁ ∞

0
𝑠𝛼−1𝑡𝛽−1𝑒−(𝑠+𝑡) 𝑑𝑠 𝑑𝑡.

Note 𝐹 : (0,∞)×(0, 1)→ (0,∞)2 with 𝐹 (𝑢, 𝑣) = (𝑢𝑣, 𝑢(1−𝑣)) is a diffeomorphism. Indeed,
it has an inverse 𝐹−1(𝑠, 𝑡) =

(︀
𝑡+ 𝑠, 𝑠

𝑡+𝑠

�
hence is bijective and its Jacobian is det ( 𝑣 𝑢

1−𝑢 −𝑢 ) =
𝑢 ̸= 0. Using the change of variables (𝑠, 𝑡) = 𝐹 (𝑢, 𝑣) gives∫︁ 1

0

∫︁ ∞

0
(𝑢𝑣)𝛼−1(𝑢(1− 𝑣))𝛽−1𝑒−(𝑢𝑣+𝑢(1−𝑣))𝑢 𝑑𝑢 𝑑𝑣 =

∫︁ 1

0

∫︁ ∞

0
𝑢𝛼+𝛽−1𝑒−𝑢𝑣𝛼−1(1− 𝑣)𝛽−1 𝑑𝑢 𝑑𝑣

=
�∫︁ ∞

0
𝑢𝛼+𝛽−1𝑒−𝑢 𝑑𝑢

�(︂∫︁ 1

0
𝑣𝛼−1(1− 𝑣)𝛽−1 𝑑𝑣

)︂
= Γ(𝛼 + 𝛽)𝐵(𝛼, 𝛽),

as needed.
Now we use induction; suppose the theorem proved for 𝑚− 1. We have∫︁

𝑥𝑖≥0,
∑︀𝑚

𝑖=1
𝑥𝑖≤1

𝑥𝑎11 · · ·𝑥𝑎𝑚𝑚 𝑑𝑥1 · · · 𝑑𝑥𝑚 =
∫︁ 1

0
𝑥𝑎𝑚𝑚

∫︁
𝑥𝑖≥0,

∑︀𝑚−1

𝑖=1
𝑥𝑖≤1−𝑥𝑚

𝑥𝑎11 · · ·𝑥
𝑎𝑚−1

𝑚−1 𝑑𝑥1 · · · 𝑑𝑥𝑚−1 𝑑𝑥𝑚

=
∫︁ 1

0
𝑥𝑎𝑚𝑚 (1− 𝑥𝑚)𝑚−1+

∑︀𝑚−1

𝑖=1
𝑎𝑖
Γ(𝑎1 + 1) · · ·Γ(𝑎𝑚−1 + 1)

Γ(𝑎1 + · · ·+ 𝑎𝑚−1 +𝑚)
𝑑𝑥𝑚

=
Γ(𝑎𝑚 + 1)Γ(

∑︀𝑚−1
𝑖=1 𝑎𝑖 +𝑚)

Γ(𝑎1 + · · ·+ 𝑎𝑚 +𝑚+ 1)
· Γ(𝑎1 + 1) · · ·Γ(𝑎𝑚−1 + 1)

Γ(𝑎1 + · · ·+ 𝑎𝑚−1 +𝑚)

=
Γ(𝑎1 + 1) · · ·Γ(𝑎𝑚 + 1)

Γ(𝑎1 + · · ·+ 𝑎𝑚 +𝑚+ 1)
,

using the induction hypothesis and the 𝑚 = 2 case.
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Taking

𝑡 =
𝑛

Ê
𝑛! · 2

𝑛−𝑟

𝜋𝑠
· Na|Δ𝐾 |

1
2

we find by Lemma 16.3.3 that

𝜇(𝐵(𝑡)) = 2𝑟−𝑠𝜋𝑠
𝑡𝑛

𝑛!
= 2𝑛

(︁
2−𝑠Na|Δ𝐾 |

1
2

)︁
= 2𝑛𝜇(𝐷)

where 𝐷 is the fundamental parallelopiped. Note that 𝐵(𝑡) is a closed ball, and it is convex
by the triangle inequality. Hence by Minkowski’s Theorem, 𝐵(𝑡) contains an element of 𝜎(a).
For this element, we have by (16.3) that

Nm𝐾/Q(𝑎) ≤
𝑡𝑛

𝑛𝑛
=
(︂
4

𝜋

)︂𝑠 𝑛!
𝑛𝑛

Na|Δ𝐾 |
1
2 .

Theorem 16.3.5: ideal-class-group-rep Suppose 𝐾/Q is an extension of degree 𝑛, and let Δ𝐾 =
disc(𝐾/Q). Let 2𝑠 be the number of nonreal complex embeddings of 𝐾. Then there exists
a set of representatives for the ideal class group Cl(𝐾) consisting of integral ideals a with

N(a) ≤ 𝑛!

𝑛𝑛

(︂
4

𝜋

)︂𝑠⏟  ⏞  
𝐶𝐾

|Δ𝐾 |
1
2 .

Proof. Given a fractional ideal c, there exists b such that

bc = (𝑑)

is principal. By Theorem 16.3.2, there is an element 𝛽 ∈ b of norm at most
(︀
4
𝜋

�𝑠 𝑛!
𝑛𝑛Nb|Δ𝐾 |

1
2 .

Since (𝛽) ⊆ b we have

ab = (𝛽)

for some a. Note a ∼ b−1 ∼ c, and taking norms of the above equation gives

NaNb = N(𝛽) ≤
(︂
4

𝜋

)︂2 𝑛!

𝑛𝑛
Nb|Δ𝐾 |

1
2 .

Canceling Nb gives that a is the desired representative.

Theorem 16.3.6: class-number-finite The class number of 𝐾 is finite.

Proof. By Theorem 16.3.5, every ideal class has a representative with norm at most 𝐶𝐾 |Δ𝐾 |
1
2 .

Thus it suffices show the following (take 𝐶 = 𝐶𝐾 |Δ𝐾 |
1
2 ).

Lemma 16.3.7: finite-bounded-norm There are only a finite number of integral ideals a with Na ≤
𝐶 (take 𝐶 = 𝐶𝐾 |Δ𝐾 |

1
2 ).
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Proof. Suppose a is an integral ideal. Write a =
∏︀
p𝑟𝑖𝑖 . Let (𝑝𝑖) = p𝑖 ∩ Z and 𝑓𝑖 = [O𝐾/p𝑖 :

Z/(𝑝𝑖)]. Then
Na =

∏︁
𝑖

𝑝𝑓𝑖𝑟𝑖𝑖 .

Given Na ≤ 𝐶, there are a finite possibilities for the 𝑝𝑖 and hence p𝑖, as well as for the 𝑟𝑖.

The bound in Theorem 16.3.5 also gives the following corollaries.

Theorem 16.3.8: q-ramifies Every algebraic extension of Q ramifies over Q.

Proof. It suffices to prove this statement for finite extensions. Let 𝐾/Q be a finite extension.
By Theorem 16.3.2, every ideal contains a representative 𝛼 with

1 ≤ |Nm(𝛼)| ≤
(︂
4

𝜋

)︂𝑠 𝑛!
𝑛𝑛
.

Hence we have

dk-bound|Δ𝐾 | ≥
𝑛2𝑛

𝑛!2

�𝜋
4

�2𝑠
> 1. (16.7)

The last inequality comes from the fact that defining 𝑎𝑛 = 𝑛2𝑛

𝑛!2

(︀
𝜋
4

�2𝑠
, we have that 𝑎2 > 1

and 𝑎𝑛+1

𝑎𝑛
=
(︀
𝜋
4

� 1
2
(︀
1 + 1

𝑛

�𝑛
> 1 for 𝑛 ≥ 2.

Since Δ𝐾 > 1 and every prime dividing the discriminant ramifies (Theorem 15.6.1), 𝐾/Q
is ramified.

Corollary 16.3.9: There does not exist an irreducible monic polynomial 𝑓(𝑋) ∈ Z[𝑋] of
degree greater than 1 with discriminant ±1.

Proof. Let 𝑓 be an irreducible monic polynomial of degree greater than 1. Let 𝛼 be a root
of 𝑓 . By Theorem 16.3.8, Q[𝛼] is ramified over Q. By (16.7), |Δ𝐾 | > 1. Then

disc(𝑓) = disc(Z[𝛼]/Z) = |Δ𝐾 | · [O𝐾 : Z[𝛼]]2 > 1.

4 Example: Quadratic extensions

To compute the class group in quadratic extensions, note the following two facts.

1. The complete description of prime ideals is given by Example ?? (actually put this
in!).

2. By Theorem 16.3.2, each ideal class has a representative of norm at most 4
𝜋
|Δ𝐾 |

1
2 .

In fact, Minkowski’s bound can be improved in the quadratic case.
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Theorem 16.4.1: (*) Let 𝐾 = Q(
√
𝑑) where 𝑑 is a negative squarefree integer. Let

𝜇 =

⎧⎨⎩√︁ |𝑑|
3
, 𝑑 ≡ 1 (mod 4)

2
√︁

|𝑑|
3
, 𝑑 ≡ 2, 3 (mod 4).

Every ideal class in O𝐾 has a representative a with

Na ≤ 𝜇.

Proof. First we show that every ideal a has an element 𝑎 ̸= 0 with Nm𝐾/Q(𝑎) ≤ 𝜇N(a). For
a lattice 𝐿 let Δ(𝐿) be the area of a fundamental parallelogram.

Note that Nm𝐾/Q(𝑧) = |𝑧|2. An ideal a of 𝐾 forms a lattice in C. Let 𝑎 be the element
of minimal nonzero norm in a and 𝑏 be the element of minimal nonzero norm that is not a
integer multiple of 𝑎. By the minimality assumption, since 𝑏−𝑎 cannot be a integer multiple
of 𝑎, we have

|𝑏− 𝑎| ≥ |𝑏| ≥ |𝑎|.

Let 𝐴,𝐵 denote the points 𝑎, 𝑏 and 𝑂 the origin. Using the fact that in a triangle the side
lengths are in the same order least-to-greatest as the opposite angles, we get that in the
triangle 𝐴𝑂𝐵, the angle at 𝑂 is largest, in particular at least 60∘. Let 𝑂′ be so that 𝑂𝐴𝑂′𝐵
is a parallelogram. The minimality assumption similarly forces 𝑂𝑂′ ≥ 𝐴𝑂,𝐴𝑂′, so we get
∠𝑂𝐴𝑂′ ≥ 60∘. Thus

angle60∘ ≤ ∠𝐴𝑂𝐵 ≤ 120∘. (16.8)

Furthermore, the parallelogram with sides 𝑂𝐴 and 𝑂𝐵 is a fundamental parallelogram:
Suppose 𝐶 is the point 𝑐 ∈ a, and is in the triangle 𝑂𝐴𝐵 but not any of the vertices. Let
𝑂𝐶 intersect 𝐴𝐵 at 𝐶 ′. We have ∠𝑂𝐶 ′𝐵 > ∠𝑂𝐴𝐵 ≥ ∠𝐴𝐵𝑂 = ∠𝐶 ′𝐵𝑂, where the middle
inequality is from 𝑂𝐵 ≥ 𝑂𝐴. Hence looking at △𝑂𝐶 ′𝐵, 𝑂𝐵 > 𝑂𝐶 ′ ≥ 𝑂𝐶, contradicting
minimality of 𝑏. Similarly, if 𝐶 is in 𝐴𝐵𝑂′, then we have |𝑎+𝑏−𝑐| < |𝑏|, also a contradiction.

By (16.8), the area of the fundamental parallelogram is

Δ(O𝐾)Na = Δ(a) = |𝑎𝑏| sin∠𝐴𝑂𝐵 ≥ |𝑎|2
√
3

2
=

√
3

2
Nm𝐾/Q(𝑎).

Solving gives

Nm𝐾/Q(𝑎) ≤
2√
3
Δ(O𝐾)Na.

Finally note that for 𝑑 ≡ 1 (mod 4), a basis for O𝐾 is
(︁
1, 1+

√
𝑑

2

)︁
while for 𝑑 ≡ 2, 3 (mod 4)

the basis is
(︀
1,
√
𝑑
�
. The fundamental parallelograms have areas

√
𝑑
2

and
√
𝑑, respectively,

giving
Nm𝐾/Q(𝑎) ≤ 𝜇Na.

Given a fractional ideal c, there exists b such that

bc = (𝑑)
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is principal. By the above, there is an element 𝑏 ∈ b of norm at most 𝜇Nb. Since (𝑏) ⊆ b
we have

ab = (𝑏)

for some a. Note a ∼ b−1 ∼ c, and taking norms of the above equation gives

NaNb = N(𝑏) ≤ 𝜇Nb.

Canceling Nb gives that a is the desired representative.

We give an example of computing the class group. The general procedure to compute
the class group of 𝐴 = O𝐾 where 𝐾 = Q(

√
𝑑) and 𝑑 is negative and squarefree is as follows.

1. List the primes 𝑝 ≤ ⌊𝜇⌋.

2. For each 𝑝, determine whether 𝑝 splits in 𝐴 by checking whether

𝑓(𝑥) :=

⎧⎨⎩𝑥2 − 𝑥+ 𝑑−1
4
, 𝑑 ≡ 1 (mod 4)

𝑥2 − 𝑑, 𝑑 ≡ 2, 3 (mod 4)

is irreducible.

3. If 𝑝 = aa splits in 𝐴, include it in the list of generators.

4. Compute the norm of some small elements (with prime divisors in the list found above),

like 𝑘 + 𝛿 for 𝑘 ∈ N0, 𝛿 =
√
𝑑 or 1+

√
𝑑

2
depending on 𝑑 (mod 4). Factor Nm𝐾/Q(𝑎) to

factor

(𝑎)(𝑎) = (Nm𝐾/Q(𝑎));

match factors using unique factorization. Note (𝑎) ∼ (𝑎) ∼ 1. Repeat until there are
enough relations to determine the group.

5. For the prime 2, if 𝑑 ≡ 2, 3 (mod 4), 2 ramifies, (2) = p2, and p has order 2 for
𝑑 ̸= −1,−2. (Note p = (2, 𝛿) and (2, 1 + 𝛿) in these two cases, respectively.)

We first consider the cases when the class group is trivial.

Theorem 16.4.2: The rings

Z[
√
−1], Z[

√
−2], Z

[︃
1 +
√
𝑑

2

]︃
, 𝑑 = −3,−7,−19,−43,−67,−163

are unique factorization domains.

In fact, they are the only ones (part of Gauss’s class number problem).
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Proof. Note Z[
√
−1], Z[

√
−2], and Z

[︁
1+

√
𝑑

2

]︁
are Euclidean domains and hence unique fac-

torization domain.

The class group of Z
[︁
1+

√
𝑑

2

]︁
is generated by the classes of prime ideals whose norms are

prime integers 𝑝 ≤ 𝜇, which are the factors of (𝑝) when it splits. When 𝑑 ≡ 1 (mod 4) as in

all the remaining cases, an integer prime 𝑝 remains prime in Z
[︁
1+

√
−𝑑

2

]︁
iff 𝑥2 − 𝑥− 1

4
(1− 𝑑)

is irreducible modulo 𝑝, iff 𝑥2 − 𝑥 − 1
4
(1 − 𝑑) has no zero modulo 𝑝. We show that for

𝑑 = −7,−11,−19,−43,−67,−163, 𝑥2 − 𝑥 − 1
4
(1 − 𝑑) is irreducible modulo all primes less

than 𝜇. Then no prime ideals have norms that are prime integers 𝑝 ≤ 𝜇, and the only ideal
class is that of the principal ideals. It follows that Z[

√
𝑑] is a principal ideal domain and

hence a unique factorization domain.

𝑑 ⌊𝜇⌋ , 𝜇 =
√︁

|𝑑|
3

𝑥2− 𝑥+ 1
4
(1− 𝑑) Primes 𝑝 ≤ ⌊𝜇⌋, 𝑥2 − 𝑥+ 1

4
(1− 𝑑) (mod 𝑝)

-7
�È

7
3

�
= 1 None

-11
�È

11
3

�
= 1 None

-19
�È

19
3

�
= 2 𝑥2 − 𝑥+ 5 2: 𝑥2 + 𝑥+ 1 = 1 for 𝑥 = 0, 1

-43
�È

43
3

�
= 3 𝑥2 − 𝑥+ 11 2: 𝑥2 + 𝑥+ 1 = 1 for 𝑥 = 0, 1

3: 𝑥2 − 𝑥− 1 =

⎧⎨⎩−1 for 𝑥 = 0, 1

1 for 𝑥 = 2

-67
�È

67
3

�
= 4 𝑥2 − 𝑥+ 17 2: 𝑥2 + 𝑥+ 1 = 1 for 𝑥 = 0, 1

3: 𝑥2 − 𝑥− 1 =

⎧⎨⎩−1 for 𝑥 = 0, 1

1 for 𝑥 = 2

-163
�È

163
3

�
= 7 𝑥2 − 𝑥+ 41 2: 𝑥2 + 𝑥+ 1 = 1 for 𝑥 = 0, 1

3: 𝑥2 − 𝑥− 1 =

⎧⎨⎩−1 for 𝑥 = 0, 1

1 for 𝑥 = 2

5: 𝑥2 − 𝑥+ 1 =

⎧⎪⎪⎨⎪⎪⎩1 for 𝑥 = 0, 1

3 for 𝑥 = 4, 2

2 for 𝑥 = 3

7: 𝑥2 − 𝑥− 1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 for 𝑥 = 0, 1

1 for 𝑥 = 2, 6

5 for 𝑥 = 3, 5

4 for 𝑥 = 4

Change for consistent notation.

Example 16.4.3: We compute the class group of Z[
√
−41].

For 𝑑 = −41, ⌊𝜇⌋ =
�
2
È

41
3

�
= 7. Modulo 2, 3, 5, and 7, -41 is congruent to 1, 1, 4, and
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1, which are all squares. Factor

(2) = 𝐴𝐴

(3) = 𝐵𝐵

(5) = 𝐶𝐶

(7) = 𝐷𝐷

Then the class group is generated by ⟨𝐴⟩ , ⟨𝐵⟩ , ⟨𝐶⟩ , ⟨𝐷⟩. (Note that
¬
𝐴
)︂
= ⟨𝐴⟩−1, etc.) We

have
(1 + 𝛿)(1 + 𝛿) = (42) = (2)(3)(7) = 𝐴𝐴𝐵𝐵𝐷𝐷.

If a prime ideal 𝑃 divides (1 + 𝛿) then 𝑃 divides (1 + 𝛿). Hence the conjugate factors are
divided between (1 + 𝛿) and (1 + 𝛿). Without loss of generality, we can suppose

(1 + 𝛿) = 𝐴𝐵𝐷.

The class of a principal ideal is the identity in the class group, so

⟨𝐴⟩ ⟨𝐵⟩ ⟨𝐷⟩ = 1.e1 (16.9)

Next consider
(2 + 𝛿)(2 + 𝛿) = (45) = (3)2(5) = 𝐵2𝐵

2
𝐶𝐶.

Note that 3 does not divide 2 + 𝛿 so 𝐵𝐵 = (3) doesn’t divide (2 + 𝛿). Thus 𝐵2, 𝐵
2
divide

(2+ 𝛿), (2 + 𝛿) in some order. Since we haven’t distinguished between 𝐶 and 𝐶 yet, we may

assume WLOG that ⟨𝐵⟩2
¬
𝐶
)︂
,
¬
𝐵
)︂2 ⟨𝐶⟩ are equal to (2 + 𝛿) and (2 + 𝛿) in some order, and

⟨𝐵⟩2
¬
𝐶
)︂
= ⟨𝐵⟩2 ⟨𝐶⟩−1 = 1

or
⟨𝐶⟩ = ⟨𝐵⟩2 .cb2 (16.10)

Similarly, looking at

(3 + 𝛿)(3 + 𝛿) = (50) = (2)(5)2 = 𝐴𝐴𝐶2𝐶
2
,

we get that

⟨𝐴⟩
¬
𝐶
)︂2

= 1 or
¬
𝐴
)︂ ¬
𝐶
)︂2

= 1.

Noting that 𝐴 = 𝐴 (since (2) = (2, 1 + 𝛿)(2, 1 − 𝛿) and (2, 1 + 𝛿) = (2, 1 − 𝛿) when 𝑑 ≡ 3
(mod 4) by [Artin, 13.8.4]),

⟨𝐴⟩ = ⟨𝐶⟩2 .ac2 (16.11)

From (16.10) we may omit ⟨𝐶⟩ from the list of generators for the group, from (16.11) we
may omit ⟨𝐴⟩, and from (16.9) we may omit ⟨𝐷⟩. Thus the class group is the cyclic group
generated by ⟨𝐵⟩. From (16.10) and (16.11), we get

⟨𝐴⟩ = ⟨𝐵⟩4 .ab4 (16.12)
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Since 𝐴 is not principal, ⟨𝐵⟩4 ̸= 1. Note ⟨𝐴⟩ =
¬
𝐴
)︂
= ⟨𝐴⟩−1 implies ⟨𝐴⟩2 = 1. Combining

this with (16.12) gives that ⟨𝐵⟩8 = 1. Since ⟨𝐵⟩𝑛 ̸= 1 for any proper divisor 𝑛 of 8 (it
sufficed to check 𝑛 = 4), the class group is cyclic of order 8, 𝐶8.
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Chapter 17

The algebra of quadratic forms

quadratic-forms

We follow Cox [Cox89], except for the proof of Gauss composition, when we follow Cassels
(add reference). The last section is based on Bhargava’s paper [Bha04].

1 Quadratic forms

quadratic-forms1

Definition 17.1.1: Let 𝑅 be an integral domain. A quadratic form on 𝑅 is a function
on 𝑅𝑛, in the form

𝑓(𝑥1, . . . , 𝑥𝑛) =
∑︁

1≤𝑖≤𝑗≤𝑛
𝑎𝑖𝑗𝑥𝑖𝑥𝑗.

Supposing 𝑅 is a UFD, we say 𝑓 is primitive iff gcd1≤𝑖≤𝑗≤𝑛 𝑎𝑖𝑗 = 1.

A quadratic form may be represented by a matrix

𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑎11

𝑎12
2

· · · 𝑎1,𝑛−1

2

𝑎1,𝑛
2

𝑎12
2

𝑎22 · · · 𝑎2,𝑛−1

2

𝑎2,𝑛
2

...
...

. . .
...

...
𝑎1,𝑛−1

2

𝑎2,𝑛−1

2
· · · 𝑎𝑛−1,𝑛−1

𝑎𝑛−1,𝑛

2
𝑎1,𝑛
2

𝑎2,𝑛
2

· · · 𝑎𝑛−1,𝑛

2
𝑎𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(working in 𝐾 = Frac(𝑅) as necessary to allow division by 2); we have

𝑓(x) = x𝑄x𝑇 .

Definition 17.1.2: We say two forms 𝑓 and 𝑔 are equivalent if there are is an invertible
matrix 𝐴 (i.e. a matrix with determinant a unit) such that

𝑓(x) = 𝑔(x𝐴𝑇 ).

We say 𝑓 and 𝑔 are properly equivalent if det(𝐴) = 1.
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Note that the matrices corresponding to 𝑓 and 𝑔 are related by

𝑄𝑓 = 𝐴𝑇𝑄𝑔𝐴.

For the rest of this chapter, we will focus on integral binary quadratic forms, i.e. those
in two variables over Z.

2 Representing integers

Definition 17.2.1: We say that 𝑓 represents 𝑛 if there exists x = (𝑥1, . . . , 𝑥𝑛) such that
𝑓(x) = 𝑛. We say that 𝑓 properly represents 𝑛 if we can choose x so that gcd(𝑥1, . . . , 𝑥𝑛) =
1.

Lemma 17.2.2: pr-repA form 𝑓(𝑥, 𝑦) properly represents 𝑛 if and only if 𝑓(𝑥, 𝑦) is properly
equivalent to the form 𝑛𝑥2 + 𝑏′𝑥𝑦 + 𝑐′𝑦2 for some 𝑏′, 𝑐′ ∈ Z.

Proof. If 𝑓(𝑝, 𝑞) = 𝑛 with (𝑝, 𝑞) relatively prime, then by Bézout we can find 𝑟, 𝑠 such that
𝑝𝑠− 𝑞𝑟 = 1. Let 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. Then 𝑓 is equivalent to

𝑓(𝑝𝑥+ 𝑟𝑦, 𝑞𝑥+ 𝑠𝑦) = 𝑓(𝑝, 𝑞)⏟  ⏞  
𝑛

𝑥2 + (2𝑎𝑝𝑟 + 𝑏𝑝𝑠+ 𝑏𝑟𝑞 + 2𝑐𝑞𝑠)𝑥𝑦 + 𝑓(𝑟, 𝑠)𝑦2.

For the converse, note that 𝑛𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 properly represents 𝑛 by taking (𝑥, 𝑦) =
(1, 0).

Theorem 17.2.3: represent-iff-square Let 𝑛 ̸= 0 and 𝑑 be integers. Then the following are equiv-
alent.

1. There exists a binary quadratic form of discriminant 𝑑 which properly represents 𝑛.

2. 𝑑 is square modulo 4𝑛.

Proof. Suppose 𝑓 is a binary quadratic form of discriminant 𝑑 properly representing 𝑛. Then
by Lemma 17.2.2, 𝑓 is equivalent to some form 𝑛𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. Hence the discriminant is
𝑑 = 𝑏2 − 4𝑛𝑐, and 𝑑 ≡ 𝑏2 (mod 4𝑛).

Conversely, suppose 𝑏2 ≡ 𝑑 (mod 4𝑛), so 𝑏2 = 𝑑+4𝑛𝑐 for some integer 𝑛, i.e. 𝑑 = 𝑏2−4𝑛𝑐.
Then

𝑓(𝑥, 𝑦) = 𝑛𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2

properly represents 𝑛, as 𝑓(1, 0) = 𝑛, and disc(𝑓) = 𝑏2 − 4𝑛𝑐 = 𝑑.

Corollary 17.2.4: cor-represent-iff-square Let 𝑛 be an integer and 𝑝 an odd prime not representing
𝑛. Then

(︁
−𝑛
𝑝

)︁
= 1 iff 𝑝 is represented by a primitive form of discriminant −4𝑛.

Proof. Note
(︁
−𝑛
𝑝

)︁
= 1 iff

(︁
−4𝑛
𝑝

)︁
= 1, and this is equivalent to the second statement by the

theorem.
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The results in this section are particularly useful if there are few quadratic forms with
determinant 𝑑. There is a method to list all these quadratic forms, as we will show in the
next section.

3 Reduction of quadratic forms

We would like to have a canonical representative for every equivalence class of binary
quadratic forms. We choose the one with “smallest” coefficients. This is made precise
by the following definition.

Definition 17.3.1: A positive definite binary quadratic form 𝑎𝑥2 + 𝑏𝑥𝑦+ 𝑐𝑦2 is reduced if
it is primitive and

|𝑏| ≤ 𝑎 ≤ 𝑐

and
𝑏 ≥ 0 if |𝑏| = 𝑎 or 𝑎 = 𝑐.

Theorem 17.3.2: one-reduced Every equivalence class of primitive binary quadratic forms con-
tains exactly one reduced form.

There’s a more enlightening proof using the action of GL2 on the upper half plane.

Proof. Existence, Step 1: We first show there is a form in the class with |𝑏| ≤ 𝑎 ≤ 𝑐.
Take the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 in the equivalence class such that |𝑏| is smallest.

Note 𝑎, 𝑐 > 0 because the form is positive definite. We claim that 𝑎, 𝑐 ≥ |𝑏|. Indeed, we have

𝑓(𝑥+𝑚𝑦, 𝑦) = 𝑎𝑥2 + (2𝑎𝑚+ 𝑏)𝑥𝑦 + (𝑎𝑚2 + 𝑐)𝑦2,

so −𝑏 ≤ 2𝑎𝑚+ 𝑏 ≤ 𝑏 for all 𝑚 ∈ Z, giving 𝑎 ≥ |𝑏|. Similarly, 𝑐 ≥ |𝑏|.
Next, if 𝑎 > 𝑐, then replacing (𝑥, 𝑦) by (−𝑦, 𝑥) we get 𝑐 > 𝑎 ≥ |𝑏|.

Step 2: The form is reduced unless 𝑏 < 0 and 𝑎 = −𝑏 or 𝑎 = 𝑐. We tackle these cases next.
In these cases 𝑎𝑥2− 𝑏𝑥𝑦+𝑐𝑦2 is reduced, so it suffices to show 𝑎𝑥2± 𝑏𝑥𝑦+𝑐𝑦2 are equivalent.
In these two cases we make the following substitutions:

𝑓(𝑥, 𝑦) = 𝑎𝑥2 − 𝑎𝑥𝑦 + 𝑐𝑦2 =⇒ 𝑓(𝑥+ 𝑦, 𝑦) = 𝑎𝑥2 + 𝑎𝑥𝑦 + 𝑐𝑦2

𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑎𝑦2 =⇒ 𝑓(−𝑦, 𝑥) = 𝑎𝑥2 − 𝑏𝑥𝑦 + 𝑎𝑦2.

Uniqueness, Step 1: We claim that for (𝑥, 𝑦) ∈ Z2 with 𝑥𝑦 ̸= 0, and 𝑓(𝑥, 𝑦) = 𝑎𝑥2+𝑏𝑥𝑦+𝑐𝑦2

with 𝑎, 𝑐 ≥ |𝑏|, we have
𝑓(𝑥, 𝑦) ≥ (𝑎− |𝑏|+ 𝑐)min(𝑥2, 𝑦2).

Indeed, without loss of generality assume 𝑥 ≥ 𝑦. Then

𝑓(𝑥, 𝑦) ≥ (𝑎− |𝑏|)𝑥𝑦 + 𝑐𝑦2 ≥ (𝑎− |𝑏|+ 𝑐)𝑦2.
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As a corollary, for 𝑥𝑦 ̸= 0,
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 ≥ 𝑎− |𝑏|+ 𝑐

with equality iff 𝑥, 𝑦 = ±1, 𝑥𝑦 = − sign(𝑏).

Step 2: To distinguish between reduced forms, we examine the smallest nonzero values at-
tained by a them, and the number of primitive solutions to them. Note all solutions (𝑥, 𝑦)
with 𝑥𝑦 = 0 and one of |𝑥|, |𝑦| ≥ 2 are removed from consideration.

1. If |𝑏| < 𝑎 < 𝑐, then the smallest values attained by 𝑓 primitively are

𝑎 < 𝑐 < 𝑎− |𝑏|+ 𝑐

with solutions (±1, 0), (0± 1) and ±(−1, sign(𝑏)) respectively.

2. If 𝑏 ≥ 0 and |𝑏| = 𝑎 < 𝑐, then the smallest values attained by 𝑓 primitively are

𝑎 < 𝑐 = 𝑎− |𝑏|+ 𝑐;

the first has 2 solutions and the latter has 4 primitive solutions.

3. If 𝑏 ≥ 0 and |𝑏| < 𝑎 = 𝑐, then the smallest values attained by 𝑓 primitively are

𝑎 = 𝑐 < 𝑎− |𝑏|+ 𝑐;

the first has 4 solutions and the latter has 2 primitive solutions.

4. If 𝑏 ≥ 0 and |𝑏| = 𝑎 = 𝑐, then the smallest value attained by 𝑓 primitively is

𝑎 = 𝑐 = 𝑎− |𝑏|+ 𝑐

which has 6 primitive solutions.

After examining this data, the only reduced forms that could be equivalent are those falling
in the first category with opposite 𝑏’s, i.e. 𝑎𝑥2 ± 𝑏𝑥𝑦 + 𝑐𝑦2. But any change of variables
sending one to the other must preserve the solutions (±1, 0) and (0,±1), so must have matrix(︀
±1 0
0 ±1

�
. If this matrix has determinant 1, then it must be ±𝐼 and cannot change between

the two forms.

Suppose 𝑑 < 0; note that there is an algorithm to list all reduced quadratic forms with
discriminant 𝑑. The conditions |𝑏| ≤ 𝑎 ≤ 𝑐 and 𝑏2 − 4𝑎𝑐 = 𝑑 give

𝑑 = 𝑏2 − 4𝑎𝑐 ≤ 𝑎2 − 4𝑎2 = −3𝑎2.

Hence

𝑎 ≤
Ê
−𝑑
3
.

We simply check for solutions to 𝑏2 − 4𝑎𝑐 = 𝑑 for all 0 ≤ |𝑏| ≤ 𝑎 ≤
√︁
−𝑑

3
.
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3.1 Examples

Example 17.3.3: When 𝑛 = 1, 2, 3, the above check gives that the only reduced form of
discriminant −4𝑛 is 𝑥2 + 𝑛𝑦2.

Combining this fact with Theorem 17.2.3, we get that 𝑓 properly represents 𝑚 iff 𝑑 :=
−4𝑛 is a square modulo 4𝑚, i.e. −1 is a square modulo 𝑚. Thus we have the chain of
equivalences:

1. 𝑓 represents 𝑚.

2. 𝑓 properly represents 𝑚
𝑘2

for some square factor 𝑘2 | 𝑚.

3. 𝑑 is a square modulo 𝑚
𝑘2

for some 𝑚.

4. 𝑑 is a square modulo 𝑚
𝑘2

for the largest square factor 𝑘2 | 𝑚.

5. 𝑑 is a square modulo 𝑝 for every 𝑝 | 𝑚 with ord𝑝(𝑚) odd.

By quadratic reciprocity, we have�−1
𝑝

�
= (−1)

𝑝−1
2 =

⎧⎨⎩1, 𝑝 ≡ 1 (mod 4)

−1, 𝑝 ≡ 3 (mod 4)�−2
𝑝

�
= (−1)

𝑝−1
2 (−1)

𝑝2−1
8 =

⎧⎨⎩1, 𝑝 ≡ 1, 3 (mod 8)

−1, 𝑝 ≡ 5, 7 (mod 8)�−3
𝑝

�
= (−1)

𝑝−1
2 (−1)

3−1
2

· 𝑝−1
2

�𝑝
3

�
=

⎧⎨⎩1, 𝑝 ≡ 1 (mod 3)

−1, 𝑝 ≡ 2 (mod 3).

Hence we have the following.

𝑚 represented by iff every such prime has even exponent in 𝑚
𝑥2 + 𝑦2 𝑝 ≡ 3 (mod 4)
𝑥2 + 2𝑦2 𝑝 ≡ 5, 7 (mod 8)
𝑥2 + 3𝑦2 𝑝 ≡ 2 (mod 3)

Compare this with the proof using factorization in Z[
√
−𝑑].1 In particular, note that

Z[
√
−𝑑] is a UFD when 𝑑 = 1, 2, and in these cases, there is exactly one form of discriminant

−4𝑑. This is not a coincidence!
Next we show the following.

Example 17.3.4: x25y2 A positive integer 𝑛 is represented by 𝑥2 + 5𝑦2 iff

1. Any prime 𝑝 ≡ 11, 13, 17, 19 (mod 20) appears in 𝑛 with even exponent.

1When 𝑑 = 3 we have to be slightly careful.
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2. There are an even number of prime divisors that are 𝑝 ≡ 2, 3, 7 (mod 20), counting
multiplicity.

3. (No restriction on primes 𝑝 ≡ 1, 5, 9 (mod 20).)

Note this condition is quite different from the ones before!

Proof 1. This time we have to check 𝑎 ≤
È
−20

3
< 3. The reduced forms of discriminant −20

are

𝑓(𝑥) := 𝑥2 + 5𝑦2

𝑔(𝑥) = 2𝑥2 + 2𝑥𝑦 + 3𝑦2.

We run into trouble already: Theorem 17.2.3 fails to distinguish between these. We still
start with the same argument, though.

Step 1: By Corollary 17.2.3, a prime 𝑝 is represented by 𝑓 or 𝑔 iff
(︁
−5
𝑝

)︁
= 1. By quadratic

reciprocity, �−5
𝑝

�
= (−1)

𝑝−1
2

�𝑝
5

�
=

⎧⎨⎩1, 𝑝 ≡ 1, 3, 7, 9 (mod 20)

−1, 𝑝 ≡ 11, 13, 17, 19 (mod 20).

Step 2: Now we distinguish between these two cases. By checking modulo 4, we see that
𝑓 only represents primes 𝑝 ≡ 1, 9 (mod 20) (and 5) and 𝑔 only represents primes 𝑝 ≡ 3, 7
(mod 20) (and 2).2 By Step 1, 𝑓 , 𝑔 must represent all of these respective primes.

Step 3: We have the desired result for primes. How to pass to products of primes? First note
that primes 𝑝 ≡ 11, 13, 17, 19 (mod 20) have to appear with even exponent (if 𝑥2 + 5𝑦2 ≡ 0

(mod 𝑝), since
(︁
−5
𝑝

)︁
= −1, we must have 𝑝 | 𝑥, 𝑦; now divide 𝑥, 𝑦 by 𝑝 and repeat).

Now consider the magical identity

x25y2-magic(2𝑥2+2𝑥𝑦+3𝑦2)(2𝑧2+2𝑧𝑤+3𝑤2) = (2𝑥𝑦+𝑥𝑤+𝑦𝑧+3𝑦𝑤)2+5(𝑥𝑤−𝑦𝑧)2, (17.1)

which says that a product of numbers represented by 𝑔 is represented by 𝑓 ! This immediately
gives the sufficiency condition.

For the necessary condition, note we may divide 𝑥, 𝑦 by 2 until they are not both even.
Now take it modulo 8 to see that 𝑛 ≡ 1, 4, 5, 6 (mod 8). This gives that item 2 is necessary.

Wait a minute. Where does the magical identity come from? Historically this was the
way such problems were solved, and in fact the motivation for composing quadratic forms:
for primitive quadratic forms 𝑓, 𝑔, ℎ, we say 𝑓 ∘ 𝑔 = ℎ iff there exist integral bilinear forms
𝐵1, 𝐵2 satisfying certain conditions such that

𝑓(x)𝑔(y) = ℎ(𝐵1(x,y), 𝐵2(x,y)).

2These sets are disjoint; we say 𝑓, 𝑔 are unique in their genus.
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We won’t go into the historical details, because the modern way of thinking of composition
is cleaner (see Section 5). We know we had the “composition law”

(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = (𝑎𝑐− 𝑏𝑑)2 + (𝑎𝑑+ 𝑏𝑐)2.

We can view this as coming from the identity

fermat-id-explainedNm𝐾/Q(𝑎+ 𝑏𝑖)Nm𝐾/Q(𝑐+ 𝑑𝑖) = Nm𝐾/Q((𝑎+ 𝑏𝑖)(𝑐+ 𝑑𝑖)) (17.2)

where 𝐾 = Q(𝑖), so Nm𝐾/Q(𝑧) = |𝑧|2. We now look at a different proof of Example 17.3.4.

Proof 2. This time the complication comes from that Z[
√
−5] is not a UFD, nor PID; its

ideal class group has order 2, with representatives

a = 1

b = (3, 1 +
√
−5).

Step 1: Let 𝑝 be prime. As in the proof of Theorem 8.8.2.1, we factor the equation 𝑥2+5𝑦2 = 𝑝

in Z[
√
−5] to get

(𝑥+
√
−5𝑦)(𝑥−

√
−5𝑦) = 𝑝.

Now we know the ideal (𝑝) splits iff 𝑥2+5 (mod 𝑝) splits, i.e.
(︁
−5
𝑝

)︁
= 1. We calculated that

this happens when 𝑝 ≡ 1, 3, 5, 7, 9 (mod 20).

Step 2: So if 𝑝 is of the above form, we know that either 𝑝 is a product of two principal
ideals, or two (conjugate) ideals similar to b. In the two cases, we have respectively

(𝑝) = (𝜆)(𝜆)

(𝑝) = 𝜆(3, 1 +
√
−5)𝜆(3, 1 +

√
−5)

for some 𝜆 ∈ Q(
√
−5). Then calculating the norm of the ideal in 𝐾 = Q(

√
−5) gives

𝑝 = Nm𝐾/Q(𝜆)

𝑝 = N((3, 1 +
√
−5))⏟  ⏞  

3

Nm𝐾/Q(𝜆)
2.

Let 𝜆 = 𝑥 + 𝑦
√
−5. In the first case, we must have 𝑝 = 𝑥2 + 5𝑦2, so 𝑝 ≡ 1, 5, 9 (mod 20),

while in the second case, we must have 𝑝 = 3(𝑥2 + 5𝑦2) (𝑥, 𝑦 ∈ Q, here) so when 𝑝 is odd,
𝑝 ≡ 3 · 1, 3 · 9 (mod 20). (We can check that 𝑥, 𝑦 do not have 2 or 5 in the denominator
by an infinite descent argument, so we may consider 𝑥, 𝑦 ∈ Z/20Z.) 𝑝 = 2 is possible as
(2, 1 +

√
−5)2 = (2). Thus again we’ve distinguished between the two cases.

Step 3: A prime 𝑝 ≡ 1, 5, 9 (mod 20) splits into two principal ideals, a prime 𝑝 ≡ 2, 3, 7
(mod 20) splits into two ideals of type b, and a prime 𝑝 ≡ 11, 13, 17, 19 (mod 20) remains
prime. In order for (𝑛) to split into two principal ideals, we must be able to write

(𝑛) = cc
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where c is a product of ideals, containing an even number of prime ideals of type b, and c
contains the conjugates of those ideals. (Two ideals of type b multiply to a principal ideal.)
The result follows.

It seems like the quadratic forms in the first proof are related to the ideals in the second
proof. This is indeed the case: we can explain (17.1) similarly to (17.2) by

Nm𝐾/Q(2𝑥+ (1 +
√
−5)𝑦)

N(2, 1 +
√
−5)

·
Nm𝐾/Q(2𝑧 + (1 +

√
−5)𝑤)

N(2, 1 +
√
−5)

=
Nm𝐾/Q((2𝑥+ (1 +

√
−5)𝑦)(2𝑧 + (1 +

√
−5)𝑤))

N((2))

The two forms on the LHS are exactly those on the LHS of (17.1) while that on the RHS
can be written in the form 𝐵2

1 + 5𝐵2
2 because 1

2
(2𝑥 + (1 +

√
−5)𝑦)(2𝑧 + (1 +

√
−5)𝑤) is an

integral ideal. We will see that in this way the group law on ideal classes translates into a
group law on quadratic forms.

After we establish Gauss composition, we will show the equivalence between a quadratic
form𝑄 representing a prime 𝑝, and (𝑝) splitting into ideals of a certain form (Theorem 17.5.4).
The above proof was a specific example of this.

4 Ideals on quadratic rings

Definition 17.4.1: We will be considering rings that are free Z-modules of finite rank.
We call such rings quadratic, cubic, quartic, and quintic, if the rank is 2, 3, 4, or 5,
respectively.

The rings we are primarily interested are integral domains, which are exactly the rings
that can be embedded in field extensions.

Definition 17.4.2: An order O in a finite extension 𝐾/Q is a subring of 𝐾 containing 1,
that is a free Z-module of rank [𝐾 : Q].

The maximal order of 𝐾 is simply O𝐾 , the ring of integers of 𝐾.

Definition 17.4.3: Let 𝑅 be a ring that is a free Z-module of finite rank. The conductor
of 𝑅 is the greatest integer 𝑛 for which there exists a ring 𝑇 such that

O = Z+ 𝑛𝑇.

(Necessarily, 𝑇 has the same rank.)

If 𝑆 is a quadratic ring then 𝑆 = ⟨1, 𝜏⟩ for some 𝜏 satisfying a quadratic equation
𝜏 2 + 𝑏𝜏 + 𝑐 = 0. If this polynomial is irreducible over Z, then 𝑆 can be embedded in a
quadratic field extension. Otherwise, 𝑆 is not an integral domain. We make the following
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definitions. The first four are equivalent to our previous definitions when 𝑆 is integrally
closed.

1. The discriminant of 𝑆 is the discriminant of the characteristic polynomial, 𝑏2 − 4𝑐.

2. Conjugation is the linear transformation that takes 1 to 1 and switches the zeros of
𝑥2 + 𝑏𝑥+ 𝑐.

3. The norm of an element 𝛼 ∈ 𝑆 is 𝛼𝛼.

4. The numerical norm N𝑅(a) of an ideal a ∈ 𝑅 to be [𝑅 : 𝐼] = |𝑅/𝐼|.3

5. A basis (𝛼, 𝛽) for a ⊆ 𝑅 is positively oriented if⃒⃒⃒⃒⃒
𝛼 𝛼
𝛽 𝛽

⃒⃒⃒⃒⃒
disc(𝑆)

=
𝛼𝛽 − 𝛽𝛼

𝑑
> 0.

We now describe all quadratic rings.

Proposition 17.4.4: There is a bijection between 𝐷 = {𝑑 ∈ Z : 𝑑 ≡ 0, 1 (mod 4)} and
quadratic rings (up to isomorphism), given by

𝑆 : 𝑑 ↦→ Z[𝜏𝑑]

where 𝜏𝑑 satisfies a monic quadratic equation with discriminant 𝑑.
Moreover,

𝑑 = 𝑓 2𝑑𝐾 ,

where 𝑓 is the conductor of Z[𝜏𝑑] and, when 𝑑 is nonsquare, 𝑑𝐾 is the discriminant of Q(𝜏𝑑)
(𝑑𝐾 ≡ 0, 1 (mod 4) and 16 - 𝑑𝐾).

1. An integer 𝑑 ∈ 𝐷 corresponds to a integral domain if and only if 𝑑 is not a square.

2. If 𝑑 = 0 then 𝑆(𝑑) = Z[𝑥]/(𝑥2).

3. If 𝑑 is a nonzero square then 𝑆(𝑑) = Z · (1, 1) +
√
𝑑(Z⊕ Z).

4. If 𝑑𝐾 ≡ 1 (mod 4), 𝑑𝐾 ̸= 1, then 𝑆(𝑑) = Z[𝑓𝜏 ] = ⟨1, 𝑓𝜏⟩ where 𝜏 = 1+
√
𝑑𝐾

2
.

5. If 𝑑𝐾 ≡ 0 (mod 4) then 𝑆(𝑑) = Z[𝑓𝜏 ] = ⟨1, 𝑓𝜏⟩ where 𝜏 =
√
𝑑𝐾
2

—the root of the
nonsquare part of 𝑑.

3For fractional ideals a, i.e. 𝑅-submodules of 𝑅 ⊗Z Q, take a fractional ideal b containing a and 𝑅 and

define N𝑅(a) =
[b:a]
[b:𝑅] .
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Proof. Note the map is well-defined, because any two quadratic equations with discriminant
𝑑, say 𝑥2 + 𝑏𝑗𝑥+ 𝑐𝑗, 𝑗 = 1, 2, have 𝑏1 ≡ 𝑏2 ≡ 𝑑 (mod 2) and hence are related by the change
of variable 𝑥 ↦→ 𝑥 + 𝑘 for some 𝑘. The map is injective because the discriminant doesn’t
change under replacing 𝜏 with 𝜏 + 𝑘.

For item 1, note 𝑑 is a square iff the characteristic polynomial factors. Item 2 is clear;
for item 3 note that we have the homomorphism

Z[𝜏 ]/(𝜏 2 − 𝑑) →˓ Z[𝜏 ]/(𝜏 −
√
𝑑)× Z[𝜏 ]/(𝜏 +

√
𝑑) ∼= Z× Z

1 ↦→ (1, 1)

𝜏 ↦→ (
√
𝑑,−
√
𝑑)

with image Z · (1, 1) +
√
𝑑(Z⊕ Z).

Now write 𝑑 = 𝑓 2𝑑𝐾 ; we will show 𝑓 is the conductor. Choose 𝑏 = 0 or 1 with 𝑏 ≡ 𝑑
(mod 4) and 𝑐 such that 𝑏2 − 4𝑐 = 𝑑, and let

𝑆(𝑑𝐾) = Z[𝜏 ]/(𝜏 2 + 𝑏𝜏 + 𝑐) = Z
[︃
−𝑏+

√
𝑑𝐾

2

]︃
𝑆(𝑑) = Z[𝜏 ]/(𝜏 2 + 𝑓𝑏𝜏 + 𝑓𝑐) = Z

[︃
−𝑓𝑏+ 𝑓

√
𝑑𝐾

2

]︃
.

Now 𝑆(𝑑𝐾) is the ring of integers of 𝑆(𝑑), so the largest quadratic ring containing 𝑆(𝑑);
moreover the above representation gives

conductor-in-qring𝑆(𝑑) = Z+ 𝑓𝑆(𝑑𝐾), (17.3)

so 𝑓 must be the conductor.
Items 4 and 5 come from (17.3) and the fact that Z

[︁
−𝑏+

√
𝑑𝐾

2

]︁
= Z[𝜏𝐾 ].

4.1 Proper and invertible ideals

From now on, assume that 𝑑 is not a square. We create a bijection between the “ideal
class group” of a quadratic ring of discriminant 𝑑 and quadratic forms of discriminant 𝑑.
To do this we first have to define the “ideal class group” of a quadratic ring. This is more
complicated than defining it for a ring of integers, because a general order is not a Dedekind
domain. We find that we first have to restrict the ideals under consideration, in order for
inverses to exist.4 Later we restrict the ideals further so that we have unique factorization.

Definition 17.4.5: df:proper-ideal A proper ideal of O is an ideal such that

O = {𝛽 ∈ 𝐾 : 𝛽a ⊆ a} .

(In general we only have ⊆.)
4Else we only get a semigroup.
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Note that for the maximal order O𝐾 , all ideals are proper, and for any order, all principal
ideals are proper. Furthermore, any ideal is proper for exactly most one order, namely the
order {𝛽 ∈ 𝐾 : 𝛽a ⊆ a}. The following tells us exactly which order that is.

Lemma 17.4.6: proper-ideal-of Suppose a = (𝛼, 𝛽) is an ideal in a order of a quadratic field.
Suppose 𝜏 = 𝛽

𝛼
has degree 2 over Q and satisfies the equation

𝑎𝑥2 + 𝑏𝑥+ 𝑐 = 0

where 𝑎 > 0, 𝑏, and 𝑐 are integers with gcd(𝑎, 𝑏, 𝑐) = 1. Let 𝐾 = Q(𝜏). Then a is a proper
ideal of 𝑅 := (1, 𝑎𝜏), and

N𝑅(a) =
Nm𝐾/Q(𝛼)

𝑎
.

As stated this only works for imaginary quadratic fields.

Proof. Let O be the order. Now (1, 𝜏) is also a fractional ideal of O ⊆ Q(𝜏). We know
O = {𝛽 ∈ 𝐾 : 𝛽a ⊆ a}. Now, 𝛽 is in this set iff

𝛽 ∈ (1, 𝜏)

𝛽𝜏 ∈ (1, 𝜏),

i.e.

𝛽 = 𝑝+ 𝑞𝜏 for some 𝑝, 𝑞 ∈ Z

𝛽𝜏 = (𝑝+ 𝑞𝜏)𝜏 = 𝑝𝜏 + 𝑞

�
− 𝑏
𝑎
𝜏 − 𝑐

𝑎

�
∈ (1, 𝜏);

since gcd(𝑎, 𝑏, 𝑐) = 1, this is true iff 𝑎 | 𝑞. Hence O = (1, 𝑎𝜏).
For the second part, note

N(a) = [O : a] =
[O : (1, 𝜏)]

[a : (1, 𝜏)]
=

[𝛼(1, 𝜏) : (1, 𝜏)]

[(1, 𝑎𝜏) : (1, 𝜏)]
=

Nm(𝛼)

𝑎
.

Proposition 17.4.7: Let a be a fractional O-ideal. Then a is proper iff it is invertible.
Hence the proper fractional ideals form a group 𝐼(O) under multiplication.

Proof. If a is invertible, then ab = O for some b. If 𝛽a ⊆ a, then

𝛽O = 𝛽(ab) = (𝛽a)b ⊆ ab = O

so 𝛽 ∈ O. This shows a is proper.
Conversely, suppose a is proper. Write a = 𝛼(1, 𝜏). Letting 𝑎𝑥2 + 𝑏𝑥+ 𝑐 be the minimal

polynomial of 𝜏 with integer coefficients, by Lemma 17.4.6, O = (1, 𝑎𝜏). We show that

aa =
Nm𝐾/Q(𝛼)

𝑎
O;
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it will follow that 𝑎
Nm𝐾/Q(𝛼)

a is the inverse of a.

First note O = O, since O = (1, 𝑎𝜏) = (1, 𝑎𝜏) (on account of 𝑎𝜏 + 𝑎𝜏 = −𝑏). Hence a is
actually an ideal of O. Next, we calculate

aa = 𝛼(1, 𝜏)𝛼(1, 𝜏)

= Nm𝐾/Q(𝛼)(1, 𝜏, 𝜏 , 𝜏𝜏)

= Nm𝐾/Q(𝛼)
�
1, 𝜏 + 𝜏 , 𝜏,− 𝑐

𝑎

�
= Nm𝐾/Q(𝛼)

�
1,− 𝑏

𝑎
,− 𝑐

𝑎
, 𝜏

�
=

Nm𝐾/Q(𝛼)

𝑎
(1, 𝑎𝜏)

as needed (using gcd(𝑎, 𝑏, 𝑐) = 1 in the last step).

Let 𝑃 (O) be the subgroup of principal ideals in 𝐼(O). Define the class group of O to
be

𝐶(O) = 𝐼(O)/𝑃 (O).

Let 𝑃+(O) be the subgroup of principal ideals in the form (𝛼) where 𝛼 is totally positive, i.e.
positive under every real embedding. (This is an empty condition if O is imaginary.) Define
the narrow class group of O to be

𝐶+(O) = 𝐼(O)/𝑃+(O).

(This is an example of what is called a ray class group in class field theory.)

5 Gauss composition

g-comp

Theorem 17.5.1 (Correspondence between ideals and binary quadratic forms): ideal-form-correspondence

There is a bijection between

1. narrow ideals classes in quadratic rings with given orientation and

2. binary quadratic forms (up to proper equivalence),

given by

(a = (𝛼, 𝛽), 𝑅) ↦→
Nm𝐾/Q(𝛼𝑥− 𝛽𝑦)

N𝑅(a)(︃(︃
1,
−𝑏+

√
𝑑

2𝑎

)︃
,Z
[︃
−𝑏+

√
𝑑

2

]︃)︃
←[ 𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2
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where 𝐾 is the quadratic field containing a, (𝛼, 𝛽) is a positively oriented basis for a, and
𝑑 = 𝑏2 − 4𝑎𝑐. This restricts to a bijection between invertible oriented ideal classes in the
order of discriminant 𝑑 and primitive binary quadratic forms of discriminant 𝑑:

𝐶+(O(𝑑))
∼=↔ 𝐶(𝑑).

Corollary 17.5.2 (Gauss composition): gauss-composition There exists a group structure on
equivalence classes of binary quadratic forms, induced by the group structure on ideal classes.

Proof. Step 1: We show the forward map is well-defined. We need to check two things.

1. Change of basis gives an equivalent form: Temporarily write𝑄𝑎1,𝑎2(𝑥, 𝑦) =
Nm𝐾/Q(𝑎1𝑥−𝑎2𝑦)

Na
.

Suppose a = (𝑎1, 𝑎2) = (𝑏1, 𝑏2) where both bases are positively oriented. We can write�
𝑏1
−𝑏2

�
= 𝐴

�
𝑎1
−𝑎2

�
, 𝐴 ∈ SL2(Z).

Then

ideal-qform-change-basis𝑄𝑏1,𝑏2(𝑥, 𝑦) =

Nm𝐾/Q

�
(𝑥, 𝑦)

�
𝑏1
−𝑏2

��
N𝑅(a)

=

Nm𝐾/Q

�
(𝑥, 𝑦)𝐴

�
𝑎1
−𝑎2

��
N𝑅(a)

= 𝑄𝑎1,𝑎2 ((𝑥, 𝑦)𝐴)

(17.4)
so the quadratic forms are equivalent.

2. Multiplying by a totally positive element gives an equivalent form: Suppose 𝜆 is totally
positive. Then Nm𝐾/Q(𝜆) > 0. First note that (𝜆𝑎1, 𝜆𝑎2) is also positively oriented:⃒⃒⃒⃒⃒

𝜆𝑎1 𝜆𝑎1
𝜆𝑏1 𝜆𝑏1

⃒⃒⃒⃒⃒
𝑑

= Nm𝐾/Q(𝜆)

⃒⃒⃒⃒⃒
𝑎1 𝑎1
𝑏1 𝑏1

⃒⃒⃒⃒⃒
𝑑

> 0.

Then

𝑄𝜆𝑎1,𝜆𝑎2(𝑥, 𝑦) =
Nm(𝜆𝑎1𝑥− 𝜆𝑎2𝑦)

N𝑅(𝜆a)

=
Nm𝐾/Q(𝑎1𝑥− 𝑎2𝑦)

N𝑅(a)

= 𝑄𝑎1,𝑎2(𝑥, 𝑦)

as needed.

Step 2: We show this map is injective. First note an alternate characterization for the forward
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map. Writing (𝛼, 𝛽) = 𝛼(1, 𝜏), we find that the quadratic form corresponding to (𝛼, 𝛽) is

𝑄𝛼,𝛽(𝑥, 𝑦) =
Nm𝐾/Q(𝛼𝑥− 𝛽𝑦)

N𝑅(a)

=
(𝛼𝑥− 𝛽𝑦)(𝛼𝑥− 𝛽𝑦)

N𝑅(a)

=
𝛼𝛼𝑥2 − (𝛼𝛽 + 𝛼𝛽)𝑥𝑦 + 𝛽𝛽𝑦2

N𝑅(a)

qform-factored =
Nm𝐾/Q(𝛼)

N𝑅(a)
(𝑥− 𝜏𝑦)(𝑥− 𝜏𝑦), 𝜏 =

𝛽

𝛼
. (17.5)

Suppose 𝑄𝑎1,𝑎2(𝑥, 𝑦) ∼ 𝑄𝑏1,𝑏2(𝑥, 𝑦). By changing the basis of b = (𝑏1, 𝑏2), which by (17.4)
corresponds to changing the basis of the quadratic form, we may assume 𝑄𝑎1,𝑎2(𝑥, 𝑦) =
𝑄𝑏1,𝑏2(𝑥, 𝑦). The above factorization (17.5) says that one of the following holds:

1. 𝑎1
𝑎2

= 𝑏1
𝑏2
. Letting 𝜆 = 𝑎1

𝑏1
= 𝑎2

𝑏2
, we find a = 𝜆b. Since both bases are positively oriented,

0 <

⃒⃒⃒⃒⃒
𝑎1 𝑎1
𝑎2 𝑎2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑏1 𝑏1
𝑏2 𝑏2

⃒⃒⃒⃒⃒ = Nm𝐾/Q(𝜆),

showing either 𝜆 or −𝜆 is totally positive.

2. 𝑎1
𝑎2

= 𝑏1
𝑏2
. We show that this kind of “disorientation” is impossible. Let 𝜆 = 𝑎1

𝑏1
= 𝑎2

𝑏2
.

Then

0 <

⃒⃒⃒⃒⃒
𝑎1 𝑎1
𝑎2 𝑎2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑏1 𝑏1
𝑏2 𝑏2

⃒⃒⃒⃒⃒ = − ⃒⃒⃒⃒⃒𝑎1 𝑎1
𝑎2 𝑎2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝑏1 𝑏1
𝑏2 𝑏2

⃒⃒⃒⃒⃒ = −Nm𝐾/Q(𝜆),

giving Nm𝐾/Q(𝜆) < 0. But

𝑄𝑏1,𝑏2(𝑥, 𝑦) =
(𝑏1𝑥− 𝑏2𝑦)(𝑏1𝑥− 𝑏2𝑦)

N𝑅(a)

𝑄𝑎1,𝑎2(𝑥, 𝑦) =
(𝑎1𝑥− 𝑎2𝑦)(𝑎1𝑥− 𝑎2𝑦)

N𝑅(b)
= 𝜆𝜆

(𝑏1𝑥− 𝑏2𝑦)(𝑏1𝑥− 𝑏2𝑦)
N𝑅(b)

;

equating gives Nm𝐾/Q(𝜆) > 0, contradiction.

Step 3: Applying the reverse map and then the forward map gives the identity.
Given 𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑎(𝑥 − 𝜏𝑦)(𝑥 − 𝜏𝑦), the reverse map takes it to

a := (1, 𝜏). Note {1, 𝜏 := −𝑏+
√
𝑑

2𝑎
} is in fact a Z-basis for (1, 𝜏) over 𝑅 := Z[𝑎𝜏 ] = Z

[︁
−𝑏+

√
𝑑

2

]︁
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(not just a generating set over O). Indeed, 𝑎𝜏(𝜏) = (−𝑏𝜏 − 𝑐) ∈ (1, 𝜏). In exactly the same
way, {1, 𝑎𝜏} is a Z-basis for 𝑅 over 𝑅.

By (17.5), the forward map then takes (a, 𝑅) to

1

N𝑅(a)
(𝑥− 𝜏𝑦)(𝑥− 𝜏𝑦) = [a : 𝑅](𝑥− 𝜏𝑦)(𝑥− 𝜏𝑦) = 𝑎(𝑥− 𝜏𝑦)(𝑥− 𝜏𝑦).

Step 4: Invertible classes correspond to primitive forms. Suppose a = 𝛼(1, 𝜏) is invertible

and 𝜏 satisfies 𝑎𝑥2+𝑏𝑥+𝑐 = 0, where gcd(𝑎, 𝑏, 𝑐) = 1. Then by Lemma 17.4.6, 𝑎 =
Nm𝐾/Q(𝛼)

N𝑅(a)
.

Hence by (17.5), the quadratic form is 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2, which is primitive.
Conversely suppose 𝑄 is primitive. Then by Proposition 17.4.6, the corresponding ideal

(1, 𝜏) is proper in 𝑅 := (1, 𝑎𝜏).
The fact that the discriminant is preserved can be seen from the reverse map.

Example 17.5.3: ex:id-qf We calculate the binary quadratic form corresponding to the order
O of discriminant 𝑑. This will be the identity element in the form class group 𝐶(𝐷). We
have O = (1, 𝜏) where

𝜏 =

⎧⎨⎩1+
√
𝑑

2
, 𝑑 ≡ 1 (mod 4)

√
𝑑
2
, 𝑑 ≡ 0 (mod 4).

.

Then

𝑄O(𝑥, 𝑦) = Nm𝐾/Q(𝑥+ 𝑦𝜏) =

⎧⎨⎩𝑥2 − 𝑑
4
𝑦2, 𝑑 ≡ 0 (mod 4)

𝑥2 + 𝑥𝑦 − 𝑑−1
4
𝑦2, 𝑑 ≡ 1 (mod 4).

This is consistent with the fact that 𝑥2 − 𝑑
4
and 𝑥2 + 𝑥 − 𝑑−1

4
are the minimal polynomials

of 𝜏 in the two cases, respectively.

Theorem 17.5.4: pr:rep-iff-ideal Let a be an invertible ideal in the quadratic ring O and 𝑓
its associated quadratic binary form. Let 𝑚 be a nonzero integer. Then the following are
equivalent.

1. There exists a′ in the same ideal class as a with

a′a′ = (𝑚).

2. There exists a′ in the same ideal class as a with NO(a
′) = 𝑚.

3. 𝑓 represents 𝑚.

As written this only works for imaginary quadratic fields. For real fields, 𝑓 may represent
−𝑚 instead.

Proof. Equivalence of the first two items is clear. We show (2) ⇐⇒ (3).
Suppose 𝑓 represents 𝑚. Suppose 𝑚 = 𝑑2𝑎, and 𝑓 represents 𝑎 primitively. By Propo-

sition 17.2.2, 𝑓 is equivalent to a form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2. By Gauss composition, this form
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corresponds to an ideal a′ = 𝑎(1, 𝜏) with 𝑎𝜏 2 + 𝑏𝜏 + 𝑐 = 0 inside O = (1, 𝑎𝜏). Hence
NO(a

′) = 𝑎. Then

NO(𝑑a
′) = 𝑑2𝑎,

as needed.
Conversely, suppose NO(a) = 𝑚. Write a = 𝛼(1, 𝜏) with Nm𝐾/Q(𝛼) > 0. Suppose

𝑎𝜏 2+ 𝑏𝜏 + 𝑐 = 0 with gcd(𝑎, 𝑏, 𝑐) = 1, so O = (1, 𝑎𝜏) and NO((1, 𝜏)) =
1
𝑎
. The corresponding

quadratic form is

𝑔(𝑥, 𝑦) =
Nm𝐾/Q(𝑥− 𝜏𝑦)

NO((1, 𝜏))
= 𝑎Nm𝐾/Q(𝑥− 𝜏𝑦).

Since 𝛼 ∈ O = (1, 𝑎𝜏), we have 𝛼 = 𝑝−𝑞𝑎𝜏 for some 𝑝, 𝑞 ∈ Z. We have 𝛼𝜏 = 𝑝𝜏−𝑞(−𝑏𝜏−𝑐) =
(𝑝+ 𝑞𝑏)𝜏 + 𝑐𝑞; since 𝛼𝜏 ∈ O = (1, 𝑎𝜏) as well, we get 𝑝+𝑞𝑏

𝑎
∈ Z. Now by Lemma 17.4.6,

𝑚 = NO(a) =
Nm𝐾/Q(𝛼)

𝑎

=
1

𝑎2
· 𝑎Nm𝐾/Q(𝑝− 𝑞𝑎𝜏)

=
1

𝑎2
𝑔(𝑝, 𝑎𝑞)

= 𝑔
�𝑝
𝑎
, 𝑞
�

= 𝑔

�−𝑏𝑞 − 𝑝
𝑎

, 𝑞

�
𝑔(𝑥, 𝑦) = 𝑔

�
− 𝑏
𝑎
𝑦 − 𝑥, 𝑦

�
.

We showed above that −𝑏𝑞−𝑝
𝑎
∈ Z, as needed. (Think of the last step as “root flipping.”)

6 Ideal class group of an order

Suppose O is an order in the field 𝐾, and O𝐾 is the ring of integers (the maximal order).
We want to relate 𝐶(O) to 𝐶(O𝐾), because the latter is the most “natural” class group for
𝐾. In reality, we will relate 𝐶(O) to a quotient of a subgroup of 𝐼(O𝐾), a generalized ideal
class group of O𝐾 .

After learning class field theory, which relates generalized class ideal class groups to
extensions of 𝐾, we will see that the primes represented by the quadratic form corresponding
to O can be characterized in terms of a certain field extensions 𝐿/𝐾.

CHANGE NOTATION: Replace Id with 𝐼 and Cl with 𝐶 in earlier chapters.

Definition 17.6.1: Define

𝐼𝐾(𝑓) = {a ∈ 𝐼𝐾 : a relatively prime to 𝑓O𝐾}
𝑃𝐾(Z, 𝑓) = {𝛼O𝐾 : 𝛼 ≡ 𝑎 (mod 𝑓O𝐾) for some 𝑎 ∈ Z}
𝐼𝐾(O, 𝑓) = {a ∈ 𝐼(O) : a relatively prime to 𝑓O} .
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Theorem 17.6.2: class-group-O Let 𝑓 be the conductor of O, i.e. O = Z + 𝑓O𝐾 . There is an
isomorphism

𝐼𝐾(𝑓)/𝑃𝐾(Z, 𝑓)→ 𝐼(O)/𝑃 (O) = 𝐶(O)

induced by the map 𝑔 : 𝐼𝐾(𝑓)→ 𝐼(O),

𝑔(a) = a ∩ O.

First, a preliminary lemma.

Lemma 17.6.3: Let O be an order of conductor 𝑓 . Then every O-ideal prime to 𝑓 is proper.

Proof. Cox, Prop. 7.20. Suppose a is prime to 𝑓 . Then a+𝑓O = O. Suppose 𝛽a ⊆ a. Then

𝛽O = 𝛽(a+ 𝑓O) = 𝛽a+ 𝛽𝑓O ⊆ a+ 𝑓O𝐾 ⊆ O

so 𝛽 ∈ O. Thus a is proper.

Proof of Theorem 17.6.2. Step 1: We show there is a norm-preserving isomorphism

𝐼𝐾(𝑓)→ 𝐼(O, 𝑓)

a ↦→ a ∩ O

bO𝐾 ←[ b.

Step 2: The map above induces an isomorphism 𝐼𝐾(𝑓)/𝑃𝐾(Z, 𝑓)→ 𝐼(O, 𝑓)/𝑃 (O, 𝑓)

Step 3: The inclusion 𝐼(O, 𝑓) →˓ 𝐼(O) induces an isomorphism 𝐼(O, 𝑓)/𝑃 (O, 𝑓)→ 𝐼(O)/𝑃 (O).
This follows from Theorem 23.23.1.1.

7 Cube law

We now derive quadratic composition in a different way. We will associate a “cube” of
integers with three quadratic forms. In order to identify equivalent binary quadratic forms,
we mod out by SL2(Z)3. After decreeing that the sum of forms making up any cube is 0, we
find that we have

1. identified quadratic forms up to equivalence, and

2. recovered our original composition law.

Later we will see that these ideas generalize to composition laws for other polynomial forms
and associated ideals/rings.

Let 𝒞2 = Z2 ⊗ Z2 ⊗ Z2. Choosing a basis (𝑣1, 𝑣2) for Z2, every element of 𝒞2 can be
written in the form

𝑎𝑣1 ⊗ 𝑣1 ⊗ 𝑣1 + 𝑏𝑣1 ⊗ 𝑣2 ⊗ 𝑣1 + 𝑐𝑣2 ⊗ 𝑣1 ⊗ 𝑣1 + 𝑑𝑣2 ⊗ 𝑣2 ⊗ 𝑣1
+ 𝑒𝑣1 ⊗ 𝑣1 ⊗ 𝑣2 + 𝑓𝑣1 ⊗ 𝑣2 ⊗ 𝑣2 + 𝑔𝑣2 ⊗ 𝑣1 ⊗ 𝑣2 + ℎ𝑣2 ⊗ 𝑣2 ⊗ 𝑣2.
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We represent this graphically as a cube.

𝑒 𝑓

𝑎 𝑏

𝑔 ℎ

𝑐 𝑑

112 122

111 121

212 222

211 221

Think of this as a higher-dimensional analogue of a matrix. Let 𝑀𝑖, 𝑁𝑖 for 𝑖 = 1, 2, 3 be the
two matrices obtained by slicing the cube along the 3 possible directions.

𝑀1 =

�
𝑎 𝑏
𝑐 𝑑

�
, 𝑁1 =

�
𝑒 𝑓
𝑔 ℎ

�
𝑀2 =

�
𝑎 𝑐
𝑒 𝑔

�
, 𝑁2 =

�
𝑏 𝑑
𝑓 ℎ

�
𝑀3 =

�
𝑎 𝑒
𝑏 𝑓

�
, 𝑁3 =

�
𝑐 𝑔
𝑑 ℎ

�
.

Define an action of Γ = SL2(Z)× SL2(Z)× SL2(Z) on 𝒞2 by letting ( 𝑟 𝑠𝑡 𝑢 ) in the 𝑖th factor of
SL2(Z)3 act on 𝐴 by sending�

𝑀𝑖

𝑁𝑖

�
↦→
�
𝑟 𝑠
𝑡 𝑢

��
𝑀𝑖

𝑁𝑖

�
=

�
𝑟𝑀𝑖 + 𝑠𝑁𝑖

𝑡𝑀𝑖 + 𝑢𝑁𝑖

�
.

Note that the actions of the 3 factors of SL2(Z) commute, in the same way that row and
column operations commute for a matrix.

Now associate a cube 𝐴 with three binary quadratic forms 𝑄𝐴
1 , 𝑄

𝐴
2 , 𝑄

𝐴
3 by letting

𝑄𝐴
𝑖 (𝑥, 𝑦) = − det(𝑀𝑖𝑥−𝑁𝑖𝑦).

We call 𝐴 projective if 𝑄𝐴
1 , 𝑄

𝐴
2 , 𝑄

𝐴
3 are all primitive.

Invariant theory gives the following result.

Proposition 17.7.1: The ring of invariants of 𝒞2 under SL2(Z)3 is

(𝒞2)SL2(Z)3 = Z[disc(𝐴)]

where

disc(𝐴) := disc(𝑄1) = disc(𝑄2) = disc(𝑄3)

=
∑︁

𝑠,𝑡 long diagonal

𝑠2𝑡2 − 2
∑︁

𝑠,𝑡,𝑢,𝑣 face

𝑠𝑡𝑢𝑣 + 4
∑︁

𝑠,𝑡,𝑢,𝑣 regular tetrahedrom

𝑠𝑡𝑢𝑣.
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(The fact that disc(𝐴) is invariant is easy to see; we shall not need the opposite implica-
tion.)

We now prove the bijection in Theorem 17.5.1 and Gauss composition (Corollary 17.5.2)
in a different way, using cubes. The idea is to associate triples of ideals multiplying to 1 with
triples of quadratic forms in the same cube (which we will deem to add up to 0), and in this
way transfer the group structure from narrow ideal classes to classes of quadratic forms.

Definition 17.7.2: We say that three oriented fractional ideals 𝐼1, 𝐼2, 𝐼3 in a quadratic ring
𝑆 form a balanced triple if

𝐼1𝐼2𝐼3 ⊆ 𝑆 and

N(𝐼1)N(𝐼2)N(𝐼3) = 1.

We say two balanced triples (𝐼1, 𝐼2, 𝐼3) and (𝐼 ′1, 𝐼
′
2, 𝐼

′
3) are equivalent if there are 𝜆1, 𝜆2, 𝜆3

such that

𝐼1 = 𝜆1𝐼
′
1

𝐼2 = 𝜆2𝐼
′
2

𝐼3 = 𝜆3𝐼
′
3.

Theorem 17.7.3: There is a bijection between equivalence classes of cubes, and ordered
pairs (𝑆, (𝐼1, 𝐼2, 𝐼3)) where 𝑆 is a quadratic ring and (𝐼1, 𝐼2, 𝐼3) is a balanced triple modulo
equivalence.

Z2 ⊗ Z2 ⊗ Z2/ SL2(Z)3 ↔ {(𝑆, (𝐼1, 𝐼2, 𝐼3))}

If (𝛼1, 𝛼2), (𝛽1, 𝛽2) and (𝛾1, 𝛾2) are correctly oriented bases for 𝐼1, 𝐼2, and 𝐼3, then the cube
is given by (𝑎𝑖𝑗𝑘)1≤𝑖,𝑗,𝑘≤2 where

𝛼𝑖𝛽𝑗𝛾𝑘 = 𝑐𝑖𝑗𝑘 + 𝑎𝑖𝑗𝑘𝜏

and 𝜏 is such that

𝜏 2 − 𝑑

4
= 0, 𝑑 ≡ 0 (mod 4)

𝜏 2 − 𝜏 − 𝑑− 1

4
= 0, 𝑑 ≡ 1 (mod 4).
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Chapter 18

Units in number fields

units-in-nf

1 Units

Any finitely generated abelian group is isomorphic to 𝐴tors ⊕ Z𝑡 where 𝐴tors consists of all
torsion elements, i.e. elements of finite order. The number 𝑡 is called the rank of 𝐴.

The main theorem of this chapter is the following.

Theorem 18.1.1 (Dirichlet’s unit theorem): dut Let 𝐾 be a number field with 𝑟 real embed-
dings and 2𝑠 nonreal complex embeddings. Then the group of units in 𝐾 is finitely generated
with rank equal to 𝑟 + 𝑠− 1.

The idea of the proof is as follows.

1. Following the idea of the proof that the class number is finite (Section 16.3), we embed
the set of units as a lattice in R𝑟 × R𝑠. Since we want to send a group (under multi-
plication) to a lattice (under addition), we take logarithms of the norm to define our
embedding. In actuality, the homomorphism 𝐿 is not injective, but the kernel will be
finite, which is good enough. (See Proposition 18.2.2.)

2. Construct independent units from elements generating the same ideal. We do this by
finding 𝛼, 𝛾 generating the same principal ideal and taking 𝛼𝛾−1. Consider a fixed
large symmetric convex compact set 𝑇 of R𝑟 × C𝑠, which will contain elements 𝜎(𝛼)
by Minkowski. For 𝛼 such that 𝐿(𝛼) ∈ 𝑇 , (𝛼) is one of a finite number of principal
ideals (𝛾𝑘). Then 𝛼𝛾

−1
𝑘 is a unit.

However, since we want independent units, we look not for points in the form 𝐿(𝛼) but
rather of the form x𝐿(𝛼) where 𝑥 has norm 1. Think of this as “rotating” or “twisting”
the unit that we get.

First, a basic criterion for being a unit.
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Proposition 18.1.2: Let 𝐾/Q be a finite extension. An element 𝛼 ∈ 𝐾 is a unit if and
only if Nm(𝛼) = ±1.

Proof. Suppose 𝛼 is a unit. Then 𝛼−1 ∈ 𝐾 and

Nm(𝛼)Nm(𝛼−1) = Nm(𝛼𝛼−1) = 1

so Nm(𝛼) = ±1.
Conversely, suppose Nm(𝛼) = ±1. Then by Theorem 14.2.3, letting 𝜎1 = 𝐼, . . . , 𝜎𝑛 be

the distinct embeddings of 𝐾 to the Galois closure, we have

𝛼 ·
𝑛∏︁
𝑘=2

𝜎𝑘(𝛼) = Nm𝐿/𝐾(𝛼) = ±1.

Hence 𝛼−1 = ±∏︀𝑛
𝑘=2 𝜎𝑘(𝛼) ∈ O𝐾 .

2 Dirichlet’s unit theorem

We now prove Dirichlet’s unit theorem.

Lemma 18.2.1: bound-degree-norm There are a finite number of algebraic integers 𝛼 such that

[Q(𝛼) : Q] ≤ 𝑚

|𝛼′| ≤𝑀 for all conjugates 𝛼′.

Proof. The second condition means that the coefficients of the minimal polynomial 𝑓 are
bounded. Since the degree of 𝑓 is at most 𝑚, there are a finite number of possibilities for
the 𝑓 and hence 𝛼.1

Let {𝜎1, . . . , 𝜎𝑟} be the real embeddings and {𝜎𝑟+1, �̄�𝑟+1, . . . , 𝜎𝑟+𝑠, �̄�𝑟+𝑠} be the complex
embeddings of 𝐾. Since

Nm(𝛼) = |𝜎1(𝛼)| · · · |𝜎𝑟(𝛼)||𝜎𝑟+1(𝛼)|2 · · · |𝜎𝑟+𝑠(𝛼)|2,

we define the homomorphism

𝐿 : 𝐾× → R𝑟+𝑠

𝐿(𝛼) = (ln |𝜎1(𝛼)|, . . . , ln |𝜎𝑟(𝛼)|, 2 ln |𝜎𝑟+1(𝛼)| · · · , 2 ln |𝜎𝑟+𝑠(𝛼)|).

This is the composition of our previous embedding 𝜎 with 𝑓 :

𝜎 : 𝐾 → R𝑟 × C𝑠 𝜎(𝛼) = (𝜎1(𝛼1), . . . , 𝜎𝑟(𝛼𝑟))

𝑓 : R𝑟 × R𝑠 → R𝑟+𝑠 𝑓(𝑥1, . . . , 𝑥𝑟, 𝑧𝑟+1, . . . , 𝑧𝑟+𝑠) = (ln |𝑥1|, . . . , ln |𝑥𝑟|, 2 ln |𝑧𝑟+1|, . . . , 2 ln |𝑧𝑟+𝑠|).
1See Chapter 39 for...
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Proposition 18.2.2: luk-in-h The image 𝐿(𝑈𝐾) is a lattice contained in the hyperplane

𝐻 := {(𝑥1, . . . , 𝑥𝑟+𝑠) : 𝑥1 + · · ·+ 𝑥𝑟+𝑠 = 0} .

Moreover, 𝐿 has finite kernel.

Proof. If 𝐿(𝑢) = (𝑥1, . . . , 𝑥𝑟+𝑠) ∈ 𝑈𝐾 then

𝑥1 + · · ·+ 𝑥𝑟+𝑠 = ln |𝜎1(𝛼)|+ · · ·+ ln |𝜎𝑟(𝛼)|+ 2 ln |𝜎𝑟+1(𝛼)|+ · · ·+ 2 ln |𝜎𝑟+𝑠(𝛼)|
= ln |Nm(𝛼)| = 0.

To show 𝐿(𝑈𝐾) is a lattice it suffices to show it is discrete. To this end, we show the
base elements

𝐵(𝑟) = {(𝑥1, . . . , 𝑥𝑟+𝑠) : |𝑥𝑗| ≤ 𝐶}

centered at the origin contain finitely many points of 𝐿(𝑈𝐾). Indeed, if 𝜎(𝛼) ∈ 𝐵(𝑟), then
|𝜎𝑘(𝛼)| < 𝐶 for every embedding 𝜎𝑘. By Proposition 18.2.1, there are a finite number of
possibilities for 𝛼.

If 𝛼 ∈ ker𝐿, then |𝜎𝑘(𝛼)| = 1 for all 𝑘. Again by Proposition 18.2.1 there are a finite
number of possibilities for 𝛼.

Since 𝑈𝐾 is abelian, we now know

𝑈𝐾 ∼= ker(𝐿)⏟  ⏞  
𝑈tors
𝐾

⊕ 𝐿(𝑈𝐾)⏟  ⏞  
lattice of 𝐻

.

It remains to show the following.

Lemma 18.2.3: 𝐿(𝑈𝐾) is a full lattice in 𝐻. Therefore it has rank 𝑟 + 𝑠− 1.

Proof. Let x ∈ R𝑟×C𝑠. By Proposition 16.3.1, the volume of the fundamental parallelopiped
of 𝜎(a) is 2−𝑠 ·Na · |Δ𝐾 |

1
2 . Note that multiplication by x multiplies the norm by Nm(𝑥) (more

precise here?) so the volume of the fundamental parallelopiped of 𝜎(a) is Nm(x)2−𝑠Na·|Δ𝐾 |
1
2 .

Now suppose x is any element such that Nm(x) = 1. Let 𝑉 = 2−𝑠Na · |Δ𝐾 |
1
2 . Let 𝑇 be

any compact convex symmetric set with volume at least 2𝑟+𝑠𝑉 . We note the following.

1. By Minkowski’s Theorem, there is point of 𝑇 in the lattice x · 𝜎(O𝐾).

2. Since 𝑇 is bounded, all elements of 𝑇 have norm bounded by a constant 𝐶. If 𝜎(𝛼) ∈ 𝑇 ,
then 𝛼 has norm bounded by 𝐶. By Lemma 16.16.3.7 there are a finite number of
principal ideals with norm bounded by 𝐶, say (𝛾1), . . . , (𝛾𝑚). Then if 𝜎(𝛼) ∈ 𝑇 , we
have (𝛼) = (𝛾𝑘), i.e. 𝛼 = 𝑢𝛾𝑘 for some unit 𝑢, and some 𝑘.

In conclusion, for each x we find 𝛼 such that

𝑇 ∋ x𝜎(𝛼) = x𝜎(𝑢𝛾𝑘) for some 𝑘,
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i.e.

x-sigma-ux𝜎(𝑢) ∈
𝑚⋃︁
𝑘=1

𝜎(𝛾−1
𝑘 )𝑇. (18.1)

Since 𝑇 is bounded, so is
⋃︀𝑚
𝑘=1 𝜎(𝛾

−1
𝑘 ). There exists 𝐶 ′ so that every coordinate of x𝜎(𝑢) is

less than 𝐶 ′:
x-sigma-u2(x𝜎(𝑢))𝑘 < 𝐶 ′. (18.2)

The idea is that this places a large constraint on the possibilities for 𝜀, so as we vary x
between “extreme” values, we will have to get linearly independent 𝑢.

Take

x𝑘 =
�
𝐶 ′, . . . , 𝐶 ′,

1

𝐶 ′𝑟+𝑠−1⏟  ⏞  
𝑘

, 𝐶 ′, . . . , 𝐶 ′
�

Then letting 𝑢𝑘 be such that (18.1) holds for 𝑥𝑘, 𝑢𝑘, we get by (18.2) that, componentwise,

𝜎(𝑢𝑘) < (1, . . . , 1, 𝐶 ′𝑟+𝑠, 1, . . . , 1),

i.e.
𝐿(𝑢𝑘) = 𝑓(𝜎(𝑢𝑘)) < (0, . . . , 0, ln(𝐶 ′𝑟+𝑠), 0, . . . , 0).

Note the following.

1. Every entry of 𝐿(𝑢𝑘) is negative except for the 𝑘th one, which must be positive because
the entries sum up to 0.

2. The sum of entries of 𝐿(𝑢𝑘), omitting the last term, is positive.

The following lemma will show that 𝐿(𝑢1), . . . , 𝐿(𝑢𝑟+𝑠−1) are linearly independent. It will
follow that 𝑢1, . . . , 𝑢𝑟+𝑠−1 generate a free abelian group. This means rank(𝑈𝐾) ≥ 𝑟 + 𝑠− 1;
we have equality by Proposition 18.2.2 since dim𝐻 = 𝑟 + 𝑠− 1.

Lemma 18.2.4: Suppose that 𝐴 is a 𝑛× 𝑛 matrix such that

1. 𝑎𝑖,𝑗 < 0 for 𝑖 ̸= 𝑗 and 𝑎𝑖,𝑖 > 0.

2.
∑︀𝑛
𝑗=1 𝑎𝑖,𝑗 > 0.

Then 𝐴 is invertible.

Proof. Suppose 𝑣 =

� 𝑣1
...
𝑣𝑛

�
is a nonzero vector. Suppose 𝑖 is such that |𝑎𝑖| is greatest. Then

looking at the 𝑖th component gives
∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑣𝑗 = 0. Then

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑣𝑗 > 𝑎𝑖𝑗𝑣𝑖 +
∑︁
𝑗 ̸=𝑖

𝑎𝑖𝑗𝑣𝑖 > 0,

so 𝐴𝑣 ̸= 0. Thus 𝐴 is invertible.

This finishes the proof of Dirichlet’s Unit Theorem.
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3 𝑆-units

Definition 18.3.1: Let 𝑆 be a finite set of prime ideals of 𝐾. The ring of 𝑆-integers is

O𝐾(𝑆) =
⋂︁
p̸∈𝑆

(O𝐾)p = {𝛼 ∈ 𝐾 : ordp(𝛼) ≥ 0 for all p ̸∈ 𝑆} .

I.e. we allow dividing by elements whose “only prime factors” are in 𝑆. The group of 𝑆-units
is the group of units in O𝐾(𝑆):

𝑈(𝑆) = O𝐾(𝑆)
× = {𝛼 ∈ 𝐾 | ordp(𝛼) = 0 for all p ̸∈ 𝑆}.

There are more units in 𝑈(𝑆) than in 𝑈𝐾 ; the following generalization of Dirichlet’s theorem
says that we get an “extra” unit for every prime in 𝑆.

Theorem 18.3.2 (Dirichlet’s S-unit theorem): dsut The group of 𝑆-units is finitely generated
with rank 𝑟 + 𝑠+ |𝑆| − 1.

Proof. Let 𝑆 = {p1, . . . , p𝑡}. Consider the maps

𝑈𝐾 →˓ 𝑈(𝑆)
𝜙−→ Z𝑚

where
𝜙(𝑥) = (ordp1(𝑥), . . . , ordp𝑚(𝑥)).

Its kernel is 𝑈𝐾 , as the elements of 𝑈𝐾 are exactly those 𝑥 with order 0 for every prime p,
and by definition ordp(𝑥) = 0 for 𝑥 ∈ 𝑈(𝑆) and p outside of 𝑆. Let ℎ be the class number of
𝐾. Then pℎ𝑘 = (𝛼𝑘) for some 𝛼𝑘. We have

𝜙(𝑥) = (0, . . . , 0, ℎ⏟ ⏞ 
𝑘

, 0 . . . , 0).

Hence 𝜙(𝑈(𝑆)) is a full lattice in Z𝑚. Since 𝑈𝐾 has rank 𝑟 + 𝑠 − 1 by Dirichlet’s Unit
Theorem (18.1.1), 𝑈(𝑆) has rank 𝑟 + 𝑠− 1 +𝑚.

4 Examples and algorithms

5 Regulator
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Chapter 19

Cyclotomic fields

cyclotomic

1 Cyclotomic polynomials

Definition 19.1.1: A cyclotomic extension of Q is a field Q[𝜁] where 𝜁 is a root of unity.
We call 𝜁 a primitive 𝑛th root of unity if 𝜁𝑛 = 1 but 𝜁𝑚 ̸= 1 for 0 < 𝑚 < 𝑛.

We will use 𝜁𝑛 to denote a primitive 𝑛th root of unity.

The 𝑛th cyclotomic polynomial is defined by

Φ𝑛(𝑥) =
∏︁

0≤𝑗<𝑛,gcd(𝑗,𝑛)=1

(𝑥− 𝑒
2𝜋𝑖𝑗
𝑛 )

Equivalently, it can be defined by the recurrence Φ0(𝑥) = 1 and

Φ𝑛(𝑥) =
𝑥𝑛 − 1∏︀

𝑚|𝑛,𝑚<𝑛Φ𝑚(𝑥)
.

Hence, it has integer coefficients.

Theorem 19.1.2: cyclotomic-irreducible The cyclotomic polynomials are irreducible over Q[𝑥].

Proof. We need the following lemma:

Suppose 𝜔 is a primitive 𝑛th root of unity, and that its minimal polynomial is 𝑔(𝑥). Let
𝑝 be a prime not dividing 𝑛. Then 𝜔𝑝 is a root of 𝑔(𝑥) = 0.

Since Φ𝑛(𝜔) = 0, we can write Φ𝑛 = 𝑓𝑔. If 𝑔(𝜔𝑝) ̸= 0 then 𝑓(𝜔𝑝) = 0. Since 𝜔 is a zero
of 𝑓(𝑥𝑝), 𝑓(𝑥𝑝) factors as

𝑓(𝑥𝑝) = 𝑔(𝑥)ℎ(𝑥)

for some polynomial ℎ ∈ Z[𝑥].
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Now, in Z/𝑝Z[𝑥] note (𝑓1 + . . . + 𝑓𝑘)
𝑝 = 𝑓𝑝1 + . . . + 𝑓𝑝𝑘 since the 𝑝th power map is an

homomorphism. Hence

𝑔(𝑥)ℎ(𝑥) ≡ 𝑓(𝑥𝑝) ≡ 𝑓(𝑥)𝑝 (mod 𝑝).

Hence 𝑓(𝑥) and 𝑔(𝑥) share a factor modulo 𝑝. However, the derivative of 𝑥𝑛− 1 modulo 𝑝 is
𝑛𝑥𝑛−1 ̸= 0, showing that 𝑥𝑛 − 1 has no repeated irreducible factor modulo 𝑝; hence Φ𝑛 has
no repeated factor modulo 𝑝. Since Φ𝑛 = 𝑓𝑔, this produces a contradiction.

Therefore 𝑔(𝜔𝑝) = 0, as needed.
Any primitive 𝑛th root is in the form 𝜔𝑘 for 𝑘 relatively prime to 𝑛. Writing the prime

factorization of 𝑘 as 𝑝1 · · · 𝑝𝑚, we get by the lemma that 𝜔𝑝1 , 𝜔𝑝1𝑝2 , . . . , 𝜔𝑝1···𝑝𝑚 are all roots of
𝑔. Hence 𝑔 contains all primitive 𝑛th roots of unity as roots, and Φ𝑛 = 𝑔 is irreducible.

Theorem 19.1.3: cyclotomic-degree

[Q(𝜁𝑛) : Q] = 𝜙(𝑛).

Proof. The minimal polynomial of 𝜁𝑛 equals the cyclotomic polynomial by Theorem 19.1.2;
the latter has degree 𝜙(𝑛).

We use cyclotomic polynomials to prove a special case of Dirichlet’s theorem.

Theorem 19.1.4 (Dirichlet’s theorem for 𝑝 ≡ 1 (mod 𝑛)): dirichlet1(†) Let 𝑛 be a positive
integer. There are infinitely many primes 𝑝 with 𝑝 ≡ 1 (mod 𝑛).

Lemma 19.1.5: For any integer 𝑚, all divisors of Φ𝑛(𝑚) either divide 𝑛 or are 1 (mod 𝑛).

Proof. Suppose 𝑝 is prime and 𝑝 | Φ𝑛(𝑚). Then 𝑝 | 𝑚𝑛 − 1, i.e.

𝑚𝑛 ≡ 1 (mod 𝑝)

so 𝑟 := ord𝑝(𝑚) | 𝑛. Since 𝑚𝑝−1 ≡ 1 (mod 𝑝) by Fermat’s little theorem, 𝑟 | 𝑝− 1.
If 𝑟 = 𝑛, then 𝑛 | 𝑝− 1, i.e. 𝑝 ≡ 1 (mod 𝑛). Suppose that 𝑟 < 𝑛. Then

𝑝 | Φ𝑛(𝑚) | 𝑚
𝑛 − 1

𝑚𝑟 − 1
= 𝑚𝑟(𝑛

𝑟
−1) + · · ·+𝑚𝑟 + 1.

However, 𝑚𝑟 ≡ 1 (mod 𝑝) so

𝑚𝑟(𝑛
𝑟
−1) + · · ·+𝑚𝑟 + 1 ≡ 𝑛

𝑟
(mod 𝑝),

so 𝑝 | 𝑛
𝑟
| 𝑛.

Proof of Theorem 19.1.4. Suppose by way of contradiction that only finitely many primes
are 1 (mod 𝑛). Let their product be 𝑃 (if there are no such primes, 𝑃 = 1). Consider
Φ𝑛(𝑘𝑛𝑃 ), 𝑘 ∈ Z. Since it divides (𝑛𝑃 )𝑛 − 1, it can’t have prime divisors in common with 𝑛
or 𝑃 . With appropriate choice of 𝑘 we can be sure Φ𝑛(𝑘𝑛𝑃 ) ̸= 0,±1. By the claim all prime
divisors of Φ𝑛(𝑘𝑛𝑃 ) are 1 (mod 𝑛), but they don’t divide 𝑃 , contradiction.
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2 Ring of integers

Our next two propositions will give us information about the ring of integers of Q[𝜁], as well
as some other useful facts. In the process we will rederive Theorem 19.1.3.

Proposition 19.2.1: cyclotomic-unit Suppose 𝜁 and 𝜁 ′ are primitive 𝑛th roots of unity. Then
1−𝜁′
1−𝜁 is a unit in Z[𝜁] = Z[𝜁 ′].

Proof. Then we have 𝜁 ′ = 𝜁𝑠 and 𝜁 = 𝜁 ′𝑡 for some 𝑠, 𝑡, so Z[𝜁] = Z[𝜁 ′] and

1− 𝜁 ′

1− 𝜁
= 1 + 𝜁 + · · ·+ 𝜁𝑠−1 ∈ Z[𝜁]

1− 𝜁
1− 𝜁 ′

= 1 + 𝜁 ′ + · · ·+ 𝜁 ′𝑡−1 ∈ Z[𝜁].

Therefore 1−𝜁′
1−𝜁 is a unit in Z[𝜁].

Proposition 19.2.2: cyclotomic-p Let 𝑝 be prime and 𝑟 ∈ N. Suppose 𝑝𝑟 > 2, let 𝜁𝑝𝑟 be a
primitive 𝑝𝑟-th root of unity, and let 𝐾 = Q[𝜁𝑝𝑟 ]. Then

1. [Q[𝜁𝑝𝑟 ] : Q] = 𝜙(𝑝𝑟) = 𝑝𝑟−1(𝑝− 1).

2. The element 𝜋 = 1− 𝜁𝑝𝑟 is prime in O𝐾 , and (𝑝) = (𝜋)𝜙(𝑝
𝑟).

3. O𝐾 = Z[𝜁𝑝𝑟 ].

4. disc(O𝐾/Z) = (−1)
𝜙(𝑝𝑟)

2 𝑝𝑝
𝑟−1(𝑝𝑟−𝑟−1). Thus 𝑝 is the only prime ramifying in Q[𝜁𝑝𝑟 ].

Proof. By Proposition 19.4.1,

𝑝 = 1 +𝑋𝑝𝑟−1

+ · · ·+𝑋(𝑝−1)𝑝𝑟−1|𝑋=1

= Φ𝑝𝑟(1)

=
∏︁

𝜁′ primitive 𝑝𝑟th root of unity

(1− 𝜁 ′)

=
∏︁

𝜁′ primitive 𝑝𝑟th root of unity

1− 𝜁 ′

1− 𝜁𝑝𝑟
(1− 𝜁𝑝𝑟)

= 𝑢(1− 𝜁)𝜙(𝑝𝑟)

where 𝑢 =
∏︀
𝜁′ primitive 𝑝𝑟th root of unity

1−𝜁′
1−𝜁𝑝𝑟

is a unit by Proposition 19.2.1. Thus (𝑝) = (𝜋)𝜙(𝑝
𝑟).

From the degree equation (Theorem 15.15.5.2), we get that [Q[𝜁] : Q] ≥ 𝜙(𝑝𝑟) with strict
inequality when 𝜋 factors further. On the other hand [Q[𝜁] : Q] ≤ 𝜙(𝑝𝑟) since the cyclotomic
polynomial has degree 𝜙(𝑝𝑟). Hence equality must hold, and 𝜋 must be prime, giving (1)
and (2).
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The degree equation for (𝑝) = (𝜋)𝜙(𝑝
𝑟) reads

𝜙(𝑝𝑟) = 𝑓((𝜋)/(𝑝)) · 𝜙(𝑝𝑟)

so we must have 𝑓((𝜋)/(𝑝)) = 1, i.e. the natural map

f-is-1Z/(𝑝)
∼=−→ O𝐾/(𝜋) (19.1)

is an isomorphism.
We first calculate disc(Z[𝜁𝑝]/Z). By Proposition 14.14.4.4,

disc(Z[𝜁𝑝𝑟 ]/Z) = ±NmQ(𝜁𝑝𝑟 )/Q(Φ
′
𝑝𝑟(𝜁))

Φ′
𝑝𝑟(𝜁) =

�
𝑋𝑝𝑟 − 1

𝑋𝑝𝑟−1 − 1

�′ ⃒⃒⃒⃒⃒
𝑥=𝜁

=
𝑝𝑟𝑋𝑝𝑟−1(𝑋𝑝𝑟−1 − 1)− (𝑋𝑝𝑟 − 1)𝑝𝑟−1𝑋𝑝𝑟−1−1

(𝑋𝑝𝑟−1 − 1)2

⃒⃒⃒⃒⃒
𝑋=𝜁𝑝𝑟

=
𝑝𝑟𝜁𝑝

𝑟−1
𝑝𝑟

𝜁𝑝𝑟−1 − 1
=
𝑝𝑟𝜁−1

𝑝𝑟

𝜁𝑝 − 1

where we set 𝜁𝑝 = 𝜁𝑝
𝑟−1

; this is a primitive 𝑝th root of unity. We calculate the norm of each
factor.

1. NmQ(𝜁𝑝)/Q(𝑝
𝑟) = (𝑝𝑟)[Q(𝜁𝑝):Q] = 𝑝𝑟𝑝

𝑟−1(𝑝−1).

2. NmQ(𝜁𝑝)/Q(𝜁
−1
𝑝𝑟 ) = ±1 since 𝜁−1

𝑝𝑟 is a unit.

3. NmQ(𝜁𝑝)/Q(𝜁𝑝 − 1) = 𝑝𝑝
𝑟−1

: The minimal polynomial of 𝜁𝑝 − 1 over Q is Φ𝑝𝑟(𝑋 + 1),

whose constant term is Φ𝑝(1) = 𝑋𝑝𝑟−1(𝑝−1) + · · · + 𝑋𝑝𝑟−1
+ 1|𝑋=1 = 𝑝. Hence by

Proposition 14.14.2.3(1c), we have

NmQ(𝜁𝑝)/Q(𝜁𝑝 − 1) = (±𝑝)[Q(𝜁𝑝𝑟 ):Q(𝜁𝑝)] = ±𝑝
𝜙(𝑝𝑟)
𝜙(𝑝) = ±𝑝𝑝𝑟−1

.

Combining these we get

disc-cyclotomic-p disc(Z[𝜁𝑝𝑟 ]/Z) = NmQ(𝜁𝑝𝑟 )/Q
𝑝𝑟𝜁−1

𝑝𝑟

𝜁𝑝 − 1
=
𝑝𝑟(𝑝−1)𝑝𝑟−1 · ±1
±𝑝𝑝𝑟−1 = ±𝑝𝑝𝑟−1(𝑝𝑟−𝑟−1). (19.2)

By Proposition 14.14.3.2 (fix this a bit), we have

±𝑝𝑝𝑟−1(𝑝𝑟−𝑟−1) = disc(O𝐾/Z) = (O𝐾 : Z[𝜁𝑝𝑟 ])2 disc(Z[𝜁]/Z).

Hence both factors are powers of 𝑝 up to sign. Since (O𝐾 : Z[𝜁𝑝𝑟 ]) is a power of 𝑝, the
quotient module is annihilated by a power of 𝑝, i.e. then

power-p-ok𝑝𝑚O𝐾 ⊆ Z[𝜁𝑝𝑟 ] (19.3)
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for some 𝑚. Note surjectivity in (19.1) gives O𝐾 = Z+ 𝜋O𝐾 and hence

okzO𝐾 = Z[𝜁𝑝𝑟 ] + 𝜋O𝐾 . (19.4)

Suppose O𝐾 = Z[𝜁𝑝𝑟 ] + 𝜋𝑛O𝐾 . Then substitution into (19.4) gives

O𝐾 = Z[𝜁𝑝𝑟 ] + 𝜋O𝐾 = Z[𝜁𝑝𝑟 ] + 𝜋(Z[𝜁𝑝𝑟 ] + 𝜋𝑛O𝐾) = Z[𝜁𝑝𝑟 ] + 𝜋𝑛+1O𝐾 .

Hence by induction, O𝐾 = Z[𝜁𝑝𝑟 ] + 𝜋𝑛O𝐾 for all 𝑛. However, (𝑝) = (𝜋)𝜙(𝑝
𝑟) so this means

O𝐾 = Z[𝜁𝑝𝑟 ]+𝑝𝑛O𝐾 for all 𝑛. Taking 𝑛 = 𝑚, (19.3) gives O𝐾 = Z[𝜁𝑝𝑟 ], proving (3). Together
with (19.2), this gives (4). The second part of (4) now follows from Theorem 15.15.6.1 (A
prime ramifies if and only if it divides the discriminant).

All embeddings of Q(𝜁𝑛) are complex, and there are 𝜙(𝑛) = [Q(𝜁𝑛) : Q] of them. By
Theorem 14.14.4.6(1), the sign is (−1)𝜙(𝑝𝑟).

Now we prove the analogous result for Q(𝜁𝑛), for any 𝑛 ∈ N, by taking compositums of
fields of the form Q(𝜁𝑝𝑟).

Theorem 19.2.3: Let 𝑛, 𝑟 ∈ N with 𝑛 ̸≡ 2 (mod 4)1. Let 𝜁𝑛 be a primitive 𝑛th root of
unity.

1. [Q(𝜁𝑛) : Q] = 𝜙(𝑛).

2. O𝐾 = Z[𝜁𝑛].

3.

disc(O𝐾/Z) =
(−1)

𝜙(𝑛)
2 𝑛𝜙(𝑛)∏︀

𝑝|𝑛 𝑝
𝜙(𝑛)
𝑝−1

.

Moreover,

1. If 𝑝 ̸= 2, then 𝑝 ramifies iff 𝑝 | 𝑛.

2. If 𝑝 = 2, then 𝑝 ramifies iff 4 | 𝑛.

Proof. Let 𝐾 = Q(𝜁𝑛). Along with the theorem statement, we will show that if 𝑛 = 𝑝𝑟𝑚,
𝑝 - 𝑚, then

cyclotomic-factorization-1(𝑝) =
(︀∏︁

P𝑖

�𝜙(𝑝𝑟)
(19.5)

for distinct primes P𝑖.

We induct on the number of prime factors of 𝑛. The case when 𝑛 is a prime power is
treated by Proposition 19.2.2. Suppose the theorem true for 𝑚 and 𝑝 - 𝑚; consider 𝑛 = 𝑝𝑟𝑚.

1If 𝑛 ≡ 2 (mod 4), note Q(𝜁𝑛) = Q(𝜁𝑛/2).
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Writing 𝜁𝑝𝑟 = 𝜁𝑚𝑛 and 𝜁𝑚 = 𝜁𝑝
𝑟

𝑛 , we consider

Q(𝜁𝑝𝑟𝑚)
≤𝜙(𝑝𝑟)

(pO𝐾)
𝜙(𝑝𝑟) =

∏︀
𝑖 p𝑖O𝐾

≥𝜙(𝑝𝑟)

Q(𝜁𝑝𝑟) Q[𝜁𝑚] p𝜙(𝑝
𝑟) ∏︀

p𝑖

Q
𝜙(𝑝𝑟) 𝜙(𝑛)

(𝑝)

totally ramified unramified

By Proposition 19.2.2(2), (𝑝) = p𝜙(𝑝
𝑟) in Q[𝜁𝑝𝑟 ], while by part 2, 𝑝 splits into disctinct factors.

Matching factorizations in Q[𝜁𝑝𝑟𝑚], we get that each p𝑖O𝐾 must be a perfect 𝜙(𝑝𝑟)th power.
Hence [Q(𝜁𝑛) : Q] ≥ 𝜙(𝑝𝑟), and equality must hold. Then [Q(𝜁𝑛) : Q] = 𝜙(𝑝𝑟)𝜙(𝑚) = 𝜙(𝑛)
showing (1).

Item (2) follows from Proposition 14.14.4.8 since by (3), disc(Q(𝜁𝑝𝑟)/Q) and disc(Q(𝜁𝑚)/Q)
are relatively prime. Item (3) follows from Proposition 14.14.4.8 as well. The factorization
comes from the fact that since [Q(𝜁𝑝𝑟𝑚) : Q(𝜁𝑚)] = 𝜙(𝑝𝑟) and each p𝑖 is the 𝜙(𝑝

𝑟)th power
of an ideal, the degree equation says each p𝑖 must actually be the 𝜙(𝑝𝑟)th power of a prime
ideal.

We now show a more precise version of (19.5), using Theorem 15.6.3.

Theorem 19.2.4: cyclotomic-factorization-p Suppose that 𝑛 = 𝑝𝑟𝑚, where 𝑝 - 𝑚. Let

𝑓 = ord𝑚(𝑝).

Then the prime factorization of (𝑝) in Q(𝜁𝑛) is

(𝑝) = (P1 · · ·P𝑔)
𝜙(𝑝𝑟)

where P𝑗 are distinct primes, each with residue degree 𝑓 over Q, and 𝑔 = 𝜙(𝑚)
𝑓

.

Proof. (†)2 To use Theorem 15.6.3, we find the factorization of Φ𝑛(𝑋) modulo 𝑝. We have

cyclotomic-factorization-p-eq1Φ𝑛(𝑋) =
∏︁

𝑗 (mod× 𝑛)

(𝑋−𝜁𝑗𝑛) =
∏︁

𝑗 (mod×𝑚)

∏︁
𝑘 (mod× 𝑝𝑟)(𝑋−𝜁𝑗𝑚𝜁𝑘𝑝𝑟). (19.6)

Now note that
𝑋 − 𝜁𝑗𝑚𝜁𝑘𝑝𝑟 ≡ 𝑋 − 𝜁𝑗𝑚 (mod 𝜁𝑝𝑟 − 1).

Hence (19.6) gives

Φ𝑛(𝑋) ≡
∏︁

𝑗 (mod×𝑚)

(𝑋 − 𝜁𝑗𝑚)𝜙(𝑝
𝑟) ≡ Φ𝑚(𝑋)𝜙(𝑝

𝑟) (mod 𝜁𝑝𝑟 − 1).

2For an alternate proof see Example 24.24.1.6.
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But both sides are in Z[𝑋] so this congruence holds modulo (𝜁𝑝𝑟 − 1) ∩ Z = (𝑝).
Now consider Φ𝑚(𝑋) (mod 𝑝). Note that modulo 𝑝, 𝑃 (𝑋) := 𝑋𝑚 − 1 has no repeated

factors since it is relatively prime to 𝑃 ′(𝑋) = 𝑚𝑋𝑚−1 ̸= 0; hence its divisor Φ𝑚(𝑋) has
no repeated factors either. Note F×

𝑝𝑟 consists exactly of elements with 𝑥𝑝
𝑟−1 = 1, any root

𝛼 of Φ𝑚(𝑋) satisfies 𝛼𝑚 = 1 (but not 𝛼𝑚
′
= 1 for 0 < 𝑚′ < 𝑚). Thus the smallest field

extension F𝑝𝑟 containing 𝛼 is hence the smallest 𝑟 such that 𝑚 | 𝑝𝑟 − 1, i.e. 𝑟 = ord𝑚(𝑝).
The irreducible factors of Φ𝑚(𝑋) have degree 𝑓 , so 𝑓 is the residue degree. The number of

factors equals 𝜙(𝑚)
𝑓

, and this is the number of distinct prime divisors of (𝑝).

3 Subfields of cyclotomic extensions

Proposition 19.3.1: galois-cyclotomic The Galois group of Q(𝜁𝑛)/Q is

𝐺(Q(𝜁𝑛)/Q) = (Z/𝑛Z)×.

Proof. The conjugates of 𝜁𝑛 over Q are 𝜁𝑘𝑛 with 𝑘 ∈ (Z/𝑛Z)×, the roots of Φ𝑛. The Galois
group acts transitively on the conjugates, so for every 𝑘 ∈ (Z/𝑛Z)×, there is a automorphism
𝜎𝑘 sending 𝜁𝑛 → 𝜁𝑘𝑛, and these are all the automorphisms (look at the degree). Since 𝜁𝑛
generates Q(𝜁𝑛), the action of an automorphism on 𝜁𝑛 determines it completely. It is clear
that 𝑘 → 𝜎𝑘 is an isomorphism (Z/𝑛Z)× → 𝐺(Q(𝜁𝑛)/Q).

Proposition 19.3.2: The unique quadratic extension of Q contained in Q(𝜁𝑝) is

Q
�√︁

(−1) 𝑝−1
2 𝑝

�
.

Proof. By the fundamental theorem of Galois theory, a quadratic extension corresponds to
a subgroup of index 2 in (Z/𝑝Z)× ∼= Z/(𝑝− 1)Z, and there is exactly one such subgroup. If
it equals Q(

√
𝑑), then the only primes ramifying are those dividing 𝑑; since the only prime

ramifying in Q(𝜁𝑝) is 𝑝, we must have 𝑑 = ±𝑝.
To determine the sign, we explicitly find express a generator for Q(

√
𝑑) in terms of 𝜁𝑝.

Define 𝜏 by the Gauss sum

𝜏 =
𝑝−1∑︁
𝑘=1

�
𝑘

𝑝

�
𝜁𝑘𝑝 .

An automorphism 𝜎 ∈ 𝐺(𝐿/𝐾) is described by 𝜎(𝜁𝑝) = 𝜁𝑗𝑝 for some 𝑗; we have

𝜎𝜏 =
𝑝−1∑︁
𝑘=1

�
𝑘

𝑝

�
𝜁𝑗𝑘𝑝 =

𝑝−1∑︁
𝑘=1

�
𝑗−1𝑘

𝑝

�
𝜁𝑘𝑝

so 𝜎𝜏 = 𝜏 iff
(︀
𝑗
𝑘

�
= 1, which happens for exactly half the elements of 𝐺(𝐿/𝐾). Hence 𝜏

indeed generates a quadratic field.3

3This gives motivation for the Gauss sum appearing in the proof of quadratic reciprocity.
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Now, if 𝑝 ≡ 1 (mod 4), we have
(︁
−1
𝑝

)︁
= 1 and we can pair

(︁
𝑘
𝑝

)︁
𝜁𝑘𝑝 +

(︁
−𝑘
𝑝

)︁
𝜁−𝑘𝑝 ∈ R, while

if 𝑝 ≡ 3 (mod 4), we have
(︁
−1
𝑝

)︁
= −1 and

(︁
𝑘
𝑝

)︁
𝜁𝑘𝑝 +

(︁
−𝑘
𝑝

)︁
𝜁−𝑘𝑝 ∈ R𝑖. This gives the sign of 𝑑.

Alternatively, we can calculate 𝜏 explicitly as in (BLAH).

Proposition 19.3.3: For 𝑛 > 2, Q(𝜁𝑛) is a CM-field with totally real subfield

Q(𝜁𝑛 + 𝜁−1
𝑛 ) = Q

(︂
cos

2𝜋

𝑛

)︂
.

Proof.

4 Fermat’s last theorem: Regular primes

Theorem 19.4.1: cyclotomic-units Any unit 𝑢 ∈ Z[𝜁𝑛] can be written in the form

𝑢 = 𝜁𝑘𝑛𝑣

where 𝑣 is totally positive, i.e. 𝜎(𝑣) ∈ R for any embedding 𝜎 : Q[𝜁𝑛]→ C.

Definition 19.4.2: A prime 𝑝 is regular if 𝑝 does not divide the class number of Z[𝜁𝑝].

Theorem 19.4.3 (First case of Fermat’s last theorem for regular primes): Suppose that
𝑝 > 2 is a regular prime. Then any integer solution to

𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝

satisfies 𝑝 | 𝑥𝑦𝑧.

Proof. For 𝑝 = 3, note that any cube must be congruent to 0 or ±1 modulo 9. Hence in
order for 𝑥3 + 𝑦3 ≡ 𝑧3 (mod 9), one of 𝑥, 𝑦, 𝑧 is divisible by 3, as needed.

Now assume 𝑝 > 3. By dividing by gcd(𝑥, 𝑦, 𝑧) we may assume 𝑥, 𝑦, 𝑧 are relatively prime.
Step 1: Factor the equation as

fermat-factored

𝑝−1∏︁
𝑗=0

(𝑥+ 𝜁𝑗𝑝𝑦) = 𝑧𝑛. (19.7)

(Note 𝑝 is odd.) We show that if 𝑝 - 𝑥𝑦𝑧, then the factors on the left are relatively prime.
Take 𝑗 ̸= 𝑘 and consider a := gcd((𝑥+ 𝜁𝑗𝑝𝑦), ((𝑥+ 𝜁𝑘𝑝 𝑦))). We have

a | (𝑥+ 𝜁𝑗𝑝𝑦 − 𝑥− 𝜁𝑘𝑝 𝑦) = (𝜁𝑗𝑝 − 𝜁𝑘𝑝 )(𝑦).

Now 𝑥, 𝑦 have no common factor in Z, so (𝑥) and (𝑦) have no common factor in Z[𝜁𝑝], and
(𝑥+ 𝜁𝑗𝑝𝑦) and (𝑦) have no common factor. This shows

a | (𝜁𝑗𝑝 − 𝜁𝑘𝑝 ).
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The RHS is prime, so either a = (𝜁𝑗𝑝 − 𝜁𝑘𝑝 ) = (1 − p) or a = (1). In the first case, we get

(1− p) | ∏︀𝑝−1
𝑗=0(𝑥+ 𝜁𝑗𝑝𝑦) = 𝑧𝑛 so 𝑝 | 𝑧𝑛, contradiction.

Step 2: By uniqueness of ideal factorization, each factor of (19.7) is a perfect 𝑝th power.

(𝑥+ 𝜁𝑗𝑝𝑦) = a𝑝𝑗

However, 𝑝 - |𝐶(Z[𝜁𝑝])| so 𝐶(Z[𝜁𝑝]) has no 𝑝-torsion. Since (𝑥 + 𝜁𝑗𝑝𝑦) is a principal ideal, a𝑗
must also be a principal ideal (𝑎𝑗). By Theorem 19.4.1, we can write

𝑎𝑗 = 𝜁𝑟𝑗𝑝 𝑣𝑗, 𝑣𝑗 ∈ Q[𝜁𝑝]
+.

5 Exercises

Problems

1.1 Let 𝑝 be a prime. Prove that any equiangular 𝑝-gon with rational side lengths is
regular.

1.2 (Komal) Prove that there exists a positive integer 𝑛 so that any prime divisor of 2𝑛−1
is smaller that 2

𝑛
1993 − 1.

1.3 Find all rational 𝑝 ∈ [0, 1] such that cos 𝑝𝜋 is...

(a) rational

(b) the root of a quadratic polynomial with rational coefficients

1.4 (China) Prove that there are no solutions to 2 cos 𝑝𝜋 =
√
𝑛+ 1 −

√
𝑛 for rational 𝑝

rational and positive integer 𝑛.

1.5 (TST 2007/3) Let 𝜃 be an angle in the interval (0, 𝜋/2). Given that cos 𝜃 is irrational
and that cos 𝑘𝜃 and cos[(𝑘 + 1)𝜃] are both rational for some positive integer 𝑘, show
that 𝜃 = 𝜋/6.

2.1 Show that the ring of integers in Q(cos 2𝜋
𝑛
) is Z[cos 2𝜋

𝑛
].

? Show that the class group of Q(𝜁23) (is this the right one?) is nontrivial.
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Chapter 20

Valuations and completions

valuations-and-completions Here is some motivation for considering p-adic fields.

1. One useful tool in arithmetic geometry is the local to global principle, which says that
the existence of solutions modulo all primes tells us something about the existence of
solutions in the original field or ring, such asQ or Z. For example, the Hasse-Minkowski
Theorem. However, it is not enough to check for solutions modulo all powers of 𝑝 —
because a solution modulo 𝑝 does not necessarily give a solution modulo powers of 𝑝.
The solution is to look for solutions in a field which contains information modulo all
powers of 𝑝, a 𝑝-adic field.

2. When we take a p-adic fields, the only prime ideal remaining is p; all others primes
become units. This vastly simplifies algebraic number theory; we don’t have to worry
about primes that split. Then we can recover facts about the global field.

1 Case study: 𝑝-adic integers

padic-exs We first examine how 𝑝-adic rationals are defined, before generalizing to other number
fields.

Often we look at the integers modulo higher and higher powers of a prime 𝑝; for example,
when we were looking at the existence of primitive roots (Theorem 4.4.6.2) or the structure
of Z/𝑝𝑛Z (Theorem 4.4.7.1). Hensel’s lemma told us that under certain conditions we can
lift solutions modulo higher and higher powers of 𝑝.

Rather than work with powers of 𝑝 piecemeal, we can devise a structure that holds
information modulo all powers of 𝑝 at once. To do this, we define the ring 𝑝-adic integers Z𝑝
and 𝑝-adic rationals Q𝑝, which contain Z and Q, respectively. We will do this in two ways:

1. Define Z𝑝 as an inverse limit of the rings Z/𝑝𝑛Z and Q𝑝 as the fraction field.

2. Give Q a topology (or even better, a metric) related to divisibility by 𝑝, and complete
Q with respect to this topology.

185



Number Theory, S20.1

1.1 𝑝-adics as an inverse limit

Definition 20.1.1: p-adic-comp-seq A 𝑝-adic integer is a compatible sequence

(𝑥𝑛)𝑛≥1

where 𝑥𝑛 ∈ Z/𝑝𝑛Z and such that 𝑥𝑛+1 ≡ 𝑥𝑛 (mod 𝑝𝑛) for all 𝑛, i.e. 𝑥𝑛+1 maps to 𝑥𝑛 under
the projection map Z/𝑝𝑛+1Z→ Z/𝑝𝑛Z.

The ring structure is defined by componentwise addition and multiplication. The ring of
𝑝-adic integers is denoted by Z𝑝 and its fraction field is denoted by

Q𝑝 = Frac(Z𝑝).

In light of Theorem 12.12.7.5, we can phrase this definition in a more abstract way:

Z𝑝 = lim←−Z/𝑝𝑛Z

where there are maps 𝜙𝑚𝑛 : Z/𝑝𝑚Z→ Z/𝑝𝑛Z given by projection whenever 𝑚 ≥ 𝑛.

1.2 𝑝-adics as completions

We can give define a topology on Z by decreeing that it be invariant under translation and
that a neighborhood base of 0 be {𝑝𝑛Z, 𝑛 ≥ 0}. This is the same as the topology induced
by the norm

|𝑎|𝑝 = 𝑝−𝑣 when 𝑎 =
𝑝𝑣𝑏

𝑐
, 𝑝 - 𝑏, 𝑐.

Definition 20.1.2 (Alternate definition of 𝑝-adics): Q𝑝 is the completion of Q with respect
to the 𝑝-adic norm.

We show the equivalence more generally in ().

1.3 Units in Z𝑝
Proposition 20.1.3: The group of units in Z𝑝 is

Z×
𝑝
∼=

⎧⎨⎩Z𝑝 × Z/(𝑝− 1)Z, 𝑝 ̸= 2

Z2 × Z/2Z× Z/2Z, 𝑝 = 2.

Proof. Note that

Z×
𝑝 = lim←−

𝑛≥1

(Z/𝑝𝑛Z)×

because any inverse modulo 𝑝𝑛 can be lifted to an inverse modulo 𝑝𝑛+1.
The proposition follows from taking inverse limits in Theorem 4.4.7.1.
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1.4 Monsky’s Theorem*

We use the 2-adic valuation to prove the following theorem from combinatorial geometry.
Surprisingly, no proof is known that does not use 𝑝-adics.

Theorem 20.1.4: A unit square cannot be cut into an odd number of triangles of equal
area.

The idea of the proof is as follows.

1. Extend the 2-adic valuation to a nonarchimedean valuation on the real numbers.

2. Color each point in the plane one of three colors, based on the 2-adic valuation of
the coordinates. We show that the sides of the square only have two colors, with
the vertices alternating colors, and that a triangle of area 1

𝑚
where 𝑚 is odd, cannot

contain vertices of al three colors. The last facts depends crucially on the fact that the
area formula for a triangle has a factor of 1

2
in it.

3. By Sperner’s Lemma (from graph theory), the coloring in such a subdivision is incon-
sistent.

Proof. We postpone the proof of the first item.1 Assuming it, color the points of the plane
in three colors depending on which of the following conditions is satisfied.

(A) |𝑥|2 < 1, |𝑦|2 < 1

(B) |𝑥|2 ≥ 1, |𝑥|2 ≥ |𝑦|2

(C) |𝑦|2 ≥ 1, |𝑦|2 > |𝑥|2

First, we show that if (Δ𝑥,Δ𝑦) has color A, then translating by (Δ𝑥,Δ𝑦) does not change
the color of 𝐴. Indeed, consider 3 cases.

1. (𝑥, 𝑦) is of color A. By the nonarchimedean property, we have

|𝑥+Δ𝑥|2 ≤ max(|𝑥|2, |Δ𝑥|2) ≤ 1, |𝑦 +Δ𝑦|2 ≤ max(|𝑦|2, |Δ𝑦|2) ≤ 1,

so (𝑥+Δ𝑥, 𝑦 +Δ𝑦) is again of color A.

2. (𝑥, 𝑦) is of color 𝐵. Since |𝑥|2 ≥ 1 > |Δ𝑥|2, we gave

|𝑥+Δ𝑥|2 = |𝑥|2 ≥ 1.

Since |𝑥|2
.
≥ |𝑦|2 and 1 > |Δ𝑦|2 we have

|𝑦 +Δ𝑦|2 ≤ max(|𝑦|2, |Δ𝑦|2)
.
≤ |𝑥|2 = |𝑥+Δ𝑥|2.

Hence (𝑥+Δ𝑥, 𝑦 +Δ𝑦) is again of color B.

1There is a way around it; see Proofs from the Book.
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3. (𝑥, 𝑦) is of color 𝐶. The proof is the same as above except 𝑥, 𝑦 are interchanged and
there is strict inequality in the dotted inequalities above.

Now suppose that 𝐴,𝐵,𝐶 are three points of those respective colors. By translation we may
assume that 𝐴 = 𝑂. Let 𝐵 = (𝑥, 𝑦) and 𝐶 = (𝑥′, 𝑦′). We have

|𝑥|2 ≥ |𝑦|2
|𝑦′|2 > |𝑥|2

=⇒ |𝑥𝑦′|2 > |𝑥′𝑦|2.

1. 𝐴,𝐵,𝐶 cannot be collinear, as that would imply 𝑥𝑦′ = 𝑥′𝑦.

2. We show 𝐴,𝐵,𝐶 cannot form a triangle of area 1
𝑚
for𝑚 odd. The area is ±1

2
(𝑥𝑦′−𝑥′𝑦),

and we have

|1
2
(𝑥𝑦′ − 𝑥′𝑦)| =

⃒⃒⃒⃒
1

2

⃒⃒⃒⃒
2
|𝑥|2|𝑦′|2 > 1,

while
⃒⃒⃒
1
𝑚

⃒⃒⃒
= 1.

Next we establish the following combinatorial lemma.

Lemma 20.1.5 (Sperner’s lemma): Suppose 𝒫 is a polygon that has been subdivided into
triangles. Define a vertex or segment to be a vertex or edge of one of these triangles, and
say a segment is of type 𝒞1𝒞2 if the endpoints are colored 𝒞1 and 𝒞2. We say a triangle is
rainbow if it has vertices of all 3 colors.

Suppose every vertex of the subdivision is colored with either 𝒜, ℬ, or 𝒞, such that the
following hold.

1. No outer edge of 𝒫 contains vertices of all three colors.

2. There are are an odd number of segments of type 𝒜ℬ on the outer edges.

Then 𝒫 contains a triangle whose vertices are all different colors.

Proof. We count the number of segments of type 𝒜ℬ. In a monochromatic triangle the count
is 0, in a two-colored triangle the count is 0 or 2, and in a three-colored triangle the count
is 1. Let 𝑛 be the sum of the counts over all triangle. Every interior segment of type 𝒜ℬ is
counted twice, as it is part of two triangles, so

𝑛 = 2𝑖+ 𝑒,

where 𝑖 and 𝑒 denote the number of interior and exterior segments of type 𝒜ℬ. Since 𝑒
is odd by assumption, 𝑛 is also odd. But this can only happen if there is a three-colored
triangle.

188



Number Theory, S20.2

Now the points 𝑂 = (0, 0), 𝑋 = (1, 0), 𝑌 = (1, 1), and 𝑍 = (0, 1) are colored with 𝒜,
ℬ, ℬ, 𝒞, respectively. We’ve shown that each side contains segments of at most 2 colors;
segments of type 𝒜ℬ can only appear on side 𝑂𝑋 and 𝑋𝑌 ; in the former there must be an
odd number (since 𝑂,𝑋 are different colors) and in the latter there must be an even number.
Thus the conditions of Sperner’s Lemma are satisfied, and any subdivision must contain a
rainbow triangle, which cannot have area 1

𝑚
for 𝑚 odd.

2 Valuations

Definition 20.2.1: A valuation on a field 𝐾 is a function | · | : 𝐾 → R such that

1. |𝑥| ≥ 0 with equality only when 𝑥 = 0.

2. |𝑥𝑦| = |𝑥||𝑦|.

3. |𝑥+ 𝑦| ≤ |𝑥|+ |𝑦|.

If the stronger condition |𝑥+ 𝑦| ≤ max(|𝑥|, |𝑦|) holds, then | · | is nonarchimedean.

Example 20.2.2: For a number field 𝐾, any embedding 𝜎 : 𝐾 →˓ C gives a valuation on
𝐾:

|𝑎| := |𝜎𝑎|.

Example 20.2.3: p-adic-val The p-adic valuation is

|𝑎|p =
�

1

Np

�𝑣p(𝑎)
.

In the special case 𝐾 = Q, p = (𝑝), we have

|𝑎|𝑝 =
�
1

𝑝

�𝑣p(𝑎)
.

Proposition 20.2.4: nonarch-crit A valuation is nonarchimedean if and only if it is bounded
on Z. Hence if char(𝐾) ̸= 0, then 𝐾 only has nonarchimedean valuations.

Proof. If | · | is archimedean, then |1 + · · ·+ 1| ≤ |1| = 1, so |𝑛| ≤ 1 for any 𝑛 ∈ Z.
Conversely, suppose that | · | is bounded on Z, say by 𝐶. We have

|(𝑎+ 𝑏)𝑛| =
⃒⃒⃒⃒⃒
𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
𝑎𝑘𝑏𝑛−𝑘

⃒⃒⃒⃒⃒
≤

𝑛∑︁
𝑘=0

𝐶|𝑎|𝑘|𝑏|𝑛−𝑘

≤ 𝐶(𝑛+ 1)max(|𝑎|, |𝑏|)𝑛.

Hence for all 𝑛 ≥ 1, |𝑎+ 𝑏| ≤ (𝐶(𝑛+ 1))
1
𝑛 max(|𝑎|, |𝑏|). Taking 𝑛→∞ gives the result.
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Proposition 20.2.5 (Relationship between additive and multiplicative valuations): Fix a
base 𝑏. There is a correspondence between additive and multiplicative valuations, given by

|𝑥| = 𝑏−𝑣(𝑥)

𝑣(𝑥) = − log𝑏(𝑥).

Different values of 𝑏 give equivalent valuations. If 𝑣(𝐾×) is discrete in R, then it is a multiple
of a discrete valuation.

We say | · | is discrete when |𝐾×| is a discrete subgroup of R>0.
Using the above correspondence, we find

1. 𝐴 := {𝑎 ∈ 𝐾 : |𝑎| ≤ 1} is a subring of 𝐾, with

2. 𝑈 := {𝑎 ∈ 𝐾 : |𝑎| = 1} as its group of units, and

3. m := {𝑎 ∈ 𝐾 : |𝑎| < 1} as its unique maximal ideal.

The valuation is discrete if and only if m is principal; then 𝐴 is a DVR.

Proposition 20.2.6 (Elementary properties of discrete valuations): elem-prop-dv

1. |𝑎+ 𝑏| ≤ max(|𝑎|, |𝑏|) with equality if |𝑎| ≠ |𝑏|.

2. (“All triangles are isosceles.”) If 𝑑(𝑐, 𝑏) < 𝑑(𝑐, 𝑎) then 𝑑(𝑎, 𝑐) = 𝑑(𝑎, 𝑏). (The longer
side is the repeated one.)

3. If 𝑎1 + · · ·+ 𝑎𝑛 = 0, then the maximum valuation of the summands must be attained
for at least two of them.

2.1 Equivalent valuations

A valuation on 𝐾 defines a metric (and hence a topology) on 𝐾 by

𝑑(𝑎, 𝑏) = |𝑎− 𝑏|.

For example, high powers of 𝑝 have small 𝑝-adic valuation, so numbers differing by high
powers of 𝑝 are close together in the 𝑝-adic valuation.

Proposition 20.2.7: val-equiv-crit Let |·|1, |·|2 be valuations on𝐾, with the first being nontrivial.
Then the following are equivalent.

1. | · |1, | · |2 determine the same topology on 𝐾.

2. If |𝛼|1 < 1, then |𝛼|2 < 1.

3. | · |1 = | · |𝑎2 for some 𝑎 > 0.
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We say that | · |1 and | · |2 are equivalent if the above conditions hold.

Proof.
(1) =⇒ (2): Note |𝛼|𝑗 < 1 if and only if |𝛼𝑛|𝑗 = |𝛼|𝑛𝑗 → 0, i.e. 𝛼𝑛 converges to 0 in the
topology of | · |𝑗. Since the topologies are the same,

|𝛼|1 < 1 ⇐⇒ 𝛼𝑛 converges to 0 ⇐⇒ |𝛼|2 < 1.

(2) =⇒ (3): Take 𝑦 so that |𝑦|1 > 1, and let 𝑎 = |𝑦|2
|𝑦|1 , so that |𝑦|2 = |𝑦|𝑎1. We show that

|𝑥|2 = |𝑥|𝑎1 for all 𝑥 ∈ 𝐾.
Suppose |𝑥|1 = |𝑦|𝑏11 and |𝑥|2 = |𝑦|𝑏22 . We need to show 𝑏1 = 𝑏2, i.e. so the following

commutes.

|𝑥|1
∧𝑎 // |𝑥|2

|𝑦|1

∧𝑏1

OO

∧𝑎 // |𝑦|2

∧𝑏2

OO

We approximate 𝑏1 with rational numbers 𝑚
𝑛
. First suppose 𝑏1 >

𝑚
𝑛
. Then⃒⃒⃒⃒

𝑦𝑚

𝑥𝑛

⃒⃒⃒⃒
1
= |𝑦|𝑚−𝑏1𝑛 < 1

so by hypothesis

|𝑦|𝑚−𝑏2𝑛
2 =

⃒⃒⃒⃒
𝑦𝑚

𝑥𝑛

⃒⃒⃒⃒
2
< 1

giving 𝑏2 >
𝑚
𝑛
. Similarly, if 𝑏1 <

𝑚
𝑛
, then the above argument with 𝑥𝑛

𝑦𝑚
shows 𝑏2 <

𝑚
𝑛
. Since

Q is dense in R, we have 𝑏1 = 𝑏2.

(3) =⇒ (1): The open ball of radius 𝑟 with respect to | · |1 is the same as the open ball of
radius 𝑟𝑎 with respect to | · |2.

3 Places

Definition 20.3.1: A place is an equivalence class of nontrivial valuations on 𝐾.2 We
denote by 𝑉𝐾 the set of places of 𝐾, by 𝑉 0

𝐾 the set of nonarchimedean places and 𝑉 ∞
𝐾 the

set of archimedean places.

We aim to classify all places in a number field 𝐾.

Proposition 20.3.2: nonarch-vals Let 𝐾/Q be an algebraic extension. Then the places on 𝐾
are exactly the p-adic valuations | · |p for p a prime ideal of O𝐾 .

2Some books use “prime” instead of “place.” We use the latter term to avoid confusion.
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Proof. Since 𝐾 is algebraic over Q, an element 𝛼 ∈ O𝐾 satisfies a monic polynomial equation
with coefficients in Z:

𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · ·+ 𝑎0 = 0.

By Proposition 20.2.4, 𝑎𝑗 ∈ Z gives |𝑎𝑗| ≤ 1. By the nonarchimedean property,

|𝛼|𝑛 = |𝑎𝑛−1𝛼
𝑛−1 + · · ·+ 𝑎0| ≤ max

0≤𝑚≤𝑛−1
|𝑎𝑚||𝛼𝑚| ≤ max

0≤𝑚≤𝑛−1
|𝛼|𝑚.

Hence |𝛼| < 1.
Let 𝐵 be the ring of integers of | · | and m its maximal ideal. Since m is prime in 𝐵,

p := m ∩ 𝐴 is prime in 𝐴. Note p ̸= (0) because if so | · | is trivial.
Now suppose 𝑣p(𝑦) = 𝑛. Let 𝜋 ∈ p∖p2 be a uniformizer. Then (𝑦𝜋−𝑛) is a fractional

ideal; suppose ideals p1, . . . , p𝑚 appear in its factorization with exponents at least −𝑘. Take
𝑏 ∈ ⋂︀𝑛

𝑗=1 p
𝑘
𝑗 . Then (𝑦𝜋−𝑛𝑏) is an integral ideal (𝑐) not divisible by p. We have 𝑐 ∈ 𝐴∖p.

Writing |𝜋| =
(︁

1
Np

)︁𝑎
, we have

|𝑦| =
⃒⃒⃒⃒
𝑐

𝑏

⃒⃒⃒⃒
|𝜋𝑛| =

⃒⃒⃒⃒⃒
1

Np

⃒⃒⃒⃒⃒𝑛
= |𝑦|𝑎p .

Moreover, two equivalent nonarchimedean valuations would have the same maximal ideals
and hence correspond to the same prime p.

Theorem 20.3.3 (Ostrowski): ostrowski The following is a list of all places on Q.

1. Archimedean: | · |∞.3

2. Nonarchimedean: | · |𝑝, where 𝑝 ranges over all primes.

Proof. Let | · | be a valuation on Q and 𝑚,𝑛 be integers greater than 1. To compare |𝑚| and
|𝑛|, we write 𝑚 in base 𝑛:

𝑚 = 𝑎𝑟𝑛
𝑟 + · · ·+ 𝑎0, 0 ≤ 𝑎𝑘 ≤ 𝑛− 1, 𝑎𝑟 > 0.

Let 𝑁 = max{1, |𝑛|}. Then by the triangle inequality,

|𝑚| ≤
𝑟∑︁

𝑘=0

𝑎𝑘𝑁
𝑘.

Since 𝑟 ≤ ln𝑚
ln𝑛

, we get

|𝑚| ≤
(︂
1 +

1

𝑁
+

1

𝑁2
+ · · ·

)︂
𝑛𝑁

ln𝑚
ln𝑛 ≤ 2𝑛𝑁

ln𝑚
ln𝑛

3A stronger version of part 1 is as follows. Let 𝐾 be complete with respect to an archmimedean norm.
Then 𝐾 = R or C, and the norm is the normal absolute value raised to a power in (0, 1].
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Replacing 𝑚 by 𝑚𝑡 and taking the 𝑡th root gives

|𝑚| ≤ (2𝑛)
1
𝑡𝑁

ln𝑚
ln𝑛 .

Taking 𝑡→∞ gives

ostrowski1|𝑚| ≤ 𝑁
ln𝑚
ln𝑛 . (20.1)

Consider two cases.

1. For all integers 𝑛 > 1, |𝑛| > 1. Then (20.1) gives |𝑚| 1
ln𝑚 ≤ |𝑛| 1

ln𝑛 . By symmetry, we

get |𝑚| 1
ln𝑚 = |𝑛| 1

ln𝑛 . Since this is true for all 𝑚 and 𝑛, |𝑛| 1
ln𝑛 = 𝑐 is constant, i.e.

|𝑛| = 𝑐ln𝑛 = 𝑛
ln𝑛
ln 𝑐

for all 𝑛 ∈ Z. Since Z generates Q as a group, we get that | · | is equivalent to the
standard archimedean valuation.

2. For some 𝑛 > 1, |𝑛| ≤ 1. Then (20.1) shows that |𝑚| ≤ 1 for all 𝑚 > 1. Thus by
Proposition 20.2.4, | · | is nonarchimedean. The nonarchimedean valuations are given
by Proposition 20.3.2.

Later on we will return to the question of finding all valuations on an extension of Q
(Theorem ??).

Generalize the nonarchimedean stuff to number fields.

3.1 Approximation

Theorem 20.3.4 (Weak approximation theorem): thm:weak-approx Let 𝑣1, . . . , 𝑣𝑛 be all the places
of 𝐾, with valuations | · |1, . . . , | · |𝑛. The map

𝜑 : 𝐾 →
𝑁∏︁
𝑗=1

𝐾𝑣𝑗

induced by the inclusions 𝐾 →˓ 𝐾𝑣𝑗 has dense image.
In other words, given 𝑎1, . . . , 𝑎𝑛 ∈ 𝐾, for any 𝜀 > 0, there exists 𝑎 ∈ 𝐾 such that

|𝑎− 𝑎𝑗|𝑗 < 𝜀 for all 𝑗.

Proof. Step 1: We show that there exists 𝑎 such that

weak-approx-1 |𝑎|1 > 1. (20.2)

|𝑎|𝑗 < 1, 𝑖 = 2, . . . , 𝑛.

We induct on 𝑛. For 𝑛 = 2, note that by Proposition 20.2.7(2), we can find 𝑏, 𝑐 so that

|𝑏|1 < 1, |𝑏|2 ≥ 1

|𝑐|1 ≥ 1, |𝑐|2 < 1.
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Now take 𝑎 = 𝑐
𝑏
.

For the induction step, suppose we’ve found 𝑏 so that (20.2) holds for 𝑛− 1. Choose 𝑐 so
that

|𝑐|1 > 1, |𝑐|𝑛 < 1;

we will use it to “correct” |𝑏|𝑛 as necessary. Consider three cases.

1. |𝑏|𝑛 < 1: We can let 𝑎 = 𝑏.

2. |𝑏|𝑛 = 1: Let 𝑎 = 𝑏𝑟𝑐, for large enough 𝑟. This works because

lim
𝑟→∞
|𝑏𝑟𝑐|𝑗 =

⎧⎪⎪⎨⎪⎪⎩∞, 𝑗 = 1

0, 2 ≤ 𝑗 ≤ 𝑛− 1

|𝑐|𝑛 < 1, 𝑗 = 𝑛.

3. |𝑏|𝑛 > 1: First note that from 1− |𝑎𝑟| ≤ |1 + 𝑎𝑟| ≤ 1 + |𝑎𝑟| we get

weak-approx-expr lim
𝑟→∞

⃒⃒⃒⃒
𝑥𝑟

1 + 𝑥𝑟

⃒⃒⃒⃒
=

⎧⎨⎩0, |𝑥| < 1

1, |𝑥| > 1.
(20.3)

Let 𝑎 = 𝑐𝑏𝑟

1+𝑏𝑟
, for large enough 𝑟. This works because the above gives

lim
𝑟→∞

⃒⃒⃒⃒⃒
𝑐𝑏𝑟

1 + 𝑏𝑟

⃒⃒⃒⃒⃒
𝑗

=

⎧⎪⎪⎨⎪⎪⎩|𝑐|1 > 1, 𝑗 = 1

0, 2 ≤ 𝑗 ≤ 𝑛− 1

|𝑐|𝑛 < 1, 𝑗 = 𝑛.

Step 2: Now we show that there are points in the image of 𝜑 arbitrarily close to (1, 0, . . . , 0).
Indeed, choosing 𝑎 as in step 1, we have by (20.3) that

lim
𝑟→∞

𝜙
(︂

𝑎𝑟

1 + 𝑎𝑟

)︂
= (1, 0, . . . , 0).

Step 3: From step 2, choose 𝑏𝑗 sufficiently close to (0, . . . , 0, 1⏟ ⏞ 
𝑗

, 0, . . . , 0). Let

𝑎 =
𝑛∑︁
𝑗=1

𝑎𝑛𝑏𝑛

to find 𝜙(𝑎) can be arbitrarily close to (𝑎1, . . . , 𝑎𝑛).

Note that if we include only the finite places, then this follows from the Chinese remainder
theorem.
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4 Completion

Definition 20.4.1: Let 𝐾 be a field with valuation | · |. The completion of 𝐾, denoted �̂�
is the field containing 𝐾 (i.e. there is a injection 𝐾 →˓ �̂� preserving valuation) satisfying
the following properties.

1. �̂� is complete in its topology.

2. (UMP) For any homomorphism 𝜙 from 𝐾 to a complete field 𝐿, there exists a unique
homomorphism �̂� → 𝐿 making the following commute.

�̂� // 𝐿

𝐾
?�

OO

/�

??

.

I.e., �̂� is the smallest complete field containing 𝐾.

Proof of existence. For existence, let �̂� be the set of equivalence classes of Cauchy sequences
in 𝐾, and deem two sequences {𝑎𝑛} and {𝑏𝑛} equivalent if lim𝑛→∞ |𝑎𝑛 − 𝑏𝑛| = 0. Define
𝐾 →˓ �̂� by sending 𝑎 to (𝑎, 𝑎, . . .). Extend the valuation by letting defining the norm of a
{𝑎𝑛} to be lim𝑛→∞ |𝑎𝑛|. See any book on real analysis for the details.

For the second part, given a sequence {𝑎𝑛} ∈ �̂�, map it to lim𝑛→∞ 𝜙(𝑎𝑛) ∈ 𝐿. Uniqueness
follows from the universal property.

4.1 Completions of archimedean fields

Theorem 20.4.2 (Ostrowski): ostrowski2vals-on-number-fields The only complete archimedean fields,
up to isomorphism of valued fields and equivalence of valuation, are R and C.

Proof. See Neukirch, p. 124.

We can now finish our classification of places on 𝐾/Q.

Theorem 20.4.3 (Classification of places of 𝐾): Let 𝐾 be a number field. There is exactly
one place of 𝐾 for each

1. prime ideal p,

2. real imbedding, and

3. conjugate pair of complex embeddings.

The valuations corresponding to prime ideals, i.e. p-adic valuations, are called finite
places, while the those corresponding to real and complex embeddings are called infinite
(real or complex) places.
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Proof. The nonarchimedean valuations of𝐾 are given by Proposition ??, while each archimedean
valuation 𝑣 corresponds to an embedding (respecting valuations)

𝐾 →˓ 𝐾𝑣
∼= R or C,

the isomorphism coming from Theorem 20.4.2. Note that complex conjugate embeddings
give the same valuation.

Corollary 20.4.4: Let 𝐿/𝐾 be extensions of number fields. If 𝑣 is a place corresponding
to a prime p of 𝐾, then the places 𝑤 | 𝑣 in 𝐿 correspond to primes P | p. If 𝑣 is a place of
𝐾 corresponding to an embedding 𝜎 : 𝐾 → R or C, then the places 𝑤 | 𝑣 correspond to of
𝜎 to 𝐿.

4.2 Completions of nonarchimedean fields

Suppose 𝐾 is a field with a discrete nonarchimedean valuation | · |. Let 𝜋 be a local uni-
formizing parameter, i.e. the largest element of 𝐾 with |𝜋| < 1. Equivalently, 𝜋 generates
the maximal ideal m in the subring of 𝜋-integers.

Since 𝐾 is dense in �̂� and

|𝐾∖{0}| = {|𝜋|𝑚 : 𝑚 ∈ Z}

is discrete in �̂�, we get |𝐾| = |�̂�|.

Proposition 20.4.5: pi-adic-expansion Let 𝑆 be a set of representatives for 𝐴/m. Then every
element of �̂� has a unique expression in the form∑︁

𝑛≥𝑁
𝑎𝑛𝜋

𝑛.

(More precisely, the sum represents lim𝑚→∞
∑︀𝑚
𝑛=𝑁 𝑎𝑛𝜋

𝑛.) The norm is given by⃒⃒⃒⃒⃒⃒ ∑︁
𝑛≥𝑁

𝑎𝑛𝜋
𝑛

⃒⃒⃒⃒⃒⃒
= |𝜋|−𝑛0 , 𝑎𝑁 ̸= 0.

In other words, we can write elements of �̂� as “numbers with infinite 𝜋-expansions going
off to the left,” as we saw in section 1.

Proof. Let {𝑠𝑛}𝑛≥1 be a Cauchy sequence in 𝐾. Let

𝑠𝑛 =
∑︁

𝑚≫−∞
𝑎𝑛(𝑚)𝜋𝑗;

where 𝑎𝑛(𝑚) ∈ 𝑆; this sum is finite. We have

|𝑠𝑛1 − 𝑠𝑛2 | = 𝑝−min{𝑚:𝑎𝑛1 (𝑚)̸=𝑎𝑛2 (𝑚)}.
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Hence for each 𝑚, 𝑎𝑛(𝑚) eventually stabilizes, say at 𝑎𝑛. Then

lim
𝑛→∞

𝑠𝑛 =
∑︁

𝑛≫−∞
𝑎𝑛𝜋

𝑛.

Thus we have two ways to think of a p-adic valuation.

Proposition 20.4.6:
�̂� = Frac(lim←−𝐴/m

𝑛).

To connect up the analytic and algebraic definitions of the completion, note that the
completion of a ring 𝐴 with respect to an ideal m is defined as 𝐴 = lim←−𝑛≥0

𝐴/m𝑛, with the

topology given by a neighborhood base at 0 being {m𝑛}𝑛≥0.

Definition 20.4.7: Define the exponential function as a power series

𝑒𝑥 =
∞∑︁
𝑛=1

𝑥𝑛

𝑛!
= 1 + 𝑥+

𝑥2

2!
+ · · · .

We investigate the convergence of 𝑒𝑥. Writing 𝑎 = 𝑎𝑟𝑝
𝑟 + · · · + 𝑎0 in base 𝑝, we find by

Example 1.1.4.1 that

ord𝑝(𝑛!) =
𝑛−∑︀𝑟

𝑖=0 𝑎𝑖
𝑝− 1

.

Hence

ord𝑝

(︂
𝑥𝑛

𝑛!

)︂
= 𝑛 ord𝑝(𝑥)−

𝑛−∑︀𝑟
𝑖=0 𝑎𝑖

𝑝− 1
= 𝑛

�
ord𝑝(𝑥)−

1

𝑝− 1

�
+ 𝑜(𝑛).

Since 𝑒𝑥 converges if and only if ord𝑝
(︀
𝑥𝑛

𝑛!

�
→ −∞, we get the following.

Proposition 20.4.8: 𝑒𝑥 converges for ord𝑝(𝑥) >
1
𝑝−1

.

5 Hensel’s lemma

The following is the first version of Hensel’s lemma for 𝜋-adics. COMPARE TO ELEMEN-
TARY STATEMENT IN TERMS OF MODS.

Lemma 20.5.1 (Hensel’s lemma, I): hensel1 Let 𝑓(𝑋) ∈ 𝐴[𝑋], and 𝑎0 be a simple root of
𝑓(𝑋) modulo 𝜋, i.e. 𝑓(𝑎0) ≡ 0 (mod 𝜋) and 𝑓 ′(𝑎0) ̸≡ 0 (mod 𝜋). Then there exists a unique
root 𝑎 of 𝑓(𝑋) with 𝑎 ≡ 𝑎0 (mod 𝜋).

Note this can be generalized as follows: Suppose 𝑓(𝑎0) ≡ 0 (mod 𝜋𝑛) and 𝑣𝜋(𝑓
′(𝑎0)) =

𝑘 < 𝑛. Then there is a unique root 𝑎 of 𝑓(𝑋) with 𝑎 ≡ 𝑎0 (mod 𝜋𝑛−𝑘). The proof is the
same, and is left to the reader!
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Proof. We find zeros of 𝑓(𝑋) modulo higher and higher powers of 𝜋.
Using induction, we find 𝑎𝑛 satisfying

𝑓(𝑎𝑛) ≡ 0 (mod 𝜋𝑛+1).

The base case holds by hypothesis. For the induction step, note that by Taylor expansion
of polynomials,

𝑓(𝑎𝑛 + ℎ𝜋𝑛+1) = 𝑓(𝑎𝑛) + ℎ𝜋𝑛+1𝑓 ′(𝑎𝑛) + · · ·
≡ 𝑓(𝑎𝑛) + ℎ𝜋𝑛+1𝑓 ′(𝑎𝑛) (mod 𝜋𝑛+2).

Since 𝑓 ′(𝑎𝑛) ̸≡ 0 (mod 𝜋) and 𝑓(𝑎𝑛) ≡ 0 (mod 𝜋𝑛+1), we can choose ℎ so that this is 0

modulo 𝜋𝑛+1. (Explicitly, ℎ = −𝑓(𝑎𝑛)
𝜋𝑛+1 · 1

𝑓 ′(𝑎𝑛)
.) We let 𝑎𝑛+1 = 𝑎𝑛 + ℎ𝜋𝑛+1. By construction,

the sequence 𝑎𝑛 converges; let 𝑎 be its limit. Since 𝑎 ≡ 𝑎𝑛 (mod 𝜋𝑛), we get 𝑓(𝑎) ≡ 𝑓(𝑎𝑛) ≡ 0
(mod 𝜋𝑛+1) for all 𝑛, and therefore 𝑓(𝑎) = 0.

The first form of Hensel’s lemma tells us about lifting a root 𝑎0 of 𝑓 (𝑓 modulo 𝜋) to a
root 𝑎 of 𝑓 in 𝐾. We can think of this as lifting a linear factor 𝑥− 𝑎0 of 𝑓 to a linear factor
𝑥 − 𝑎 of 𝑓 . A stronger form of Hensel’s lemma says that we can in fact lift any factor of 𝑓
to one of 𝑓 .

Theorem 20.5.2 (Hensel’s lemma, II): hensel2 Let 𝑘 be the residue field of 𝐴 and 𝑓 be a
monic polynomial. If 𝑓 = 𝑔0ℎ0 where 𝑔0 and ℎ0 are monic and relatively prime, then 𝑓 = 𝑔ℎ
for some 𝑔 and ℎ such that 𝑔 = 𝑔0 and ℎ = ℎ0. (uniqueness)

If 𝑓 = 𝑔1 · · · 𝑔𝑛 is the complete factorization of 𝑓 in 𝑘[𝑋], then the complete factorization
of 𝑓 in 𝐾[𝑋] is 𝑓 = 𝑓1 · · · 𝑓𝑛 where 𝑓𝑗 = 𝑔𝑗.

Proof. First we need the following lemma, which tells us that if the reductions of polynomials
are relatively prime, then so are the original polynomials.

Lemma 20.5.3: Let 𝐴 be a local ring with residue field 𝑘. If 𝑔, ℎ ∈ 𝐴[𝑋] are such that
𝑔 and ℎ are relatively prime, then 𝑔 and ℎ are relatively prime in 𝐴[𝑋] and there exist
polynomials 𝑢, 𝑣 with deg 𝑢 < deg ℎ and deg 𝑣 < deg 𝑔 such that

𝑢𝑔 + 𝑣ℎ = 1.

Proof. Since 𝑔 and ℎ are relatively prime in 𝑘[𝑋] = (𝐴/m)[𝑋], (𝑔, ℎ) = 𝐴[𝑋]/m𝐴[𝑋] and
(𝑔, ℎ) + m𝐴[𝑋] = 𝐴[𝑋]. Since 𝐴[𝑋]/m𝐴[𝑋] is finitely generated (on account of 𝑔, ℎ being
monic), by Nakayama’s Lemma (𝑔, ℎ) = 𝐴[𝑋]. We can choose 𝑢, 𝑣 such that 𝑢𝑔 + 𝑣ℎ = 1;
drop all terms with higher degree.

We proceed as in the proof of Theorem 20.5.1. Suppose we have found 𝑔𝑛 and ℎ𝑛 such
that

𝑓 ≡ 𝑔𝑛ℎ𝑛 (mod 𝜋𝑛+1).
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We have

(𝑔𝑛 + 𝑣𝜋𝑛+1)(ℎ𝑛 + 𝑢𝜋𝑛+1) ≡ 𝑔𝑛ℎ𝑛 + (𝑢𝑔𝑛 + 𝑣ℎ𝑛)𝜋
𝑛+1 (mod 𝜋𝑛+2).

By the lemma we can choose 𝑢 and 𝑣 such that the above is congruent to 𝑓 modulo 𝜋𝑛+2.
Again let 𝑔𝑛+1 = 𝑔𝑛 + 𝑣𝜋𝑛+1, ℎ𝑛+1 = ℎ𝑛 + 𝑢𝜋𝑛+1, and take the limit as 𝑛→∞.

The second part follows from induction. Note 𝑓 = 𝑓1 · · · 𝑓𝑛 is the complete factorization
because any factorization of 𝑓 gives a factorization for 𝑓 .

Definition 20.5.4: A henselian field is a field with nonarchimedian valuation 𝑣 which
satisfies Hensel’s Lemma (with p the maximal ideal corresponding to 𝑣).

Hensel’s lemma says that a field that is complete with respect to a discrete valuation is
henselian.

6 Extending valuations

Theorem 20.6.1 (Extending discrete valuations): extend-discrete-valuations Let 𝐾 be henselian and
let 𝐿/𝐾 be finite separable of degree 𝑛. Then | · |𝐾 extends uniquely to a discrete valuation
| · |𝐿 on 𝐿, given by

|𝛽|𝐿 = |Nm𝐿/𝐾 𝛽|
1
𝑛
𝐾 .

Proof. Neukirch, pg. 131-132.

Definition 20.6.2: Let 𝐾 be henselian. Let ord : 𝐾× → Z be the corresponding additive
valuation, extended to 𝐾al× → Q. Given a polynomial

𝑓(𝑋) = 𝑋𝑛 + 𝑎𝑛−1𝑋
𝑛−1 + · · ·+ 𝑎0 ∈ 𝐾[𝑋]

define the Newton polygon of 𝑓(𝑋) to be the lower convex hull4 of

𝑃𝑖 := (𝑖, ord(𝑎𝑖)).

Proposition 20.6.3: Suppose the bottom of the Newton polygon has segments of 𝑥-length
𝑛𝑖 and slope −𝑠𝑖. Then

1. 𝑓(𝑋) has exactly 𝑛𝑖 roots 𝛼 ∈ 𝐾al with ord(𝛼) = 𝑠𝑖, and

2. 𝑓𝑖(𝑋) =
∏︀

ord(𝛼𝑖)=𝑠𝑖(𝑋 − 𝛼𝑖) has coefficients in 𝐾.

Proof. We prove the following statement by induction: if 𝑓(𝑋) =
∏︀
(𝑋 − 𝛼𝑗) ∈ 𝐾[𝑋] and

exactly 𝑛𝑖 of the roots 𝛼𝑗 have order equal to 𝑠𝑖, then the Newton’s polygon of 𝑓(𝑋) has a
segment of slope −𝑠𝑖 and 𝑥-length 𝑛𝑖.

4draw the convex hull, and remove the segments joining (0, ord 𝑎0) and (𝑛, 0) from the top
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The case 𝑛 = 1 follows since the only line segment on the bottom joins (0, ord(𝛼𝑖)) and
(1, 0). Now suppose the claim proved for 𝑛. Consider

𝑔(𝑋) = (𝑋 − 𝛼)𝑓(𝑋) =
𝑛+1∑︁
𝑘=0

(𝑎𝑘−1 − 𝛼𝑎𝑘)𝑋𝑘

(where nonexistent coefficients are set to 0). Let 𝑡 = ord(𝛼). Let 𝑘0 be the point such that
the slopes of the line segments of Newton’s polygon 𝑁 for 𝑘 < 𝑘0 are 𝑠 ≤ −𝑡, and such that
the slopes of the line segments of 𝑁 for 𝑘 > 𝑘0 are greater than 𝑠 > −𝑡. Let

𝑑𝑘 = ord(𝑎𝑘)

ℓ𝑘 = 𝑦-value of intersection of 𝑁 with 𝑥 = 𝑘

𝑑′𝑘 = ord(𝑎𝑘−1 − 𝛼𝑎𝑘)

ℓ′𝑘 =

⎧⎨⎩ℓ𝑘 + 𝑡, 0 ≤ 𝑘 ≤ 𝑘0

ℓ𝑘−1 𝑘0 < 𝑘 ≤ 𝑛.

Let 𝑁 ′ be the broken line formed by joining (𝑘, ℓ′𝑘). 𝑁 ′ consists of segments of the same
slopes as 𝑁 , plus one more segment of slope −𝑡 and 𝑥-length 1, in increasing order. It suffices
to show that 𝑁 ′ is the lower convex hull of the points (𝑘, 𝑑′𝑘).

Here is an example with 𝑝 = 5, 𝑓(𝑋) = (𝑋 − 5)(𝑋 − 10)(𝑋 − 15)(𝑋 − 125) and 𝛼 = 25.5

B
B
B
BB
@
@
@
@@

B
B
B
BB
A
A
A
@
@
@
@@

Consider 2 cases. We will use

𝑑′𝑘 = ord(𝑎𝑘−1 − 𝛼𝑎𝑘) ≥ min(ord(𝑎𝑘−1), ord(𝛼𝑎𝑘)) = min(𝑑𝑘−1, 𝑑𝑘 + 𝑡),

with equality holding if 𝑑𝑘−1 ̸= 𝑑𝑘 + 𝑡.

1. 𝑘 ≤ 𝑘0: We have

𝑑𝑘−1 ≥ ℓ𝑘−1

(*)
≥ ℓ𝑘 + 𝑡 = ℓ′𝑘,

𝑑𝑘 + 𝑡 ≥ ℓ𝑘 + 𝑡 = ℓ′𝑘

5Of course, 𝑓 does not have to split over Q[𝑋] and the valuations don’t have to be integers.
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where in (*) we use the fact that the slope of the segment (𝑘−1, ℓ𝑘−1)(𝑘, ℓ𝑘) is at most
−𝑡. Hence (𝑘, 𝑑′𝑘) lies above 𝑁

′. Now suppose (𝑘, 𝑑𝑘) lies on a corner of 𝐿 (excluding
𝑘 = 𝑘0). Then 𝑑𝑘 = ℓ𝑘 and inequality holds in (*):

𝑑𝑘−1 > ℓ𝑘 + 𝑡 = ℓ′𝑘 = 𝑑𝑘 + 𝑡

so 𝑑′𝑘 = ℓ′𝑘 and (𝑘, 𝑑′𝑘) lies on 𝑁
′.

2. 𝑘 > 𝑘0: We have

𝑑𝑘−1 ≥ ℓ𝑘−1 = ℓ′𝑘

𝑑𝑘 + 𝑡 ≥ ℓ𝑘 + 𝑡
(*)
> ℓ𝑘−1 = ℓ′𝑘.

where in (*) we use the fact that the slope of the segment (𝑘− 1, ℓ𝑘−1)(𝑘, ℓ𝑘) is greater
than −𝑡. Hence (𝑘, 𝑑′𝑘) lies above (𝑘, ℓ′𝑘). Now suppose (𝑘− 1, 𝑑𝑘−1) lies on a corner of
𝐿. Then 𝑑𝑘−1 = ℓ𝑘−1 so

𝑑𝑘 + 𝑡 ≥ ℓ𝑘 + 𝑡 > 𝑑𝑘−1 = ℓ𝑘−1 = ℓ′𝑘,

showing 𝑑′𝑘 = ℓ′𝑘 and (𝑘, 𝑑′𝑘) lies on 𝑁
′.

7 Places as Galois orbits

Here is an alternate definition of a place.

Definition 20.7.1: Let (𝐾, 𝑣) be a field with valuation and 𝐿/𝐾 be an extension. A place
on 𝐿 over 𝑣 is a 𝐺(𝐾𝑣/𝐾𝑣)-orbit on Hom𝐾(𝐿,𝐾𝑣).

Example 20.7.2: Let 𝐾 = R, and 𝐿 a fiinite extension of 𝐾. Then the places of 𝐿
over R are just Hom𝐾(𝐿,R), the real embeddings of 𝐿, and the complex places are just
𝐺(C/R)∖Hom𝐾(𝐿,C), i.e. pairs of complex conjugate embeddings.

We show this is equivalent to our previous definition.

Theorem 20.7.3: Assume... There is a bijective correspondence between equivalence classes
of valuations 𝑤 | 𝑣, 𝑣 on 𝐾, and 𝐺(𝐾𝑣/𝐾𝑣)-orbits on Hom𝐾(𝐿,𝐾𝑣):

{𝑤 | 𝑣 : 𝑤 ∈𝑀𝐿}
∼=−→ 𝐺(𝐾𝑣/𝐾𝑣)∖Hom𝐾(𝐿,𝐾𝑣).

Letting 𝑣 be the unique extension of 𝑣 to 𝐾𝑣, the embedding 𝜏 : 𝐿 →˓ 𝐾𝑣 is associated
to the valuation | · |𝑣 restricted to 𝐿.
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8 Krasner’s lemma and consequences

The following is a surprising result... Krasner’s lemma

Lemma 20.8.1 (Krasner’s lemma): krasner Let 𝐾 be complete with respect to a nonar-
chimedean valuation | · |, and extend | · | to an algebraic closure 𝐾al. Let 𝛼, 𝛽 ∈ 𝐾al.
If 𝛽 is separable over 𝐾[𝛼], and

belong-ineq|𝛽 − 𝛼| < |𝛽′ − 𝛽| (20.4)

for any conjugate 𝛽′ ̸= 𝛽 of 𝛽 over 𝐾, then 𝛽 ∈ 𝐾[𝛼].

We say that 𝛼 belongs to 𝛽 if inequality (20.4) holds.

Proof. By the fixed field theorem, it suffices to show that for all embeddings 𝜎 : 𝐾(𝛼, 𝛽) →˓
𝐾al fixing 𝐾(𝛼), that 𝜎(𝛽) = 𝛽. We have

|𝜎(𝛽)− 𝛼| = |𝜎(𝛽)− 𝜎(𝛼)| = |𝛽 − 𝛼|

since | ∙ | = |𝜎 ∙ | and 𝜎(𝛼) = 𝛼. Hence

|𝜎(𝛽)− 𝛽| = |(𝜎(𝛽)− 𝛼) + (𝛼− 𝛽)| ≤ |𝛽 − 𝛼|,

the last following since | · | is nonarchimedean. By the minimality assumption we must have
𝜎(𝛽) = 𝛽.

We define a norm on polynomials by setting⃦⃦⃦⃦⃦
𝑛∑︁
𝑘=0

𝑐𝑘𝑋
𝑘

⃦⃦⃦⃦⃦
= max

0≤𝑘≤𝑛
|𝑐𝑘|.

Using Krasner’s Lemma, we show that polynomials that are close together have roots that
are closely related.

Proof. Choose 𝛿 so this last quantity is at most min𝑖 ̸=𝑗 |𝛼𝑖 − 𝛼𝑗|. Then by Krasner’s
Lemma 20.8.1, 𝛼 ∈ 𝐾[𝛽]. Since 𝛽 and 𝛼 both have degree 𝑛 over 𝐾, 𝐾(𝛼) = 𝐾(𝛽).

In fact, we have the following stronger result. Using Krasner’s Lemma, we show that
polynomials that are close together have roots generating the same extensions.

Theorem 20.8.2: krasner-poly Given 𝑓 , there exists 𝜀 > 0 such that if ‖𝑓 − 𝑔‖ < 𝜀, then
there is an ordering of roots 𝛼1, . . . , 𝛼𝑛 and 𝛽1, . . . , 𝛽𝑛 of 𝑓 and 𝑔, respectively, counting
multiplicities, such that 𝐾(𝛼𝑗) = 𝐾(𝛽𝑗).

Proof. Step 1: First we show that the roots of 𝑔 approach the roots of 𝑓 , as ‖𝑓 − 𝑔‖ → 0.
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Lemma 20.8.3: root-continuity1 Keep the hypothesis of the theorem. Suppose 𝜀 > 0. Then
there exists 𝛿 > 0 such that if ‖𝑓 − 𝑔‖ < 𝛿, then for every root 𝛽 of 𝑔, there exists a root 𝛼
of 𝑓 such that |𝛽 − 𝛼| < 𝜀.

Proof. First note that the roots of a monic polynomial ℎ are bounded in terms of ‖ℎ‖.
Indeed, letting ℎ(𝑋) =

∑︀𝑛
𝑘=0 𝑐𝑘𝑋

𝑘, if 𝛾 is a root of ℎ, then by Proposition 20.2.6(3), we
must have 𝑐𝑘𝛾

𝑘 ≥ 𝛾𝑛 for some 0 ≤ 𝑘 < 𝑛, and hence

𝛾 ≤ 𝑐
1

𝑛−𝑘

𝑘 ≤ max(1, ‖ℎ‖).

Suppose ‖𝑓 − 𝑔‖ ≤ 𝛿 is small (say, less than 1). Then ‖𝑔‖ ≤ ‖𝑓‖+ 𝛿, which is bounded.
Hence the roots of ‖𝑔‖ are bounded, say by 𝐶. Let 𝛽 be a root of 𝑔. On the one hand, we
have

function-continuity(𝑓 − 𝑔)(𝛽) ≤ ‖𝑓 − 𝑔‖max{|𝛽|𝑛, 1} ≤ 𝛿max{𝐶𝑛, 1} (20.5)

and on the other,

(𝑓 − 𝑔)(𝛽) = 𝑓(𝛽) =
𝑛∏︁
𝑘=1

(𝛽 − 𝛼𝑘).

Hence |𝛽 − 𝛼𝑘| ≤ (𝛿max{𝐶𝑛, 1}) 1
𝑛 for some 𝑛. We can choose 𝛿 so this is less than 𝜀.

Step 2: We strengthen the lemma to account for multiplicities.

Lemma 20.8.4: root-continuity2 Keep the hypotheses of the theorem. For every 𝜀 > 0 there
exists 𝛿 > 0 such that whenever ‖𝑓 − 𝑔‖ < 𝛿, there exist orderings 𝛼1, . . . , 𝛼𝑛 and 𝛽1, . . . , 𝛽𝑛
such that |𝛽𝑘 − 𝛼𝑘| < 𝜀 for all 𝑘.

Proof. By Lemma 20.8.3, as ‖𝑓 − 𝑔‖ → 0, the distance from the roots of 𝑔 to the closest
roots of 𝑓 approaches 0. Let 𝛽1(𝑔), . . . , 𝛽𝑛(𝑔) be the roots of 𝑔. For each 𝑘 let 𝛼𝑘(𝑔) be
the root of 𝑓 closest to 𝛽𝑘(𝑔). We have max𝑘 |𝛽𝑘(𝑔) − 𝛼𝑘(𝑔)| → 0 as 𝑔 → 𝑓 . Suppose the
distinct roots 𝛼′

1, . . . , 𝛼
′
𝑚 of 𝑓 have multiplicities 𝑟1, . . . , 𝑟𝑚, and suppose that they occur with

multiplicities 𝑠1, . . . , 𝑠𝑚 in the 𝛼𝑘(𝑔). Suppose by way of contradiction that (𝑠1(𝑔), . . . , 𝑠𝑚(𝑔))
is not constantly (𝑟1, . . . , 𝑟𝑚) for 𝑔 close enough to 𝑓 . Then we can find a sequence 𝑔𝑗 → 𝑓
such that (𝑠1(𝑔𝑗), . . . , 𝑠𝑚(𝑔𝑗)) is constant and not equal to (𝑟1, . . . , 𝑟𝑚). Then

𝑔𝑗(𝑋) =
𝑛∏︁
𝑘=1

(𝑋 − 𝛽𝑘(𝑔𝑗))→
𝑚∏︁
𝑘=1

(𝑋 − 𝛼′
𝑘(𝑔𝑗))

𝑠𝑘 ̸=
𝑚∏︁
𝑘=1

(𝑋 − 𝛼′
𝑘)
𝑟𝑘 = 𝑓(𝑋),

contradiction.

Step 3: Take 𝜀 = min𝑖 ̸=𝑗 |𝛼′
𝑖 − 𝛼′

𝑗| in Lemma 20.8.4. Then Krasner’s Lemma 20.8.1 gives the
conclusion.

From this we get that every field extension of Q𝑝 can be described by a field extension
of Q, by choosing a close enough approximation to a minimal polynomial.
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Corollary 20.8.5: Let 𝐿/Q𝑝 be a finite extension. Then there is a finite extension 𝐾/Q
such that [𝐾 : Q] = [𝐿 : Q𝑝] = 𝑛 and 𝐾 ·Q𝑝 = 𝐿.

Proof. Using the primitive element theorem, choose 𝛼 so that Q𝑝(𝛼) = 𝐿. Let 𝑔 ∈ Q𝑝[𝑋] be
the minimal polynomial of 𝛼. By Theorem 20.8.2, for 𝑔 close enough to 𝑓 , there is a root 𝛽
of 𝑔 such that Q𝑝(𝛼) = Q𝑝(𝛽). Take 𝑔 ∈ Q[𝑋] sufficiently close, and 𝐿 = 𝐾(𝛽). Then

𝐾 ·Q𝑝 = 𝐾(𝛼) = 𝐾(𝛽) = 𝐿.

204



Chapter 21

Local and global fields

lg-fields

1 Topology of local fields

Definition 21.1.1: A local field is a field 𝐾 with a nontrivial valuation | · | such that 𝐾
is locally compact.

Note this requires that 𝐾 is complete.

Proposition 21.1.2: ring-of-integers-compact Let 𝐾 be complete with respect to a discrete nonar-
chimedean valuation. Then 𝐴 is compact if and only if 𝑘 := 𝐴/m is finite.

Proof. Suppose 𝐴 is compact. Note m = {𝑥 : |𝑥| < 1} is open, and any translate of it is
open. Note 𝐴 =

⨆︀
𝑎∈𝐴/m 𝑎 + m where the union is over representatives in 𝐴/m. A finite

number of these cover 𝐴, so 𝑘 is finite.
Conversely, suppose 𝑘 := 𝐴/m is bounded. It suffices to show that 𝐴 is closed and totally

bounded1.

1. 𝐴 is closed since 𝐴 = {𝑥 : |𝑥| ≤ |𝜋|}.

2. 𝐴 is totally bounded: Given 𝜀 > 0, choose 𝑟 so that |𝜋|𝑟+1 < 𝜀. Now every element
is in a ball of radius 1 centered at one of the finite number of points in the form
𝑎0 + 𝑎1𝜋 + · · ·+ 𝑎𝑟𝜋

𝑟.

Proposition 21.1.3: compact-sets-in-lf If 𝐾 has finite residue field then O×
𝐾 , p

𝑛, and 1 + p𝑛 are
all compact.

Proof. From Proposition 21.1.2, 𝐴 is compact. The above are all closed subsets of 𝐴 so
compact.

1A set is totally bounded if for every 𝑟, 𝐴 can be covered by a finite number of sets with diameter at most
𝑟.
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Theorem 21.1.4: The following is a complete classification of local fields, up to isomor-
phism.

1. R and C with the usual metric.

2. Finite extensions of Q𝑝.

3. Field of formal Laurent series 𝑘((𝑇 )) over finite field.

Proof. Neukirch, p. 135.

Fill in: local fields vastly simplify things because...

1.1 Open sets and continuity

Proposition 21.1.5: power-open For any local field 𝐾 and any 𝑛, the 𝑛th power map is open
on 𝐾×, i.e. it takes open subsets of 𝐾× to open sets.

Proof. For 𝐾 = R or C, this is clear.
For 𝐾 𝜋-adic, this is an easy consequence of Hensel’s Lemma. Let 𝑦 ∈ 𝐾×𝑛. We may

suppose 𝑣(𝑦) = 0. Suppose 𝑥𝑝0−𝑦 = 0. Let 𝑘 = 𝑣(𝑝) and let 𝜀 be such that 𝑣(𝜀−𝑦) ≥ 2𝑘+1.
Consider the polynomial 𝑓(𝑥) = 𝑥𝑛− 𝑦. Now 𝑓(𝑥0) ≡ 0 (mod 𝜋2𝑘+1) so by Hensel’s Lemma
𝑥0 lifts to a solution of 𝑓 in 𝐾. (The version of Hensel in ACIM, p. 14. Add this in.)

Proposition 21.1.6: pr:nm-cont For any extension of local fields 𝐿/𝐾, any 𝜎 ∈ 𝐺(𝐿/𝐾) acts
as a homeomorphism, and the norm map Nm𝐿/𝐾 is continuous and open on 𝐾×.

2 Unramified extensions

Definition 21.2.1: Let 𝐾 be a complete field with residue field 𝑘; let 𝐿 be a finite extension
of 𝐾 with residue field 𝑙. We say 𝐿/𝐾 is unramified if 𝑙/𝑘 is separable and the prime ideal
p in O𝐾 does not ramify in 𝐿.

𝐿/𝐾 is totally ramified if p ramifies completely; by the degree equation this is equivalent
to 𝑙 = 𝑘.

Note from the residue equation that

doesnt-ramifyp does not ramify ⇐⇒ [𝐿 : 𝐾] = [𝑙 : 𝑘]. (21.1)

Our main theorem of this section is Theorem 21.2.4. We will show that if 𝐿/𝐾 is
unramified, then 𝑙/𝑘 is separable. If 𝑙/𝑘 is separable, though, we need an extra condition to
make sure 𝐿/𝐾 is unramified; namely that a minimal polynomial for 𝐿/𝐾 stays a minimal
polynomial for 𝑙/𝑘, so that (21.1) holds.
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Proposition 21.2.2: complete-unramified-criteria Let 𝐾 be a complete field with residue field 𝑘; let
𝐿 be a finite extension of 𝐾 with residue field 𝑙. Suppose 𝐿 = 𝐾(𝛼), and let 𝑔(𝑥) ∈ 𝐾[𝑥].
The following are equivalent.

1. 𝐿/𝐾 is unramified, and 𝑔 is the minimal polynomial of 𝛼.

2. 𝑙/𝑘 is separable, with 𝑙 = 𝑘(𝛼), 𝑔 has 𝛼 as a root, 𝑔 is the minimal polynomial of 𝛼,
and 𝑔 has no repeated roots.

Proof. Suppose (1) holds. Then 𝑔 has 𝛼 as a root. Note 𝐿 = 𝐾(𝛼) gives 𝑙 = 𝑘(𝛼). By (21.1),
𝛼 has degree [𝑙 : 𝑘] = [𝐿 : 𝐾] over 𝑘. Since 𝑔 has degree [𝐿 : 𝐾], it must be the minimal
polynomial of 𝛼, and have no repeated roots. This shows 𝑙/𝑘 is separable.

Suppose (2) holds. We have

[𝐿 : 𝐾] ≤ deg 𝑔 = deg 𝑔 = [𝑙 : 𝑘],

the last equality following since 𝑔 is the minimal polynomial of 𝛼. But [𝐿 : 𝐾] ≥ [𝑙 : 𝑘],
so equality holds and p (the prime ideal of O𝐾) is unramified by (21.1). Thus 𝐿/𝐾 is
unramified.

For local fields, the property of being unramified behaves well under extensions and
products.

Proposition 21.2.3: unramified-props

1. Suppose that 𝐾 ⊆ 𝐿 ⊆𝑀 are finite extensions. If𝑀/𝐿 and 𝐿/𝐾 are unramified, then
𝑀/𝐾 is unramified.

2. Suppose that 𝐾 ⊆ 𝐿,𝑀 are finite extensions. If 𝐿/𝐾 is unramified, then 𝐿𝑀/𝑀 is
unramified.

3. Suppose that 𝐾 ⊆ 𝐿,𝑀 are finite extensions. If 𝐿/𝐾 and 𝑀/𝐾 are unramified, then
𝐿𝑀/𝐾 is unramified.

𝑀

unram
unram

𝐿𝑀
unram

𝐿𝑀

unram𝐿

unram

𝐿
unram

𝑀 𝐿
unram

𝑀

unram

𝐾 𝐾 𝐾

Proof. Let 𝑘, 𝑙,𝑚, 𝑛 be the residue fields of 𝐾,𝐿,𝑀,𝐿𝑀 , and p, P, and P′ be the prime
ideals of O𝐾 , O𝐿, O𝑀 , respectively.

1. We have pO𝑀 = PO𝐿 = P′. Separability is transitive, so 𝑀/𝐾 is unramified.
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2. Write 𝐿 = 𝐾(𝛼). By Proposition 21.2.2, we can find 𝑔 with 𝛼 as root such that 𝑔
is the minimal polynomial of 𝑙 = 𝑘(𝛼) over 𝑘, and is separable. Then the minimal
polynomial for 𝑛 = 𝑚(𝛼) over 𝑚 divides 𝑔, hence is separable. By Proposition 21.2.2
again, 𝐿𝑀/𝑀 is unramified.

3. By part 2, 𝐿𝑀/𝑀 is unramified. Since 𝑀/𝐾 is unramified, by part 1 𝐿𝑀/𝐾 is
unramified.

Theorem 21.2.4: unramified-is-separable Let 𝐾 be a field; fix an algebraic closure. There is an
equivalence of categories between

∙ finite unramified extensions 𝐿/𝐾, and

∙ finite separable extensions 𝑙/𝑘.

𝐿1
//

��

𝐿2

��

𝑙1 = 𝐿1/p1 // 𝑙2 = 𝐿2/p2.

Moreover,

1. 𝐿 ⊆𝑀 if and only if 𝑙 ⊆ 𝑚.

2. The residue field of 𝐿𝑀 is 𝑙𝑚.

3. 𝐿/𝐾 is Galois if and only if 𝑙/𝑘 is Galois, and

𝐺(𝐿/𝐾)
∼=−→ 𝐺(𝑙/𝑘)

by restricting 𝜎 ∈ 𝐺(𝐿/𝐾) to 𝐵 = O𝐿 and modding out by P𝐵.

Proof. By Proposition 21.2.2, 𝐿 does get sent to a separable extension.
First we show the map is surjective. Given 𝑙/𝑘 separable, choose 𝛽 so that 𝑙 = 𝑘(𝛽) and

choose 𝑓 so that 𝑓 be the minimal polynomial of 𝛽. Since 𝛽 is a simple root of 𝑓 , by Hensel’s
Lemma 20.5.1 we can lift it to a root 𝛼 of 𝑓 . Then 𝐾(𝛼) is mapped to 𝑘(𝛽).

Part (2) is clear. For (1), if 𝐿 ⊆𝑀 then clearly 𝑙 ⊆ 𝑚. Conversely, suppose 𝑙 ⊆ 𝑚. Now
𝐿𝑀 is also unramified (Proposition 21.2.3) and has residue field 𝑙 ·𝑚 = 𝑚. Hence,

[𝑀 : 𝐾] = [𝑚 : 𝑘] = [𝑙𝑚 : 𝑘] = [𝐿𝑀 : 𝐾],

showing 𝐿 ⊆𝑀 .
If 𝑙 = 𝑚, then the above shows that 𝐿 = 𝑀 . Hence the map is injective. The action on

maps 𝐿1 → 𝐿2 is self-explanatory.
For (3), note an extension is Galois iff it is the (minimal) splitting field of a separable

polynomial 𝑓 . Take 𝑔 to be the minimal polynomial of a primitive element 𝛼; note 𝛼 generates
𝑙/𝑘. Note by Proposition 21.2.2, 𝑔 is separable. If 𝐿/𝐾 is Galois, then 𝑔 splits over 𝐿 so
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𝑔 splits over 𝑙. Combining the previous two statements, 𝑙/𝑘 is Galois. Conversely, suppose
𝑙/𝑘 is Galois. Since 𝑔 splits into nonrepeated linear factors, Hensel’s Lemma 20.5.2 lifts it
to a factorization of 𝑔. Hence 𝑔 splits over 𝐾 into distinct linear factors, showing 𝐿/𝐾 is
Galois.

Suppose 𝑘 is a finite field. In this case, the separable extensions 𝑙/𝑘 are exactly the
finite extensions. Moreover, we understand what these extensions are; there is one of each
degree, and we can find the corresponding 𝐿/𝐾 explicitly. Furthermore, by surjectivity in
(3), 𝐺(𝐿/𝐾) contains a unique element mapping to the Frobenius element in 𝐺(𝑙/𝑘); see
Definition 24.24.1.1.

Lemma 21.2.5: nroot-unram Let 𝛼 be a root of

𝑓(𝑋) := 𝑋𝑛 − 𝑎 = 0

where 𝑎 is a unit and 𝑝 - 𝑛. Then 𝐾(𝛼)/𝐾 is unramified.

Proof. Let 𝑔(𝑋) | 𝑓(𝑋) be the minimal polynomial of 𝛼. Let 𝐿 = 𝐾(𝛼) and 𝑙 be its residue
field.

Note that 𝑓 ′(𝑋) = 𝑛𝑋𝑛−1 ̸= 0 has no common factor with 𝑓(𝑋) = 𝑋𝑛 − 𝑎, even when
reduced modulo p, as 𝑝 - 𝑛 and 𝑎 ̸∈ p. Hence 𝑓(𝑋), and a fortiori 𝑔(𝑋), has no repeated
root in 𝑘. Any factorization of 𝑔(𝑋) in 𝑘 gives a factorization of 𝑔(𝑋) in 𝐾 by Hensel’s
Lemma. Hence 𝑔 remains irreducible in 𝑘[𝑋]. This shows [𝑙 : 𝑘] = [𝐿 : 𝐾]. By the degree
equation, 𝐿/𝐾 must be unramified.

Theorem 21.2.6: unram-ram Let 𝐿/𝐾 be an extension of complete fields with finite residue
fields. Then there exists a field 𝐾 ⊆ 𝐿𝑢 ⊆ 𝐿 such that 𝐿𝑢/𝐾 is unramified and every
unramified extension of 𝐾 contained in 𝐿 is contained in 𝐿𝑢. Moreover,

1. 𝐿𝑢 is obtained by adjoining to 𝐾 all roots of unity in 𝐿 whose order is relatively prime
to 𝑞 := char(𝐾).

2. 𝐿/𝐿𝑢 is totally ramified.

𝐿

totally ramified

𝐿𝑢

unramified

𝐾

We call 𝐿𝑢 the maximal unramified extension of 𝐾 contained in 𝐿. This is useful...
Defining this when 𝐿/𝐾 is infinite
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Proof. Let 𝐿𝑢 be the compositum of all unramified extensions of 𝐾 contained in 𝐿. Then 𝐿𝑢
is unramified by Proposition 21.2.3, and it contains all unramified extensions of 𝐾 contained
in 𝐿.

For each 𝑛 not a multiple of 𝑝, 𝐾(𝜁𝑛)/𝐾 is unramified by Lemma 21.2.5. Letting 𝑞 = |𝑘|,
the corresponding extension of residue fields is 𝑘(𝜁𝑛)/𝑘 = F𝑞ord𝑞(𝑛)/F𝑞. We get all finite
extensions 𝑙/𝑘 in this way, thus all unramified extensions 𝐿′/𝐾 in this way. Taking the roots
of unity inside 𝐿 gives the result.

3 Ramified extensions

Definition 21.3.1: Let 𝐿/𝐾 be a ramified extension of local fields, with 𝑞 := char(𝑘) = 𝑝𝑛.
We say

1. 𝐿/𝐾 is tamely ramified if 𝑝 - [𝑙 : 𝑘].

2. 𝐿/𝐾 is wildly ramified if 𝑝 | [𝑙 : 𝑘].

We seek analogues of Lemma 21.2.5 in for ramified extensions.
For a prime p of a Dedekind domain 𝐴 (not necessarily corresponding to a local field)

let 𝑣p denote the corresponding valuation. (That is, if 𝑣p(𝑎) is defined such that p𝑣p(𝑎) is the
highest power of p dividing (𝑎).) Note the following two facts.

1. If p𝐵 = P𝑒, then
𝑣p(𝑎) = 𝑣P(𝑎)

𝑒.

2. If 𝑎1 + · · ·+ 𝑎𝑛 = 0, then the minimum value of 𝑣p(𝑎𝑖) is attained for two indices.

Definition 21.3.2: eisenstein-df AnEisenstein extension relative to p is an extension𝐾(𝛼)/𝐾
where the minimal polynomial of 𝛼 is of the form

𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · ·+ 𝑎0

where 𝑣p𝑎𝑖 > 0 and 𝑣p𝑎0 = 1.

Theorem 21.3.3: eisenstein-ramification The prime ideal p totally ramifies in any Eisenstein ex-
tension relative to p:

p𝐵 = P𝑒, P = (𝑓(𝛼),P)𝑒.

Proof. Let P𝑒||p. Note 𝑒 ≤ 𝑛 = [𝐿 : 𝐾]. We calculate the valuation of 𝑓(𝛼) with respect to
P.

𝑣P(𝛼
𝑛) = 𝑛𝑣P(𝛼)

𝑣P(𝑎𝑘𝛼
𝑘) = 𝑒+ 𝑘 ord > 𝑒, 1 ≤ 𝑘 ≤ 𝑛− 1

𝑣P(𝑎0) = 𝑒.
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Since 𝑓(𝛼) = 𝛼𝑛+ · · ·+𝑎0 = 0, the minimum valuation must be attained for two terms. The
only way this is possible is if 𝑛 ordP(𝛼) = 𝑒. Then ordP(𝛼) = 1 and 𝑛 = 𝑒, as needed.

Theorem 21.3.4: Let 𝐾 be complete with respect to a nonarchimedean valuation. The
totally ramified extensions of 𝐾 are exactly those of the form 𝐾(𝛼) where 𝛼 is the root of
an Eisenstein polynomial.

Proof. The forward direction follows directly from Theorem 21.3.3.
Conversely, let 𝐿/𝐾 be a totally ramified extension. Take 𝛼 to be a generator of the

maximal ideal P of O𝐿. Note ord(𝛼) =
1
𝑛
since (𝛼)𝑛 = p. Note that for any 𝑎𝑛−1, . . . , 𝑎0, we

have

ord(𝑎𝑘𝛼
𝑘) = ord(𝑎𝑘) +

𝑘

𝑛
≡ 𝑘

𝑛
(mod 1),

since ord(𝑎𝑘) is an integer. Thus, the nonzero terms 𝑎𝑘𝛼
𝑘, 0 ≤ 𝑘 < 𝑛, have different orders.

Thus by Proposition 20.2.6, 𝑎𝑛−1𝛼
𝑛−1 + · · ·+ 𝑎0 ̸= 0 unless all coefficients are 0. This shows

that 𝛼must have degree 𝑛; suppose 𝛼𝑛+𝑎𝑛−1𝛼
𝑛−1+· · ·+𝑎0 = 0. Again by Proposition 20.2.6,

the minimum order is attained for two terms. We have

ordp(𝛼
𝑛) = 𝑛 ordp(𝛼) = 1

ordp(𝑎𝑘𝛼
𝑘) = 𝑘 ord(𝑎𝑘) +

𝑘

𝑛
, 0 ≤ 𝑘 ≤ 𝑛− 1.

The only way this can happen is if 𝛼𝑛 and ord(𝑎0) are the nonzero terms with least order.
This gives ord(𝑎0) = 1, and ord(𝑎𝑘) > 0 for 1 ≤ 𝑘 ≤ 𝑛, i.e. the polynomial is Eisenstein.

Theorem 21.3.5: Suppose 𝐿/𝐾 is a totally and tamely ramified extension of degree 𝑛.
Then 𝐿 = 𝐾(𝛼) for some 𝛼 a root of

𝑋𝑛 − 𝜋 = 0

for 𝜋 ∈ p.

Proof. Take 𝛽 ∈ P. Since 𝐿/𝐾 is totally ramified, ordp(𝛽
𝑛) = 1. Hence 𝛽𝑛 = 𝑢𝜋 for some

𝑢 ∈ 𝐵×, and 𝛽 is a zero of
𝑔(𝑋) := 𝑋𝑛 − 𝑢𝜋.

Unfortunately, 𝑢 may not be in 𝐴. However, we show that this polynomial is close enough
to

𝑓(𝑋) := 𝑋𝑛 − 𝑢′𝜋

for some 𝑢′ ∈ 𝐴 and proceed as in Theorem 20.8.2 to show that the roots of these two
polynomials generate the same extension.

Since 𝐿/𝐾 is totally ramified, 𝑙 = 𝑘, i.e. 𝐴/p𝐴
∼=−→ 𝐵/P𝐵. Thus there exists 𝑢′ ≡ 𝑢

(mod P) with 𝑢′ ∈ 𝐴. This means |𝑢′−𝑢| < 1. Letting 𝛼1, . . . , 𝛼𝑛 be the roots of 𝑓(𝑋) = 0,

|𝛽 − 𝛼1| · · · |𝛽 − 𝛼𝑛| = |𝑓(𝛽)| = |𝑢𝜋 − 𝑢′𝜋| < |𝜋| = |𝛼1| · · · |𝛼𝑛|
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so |𝛽 − 𝛼𝑗| < |𝛼𝑗| for some 𝑗; without loss of generality 𝑗 = 1.

Since 𝐿/𝐾 is tamely ramified, 𝑝 - 𝑛 and 𝑓 ′(𝛼1) = 𝑛𝛼𝑛−1
1 has valuation |𝛼1|𝑛−1. Hence

derivative-valuation|𝛼1|𝑛−1 = |𝑓 ′(𝛼1)| = |(𝛼1 − 𝛼2) · · · (𝛼1 − 𝛼𝑛)|. (21.2)

Note |𝛼𝑗| = |𝑢′𝜋|
1
𝑛 = |𝛼1|; hence |𝛼1 − 𝛼𝑗| ≤ |𝛼1|. By (21.2), equality must hold. Hence

|𝛽 − 𝛼1| < |𝛼1 − 𝛼𝑗| for all 𝑗 ̸= 1, and by Krasner’s Lemma 20.8.1, 𝐾(𝛼1) ⊆ 𝐾(𝛽). Since
both extensions are totally ramified of degree 𝑛, 𝐿 = 𝐾(𝛽) = 𝐾(𝛼1).

The analogues of Proposition 21.2.3 carry over exactly.

Proposition 21.3.6: ramified-props

1. Suppose that 𝐾 ⊆ 𝐿 ⊆𝑀 are finite extensions. If 𝑀/𝐿 and 𝐿/𝐾 are tamely ramified,
then 𝑀/𝐾 is tamely ramified.

2. Suppose that 𝐾 ⊆ 𝐿,𝑀 are finite extensions. If 𝐿/𝐾 is tamely ramified, then 𝐿𝑀/𝑀
is tamely ramified.

3. Suppose that 𝐾 ⊆ 𝐿,𝑀 are finite extensions. If 𝐿/𝐾 and 𝑀/𝐾 are tamely ramified,
then 𝐿𝑀/𝐾 is tamely ramified.

Theorem 21.3.7: Let 𝐾 be a field with characteristic 0 and finite residue field, and let p
be a prime in O𝐾 . Given 𝑛, there are only finitely many extensions of 𝐾p with degree at
most 𝑛.

Proof. First we show that there are finitely many totally ramified extensions of degree 𝑛.
Every such extension is realized by adjoining a root of an Eisenstein polynomial of degree
𝑛. By taking the coefficients, an Eisenstein polynomial can be identified with a point of

poly-compact p× · · · × p⏟  ⏞  
𝑛−1

×𝐴×𝜋. (21.3)

The topology given by ‖·‖ is exactly the product topology here; this is compact by Propo-
sition 21.1.3. Now for each polynomial 𝑓 , by Theorem 20.8.2 there exists an open set 𝑈𝑓
such that any 𝑔 ∈ 𝑈𝑓 has roots generating the same extensions as those of 𝑓 . Since (21.3)
is compact, a finite number of 𝑈𝑓 cover 𝑓 . The roots corresponding to those 𝑓 generate all
the totally ramified extensions of degree 𝑛.

By Theorem 21.2.6. Any finite extension 𝐿 of degree 𝑛 is an totally ramified extension
of degree 𝑛

𝑚
of an unramified extension 𝐿𝑢 of degree 𝑚 for some 𝑚. By the remark after

Theorem 21.2.4, there is exactly one unramified extension of degree 𝑚; for each 𝐿𝑢 by the
above there are a finite number of possibilities for 𝐿.
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4 Witt vectors*

We know from Proposition 20.4.5 that every element of �̂� can be written as
∑︀
𝑛≥𝑁 𝑎𝑛𝜋

𝑛 where
the 𝑎𝑛 come from a fixed set of representatives for 𝐴/m. Although this allows us to write down
any element, unless the set of representatives is closed under addition and multiplication (i.e.
form a copy of 𝑘 in 𝐴), we cannot simply add and multiply the coefficients. Instead, we find
that addition and multiplication are governed by Witt vectors. We will actually develop this
theory in a more general context.

Definition 21.4.1: Let 𝑝 be a prime number. A ring 𝑅 is a strict 𝑝-ring if 𝑅 is complete
and Hausdorff with respect to the 𝑝-adic topology, 𝑝 is not a zero-divisor in 𝑅, and the
residue ring 𝑅/(𝑝) is perfect. (A ring of characteristic 𝑝 is perfect if the map 𝑥 ↦→ 𝑥𝑝 is
bijective.)

We will primarily be interested in the case where 𝑅 is an unramified extension of Z𝑝.

Theorem 21.4.2: Let 𝐾 be a perfect ring of characteristic 𝑝.

1. There is a strict 𝑝-ring 𝑅 with residue ring 𝐾, unique up to canonical isomorphism.

2. There is a unique system of representatives 𝜏 : 𝐾 → 𝑅, called the Teichmüller
representatives, such that

𝜏(𝑥𝑦) = 𝜏(𝑥)𝜏(𝑦)

for all 𝑥, 𝑦 ∈ 𝐾.

The main example of interest to us is the following.

Example 21.4.3: Fix 𝑓 ; then there is a unique unramified extension of Z𝑝 with residue
field F𝑞, 𝑞 = 𝑝𝑓 , namely Z𝑝[𝜁𝑝𝑓−1]. The Teichmuller representatives are the (𝑞 − 1)th roots
of unity 𝜇𝑞−1. They are multiplicative, but not additive. The following construction will tell
us how to add them.

Lemma 21.4.4: witt-operations Given 𝑋 = (𝑋0, 𝑋1, . . .), define

𝑊𝑛(𝑋) = 𝑋𝑝𝑛

0 + 𝑝𝑋𝑝𝑛−1

1 + · · ·+ 𝑝𝑛𝑋𝑛, 𝑛 ≥ 0.

Then there exist polynomials

𝑆0, 𝑆1, . . . ;𝑃0, 𝑃1, . . . ∈ Z[𝑋0, 𝑋1, . . . , 𝑌0, 𝑌1, . . .]

such that

𝑊𝑛(𝑆) = 𝑊𝑛(𝑋) +𝑊𝑛(𝑌 )

𝑊𝑛(𝑃 ) = 𝑊𝑛(𝑋) ·𝑊𝑛(𝑌 ).

where 𝑋 = (𝑋0, 𝑋1, . . .), 𝑌 = (𝑌0, 𝑌1, . . .), 𝑆 = (𝑆0, 𝑆1, . . .), and 𝑃 = (𝑃0, 𝑃1, . . .).
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The motivation for defining these polynomials is that they tell us how to add in strict
𝑝-rings using the base-𝑝 represenation with Teichmüller representatives as coefficients.

Theorem 21.4.5: Let 𝑅 be a strict 𝑝-ring, 𝑘 its residue ring, and 𝜏 : 𝑘 → 𝑅 be the system
of Teichmüller representatives. Then

∞∑︁
𝑛=0

𝜏(𝑥𝑛)𝑝
𝑛 +

∞∑︁
𝑛=0

𝜏(𝑦𝑛)𝑝
𝑛 =

∞∑︁
𝑛=0

𝜏(𝑆𝑛(𝑥
𝑝−𝑛

0 , 𝑥𝑝
−(𝑛−1)

1 , . . . , 𝑥𝑛; 𝑦
𝑝−𝑛

0 , 𝑦𝑝
−(𝑛−1)

1 , . . . , 𝑦𝑛)𝑝
𝑛.

Proof of Lemma 21.4.4. We will abbreviate

𝑊 (𝑋) = (𝑊0(𝑋),𝑊1(𝑋), . . .)

𝑅 = Z[𝑋0, 𝑋1, . . . ;𝑌0, 𝑌1, . . .].

All comparisons between𝑋, 𝑌 will be done componentwise, and we define𝑋𝑛 = (𝑋𝑛
0 , 𝑋

𝑛
1 , . . .).

We find the 𝑆𝑚, 𝑃𝑚 inductively, with the additional condition that 𝑆𝑚, 𝑃𝑚 are polynomials
in 𝑋0, . . . , 𝑋𝑚, 𝑌0, . . . , 𝑌𝑚. To begin, note 𝑊0(𝑋) = 𝑋0 so we set

𝑆0(𝑋, 𝑌 ) = 𝑋0 + 𝑌0

𝑃0(𝑋, 𝑌 ) = 𝑋0𝑌0.

Lemma 21.4.6: If 𝐹𝑚, 𝐺𝑚 ∈ 𝑅 and 𝐹𝑚 ≡ 𝐺𝑚 (mod 𝑝) for every 𝑚, then

𝑊𝑛(𝐹 ) ≡ 𝑊𝑛(𝐺) (mod 𝑝𝑛+1).

Proof. First note that for any 𝑓, 𝑔 ∈ 𝑅 such that 𝑓 ≡ 𝑔 (mod 𝑝),

𝑓𝑝
𝑗 ≡ 𝑔𝑝

𝑗

(mod 𝑝𝑗+1).

The proof is by induction, with the induction step following by the binomial theorem: if
𝑓𝑝

𝑗−1
= 𝑔𝑝

𝑗−1
+ 𝑝𝑗ℎ then

𝑓𝑝
𝑗

= (𝑔𝑝
𝑗−1

+ 𝑝𝑗ℎ)𝑝 = 𝑔𝑝
𝑗

+

(︃
𝑝

1

)︃
𝑝𝑗−1⏟  ⏞  
𝑝𝑗

ℎ𝑔𝑝
𝑗−1(𝑝−1) + 𝑝𝑗+1𝑘

for some 𝑘 ∈ 𝑅.
This claim gives 𝑓𝑝

𝑛−𝑗

𝑗 ≡ 𝑔𝑝
𝑛−𝑗

𝑗 (mod 𝑝𝑛−𝑗+1) and hence

𝑝𝑗𝑓𝑝
𝑛−𝑗

𝑗 ≡ 𝑝𝑗𝑔𝑝
𝑛−𝑗

𝑗 (mod 𝑝𝑛+1).

Summing these up give the result.

Directly from the definitions, we have

𝑊𝑛(𝑋) = 𝑊𝑛−1(𝑋
𝑝) + 𝑝𝑛𝑋𝑛.
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Hence the equations

𝑊𝑛(𝑆) = 𝑊𝑛(𝑋) +𝑊𝑛(𝑌 )

𝑊𝑛(𝑃 ) = 𝑊𝑛(𝑋)𝑊𝑛(𝑌 )

are equivalent to

𝑊𝑛−1(𝑆
𝑝) + 𝑝𝑛𝑆𝑛 = 𝑊𝑛−1(𝑋

𝑝) + 𝑝𝑛𝑋𝑛 +𝑊𝑛−1(𝑌
𝑝) + 𝑝𝑛𝑌𝑛

witt-add = 𝑊𝑛−1(𝑆(𝑋
𝑝, 𝑌 𝑝)) + 𝑝𝑛(𝑋𝑛 + 𝑌𝑛) (21.4)

𝑊𝑛−1(𝑃
𝑝) + 𝑝𝑛𝑃𝑛 = (𝑊𝑛−1(𝑋

𝑝) + 𝑝𝑛𝑋𝑛)(𝑊𝑛−1(𝑌
𝑝) + 𝑝𝑛𝑌𝑛)

witt-mult = 𝑊𝑛−1(𝑃 (𝑋
𝑝, 𝑌 𝑝)) + 𝑝𝑛(𝑋𝑛𝑊𝑛−1(𝑌

𝑝) + 𝑌𝑛𝑊𝑛−1(𝑋
𝑝) + 𝑝𝑛𝑋𝑛𝑌𝑛)

(21.5)

where (21.4) and (21.5) follow from the hypothesis for 𝑛 − 1. Solving for 𝑆𝑛 and 𝑃𝑛, these
are equivalent to

𝑆𝑛 = 𝑋𝑛 + 𝑌𝑛 +
𝑊𝑛−1(𝑆(𝑋

𝑝, 𝑌 𝑝))−𝑊𝑛−1(𝑆
𝑝)

𝑝𝑛

𝑃𝑛 = 𝑋𝑛𝑊𝑛−1(𝑌
𝑝) + 𝑌𝑛𝑊𝑛−1(𝑋

𝑝) + 𝑝𝑛𝑋𝑛𝑌𝑛 +
𝑊𝑛−1(𝑃 (𝑋

𝑝, 𝑌 𝑝))−𝑊𝑛−1(𝑃
𝑝)

𝑝𝑛
.

However, since taking 𝑝th powers is a homomorphism modulo 𝑝, for any 𝑓 ∈ 𝑅 we have
𝑓(𝑋, 𝑌 )𝑝 ≡ 𝑓(𝑋𝑝, 𝑌 𝑝) (mod 𝑝). Applying this to 𝑓 = 𝑆𝑗, 𝑃𝑗, we see the conditions of the
lemma are satisfied, so the numerators are divisible by 𝑝𝑛, and we can successfully define 𝑆𝑛
and 𝑃𝑛.

Theorem 21.4.7: Let 𝐴 be a commutative ring. For

𝑎 = (𝑎0, 𝑎1, . . .), 𝑏 = (𝑏0, 𝑏1, . . .), 𝑎𝑖, 𝑏𝑖 ∈ 𝐴𝑖,

the operations

𝑎
𝑊
+ 𝑏 = 𝑆(𝑎, 𝑏), 𝑎

𝑊· 𝑏 = 𝑃 (𝑎, 𝑏).

turn the set 𝐴N0 into a commutative ring 𝑊 (𝐴).

This is called the ring of Witt vectors over 𝐴.

Proof. We first prove that associativity, commutativity, and distributivity hold as polynomial
identities in the 𝑎𝑗, 𝑏𝑗. The result then follows by considering the substitution homomorphism
Z[𝑎0, . . . ; 𝑏0, . . .]→ 𝐴.

Lemma 21.4.8: The function 𝑊 : 𝑅N → 𝑅N, where 𝑅 := Z[𝑎0, . . . ; 𝑏0, . . .], is injective.

Proof. Suppose 𝑋 = (𝑋0, 𝑋1, . . .) and𝑊 (𝑋) = (𝑌0, 𝑌1, . . .). We show the 𝑋𝑗 are determined
by induction. We have 𝑋0 = 𝑊0(𝑋) = 𝑌0. For the induction step, note

𝑌𝑛 = 𝑊𝑛(𝑋) = 𝑋𝑝𝑛

0 + 𝑝𝑋𝑝𝑛−1

1 + · · ·+ 𝑝𝑛𝑋𝑛;
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since 𝑋0, . . . , 𝑋𝑛−1, 𝑌𝑛 are determined and multiplication by 𝑝𝑛 is injective in 𝑅, 𝑋𝑛 is
determined.

Lemma 21.4.4 gives

𝑊 (𝑋
𝑊
+ 𝑌 ) = 𝑊 (𝑆(𝑋, 𝑌 )) = 𝑊 (𝑋) +𝑊 (𝑌 )

𝑊 (𝑋
𝑊· 𝑌 ) = 𝑊 (𝑃 (𝑋, 𝑌 )) = 𝑊 (𝑋) ·𝑊 (𝑌 ).

Hence 𝑊 : 𝑊 (𝐴)→ 𝑅N is a map that preserves addition and multiplication; moreover, it is
injective. Its image is a subalgebra of 𝑅, since it contains 0 and 1:

𝑊 (0, 0, . . .) = (0, 0, . . .)

𝑊 (1, 0, . . .) = (1, 1, . . .).

Hence
𝑊
+ and

𝑊· turn 𝑊 (𝐴) into a commutative algebra with unit (we are basically “pulling
back” the algebra structure from 𝑅N to 𝑊 (𝐴) using 𝑊 ).

4.1 Frobenius and Transfer maps

5 Extending valuations on global fields

Theorem 21.5.1: ext-val-irr Let | · | be a valuation on 𝐾 and let �̂� be the completion of 𝐾
with respect to | · |. Let 𝐿 = 𝐾(𝛼) be a finite separable extension of 𝐾, and let 𝑓 be the
minimal polynomial of 𝛼.

The completions of 𝐿 with respect to the extensions | · |′ of | · | are exactly �̂�[𝑋]/(ℎ) as
ℎ ranges over irreducible factors of 𝑓 in �̂�.

Proof. Suppose we are given an extension | · |′. Let �̂� be the completion of 𝐿 with respect
to | · |′.

𝐿 = 𝐾[𝛼] �
�

// �̂� = �̂�[𝛼]

𝐾 // �̂�

Note �̂�[𝛼] contains 𝛼 and is complete (as it is a finite-dimensional vector space over a
complete field), so �̂� = �̂�[𝛼]. Then considering the extension �̂�/�̂�, 𝛼 is the root of one of
the irreducible factors of 𝑓 in �̂�[𝑋].

Conversely, given an irreducible factor 𝑔 of ℎ in �̂�[𝑋], consider �̂�[𝛼′] = �̂�[𝑋]/(𝑔).

𝐿 = 𝐾(𝛼) �
�

// �̂� = �̂�(𝛼′)

𝐾 // �̂�
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The valuation on �̂� extends uniquely to �̂�(𝛼′) by Theorem 20.6.1. Then let 𝐾(𝛼) →˓ �̂�(𝛼′)
be the map sending 𝛼 to 𝛼′. (This makes sense as the minimal polynomials of 𝛼, 𝛼′ over 𝐾
are both 𝑓 .) By the same reason as before, �̂� = �̂�(𝛼), as desired.

Theorem 21.5.2: completion-tensor Let �̂� be the completion of 𝐾 with respect to a archimedean
or discrete nonarchimedean valuation | · |. Let 𝐿/𝐾 be a finite separable extension. There
are finitely many extensions of | · | to 𝐿; denoting them by | · |𝑖 and the respective completions
of 𝐿 be 𝐿𝑖, we have the natural isomorphism

�̂� ⊗𝐾 𝐿 ∼=
∏︁
𝑖

𝐿𝑖.

Proof. By the primitive element theorem, we can write 𝐿 = 𝐾(𝛼). Let 𝑓 be the minimal
polynomial of 𝛼. Let 𝑓 factor into irreducibles in �̂�[𝑋] as

𝑓 = 𝑓1 · · · 𝑓𝑛.

Then

�̂� ⊗𝐾 𝐿 ∼= �̂� ⊗𝐾 𝐾[𝑥]/(𝑓) ∼= �̂�[𝑥]/(𝑓)
CRT∼=

𝑛∏︁
𝑖=1

�̂�[𝑥]/(𝑓𝑖)
Thm 21.5.1∼=

𝑛∏︁
𝑖=1

𝐿𝑖.

Note the map in the theorem sends

𝑎⊗ 𝑏 ↦→ (𝑎1𝑏, . . . , 𝑎𝑛𝑏),

where 𝑎𝑖 is the embedding of 𝑎 into 𝐿𝑖. We now have a way to calculate norms and traces
in terms of completed fields.

Corollary 21.5.3: complete-ntr Keep the same notation as above. Then

1. Nm𝐿/𝐾(𝛼) =
∏︀𝑛
𝑖=1Nm𝐿𝑖/�̂�

(𝛼).

2. tr𝐿/𝐾(𝛼) =
∏︀𝑛
𝑖=1 tr𝐿𝑖/�̂�

(𝛼).

Proof. Using Proposition 14.14.2.3(1) and Theorem 21.5.1, we see

Nm𝐿/𝐾(𝛼) =
∏︁

𝛼′ root of 𝑓

𝛼′ =

� ∏︁
𝛼′ root of 𝑓1

𝛼′

�
· · ·

� ∏︁
𝛼′ root of 𝑓𝑛

𝛼′

�
=

𝑛∏︁
𝑖=1

Nm𝐿𝑖/�̂�
(𝛼)

tr𝐿/𝐾(𝛼) =
∑︁

𝛼′ root of 𝑓

𝛼′ =

� ∑︁
𝛼′ root of 𝑓1

𝛼′

�
+ · · ·+

� ∑︁
𝛼′ root of 𝑓𝑛

𝛼′

�
=

𝑛∑︁
𝑖=1

tr𝐿𝑖/�̂�
(𝛼).
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6 Product formula

Lemma 21.6.1: compare-normed-val Let 𝐿/𝐾 be a finite extension of number fields, with normal-
ized nonarchimedean valuations 𝑤 | 𝑣, as in Example 20.2.3. Let | · |′𝑤 be 𝑤 normalized so it
extends 𝑣. Then

| · |𝑤 = | · |′[𝐿𝑤:𝐾𝑣 ]
𝑤 .

Proof. Easy, see Milne pg. 132.

Theorem 21.6.2 (Product formula): product-formula For any nonzero 𝛼 ∈ 𝐾,∏︁
𝑣∈𝑉𝐾

|𝛼|𝑣 = 1.

Proof.
Step 1: We first show the result for 𝐾 = Q. Given 𝑛 ∈ Q, factor it as 𝑛 = ±∏︀∞

𝑖=1 𝑝
𝑎𝑖
𝑖 where

𝑝𝑖 are all the prime numbers; note only a finite number of the 𝑎𝑖 are nonzero. Then

|𝛼| =
(︃ ∞∏︁
𝑖=1

|𝛼|𝑝𝑖

)︃
|𝑎|∞ =

(︃ ∞∏︁
𝑖=1

𝑝−𝑎𝑖𝑖

)︃(︃ ∞∏︁
𝑖=1

𝑝𝑎𝑖𝑖

)︃
= 1.

Step 2: We pass to field extensions of Q using the following lemma.

Lemma 21.6.3 (Extension formula): extension-formula Let 𝐾 ⊆ 𝐿 be number fields and let 𝑣 be
a place of 𝐾. Then ∏︁

𝑤|𝑣
|𝛼|𝑤 =

⃒⃒⃒
Nm𝐿/𝐾 𝛼

⃒⃒⃒
𝑣
.

Proof. For a place on 𝐿 let | · |′𝑤 be the valuation normalized so that it extends 𝑣. We have⃒⃒⃒
Nm𝐿/𝐾 𝛼

⃒⃒⃒
𝑣
=
∏︁
𝑤|𝑣

⃒⃒⃒
Nm𝐿𝑤/𝐾𝑣(𝛼)

⃒⃒⃒
𝑣

=
∏︁
𝑤|𝑣

⃒⃒⃒
Nm𝐿𝑤/𝐾𝑣(𝛼)

⃒⃒⃒′
𝑤

=
∏︁
𝑤|𝑣

⃒⃒⃒
Nm𝐿𝑤/𝐾𝑣(𝛼)

⃒⃒⃒ 1
[𝐿:𝐾]

𝑤
by Lemma 21.6.1

=
∏︁
𝑤|𝑣
|𝛼|𝑤 by Theorem 20.20.6.1

Step 3: Since every place on 𝐾 restricts to a unique place on Q,∏︁
𝑤∈𝑉𝐾

|𝛼|𝑤 =
∏︁
𝑣∈𝑉

∏︁
𝑤|𝑣
|𝛼|𝑤 =

∏︁
𝑣∈𝑉
|Nm𝐿/𝐾(𝛼)|𝑣

Step 1
= 1,

where we apply step 1 to Nm𝐿/𝐾(𝛼).

The product formula will be useful when defining a measure of size independent of scaling
(see Chapter 39).

218



Number Theory, S21.7

7 Problems

1. Let 𝐾 be a complete nonarchimedean field whose residue field has characteristic 𝑝.
Prove that the maximal tamely ramified (separable) extension of 𝐾 is

𝐾tr = 𝐾𝑢

(︁{︁
𝜋

1
𝑚 : 𝑝 - 𝑚

}︁)︁
.
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Chapter 22

Ramification

ramification We seek to generalize the definition of discriminant over Dedekind domains 𝐴 which
are not PID’s. To do this we will first define the different, which measure how much we can
enlarge 𝐵 so that the image of the trace map is still in 𝐴, then define the discriminant as
the discrepancy between 𝐵 and the enlarged 𝐵, using 𝜒𝐴. We will find that the different is
the (ideal) norm of the discriminant.

We will see that our definition coincides with our previous definition when 𝐴 is a PID.
Fortunately, we don’t have to prove everything from scratch again: by localization we can
always reduce to the DVR/PID case.

The main use of the discriminant is to measure ramification: The primes dividing the
discriminant are those that ramify. On a deeper level, the exponents measure the degree of
ramification.

1 Lattices and 𝜒

Definition 22.1.1: Let 𝐴 be a Dedekind domain, 𝐾 = Frac(𝐴), and 𝑉 a finite dimensional
𝐾-vector space. An 𝐴-submodule 𝑋 ⊆ 𝑉 is a lattice if it is finitely generated 𝐴-module
and span𝐾(𝑋) = 𝑉 .

The most basic example of a latice is a fractional ideal of 𝐾.
We would like to measure the discrepancy between two lattices—like the norm, but

measured by an ideal instead. To do this, we first need some facts from commutative algebra.

1.1 Filtrations of modules

Definition 22.1.2: A module is simple if it is nonzero and has no nonzero proper submod-
ule. A composition series of length 𝑚 is a chain of submodules

𝑀 =𝑀0 ⊃𝑀1 ⊃ · · · ⊃𝑀𝑚 = 0

where𝑀𝑖−1/𝑀𝑖 is simple for each 𝑖. 𝑀 has finite length if it has a finite composition series.
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Proposition 22.1.3: The simple modules are exactly those in the form 𝑅/m where m is a
maximal ideal of 𝑅. If 𝑀 is simple, 𝑀 = 𝑅/m where m = Ann(𝑀).

The main theorem on filtrations is the following.

Theorem 22.1.4 (Jordan-Hölder): Suppose 𝑀 has a composition series.

1. (Existence) Any chain of submodules of 𝑀 can be refined to a composition series.

2. (Uniqueness) Any composition series of 𝑀 has the same length; moreover the number
of times 𝑅/m appears as a quotient 𝑀𝑖−1/𝑀𝑖 in the filtration is invariant.

We will be applying this when 𝑅 is a Dedekind domain, so the maximal ideals are simply
the nonzero prime ideals.

We also need the following.

Proposition 22.1.5: If 𝑀/𝑀 ′ and 𝑀 ′ have finite length, then so does 𝑀 .

1.2 The function 𝜒𝐴

Definition 22.1.6: Let 𝐴 be a Dedekind domain. Define

𝜒𝐴 : {𝐴-module of finite length} → {ideals of 𝐴}

as follows: Given 𝑀 of finite length, with composition series

𝑀 =𝑀0 ⊃𝑀1 ⊃ · · · ⊃𝑀𝑚 = 0

and 𝐴/p𝑖 ∼= 𝑀𝑖−1/𝑀𝑖, define

𝜒𝐴(𝑀) =
𝑚∏︁
𝑖=1

p𝑖.

Example 22.1.7: The primes appearing in the filtration of an ideal a ⊂ 𝐴 are just the
primes dividing a with multiplicity, so

𝜒𝐴(a) = (a).

Proposition 22.1.8: chi-exact If 𝑀 ′ and 𝑀 ′′ have finite length and 0→𝑀 ′ →𝑀 →𝑀 ′′ → 0
exact sequence of 𝐴-modules, then

𝜒𝐴(𝑀) = 𝜒𝐴(𝑀
′)𝜒𝐴(𝑀

′′).

Definition 22.1.9: Let 𝐴 be a Dedekind domain, 𝐾 = Frac(𝐴), and 𝑋1, 𝑋2 ⊆ 𝑉 be 𝐴-
lattices. Choose 𝑋3 ⊆ 𝑋1 ∩𝑋2 any 𝐴-lattice and define

𝜒𝐴(𝑋1, 𝑋2) := 𝜒𝐴(𝑋1/𝑋3)𝜒𝐴(𝑋2/𝑋3)
−1

as fractional ideals of 𝐾.
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Proof of well-definedness. We show this is independent of choice of 𝑋3.
Observe 𝜒𝐴(𝑋1, 𝑋2)𝜒𝐴(𝑋2, 𝑋1) = (1). Note this is independent of choice of𝑋3. It suffices

to show that
𝜒𝐴(𝑋1/𝑋3)𝜒𝐴(𝑋2/𝑋3)

−1 = 𝜒𝐴(𝑋1/𝑋4)𝜒𝐴(𝑋2/𝑋4)
−1

when 𝑋4 ⊆ 𝑋3. This follows by the exact sequence

0→ 𝑋3/𝑋4 → 𝑋1/𝑋4 → 𝑋1/𝑋3.

and Proposition 22.1.8.

1.3 𝜒 and localization

It is easier to study 𝜒𝐴 when 𝐴 is local; in this case 𝜒𝐴(𝑋) is simply a power of the maximal
ideal. To understand 𝜒𝐴 (and hence the discriminant) for general 𝐴, we thus consider the
localization of 𝐴 at all primes. The following says that 𝜒𝐴 is well-behaved under localization.

Proposition 22.1.10: chi-exponent Let 𝐴 be a Dedekind domain and p ⊂ 𝐴 be a nonzero prime.
Then

𝑣p(𝜒𝐴(𝜒1, 𝜒2)) = 𝑣p𝐴p(𝜒𝐴p((𝑋1)p, (𝑋2)p)).

Proof. Note 𝑋p = 𝐴p ·𝑋 = 𝐴p ⊗𝐴 𝑋 is an 𝐴p-lattice of 𝑉 .
Localization is exact, so preserves quotients. Suppose 𝑀 ⊇ 𝑁 are adjacent terms in the

filtration of 𝐴. If 𝑀/𝑁 = 𝐴/p then

𝑀p/𝑁p = (𝑀/𝑁)p = (𝐴/p)p = 𝐴p/p𝐴p

while if 𝑀/𝑁 = 𝐴/q, q ̸= p, then 𝑀p/𝑁p = 0. Only the quotients with 𝐴/p remain; the
result follows.

Proposition 22.1.11: Let 𝐴 be a Dedekind domain with fraction field 𝐾, 𝑋 an 𝐴-lattice
in 𝑉 , and 𝜎 ∈ Aut𝐾(𝑉 ). Then

𝜒𝐴(𝑋, 𝜎𝑋) = (det 𝜎).

Proof. It suffices to check both sides have the same p-valuation for every prime p of 𝐴; by
Proposition 22.1.10 this is equivalent to

𝜒𝐴p(𝑋p, 𝜎p𝑋p) = (det 𝜎p).

Thus we only need to check the proposition for the case where 𝐴 is a DVR, hence a PID.
For all nonzero 𝛼 ∈ 𝐴,

𝜒(𝑋,𝛼𝜎𝑋) = 𝛼𝑛𝜒(𝑋, 𝜎𝑋) = det[𝛼] · 𝜒(𝑋, 𝜎𝑋);

note we used 𝜒(𝑢𝑋, 𝛼𝑢𝑋) = 𝛼𝑛 since 𝑋 is free over 𝐴, and that the matrix of the trans-
formation [𝛼] is simply 𝛼𝐼. Thus by choosing 𝛼 such that 𝛼𝜎𝑋 ⊆ 𝑋 we may assume
𝜎(𝑋) ⊆ 𝑋.
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By the structure theorem for modules, 𝑋/𝜎𝑋 ∼= 𝐴/𝛼1 × · · · × 𝐴/𝛼𝑛 for some 𝛼𝑗, giving

𝜒𝐴(𝑋, 𝜎𝑋) = (𝛼1 · · ·𝛼𝑛) = (det 𝜎).

1.4 Discriminant of bilinear forms

In this section we will define the discriminant of a bilinear form 𝑇 on a lattice 𝑋 over 𝐾, the
fraction field of a Dedekind domain 𝐴. When we specialize to the case that 𝑋 is a extension
of 𝐴 and 𝑇 = tr, then we get a generalization of our original definition 14.14.3.1, in the case
where 𝑋 is not necessarily free over 𝐴.

Definition 22.1.12: Keep the above assumptions. Let 𝑉 be a finite-dimensional 𝐾-vector
space and 𝑇 : (𝑉, 𝑉 ) → 𝐾 be a nondegenerate 𝐾-bilinear form. Thinking of 𝑇 as a map
𝑉 ⊗𝐾 𝑉 → 𝐾, we get a map

∧𝑛𝑇 : ∧𝑛𝑉 ⊗𝐾 ∧𝑛𝑉 → 𝐾

defined by

wedge-T-def∧𝑛𝑇 (𝑣1∧· · ·∧𝑣𝑛, 𝑤1∧· · ·∧𝑤𝑛) =
∑︁
𝜋∈𝑆𝑛

(−1)sign(𝜋)𝑇 (𝑣1∧𝑤𝜋(1)) · · ·𝑇 (𝑣𝑛∧𝑤𝜋(𝑛)). (22.1)

Note ∧𝑛𝑇 ⊗∧𝑛𝑇 is a 1-dimensional vector space over 𝐾, with lattice ∧𝑛𝑋 ⊗𝐾 ∧𝑛𝑋. Define
the discriminant of 𝑇 on 𝑋 to be

d𝑋,𝑇 := 𝜒𝐴(∧𝑛𝑇,∧𝑛𝑋 ⊗ ∧𝑛𝑋).

The main reason for defining the discriminant as above is because the “∧” construction
is natural and makes it easy to prove a few basic properties.

Proposition 22.1.13: chi-det If 𝑋 is free over 𝐴 with basis (𝑒1, . . . , 𝑒𝑛), then

d𝑋,𝑇 = (det(𝑇 (𝑒𝑖, 𝑒𝑗))).

Proof. Note that 𝑋 ⊗𝐾 𝑋 is generated by ∧𝑛𝑇 (𝑒1 ∧ · · · ∧ 𝑒𝑛, 𝑒1 ∧ · · · ∧ 𝑒𝑛). By (22.1), this is
exactly (det(𝑇 (𝑒𝑖, 𝑒𝑗))).

We now give an alternative characterization of the discriminant, in terms of the dual
lattice.

Definition 22.1.14: Define the dual of 𝑋 with respect to 𝑇 by

𝑋*
𝑇 := {𝑦 ∈ 𝑉 : 𝑇 (𝑥, 𝑦) ∈ 𝐴 for all 𝑥 ∈ 𝑋} .

This is an 𝐴-lattice of 𝑉 .
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We first need the following.

Proposition 22.1.15: dual-basis If 𝑒1, . . . , 𝑒𝑛 is a basis for 𝑋 over 𝐴, and 𝑒*1, . . . , 𝑒
*
𝑛 is a dual

basis, i.e. 𝑇 (𝑒𝑖, 𝑒
*
𝑗) = 𝛿𝑖𝑗 for each 𝑗, then 𝑒

*
1, . . . , 𝑒

*
𝑛 is a basis for 𝑋* over 𝐴.

Proof. Note 𝑦 ∈ 𝑋* iff 𝑇 (𝑒𝑗, 𝑦) ∈ 𝐴 for each 𝑗. Writing 𝑦 =
∑︀𝑛
𝑗=1 𝑎𝑗𝑒

*
𝑗 , we find 𝑇 (𝑒𝑗, 𝑦) = 𝑎𝑗,

so 𝑦 ∈ 𝑋* iff 𝑎𝑗 ∈ 𝐴 for each 𝑗, i.e. 𝑦 ∈ span𝐴(𝑒
*
1, . . . , 𝑒

*
𝑛).

Proposition 22.1.16: We have

𝜒𝐴(𝑋
*
𝑇 , 𝑋) = d𝑋,𝑇 .

Proof. We use the fact that a fractional ideal is determined by its localizations at all primes
(this follows since the exponent of p in a is the same as that of p𝐴p in a𝐴p, Proposi-
tion 15.15.2.5).

By using Proposition 22.1.10, we may localize at nonzero p ⊂ 𝐴. Hence it suffices to
prove may assume 𝐴 is DVR, i.e. free over 𝐴.

Write �
𝑒1
...
𝑒𝑛

�
= 𝐵

�
𝑒*1
...
𝑒*𝑛

�
where 𝐵 = (𝑏𝑖,𝑗) is a 𝑛× 𝑛 matrix. Then by Proposition 22.1.13,

d𝑋,𝑇 = (det(𝑇 (𝑒𝑖, 𝑒𝑗))) = (det(𝑏𝑖,𝑗)) = 𝜒(𝑋*
𝑇 , 𝐵𝑋

*
𝑇 ) = 𝜒(𝑋*

𝑇 , 𝑋),

as needed.

2 Discriminant and different

For the AKLB setup with 𝐿/𝐾 finite separable, consider the nondegenerate 𝐾-bilinear map

tr : 𝐿× 𝐿→ 𝐾

(𝑥, 𝑦) ↦→ tr𝐿/𝐾(𝑥𝑦).

Definition 22.2.1: Define the codifferent

𝐵* := 𝐵*
tr = {𝑦 ∈ 𝐿 : tr(𝑥𝑦) ∈ 𝐴 for all 𝑥 ∈ 𝐵}

and the different and discriminant by

D𝐵/𝐴 = D𝐿/𝐾 := (𝐵*)−1

d𝐵/𝐴 = d𝐿/𝐾 := d𝐵,tr.
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(These are fractional ideals of 𝐾.)
Observe that 𝐵 ⊆ 𝐵* (in light of tr𝐿/𝐾(𝐵) ⊆ 𝐴) so 𝐵 ⊇ d𝐵/𝐴.
The following gives the precise relationship between the discriminant and different.

Proposition 22.2.2: Nm𝐿/𝐾(D𝐵/𝐴) = d𝐵/𝐴.

Proof. We have
d𝐵/𝐴 = 𝜒𝐴(𝐵

*, 𝐵) = 𝜒𝐴(𝐵
*/𝐵)

and
D𝐵/𝐴 = (𝐵*)−1 = 𝜒𝐵(𝐵

*/𝐵).

The result thus follows from commutativity of the following diagram.

{finite length 𝐵-module}𝜒𝐵 //

𝜒𝐴

**

𝐼𝐵

Nm𝐿/𝐾

��

𝐼𝐾 .

We have commutativity since if 𝐵/P is a quotient of adjacent terms in the 𝐵-filtration of
𝑀 , then when we refine it to a 𝐴-filtration, since 𝐵/P = (𝐴/p)𝑓(P/p) as vector spaces, we
get 𝑓(P/p) copies of 𝐴/p.

Note: Grothendieck group.

2.1 Basic properties

First, a slightly cleaner characterization of the codifferent.

Lemma 22.2.3: codiff-lem a ∈ 𝐼𝐾 and b ∈ 𝐼𝐿. Then

tr𝐿/𝐾(b) ⊆ a ⇐⇒ b ⊆ aD−1
𝐵/𝐴.

Proof. We check tr(a−1b) ⊆ 𝐴 iff a−1b ⊆ D−1
𝐿/𝐾 .

The reverse direction is clear. For the forward direction, note that if 𝑥 ∈ a−1b and 𝑦 ∈ 𝐵,
then 𝑥𝑦 ∈ a−1b and hence tr(𝑥𝑦) ∈ 𝐴. This shows 𝑥 ∈ D−1

𝐵/𝐴.

Proposition 22.2.4:

1. (Transitivity) Let 𝑀/𝐿 be a finite separable extension, with 𝐶 the integral closure of
𝐴 in 𝑀 . Then

D𝐶/𝐴 = D𝐶/𝐵D𝐵/𝐴.

2. (Localization) For 𝑆 ⊆ 𝐴 a multiplicative subset,

𝑆−1D𝐵/𝐴 = D𝑆−1𝐵/𝑆−1𝐴.
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3. (Completion)
D𝐵/𝐴 · �̂�P = D�̂�P/𝐴p

.

Proof. 1. We have

𝑒 ∈ D−1
𝐶/𝐵D

−1
𝐵/𝐴

⇐⇒ D𝐵/𝐴𝑒 ⊆ D−1
𝐶/𝐵

⇐⇒ tr𝑀/𝐿(D𝐵/𝐴𝑒) ⊆ 𝐵 Lemma 22.2.3 with 𝑀/𝐿

⇐⇒ D𝐵/𝐴tr𝑀/𝐿(𝑒) ⊆ 𝐵

⇐⇒ tr𝑀/𝐿(𝑒) ∈ D−1
𝐵/𝐴

⇐⇒ tr𝐿/𝐾(tr𝑀/𝐿(𝑒)) ⊆ 𝐴 Lemma 22.2.3 with 𝐿/𝐾

⇐⇒ 𝑒 ∈ D−1
𝐶/𝐴.

2. Omit.

3. Localize at p. May assume 𝐴 is a DVR. (𝐵 may not be a DVR.) Consider∏︀
P|p �̂�P

∼=
��

� � //
∏︀

P|p �̂�P

∼=
��

𝐵 ⊗𝐴 𝐴p
� � / 𝐿⊗𝐾 �̂�p

tr𝐿/𝐾⊗𝐾�̂�p

��

𝐴p
� � / �̂�p

The top-to-bottom map on the right is
∑︀

tr�̂�P/�̂�p
. Then

d−1
𝐵/𝐴 ⊗𝐴 𝐴p

∼= D−1

𝐵⊗𝐴𝐴p/𝐴p

∼= D−1∏︀
P|p �̂�P/𝐴p

∼=
∏︁
P|p

D−1

�̂�P/𝐴p

∼=
∏︁
P|p

d−1
𝐵/𝐴 ⊗𝐵 �̂�P

3 Discriminant and ramification

Recall ordP̂(D�̂�P/𝐴p
= ordP(d𝐵/𝐴). Our goal is to show that 𝑒P/p = 1 and 𝜅(P)/𝜅(p)

separable (i.e. P is unramified over 𝐾, iff P - d𝐵/𝐴.
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In the CDVR case,
P �
�

// 𝐵 𝐿

p �
�

// 𝐴 𝐾

we have 𝐵/p𝐵 = 𝐵/P𝑒.

Lemma 22.3.1:
tr𝐿/𝐾(𝑏) mod 𝑝 = 𝑒tr𝑙/𝑘(𝑏).

Proof. For all 𝑏 ∈ 𝐵,

0 = P𝑒/P𝑒 ⊆ P𝑒−1/P𝑒 ⊆ · · · ⊆ P/P𝑒 ⊆ 𝐵/P𝑒.

Each adjacent quotient is 1 dimensional over 𝑙 and hence 𝑓 -dimensional over 𝑘. Choose a
basis {𝑤𝑖}𝑛𝑖=1 (𝑛 = 𝑒𝑓) for 𝐵/P𝑒 as 𝑘-vector space, such that

span𝑘({𝑤𝑖}
𝑒𝑓
𝑖=(𝑒−𝑗)𝑓+1) = P𝑒−𝑗/P𝑒.

(The last 𝑗𝑓 vectors span P𝑒−𝑗/P𝑒.) Lift {𝑤𝑖} to 𝑤𝑖 ∈ 𝐵 such that 𝑤𝑖 mod P𝑒 = 𝑤𝑖. The
𝑤𝑖 are a basis of 𝐵 over 𝐴. Now

tr𝐿/𝐾(𝑏) = tr𝐾(𝑚𝑏)

𝑏𝑤𝑖 = (𝑏𝑖,𝑗)(𝑤𝑗)
𝑛
𝑗=1

𝑏𝑤𝑖 = (𝑏𝑖,𝑗)(𝑤𝑗).

We have

tr𝐿/𝐾(𝑏) =
𝑛∑︁
𝑖=1

𝑏𝑖𝑖 mod p.

Now (𝑏𝑖,𝑗 mod p)𝑓𝑘+1≤𝑖,𝑗≤𝑓(𝑘+1) represents the linear map (multiplication by 𝑏)

P𝑘/P𝑒

P𝑘+1/P𝑒
→ P𝑘/P𝑒

P𝑘+1/P𝑒
.

The trace as a 𝑘-linear map is tr𝑙/𝑘(𝑏). There are 𝑒 such 𝑓 × 𝑓 blocks.

Corollary 22.3.2:
ordP(d𝐵/𝐴) ≥ 𝑒− 1.

Proof. It suffices to show
ordp(d𝐵/𝐴) ≥ (𝑒− 1)𝑓.

This is since D𝐵/𝐴 = P𝑐 implies d𝐵/𝐴 = Nm𝐿/𝐾(P
𝑐) = P𝑐𝑓 .

Now
d𝐵/𝐴 = (det tr𝐿/𝐾(𝑤𝑖𝑤𝑗))

same as in the previous proof. Now 𝑤𝑖 ∈ P if 𝑓 + 1 ≤ 𝑖 ≤ 𝑛 = 𝑒𝑓 , therefore 𝑤𝑖 ∈ P/P𝑒.
For all 𝑗, tr𝐿/𝐾(𝑤𝑖𝑤𝑗) ∈ P ∩𝐾 = p, giving the result.
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Now consider the general case.

Theorem 22.3.3: Suppose 𝐴,𝐵 are Dedekind. Then

1. ordP(D𝐵/𝐴) ≥ 𝑒P/p − 1.

2. P is unramified over 𝐾 iff P - D𝐿/𝐾 .

Serre does this by Eisenstein polys.

Proof. 1. ordP(D𝐵/𝐴) = ordP̂(D�̂�P/𝐴p
). and 𝑒P/p = 𝑒P̂/p̂. Use the CDVR case.

2. For “⇐”, note ordP(D𝐿/𝐾) implies 0 ≥ 𝑒P/p − 1 i.e. 𝑒P/p = 1.

For “ =⇒ ”, it suffices to prove 𝑝 - d𝐵/𝐴. Reduce to the CDVR case. Now

det(tr𝐿/𝐾(𝑤𝑖𝑤𝑗)) mod p = 𝑒P/ptr𝑙/𝑘(𝑤𝑖𝑤𝑗) ̸= 0

if 𝑙/𝑘 is separable (Neukirch I.2).

3.1 Types of ramification

Definition 22.3.4: P is unramified if 𝑒P/p and 𝑙/𝑘 separable. For P ramified,

1. P is tamely ramified if either char 𝑘 = 0 or char 𝑘 - 𝑒P/p.

2. P is wildly ramified otherwise.

Theorem 22.3.5: P is tamely ramified over 𝐾 iff

ordP(d𝐿/𝐾) = 𝑒P/p − 1.

Proof. Reduce to the CDVR case.

Step 1: We show that P is tamely ramified iff tr𝐿/𝐾(𝐵) = 𝐴. Observe that tr𝐿/𝐾(𝐵) is an
ideal of 𝐴, so the latter is equivalent to tr𝐿/𝐾(𝐵) (mod p) ̸= 0. But we know

tr𝐿/𝐾(𝑏) mod p = 𝑒P/ptr𝑙/𝑘(𝑏),

and tr𝑙/𝑘(𝑏) ̸= 0 (not identically 0). Hence 𝑒P/p ̸≡ 0 (mod p) iff tr𝐿/𝐾(𝑏) ̸≡ 0 (mod p).

Step 2: tr𝐿/𝐾(𝐵) = 𝐴 ⇐⇒ ordP(D𝐿/𝐾) = 𝑒P/p − 1.
We’ve seen

tr𝐿/𝐾(b) ⊆ a ⇐⇒ b ⊆ aD−1
𝐵/𝐴.
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Plug in b = 𝐵 to get, as ideals of 𝐵,

𝐴′ := tr(𝐵) ⊆ a ⇐⇒ 𝐵 ⊆ aD−1
𝐿/𝐾

⇐⇒ D𝐿/𝐾 ⊆ a𝐵

Write 𝐴′ = p𝑎. We have p𝑎 | D iff p𝑎 | 𝐴′ for 𝑎 ∈ Z. (Power can be rational.)

For 𝑎 ∈ Z, ordp(𝐴
′) ≥ 𝑎 iff ordp(D) ≥ 𝑎.

Thus we get

ordp(𝐴
′) ≤ ordp(D𝐿/𝐾)⏟  ⏞  

ordP(D)

𝑒P/p

< ordp(𝐴
′) + 1.

Thus tr𝐿/𝐾(𝐵) = 𝐴 iff 𝑎 = 0 iff ordP(D) = 𝑒− 1.

Thus P is tamely ramified iff 𝑣(D) = 𝑒− 1.

3.2 Computation of different

Proposition 22.3.6: monogenous When 𝐴 and 𝐵 are CDVR’s, 𝐵 is generated by one element
over 𝐴 as an 𝐴-algebra:

𝐵 = 𝐴[𝛽].

(We say that 𝐵 is monogenous over 𝐴.)

Let 𝐿 := Frac(𝐴), 𝐾 := Frac(𝐵). When 𝐿/𝐾 is totally ramified, then we can choose 𝛽
to be any uniformizer 𝜋𝐿.

Proof. Any element of 𝐵 can be written as
∑︀
𝑘≥0 𝑎𝑘𝜋𝑘 where 𝑎𝑘 are fixed representatives of

𝑙 = 𝐵/(𝜋𝐿). But we can choose the 𝑎𝑘 to be representatives of 𝑘 = 𝐴/(𝜋𝐾), since 𝑘 = 𝑙.

Theorem 22.3.7: (Residue field extension separable.) d𝐵/𝐴 = (𝑓 ′
𝛽(𝛽)) where 𝑓𝛽(𝑥) ∈ 𝐴[𝑥]

is the minimal polynomial of 𝛽 over 𝐾.

Proof.

Lemma 22.3.8:

tr𝐿/𝐾

(︃
𝛽𝑘

𝑓 ′(𝛽)

)︃
=

⎧⎨⎩0, 0 ≤ 𝑖 ≤ 𝑛− 2

1, 𝑖 = 𝑛− 1.

Proof. The eigenvalues of multiplication by 𝛽 are just the roots 𝛽1, . . . , 𝛽𝑛 of the characteristic
polynomial. Note that if 𝐴 is a linear operator with eigenvalues 𝜆𝑖 and 𝑃 is a polynomial
then 𝑃 (𝐴) has eigenvalues 𝑃 (𝜆𝑖). Hence

tr

(︃
𝛽𝑘

𝑓 ′(𝛽)

)︃
=

𝑛∑︁
𝑖=1

𝛽𝑘𝑖
𝑓 ′(𝛽𝑖)
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Let 𝐷(𝑥1, . . . , 𝑥𝑛) =
∑︀
𝑖<𝑗(𝑥𝑖 − 𝑥𝑗). Noting 𝑓 ′(𝛽𝑖) =

∏︀
𝑗 ̸=𝑖(𝛽𝑖 − 𝛽𝑗), the above equals

1

𝐷(𝑥1, . . . , 𝑥𝑛)

𝑛∑︁
𝑖=1

𝑥𝑘𝑖𝐷(𝑥1, . . . , 𝑥𝑛)∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)⏟  ⏞  
𝑃 (𝑥1,...,𝑥𝑛)

evaluated at (𝑥1, . . . , 𝑥𝑛) = (𝛽1, . . . , 𝛽𝑛). Consider 𝑃 . Note 𝑃 is zero whenever 𝑥𝑖 = 𝑥𝑗 for
some 𝑖 ̸= 𝑗 (All except two terms are 0; those two cancel.). So 𝑥𝑖 − 𝑥𝑗 | 𝑃 , and 𝐷 | 𝑃 .
However, 𝑃 has degree less than (𝑛−1)𝑛

2
when 𝑘 < 𝑛− 1, so must be 0. If 𝑘 = 𝑛− 1 then we

know 𝑃 is a constant multiple of 𝐷, look at the coefficient of any term to see that in fact
𝑃 = 𝐷.

It suffices to prove

(𝑓 ′
𝛽(𝛽)

−1) = 𝐵* :=
⌋︀
𝑏 ∈ 𝐿 : tr𝐿/𝐾(𝑏𝑏

′) ∈ 𝐴 for all 𝑏′ ∈ 𝐵
{︀
.

The condition inside is equivalent to

tr(𝑏𝛽𝑗) ∈ 𝐴, 0 ≤ 𝑗 ≤ 𝑛− 1.

(because 𝐵 =
⨁︀
𝐴𝛽𝑖.) But by the lemma,

tr

(︃
𝑛−1∑︁
𝑖=0

𝑎𝑖
𝛽𝑖+𝑗

𝑓 ′(𝛽)

)︃
= 𝑎𝑛−1−𝑗 + · · · (>).

“Triangular.” Therefore

𝐵* =
⨁︁

𝐴 · 𝛽𝑖

𝑓 ′
𝛽(𝛽)

=

(︃
1

𝑓 ′
𝛽(𝛽)

)︃
.

Good exercise: Compute DQ𝑝(𝜁𝑝𝑛 )/Q𝑝 . This is tamely ramified only at 𝑛 = 1. Totally
ramified tower. The first step is (Z/𝑝)×, tame, everything else is 𝑝, wild.

(Note 𝐺(Q(𝜁𝑝𝑛)/Q) ∼= (Z/𝑝𝑛Z)× because 𝐷𝑝
∼= 𝐺(Q𝑝(𝜁𝑝𝑛)/Q𝑝).

4 Ramification groups

Local, CDVR setup.

Definition 22.4.1: Let 𝑖 ≥ −1. The 𝑖th ramification group is

𝐺𝑖 = {𝜎 ∈ 𝐺 : 𝑏 ∈ O𝐿, 𝑣𝐿(𝜎(𝑏)− 𝑏) ≥ 𝑖+ 1}
= {𝜎 ∈ 𝐺 : 𝑣𝐿(𝜎(𝛽)− 𝛽) ≥ 𝑖+ 1} .
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Observe 𝐺−1 = 𝐺, that 𝐺𝑖 ⊇ 𝐺𝑗 for 𝑖 ≤ 𝑗 and
⋂︀
𝑖≥−1𝐺𝑖 = {1}. Also note for all 𝑖, 𝐺𝑖 is

a normal subgroup of 𝐺 because

𝐺𝑖 = ker(𝐺→ Aut(O𝐿/(𝜋
𝑖+1
𝐿 )).

In particular, 𝐺𝑖/𝐺𝑖+1 is a group. Furthermore 𝐺𝑖 is defined even when 𝑖 is not an integer;
we have 𝐺𝑖 = 𝐺⌈𝑖⌉.

We will study {𝐺𝑖}𝑖≥−1. We want

1. A formula for 𝑣𝐿(D𝐿/𝐾). If at most tame, equals 𝑒− 1, else greater.

2. Look at quotients 𝐺𝑖/𝐺𝑖+1. Abelian, cyclic, 𝑝-group, prime-to-𝑝?

4.1 D𝐿/𝐾 and 𝑖𝐺

Definition 22.4.2: Let 𝜎 ∈ 𝐺(𝐿/𝐾). Define 𝑖𝐺 : 𝐺→ N0 ∪ {∞} by

𝑖𝐺(𝜎) = min {𝑣𝐿(𝜎(𝛽)− 𝛽) : 𝛽 ∈ 𝐵} .

Note that if 𝐵 = 𝐴[𝛽], then

𝑖𝐺(𝜎) = 𝑣𝐿(𝜎(𝛽)− 𝛽).

Observe

∙ 𝑖𝐺(𝜎) =∞ iff 𝜎 = 1.

∙ 𝐺𝑖 = {𝜎 ∈ 𝐺 : 𝑖𝐺(𝜎) ≥ 𝑖+ 1}, so 𝜎 ∈ 𝐺𝑖 iff 𝑖𝐺(𝜎) ≥ 𝑖+ 1, so doesn’t depend on choice
of generator.

Note
𝑖𝐺(𝜏𝜎𝜏

−1) = 𝑖𝐺(𝜎), 𝜎, 𝜏 ∈ 𝐺.
Because 𝐺𝑖 �𝐺. Note

𝑖𝐺(𝜎𝜏) ≥ min(𝑖𝐺(𝜎), 𝑖𝐺(𝜏)).

Because

𝑖𝐺(𝜎𝜏) = 𝑣𝐿(𝜎𝜏𝛽 − 𝛽)
≥ min(𝑣𝐿(𝜎𝜏(𝛽)− 𝜏(𝛽)), 𝑣𝐿(𝜏(𝛽)− 𝛽))

= min(𝑖𝐺(𝜎), 𝑖𝐺(𝜏)).

since O𝐿 = O𝐾 [𝛽] = O𝐾 [𝜏𝛽].

Proposition 22.4.3:
𝑣(D𝐿/𝐾) =

∑︁
𝜎 ̸=1

𝑖𝐺(𝜎) =
∑︁
𝑖≥0

(|𝐺𝑖| − 1).

(a = (𝜋𝑖𝐿) =⇒ 𝑣𝐿(𝑎) = 𝑖.)
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Proof. Let 𝑓(𝑥) be the minimal polynomial for 𝛽. Letting 𝑛 = [𝐿 : 𝐾],

𝑓(𝑥) =
𝑛∏︁
𝑖=1

(𝑋 − 𝛽𝑖).

Now

D𝐿/𝐾 = (𝑓 ′(𝛽))

=
∏︁
𝑖>1

(𝛽 − 𝛽𝑖)

=
∏︁
𝜎 ̸=1

(𝛽 − 𝜎(𝛽)).

Take 𝑣𝐿 for (1).

𝑣𝐿(D𝐿/𝐾) =
∑︁
𝜎 ̸=1

𝑣𝐿(𝛽 − 𝜎(𝛽))⏟  ⏞  
𝑖𝐺(𝜎)

.

For (2), consider multiset ⨆︁
𝑖≥0

(𝐺𝑖∖{1}).

finite. Note 𝜎 ∈ 𝐺 appears in 𝐺0, 𝐺1, . . . , 𝐺𝑖𝐺(𝜎)−1, there’s 𝑖𝐺(𝜎). Compute the size of the
multiset in two different ways ∑︁

𝑖≥0

(|𝐺𝑖| − 1) =
∑︁
𝜎 ̸=1

𝑖𝐺(𝜎).

Remark: 𝑣𝐿(D𝐿/𝐾) = 𝑒− 1 iff 𝐺1 = {1} (because |𝐺0| = 𝑒, iff 𝐿/𝐾 is at most tame.
Let’s understand D𝐿/𝐾 , 𝑖𝐺 under sub and quotient group. Consider 𝐿/𝐿𝐻/𝐾.
First, sub.

Proposition 22.4.4: ram-grp-sub

𝑖𝐻(𝜎) = 𝑖𝐺(𝜎) for all 𝜎 ∈ 𝐻
𝐻𝑖 = 𝐻 ∩𝐺𝑖.

Proof. Same generator works for larger ring. O𝐿 = O𝐾 [𝛽] =⇒ O𝐿 = O𝐾′ [𝛽]. Then true by
def.

Corollary 22.4.5:

𝑣𝐿(D𝐿/𝐾′) =
∑︁

𝜎 ̸=1,𝜎∈𝐻
𝑖𝐺(𝜎)⏟  ⏞  
𝑖𝐻(𝜎)

.

For quotient.
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Proposition 22.4.6: igh-ig For 𝐻 �𝐺, 𝐺 ̸= 1 ∈ 𝐺/𝐻,

𝑖𝐺/𝐻(𝜎) =
1

𝑒𝐿/𝐾′

∑︁
𝜎∈𝐺, 𝜎 mod 𝐻=𝜎

𝑖𝐺(𝜎).

Corollary 22.4.7:

𝑣𝐾′/𝐾(D𝐾′/𝐾) =
1

𝑒′𝐿/𝐾

∑︁
𝜎 ̸∈𝐻,𝜎∈𝐺

𝑖𝐺(𝜎).

Because by prev.
∑︀
𝜎 ̸=1 𝑖𝐺/𝐻(𝜎) equals RHS by prop.

Proof. Choose 𝛼 ∈ O𝐾′ and 𝛽 ∈ O𝐿 such that O𝐾′ = O𝐾 [𝛼
′] and O𝐿 = O𝐾 [𝛽]. Then

𝑒𝐿/𝐾′𝑖𝐺/𝐻(𝜎) = 𝑒𝐿/𝐾′𝑣𝐾′(𝜎𝛼′ − 𝛼′)

= 𝑣𝐿(𝜎𝛼
′ − 𝛼′).∑︁

𝜎∈𝐺
= 𝑖𝐺(𝜎)

=
∑︁
𝜏∈𝐻

𝑖𝐺(𝜎𝜏)⏟  ⏞  
𝑣𝐿(𝜎𝜏𝛽−𝛽)

= 𝑣𝐿

(︃∏︁
𝜏∈𝐻

(𝜎𝜏(𝛽)− 𝛽)
)︃
= 𝑏𝑒𝑓𝑜𝑟𝑒.

fixing 𝜎.
It suffices to prove (𝜎𝛼′ − 𝛼′) =

∏︀
𝜏∈𝐻(𝜎𝜏(𝛽)− 𝛽). Call LHS, RHS a, b.

1. a | b: Consider
𝑔(𝑋) =

∏︁
𝜏∈𝐻

(𝑋 − 𝜏(𝛽)) ∈ O𝐾′ [𝑥].

minimal polynomial of 𝛽/𝐾 ′.

𝜎𝑔(𝑋) =
∏︁
𝜏∈𝐻

(𝑋 − 𝜎𝜏(𝛽)).

Observe 𝜎𝛼′ − 𝛼′ divides coefficients of 𝜎𝑔(𝑋) − 𝑔(𝑋). Because for all 𝑎 ∈ O𝐾′ ,
𝑎 = 𝑎0 + 𝑎1𝛼

′, 𝜎𝛼 = 𝑎0 + 𝑎1𝜎𝛼
′ + · · · . Note 𝜎𝛼′ − 𝛼′ | 𝜎𝛼′𝑖 − 𝛼′𝑖. Note 𝑔(𝛽) = 0. Take

𝑥 = 𝛽 to get
𝜎𝛼′ − 𝛼′ | 𝜎𝑔(𝛽)− 𝑔(𝛽)⏟  ⏞  

0

.

2. b | a. SWITCH 𝑓 and 𝑔 below. Cook up a minimal polynomial to show divisibility.
𝛼′ = O𝐾 [𝛽] = O𝐿. Write

𝛼′ =
𝑛−1∑︁
𝑖=0

𝑎𝑖𝛽
𝑖 =: 𝑔(𝛽).

𝑎𝑖 ∈ O𝐾 . 𝑔(𝑋) ∈ O𝐾 [𝑋]. Consider 𝑔(𝑋) − 𝛼′ ∈ O𝐾′ [𝑋]. By construction has 𝛽 as a
root.
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Hence plugging in 𝑥 = 𝛽,

𝑓(𝑋) | 𝑔(𝑋)− 𝛼
𝜎𝑓(𝑋) | 𝜎(𝑓(𝑋))− 𝜎(𝛼′)

𝜎𝑓(𝛽) | 𝑓(𝛽)− 𝜎(𝛼′)

giving ±𝑏 | ±𝑎.

End of unedited stuff.

4.2 Filtration of ramification groups

sec:ram-filt We know from (??) that

𝐺−1/𝐺0
∼= 𝐺/𝐼𝐿/𝐾 ∼= 𝐺(𝑙/𝑘).

In particular, if 𝑘 is finite then 𝐺−1/𝐺0 is finite cyclic and if 𝑘 = 𝑘 then 𝐺−1/𝐺0 is trivial.
From now on assume 𝑖 ≥ 0.

We aim to study the filtration

ramification-filtration-eq𝐺 ⊇ 𝐺0 ⊇ 𝐺1 ⊇ · · · . (22.2)

To do this, we first study the filtration

units-filtration-eq𝐿× ⊇ 𝑈0
𝐿 ⊇ 𝑈1

𝐿 ⊇ · · · (22.3)

where

𝑈 𝑖
𝐿 =

⎧⎨⎩O×
𝐿 , 𝑖 = 0

1 + 𝜋𝑖𝐿O𝐿, 𝑖 ≥ 1.

The quotient groups in (22.3) can be understood explicitly (Proposition 22.4.8). We will
relate the two filtrations by Proposition 22.4.10.1 From this we get several important corol-
laries about the structure of the groups 𝐺𝑠. Understanding conjugates and commutators of
elements in the 𝐺𝑠 gives us several more important properties.

Proposition 22.4.8: units-filtration Let 𝐾 be a complete field with discrete valuation (for in-
stance, a local field), 𝑘 its residue field, and m the associated maximal ideal. Then we have
isomorphisms

𝑈𝐾/𝑈
(1)
𝐾

∼=−→ 𝑘× 𝑈
(𝑚)
𝐾 /𝑈

(𝑚+1)
𝐾

∼=−→ 𝑘+

𝑢 ↦→ 𝑢 (mod m) 1 + 𝑎𝜋𝑚 ↦→ 𝑎 (mod m).

1This will be important in local class field theory, which says there is a canonical isomorphism
𝐾×/Nm𝐿/𝐾(𝐿×) ∼= 𝐺(𝐿/𝐾) if 𝐿/𝐾 is finite abelian.
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Proof. For the first just note that 1 + m is the multiplicative unit of 𝐴/m. For the second,
note (1 + 𝑎𝜋𝑚)(1 + 𝑏𝜋𝑚) = 1 + (𝑎+ 𝑏)𝜋𝑚 + · · · .

To construct a map 𝐺𝑖/𝐺𝑖+1 → 𝑈 𝑖
𝐿/𝑈

𝑖+1
𝐿 , we first need the following characterization of

𝐺𝑖.

Lemma 22.4.9: gi-quotient-crit Suppose 𝐿/𝐾 is a finite Galois extension of local fields, 𝜋 is a
uniformizer of 𝐿, and 𝐺 = 𝐺(𝐿/𝐾). For 𝑖 ∈ N0 and 𝜎 ∈ 𝐺0,

gi-quotient-crit-eq𝜎 ∈ 𝐺𝑖 ⇐⇒
𝜎(𝜋)

𝜋
≡ 1 (mod 𝜋𝑖𝐿). (22.4)

Proof. The RHS is equivalent to

gi-quotient-crit1𝜎(𝜋)− 𝜋 ≡ 0 (mod 𝜋𝑖+1
𝐿 ). (22.5)

We need to show this is equivalent to

gi-quotient-crit2𝜎(𝛽)− 𝛽 ≡ 0 (mod 𝜋𝑖+1
𝐿 ) for all 𝛽 ∈ 𝐿. (22.6)

It is clear that (22.6) implies (22.5).
First suppose 𝐿/𝐾 is totally ramified. Then O𝐿 = O𝐾 [𝜋] by Proposition 22.3.6, giving

that (22.5) implies (22.6).
Now consider the general case. We know 𝐿/𝐿𝐼𝐿/𝐾 is totally ramified (Theorem 15.15.7.2),

so the theorem holds for 𝐿/𝐿𝐼𝐿/𝐾 . Now, by Proposition 22.4.4, 𝐺𝑖(𝐿/𝐿
𝐼𝐿/𝐾 ) = 𝐺𝑖 ∩ 𝐼𝐿/𝐾 =

𝐺𝑖. Furthermore, since 𝜋𝐿 is the same for 𝐿/𝐾 and 𝐿/𝐿𝐼𝐿/𝐾 , the right hand-side of (22.4)
does not change whether we are talking about 𝐿/𝐾 or 𝐿/𝐿𝐼𝐿/𝐾 . Hence the theorem for
𝐿/𝐿𝐼𝐿/𝐾 implies the theorem for 𝐿/𝐾.

Proposition 22.4.10: ramification-to-unit-group There is a well-defined injective group homomor-
phism

𝜃𝑖 : 𝐺𝑖/𝐺𝑖+1 →˓ 𝑈 𝑖
𝐿/𝑈

𝑖+1
𝐿

𝜎 ↦→ 𝜎(𝜋)

𝜋

that is independent of the choice of uniformizer 𝜋.

Proof. Note that

ram-unit1𝑢 ∈ O𝐿, 𝜎 ∈ 𝐺𝑖 =⇒ 𝜎(𝑢) ≡ 𝑢 (mod 𝜋𝑖+1) =⇒ 𝜎(𝑢)

𝑢
∈ 𝑈 𝑖+1

𝐿 . (22.7)

First we show 𝜃𝑖 is a group homomorphism 𝐺𝑖 → 𝑈 𝑖
𝐿/𝑈

𝑖+1
𝐿 . We have

𝜎𝜏(𝜋)

𝜋
=
𝜎(𝜋)

𝜋
· 𝜏(𝜋)
𝜋
·
𝜎
(︁
𝜏(𝜋)
𝜋

)︁
𝜏(𝜋)
𝜋

.
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Since 𝜏(𝜋)
𝜋
∈ O𝐿 and 𝜏 ∈ 𝐺𝑖, (22.7) gives

𝜎( 𝜏(𝜋)
𝜋 )

𝜏(𝜋)
𝜋

∈ 𝑈 𝑖+1
𝐿 .

Lemma 22.4.9 gives that the kernel is exactly 𝐺𝑖+1, so 𝜃𝑖 induces an injective map
𝐺𝑖/𝐺𝑖+1 → 𝑈 𝑖

𝐿/𝑈
𝑖+1
𝐿 .

Now suppose 𝜋′ is another uniformizer. Write 𝜋′ = 𝑢𝜋 with 𝑢 ∈ O×
𝐿 . Then 𝜎 ∈ 𝐺𝑖

and (22.4.9) give

𝜎(𝜋′)

𝜋′ =
𝜎(𝜋)

𝜋
· 𝜎(𝑢)

𝑢⏟  ⏞  
∈𝑈 𝑖+1

𝐿

.

Corollary 22.4.11: 1. 𝐺0/𝐺1 is finite cyclic.

2. If char(𝑙) = 0 then 𝐺1 = {1}; if char(𝑙) = 𝑝 ̸= 0, then for each 𝑖 ≥ 1,

𝐺𝑖/𝐺𝑖+1 = (Z/𝑝Z)𝑛𝑖

for some 𝑛𝑖.

Proof. 1. Proposition 22.4.10 and 22.4.8 give 𝐺0/𝐺1 →˓ 𝑈𝐿/𝑈
1
𝐿
∼= 𝑙×. But any finite

subgroup of a finite field must be cyclic.

2. For char(𝑙) = 0, 𝑙+ has no finite nontrivial subgroup. For char(𝑙) = 𝑝, we have
𝐺𝑖/𝐺𝑖+1 →˓ 𝑈 𝑖

𝐿/𝑈
𝑖+1
𝐿
∼= 𝑙+. Just note 𝑙+ is a an abelian 𝑝-group.

Corollary 22.4.12: cor:G(local)=solvable 𝐺0 = 𝐼𝐿/𝐾 is solvable. If 𝐺(𝑙/𝑘) = 𝐺−1/𝐺0 is solvable
(in particular, if 𝑘 is finite) then 𝐺 is solvable.

Proof. The series

𝐺0 ⊇ 𝐺1 ⊇ · · ·

is a solvable series for 𝐺.

4.3 First ramification group

Recall that we defined 𝐺0 = 𝐼𝐿/𝐾 so that we can split 𝐿/𝐾 into two parts: 𝐿/𝐿𝐼𝐿/𝐾 is
totally ramified while 𝐿𝐼𝐿/𝐾/𝐿 is unramified. We can further split the extension 𝐿/𝐿𝐼𝐿/𝐾

into a wildly ramified and tamely ramified part.

Definition 22.4.13: Define the wild inertia group and tame inertia group to be

𝐺1 = 𝐼wild
𝐿/𝐾

𝐺0/𝐺1 = 𝐼tame
𝐿/𝐾 .
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Theorem 22.4.14: The extension 𝐿/𝐿
𝐼wild
𝐿/𝐾 is wildly ramified with Galois group 𝐺1 = 𝐼wild

𝐿/𝐾

and the extension 𝐿
𝐼wild
𝐿/𝐾/𝐿

𝐼tame
𝐿/𝐾 is tamely ramified with Galois group 𝐺1/𝐺0.

𝐿

𝐼wild
𝐿/𝐾wild ramification

𝐿
𝐼wild
𝐿/𝐾

𝐼tame
𝐿/𝐾tame ramification

𝐿𝐼𝐿/𝐾

𝐺/𝐼𝐿/𝐾=𝐺(𝑙/𝑘)unramified

𝐾

Moreover, 𝐺1 is the unique p-Sylow subgroup of 𝐺0, and

𝐺0 = 𝐺1 o𝐺0/𝐺1.

Proof. Note 𝐺0/𝐺1 →˓ 𝑘× while 𝐺𝑗/𝐺𝑗+1 →˓ 𝑘+ for 𝑗 ≥ 1; we have 𝑝 - |𝑘×| while |𝑘| is a
power of 𝑝; and |𝐺1| =

∏︀
1≤𝑗≪∞ |𝐺𝑗/𝐺𝑗+1|. Hence 𝐺1 is a p-SSG of 𝐺0; it is unique since

it is normal and all 𝑝-SSGs are conjugate. Since the indices of the field extensions are the
orders of the Galois groups, the result on tame and wild ramification follow.

Now we prove the semidirect product. This follows directly from the Schur-Zassenhaus
Lemma: If 𝐻 is a normal Hall subgroup of a finite group 𝐺, then 𝐻 has a complement, and
hence 𝐺 = 𝐻 o𝐺/𝐻. (A Hall subgroup 𝐻 ⊆ 𝐺 is a group such that gcd(|𝐻|, [𝐺 : 𝐻]) = 1.)

The following is an alternate proof. We show the exact sequence

1 // 𝐺1
// 𝐺0

// 𝐺0/𝐺1
// 1

𝐼wild
𝐿/𝐾 𝐼𝐿/𝐾 𝐼tame

𝐿/𝐾

splits by showing there exists a right inverse 𝐺0/𝐺1 → 𝐺0 of the projection 𝐺0 → 𝐺1.
2 Since

𝐺0/𝐺1 is cyclic of order 𝑟 := |𝑙×|, it suffices to find a lift 𝜎 ∈ 𝐺0 of the generator 𝜎 ∈ 𝐺0/𝐺1

with order 𝑟. Write |𝐺0| = 𝑝𝑠𝑟. Let

𝜎 = 𝜎′𝑝𝜙(𝑟)𝑡

where 𝑡 is such that 𝜙(𝑟)𝑡 ≥ 𝑠. Note 𝑟 - 𝑝 implies 𝑝𝜙(𝑟)𝑡 ≡ 1 (mod 𝑟). Since 𝜎′𝑟 ∈ 𝐺1, this
implies 𝜎 is still a lift of 𝜎. Moreover 𝜙(𝑟)𝑡 ≥ 𝑠 gives that its order is 𝑟, so it is the desired
lift.

Proposition 22.4.15: conjugate-rg For 𝑖 ≥ 1, 𝜎 ∈ 𝐺0, 𝜏 ∈ 𝐺𝑖/𝐺𝑖+1,

𝜃𝑖(𝜎𝜏𝜎
−1) = 𝜃0(𝜎)

𝑖𝜃𝑖(𝜏).

2The image of 𝐺0/𝐺1 is a complement 𝑄 of 𝐺1 in 𝐺0; the elements of 𝑄 act on 𝐺1 by conjugation—this
is what the semidirect product means.
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(Here 𝜃0(𝜎)
𝑖 is thought of as in 𝑈𝐿/𝑈

1
𝐿
∼= 𝑙×, and 𝜃𝑖(𝜏) ∈ 𝑈 𝑖

𝐿/𝑈
𝑖+1
𝐿
∼= 𝑙+.)

Proof. It is slightly more convenient to work additively rather than multiplicatively, so we
consider

𝜃′𝑖 : 𝐺𝑖/𝐺𝑖+1 →˓ 𝑈 𝑖
𝐿/𝑈

𝑖+1
𝐿
∼= (𝜋𝑖)/(𝜋𝑖+1)

𝜎 ↦→ 𝜎(𝜋)

𝜋
↦→

⎧⎨⎩𝜎(𝜋)
𝜋
, 𝑖 = 0

𝜎(𝜋)
𝜋
− 1, 𝑖 ≥ 1,

where 𝜋 is any uniformizer.
Define

𝜋′ = 𝜎−1(𝜋)

and let 𝑎 ∈ O×
𝐿 be such that

𝜏(𝜋′) = 𝜋′ + 𝑎𝜋′𝜋𝑖.

Note that

𝜃′𝑖(𝜏) =
𝜏(𝜋′)

𝜋′ = 𝑎𝜋𝑖.

Now we calculate, modulo (𝜋)𝑖+1, that

𝜃′𝑖(𝜎𝜏𝜎
−1) =

𝜎𝜏𝜎−1(𝜋)

𝜋
− 1

=
𝜎𝜏(𝜋′)

𝜋
− 1

=
𝜎(𝜋′ + 𝑎𝜋′𝜋𝑖)

𝜋
− 1

=
𝜋 + 𝜎(𝑎𝜋′𝜋𝑖)

𝜋
− 1

=
𝑎𝜎(𝜋′𝜋𝑖)

𝜎(𝜋′)
since 𝜎(𝑎) ≡ 𝑎 (mod 𝜋𝑖+1)

=

�
𝜎(𝜋)

𝜋

�𝑖
𝑎𝜋𝑖

= 𝜃′0(𝜎)
𝑖𝜃′𝑖(𝜏).

Proposition 22.4.16: If 𝜎 ∈ 𝐺𝑖 and 𝜏 ∈ 𝐺𝑗, 𝑖, 𝑗 ≥ 1, then

𝜎𝜏𝜎−1𝜏−1 ∈ 𝐺𝑖+𝑗+1.

Proof.

Corollary 22.4.17: For 𝑖 ≥ 1,

𝜎𝜏𝜎−1𝜏−1 ∈ 𝐺𝑖+1 ⇐⇒ 𝜎𝑖 ∈ 𝐺1 or 𝜏 ∈ 𝐺𝑖+1.
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Proof. We have

𝜎𝜏𝜎−1𝜏−1 ∈ 𝐺𝑖+1 ⇐⇒ 𝜎𝜏𝜎−1 = 𝜏 in 𝐺𝑖/𝐺𝑖+1

⇐⇒ 𝜃′𝑖(𝜎𝜏𝜎
−1) = 𝜃′𝑖(𝜏) in (𝜋𝑖)/(𝜋𝑖+1)

⇐⇒ 𝜃′𝑖(𝜏)(𝜃
′
0(𝜎)

𝑖 − 1) = 0 by Proposition 22.4.15

⇐⇒ 𝜃′𝑖(𝜏) = 0 or 𝜃′0(𝜎
1) = 1

⇐⇒ 𝜏 ∈ 𝐺𝑖+1 or 𝜎𝑖 ∈ 𝐺1.

Corollary 22.4.18: jump-multiple-go/g1 Suppose 𝐺 is abelian and |𝐺0/𝐺1| - 𝑖. Then 𝐺𝑖 = 𝐺𝑖+1.

Proof. Write 𝐺0/𝐺1 = ⟨𝜎⟩ where 𝑟 = |𝐺0/𝐺1|. Since 𝑟 - 𝑖, 𝜎𝑖 ̸= 1; for any lift 𝜎 ∈ 𝐺0 of 𝜎,
𝜎𝑖 ̸∈ 𝐺1. Since 𝐺 is abelian, we get for all 𝜏 ∈ 𝐺𝑖, 𝜎𝜏𝜎

−1𝜏−1 = 1. By the previous corollary,
noting 𝜎𝑖 ̸∈ 𝐺1, we must have 𝜏 ∈ 𝐺𝑖+1.

Definition 22.4.19: A jump for 𝐿/𝐾 is an integer 𝑖 such that

𝐺𝑖 ̸= 𝐺𝑖+1.

Corollary 22.4.18 tells us that jumps are divisible by |𝐺0/𝐺1|.

5 Herbrand’s Theorem

5.1 Functions 𝜙 and 𝜓

Note that ramification groups behave nicely under taking subgroups (i.e. passing from
𝑀/𝐾 to 𝑀/𝐿), by Proposition 22.4.4. However, the indices are screwed up when passing
to quotient groups (i.e. passing from 𝑀/𝐾 to 𝑀/𝐿). We calculate exactly how the index
changes (Herbrand’s Theorem 12.1), and use it to define a different numbering scheme that
is invariant under passing to quotient groups.

It is important to know how ramification groups behave under quotients because this
gives a compatible system that allows us to look at larger and larger field extensions, i.e.
pass to the inverse limit.

Definition 22.5.1: Define 𝜙𝐿/𝐾 : R≥0 → R≥0 by

𝜙𝐿/𝐾(𝑢) =
∫︁ 𝑢

0

1

[𝐺0 : 𝐺𝑡]
𝑑𝑡

(recall 𝐺𝑢 = 𝐺⌈𝑢⌉) and extend 𝜙𝐿/𝐾 to R≥−1 → R≥−1 by

𝜙(𝑢) = 𝑢, −1 ≤ 𝑢 ≤ 0.
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This is a piecewise linear increasing function with 𝜙𝐿/𝐾(−1) = −1 and with derivative
at least 1

|𝐺0| , so it is a bijection.

Definition 22.5.2: Define 𝜓𝐿/𝐾 : R−1 → R−1 by 𝜓𝐿/𝐾 = 𝜙−1
𝐿/𝐾 . Define the upper num-

bering filtration by
𝐺𝑣 := 𝐺𝜓𝐿/𝐾(𝑣), 𝑣 ≥ −1.

5.2 Transitivity of 𝜙 and 𝜓

The function 𝜙𝐿/𝐾 gives the reindexing when we pass to the quotient Galois group.

Theorem 22.5.3 (Herbrand’s Theorem): herbrand-thm Let 𝐿/𝐾 ′/𝐾 be finite Galois extension
with separable residue field extension. For all 𝑢 ≥ −1,

𝐺𝑢𝐻/𝐻 = (𝐺/𝐻)𝜙𝐿/𝐾′ (𝑢).

Here, 𝐺𝑢 is the ramification group of 𝐿/𝐾 and (𝐺/𝐻)𝜙𝐿/𝐾′ (𝑢) is the ramification group

of 𝐾 ′/𝐾.
We will need several lemmas. First we relate the function 𝑖𝐺/𝐻(𝜎) and 𝑖𝐺 evaluated at

the lifts of 𝜎 in 𝐺.

Lemma 22.5.4: igh-ig2 For 𝜎 ∈ 𝐺/𝐻, 𝑗(𝜎) = max𝜎∈𝜎𝐻 𝑖𝐺(𝜎),

𝑖𝐺/𝐻(𝜎)− 1 = 𝜙𝐿/𝐾′(𝑗(𝜎)− 1).

Thus applying 𝜙𝐿/𝐾 has the effect of “turning” 𝑖𝐺 into 𝑖𝐺/𝐻 . By writing out the criterion
for 𝜎 ∈ 𝐺𝑢 or (𝐺/𝐻)𝑢 in terms of 𝑖𝐺 and 𝑖𝐺/𝐻 , respectively, we will get Herbrand’s Theorem.

Proof. Pick 𝜎0 ∈ 𝐺 mapping to 𝜎 such that 𝑖𝐺(𝜎0) = 𝑗(𝜎). Then by Proposition 22.4.6,

herbrand-pf1𝑖𝐺/𝐻(𝜎) =
1

𝑒𝐿/𝐾′

∑︁
𝜎∈𝜎𝐻

𝑖𝐺(𝜎) =
1

𝑒𝐿/𝐾′

∑︁
𝜏∈𝐻

𝑖𝐺(𝜎0𝜏). (22.8)

We claim that

𝑖𝐺(𝜎0𝜏) = min(𝑖𝐺(𝜎0), 𝑖𝐺(𝜏)) = min(𝑗(𝜎), 𝑖𝐺(𝜏))

for all 𝜏 ∈ 𝐻. Indeed, by the nonarchimedean inequality,

𝑖𝐺(𝜎0𝜏) = 𝑣𝐿(𝜎0𝜏(𝛽)− 𝛽) ≥ min(𝑣𝐿(𝜎0𝜏(𝛽)− 𝜏(𝛽)), 𝑣𝐿(𝜏(𝛽)− 𝛽)) = min(𝑖𝐺(𝜎0), 𝑖𝐺(𝜏)).

Consider two cases.

1. 𝑖𝐺(𝜏) = 𝑖𝐻(𝜏) ≥ 𝑖𝐺(𝜎0). The above gives

𝑖𝐺(𝜎0𝜏) ≥ min(𝑖𝐺(𝜎0), 𝑖𝐺(𝜏)) ≥ 𝑖𝐺(𝜎0).

Equality holds by the maximality assumption on 𝜎0.
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2. 𝑖𝐺(𝜏) < 𝑖𝐺(𝜎0). Then

𝑖𝐺(𝜎0𝜏) = min(𝑖𝐺(𝜎0), 𝑖𝐺(𝜏)) = 𝑖𝐺(𝜏).

The RHS of (22.8) then equals 1
𝑒𝐿/𝐾′

∑︀
𝜏∈𝐻 min(𝑖𝐺(𝜎0), 𝑖𝐺(𝜏)); the result then follows from

the next lemma.

Lemma 22.5.5:

𝜙𝐿/𝐾(𝑢) =
1

𝑒𝐿/𝐾

∑︁
𝜎∈𝐺

min(𝑗(𝜎), 𝑢+ 1)− 1.

Proof. Since both sides are piecewise linear functions, and both sides equal 𝑢 for −1 ≤ 𝑢 ≤ 0,
it suffices to show their derivatives (slopes) are equal for 𝑢 > 0.

If 𝑖 − 1 < 𝑢 < 𝑖 where 𝑖 ∈ N, then the slope of the LHS is 1
[𝐺:𝐺𝑖]

. For the RHS, since

𝑖𝐺(𝜎) is an integer, each term is either 𝑖𝐺(𝜎) or 𝑢+1; each term where 𝑢+1 is the minimum
contributes to the slope. Hence the slope on the RHS is

1

𝑒𝐿/𝐾
|{𝜎 ∈ 𝐺 : 𝑢+ 1 < 𝑖𝐺(𝜎)}| =

1

𝑒𝐿/𝐾
|{𝜎 ∈ 𝐺 : 𝑖𝐺(𝜎) ≥ 𝑖+ 1}| = |𝐺𝑖|

𝑒𝐿/𝐾
=

1

[𝐺0 : 𝐺𝑖]
,

as needed.

Proof of Theorem 22.5.3. We have the following string of equivalences.

1. 𝜎 ∈ 𝐺𝑢𝐻/𝐻 = 𝐺𝑢/𝐺𝑢 ∩𝐻

2. There is 𝜎 ∈ 𝐺 lifting 𝜎 so that 𝜎 ∈ 𝐺𝑢.

3. 𝑗𝐺(𝜎)− 1 ≥ 𝑢.

4. 𝜙𝐿/𝐾′(𝑗𝐺(𝜎)− 1) ≥ 𝜙𝐿/𝐾′(𝑢).

5. 𝑖𝐺/𝐻(𝜎)− 1 ≥ 𝜙𝐿/𝐾′(𝑢).

6. 𝜎 ∈ (𝐺/𝐻)𝜙𝐿/𝐾′ (𝑢).

We have (3) ⇐⇒ (4) because 𝜙𝐿/𝐾′ is monotonically increasing and (4) ⇐⇒ (5) by
Lemma 22.5.4.

Now we prove transitivity for 𝜙 and 𝜓.

Proposition 22.5.6: phi-psi-trans

𝜙𝐿/𝐾 = 𝜙𝐾′/𝐾 ∘ 𝜙𝐿/𝐾′

𝜓𝐿/𝐾 = 𝜓𝐿/𝐾′ ∘ 𝜓𝐾′/𝐾 .
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Proof. It suffices to prove the first equation; the first implies the second since 𝜙 and 𝜓 are
inverse. For −1 ≤ 𝑢 ≤ 0 both sides equal 𝑢. Thus it suffices to show the derivatives of both
sides are equal for 𝑢 ≥ 0. For 𝑢 ̸∈ Z, the derivative on the LHS is

𝜙′
𝐿/𝐾(𝑢) =

1

[𝐺0 : 𝐺𝑢]
.

By the chain rule, the slope on the RHS is

𝜙′
𝐾′/𝐾(𝜙𝐿/𝐾′(𝑢))𝜙′

𝐿/𝐾′(𝑢) =
|(𝐺/𝐻)𝜙𝐿/𝐾′ (𝑢)|
|(𝐺/𝐻)0|

|𝐻𝑢|
|𝐻0|

=
|𝐺𝑢𝐻/𝐻||𝐻𝑢|
𝑒𝐾′/𝐾𝑒𝐿/𝐾′

by Herbrand’s Theorem 12.1

=
|𝐺𝑢/𝐻 ∩𝐺𝑢||𝐻𝑢|

𝑒𝐿/𝐾

=
|𝐺𝑢|
|𝐺0|

using 𝐻 ∩ 𝐺𝑢 = 𝐻𝑢 (Proposition 22.4.4) and multiplicativity of ramification index. The
derivatives are equal, as needed.

Finally, we prove the most important consequence of Herbrand’s Theorem: namely, by
using the upper numbering (i.e. numbering using the inverse of 𝜙𝐿/𝐾), quotients of ramifi-
cation groups are preserved.

Proposition 22.5.7: For all 𝑣 ≥ −1,

𝐺𝑣𝐻/𝐻 = (𝐺/𝐻)𝑣.

Proof. By Herbrand’s Theorem 12.1 and transitivity of 𝜓 (Proposition 22.5.6) (𝜓𝐿/𝐾 =
𝜓𝐿/𝐾′ ∘ 𝜓𝐾′/𝐾), we get

𝐺𝑣𝐻/𝐻 = 𝐺𝜓𝐿/𝐾(𝑣)𝐻/𝐻

= (𝐺/𝐻)𝜙𝐿/𝐾′ (𝜓𝐿/𝐾(𝑣)) = (𝐺/𝐻)𝜓𝐾′/𝐾(𝑣) = (𝐺/𝐻)𝑣.

We can now define upper numbering for infinite algebraic extensions 𝐿/𝐾.

Definition 22.5.8: Define

𝐺(𝐿/𝐾)𝑣 := lim←−
𝐾′/𝐾 finite Galois

𝐺(𝐾 ′/𝐾)𝑣.
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6 Hasse-Arf Theorem

We have two different filtrations, the lower numbering filtration {𝐺𝑢}𝑢≥−1 and {𝐺𝑣}𝑣≥−1.

Definition 22.6.1: A jump is 𝑢 such that 𝐺𝑢 ̸= 𝐺𝑢+𝜀 or 𝑣 such that 𝐺𝑣 ̸= 𝐺𝑣+𝜀.

They are the 𝑥 and 𝑦-coordinates of jump points, i.e. where the slope of 𝜙 changes.
Note a jump 𝑢 ∈ Z since 𝐺𝑢 = 𝐺⌈𝑢⌉. Moreover, 𝑢 is a jump for the lower numbering iff

𝑣 = 𝜙𝐿/𝐾(𝑢) is a upper numbering, because 𝜙, 𝜓 are monotonically increasing.

Theorem 22.6.2 (Hasse-Arf Theorem): If 𝐺 is finite abelian, then the jumps 𝑣 are integers.

In the cyclotomic case, 𝐺 was abelian.

Remark 22.6.3: There is a nonabelian example where 𝑣 ̸∈ Z. (See HW.)

We postpone the proof. Applications.

1. Used in local class field theory.

2. “Conductor of Galois representations” are in Z, not just in Q. Finite 𝐿/𝐾, 𝐺(𝐿/𝐾)→
GL𝑛(C).
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Chapter 23

Geometric algebraic number theory

gant In this chapter we answer the following two questions.

1. Suppose, for every place 𝑣, we are given positive reals 𝑎𝑣, all but finitely many of them
equal to 1. How many elements of 𝑥 ∈ 𝐾 satisfy

|𝑥|𝑣 ≤ 𝑎𝑣

for every 𝑣?

2. Given a generalized ideal class K (to be defined) and a number 𝐿, how many ideals
a ∈ K satisfy Na ≤ 𝐿? (What are the asymptotics as 𝐿 → ∞?) In particular, how
many integral ideals satisfy Na ≤ 𝐿?

The first question is known as the Riemann-Roch problem for number fields, because it is
analogous to the Riemann-Roch problem in algebraic geometry1: Given a curve 𝐶, and an
integer 𝑎𝑃 for every point (all but finitely many equal to 0), what is the dimension of the
space of functions 𝑓 with

ord𝑣(𝑓) ≥ −𝑎𝑃
for every 𝑃? (ord𝑣(𝑃 ) is the “order” of the zero of 𝑓 at 𝑃 .)

The second question is important because the answer will appear again when we define
𝐿-functions (because 𝐿-functions involve a sum over all ideals). This will allow us to get
“explicit” formulas for quantities of interest (class number, regulator). And because it’s not
much of a detour, we might as well answer the first question as well.

Our technique will be similar to that used in Chapters 16 and 18.

1 Generalized ideal classes

Also talk about adeles and stuff.

1We will not attempt to draw a parallel in our discussion. The reader interested in seeing the correspon-
dence should consult Neukirch [Neu99]. We follow Lang [Lan94], Chapter 6.

245



Number Theory, S23.4

Proposition 23.1.1: gen-id-class We have the following diagram

𝐼(c) // 𝐼

𝐾(c) // 𝑃 (c) // 𝑃

𝑈 // 𝑈𝐾c
// 𝑃c

𝑈c
// 𝐾c

where each square

𝐴
𝜙
// 𝐵

𝐶 // 𝐷

means 𝐶 = 𝜙−1(𝐷) and 𝐴/𝐶 ∼= 𝐵/𝐷.

Proposition 23.1.2: The group of c-ideal classes has order

ℎc =
ℎ2𝑟(c)

∏︀
p|c0 Np𝑚(p)

(︁
1− 1

Np

)︁
[𝑈 : 𝑈c]

where 𝑟(c) is the number of real places dividing c.

We will define the totient function by 𝜙(c) = 2𝑟(c)
∏︀

p|c0 Np𝑚(p)
(︁
1− 1

Np

)︁
.

2 Counting lattice points

Definition 23.2.1: A subset 𝑇 ⊆ R𝑁 is 𝑘-Lipschitz parametrizable if there exist a finite
number of Lipschitz maps 𝜙𝑗 : [0, 1]

𝑘 → 𝑇 whose images cover 𝑇 .

Theorem 23.2.2: Let 𝐿 ⊂ R𝑁 a lattice with fundamental domain 𝐹 and 𝐷 ⊂ R𝑁 a subset
whose boundary is (𝑁 − 1)-Lipschitz parametrizable. Then

| {𝑥 ∈ 𝐿 : 𝑥 ∈ 𝑡𝐷} | = Vol(D)Vol(𝐹 )𝑡𝑁 +𝑂(𝑡𝑁−1).
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3 Riemann-Roch problem

4 Asymptotics of generalized ideal classes

Definition 23.4.1: For a generalized ideal class K ∈ 𝐼(c)/𝑃c, let

𝑗(K, 𝑡) = {a ∈ K : Na ≤ 𝑡} .

Theorem 23.4.2:

𝑗(K, 𝑡) =
2𝑟(2𝜋)𝑠𝑅c

𝑤c

√
𝑑𝑘Nc

.
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Chapter 24

Class Field Theory: Introduction

intro-cft We give the main theorems of class field theory, deferring the proofs to the next five
chapters. In this chapter we’ll focus on the motivation and intuition behind the theorems.
The reader may find it helpful to read this chapter along with Chapter 29, Applications.

In Section 1 we’ll introduce the Frobenius map, which we need before we can state the
theorems of class field theory. In Section 2 we state the theorems of local class field theory.
We state two formulations of global class field theory: using ideals in Section 4 and using
ideles in Section 6, after giving the relevant background on ray class groups and ideles. The
formulation using ideals is less sophisticated to understand, but the formulation using ideles
is more useful theoretically. We’ll compare the two formulations in Section 6.1. Finally,
we’ll present a proof of the Kronecker-Weber Theorem using class field theory in Section 7.
Throughout, we’ll refer back to the cyclotomic case, because class field theory is easy to
understand in this case, and it already shows much of what’s at play.

1 Frobenius elements

sec:frobenius-elements In order to define the Artin map and state the main theorems of class field
theory, we first need to understand the Frobenius map. This map takes prime ideals inside
a field 𝐾 to automorphisms in a Galois group 𝐺(𝐿/𝐾). One reason for studying the Frobe-
nius map is that Frob𝐿/𝐾(p) gives information on how the prime ideal p splits in a Galois
extension. First, we’ll define the Frobenius element and explain what it tells us about the
splitting of primes. Next, we’ll look at the example of a cyclotomic extension, which suggests
that something deeper is going on with the Frobenius map, which we’ll attempt to explain
with class field theory.

The reader may wish to review Section 15.7, on the decomposition and inertia groups.

The results in this section will apply to both local and global fields.

Definition 24.1.1: frobenius-element Let 𝐿/𝐾 be a Galois extension with Galois group 𝐺, and
assume that the residue field 𝑘 is finite.
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1. Let P be an unramified prime of 𝐿. Define the Frobenius element

Frob𝐿/𝐾(P) = (P, 𝐿/𝐾)

to be the element 𝜎 ∈ 𝐷𝐿/𝐾(P) ⊆ 𝐺(𝐿/𝐾) that acts as the Frobenius automorphism
on the residue field 𝑙 = O𝐿/P fixing 𝑘 = O𝐾/p. In other words, letting 𝑘 = F𝑞,

𝜎𝛼 = 𝛼𝑞 for all 𝛼 ∈ 𝑙.

2. Let p be an unramified prime of 𝐾. Let P be any prime dividing p, and define
Frob𝐿/𝐾(p) = (p, 𝐿/𝐾) to be the conjugacy class of (P, 𝐿/𝐾). Equivalently (see
lemma 24.1.2),

Frob𝐿/𝐾(p) = (p, 𝐿/𝐾) := {(P, 𝐿/𝐾) | P|p}.

In the local case, when there is only one prime, we will simply write Frob𝐿/𝐾 .

Proof of existence of (P, 𝐿/𝐾). When p is unramified in 𝐿, 𝐼(P) = 1 so from Corollary 15.15.7.6,
the map 𝐷𝐿/𝐾(P)→ 𝐺(𝑙/𝑘) is an isomorphism. Thus there is a unique element of 𝐷𝐿/𝐾(P)
whose image is the Frobenius element.

To show the above definition is valid, we need to show that changing the prime above p
corresponds to conjugating the Frobenius element.

Lemma 24.1.2: lem:frob-lem Let 𝜏 ∈ 𝐺(𝐿/𝐾). Then

𝐷(𝜏P) = 𝜏𝐷(P)𝜏−1

(𝜏P, 𝐿/𝐾) = 𝜏(P, 𝐿/𝐾)𝜏−1.

Therefore (since 𝐺(𝐿/𝐾) operates transitively on the primes dividing p), the conjugacy class
of (P, 𝐿/𝐾) is equal to {(P, 𝐿/𝐾) | P|p}.

Proof. The first statement follows from the fact that if 𝐺 acts on 𝑆 and 𝐺 is the stabilizer
of 𝑠 ∈ 𝑆, then 𝑡𝐺𝑡−1 is the stabilizer of 𝑡𝑠. Recall that the decomposition group 𝐷(P) is
defined as the stabilizer of P.

For the second statement, let 𝑞 = |𝑘| and note that 𝜏 , as an automorphism, preserves
𝑞th powers. Hence for all 𝑏 ∈ O𝐿,

(𝜏(P, 𝐿/𝐾)𝜏−1)(𝑏) ≡ 𝜏(𝜏−1(𝑎)𝑞) ≡ 𝑎𝑞 (mod 𝜏(P)).

Note that if 𝐺 is abelian, then the conjugacy classes are just elements, so we can think
of (P, 𝐿/𝐾) as an element of 𝐺(𝐿/𝐾).

One of the most basic applications of the Frobenius map is to the splitting of primes in
an extension.
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Proposition 24.1.3: frob-1-split-completely Let 𝐿/𝐾 be an extension of degree 𝑛, unramified at
P | p. Then p splits into 𝑛

|⟨(P,𝐿/𝐾)⟩| factors, where ⟨(P, 𝐿/𝐾)⟩ is the subgroup of 𝐺 generated

by (P, 𝐿/𝐾).
In particular, p splits completely iff (p, 𝐿/𝐾) = 1.

Proof. Let 𝑙 and 𝑘 be the residue fields.
The Frobenius element generates the decomposition group 𝐷(P), since it acts as the

Frobenius automorphism on 𝑙/𝑘 and 𝐷(P) ∼= 𝐺(𝑙/𝑘). Hence |𝐷(P)| = | ⟨(p, 𝐿/𝐾)⟩ |. Since
p is unramified in 𝐿, 𝑒(P/p) = 1 and 𝑓(P/p) = |𝐷(P)| = | ⟨(p, 𝐿/𝐾)⟩ |. Hence, letting 𝑔 be
the number of primes above p, we have

𝑛 = [𝐿 : 𝐾] = 𝑒(P/p)⏟  ⏞  
1

𝑓(P/p)⏟  ⏞  
|⟨(P,𝐿/𝐾)⟩|

𝑔.

Then

𝑔 =
𝑛

|⟨(P, 𝐿/𝐾)⟩|
,

as needed.
In particular, p splits completely iff 𝑔 = 𝑛, iff |⟨(P, 𝐿/𝐾)⟩| = 1, iff |⟨(p, 𝐿/𝐾)⟩| = 1, i.e.

the Frobenius element (p, 𝐿/𝐾) is trivial.

Next, we’ll need a result of how the Frobenius element changes as we change the base
field.

Proposition 24.1.4: pr:frob-base-ext Suppose that 𝐿/𝐾 is an unramified Galois extension, 𝐾 ⊆
𝐾 ′ ⊆ 𝐿, and p is a prime of 𝐾 ′. Let 𝑘, 𝑘′ be the residue fields of 𝐾 and 𝐾 ′. Then

Frob𝐿/𝐾′(p) = Frob𝐿/𝐾(p)
[𝑘′:𝑘]

Note by taking the [𝑘′ : 𝑘]th power we mean that if Frob𝐿/𝐾(p) is the conjugacy class of
𝜎, then Frob𝐿/𝐾(p)

[𝑘′:𝑘] is the conjugacy class of 𝜎[𝑘′:𝑘].

Proof. By definition, the left hand side induces the |𝑘′|th power map on 𝑙, while the right
hand side induces the |𝑘| · [𝑘′ : 𝑘]th power map on 𝑙. Hence they are equal.

1.1 Examples

We calculate the Frobenius map explicitly in two examples. First, a warm-up.

Example 24.1.5: For the field extension Q(𝑖)/Q,

(𝑝,Q(𝑖)/Q) =

⎧⎨⎩complex conjugation, 𝑝 ≡ 3 (mod 4),

1, 𝑝 ≡ 1 (mod 4).
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Proof. If 𝑝 ≡ 3 (mod 4), then 𝑝 remains prime in Q(𝑖). Reference The residue fields are

𝑙 = Z[𝑖]/𝑝Z[𝑖] = F𝑝2

𝑘 = Z/𝑝Z = F𝑝.

Now (𝑝,Q(𝑖)/Q) must induce the 𝑝th power map on ℓ = F𝑝2 . Since this is not the identity,
it must be the only element of 𝐺(Q(𝑖)/Q) that is not the identity, i.e. complex conjugation.
(This does act as the 𝑝th power, since recalling 𝑝 ≡ 3 (mod 4), (𝑎+ 𝑏𝑖)𝑝 ≡ 𝑎𝑝+ 𝑏𝑝𝑖𝑝 ≡ 𝑎− 𝑏𝑖
(mod 𝑝).)

If 𝑝 ≡ 1 (mod 4), then 𝑝 splits in Q[𝑖], say into P1 and P2 where P1,P2 are complex
conjugate. Then Z[𝑖]/P1 = Z[𝑖]/P2 = Z/𝑝Z = F𝑝 so the extension of residue fields is
trivial and the Frobenius automorphism is trivial. It is induced by the identity map, so
(𝑝,Q(𝑖)/Q) = 1. (Note that in this case the decomposition group is trivial and does not
contain complex conjugation.)

We generalize the above example to cyclotomic extensions.

Example 24.1.6: cyclotomic-frobenius Let 𝐾 = Q(𝜁𝑛) where 𝜁𝑛 is a primitive 𝑛th root of unity.
Then 𝐺(𝐾/Q) ∼= (Z/𝑛Z)× by identifying 𝑘 ∈ (Z/𝑛Z)× with the automorphism sending 𝜁𝑛
to 𝜁𝑘𝑛 (Proposition 19.3.1).

Suppose 𝜎 := (𝑝, 𝐿/𝐾) is the map 𝜁𝑛 ↦→ 𝜁𝑘𝑛. By definition 𝜎 reduces to the 𝑝th power
map on the residue fields, so 𝜎(𝜁𝑛) ≡ 𝜁𝑝𝑛 (mod 𝑝O𝐾). Hence

𝜁𝑝𝑛 ≡ 𝜁𝑘𝑛 (mod 𝑝O𝐾).

But since 𝑝 - 𝑛, the 𝑛th roots of unity are distinct modulo 𝑝. (More precisely, they are
distinct elements of F𝑝𝑚 where 𝑚 is such that 𝑝𝑚 ≡ 1 (mod 𝑛).) Hence we must have 𝑝 ≡ 𝑘
(mod 𝑛), i.e. 𝜎 is the 𝑝th power map.

This shows that for a prime 𝑝 - 𝑛, under the identification 𝐺(𝐾/Q) ∼= (Z/𝑛Z)×, we have

(𝑝,Q(𝜁𝑛)/Q) = 𝑝 mod 𝑛.

This calculation of the Frobenius elements gives a complete characterization of how
primes split in cyclotomic extensions. We obtain a simple proof of Theorem 19.19.2.4, which
we restate here.

Theorem 24.1.7: thm:cyclotomic-factorization-p-2 Suppose that 𝑛 = 𝑝𝑟𝑚, where 𝑝 - 𝑚. Let

𝑓 = ord𝑚(𝑝).

Then the prime factorization of (𝑝) in Q(𝜁𝑛) is

(𝑝) = (P1 · · ·P𝑔)
𝜙(𝑝𝑟)
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where P𝑗 are distinct primes, each with residue degree 𝑓 over Q, and 𝑔 = 𝜙(𝑚)
𝑓

.
In particular,

(𝑝) splits completely in Q(𝜁𝑛) iff 𝑝 ≡ 1 (mod 𝑛).

Proof. For 𝑟 = 0, i.e. 𝑛 = 𝑚, the automorphism 𝜁𝑛 ↦→ 𝜁𝑝𝑛 has order ord𝑚(𝑝), so the result
follows from Example 24.1.6 and Proposition 24.1.3. For 𝑟 > 0, note that (𝑝) totally ramifies
in Q(𝜁𝑝𝑟) by Proposition 19.19.2.2, and Q(𝜁𝑛) is the compositum Q(𝜁𝑝𝑟)Q(𝜁𝑚).

1.2 The Frobenius map is a nice homomorphism

sec:frob-map-nice Because we’ve defined the Frobenius map on prime ideals p unramified in 𝐿, and
the prime ideals are a free basis for the ideal group, we can extend the Frobenius map to the
subgroup of ideals generated by unramified primes. Denoting this subgroup by 𝐼𝑆𝐾 , we have
a map

eq:frob-extendFrob𝐿/𝐾 : 𝐼𝑆𝐾 → 𝐺(𝐿/𝐾). (24.1)

What is nice about this map? Look back to the cyclotomic case, Example 24.1.6. The
Frobenius map didn’t map the primes arbitrarily; it sent 𝑝 to 𝑝 (mod 𝑛). What’s to note
here is that (𝑝,Q(𝜁𝑛)/Q) only depends on 𝑝 (mod 𝑛), information about 𝑝 intrinsic to Q,
even though (𝑝,Q(𝜁𝑛)/Q) tells us about the field extension Q(𝜁𝑛)/Q. Thus (24.1) factors:

eq:frob-for-cyclo 𝐼𝑆Q
Frob𝐿/Q

//

��

𝐺(𝐿/Q)

𝐼𝑆Q/𝐼Q(1,∞𝑛).

∼=
77

(24.2)

Here, 𝐼𝑆Q denotes the prime ideals relatively prime to 𝑛 and 𝐼Q(1,∞𝑛) denotes the subgroup
of ideals generated by (𝑝) with 𝑝 ≡ 1 (mod 𝑛) and positive.

Something like this in fact happens in general: global class field theory tells us that for all
abelian extensions, the Frobenius map “factors through a modulus,” that (p, 𝐿/𝐾) depends
only on what p is modulo a nice subgroup of ideals in 𝐾. Our example essentially proves
class field theory for cyclotomic extensions of Q, by using the roots of unity to “keep book”
on the action of Frobenius. Don’t be deceived, though, the general case is much harder.

Before we look at global class field theory, we first study local class field theory. Since
there’s only one prime in a local field, rather than consider a map from the (rather boring)
ideal group, we consider a map from the field itself.

2 Local reciprocity

sec:local-reciprocity When 𝐾 is a nonarchimedean local field, there is a single prime ideal p = (𝜋).
For every abelian unramified extension, the previous section gives an element of 𝐺(𝐿/𝐾)
corresponding to p, which we can think of as corresponding to 𝜋.
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The main theorem of local class field theory is that we can extend this map to all elements
of 𝐾×, and get elements in lim←−finite abelian 𝐿/𝐾

𝐺(𝐿/𝐾) = 𝐺(𝐾ab/𝐾). We will also show that

this map behaves well under restricting to subextensions 𝐿/𝐾.

Theorem 24.2.1 (Local reciprocity law): local-reciprocity For any nonarchimedean local field 𝐾,
there exists a unique homomorphism

𝜑𝐾 : 𝐾× → 𝐺(𝐾ab/𝐾),

called the local Artin (reciprocity) map with the following properties.

1. (Relationship with Frobenius map) For any prime element 𝜋 of 𝐾 and any finite un-
ramified extension 𝐿 of 𝐾, 𝜑𝐾(𝜋) acts on 𝐿 as Frob𝐿/𝐾(𝜋).

2. (Isomorphism) Let 𝑝𝐿 be the projection 𝐺(𝐾ab/𝐾)→ 𝐺(𝐿/𝐾). For any finite abelian
extension 𝐿/𝐾, 𝜑𝐾 induces an isomorphism 𝜑𝐿/𝐾 : 𝐾×/Nm𝐿/𝐾(𝐿

×)→ 𝐺(𝐿/𝐾) mak-
ing the following commute:

𝐾× 𝜑𝐾 //

��

𝐺(𝐾ab/𝐾)

𝑝𝐿

��

𝐾×/Nm𝐿/𝐾(𝐿
×)

𝜑𝐿/𝐾

∼=
// 𝐺(𝐿/𝐾).

3. (Compatibility with norm map) For any 𝐾 ⊆ 𝐾 ′, the following diagram commutes.

𝐾 ′× 𝜑𝐾′
//

Nm𝐾′/𝐾
��

𝐺(𝐾 ′ab/𝐾 ′)

∙|
𝐾ab

��

𝐾× 𝜑𝐾 // 𝐺(𝐾ab/𝐾)

We can also say something about this map topologically.

Definition 24.2.2: A norm group is a subgroup of 𝐾× of the form Nm𝐿/𝐾(𝐿
×) for some

finite extension 𝐿/𝐾.
Let Frob denote the Frobenius element of 𝑙/𝑘. The Weil group𝑊 (𝐿/𝐾) of an extension

𝐿/𝐾 is equal to the inverse image of FrobZ under the map 𝐺(𝐿/𝐾)→ 𝐺(𝑙/𝑘). The topology
on𝑊 (𝐿/𝐾) is the topology from considering it as a disjoint union of cosets 𝐼(𝐿/𝐾)𝜎𝑛, where
𝜎𝑛 is any lift of Frob𝑛.

Note that the topology on𝑊 (𝐾ab/𝐾) as defined above is strictly finer than the topology
it inherits from 𝐺(𝐾ab/𝐾) (see exercise 2.1).

Theorem 24.2.3 (Local existence theorem): local-existence Let 𝐾 be a nonarchimedean local
field. The norm groups of 𝐾 are exactly the open subgroups of finite index.
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Theorem 24.2.4 (Topological isomorphism for LCFT): thm:lcft-topology The image of the Artin
map is the Weil group 𝑊 (𝐿/𝐾), and 𝜑𝐾 gives an isomorphism of topological groups 𝐾× →
𝑊 (𝐿/𝐾). It restricts to an isomorphism 𝑈𝐾 → 𝐼(𝐿/𝐾).

Combining Theorems 24.2.1 and 24.2.3 gives the following bijective correspondence.

Theorem 24.2.5: lcft-correspondence Let 𝐾 be a nonarchimedean local field. Then there is a
bijective correspondence between finite abelian extensions of𝐾 and the set of open subgroups
of finite index of 𝐾×, given by

𝐿 ↦→ Nm𝐿/𝐾(𝐿
×).

Furthermore, this is an inclusion-reserving bijection that takes intersections to products and
products to intersections:

𝐿 ⊆𝑀 ⇐⇒ Nm𝐿/𝐾(𝐿
×) ⊇ Nm𝑀/𝐾(𝑀

×)

Nm𝐿·𝐿′/𝐾((𝐿 · 𝐿′)×) = Nm𝐿/𝐾(𝐿
×) ∩ Nm𝐿′/𝐾(𝐿

′×)

Nm𝐿∩𝐿′/𝐾((𝐿 ∩ 𝐿′)×) = Nm𝐿/𝐾(𝐿
×) · Nm𝐿′/𝐾(𝐿

′×).

Finally, every subgroup of 𝐾× containing a norm group is a norm group.

The following gives a sort-of converse statement: nonabelian extensions cannot be de-
scribed by norm groups.

Theorem 24.2.6 (Norm limitation theorem): thm:lcft-norm-limitation Let 𝐿 be a finite extension
of a local field 𝐾, and 𝐾 ′ be the largest abelian extension of 𝐾 contained in 𝐿. Then

Nm𝐿/𝐾(𝐿
×) = Nm𝐾′/𝐾(𝐾

′×).

3 Ray class groups

sec:ray-class-groups In order to define the Frobenius element of a prime we need the extension to
be unramified. However, when 𝐾 is a global field, we cannot as easily say an extension 𝐿/𝐾
is “unramified,” because O𝐾 has many prime ideals. Requiring that 𝐿/𝐾 to be unramified
at all primes of 𝐾 is too restrictive, because most fields 𝐿 do not satisfy this condition.

Thus, we instead focus on a set of primes 𝑆 and consider extensions 𝐿/𝐾 that are
unramified outside of 𝑆. When we define Frobenius elements, we have to exclude 𝑆, and
when we define a reciprocity map we have to exclude the subgroup that these primes generate.
(Note that unlike in local reciprocity, we will not define 𝜑𝐾 with domain 𝐾×, but rather
with domain a subgroup of the ideal group 𝐼𝐾 .)

Letting 𝑆 range over all finite subsets, we will account for all finite abelian extensions
𝐿/𝐾, because each extension is ramified at only finitely many primes (Theorem 15.15.6.1).

This motivates the following definition.
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Definition 24.3.1: i-k-s Let 𝐼𝐾 be the group of fractional ideals of 𝐾. Define 𝐼𝑆𝐾 to be the
subgroup of 𝐼𝐾 generated by prime ideals not in 𝑆.

Let 𝐿/𝐾 be an extension of 𝐾. Define 𝐼𝑆𝐿 := 𝐼𝑆
′

𝐿 , where 𝑆 ′ is the set of prime ideals lying
above a prime ideal in 𝑆.

Note that if 𝑆 ⊆ 𝑇 then 𝐼𝑆𝐾 ⊇ 𝐼𝑇𝐾 .
Similar to Theorem 24.2.1, global class field theory will tell us there is a map

𝐼𝑆𝐾/Nm𝐿/𝐾(𝐼
𝑆
𝐿)→ 𝐺(𝐿/𝐾)

when 𝑆 contains the primes that ramify in 𝐿. However, this is not an isomorphism until we
take a further quotient, namely, the quotient with a subgroup of principal ideals 𝑃𝐾(1,m),
which we will define. First we need the following.

Definition 24.3.2: A modulus m is a formal product of places of 𝐾, where

1. Finite primes have exponents in N0, and only finitely many exponents are nonzero.

2. Infinite real places have exponents 0 or 1.

3. Infinite complex places do not appear.

We say a place divides m if it appears with positive exponent. We write

m =
∏︁

p finite

p𝑚(p)⏟  ⏞  
m0

∏︁
𝑣 real

𝑣𝑚(𝑣)⏟  ⏞  
m∞

.

In other words, a modulus is the product of a proper ideal with some number of real
places.

Definition 24.3.3: Let 𝑆(m) denote the set of finite primes dividing m.
Define 𝐾(1,m) (“elements of 𝐾 that are 1 modulo m”) to be the subgroup of elements

of 𝐾× satisfying the following.⎧⎨⎩ordp(𝑎− 1) ≥ 𝑚(p), finite p | m
𝑎𝑣 > 0, real 𝑣 | m.

Let 𝑖 : 𝐾× → 𝐼𝐾 be the map sending 𝑎 to (𝑎), and let

𝑃𝐾(1,m) := 𝑖(𝐾(1,m)).

Define the ray class group of m to be

𝐶𝐾(m) = 𝐼
𝑆(m)
𝐾 /𝑃𝐾(1,m).
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Note that 𝑃𝐾(1,m) ∈ 𝐼𝑆(m)
𝐾 because if 𝑎 ∈ 𝐾(1,m) and p ∈ 𝑆(m), then ordp(𝑎 − 1) ≥ 1

and ordp(𝑎) = 0, i.e. p - (𝑎). We will often abbreviate 𝐼𝑆(m) as 𝐼m.

Example 24.3.4: ex:ray-class-groups If m = 1 then 𝑃𝐾(1,m) is the subgroup of principal ideals
and 𝐶𝐾(m) is just the ideal class group.

If m =
∏︀
𝑣 real 𝑣, then

𝐶𝐾(m) = 𝐼𝐾/ {(𝑎) ∈ 𝐼𝐾 : 𝑎𝑣 > 0 for all real 𝑣}

is called the narrow class group. We are only modding out by the “totally positive”
principal ideals, so it is larger than the class group.

Definition 24.3.5: A congruence subgroup for 𝐾 modulo m is a subgroup 𝐻 such that

𝑃𝐾(1,m) ⊆ 𝐻 ⊆ 𝐼
𝑆(m)
𝐾 .

The corresponding generalized ideal class group is 𝐼
𝑆(m)
𝐾 /𝐻.

We will show that generalized ideal class groups are exactly the Galois groups of abelian
extensions of 𝐾.

Finally, in preparation for the global reciprocity theorem, we say what it means exactly
for a map to only depend on modulo conditions, like the Frobenius map we considered in
Section 1.2.

Definition 24.3.6: A homomorphism 𝜓 : 𝐼𝑆 → 𝐺 admits a modulus if there exists a
modulus m with 𝑆(m) = m such that 𝜓 factors through 𝐼𝑆/𝑃𝐾(1,m). In other words, there
exists a modulus m with 𝑆(m) = 𝑆 such that

𝜓(𝑃𝐾(1,m)) = 0.

4 Global reciprocity

sec:global-reciprocity In this section 𝐾 is a global field.

Theorem 24.4.1 (Global reciprocity theorem): global-reciprocity Let 𝐿/𝐾 be a finite abelian
extension. Let 𝑆 be the set of primes ramifying in 𝐿. There is a unique map 𝜓𝐿/𝐾 such
that for a prime ideal p ̸∈ 𝑆, 𝜓𝐿/𝐾(p) acts on 𝐿 as Frob𝐿/𝐾(p). Moreover, 𝜓𝐿/𝐾 satisfies the
following properties.

1. (Isomorphism) 𝜓𝐿/𝐾 admits a modulus m with 𝑆(m) = 𝑆 and 𝜓𝐿/𝐾 induces an isomor-
phism

𝜓𝐿/𝐾 : 𝐼𝑆𝐾/(𝑃𝐾(1,m) · Nm𝐿/𝐾(𝐼
𝑆
𝐿))

∼=−→ 𝐺(𝐿/𝐾).
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2. (Compatibility over all extensions) Suppose 𝑆 ⊆ 𝑇 , and 𝐿/𝐾, 𝑀/𝐾 are finite abelian
extensions such that 𝐿 ⊆𝑀 and such that the set of primes ramifying in 𝐿,𝑀 are con-
tained in 𝑆, 𝑇 , respectively. Then the following commutes, where 𝑝𝐿 is the projection
map.

𝐼𝑇𝐾
𝜓𝑀/𝐾
//

� _

��

𝐺(𝑀/𝐾)

𝑝𝐿

��

𝐼𝑆𝐾
𝜓𝐿/𝐾
// 𝐺(𝐿/𝐾).

3. (Compatibility with norm map) For 𝐾 ⊆ 𝐾 ′ ⊆ 𝐿, the following diagram commutes.

𝐼𝑆𝐾′

𝜓𝐿/𝐾′
//

Nm𝐾′/𝐾
��

𝐺(𝐿/𝐾 ′)� _

��

𝐼𝑆𝐾
𝜓𝐿/𝐾
// 𝐺(𝐿/𝐾)

Remark 24.4.2: rem:gcft-ideals The uniqueness of 𝜓𝐿/𝐾 is clear from the fact that 𝐼𝑆𝐾 is freely
generated by prime ideals. Part 2 follows immediately from the definition of 𝜓𝐿/𝐾 and 𝜓𝑀/𝐾 ,
and part 3 follows immediately from the existence of 𝜓𝐿/𝐾 and 𝜓𝐿/𝐾′ , as we show below.
The crux of the theorem is part 1.

For part 2, since primes generate 𝐼𝑆𝐾 , it suffices to show that for any prime p ∈ 𝐼𝑆𝐾 ,

𝜓𝐿/𝐾(p) = 𝑝𝐿(𝜓𝑀/𝐾(p)).

But by definition, the left-hand side is Frob𝐿/𝐾(p) and the right-hand side is 𝑝𝐿(Frob𝑀/𝐾(p)).
Now 𝑝𝐿 induces the map 𝐺(𝑚/𝑘) → 𝐺(𝑙/𝑘), so both sides act on 𝑘 as the |𝑘|th power
Frobenius, and are equal.

For part 3, we need to show for any prime p ∈ 𝐼𝑆𝐾′ ,

𝜓𝐿/𝐾′(p) = 𝜓𝐿/𝐾(Nm𝐾′/𝐾(p)).

But by definition, the left-hand side is Frob𝐿/𝐾′(p) and the right-hand side is 𝜓𝐿/𝐾(p
[𝑘′:𝑘]) =

Frob𝐿/𝐾(p)
[𝑘′:𝑘]. The result now follows from Proposition 24.1.4.

Example 24.4.3 (Cyclotomic extensions): ex:cyclotomic-gcft In Section 1.2, we showed that the
global reciprocity theorem (part 1 above) holds for a cyclotomic extension Q(𝜁𝑛)/Q. In-

deed, letting m be 𝑛∞, we have that 𝐼m𝐾/𝑃𝐾(1,m)
∼=−→ 𝐺(Q(𝜁𝑛)/Q) as in (24.2). (Note that

Nm𝐿/𝐾(𝐼
𝑆
𝐿) ⊆ 𝑃𝐾(1,m) will follow from the first inequality 28.28.2.1.)

Note the modulus in Theorem 24.4.1 has to be divisible by all primes ramifying in 𝐿, and
the primes have to have large enough exponents for ker(𝜓𝐿/𝐾) to be a congruence subgroup
modulo m. There is a canonical choice for m, namely the modulus with least exponents. It
is called the conductor of the extension 𝐿/𝐾, and denoted by f(𝐿/𝐾).

We have the following analogue of Theorem 24.2.3.
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Theorem 24.4.4 (Existence theorem): global-existence Let 𝐻 be a congruence subgroup modulo
m. Then there exists an abelian extension 𝐿/𝐾 such that

𝐻 = 𝑃𝐾(1,m) · Nm𝐿/𝐾(𝐼
m
𝐿 ) = ker(𝜓𝐿/𝐾).

In particular, this applies when 𝐻 = 𝑃𝐾(1,m).

Definition 24.4.5: df:ray-class-field For each modulus m there is a field 𝐾m, called the ray class
field of 𝐾 modulo m such that 𝜓𝐾m/𝐾 defines an isomorphism

𝐶𝐾(m)
∼=−→ 𝐺(𝐾m/𝐾).

Example 24.4.6: Since ∞(𝑛) is the smallest modulus such that 𝜓Q(𝜁𝑛)/Q factors through
𝐼m𝐾/𝑃𝐾(1,m), ∞(𝑛) is the conductor of Q(𝜁𝑛). Since we actually have an isomorphism

𝐶𝐾(∞𝑛) = 𝐼∞𝑛
𝐾 /𝑃𝐾(1,∞𝑛)

∼=−→ 𝐺(Q(𝜁𝑛)/Q),

Q(𝜁𝑛) is in fact the ray class field of ∞(𝑛).
We have that Q(𝜁𝑛 + 𝜁−1

𝑛 ) is the ray class field of (𝑛) (see exercise 1.2).

Putting this all together, if we fix a modulus m we have the following bijection between
extensions and subgroups.

Theorem 24.4.7: thm:ray-class-bijection Fix a modulus m and a global field 𝐾. The map 𝐿 ↦→
Nm𝐿/𝐾(𝐶𝐿(m)) is a bijection between

1. the set of abelian extensions of 𝐾 in the ray class field 𝐾m and

2. the set of subgroups of 𝐶𝐾(m).

Moreover, it reverses inclusions and switches products and intersections:

𝐿 ⊆𝑀 ⇐⇒ Nm𝐿/𝐾(𝐶𝐿(m)) ⊇ Nm𝑀/𝐾(𝐶𝑀(m))

Nm𝐿1·𝐿2/𝐾(𝐶𝐿1·𝐿2,m) = Nm𝐿1/𝐾(𝐶𝐿1(m)) ∩ Nm𝐿2/𝐾(𝐶𝐿2(m))

Nm𝐿1∩𝐿2/𝐾(𝐶𝐿1∩𝐿2(m)) = Nm𝐿1/𝐾(𝐶𝐿1(m)) · Nm(𝐶𝐿2(m)).

Note Theorem 24.4.1 is like Theorem 24.2.1 except that we’re only working with finite
extensions 𝐿/𝐾 instead of putting them together into 𝐾ab/𝐾. We cannot combine the maps
𝜓𝐿/𝐾 because they are defined on different groups. Hence we now take a different approach,
using ideles.

5 Ideles

sec:ideles In this section we give an alternate statement of the main theorems of global class
field theory.
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In local class field theory, we had isomorphisms 𝐾×/Nm𝐿/𝐾(𝐿
×) ∼= 𝐺(𝐿/𝐾). For this to

be true, Nm𝐿/𝐾(𝐿
×) must have finite index in 𝐾×. However, this is no longer true when 𝐾

is a global field. (If 𝐾 is local, it is complete with respect to a valuation, and Nm𝐿/𝐾(𝑥) = 𝑦
has solutions in 𝑦 for many 𝑥, in the same way that Hensel’s lemma often gives solutions
over complete fields.)

We want to work with complete fields but 𝐾 comes with a bunch of different places. The
solution is to complete 𝐾 at every place at once and combine the information into the adele
ring and idele group. Then we will get statements for global class field theory that resemble
local class field theory, with 𝐾× replaced by C𝐾 , a group related to the idele group (to be
defined).

Definition 24.5.1: Abbreviate O𝑣 = O𝐾𝑣 . The adele ring of 𝐾 is

A𝐾 =

⎧⎨⎩(𝑎𝑣) ∈ ∏︁
𝑣∈𝑉𝐾

𝐾𝑣 : 𝑎𝑣 ∈ O𝑣 for all but finitely many 𝑣

⎫⎬⎭ .
We write this as

∏︀′
𝑣∈𝑉𝐾 (𝐾𝑣,O𝑣). Equip it with a topology by letting a basis for open sets be∏︀

𝑣 𝑈𝑣, where 𝑈𝑣 is open in 𝐾𝑣 for all 𝑣 and 𝑈𝑣 = O𝑣 for almost all 𝑣. In other words, it is
the unique topology from which

∏︀
𝑣 O𝑣 inherits the product topology and is open.

The idele group of 𝐾 is the group of units of the above:

I𝐾 = A×
𝐾 =

∏︁
𝑣∈𝑉𝐾

′
(𝐾×

𝑣 ,O
×
𝑣 ) =

⎧⎨⎩(𝑎𝑣) ∈ ∏︁
𝑣∈𝑉𝐾

𝐾×
𝑣 : 𝑎𝑣 ∈ O×

𝑣 for all but finitely many 𝑣

⎫⎬⎭ .
Equip it with a topology by letting a basis for open sets be

∏︀
𝑣 𝑈𝑣, where 𝑈𝑣 is open in 𝐾×

𝑣

for all 𝑣 and 𝑈𝑣 = O×
𝑣 for almost all 𝑣. In other words, it is the unique topology from which∏︀

𝑣 O×
𝑣 inherits the product topology and is open.

Be careful: the topology of the idele group is not the subspace topology induced from
the adele ring.

Definition 24.5.2: For a finite set 𝑆 containing all infinite places, let I𝑆𝐾 =
∏︀
𝑣∈𝑆𝐾

×
𝑣 ×∏︀

𝑣 ̸∈𝑆 O×
𝑣 . In other words, I𝑆𝐾 contains those ideles that are units away from 𝑆. Give I𝑆𝐾 the

subspace topology inherited from I𝐾 .

Note the topology on I𝑆𝐾 is just the product topology, and that I =
⋃︀
𝑆 I𝑆𝐾 .

Proposition 24.5.3: I𝑆𝐾 is locally compact.

Proof.
∏︀
𝑣∈𝑆𝐾

×
𝑣 is a finite product of locally compact spaces;

∏︀
𝑣 ̸∈𝑆 O×

𝑣 is a product of com-
pact spaces (Proposition 21.21.1.3) so compact by Tychonoff’s Theorem. Since a finite
product of locally compact spaces is compact, the result follows.
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Think of the ideles as a thickening of ideals: it includes factors for infinite places, and
includes units at finite primes. We can embed 𝐾× via the diagonal map, and 𝐾×

𝑣 via the
inclusion map.

Definition 24.5.4: Define 𝑖 : 𝐾 →˓ A𝐾 by the diagonal map 𝑖(𝑎) = (𝑎, 𝑎, . . .) and 𝑖𝑣 :
𝐾𝑣 →˓ A𝐾 by the inclusion map 𝑖𝑣(𝑎) = (1, . . . , 1, 𝑎𝑣⏟ ⏞ 

𝑣

, 1, . . . , 1). Also denote by 𝑖, 𝑖𝑣 the

maps restricted to 𝐾× →˓ I𝐾 and 𝑖𝑣 : 𝐾𝑣 →˓ I𝐾 .

Proposition 24.5.5: pr:k-discrete 𝑖(𝐾×) is discrete in I𝐾 .

Proof. Given 𝑎 ∈ 𝐾×, let 𝑆 be set of places contining the infinite places and the finite places
where 𝑣(𝑎) ̸= 0. Consider the open set

𝑈 = {x ∈ I𝐾 : |𝑥𝑣 − 𝑎|𝑣 < 𝜀 for 𝑣 ∈ 𝑆, 𝑥𝑣 ∈ 𝑈𝑣 for 𝑣 ̸∈ 𝑆}

containing 𝑖(𝑎). If 𝑖(𝑏) ∈ 𝑈 with 𝑎 ̸= 𝑏, then∏︁
𝑣

|𝑏− 𝑎|𝑣 < 𝜀|𝑆| < 1,

contradicting the product formula 21.31.1. Hence 𝑖(𝐾×) ∩ 𝑈 = {𝑖(𝑎)}.

Definition 24.5.6: The idele class group is defined to be

C𝐾 = I𝐾/𝐾×,

where 𝐾× is thought of as a subgroup of I𝐾 by the diagonal map 𝑖.

We define a norm on adeles by defining it componentwise.

Definition 24.5.7: The norm, from 𝐿 to 𝐾 is the function Nm𝐿/𝐾 : A𝐿 → A𝐾 defined by

Nm𝐿/𝐾 ((𝑥𝑤)𝑤∈𝑉𝐿) =

�∏︁
𝑤|𝑣

Nm𝐿𝑤/𝐾𝑣(𝑥𝑤)

�
𝑣∈𝑉𝐾

.

This descends to a function Nm𝐿/𝐾 : I𝐿 → I𝐾 .

5.1 Ray class groups vs. ideles

We will need the following to go between the interpretations of global class field theory via
ray class groups and via ideles. The statement in terms of ray class groups is easier for
concrete applications, but the statement in terms of ideles is better abstractly, and more
convenient to prove. (But to complicate things more, certain parts of the proof will be easier
to think of in terms of ray class groups.)
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We can go from I𝐾 → 𝐼𝐾 easily, via the map

eq:idele-to-ideal𝑝(a) =
∏︁

𝑣=𝑣p finite

p𝑣(𝑎𝑣) (24.3)

(also denoted simply (a)). However, if we want the image to be in 𝐼
𝑆(m)
𝐾 , we need to focus our

attention on a subset of ideles I𝐾(1,m) (defined below). Taking the map I𝐾(1,m) → 𝐼
𝑆(m)
𝐾

and modding out by appropriate groups then makes it a bijection. We also need to check
that we don’t lose anything when we consider only ideles of the form I𝐾(1,m); that is, that
the inclusion I𝐾(1,m) →˓ I𝐾 is a bijection, again after modding out by appropriate groups.
This is Proposition 24.5.9 below.

Definition 24.5.8: df:more-idele-dfs For a place 𝑣 | m, define

𝐼(m)𝑣 =

⎧⎨⎩R>0, 𝑣 real

1 + p𝑚(p), 𝑣 = 𝑣p finite.

Let O×
𝑣 be the group of units of 𝐾𝑣. (For 𝑣 infinite, O×

𝑣 := 𝐾×
𝑣 ). Define

eq:ik1mI𝐾(1,m) =
∏︁
𝑣|m
𝐼(m)𝑣 ×

∏︁
𝑣-m

′
(𝐾×

𝑣 ,O
×
𝑣 ) (24.4)

U𝐾(1,m) =
∏︁
𝑣|m
𝐼(m)𝑣 ×

∏︁
𝑣-m

O×
𝑣

𝐾(1,m) = 𝑖(𝐾×) ∩ I𝐾(1,m).

Let U𝐾 := U𝐾(1, 1).

Compare (24.4) to the definition of 𝑃𝐾(1,m).

Proposition 24.5.9: pr:idele-ray-class We have the following maps.

I𝐾(1,m)/𝐾(1,m)
∼= //

��

I𝐾/𝐾× = C𝐾

I𝐾(1,m)/𝐾(1,m)U𝐾(1,m)
∼= // 𝐶𝐾(m).

The bottom map is induced by the map 𝑝 : I𝐾 → 𝐼m𝐾 and the top map is induced by inclusion.
Moreover, for any finite Galois 𝐿/𝐾 such that

U𝐾(1,m) ⊆ Nm𝐿/𝐾(I𝐿),

this diagram induces isomorphisms

I𝐾(1,m)/[𝐾×Nm𝐿/𝐾 I𝐿 ∩ I𝐾(1,m)]
∼= //

∼=

,,

I𝐾/𝐾×Nm𝐿/𝐾 I𝐿

𝐼m𝐾/(𝑃𝐾(1,m) · Nm𝐿/𝐾(𝐼
m
𝐿 )).
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Proof. For the bottom map, consider the exact sequence

0→ 𝐾× ∩ I𝐾(1,m) = 𝐾(1,m)
𝑖−→ I𝐾(1,m)

𝑝−→ 𝐼𝑆(m) → 0.

We have that I𝐾(1,m)/𝐾(1,m) = coker 𝑖, so we use the kernel-cokernel sequence.1 We have
ker 𝑝 = U𝐾(1,m), and coker 𝑝 ∘ 𝑖 = 𝐼𝑆(m)/𝑝(𝐾(1,m)) = 𝐼𝑆(m)/𝑃𝐾(1,m) = 𝐶𝐾(m), so this
gives the exact sequence

U𝐾(1,m)→ I𝐾(1,m)/𝐾(1,m)→ 𝐶𝐾(m)→ 1,

which gives the bottom isomorphism.
The top map is clearly injective. For surjectivity, take 𝑎 ∈ I𝐾 . By the weak approximation

theorem 20.20.3.4, there exists 𝑏 so that 𝑎𝑣
𝑏𝑣
∈ p𝑚(p) + 1 for every 𝑣 = 𝑣p dividing m. Then

𝑎
𝑏
∈ I𝐾(1,m), and its image varies in I𝐾 from 𝑎 by the constant factor 𝑏 ∈ 𝐾×.
Now we show the second diagram. (Warning: this proof is not very enlightening.) Let

𝑝 and 𝑝′ denote the maps I𝐾 → 𝐼𝐾 and I𝐾(1,m) → 𝐼𝑆𝐾 , respectively. Note that the first
diagram gives isomorphisms

I𝐾(1,m)/((𝐾×Nm𝐿/𝐾 I𝐿) ∩ I𝐾(1,m))
∼= //

��

I𝐾/𝐾×Nm𝐿/𝐾 I𝐿

I𝐾(1,m)/𝐾(1,m)U𝐾(1,m)𝑝′−1(Nm𝐿/𝐾(𝐼
m
𝐿 ))

∼= // 𝐼m𝐾/(𝑃𝐾(1,m) · Nm𝐿/𝐾(𝐼
m
𝐿 )).

We have that

𝐾(1,m)U𝐾(1,m)𝑝′
−1
(Nm𝐿/𝐾(𝐼

𝑆
𝐿)) (24.5)

eq:irc1 = 𝐾(1,m)U𝐾(1,m)𝑝′
−1
(
¬
p𝑓(𝑤/𝑣) | 𝑤 | 𝑣 ̸∈ 𝑆

)︂
), 𝑓𝑣 = residue degree (24.6)

eq:irc2 = 𝐾(1,m)U𝐾(1,m)(I𝐾(1,m) ∩ U𝐾 Nm𝐿/𝐾(I𝐿)) (24.7)

eq:irc3 = U𝐾(1,m)(I𝐾(1,m) ∩ (𝐾×Nm𝐿/𝐾 I𝐿)) (24.8)

eq:irc4 = (𝐾×Nm𝐿/𝐾 I𝐿) ∩ I𝐾(1,m). (24.9)

(24.6) follows from the fact that if P | p, then Nm𝐿/𝐾(P) = p𝑓(P/p). To go between (24.6)
and (24.7), note that p𝑓(𝑤/𝑣) = 𝑝(Nm𝐿/𝐾(1, . . . , 1, 𝜋𝑤⏟ ⏞ 

𝑤

, 1, . . . , 1)), and that ker(𝑝) = U𝐾 .

Now we go between (24.7) and (24.8). For “⊆,” suppose 𝑎 ∈ U𝐾 and 𝑏 ∈ Nm𝐿/𝐾(I𝐿) such
that 𝑎Nm𝐿/𝐾 𝑏 ∈ I𝐾(1,m). Suppose 𝑐 agrees with 𝑎 for every 𝑣 | m, and is 1 everywhere
else. Then 𝑎𝑐−1 ∈ U𝐾(1,m) ⊆ I𝐾(1,m). Since 𝑎Nm𝐿/𝐾 𝑏 ∈ I𝐾(1,m) as well and I𝐾(1,m) is
a group, we must have 𝑐Nm𝐿/𝐾 𝑏 ∈ I𝐾(1,m). Hence

𝑎Nm𝐿/𝐾 𝑏 = 𝑎𝑐−1⏟  ⏞  
∈U𝐾(1,m)

𝑐Nm𝐿/𝐾 𝑏⏟  ⏞  
∈I𝐾(1,m)∩(𝐾× Nm𝐿/𝐾 I𝐿)

,

1Given 𝐴
𝑓−→ 𝐵

𝑔−→ 𝐶, there is an exact sequence

0→ ker 𝑓 → ker 𝑔 ∘ 𝑓 → ker 𝑔 → coker 𝑓 → coker 𝑔 ∘ 𝑓 → coker 𝑔 → 0.

This is proven using the snake lemma.
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as needed. Furthermore note 𝐾(1,m) ⊆ I𝐾(1,m)∩𝐾× Nm𝐿/𝐾 I𝐿. For “⊇,” suppose 𝑎 ∈ 𝐾×

and 𝑏 ∈ Nm𝐿/𝐾(I𝐿) such that 𝑎Nm𝐿/𝐾 𝑏 ∈ I𝐾(1,m). By weak approximation, take 𝑐 ∈ 𝐾×

sufficiently close to 1
𝑏𝑣

with respect to 𝑣, for every 𝑣 ∈ m, so that Nm𝐿/𝐾(𝑐𝑏) ∈ I𝐾(1,m).

Then 𝑎Nm𝐿/𝐾(𝑐
−1) ∈ I𝐾(1,m) as well, and in fact in 𝐾(1,m). Then

𝑎Nm𝐿/𝐾 𝑏 = 𝑎Nm𝐿/𝐾(𝑐
−1)⏟  ⏞  

∈𝐾(1,m)

Nm𝐿/𝐾 𝑐𝑏⏟  ⏞  
∈I𝐾(1,m)∩Nm𝐿/𝐾 I𝐿

,

as needed.
The last step (24.9) follows from the assumption on m.

Example 24.5.10: ex:class-group-idele-quotient Recall how we realized the class group and narrow
class group as ray class groups in Example 24.3.4. We now realize them as quotients of the
idele class group.

Take m to be 1. Then the bottom map gives an isomorphism

I𝐾/𝐾×U𝐾
∼= 𝐶𝐾

where 𝐶𝐾 is just the class group of 𝐾. This realizes the class group of 𝐾 as a quotient of
the idele class group.

In general, for any modulus m,

I𝐾/𝐾×U𝐾(1,m) ∼= I𝐾(1,m)/𝐾(1,m)U𝐾(1,m) ∼= 𝐶𝐾(m).

This realizes the ray class group modulo m as a quotient of the idele class group.
In particular, m = 1 was the case above. Taking m =

∏︀
𝑣 real 𝑣, 𝑃𝐾(1,m) is the group

of principal ideals generated by totally positive elements (also written 𝑃+
𝐾 ) and U𝐾(1,m) =∏︀

𝑣 real R>0×
∏︀
𝑣 O×

𝑣 . This realizes the narrow class group of 𝐾 as a quotient of the idele class
group.

Remark 24.5.11: rem:S-ramify The condition on m in Proposition 24.5.9 was that U𝐾(1,m) ⊆
Nm𝐿/𝐾(I𝐿). We claim that we can always choose such m, such that 𝑆(m) consists of exactly
the primes ramifying in 𝐿/𝐾.

The condition U𝐾(1,m) ⊆ Nm𝐿/𝐾(I𝐿) says that O×
𝑣 ⊆ Nm𝐿𝑣/𝐾𝑣(𝐿

𝑣) for all 𝑣 - m and
𝐼(m)𝑣 ⊆ Nm𝐿𝑣/𝐾𝑣(𝐿

𝑣) for all 𝑣 | m. Now note the following.

1. If 𝐿/𝐾 is unramified at 𝑣, i.e. 𝐿𝑣/𝐾𝑣 is unramified, then

Nm𝐿𝑣/𝐾𝑣(𝐿
𝑣×) = 𝜋[𝐿𝑣 :𝐾𝑣 ]Z

𝑣 O×
𝑣 ⊇ O×

𝑣 .

This is a consequence of local class field theory (Example 27.27.5.1).

2. Nm𝐿𝑣/𝐾𝑣(𝐿
𝑣) is an open subgroup of 𝐾𝑣 (this is the easy direction in Theorem 24.2.3)

and 𝑈 (𝑛)
𝑣 := 1 + 𝜋𝑛𝑣O𝑣 is a neighborhood base of 1 in 𝐾𝑣.

By item 1, m doesn’t need to include the places where 𝐿/𝐾 is unramified, and by item 2, for
all ramified 𝑣 we can choose the power of 𝑣 in m large enough to force 𝑈 (𝑛)

𝑣 ⊆ Nm𝐿𝑣/𝐾𝑣(𝐿
𝑣×).

Then we will have U𝐾(1,m) ⊆ Nm𝐿/𝐾(I𝐿).
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6 Global reciprocity via ideles

sec:global-reciprocity-via-ideles We now state global reciprocity in terms of ideles.

Theorem 24.6.1 (Global reciprocity, ideles): thm:global-reciprocity-ideles Given a finite abelian ex-
tension 𝐿/𝐾, there is a unique continuous2 homomorphism 𝜑𝐿/𝐾 that is compatible with
the local Artin maps, i.e. the following diagram commutes3:

I𝐾
𝜑𝐿/𝐾

// 𝐺(𝐿/𝐾)

𝐾×
𝑣

𝜑𝑣
// //

?�

𝑖𝑣

OO

𝐺(𝐿𝑣/𝐾𝑣).
?�

OO

Moreover, 𝜑𝐿/𝐾 satisfies the following properties.

1. (Isomorphism) For every finite abelian extension 𝐿/𝐾, 𝜑𝐾 defines an isomorphism

𝜑𝐿/𝐾 : C𝐾/Nm𝐿/𝐾(C𝐿) = I𝐾/(𝐾× · Nm𝐿/𝐾(I𝐿))
∼=−→ 𝐺(𝐿/𝐾).

2. (Compatibility over all extensions) For 𝐿 ⊆𝑀 , 𝐿,𝑀 both finite abelian extensions of
𝐾, the following commutes:

𝐺(𝑀/𝐾)

𝑝𝐿
��

I𝐾

𝜑𝑀/𝐾

::

𝜑𝐿/𝐾
// 𝐺(𝐿/𝐾)

Thus we can define 𝜑𝐾 := lim←−𝐿/𝐾 abelian
𝜑𝐿/𝐾 as a map I𝐾 → 𝐺(𝐾ab/𝐾).

3. (Compatibility with norm map) 𝜑𝐾 is a continuous homomorphism I𝐾 → 𝐺(𝐾ab/𝐾),
and the following commutes.

I𝐿
𝜑𝐿 //

Nm𝐿/𝐾

��

𝐺(𝐿ab/𝐿)

∙|
𝐾ab

��

I𝐾
𝜑𝐾 // 𝐺(𝐾ab/𝐾)

Note that in the local reciprocity theorem 24.2.1, the “compatibility over all extensions”
was automatic when we declared the existence of 𝜑𝐾 : 𝐾× → 𝐺(𝐾ab/𝐾). We stated the
global reciprocity theorem a bit differently, in the above fashion for easy comparison with
global reciprocity in terms of ideals 24.4.1.

2𝐺(𝐿/𝐾) is given the discrete topology.
3This implies that if 𝑣 = 𝑣p is unramified in 𝐿, then 𝜑𝐿/𝐾(𝑖𝑣(𝜋𝑣)) = Frob𝐿/𝐾(p). Global reciprocity is

sometimes phrased in this way, though the phrasing using the local map gives a bit more information.
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Remark 24.6.2: rem:gcft Uniqueness and existence of 𝜑𝐿/𝐾 is easy, and parts 2 and 3 are easy
given the existence of 𝜑𝐿. The crux of the theorem is again part 1.

For uniqueness, note that the 𝜑𝐿/𝐾 is determined by its action on 𝐾×
𝑣 , since for x = (𝑥𝑣),

we must have
𝜑𝐿/𝐾(x) =

∏︁
𝑣∈𝑉𝐾

𝜑𝑣(𝑥𝑣).

(The product is Cauchy in the topology of I𝐾 .) This does define a continuous map on I𝐾
because 𝜑𝑣(𝑥𝑣) = 1 whenever 𝑥𝑣 ∈ O×

𝑣 and 𝑣 is unramified, and this happens for all but
finitely many 𝑣.

Parts 2 and 3 follow from the corresponding statements for local class field theory (see
Theorem 24.2.1 and the paragraph above this remark), by how 𝜑 is defined to be compatible
with the local maps.

The idele version of global reciprocity allows us to recast the Existence Theorem 24.4.4
in a format more similar to the Existence Theorem in 24.2.3.

Theorem 24.6.3 (Existence theorem): thm:global-et-ideles For every subgroup 𝑁 ⊆ C𝐾 of finite
index, there exists a unique abelian extension 𝐿/𝐾 such that Nm𝐿/𝐾 C𝐿 = 𝑁 .

Combining the two theorems, we can recast the bijective correspondence in Theorem 24.4.7
in a format more similar to local class field theory 24.2.5.

Theorem 24.6.4: thm:gcft-bijection The map 𝐿 ↦→ Nm𝐿/𝐾(C𝐿) is an inclusion-reversing bijection
between the set of finite abelian extensions of 𝐾 and the open subgroups of finite index in
C𝐾 , that switches intersections and products:

𝐿 ⊆𝑀 ⇐⇒ Nm𝐿/𝐾(C𝐿) ⊇ Nm𝑀/𝐾(C𝑀)

Nm𝐿1𝐿2/𝐾(C𝐿1𝐿2) = Nm𝐿1/𝐾(C𝐿1) ∩ Nm𝐿2/𝐾(C𝐿2)

Nm𝐿1∩𝐿2/𝐾(C𝐿1∩𝐿2) = Nm𝐿1/𝐾(C𝐿1) · Nm𝐿2/𝐾(C𝐿2).

Similar to Theorem 24.2.4, we have the following topological isomorphism for global class
field theory.

Theorem 24.6.5 (Topological isomorphism for GCFT): thm:gcft-topology Let 𝐾 be a number
field. Let

(𝐾×
∞)0 :=

∏︁
𝑣 real

R>0 ×
∏︁

𝑣 complex

C×
∏︁
𝑣∈𝑉 0

𝐾

1.

The Artin map 𝜑𝐾 is surjective and induces a topological isomorphism

I𝐾/𝐾×(𝐾×
∞)0 ∼= 𝐺(𝐾ab/𝐾).

6.1 Connecting the two formulations

sec:connecting-formulations We now show that the two formulations of global class field theory are
equivalent, in the following sense.
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Theorem 24.6.6: thm:gcft-equivalent We have the following implications.

1. (Global reciprocity, ideles =⇒ ideals) If Theorem 24.6.1(1) holds for a given 𝐿/𝐾, then
Theorem 24.4.1(1) holds for 𝐿/𝐾. If Theorem 24.6.1 holds for all 𝐿/𝐾 over a specified
basefield (e.g. Q), then Theorem 24.4.1 holds for all such 𝐿/𝐾.

2. (Global reciprocity, ideals =⇒ (ideles)−𝜀) If Theorem 24.6.1(1)-(2) holds for a fixed 𝐾
and a family {𝐿/𝐾} such that the compositum of the 𝐿𝑣 contains 𝐾ur

𝑣 for every finite
place 𝑣, then Theorem 24.6.1(1)-(2) holds for the same 𝐾 and {𝐿/𝐾}, except that the
resulting map 𝜑𝐿/𝐾 may not be compatible with 𝜑𝑣 when 𝑣 is archimedean.

3. (Global existence) Given Theorem 24.6.1, Theorems 24.4.4 and 24.6.3 are equivalent.

4. (Bijective correspondence) Given Theorem 24.6.1, Theorems 24.4.7 and 24.6.4 are
equivalent.

Proof. For parts 1 and 2, we note that by Proposition 24.5.9,

eq:gcft-equivalentC𝐾/Nm𝐿/𝐾 C𝐿 = I𝐾/𝐾×Nm𝐿/𝐾 I𝐿 ∼= 𝐼𝑆𝐾/𝑃𝐾(1,m)Nm𝐿/𝐾(𝐼
𝑆
𝐿), (24.10)

where by Remark 24.5.11, we can choose m to some modulus containing only ramified primes,
and 𝑆 = 𝑆(m). Thus any one of the dotted isomophisms below gives the other isomorphism.

gcft-equivalent2 I𝐾/𝐾×Nm𝐿/𝐾(I𝐿)

∼=𝑝

��

∼=
𝜑𝐿/𝐾 ))

𝐺(𝐿/𝐾)

𝐼𝑆𝐾/𝑃𝐾(1,m)Nm𝐿/𝐾(𝐼
𝑆
𝐿)

∼=

𝜓𝐿/𝐾

55

(24.11)

For part 1, given 𝜑𝐿/𝐾 , we define 𝜓𝐿/𝐾 with the above diagram. Then, supposing p corre-
sponds to the uniformizer 𝜋𝑣 ∈ 𝐾p,

𝜓𝐿/𝐾(p) = 𝜓𝐿/𝐾(𝑝(𝑖(𝜋𝑣))) = 𝜑𝐿/𝐾(𝑖(𝜋𝑣)) = 𝜑𝑣(𝜋𝑣) = Frob𝐿𝑣/𝐾𝑣((𝜋𝑣)) = Frob𝐿/𝐾(p),

as needed. Part 2 is a more complicated; we’ll give the proof below after a lemma. The “−𝜀”
comes from the fact that the formulation in Theorem 24.6.1 says nothing about archimedean
primes.

Parts 3 and 4 now result directly from the fact that (24.10) gives a bijective correspon-
dence between subgroups of two groups.

Lemma 24.6.7: lem:local-uniqueness Suppose that 𝐾 is a nonarchimedean local field, 𝐾ur is the
maximal abelian unramified extension of 𝐾, and 𝐿 is an abelian extension containing 𝐾ur.
Let 𝑓 : 𝐾× → 𝐺(𝐿/𝐾) be a homomorphism satisfying (1) and either (2) or (2)′:
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1. The composition 𝐾× 𝑓−→ 𝐺(𝐿/𝐾)→ 𝐺(𝐾ur/𝐾) takes 𝛼 to Frob𝐾ur/𝐾(𝜋)
𝑣(𝛼).

2. For any uniformizer 𝜋 ∈ 𝐾, 𝑓(𝜋)|𝐾𝜋 = 1, where

𝐾𝜋 := 𝐿𝜑𝐾(𝜋).

2’. For any finite subextension 𝐾 ′/𝐾 of 𝐾𝜋, we have

𝑓(Nm𝐾′/𝐾(𝐾
′×))|𝐾′ = {1}.

Then 𝑓 equals the reciprocity map 𝜑𝐾 .

For the proof, see Section 27.8.1.

Proof of Theorem 24.6.6, Part 2. Given 𝜓𝐿/𝐾 we define 𝜑𝐿/𝐾 using (24.11). The 𝜓𝐿/𝐾 are
compatible by Remark (24.4.2), so the 𝜑𝐿/𝐾 are compatible (details omitted) and we can
define 𝜑𝐾 = lim←−𝐿/𝐾 𝜑𝐿/𝐾 where the limit is over 𝐿/𝐾 in the given family. Let 𝐿′ be the

compositum of the fields 𝐿.
We check the hypotheses 1 and 2′ of Lemma 24.6.7. Let

𝑓𝑣 = 𝜑𝐾 ∘ 𝑖𝑣 : 𝐾×
𝑣 → 𝐺(𝐿′𝑣/𝐾𝑣).

Item 1 is clear as (24.11) gives letting 𝑣 = 𝑣p, we have

𝜑𝐾(𝑖𝑣(𝛼))|𝐾ur
𝑣
= 𝜓𝐾(p

𝑣(𝛼))|𝐾ur
𝑣
= Frob𝐾ur

𝑣 /𝐾𝑣(𝛼)
𝑣(𝛼).

Item 2′ follows from part 3 of Theorem 24.4.1 applied to 𝐾 ′/𝐾 (see Remark 24.4.2): we
get 𝜓𝐿/𝐾(Nm𝐾′/𝐾(𝐼

𝑆
𝐾′))|𝐾′ = 1 which translates into 𝜑𝐾(𝑖𝑣(Nm𝐾′

𝑣/𝐾𝑣(𝐾
′
𝑣
×)))|𝐾′

𝑣
= 1. Thus

𝑓𝑣 = 𝜑𝑣 for all finite places, as needed.

We have proved the ideal version of global class field theory for cyclotomic extensions ofQ.
Our plan of attack will be to show transfer this to the idele version for cyclotomic extension
of Q, then work on proving the idele version. Then we will be done by Theorem 24.6.6.

7 Kronecker-Weber Theorem

kw As a first application of class field theory, we explicitly describe the maximal abelian
extensions of Q𝑝 and Q.

Theorem 24.7.1 (Local Kronecker-Weber theorem): lkwt Every abelian extension of Q𝑝 is
included in a cyclotomic extension, i.e. an extension Q𝑝(𝜁𝑛), 𝜁𝑛 a primitive 𝑛th root of unity,
for some 𝑛. In other words,

Qab
𝑝 = Q𝑝(𝜁𝑛 | 𝑛 ∈ N).
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Theorem 24.7.2 (Kronecker-Weber theorem): kwt Every abelian extension of Q is included
in a cyclotomic extension Q(𝜁𝑛). In other words,

Qab = Q(𝜁𝑛 | 𝑛 ∈ N).

Proof of Theorem 24.7.1. Consider Q𝑝(𝜁𝑘) where 𝑝 - 𝑘. Let 𝑈 denote the group of units. As
Q𝑝(𝜁𝑘) is unramified, local class field theory tells us

NmQ𝑝(𝜁𝑘)/Q𝑝(Q𝑝(𝜁𝑘)
×) ∼= 𝜋[Q𝑝(𝜁𝑘):Q𝑝]Z𝑈.

Consider Q𝑝(𝜁𝑝𝑚), which is totally ramified of degree 𝑝𝑚−1(𝑝− 1) over Q𝑝. Local reciprocity
gives

Q×
𝑝 /NmQ𝑝(𝜁𝑝𝑚 )/Q𝑝(Q𝑝(𝜁𝑝𝑚)

×)
∼=−→ 𝐺(Q𝑝(𝜁𝑝𝑚)/Q𝑝).

Thus both sides have the same order, 𝑝𝑚−1(𝑝− 1), and we must have

NmQ𝑝(𝜁𝑝𝑚 )/Q𝑝(Q𝑝(𝜁𝑝𝑚)
×) = 𝑈 (𝑚) := 𝑝Z(1 + (𝑝𝑚)).

Suppose 𝐿/Q𝑝 is an abelian extension. Its corresponding norm group 𝑁 is open of finite
index in Q𝑝, so contains

𝑝𝑛Z(1 + (𝑝𝑚))

for some 𝑛,𝑚. Choosing 𝑘 large enough we may suppose 𝑛 | [Q𝑝(𝜁𝑘) : Q𝑝]. Then using
Theorem 24.2.54,

𝑁 ⊇ Nm(Q𝑝(𝜁𝑛)
×) ∩ Nm(Q𝑝(𝜁𝑝𝑚)

×) = Nm(Q𝑝(𝜁𝑛𝑝𝑚)
×).

By Theorem 24.2.5, we get that Q𝑝(𝜁𝑛𝑝𝑚) ⊇ 𝐿.

Proof of Theorem 24.7.2. Given an abelian extension 𝐾/Q, choose a modulus m so that the
Artin map is defined. Every modulus for Q divides ∞(𝑛) for some integer 𝑛. The ray class
field of∞(𝑛) is Q(𝜁𝑛). If m divides∞(𝑛), then 𝐾 is contained in Q(𝜁𝑛). Hence the maximal
abelian extension is the union of all the Q(𝜁𝑛).

We can similarly ask how to characterize abelian extensions of other number fields 𝐾.
This is Hilbert’s Twelfth Problem and Kronecker’s Jugendtraum. Note that another way to
phrase this theorem is the following:

1. Qab is generated by the torsion points of Q× under multiplication.

2. Let 𝑓(𝑧) = 𝑒2𝜋𝑖𝑧. Then Qab is generated by 𝑓(Q):

Qab = Q(𝑓(Q)).

We can ask: for given 𝐾, can we get 𝐾ab by adjoining torsion points of some algebraic
variety, and does there exist a nice function 𝑔(𝑧) parameterizing this variety, so that

𝐾ab ≈ 𝐾(𝑔(𝐾))?

It turns out that the answer is affirmative for quadratic extensions: roughly speaking, the
maximal abelian extension is generated by torsion points of elliptic curves with complex
multiplication. We will give a complete solution to this problem in Chapter 41.

4omitting the subscripts on norms to avoid clutter

271



Number Theory, S24.8

8 Problems

1.1 Why can’t we define Frobp ∈ 𝐺(𝐿/𝐾) when p is a prime in 𝐾 that is ramified in 𝐿?

1.2 Fix 𝑛 ∈ N.

(a) For which primes 𝑝 ∈ Z does (𝑝) split completely in Z[𝜁𝑛+ 𝜁−1
𝑛 ]? (Be careful with

𝑝 = 2.)

(b) Show that the ray class field of (𝑛) is Q(𝜁𝑛 + 𝜁−1
𝑛 ).

1.3 (IberoAmerican Olympiad for University Students, 2010/6) Prove that, for all integers
𝑎 > 1, the prime divisors of 5𝑎4 − 5𝑎2 + 1 have the form 20𝑘 ± 1.

1.4 Consider the field extension Q( 3
√
𝑑, 𝜁3)/Q where 𝑑 ∈ Z is not a perfect cube. Let 𝑝 be

a prime relatively prime to 3𝑑. Prove that a prime 𝑝 splits into 𝑛 factors in Q( 3
√
𝑑, 𝜁3),

where

𝑛 =

⎧⎪⎪⎨⎪⎪⎩2, 𝑝 ≡ 1 (mod 3) and 𝑑 is a cube modulo 𝑝

3, 𝑝 ≡ 1 (mod 3) and 𝑑 is not a cube modulo 𝑝

6, 𝑝 ≡ 2 (mod 3).

2.1 Recall that 𝐺(𝐾/𝐾) has profinite (Krull) topology. Topologically 𝑊 (𝐾/𝐾) is a Z-
disjoint union of 𝐺(𝐾/𝐾)0-cosets 𝐺(𝐾/𝐾)0𝜎𝑛, where 𝜎𝑛 is any lift of Frob𝑛𝑞 , 𝑛 ∈
Z, where each 𝐺(𝐾/𝐾)0𝜎𝑛 is given the same topology as the profinite topology on
𝐺(𝐾/𝐾)0 via translation by 𝜎𝑛.

(a) Show that the natural inclusion 𝜄 : 𝑊 (𝐾/𝐾) → 𝐺(𝐾/𝐾) is continuous and has
dense image.

(b) Show that 𝜄 is not a topological isomorphism onto 𝜄(𝑊 (𝐾/𝐾)), where the latter
is equipped with the topology induced by that of 𝐺(𝐾/𝐾).

4.1 Characterize all quadratic extensions 𝐾/Q that are contained in a Z/4-extension. (Ben
Blum-Smith, from http://math.stackexchange.com/questions/596195/
conceptual-reason-why-a-quadratic-field-has-1-as-a-norm-if-and-only-if-it-is/)
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Chapter 25

Group homology and cohomology

group-hom-cohom In this chapter we introduce the theory of group homology and cohomology.
In the next chapter we’ll specialize to the case of Galois groups, and then we’ll use Galois
cohomology to prove the theorems of class field theory. Some results in this chapter will be
given without proof; for detailed proofs see Rotman [Rot09]. We assume knowledge of some
basic terminology and facts from category theory and commutative algebra (covariant and
contravariant functors, natural transformations, left and right exactness).

The idea of homology and cohomology—used in many different areas of mathematics—is
that after applying a functor, a short exact sequence of modules may no longer be exact.
Instead, we get the long exact sequence in (co)homology, with the (co)homology groups
measuring the deviation from exactness.

Exactly what functors are we applying? In group cohomology (Section 6), we apply
Hom𝐺(Z, ∙), turning a short exact sequence of 𝐺-modules

0→ 𝐴→ 𝐵 → 𝐶 → 0

into
les-intro0→ 𝐴𝐺 → 𝐵𝐺 → 𝐶𝐺 → 𝐻1(𝐺,𝐴)→ · · · (25.1)

where 𝐴𝐺 is the submodule of 𝐴 fixed by 𝐺. In the next chapter we will take 𝐴,𝐵,𝐶 to be a
multiplicative or additive subgroup of a field 𝐿, and 𝐺 = 𝐺(𝐿/𝐾). Then 𝐴𝐺 is just 𝐴 ∩𝐾.
Thus we see that the sequence (25.1) gives information about the relationship between a
field 𝐾 and an extension field. For example, in Kummer Theory 26.2, we take 𝐶 = 𝐿×𝑛;
then 𝐶𝐺 = 𝐿×𝑛 ∩𝐾, and we can characterize 𝐺(𝐿/𝐾) and hence 𝐿/𝐾 in terms of the 𝑛th
powers of 𝐿 appearing in 𝐾. This is representative a general trend in class field theory:
characterize extensions of 𝐾 in terms of information intrinsic to 𝐾.

We also get a sequence in group homology (Section 8), and we can splice the sequences
for homology and cohomology together to get the Tate groups (Section 9). Norm groups will
make their appearance here—which is how, in class field theory, we get a correspondence
between norm groups and field extensions.

Finally, we assemble a toolbox of other constructions from group cohomology and ho-
mology, including cup products (Section 10), changes of group (Section 11), the corestriction
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map (Section 11.5), results on cyclic groups and the Herbrand quotient (Section 12), and
Tate’s theorem (Section 13). We include generalizations of cohomology to profinite groups
(Section 14) and nonabelian groups (Section 15).

1 Projectives and injectives

Let 𝒜 be an abelian category.1 The reader unfamiliar with category theory may assume that
𝒜 is the class of 𝑅-modules, since we will be primarily working with modules throughout.

Definition 25.1.1: Let 𝒜 be an abelian category.

1. An object 𝑃 ∈ 𝒜 is projective if for every surjection 𝑝 : 𝑀 � 𝑁 and morphism
𝑓 : 𝑃 → 𝑁 , there exists a unique morphism 𝑔 : 𝑃 →𝑀 such that 𝑓 = 𝑝 ∘ 𝑔:

𝑃
𝑔

~~

𝑓
��

𝑀 𝑝
// // 𝑁

Equivalently, Hom(𝑃, ∙) is exact (or equivalently, right exact as it is always left exact).2

2. An object 𝐼 ∈ 𝒜 is injective if for every injection 𝑖 :𝑀 →˓ 𝑁 and morphism 𝑓 :𝑀 →
𝐼, there exists a unique morphism 𝑔 : 𝑁 → 𝐼, such that 𝑓 = 𝑔 ∘ 𝑖:

𝑀

𝑓
��

� � 𝑖 // 𝑁

𝑔
~~

𝐼

Equivalently, Hom(∙, 𝐼) is exact (or equivalently, just right exact).

Example 25.1.2: A free 𝑅-module (a direct sum of copies of 𝑅) is projective.

Definition 25.1.3: An abelian category 𝒜 . . .

1. has enough injectives if for every object 𝐴 ∈ 𝒜 there exists an injective object 𝐸
with a monic (injective) morphism 𝐴 →˓ 𝐸.

2. has enough projectives if for every object 𝐴 ∈ 𝒜 there exists a projective object 𝑃
with an epic (surjective) morphism 𝑃 � 𝐴.

1A category is an abelian category if it is an additive category such that every morphism has a kernel
and cokernel, every monomorphism (injection) is a kernel, and every epimorphism (surjection) is a cokernel.

2The diagram is equivalent to saying that if 𝑝 : 𝑀 � 𝑁 is surjective, then so is the map

Hom(𝑃,𝑀)
Hom(∙,𝑝)−−−−−−→ Hom(𝑃,𝑁), i.e. Hom(𝑃, ∙) is right exact.
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Definition 25.1.4: A projective resolution of 𝐴 is an exact sequence

P : · · · → 𝑃2
𝑑2−→ 𝑃1

𝑑1−→ 𝑃0
𝜀−→ 𝐴→ 0

where each 𝑃𝑛 is projective.
An injective resolution of 𝐴 is an exact sequence

E : 0→ 𝐴
𝜂−→ 𝐸0 𝑑0−→ 𝐸1 𝑑1−→ 𝐸2 → · · ·

where each 𝐸𝑛 is injective.

Proposition 25.1.5: If 𝒜 is an abelian category with enough projectives (injectives), then
every object has a projective (injective) resolution. In particular, every 𝑅-module has a
projective (injective) resolution.

Proof. Build the resolution step-by-step. See Rotman [Rot09], Proposition 6.2-5. For the
second part, note that the category of 𝑅-modules has enough projectives and enough injec-
tives.

2 Complexes

Definition 25.2.1: A complex in an abelian category (for example, the category of 𝑅-
modules or abelian groups) is a sequence of morphisms

C : · · · → 𝐶𝑛+1
𝑑𝑛+1−−−→ 𝐶𝑛

𝑑𝑛−→ 𝐶𝑛−1 → · · ·

such that the composition of any two adjacent morphisms is 0:

𝑑𝑛𝑑𝑛+1 = 0.

We often work with complexes only going off to the left or right (positive and negative
complexes, respectively), and label them

· · · → 𝐶𝑛
𝑑𝑛−→ 𝐶𝑛−1 → · · · → 𝐶0 → 0

0→ 𝐶0 → · · · → 𝐶𝑛−1 𝑑𝑛−1

−−−→ 𝐶𝑛 → · · ·

We will want to work with complexes like they are single objects.

Theorem 25.2.2: The class of complexes in 𝒜 can be made into an abelian category,
Comp(𝒜) as follows: The objects are the complexes and the morphisms are chain maps
𝑓 = (𝑓𝑛) : C→ C′, i.e. a sequence of maps making the following commute.

// 𝐶𝑛+1
𝑑𝑛+1

//

𝑓𝑛+1

��

𝐶𝑛
𝑑𝑛 //

𝑓𝑛
��

𝐶𝑛−1
𝑑𝑛−1

//

𝑓𝑛−1

��

// 𝐶 ′
𝑛+1

𝑑′𝑛+1
// 𝐶 ′

𝑛

𝑑′𝑛 // 𝐶 ′
𝑛−1

𝑑′𝑛−1
//
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Proof. See Rotman [Rot09], Proposition 5.100.

We will be interested in cohomology and homology modules associated to chain com-
plexes. For this, we have the following notion of what it means for chain maps to be “the
same” (See Theorem 25.3.2).

Definition 25.2.3: Two chain maps 𝑓, 𝑔 : C → C′ are homotopic if there exist a family
of morphisms 𝑠𝑛 : 𝐶𝑛 → 𝐶 ′

𝑛+1 such that

𝑓𝑛 − 𝑔𝑛 = 𝑑′𝑛+1𝑠𝑛 + 𝑠𝑛−1𝑑𝑛.

In Section 4 we will define the homology modules and cohomology modules from projec-
tive and injective resolutions. To show this does not depend on the choice of projective or
injective resolution, we need the following theorem.

Theorem 25.2.4 (Comparison Theorem): thm:comparison Let 𝒜 be an abelian category, and
suppose we have two complexesC : · · · → 𝑃1 → 𝑃0 → 𝐴→ 0 andC′ : · · ·𝑃 ′

1 → 𝑃 ′
0 → 𝐴′ → 0

and a map 𝑔 : 𝐴→ 𝐴′. Then there exists a chain map 𝑓 extending 𝑔:

· · · // 𝑃1

𝑓1
��

// 𝑃0
//

𝑓0
��

𝐴 //

𝑔

��

0

· · · // 𝑃 ′
1

// 𝑃 ′
0

// 𝐴′ // 0.

Moreover, 𝑓 is unique up to homotopy.
The same is true of complexes going off to the right (reverse the arrows above).

Proof. Rotman [Rot09], Theorem 6.16.

3 Homology and cohomology

Definition 25.3.1: Given a complex C, define

𝑍𝑛(C) = ker(𝑑𝑛)

𝐵𝑛(C) = im(𝑑𝑛+1)

𝐻𝑛(C) = 𝑍𝑛(C)/𝐵𝑛(C).

𝐻𝑛 is called the 𝑛th homology module. For upper indexing, we let 𝑍𝑛(C) = ker(𝑑𝑛),
𝐵𝑛(C) = im(𝑑𝑛−1), and 𝐻𝑛(C) = 𝑍𝑛(C)/𝐵𝑛(C), and call 𝐻𝑛 the 𝑛th cohomology mod-
ule.

Think of 𝐻𝑛 as measuring how far the complex is from being exact at 𝐶𝑛.

Theorem 25.3.2: thm:hn-functor Let 𝒜 be an abelian category. For every integer 𝑛, 𝐻𝑛 is an
additive functor from Comp(𝒜) → 𝒜. Moreover, homotopic chain maps induce the same
map in homology.
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Proof. See Rotman [Rot09], Proposition 6.8.

Theorem 25.3.3 (Long exact sequence): les A short exact sequence of chain complexes

0 // C′ 𝑖 // C
𝑝
// C′′ // 0

induces a long exact sequence of homology modules

· · · // 𝐻 ′
𝑛

𝑖𝑛 // 𝐻𝑛
𝑝𝑛
// 𝐻 ′′

𝑛
𝜕𝑛 // 𝐻 ′

𝑛−1
// · · ·

The map 𝜕𝑛 is defined by

𝜕𝑛[𝑐
′′
𝑛] = [𝑖−1

𝑛−1𝑑𝑛−1𝑝
−1
𝑛 𝑐′′𝑛] ∈ 𝐶 ′

𝑛−1.

Proof. Let 𝐻𝑛 = 𝐻𝑛(C), 𝐵𝑛 = im(𝑑𝑛+1), and 𝑍𝑛 = ker(𝑑𝑛) for the complex C, and define
𝐻 ′
𝑛, 𝐻

′′
𝑛, and so forth similarly. By the Snake Lemma, the gray sequence below is exact.

𝐻 ′
𝑛 𝐻𝑛 𝐻 ′′

𝑛

𝐶 ′
𝑛/𝐵

′
𝑛 𝐶𝑛/𝐵𝑛 𝐶 ′′

𝑛/𝐵
′′
𝑛 0

0 𝑍 ′
𝑛−1 𝑍𝑛−1 𝑍 ′′

𝑛−1

𝐻 ′
𝑛−1 𝐻𝑛−1 𝐻 ′′

𝑛−1

𝑖𝑛 𝑝𝑛

𝑑′𝑛−1 𝑑𝑛−1 𝑑′′𝑛−1

𝑖𝑛−1 𝑝𝑛−1

𝜕𝑛

Note that the connecting homomorphism is exactly that in the Snake Lemma.

4 Derived functors

sec:derived-functors

4.1 Right derived functors and Ext

4.1.1 Covariant case

Given an injective resolution of 𝐵,

𝐸𝐵 : 0→ 𝐵
𝜂−→ 𝐸0 𝑑0−→ 𝐸1 𝑑1−→ 𝐸2

𝑑2−→ · · · ,
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applying a (covariant) functor 𝑇 gives (after deleting 𝑇𝐵)

eq:TEB0→ 𝑇𝐸0 𝑇𝑑0−−→ 𝑇𝐸1 𝑇𝑑1−−→ 𝑇𝐸2
𝑇𝑑2−−→ · · · . (25.2)

We will primarily be concerned with the case where 𝑇 = Hom𝑅(𝐴, ∙), so the above becomes

eq:THom0→ Hom(𝐴,𝐸0)
Hom(𝐴,𝑑0)−−−−−−→ Hom(𝐴,𝐸1)

Hom(𝐴,𝑑1)−−−−−−→ Hom(𝐴,𝐸2)
Hom(𝐴,𝑑2)−−−−−−→ · · · . (25.3)

Definition 25.4.1: Let 𝑇 be a covariant functor. The 𝑛th (covariant) right derived
functor of 𝑇 is

(𝑅𝑛𝑇 )𝐵 := 𝐻𝑛(𝑇𝐸𝐵) =
ker(𝑇𝑑𝑛)

im(𝑇𝑑𝑛−1)
,

i.e. it is the 𝑛th cohomology module of (25.2).
For a 𝑅-module 𝐸, define

Ext𝑛𝑅(𝐴,𝐵) := (𝑅𝑛Hom𝑅(𝐴, ∙))𝐵 = 𝐻𝑛(Hom𝑅(𝐴,𝐸
𝐵)),

i.e. it is the 𝑛th cohomology module of (25.3).

Here 𝑑−1 is the trivial map 0→ 𝐸0. We need to show that this definition does not depend
on the injective resolution chosen.

Proof of well-definedness. Suppose we have two injective resolutions of 𝐵:

0 // 𝐵
𝜂
// 𝐸0 𝑑0 //

𝑓0
��

𝐸1 𝑑1 //

𝑓1
��

· · ·

0 // 𝐵
𝜂′
// 𝐸 ′0 𝑑′0 // 𝐸 ′1 𝑑′1 // · · ·

Let (𝑅𝑛𝑇 )𝐵 = ker(𝑇𝑑𝑛)
im(𝑇𝑑𝑛−1)

and (𝑅′𝑛𝑇 )𝐵 = ker(𝑇𝑑′𝑛)
im(𝑇𝑑′𝑛−1)

.

By the Comparison Theorem 25.2.4, there is a unique chain map 𝑓 between the two
resolutions, up to homotopy (the dotted lines above). Apply 𝑇 to this diagram to get a
chain map 𝑇𝑓𝑛 : 𝑇𝐸𝑛 → 𝑇𝐸 ′𝑛. As 𝐻𝑛 is a functor by Theorem 25.3.2, 𝑇𝑓 induces a map on
the cohomology modules (𝑅𝑛𝑇 )𝐵 → (𝑅′𝑛𝑇 )𝐵. Since we can construct a chain map 𝑔 from
the second to the first resolution as well, (𝑅𝑛𝑇 )𝐵 → (𝑅′𝑛𝑇 )𝐵 must be an isomorphism.

For the details, see [Rot09], Proposition 6.20. (The argument there is written for left
derived functors, but the idea is the same.)

4.1.2 Contravariant case

We can define a companion functor ext𝑛𝑅 that is contravariant instead of covariant. Given
an projective resolution of 𝐴

𝑃𝐴 : · · · 𝑑2−→ 𝑃2
𝑑1−→ 𝑃1

𝑑0−→ 𝑃0
𝜀−→ 𝐴→ 0,
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applying a contravariant functor 𝑇 gives

eq:TPB0
𝑇𝑑−1=0−−−−→ 𝑇𝑃0

𝑇𝑑0−−→ 𝑇𝑃1
𝑇𝑑1−−→ 𝑇𝑃2

𝑇𝑑2−−→ · · · . (25.4)

To define ext, let 𝑇 = Hom𝑅(∙, 𝐵).

Definition 25.4.2: Let 𝑇 be a contravariant functor. The 𝑛th (contravariant) right
derived functor of 𝑇 is

(𝑅𝑛𝑇 )𝐴 := 𝐻𝑛(𝑇𝑃𝐴) =
ker(𝑇𝑑𝑛)

im(𝑇𝑑𝑛−1)
,

i.e. it is the 𝑛th cohomology module of (25.4).
For 𝑅-modules 𝐴,𝐵, define

ext𝑛𝑅(𝐴,𝐵) := (𝑅𝑛Hom𝑅(∙, 𝐵))𝐴 = 𝐻𝑛(Hom𝑅(𝑃𝐴, 𝐵))

Theorem 25.4.3: Extisext For 𝑅-modules 𝐴,𝐵,

Ext𝑛𝑅(𝐴,𝐵) = ext𝑛𝑅(𝐴,𝐵).

This theorem says that we have two choices when we need to calculate Ext𝑛𝑅(𝐴,𝐵),
namely,

1. Find a injective resolution of 𝐵 and apply Hom(𝐴, ∙) (the Ext perspective), or

2. Find a projective (e.g. free) resolution of 𝐴 and apply Hom(∙, 𝐵) (the ext perspective).

Proof. See Rotman [Rot09], Theorem 6.67.

4.2 Left derived functors and Tor

Next we define left derived functors and Tor analogously. Given a projective resolution of 𝐴

𝑃𝐴 : · · · 𝑑2−→ 𝑃2
𝑑1−→ 𝑃1

𝑑0−→ 𝑃0
𝜀−→ 𝐴→ 0,

applying a covariant functor 𝑇 gives

· · · 𝑇𝑑2−−→ 𝑇𝑃2
𝑇𝑑1−−→ 𝑇𝑃1

𝑇𝑑0−−→ 𝑇𝑃0
𝑇𝑑−1−−−→ 0.

To define Tor, let 𝑇 = ∙ ⊗𝑅 𝐵.

Definition 25.4.4: The 𝑛th left derived functor of 𝑇 is

(𝐿𝑛𝑇 )𝐵 := 𝐻𝑛(𝑇𝑃𝐴) =
ker(𝑇𝑑𝑛−1)

im(𝑇𝑑𝑛)
.

For 𝐴 an 𝑅-module, define

Tor𝑅𝑛 (𝐴,𝐵) := (𝐿𝑛(∙ ⊗𝑅 𝐵))𝐴 = 𝐻𝑛(𝑃𝐴 ⊗𝑅 𝐵)

tor𝑅𝑛 (𝐴,𝐵) := (𝐿𝑛(𝐴⊗𝑅 ∙))𝐴 = 𝐻𝑛(𝐴⊗𝑅 𝑃𝐵).

(Note Tor𝑅𝑛 (𝐴,𝐵) = tor𝑅𝑛 (𝐵,𝐴).)
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Note unlike the case with Ext, we need only consider covariant derived functors: Hom𝑅

is contravariant in the first entry and covariant in the second, while ⊗𝑅 is covariant in both
entries. Similar to Theorem 25.4.3, we have the following.

Theorem 25.4.5: Toristor For 𝐴,𝐵 𝑅-modules,

Tor𝑅𝑛 (𝐴,𝐵) = tor𝑅𝑛 (𝐴,𝐵).

Proof. See Rotman [Rot09], Theorem 6.32.

4.3 Long exact sequences

The most important property of the derived functors is that they repair “loss of exactness”
after applying the functor.

Theorem 25.4.6 (Long exact sequence): les-ext Let 0→ 𝐴→ 𝐵 → 𝐶 → 0 be a short exact
sequence of 𝐺-modules.

1. Let 𝑇 be a left exact covariant functor. Then there is a long exact sequence

0 // (𝑅0𝑇 )𝐴 // (𝑅0𝑇 )𝐵 // (𝑅0𝑇 )𝐶 𝜕0 // (𝑅1𝑇 )𝐴 // · · ·

𝑇𝐴 𝑇𝐵 𝑇𝐶

2. Let 𝑇 be a right exact covariant functor. Then there is a long exact sequence

· · · // (𝐿1𝑇 )𝐶
𝜕1 // (𝐿0𝑇 )𝐴 // (𝐿0𝑇 )𝐵 // (𝐿0𝑇 )𝐶 // 0

𝑇𝐴 𝑇𝐵 𝑇𝐶

The maps 𝜕𝑛 are given by the snake lemma.

Proof. The long exact sequences exist by Theorem 25.3.3. (Note that the complexes only go
off to the right/left in the two cases, respectively.) It remains to show the equalities. Take
a projective resolution of 𝐴,

· · · 𝑑2−→ 𝑃2
𝑑1−→ 𝑃1

𝑑0−→ 𝑃0
𝜀−→ 𝐴→ 0.

By right exactness of 𝑇 , the following is exact:

𝑇𝑃1
𝑇𝑑1 // 𝑇𝑃0

𝑇𝜀 // // 𝑇𝐴 // 0.

Hence (𝐿0𝑇 )𝐴 = 𝑇𝑃0/im(𝑇𝑃1) ∼= 𝑇𝐴.
The second part is similar.
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Corollary 25.4.7: les-ext-tor We have the long exact sequences

0 // Ext0𝑅(𝑀,𝐴) // Ext0𝑅(𝑀,𝐵) // Ext0𝑅(𝑀,𝐶) 𝜕0 // Ext1𝑅(𝑀,𝐴) // · · ·

Hom𝑅(𝑀,𝐴) Hom𝑅(𝑀,𝐵) Hom𝑅(𝑀,𝐶)

and

· · · // Tor𝑅1 (𝐶,𝑀)
𝜕1 // Tor𝑅0 (𝐴,𝑀) // Tor𝑅0 (𝐵,𝑀) // Tor𝑅0 (𝐶,𝑀) // 0

𝑀 ⊗𝑅 𝐴 𝑀 ⊗𝑅 𝐵 𝑀 ⊗𝑅 𝐶

Proof. Hom𝑅(𝐴, ∙) is left exact and ∙ ⊗𝑅 𝐵 is right exact.

Example 25.4.8: ex:ext-inj We have the following.

𝐵 injective =⇒ Ext𝑛𝑅(𝐴,𝐵) = 0 for all 𝐴, 𝑛 ≥ 1

𝐴 projective =⇒ Tor𝑛𝑅(𝐴,𝐵) = 0 for all 𝐵, 𝑛 ≥ 1.

Indeed, recall that Ext is defined by taking an injective resolution of 𝐵 and Tor is defined
by taking a projective resolution of 𝐴, and in these cases we can take the trivial resolutions
0→ 𝐵 → 𝐵 → 0 and 0→ 𝐴→ 𝐴→ 0.

Example 25.4.9: ex:abelian-tor2=0 Take 𝑅 = Z. Then a 𝑅-module is just an abelian group.
Every group 𝐻 has a free resolution of length 2:

0→ 𝐹1 → 𝐹0 → 𝐻 → 0.

Thus ext𝑛Z(𝐻,𝐺) = 0 and TorZ𝑛(𝐻,𝐺) = 0 for 𝑛 ≥ 2.

5 Homological and cohomological functors

sec:cohom-functor This section is more abstract and may be skipped.
As we saw in Corollary 25.4.7 and Example 25.4.8, the key properties of Ext𝑛𝑅 are roughly

the following:

1. Ext𝑛𝑅(𝐴,𝐵) = 0 when 𝐵 is injective and 𝑛 ≥ 1.

2. Short exact sequences give rise to long exact sequences.

3. In dimension 0, Ext0𝑅(𝐴,𝐵) = Hom𝑅(𝐴,𝐵).
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We have a similar description for Tor𝑅𝑛 .
We abstract the definition for Ext and Tor, by defining homological and cohomological

functors. There are several reasons for doing this:

1. We want to talk about natural transformations between cohomological functors.

2. In the last section we showed the existence of Ext satisfying the above properties (and
similarly for Tor). It turns out that these properties characterize it uniquely. Thus we
can just “remember” these properties and forget the details of the construction.

There are similarly other (co)homological functors, and we sometimes want to show
they are equal. To do this, it turns out we can just construct an isomorphism in
dimension 0, and the rest works out by abstract nonsense. (See Theorem 25.5.2.)

Note in the above characterization of Ext we said Ext𝑅𝑛 (𝐴,𝐵) = 0 for 𝑛 ≥ 1 when 𝐵 is
injective. This is useful because every 𝑅-module has an injective resolution. In general,
though, we may want to work with a general class of objects, say 𝜒 (which in our case is the
class of injective modules). The key property is that for every module 𝐴 there is an injective
module 𝐸 and an injective morphism 𝐴 → 𝐸, i.e. the category of 𝑅-modules has enough
injectives.

Definition 25.5.1: Let (𝑇 𝑛 : 𝒜 → ℬ)𝑛≥0 be a set of additive functors on abelian categories,
and let 𝜒 be a class of objects in 𝐴. We say 𝐴 has enough 𝜒-objects is every object in 𝒜
can be embedded in an object in 𝜒.

Supposing 𝐴 has enough 𝜒-objects, (𝑇 𝑛)𝑛≥0 is a cohomological 𝜕-functor if the fol-
lowing hold.

1. (𝑇 𝑛)𝑛≥0 is 𝜒-coeffaceable: 𝑇 𝑛(𝑋) = 0 for all 𝑋 ∈ 𝜒 and 𝑛 ≥ 1.

2. For every short exact sequence 0→ 𝐴→ 𝐵 → 𝐶 → 0 there is a long exact sequence

0→ 𝑇 0(𝐴)→ · · · → 𝑇 𝑛(𝐴)→ 𝑇 𝑛(𝐵)→ 𝑇 𝑛(𝐶)
𝜕𝑛−→ 𝑇 𝑛+1(𝐴)→ · · ·

such that the diagonal morphisms 𝜕𝑛 are natural (with respect to maps between two
short exact sequences).

A morphism of cohomological 𝜕-functors is a natural transformation 𝜏𝑛 : 𝑇 𝑛 → 𝐻𝑛 com-
muting with the diagonal maps 𝜕𝑛.

There is a similar definition for effaceability and homological 𝜕-functors. We can also
consider (𝑇 𝑛)𝑛∈Z, that is 𝜕-functors extending infinitely in both directions, replacing the long
exact sequence with an infinite exact sequence extending in both directions.

The following theorem gives existence and uniqueness of (co)homological 𝜕-functors.

Theorem 25.5.2: thm:hom-functor-uniqueness
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1. Suppose 𝜏 0 : 𝑇 0 → 𝑇 ′0 is a natural transformation of cohomological 𝜕-functors in
degree 0. Then there exists a unique morphism of cohomological 𝜕-functors 𝜏 : 𝑇 → 𝑇 ′

extending 𝜏 0.

2. Suppose 𝑇 𝑛, 𝑇 ′𝑛 : 𝒜 → ℬ are two cohomological functors, and there is a natural
isomorphism 𝑇 0 ∼= 𝑇 ′0. Then 𝑇 𝑛 ∼= 𝑇 ′𝑛.

The same is true of homological 𝜕-functors, and 𝜕-functors extending in both directions.

Proof. See Rotman [Rot09], 6.35.

For example, Ext𝑅 is characterized completely by the 3 properties we gave: it is a coho-
mological 𝜕-functor by items 1 and 2, and uniqueness comes from knowing it in dimension
0 (item 3). Ditto for Tor𝑅.

6 Group cohomology

group-cohomology To apply homology to groups, we will turn a group 𝐺 into a ring, and consider
modules over that ring.

Definition 25.6.1: Let 𝑅 be a ring. The group ring 𝑅[𝐺] or 𝑅𝐺 is the ring

𝑅⊕𝐺 =

⎧⎨⎩∑︁
𝑔∈𝐺

𝑎𝑔𝑔 : 𝑎𝑔 ∈ 𝑅

⎫⎬⎭
with multiplication given by�∑︁

𝑔∈𝐺
𝑎𝑔𝑔

�(︃∑︁
ℎ∈𝐺

𝑏ℎℎ

)︃
=

∑︁
𝑔,ℎ∈𝐺

𝑎𝑔𝑏ℎ𝑔ℎ.

We will always work with 𝑅 = Z.
Note that any action of 𝐺 on a Z-module makes the module into a Z𝐺-module. We often

just abbreviate “Z𝐺-module” as “𝐺-module.”

Definition 25.6.2: Let 𝐺 be a group and 𝐴,𝐵 be left Z𝐺-modules.

1. The diagonal action of 𝐺 on HomZ(𝐴,𝐵) is given by

(𝑔𝜙)(𝑎) = 𝑔(𝜙(𝑔−1𝑎)).

2. The diagonal action of 𝐺 on 𝐴⊗Z𝐺 𝐵 is given by

𝑔(𝑎⊗ 𝑏) = (𝑔𝑎)⊗ (𝑔𝑏).

We now apply cohomology as follows.
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Definition 25.6.3: Let 𝑀 be a 𝐺-module. Equip Z with the trivial 𝐺-module structure.
The cohomology groups of 𝐺 with coefficients in 𝑀 are defined by

𝐻𝑛(𝐺,𝑀) = Ext𝑛Z𝐺(Z,𝑀) = 𝐻𝑛(HomZ𝐺(Z, 𝐸𝑀))

= ext𝑛Z𝐺(Z,𝑀) = 𝐻𝑛(HomZ𝐺(𝑃Z,𝑀)).

Note from Theorem 25.4.3, we have two choices in finding 𝐻𝑛(𝐺,𝑀): find a Z𝐺-injective
resolution of 𝑀 , or a Z𝐺-projective resolution of Z.

There is a nice interpretation of 𝐻0(𝐺,𝑀).

Definition 25.6.4: Let 𝐿,𝑀 be 𝐺-modules and 𝜙 be a map 𝐿 → 𝑀 . Define the fixed
point functor by the following.

1. Action on modules:

𝑀𝐺 = {𝑚 ∈𝑀 : 𝑔𝑚 = 𝑚 for all 𝑔 ∈ 𝐺} .

2. Action on maps: Since 𝜙(𝐿𝐺) ⊆𝑀𝐺 we can define

𝜙𝐺 = 𝜙|𝐿𝐺 .

Proposition 25.6.5: cohom1 As functors,

𝐻0(𝐺, ∙) = HomZ𝐺(Z, ∙) = ∙𝐺.

In particular, the fixed point functor is left exact since HomZ𝐺(Z, ∙) is.

Proof. Z is equipped with the trivial 𝐺-action. A 𝐺-homomorphism 𝜙 from Z to 𝑀 is
determined by 𝜙(1), and 𝜙(1) must be a fixed point. Hence HomZ𝐺(Z,𝑀) = 𝑀𝐺 via the
map 𝜙 ↦→ 𝜙(1).

Remark 25.6.6: This gives us another way to think about group cohomology. Given 𝑀 ,
take an injective resolution 0 → 𝑀 → 𝐸0 → 𝐸1 → · · · . Applying HomZ𝐺(Z, ∙) to this
resolution is the same as applying ∙𝐺, so we get 0→ (𝐸0)𝐺 → (𝐸1)𝐺 → · · · . Then 𝐻𝑛(𝐺,𝑀)
is the 𝑛th cohomology group of this complex.

We will need the fact that cohomology preserves products.

Proposition 25.6.7: cohom-preserve-prod Let 𝐺 be a group and 𝑀𝑖 be 𝐺-modules. Then

𝐻𝑛

(︃
𝐺,
∏︁
𝑖∈𝐼
𝑀𝑖

)︃
∼=
∏︁
𝑖∈𝐼
𝐻𝑛(𝐺,𝑀𝑖).

Proof. First note that the product of injective modules is an injective module: By definition
a 𝑅-module 𝐼 is injective iff Hom𝑅(∙, 𝐼) is exact. Thus, the statement follows from the fact
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that Hom𝑅 (∙,∏︀𝑖 𝐼𝑖) =
∏︀
𝑖Hom𝑅(∙, 𝐼𝑖), and the fact that a product of exact sequences is

exact.
Thus if 𝐸𝑀𝑖 is an injective resolution for 𝑀𝑖, then

∏︀
𝑖𝐸

𝑀𝑖 is an injective resolution for∏︀
𝑖𝑀𝑖, and we get

𝐻𝑛

(︃
𝐺,
∏︁
𝑖∈𝐼
𝑀𝑖

)︃
= 𝐻𝑛

(︁
HomZ𝐺

(︁
Z, 𝐸

∏︀
𝑖∈𝐼

𝑀𝑖
)︁)︁

= 𝐻𝑛

(︃
HomZ𝐺

(︃
Z,
∏︁
𝑖∈𝐼
𝐸𝑀𝑖

)︃)︃
=
∏︁
𝑖∈𝐼
𝐻𝑛(𝐺,𝑀𝑖).

7 Bar resolutions

sec:bar-res We now describe the cohomology groups, by working with an explicit presentation
of Z. (We use the ext approach.) This will give practical interpretations of 𝐻1(𝐺,𝑀) and
𝐻2(𝐺,𝑀). For proofs, see Rotman [Rot09], Section 9.3.

Definition 25.7.1: Define the bar resolution 𝐵(𝐺) to be the exact sequence

· · · 𝑑3 // 𝐵2
𝑑2 // 𝐵1

𝑑1 // 𝐵0
𝑑0=𝜀 // Z // 0

where
𝐵𝑛
∼= Z𝐺⊕𝐺𝑛

is the free abelian group with basis elements denoted by [𝑥1| · · · |𝑥𝑛], and

eq:bar-d𝑑𝑛([𝑥1| · · · |𝑥𝑛]) = 𝑥1[𝑥2| · · · |𝑥𝑛] +
𝑛−1∑︁
𝑖=1

(−1)𝑖[𝑥1| · · · |𝑥𝑖𝑥𝑖+1⏟  ⏞  
𝑖

| · · · |𝑥𝑛] + (−1)𝑛[𝑥1| · · · |𝑥𝑛−1].

(25.5)
Let 𝑈𝑛 ⊆ 𝐵𝑛 be the submodule generated by [𝑥1| · · · |𝑥𝑛] where at least one of the 𝑥𝑖
equals 1, and define the normalized bar resolution to be the quotient complex 𝐵*(𝐺) :=
𝐵(𝐺)/𝑈(𝐺).

Note in particular

𝑑3[𝑥|𝑦|𝑧] = 𝑥[𝑦|𝑧]− [𝑥𝑦|𝑧] + [𝑥|𝑦𝑧]− [𝑥|𝑦]
𝑑2[𝑥|𝑦] = 𝑥[𝑦]− [𝑥𝑦] + [𝑥]

𝑑1[𝑥] = 𝑥[]− []

𝑑0[] = 1.

We have Hom𝐺(𝐵𝑛,𝑀) = Hom𝐺(Z𝐺
⨁︀

𝐺𝑛
,𝑀), so it can be identified with the set of functions

𝐺𝑛 →𝑀 . Working out the kernels and images, we get the following.

Theorem 25.7.2: explicit-h1 We have the following descriptions of 𝐻1(𝐺,𝑀) and 𝐻2(𝐺,𝑀).
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1. Define a derivation (or crossed homomorphism) of 𝐺 to be a function 𝐺 → 𝑀 such
that

𝑑(𝑥𝑦) = 𝑑(𝑥) + 𝑥𝑑(𝑦)

and a principal derivation to be one in the form

𝑑(𝑥) = 𝑎− 𝑥𝑎, for some 𝑎 ∈𝑀.

Denote the set of derivations and principal derivations by Der(𝐺,𝑀) and PDer(𝐺,𝑀).
Then

𝐻1(𝐺,𝑀) ∼= Der(𝐺,𝑀)/PDer(𝐺,𝑀).

2. We have

𝐻2(𝐺,𝑀) ∼=
{𝑓 : 𝐺×𝐺→𝑀 : 𝑓(𝑥, 𝑦) + 𝑓(𝑥𝑦, 𝑧) = 𝑥𝑓(𝑦, 𝑧) + 𝑓(𝑥, 𝑦𝑧), 𝑓(𝑥, 1) = 𝑓(1, 𝑦) = 0}
{𝑔 : 𝐺×𝐺→𝑀 : 𝑔(𝑥, 𝑦) = 𝑥ℎ(𝑦)− ℎ(𝑥𝑦) + ℎ(𝑥) for some ℎ : 𝐺→𝑀}

.

The elements in the top set are called factor sets.

A particularly important case is the following.

Corollary 25.7.3: h1-is-hom Suppose 𝐺 acts trivially on 𝑀 . Then

𝐻1(𝐺,𝑀) ∼= HomZ(𝐺,𝑀).

(On the RHS, 𝐺 and 𝑀 are thought of as groups.)

Proof. Because the action is trivial, a derivation is just a function with 𝑑(𝑥𝑦) = 𝑑(𝑥)+ 𝑑(𝑦),
i.e. a homomorphism. Moreover, any principal derivation is trivial.

8 Group homology

group-homology

Definition 25.8.1: Let 𝐴 be a 𝐺-module. Equip Z with the trivial 𝐺-module structure.
The homology groups of 𝐺 with coefficients in Z are defined by

𝐻𝑛(𝐺,𝐴) = TorZ𝐺𝑛 (Z, 𝐴) = 𝐻𝑛(𝑃Z ⊗Z𝐺 𝐴)

= torZ𝐺𝑛 (Z, 𝐴) = 𝐻𝑛(Z⊗Z𝐺 𝑃𝐴).

There is similarly a nice interpretation of 𝐻0(𝐺,𝑀), as well as of 𝐻1(𝐺,Z). Given a
group 𝐺, define the map 𝜀 : Z𝐺→ Z by 𝜀

(︀∑︀
𝑔∈𝐺 𝑎𝑔𝑔

�
=
∑︀
𝑔∈𝐺 𝑎𝑔, and define

𝐼𝐺 := ker(𝜀) =

⎧⎨⎩∑︁
𝑔∈𝐺

𝑎𝑔𝑔 :
∑︁
𝑔∈𝐺

𝑎𝑔 = 0

⎫⎬⎭ .
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Proposition 25.8.2: hom1 As functors,

𝐻0(𝐺, ∙) = ∙/𝐼𝐺∙;

i.e. there is a natural isomorphism

𝐻0(𝐺,𝐴) = Z⊗𝐺 𝐴→ 𝐴/𝐼𝐺𝐴

𝑚⊗ 𝑎 ↦→ 𝑚𝑎+ 𝐼𝐺𝐴.

Proof. The short exact sequence 0→ 𝐼𝐺 → Z𝐺 𝜀−→ Z gives exactness of

𝐼𝐺 ⊗𝐺 𝐴→ Z𝐺⊗𝐺 𝐴→ Z⊗𝐺 𝐴→ 0

since tensoring is right exact. (𝐺 acts trivially on the Z on the right.) Thus,

𝐻0(𝐺,𝐴) = Z⊗𝐺 𝐴 = (Z𝐺⊗𝐺 𝐴)/(𝐼𝐺 ⊗𝐺 𝐴) = 𝐴/𝐼𝐺𝐴.

Proposition 25.8.3: h1-is-gab There are canonical homomorphisms 𝐻1(𝐺,Z) ∼= 𝐼𝐺/𝐼
2
𝐺
∼= 𝐺ab.

Here 𝐺ab denotes the abelianization of 𝐺, i.e. 𝐺/𝐺′, where 𝐺′ is the derived subgroup,
the (normal) subgroup generated by the commutators 𝑎𝑏𝑎−1𝑏−1.

Proof. The long exact sequence in homology for 0→ 𝐼𝐺 → Z𝐺 𝜀−→ Z→ 0 is

𝐻1(𝐺,Z𝐺) // 𝐻1(𝐺,Z)
𝜕1 // 𝐻0(𝐺, 𝐼𝐺) // 𝐻0(𝐺,Z𝐺) // // 𝐻0(𝐺,Z) // 0

0 𝐼𝐺/𝐼
2
𝐺 Z Z

The left term is 0 by Example 25.4.8 since Z𝐺 is free, hence projective. Thus 𝜕1 is injective.
From Proposition 25.8.2, we get the middle two inequalities (since𝐻0(𝐺,Z𝐺) = Z𝐺/𝐼𝐺Z𝐺 =
Z). Surjectivity of the map Z → Z gives that it is actually an isomorphism, so exactness
gives 𝜕1 is an isomorphism. It remains to show

iggg𝐼𝐺/𝐼
2
𝐺
∼= 𝐺/𝐺′. (25.6)

Define a map 𝑓 : 𝐺 → 𝐼𝐺/𝐼
2
𝐺 by letting 𝑓(𝑥) = (𝑥 − 1) mod 𝐼2𝐺. This is a homomorphism

because

𝑓(𝑥𝑦) = 𝑥𝑦 − 1 mod 𝐼2𝐺
= (𝑥− 1) + (𝑦 − 1) mod 𝐼2𝐺 (𝑥− 1)(𝑦 − 1) ∈ 𝐼2𝐺
= 𝑓(𝑥)𝑓(𝑦).
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Now 𝐺′ ∈ ker 𝑓 since 𝐼𝐺/𝐼
2
𝐺 is abelian (Z𝐺, as an additive group, is abelian), so we get a

map 𝑓 : 𝐺/𝐺′ → 𝐼𝐺/𝐼
2
𝐺.

Now define 𝑔 : 𝐼𝐺 → 𝐺/𝐺′ by 𝑔(𝑥− 1) = 𝑥𝐺′. (Note 𝑥− 1, 𝑥 ∈ 𝐺∖{1}, is a free basis for
𝐺.) We have

𝑔

� ∑︁
𝑥∈𝐺∖{1}

𝑚𝑥(𝑥− 1)
∑︁

𝑦∈𝐺∖{1}
𝑚𝑦(𝑦 − 1)

�
= 𝑔

� ∑︁
𝑥,𝑦∈𝐺∖{1}

𝑚𝑥𝑛𝑦((𝑥𝑦 − 1)− (𝑥− 1)− (𝑦 − 1))

�
=

∏︁
𝑥,𝑦∈𝐺∖{1}

(𝑥𝑦𝑥−1𝑦−1)𝑚𝑥𝑛𝑥𝐺′ = 𝐺′

so 𝑔 induces 𝑔 : 𝐼𝐺/𝐼
2
𝐺 → 𝐺/𝐺′.

Now 𝑓 and 𝑔 are inverse, showing (25.6).

8.1 Shapiro’s lemma

shapiro Shapiro’s lemma will be helpful in computing (co)homology groups, especially in the
guise of Corollary 25.8.8.

Definition 25.8.4: Let 𝑆 ⊆ 𝐺 be a subgroup of finite index. Define the induced and
coinduced modules to be3

Ind𝐺𝑆 (𝐴) = 𝐴⊗Z𝑆 Z𝐺.
Coind𝐺𝑆 (𝐴) = HomZ𝑆(Z𝐺,𝐴).

If 𝑆 = {1} we simply write Ind𝐺(𝐴) or Coind𝐺(𝐴). An induced module of𝐺 is a module
in the form Ind𝐺(𝐴); a coinduced module of 𝐺 is a module in the form Coind𝐺(𝐴).

Remark 25.8.5: rem:finite-induced If 𝐺 is finite, the induced and coinduced modules are canoni-
cally isomorphic via the below map, so there is no need to distinguish between them.

Hom𝑆(Z𝐺,𝐴)→ 𝐴⊗Z𝑆 Z𝐺
𝜙 ↦→

∑︁
𝑔∈𝐺/𝑆

𝜙(𝑔−1)⊗Z𝑆 𝑔.

Proposition 25.8.6: pr:coinduced-subgroup If 𝑀 is a coinduced 𝐺-module, and 𝐻 ⊆ 𝐺 is a sub-
group, then 𝑀 is a coinduced 𝐻-module.

Proof. Write 𝑀 = HomZ(Z[𝐺], 𝐴); we can write Z[𝐺] = Z[𝐻]⊗𝐵; then we have by adjoint
associativity4 that 𝑀 = Hom(Z[𝐻]⊗𝑀,𝐴) = Hom(Z[𝐻],Hom(𝑀,𝐴)).

3Be careful; in some books the definitions are reversed. We follow Serre’s definition, which is the opposite
of Milne’s definitions.

4If 𝑅,𝑅′ are rings, 𝑀 is a 𝑅-module, 𝑁 is a (𝑅,𝑅′)-bimodule, and 𝑃 is a 𝑅′-module, then there is a
canonical (𝑅,𝑅′)-isomorphism Hom𝑅(𝑀,Hom𝑅′(𝑁,𝑃 )) ∼= Hom𝑅′(𝑀 ⊗𝑅 𝑁,𝑃 ).
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The cohomology of coinduced modules and the homology of induced modules are easy to
calculate.

Lemma 25.8.7 (Shapiro’s lemma): shapiro-lemma The following hold.

𝐻𝑛(𝐺,Coind𝐺𝑆 (𝐴)) = 𝐻𝑛(𝑆,𝐴)

𝐻𝑛(𝐺, Ind
𝐺
𝑆 (𝐴)) = 𝐻𝑛(𝑆,𝐴).

Proof. Let 𝑃Z be a Z𝐺-projective resolution of Z. Note it is also a Z𝑆-projective resolution,
as any Z𝐺-projective module is Z𝑆-projective.

By definition of cohomology group,

𝐻𝑛(𝐺,Coind𝐺𝑆 (𝐴)) = 𝐻𝑛(HomZ𝐺(𝑃Z,HomZ𝑆(Z𝐺,𝐴)))
(*)
= 𝐻𝑛(HomZ𝑆(𝑃Z ⊗Z𝐺 Z𝐺,𝐴)) = 𝐻𝑛(HomZ𝑆(𝑃Z, 𝐴)) = 𝐻𝑛(𝑆,𝐴).

In (*) we used adjoint associativity.
By the definition of homology group,

𝐻𝑛(𝐺, Ind
𝐺
𝑆 (𝐴)) = 𝐻𝑛(𝑃Z ⊗Z𝐺 (Z𝐺⊗Z𝑆 𝐴)) = 𝐻𝑛(𝑃Z ⊗Z𝑆 𝐴) = 𝐻𝑛(𝑆,𝐴).

Corollary 25.8.8: shapiro-cor Suppose that𝐴 =
⨁︀

𝑖∈𝐼 𝐴𝑖, 𝑆 = Stab(𝐴𝑗) (defined as {𝑔 ∈ 𝐺 : 𝑔𝐴𝑗 = 𝐴𝑗}),
and 𝐺 permutes the submodules 𝐴𝑖 transitively. Then

𝐻𝑛(𝐺,𝐴) = 𝐻𝑛(𝑆,𝐴𝑗).

If 𝐺 is finite, then
𝐻𝑛(𝐺,𝐴) = 𝐻𝑛(𝑆,𝐴𝑗).

Proof. We have 𝐴 = Ind𝐺𝑆 𝐴𝑗. If 𝐺 is finite then 𝐴 ∼= Coind𝐺𝑆 𝐴𝑗 as well.

Corollary 25.8.9: cor:ind-0 If𝑀 is an coinduced 𝐺-module, then 𝐻𝑛(𝐺,𝑀) = 0 for all 𝑛 ≥ 1.
If 𝑀 is an induced 𝐺-module, then 𝐻𝑛(𝐺,𝑀) = 0 for all 𝑛 ≥ 1.

Proof. By Shapiro’s lemma 25.8.7,

𝑀 = Coind𝐺(𝐴) =⇒ 𝐻𝑛(𝐺,𝑀) = 𝐻𝑛(1,𝑀) = 0

𝑀 = Ind𝐺(𝐴) =⇒ 𝐻𝑛(𝐺,𝑀) = 𝐻𝑛(1,𝑀) = 0.

We used the fact that Z is Z[{1}]-projective.

9 Tate groups

tate-groups By Corollary 25.4.7, given a short exact sequence of 𝐺-modules we get a long exact
sequence in homology and cohomology. We splice these sequences together using the Snake
Lemma to obtain a long exact sequence extending in both directions.
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Definition 25.9.1: df:ngs Let 𝐺 be a group, 𝑆 be a subgroup of finite index, and 𝐴 be a
𝐺-module. Define the norm 𝑁𝐺/𝑆 : 𝐴𝑆 → 𝐴𝐺 by

𝑁𝐺/𝑆(𝑎) =
𝑛∑︁
𝑗=1

𝑡𝑗𝑎,

where {𝑡1, . . . , 𝑡𝑛} is a left transversal (i.e. coset representatives) of 𝑆 in 𝐺. In particular,
for 𝑆 = {1} the norm map is

𝑁𝐺(𝑎) = 𝑁(𝑎) =

�∑︁
𝑔∈𝐺

𝑔

�
𝑎.

Definition 25.9.2: tate-df Suppose 𝐺 is a finite group and 𝐴 is a 𝐺-module. Define the Tate
groups by

𝐻𝑞
𝑇 (𝐺,𝐴) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐻𝑞(𝐺,𝐴), 𝑞 ≥ 1

𝐴𝐺/𝑁𝐴, 𝑞 = 0

𝑁𝐴/𝐼𝐺𝐴, 𝑞 = −1
𝐻−𝑞−1(𝐺,𝐴), 𝑞 ≤ −2.

Here 𝑁𝐴 denotes {𝑎 ∈ 𝐴 : 𝑁𝑎 = 0}.

Theorem 25.9.3: double-les If 𝐺 is a finite group and 0 → 𝐴 → 𝐵 → 𝐶 → 0 is an exact
sequence of 𝐺-modules, then there is a long exact sequence

· · · → 𝐻𝑞
𝑇 (𝐺,𝐴)→ 𝐻𝑞

𝑇 (𝐺,𝐵)→ 𝐻𝑞
𝑇 (𝐺,𝐶)→ 𝐻𝑞−1

𝑇 (𝐺,𝐴)→ · · ·

Proof. It suffices to prove exactness for 𝑞 = −1 and 𝑞 = 0. We apply to the snake lemma to
obtain the following (the top and bottom rows in the middle are the long exact sequence in
homology and cohomology, respectively).

ker𝑁𝐴 ker𝑁𝐵 ker𝑁𝐶

𝐻1(𝐺,𝐶) 𝐻0(𝐺,𝐴) 𝐻0(𝐺,𝐵) 𝐻0(𝐺,𝐶) 0

0 𝐻0(𝐺,𝐴) 𝐻0(𝐺,𝐵) 𝐻0(𝐺,𝐶) 𝐻1(𝐺,𝐴)

coker(𝑁𝐴) coker(𝑁𝐵) coker(𝑁𝐶)

𝑁𝐴 𝑁𝐵 𝑁𝐶

𝜕1

𝜕0
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The maps 𝑁𝐴, 𝑁𝐵, 𝑁𝐶 are the norm maps on 𝐴, 𝐵, and 𝐶 after associating 𝐻0 and 𝐻
0 with

their descriptions in Propositions 25.6.5 and 25.8.2:

𝑁𝐴/𝐼𝐺𝐴 𝑁𝐵/𝐼𝐺𝐵 𝑁𝐶/𝐼𝐺𝐶

𝐻1(𝐺,𝐶) 𝐴/𝐼𝐺𝐴 𝐵/𝐼𝐺𝐵 𝐶/𝐼𝐺𝐶 0

0 𝐴𝐺 𝐵𝐺 𝐶𝐺 𝐻1(𝐺,𝐴)

𝐴𝐺/𝑁𝐴 𝐵𝐺/𝑁𝐵 𝐶𝐺/𝑁𝐶

𝑁𝐴 𝑁𝐵 𝑁𝐶

𝜕1

𝜕0

9.1 Complete resolution*

5 The description of Tate groups in the last section is somewhat unwieldy (because you can
see the glue marks...). We give a different interpretation here, where the Tate groups at 0
and −1 are less distinguished. Then we use the technique of “dimension shifting” to extend
results for cohomology (or homology) groups to results for Tate groups.

Definition 25.9.4: A complete resolution of a group 𝐺 is an exact sequence X

· · · // 𝑋1
// 𝑋0

𝑑0 //

𝜀
    

𝑋−1
// 𝑋−2

// · · ·

Z
. �

𝜂

==

where each 𝑋𝑞 is a finitely generated 𝐺-free module, 𝜀 is surjective, and 𝜂 is injective.

Proposition 25.9.5: complete-resolution Every finite group 𝐺 has a complete resolution X.

Proof. Take a 𝐺-free resolution of Z and its dual (𝐴* = HomZ(𝐴,Z)), and splice them
together.

· · · // 𝑃1
// 𝑃0

''

// // Z // 0

0 // Z � � // 𝑃 *
0

// 𝑃 *
1

// · · ·
5This section will not be used and can be omitted.
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Proposition 25.9.6: Let 𝐺 be a finite group, 𝐴 a 𝐺-module, and X a complete resolution.
Then the Tate groups are exactly the cohomology groups

𝐻𝑛
𝑇 (𝐺,𝐴) = 𝐻𝑛(Hom𝐺(X, 𝐴)).

Proof. Since any two resolutions are chain-homotopic (going both ways) by the Comparison
Theorem 25.2.4, it suffices to prove this for one resolution. We take a resolution as in
Proposition 25.9.5 and apply Hom𝐺(∙, 𝐴) to it. We obtain the following.

−2 −1 0 1

· · · // Hom𝐺(𝑃
*
1 , 𝐴)

∼=
��

// Hom𝐺(𝑃
*
0 , 𝐴)

∼=
��

// Hom𝐺(𝑃0, 𝐴) // Hom𝐺(𝑃1, 𝐴) // · · ·

// 𝑃1 ⊗Z𝐺 𝐴
𝑑−2

//

((

𝑃0 ⊗Z𝐺 𝐴
𝑑−1
//

𝜀⊗∙
����

Hom𝐺(𝑃0, 𝐴)
𝑑0 // Hom𝐺(𝑃1, 𝐴) //

Z⊗𝐺 𝐴
𝑁𝐴 // Hom𝐺(Z, 𝐴)

?�
𝜀*

OO 66

𝐴/𝐼𝐺𝐴 𝐴𝐺

The isomorphisms on the left are given by the natural isomorphism

𝑀 ⊗Z𝐺 𝐴→ Hom𝐺(𝑀
*, 𝐴)

𝑚⊗ 𝑎 ↦→ (𝑓 ↦→ 𝑓(𝑚)𝑎).

The bent complex along the bottom is the complex for Tate cohomology; some diagram
chasing gives that these groups are isomorphic to the cohomology groups in the middle
complex.

9.2 Dimension shifting

Given a result or construction in dimension 𝑛, we can get the result in dimensions 𝑛± 1 by
utilizing the long exact sequence 25.9.3 and the two propositions.

Proposition 25.9.7: induced-tate-0 Let 𝐺 be a finite group. If 𝑀 is an induced module then

𝐻𝑛
𝑇 (𝐺,𝑀) = 0

for all 𝑛.

292



Number Theory, S25.10

Proof. Since 𝐺 is finite, induced and coinduced modules are the same. The statement for
homology and cohomology is Corollary 25.8.9; this takes care of all 𝑛 ̸= 0,−1. For 𝑛 = 0,−1
we calculate 𝐻𝑛

𝑇 (𝐺,𝑀) directly. Writing 𝑀 = 𝐴⊗Z Z𝐺, we see that every element of 𝑚 can
be uniquely written as

∑︀
𝑔∈𝐺 𝑎𝑔 ⊗ 𝑔. We find that

𝑀𝐺 =

⎧⎨⎩𝑎⊗∑︁
𝑔∈𝐺

𝑔 : 𝑎 ∈ 𝐴

⎫⎬⎭ = 𝑁(𝑀)

𝑁𝑀 =

⎧⎨⎩∑︁
𝑔∈𝐺

𝑎𝑔 ⊗ 𝑔 :
∑︁
𝑔∈𝐺

𝑎𝑔 = 0

⎫⎬⎭ = 𝐼𝐺𝑀

so 𝐻0
𝑇 (𝐺,𝑀) = 𝐻−1

𝑇 (𝐺,𝑀) = 0.

Proposition 25.9.8: in-induced Let 𝑀 be a module. Then there exist (canonical) short exact
sequences

0→𝑀 →𝑀* →𝑀*/𝑀 → 0

0→𝑀 ′ →𝑀* →𝑀 → 0

such that𝑀* is coinduced and𝑀* is induced, and these sequences are split as abelian groups
(i.e. as Z-modules, but not necessarily as Z𝐺-modules).

Proof. The desired maps are

𝑀 →˓ Coind𝐺{1}(𝑀)

𝑚→ 𝜙𝑚(𝑔) = 𝑔𝑚.

Z[𝐺]⊗Z 𝑀 �𝑀

𝑔 ⊗𝑚 ↦→ 𝑔𝑚

Splitness follows from the fact that these maps have left and right inverses, respectively:
𝜙 ↦→ 𝜙(1) and 𝑚 ↦→ 1 ⊗ 𝑚. (They are only Z-homomorphisms, not necessarily Z𝐺-
homomorphisms.)

Now suppose 𝐺 is finite; then coinduced and induced modules coincide. Taking the long
exact sequence 25.9.3 of the above short exact sequences and using Proposition 25.9.7 gives

𝐻𝑛
𝑇 (𝐺,𝑀) ∼= 𝐻𝑛−1

𝑇 (𝐺,𝑀*/𝑀)

𝐻𝑛
𝑇 (𝐺,𝑀) ∼= 𝐻𝑛+1

𝑇 (𝐺,𝑀 ′).

Thus we reduce a problem about cohomology in degree 𝑛 to a problem about cohomology
in degree 𝑛+ 1 or degree 𝑛− 1.
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10 Cup products

cup-products There is a natural product defined in Tate cohomology.
Define 𝐴⊗𝐵 to be 𝐴⊗Z𝐵 with the structure of a 𝐺-module given by 𝑔(𝑎⊗ 𝑏) = 𝑔𝑎⊗ 𝑔𝑏

(the diagonal action).

Theorem 25.10.1: thm:cup-product Let 𝐺 be a finite group and 𝐴,𝐵 be 𝐺-modules. There exists
a unique family of bilinear maps indexed by (𝑝, 𝑞) ∈ Z2, together called the cup product,

∪ : 𝐻𝑝
𝑇 (𝐺,𝐴)×𝐻

𝑞
𝑇 (𝐺,𝐵)→ 𝐻𝑝+𝑞

𝑇 (𝐺,𝐴⊗𝐵),

satisfying the following four properties.

1. The homomorphisms are functorial in 𝐴 and 𝐵.

2. For 𝑝 = 𝑞 = 0, the cup product is induced by the map

𝐴𝐺 ⊗𝐵𝐺 → (𝐴⊗𝐵)𝐺.

3. If

0→ 𝐴′ → 𝐴→ 𝐴′′ → 0

0→ 𝐴′ ⊗𝐵 → 𝐴⊗𝐵 → 𝐴′′ ⊗𝐵 → 0

are exact6, and 𝑎′′ ∈ 𝐻𝑝
𝑇 (𝐺,𝐴

′′), 𝑏 ∈ 𝐻𝑞
𝑇 (𝐺,𝐵), then

(𝛿𝑎′′) ∪ 𝑏 = 𝛿(𝑎′′ ∪ 𝑏)

in 𝐻𝑝+𝑞+1
𝑇 (𝐺,𝐴′ ⊗𝐵). (𝛿 is the map in the corresponding long exact sequence.)

4. If

0→ 𝐵′ → 𝐵 → 𝐵′′ → 0

0→ 𝐴⊗𝐵′ → 𝐴⊗𝐵 → 𝐴⊗𝐵′′ → 0

are exact, and 𝑎 ∈ 𝐻𝑝
𝑇 (𝐺,𝐴), 𝑏

′′ ∈ 𝐻𝑞
𝑇 (𝐺,𝐵

′′), then

𝑎 ∪ (𝛿𝑏′′) = (−1)𝑝𝛿(𝑎 ∪ 𝑏′′)

in 𝐻𝑝+𝑞+1
𝑇 (𝐺,𝐴⊗𝐵′).

Proof. We first define the cup product for cohomology groups and then use dimension shifting
to define it for Tate groups.

6Recall ∙ ⊗𝐵 is right exact, so the content is in left exactness.
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We use the bar resolution7, so that 𝑛-chains are functions 𝐺𝑛 → 𝐴. For 𝑝, 𝑞 ≥ 0, define

∪ : 𝐶𝑝(𝐺,𝐴)× 𝐶𝑞(𝐺,𝐵)→ 𝐶𝑝+𝑞(𝐺,𝐴⊗𝐵)

by

(𝑓 ∪ 𝑔)[𝑥1| · · · |𝑥𝑝+𝑞] = 𝑓([𝑥1| · · · |𝑥𝑝])⊗ 𝑔([𝑥𝑝+1| · · · |𝑥𝑝+𝑞]).

For 𝑛 = 0, we have (𝑓 ∪ 𝑔)[] = 𝑓 [] ⊗ 𝑔[] which shows property 2 is satisfied. We8 can
laboriously verify with (25.5) that

𝑑(𝑓 ∪ 𝑔) = (𝑑𝑓) ∪ 𝑔 + (−1)𝑝𝑓 ∪ (𝑑𝑔).

From this we get a well-defined map

∪ : 𝐻𝑝(𝐺,𝐴)×𝐻𝑞(𝐺,𝐵)→ 𝐻𝑝+𝑞(𝐺,𝐴⊗𝐵).

We can verify properties 3 and 4 by calculation.
Now we extend this definition by dimension shifting. Suppose the product is defined for

(𝑝+ 1, 𝑞), we define it for (𝑝, 𝑞) as follows. Write 𝐴 (canonically) as a quotient of a induced
module as in Proposition 25.9.8, 0→ 𝐴′ → 𝐴* → 𝐴→ 0. Since this is split, so is

0→ 𝐴′ ⊗𝐵 → 𝐴* ⊗𝐵 → 𝐴⊗𝐵 → 0.

Since 𝐴* is induced, so is 𝐴* ⊗ 𝐵 (be slightly careful about the 𝐺-action here). Thus by
Theorem 25.9.3, we get 𝐻𝑝

𝑇 (𝐴)
∼= 𝐻𝑝+1

𝑇 (𝐴′) and 𝐻𝑝+𝑞
𝑇 (𝐴) ∼= 𝐻𝑝+𝑞+1

𝑇 (𝐴′⊗𝐵) (naturally), and
thus we can define the cup product

𝐻𝑝
𝑇 (𝐴)×𝐻

𝑞
𝑇 (𝐵)

∼=
��

∪ // 𝐻𝑝+𝑞
𝑇 (𝐴⊗𝐵)

𝐻𝑝+1
𝑇 (𝐴′)×𝐻𝑞

𝑇 (𝐵) ∪ // 𝐻𝑝+𝑞+1
𝑇 (𝐴′ ⊗𝐵)

∼=

OO

Similarly define it for (𝑝, 𝑞) given (𝑝, 𝑞+1), but this time introduce a factor of (−1)𝑝 (in order
to make the second condition hold). Note this is consistent with our defintions for 𝑝, 𝑞 ≥ 0,
by conditions 3 and 4. It is not hard to verify that these maps are well-defined, and that
conditions 3 and 4 continue to be satisfied. By the way we defined the maps, it also doesn’t
matter what order we define the maps in (so going from (𝑝+ 1, 𝑞 + 1)→ (𝑝, 𝑞 + 1)→ (𝑝, 𝑞)
is the same as going from (𝑝+ 1, 𝑞 + 1)→ (𝑝+ 1, 𝑞)→ (𝑝, 𝑞), for instance).

Given the map for (𝑝, 𝑞), conditions 3 and 4 basically force us to define the map for
(𝑝− 1, 𝑞) and (𝑝, 𝑞− 1) as above. Similarly we can dimension-shift in the opposite direction,
and we get uniqueness for all (𝑝, 𝑞).

7We can also use the standard resolution (not defined here); in that case the map is (𝑓∪𝑔)(𝑥0, . . . , 𝑥𝑝+𝑞) =
𝑓(𝑥0, . . . , 𝑥𝑝)⊗ 𝑔(𝑥𝑝, . . . , 𝑥𝑝+𝑞).

8i.e. you
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Cup products are rather nasty to work with when they aren’t purely in cohomology, so
if we need to do cup product computation, we work in cohomology whenever possible.

Proposition 25.10.2: The following hold:

1. Cup product is associative: For 𝑥 ∈ 𝐻𝑚(𝐺,𝑀), 𝑦 ∈ 𝐻𝑛(𝐺,𝑁), and 𝑧 ∈ 𝐻𝑝(𝐺,𝑃 ),
(𝑥 ∪ 𝑦) ∪ 𝑧 = 𝑥 ∪ (𝑦 ∪ 𝑧) (viewing the equation in 𝐻𝑚+𝑛+𝑝(𝐺,𝑀 ⊗𝑁 ⊗ 𝑃 ).

2. Cup product is anticommutative: For 𝑥 ∈ 𝐻𝑚(𝐺,𝑀) and 𝑦 ∈ 𝐻𝑛(𝐺,𝑁), 𝑥 ∪ 𝑦 =
(−1)𝑚𝑛𝑦 ∪ 𝑥.

Proof. Omitted. The idea is to verify the formula in degree 0 and then dimension-shift to
get the general case.

10.1 Cup product calculations

To compute the Artin map in class field theory, we will need to calculate the cup product
of things in dimensions −2 and 2. We will get there incrementally using dimension shifting
and properties 3–4 of the cup product, first calculating the cup product on dimensions (0, 𝑛)
(especially (0, 1)), then on (−1, 1), and then finally on (−2, 1).

Theorem 25.10.3: thm:cup-prod-calc Let 𝐺 be a finite group and 𝐴,𝐵 𝐺-modules. If 𝑎 ∈ 𝐴𝐺,
let 𝑎0 denote its image in 𝐻0

𝑇 (𝐺,𝐴), and if 𝑁𝑎 = 0, let 𝑎0 denote its image in 𝐻−1
𝑇 (𝐺,𝐴).

For 𝑔 ∈ 𝐺 let 𝑔 denote its image in 𝐺/𝐺′ = 𝐻−2
𝑇 (𝐺,Z).

1. (0, 𝑛). Suppose 𝑛 ≥ 0, 𝑎 ∈ 𝐴𝐺, and 𝑥 ∈ 𝐻𝑛
𝑇 (𝐺,𝐵). Let 𝑓𝑎 : 𝐵 → 𝐴 ⊗ 𝐵 be the map

sending 𝑦 to 𝑎⊗ 𝑦; it induces a map 𝐻𝑛
𝑇 (𝐺,𝐴)→ 𝐻𝑛

𝑇 (𝐺,𝐴⊗𝐵). Then

𝑎0⏟ ⏞ 
∈𝐻0

𝑇 (𝐺,𝐴)

∪ 𝑥⏟ ⏞ 
∈𝐻𝑛

𝑇 (𝐺,𝐵)

= 𝑓𝑎(𝑥) ∈ 𝐻𝑛
𝑇 (𝐺,𝐴⊗𝐵).

2. (−1, 1). Suppose 𝑁𝑎 = 0, and [𝑓 ] ∈ 𝐻1(𝐺,𝐵) is represented by a cocycle 𝑓 : 𝐺→ 𝐵.
Then

𝑎0⏟ ⏞ 
∈𝐻−1

𝑇 (𝐺,𝐵)

∪ [𝑓 ]⏟ ⏞ 
∈𝐻1

𝑇 (𝐺,𝐵)

=

(︃
−
∑︁
𝑡∈𝐺

𝑡𝑎⊗ 𝑓(𝑡)
)︃0

.

3. (−2, 1). Let 𝑠 ∈ 𝐺 and [𝑓 ] ∈ 𝐻1(𝐺,𝐵). Then

𝑠⏟ ⏞ 
∈𝐻−2

𝑇 (𝐺,Z)

∪ 𝑓⏟ ⏞ 
∈𝐻1

𝑇 (𝐺,𝐵)

= 𝑓(𝑠)0 ∈ 𝐻
−1
𝑇 (𝐺,𝐵).

Proof. We omit details of the calculations. See Serre [Ser79], pg. 176-178.

1. For 𝑛 = 0, this follows from definition of cup product. Now use dimension shifting,
with the exact sequence 0→ 𝐵 → 𝐵* → 𝐵*/𝐵 → 0, 𝐵* coinduced.
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2. Dimension shift from part 1 with 0→ 𝐵 → 𝐵* → 𝐵*/𝐵 → 0: suppose 𝑏′′ ∈ (𝐵*/𝐵)𝐺

is sent to 𝑓 under the diagonal morphism. Write 𝑎0 ∪ 𝑓 = 𝑎0 ∪ 𝑑(𝑏′′
0
) = −𝑑(𝑎0 ∪ 𝑏′′

0
)

and use part 1.

3. Show that
𝑑(𝑠 ∪ [𝑓 ]) = 𝑑(𝑓(𝑠)0).

Evaluate the LHS using property 3 and part 2.

11 Change of group

change-of-group We would like to be able to connect (co)homology groups corresponding to
different groups 𝐺, 𝐺′ and different modules over 𝐺, 𝐺′. This will allow us, for example, to
define maps

Res𝑛 :𝐻𝑛(𝐺,𝐴)→ 𝐻𝑛(𝑆,𝐴)

Cor𝑛 :𝐻𝑛(𝑆,𝐴)→ 𝐻𝑛(𝐺,𝐴)

Inf𝑛 :𝐻𝑛(𝐺/𝑆,𝐴𝑆)→ 𝐻𝑛(𝐺,𝐴) 𝑆 E 𝐺.

11.1 Construction of maps

For there to be a map 𝐻𝑛(𝐺,𝐴) → 𝐻𝑛(𝐺′, 𝐴′) we need there to be a map 𝐺′ → 𝐺, with
some compatibility condition on the modules 𝐴, 𝐴′.

Definition 25.11.1: Let 𝐺,𝐺′ be groups, let 𝐴 be a 𝐺-module and 𝐴′ be a 𝐺′-module.
A cocompatible pair is a pair (𝛼, 𝑓) where 𝛼 : 𝐺′ → 𝐺 is a group homomorphism and
𝑓 : 𝐴→ 𝐴′ is a Z-homomorphism such that

𝑓((𝛼𝑥′)𝑎) = 𝑥′𝑓(𝑎)

for all 𝑥′ ∈ 𝐺′ and 𝑎 ∈ 𝐴.
𝐺′ 𝛼 // 𝐺

𝐴′ 𝐴
𝑓
oo

Let ((Pairs*)) denote the category whose objects are pairs (𝐺,𝐴) and whose morphisms are
cocompatible (𝛼, 𝑓).

Define a compatible pair to be a pair (𝛼, 𝑓) where 𝛼 : 𝐺→ 𝐺′ is a group homomorphism
and 𝑔 : 𝐴→ 𝐴′ is a Z-homomorphism such that

𝑓(𝑥𝑎) = (𝛼𝑥)𝑓(𝑎)
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for all 𝑥 ∈ 𝐺.
𝐺

𝛼 // 𝐺′

𝐴
𝑓
// 𝐴′

Let ((Pairs)) denote the category whose objects are ordered pairs (𝐺,𝐴) and whose mor-
phisms are compatible (𝛼, 𝑓).

Given a cocompatible pair, let 𝑃 ′ be a 𝐺′-projective resolution of Z and 𝑃 be a 𝐺-
projective resolution of Z. By the Comparison Theorem 25.2.4 there is a chain map 𝜏(𝛼) :
𝑃 ′ → 𝑃 induced by the map 1Z : Z→ Z and 𝛼, unique up to homotopy. Define

𝐶𝑛(𝐺,𝐴) = HomZ𝐺(𝑃𝑛, 𝐴)→ HomZ𝐺(𝑃
′
𝑛, 𝐴

′) = 𝐶𝑛(𝐺′, 𝐴′)

𝜙 ↦→ 𝑓 ∘ 𝜙 ∘ 𝜏(𝛼)𝑛.

Similarly, for a compatible pair, there is a chain map 𝜏(𝛼) : 𝑃 → 𝑃 ′ induced by 1Z : Z→ Z
and 𝛼; we get a map

𝜏(𝛼)𝑛 ⊗ 𝑓 : 𝐶𝑛(𝐺,𝐴) = 𝑃𝑛 ⊗Z𝐺 𝐴→ 𝑃 ′
𝑛 ⊗Z𝐺′ 𝐴′ = 𝐶𝑛(𝐺

′, 𝐴′)

These maps descend to cohomology and homology, respectively.

Definition 25.11.2: Define the maps below using the (co)compatible pairs shown.

Name Map on 𝐺 Map on 𝑀 Map

Restriction 𝑖 : 𝑆 → 𝐺 𝑀
∼=←−𝑀 Res𝑛𝐺/𝑆 : 𝐻𝑛(𝐺,𝑀)→ 𝐻𝑛(𝑆,𝑀)

Corestriction 𝑖 : 𝑆 → 𝐺 𝑀
∼=−→𝑀 Cor𝑛𝑆/𝐺 : 𝐻𝑛(𝑆,𝑀)→ 𝐻𝑛(𝐺,𝑀)

Inflation 𝑞 : 𝐺→ 𝐺/𝑆 𝑀 ←˒ 𝑀𝑆 Inf𝑛𝑆/𝐺 : 𝐻𝑛(𝐺/𝑆,𝑀𝑆)→ 𝐻𝑛(𝐺,𝑀)

Conjugation 𝜎 ↦→ 𝑔𝜎𝑔−1 𝑔−1𝑚← [ 𝑚 𝐻𝑛(𝐺,𝑀)→ 𝐻𝑛(𝐺,𝑀)

For inflation, we require that 𝑆 E 𝐺 (𝑆 be a normal subgroup of 𝐺).

Proposition 25.11.3: change-group-conjugation The conjugation map 𝐻𝑛(𝐺,𝑀) → 𝐻𝑛(𝐺,𝑀) is
the identity.

This is important because when we are defining maps between different cohomology
groups, we can be assured that conjugation won’t change it, i.e. we have a canonical map.

Proof. For 𝑛 = 0 this is the identity map 𝑀𝐺 → 𝑀𝐺. Since the conjugation 𝐻𝑛(𝐺,𝑀) →
𝐻𝑛(𝐺,𝑀) is a map of cohomological functors, and the identity map 𝐻𝑛(𝐺,𝑀)→ 𝐻𝑛(𝐺,𝑀)
is also a map of cohomological functors, and they agree for 𝑛 = 0, by Theorem 25.5.2(2)
they must be equal for all 𝑛.

Alternatively, use dimension shifting.
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11.2 Extending maps to Tate cohomology

corestriction Right now Res𝑛 is only defined on cohomology and Cor𝑛 is only defined on homology.
We would like to define them on Tate cohomology.

Proposition 25.11.4: pr:extend-to-tate Let 𝐺 be a finite group. The maps Res𝑛 and Cor𝑛 can
be defined on Tate cohomology, such that the definitions for 𝐻𝑛

𝑇 agree with the original
definitions on cohomology and homology for 𝑛 ≥ 0 and 𝑛 ≤ −1, respectively, and such that
Res and Cor are natural transformations compatible with forming the long exact sequence
in homology and cohomology from a short exact sequence. Moreover, Res𝑛 and Cor𝑛 satisfy
the following properties.

1. Cor0𝑆/𝐺 : 𝐻0
𝑇 (𝑆,𝑀)→ 𝐻0

𝑇 (𝐺,𝑀) is the map 𝑁𝐺/𝑆 :𝑀𝑆/𝑁𝑆𝑀 →𝑀𝐺/𝑁𝐺𝑀 .

2. Res−1
𝐺/𝑆 : 𝐻−1

𝑇 (𝐺,𝑀)→ 𝐻−1
𝑇 (𝑆,𝑀) is the map 𝐶𝐺/𝑆 : 𝑁𝐺

𝑀/𝐼𝐺𝑀 → 𝑁𝑆
𝑀/𝐼𝑆𝑀 , where

𝐶𝐺/𝑆 is the conorm map defined by

𝐶𝐺/𝑆(𝑎) :=
∑︁
𝑖

𝑡−1
𝑖 𝑎

where {𝑡𝑖} is a left transversal of 𝐺/𝑆. (Equivalently, let {𝑡𝑖} be a right transversal
and let 𝐶𝐺/𝑆(𝑎) :=

∑︀
𝑖 𝑡𝑖𝑎.

9)

3. Cor−2
𝑆/𝐺 : 𝐻−2

𝑇 (𝑆,𝑀) → 𝐻−2
𝑇 (𝐺,𝑀) is the natural map 𝑆ab → 𝐺ab. (See Proposi-

tion 25.8.3.)

Proof. First, the construction. We will use Theorem 25.5.2. Let 𝜒 be the class of coinduced
Z𝐺-modules. Note that the category of Z𝐺-modules has enough coinduced Z𝐺-modules, by
Proposition 25.9.8. Note that {𝐻𝑛

𝑇 (𝑆, ∙𝑆)} and {𝐻𝑛
𝑇 (𝐺, ∙)} are cohomological 𝜕-functors on

the category of Z𝐺-modules, with respect to 𝜒 (by𝑀𝑆, we mean think of𝑀 as a 𝑆-module).
Indeed, any coinduced module for 𝐺 is coinduced for 𝑆 by Proposition 25.8.6.10 Since

Res0𝐺/𝑆 :𝑀𝐺/𝑁𝐺𝑀 →𝑀𝑆/𝑁𝑆𝑀, Cor
𝑆/𝐺
0 : 𝑁𝑆

𝑀/𝐼𝑆𝑀 → 𝑁𝐺
𝑀/𝐼𝐺𝑀

are natural transformations, Theorem 25.5.2(1) applies to give unique morphisms Res and
Cor extending 𝑁𝐺/𝑆. (They agree in cohomology and homology with the original definitions
by uniqueness in Theorem 25.5.2(1)).

Alternatively, we can extend the definitions of Res and Cor using dimension shifting
(which is simpler, really).11

9To see this, note 𝑡1𝑆 = 𝑡2𝑆 iff 𝑡−1
1 𝑡2 ∈ 𝑆, iff 𝑆𝑡−1

1 = 𝑆𝑡−1
2 .

10Note this would fail if we take 𝜒 to be the class of Z𝐺-injective modules, as Z𝐺-injective modules are
not necessarily Z𝑆-injective.

11Alternatively, we can construct Cor𝑛 explicitly as the map

𝐻𝑛(𝑆,𝑀)
Shapiro∼= 𝐻𝑛(𝐺,Coind𝐺𝑆 𝑀)→ 𝐻𝑛(𝐺,𝑀)

where the last map is the change of group map induced by 𝐺 ∼= 𝐺 and Coind𝐺𝑆 𝑀 → 𝑀 given by 𝜑 ↦→∑︀
𝑖 𝑡𝑖𝜙(𝑡

−1
𝑖 ), for some transversal {𝑡𝑖} for 𝑆 in 𝐺. This is just the norm map in dimension 0.
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We now calculate the maps using dimension shifting.

1. Use the short exact sequence 0 → 𝑀 ′ → 𝑀* = Z𝐺 ⊗Z 𝑀 → 𝑀 → 0 from Proposi-
tion 25.9.8 to get the vertical isomorphisms in the diagram on the left below. (Note as
before that 𝑀* is both 𝐺 and 𝑆-(co)induced.)

𝐻−1
𝑇 (𝑆,𝑀)

∼=𝛿
��

Cor−1
𝑆/𝐺
// 𝐻−1

𝑇 (𝐺,𝑀)

∼=𝛿
��

𝐻0
𝑇 (𝑆,𝑀

′)
Cor0

𝑆/𝐺
// 𝐻0

𝑇 (𝐺,𝑀).

𝑁𝑆
𝑀/𝐼𝑆𝑀

∼=𝑁𝑆(1⊗∙)
��

//
𝑁𝐺
𝑀/𝐼𝐺𝑀

∼=𝑁𝐺(1⊗∙)
��

𝐻0
𝑇 (𝑆,𝑀

′) ? // 𝐻0
𝑇 (𝐺,𝑀).

The left-hand diagram gives the right-hand diagram, after noting that 𝛿 is the map in
the snake lemma in the proof of Theorem 25.9.3. From the right-hand diagram it is
clear that the bottom map has to be 𝑁𝐺/𝑆, because 𝑁𝐺/𝑆 ∘𝑁𝑆 = 𝑁𝐺.

2. From 0→𝑀 →𝑀* 𝑓−→𝑀*/𝑀 → 0 we get the commutative diagrams

𝐻−1
𝑇 (𝐺,𝑀*/𝑀)

∼=𝛿
��

Res−1
𝐺/𝑆
// 𝐻−1

𝑇 (𝑆,𝑀*/𝑀)

∼=𝛿
��

𝐻0
𝑇 (𝐺,𝑀)

Res0
𝐺/𝑆

// 𝐻0
𝑇 (𝑆,𝑀).

𝐻−1
𝑇 (𝐺,𝑀*/𝑀)

∼=𝑁𝐺∘𝑓−1

��

? // 𝐻−1
𝑇 (𝑆,𝑀*/𝑀)

∼=𝑁𝑆∘𝑓−1

��

𝑀𝐺/𝑁𝐺𝑀 //𝑀𝑆/𝑁𝑆𝑀.

From 𝑁𝐺 = 𝑁𝑆 ∘ 𝐶𝐺/𝑆, the top map has to be 𝐶𝐺/𝑆.

3. Recall the isomorphism𝐻1(𝐺
ab,Z) ∼= 𝐺ab was defined using the horizontal maps below.

𝐻1(𝑆,Z)

Cor1
��

𝜕1
∼=
// 𝐻0(𝑆, 𝐼𝑆)

Cor0
��

𝐼𝑆/𝐼
2
𝑆

// 𝑆/𝑆 ′

��

𝐻1(𝐺,Z)
𝜕1
∼=
// 𝐻0(𝐺, 𝐼𝐺) 𝐼𝐺/𝐼

2
𝐺

// 𝐺/𝐺′

The left square commutes by functoriality of Cor and the right rectangle commutes by
tracing the map in Proposition 25.8.3.

11.3 Further properties

Theorem 25.11.5: corres Suppose 𝐻 is a subgroup of 𝐺 of finite index. Then Cor𝑛 ∘Res𝑛 is
multiplication by [𝐺 : 𝐻].

Proof. In degree 0, we have Cor0 ∘Res0 = [𝐺 : 𝐻] because 𝑁𝐺/𝐻 is just multiplication by
[𝐺 : 𝐻] on 𝑀𝐺. As in the proof of Proposition 25.11.3, the general case then follows from
either Theorem 25.5.2 or dimension shifting.

Corollary 25.11.6: hn-torsion
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1. If 𝐺 is finite, then |𝐺|𝐻𝑛(𝐺,𝑀) = 1 for any 𝑛 > 0.

2. If 𝐺 is finite and 𝑀 is finitely generated as an abelian group, then 𝐻𝑛(𝐺,𝑀) is finite.

Proof.

1. By Theorem 25.11.5,

𝐻𝑛(𝐺,𝑀)
Res−−→ 𝐻𝑛(1,𝑀)

Cor−−→ 𝐻𝑛(𝐺,𝑀)

is multiplication by |𝐺|. But 𝐻𝑛(1,𝑀) = 0.

2. By the explicit description of 𝐻𝑛(𝐺,𝑀) using the bar resolution, 𝐻𝑛(𝐺,𝑀) is finitely
generated. By item 1 it has finite exponent, so it must be finite.

Corollary 25.11.7: res-inj-p-prim Let 𝐺 be a finite group and 𝐺𝑝 its 𝑝-SSG. For any 𝐺-module
𝑀 , the map

Res𝑛 : 𝐻𝑛(𝐺,𝑀)→ 𝐻𝑛(𝐺𝑝,𝑀)

is injective on the 𝑝-primary component.

Proof. Suppose that 𝑥 ∈ ker(Res). Then [𝐺 : 𝐺𝑝]𝑥 = Cor ∘Res(𝑥) = 0. Since the order of 𝑥
is a power of 𝑝 but 𝑝 - [𝐺 : 𝐺𝑝], we get that 𝑥 = 0.

Corollary 25.11.8: cor:all-gp-0 If 𝐻𝑛
𝑇 (𝐺𝑝, 𝐴) = 0 for all primes 𝑝 then 𝐻𝑛

𝑇 (𝐺,𝐴) = 0.

We will also need to know how restriction and corestriction affect cup products.

Proposition 25.11.9: res-cup The following hold.

1. Res(𝑥 ∪ 𝑦) = Res(𝑥) ∪ Res(𝑦).

2. Cor(𝑥 ∪ Res(𝑦)) = Cor(𝑥) ∪ 𝑦.

Proof. See Cartan-Eilenberg [CE56], Chapter 12, or Atiyah-Wall in Cassels-Frohlich [CF69],
p. 107.

11.4 Inflation-restriction exact sequence

Proposition 25.11.10: inflate-restrict Suppose 𝐻 E 𝐺, 𝐴 is a 𝐺-module, and 𝑛 > 0. If
𝐻 𝑖(𝐻,𝐴) = 0 for all 𝑖 with 0 < 𝑖 < 𝑟, then

0→ 𝐻𝑟(𝐺/𝐻,𝐴𝐻)
Inf−→ 𝐻𝑟(𝐺,𝐴)

Res−−→ 𝐻𝑟(𝐻,𝐴)

is exact.
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Proof. We first prove the case 𝑟 = 1. We show the following.

1. Res ∘ Inf = 0: Change of group is functorial (easy to see from the definition), so
Res ∘ Inf is induced by the maps 𝐺/𝐻 ← 𝐺 ←˒ 𝐻 and 𝑀𝐻 →˓𝑀 ∼= 𝑀 . The first map
is 0 so Res ∘ Inf = 0.

2. Inf is injective: Suppose 𝑓 : 𝐺/𝐻 → 𝐴𝐻 is a cocycle such that Inf([𝑓 ]) = 0. Note
Inf([𝑓 ]) = [𝑓∘𝑝] where 𝑝 : 𝐺→ 𝐺/𝐻 is the projection. Inf([𝑓 ]) = 0 means 𝑓(𝑠) = 𝑠𝑎−𝑎
for some 𝑎 ∈ 𝐴. Since 𝑓 is constant on cosets, 𝑠𝑎 − 𝑎 = 𝑠𝑡𝑎 − 𝑎 for all 𝑡 ∈ 𝐻, giving
𝑡𝑎 = 𝑎, and 𝑎 ∈ 𝐴𝐻 . Thus [𝑓 ] = 0 in 𝐻1(𝐺/𝐻,𝐴𝐻) = 0.

3. ker(Res) ⊆ im(Inf): Suppose 𝑓 : 𝐺 → 𝐴 is a cocycle such that [𝑓 ] ∈ ker(Res). Since
Res[𝑓 ] = [𝑓 ∘ 𝑖], this means 𝑓(𝑡) = 𝑡𝑎 − 𝑎 for some 𝑎 ∈ 𝐴 and all 𝑡 ∈ 𝐻. Define the
coboundary 𝑔 : 𝐺→ 𝐴 by 𝑔(𝑠) = 𝑠𝑎−𝑎 for all 𝑠 ∈ 𝐺; let 𝑓1 = 𝑓−𝑔; we have [𝑓1] = [𝑓 ].

Now 𝑓1 = 0 on 𝐻, and by definition of cocycle,

𝑓1(𝑠𝑡) = 𝑓1(𝑠) + 𝑠𝑓1(𝑡).

Letting 𝑡 range over 𝐻, we get that 𝑓1(𝑠𝑡) = 𝑓1(𝑠), i.e. 𝑓 is constant on cosets of 𝐻.
Letting 𝑠 ∈ 𝐻 we have 𝑓(𝑠𝑡) = 𝑠𝑓(𝑡), so im(𝑓) is invariant under 𝐻. Thus 𝑓 descends
to 𝑓 : 𝐺/𝐻 → 𝐴𝐻 , i.e. 𝑓 ∈ im(Inf).

Now we proceed by induction. Suppose the proposition holds for 𝑟−1. By dimension-shifting
(Proposition 25.9.8), the exact sequence

eq:inf-res-shift0→ 𝐴→ 𝐴* → 𝐴*/𝐴→ 0 (25.7)

with 𝐴* coinduced gives 𝜕𝑛−1 : 𝐻𝑟−1
𝑇 (𝐺,𝐴*/𝐴)

∼=−→ 𝐻𝑟
𝑇 (𝐺,𝐴). We now show there is a

commutative diagram

0 // 𝐻𝑟−1(𝐺/𝐻, (𝐴*/𝐴)𝐻) Inf𝑟−1
//

𝜕𝑛−1

��

𝐻𝑟−1(𝐺,𝐴*/𝐴)Res𝑟−1
//

𝜕𝑛−1

��

𝐻𝑟−1(𝐻,𝐴*/𝐴)

𝜕𝑛−1

��

0 // 𝐻𝑟(𝐺/𝐻,𝐴𝐻) Inf𝑟 // 𝐻𝑟(𝐺,𝐴) Res𝑟 // 𝐻𝑟(𝐻,𝐴).

where all the vertical arrows are isomorphisms. We already know this for the middle arrow.
Since 𝐴* is 𝐺-coinduced, it is 𝐻-coinduced (Proposition 25.8.6), so the right vertical

arrow is an isomorphism.
Since 𝐻1(𝐻,𝐴) = 0, taking cohomology of (25.7) gives the exact sequence

0→ 𝐴𝐻 → (𝐴*)𝐻 → (𝐴*/𝐴)𝐻 → 0.

Recall 𝐴* = Hom(Z[𝐺], 𝐴), so (𝐴*)𝐻 = Hom(Z[𝐺/𝐻], 𝐴) is 𝐺/𝐻-coinduced. Thus we get
the left vertical arrow is an isomorphism.

By (cohomological) functoriality of Inf and Res, the diagram commutes.
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11.5 Transfer

hom-transfer Especially important for our purposes will be the restriction map on the first ho-
mology group.

Definition 25.11.11: The map 𝑉𝐺→𝑆 defined by the diagram below

𝐻1(𝐺,Z)

Res1
��

𝐺/𝐺′

𝑉𝐺→𝑆

��

𝐻1(𝑆,Z) 𝑆/𝑆 ′

is called the transfer or Verlagerung.

(The map Res defined on Tate cohomology in Section 11.2 also gives a map on homology.)

Proposition 25.11.12: pr:compute-transfer Let 𝐺 be a group and 𝑆 be a subgroup of finite index.
The transfer is given by the following: Let {𝑙1, . . . , 𝑙𝑛} be a left transversal of 𝑆 in 𝐺. Then

Res1(𝑔) =
𝑛∏︁
𝑖=1

𝑔𝑖𝑆
′

where the 𝑔𝑖 ∈ 𝑆 are such that 𝑔𝑙𝑖 = 𝑙𝜋(𝑖)𝑔𝜋(𝑖) for some permutation 𝜋 ∈ 𝑆𝑛.

Proof. By functoriality of Res we have the commutative diagram (cf. Proposition 25.8.3)

𝐻1(𝐺,Z)

Res1
��

𝜕1
∼=
// 𝐻0(𝐺, 𝐼𝐺)

Res0=𝐶𝐺/𝑆

��

𝐼𝐺/𝐼
2
𝐺

𝐶𝐺/𝑆

��

𝐻1(𝑆,Z)
𝜕1 //

𝜕1
∼=

&&

𝐻0(𝑆, 𝐼𝐺) 𝐼𝐺/𝐼𝑆𝐼𝐺

𝐻0(𝑆, 𝐼𝑆)

OO

𝐼𝑆/𝐼
2
𝑆

?�

OO

where the top two 𝜕1’s are from the exact sequence 0→ 𝐼𝐺 → Z𝐺→ Z→ 0, the bottom 𝜕1
is from the exact sequence 0 → 𝐼𝐻 → Z𝐻 → Z → 0, and the lower right square is induced
by the inclusion 𝐼𝐻 →˓ 𝐼𝐺. Replacing 𝐻1 with 𝐺ab, we get

𝐺/𝐺′

𝑉𝐺→𝑆

��

∼= // 𝐼𝐺/𝐼
2
𝐺

𝐶𝐺/𝑆

��

𝑆/𝑆 ′ //

∼=

%%

𝐼𝐺/𝐼𝑆𝐼𝐺

𝐼𝑆/𝐼
2
𝑆

?�

OO
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Given 𝑔 ∈ 𝐺/𝐺′, it maps to 𝑔 − 1 in 𝐼𝐺/𝐼
2
𝐺. We have

𝐶𝐺/𝑆(𝑔−1) =
𝑛∑︁
𝑖=1

𝑙−1
𝑖 (𝑔−1) =

𝑛∑︁
𝑖=1

𝑔𝑖𝑙
−1
𝜋−1(𝑖)−𝑙

−1
𝑖 =

𝑛∑︁
𝑖=1

𝑖(𝑔𝑖−1)𝑙−1
𝜋−1(𝑖) ≡

𝑛∑︁
𝑖=1

(𝑔𝑖−1) (mod 𝐼𝑆𝐼𝐺).

The inverse image of this in 𝑆/𝑆 ′ is
∏︀𝑛
𝑖=1 𝑔𝑖𝑆

′, as needed.

Theorem 25.11.13: transfer0 Let 𝐺 be a finite group. Then the transfer map

𝑉 : 𝐺ab → (𝐺′)ab

is zero.

Proof. See Neukirch, [Neu99, VI.7.6]. The proof uses the computation in Proposition 25.11.12.

This will be important when we study the Hilbert class field.

12 Cohomology of cyclic groups

cyclic-groups The cohomology of cyclic groups is especially easy to understand, and will be
very useful to us: when 𝐿/𝐾 is an unramified extension of local fields, the Galois group
𝐺(𝐿/𝐾) = 𝐺(𝑙/𝑘) is cyclic.

Theorem 25.12.1: iso+2 Let𝐺 be a cyclic group and 𝑥 a generator. Let 𝜒𝑥 ∈ Hom(𝐺,Q/Z) =
𝐻1
𝑇 (𝐺,Q/Z) be the homomorphism sending 𝑥 to 1

|𝐺| . Let 𝛿 : 𝐻1
𝑇 (𝐺,Q/Z) → 𝐻2

𝑇 (𝐺,Z) be

the diagonal map from the exact sequence 0→ Z→ Q→ Q/Z→ 0. The map ∙ ∪ 𝛿𝜒𝑥 gives
an isomorphism

𝐻𝑟
𝑇 (𝐺,𝑀)

∼=−→ 𝐻𝑟+2
𝑇 (𝐺,𝑀)

for all 𝐺-modules 𝑀 and 𝑟 ∈ Z.
Hence for all 𝑛 ∈ Z,

𝐻2𝑛−1
𝑇 (𝐺,𝐴) = 𝑁𝐴/𝐷𝐴

𝐻2𝑛
𝑇 (𝐺,𝐴) = 𝐴𝐺/𝑁𝐴.

where 𝐷 is multiplication by 𝑥− 1 .

Proof. Since Q is a divisible group, so is 𝐻𝑛(𝐺,Q), by looking at the description of 𝐻𝑛 in
terms of cocycles (Section 7). Hence 𝛿 : 𝐻1

𝑇 (𝐺,Q/Z) → 𝐻2
𝑇 (𝐺,Z) is an isomorphism and

𝛿𝜒𝑥 is a generator of 𝐻2
𝑇 (𝐺,Z).

The short exact sequence 0→ 𝐼𝐺 → Z𝐺→ Z→ 0 splits because 𝐺 is cyclic:

0 GGGBFGGG 𝐼𝐺 GGGBFGGG

𝐷
Z𝐺

𝜀
GGGBFGGG Z GGGBFGGG 0
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where 𝜀
(︀∑︀

𝑔∈𝐺 𝑎𝑔𝑔
�
=
∑︀
𝑔∈𝐺 𝑎𝑔. Now Z𝐺 has trivial Tate cohomology by Proposition 25.9.7,

so the diagonal maps in either direction are isomorphisms:

𝐻0
𝑇 (𝐺,Z)

𝛿0

∼=
// 𝐻1

𝑇 (𝐺, 𝐼𝐺)
𝛿1

∼=
// 𝐻2

𝑇 (𝐺,Z).

Thus we can write 𝛿𝜒𝑥 = 𝛿0𝛿1𝑐 for a generator 𝑐 of 𝐻0
𝑇 (𝐺,Z) = Z/|𝐺|Z. Then by Theo-

rem 25.10.1(4),

𝑏 ∪ 𝛿𝜒𝑥 = 𝑏 ∪ 𝛿0𝛿1𝑐 = 𝛿0𝛿1(𝑏 ∪ 𝑐).

It suffices to show that the map 𝐻𝑟
𝑇 (𝐺,𝑀)

∙∪𝑐−−→ 𝐻𝑟
𝑇 (𝐺,𝑀) is an isomorphism. But this map

is just multiplication by 𝑐 for 𝑟 = 0, so it is multiplication by 𝑐 for all 𝑟. Now by Proposi-
tion 25.11.6 (true for 𝑟 > 0 and hence true for all 𝑟 by dimension-shifting) |𝐺|𝐻𝑟

𝑇 (𝐺,𝑀) = 0.
As 𝑐 is a generator of Z/|𝐺|Z it is relatively prime to |𝐺|; hence multiplication by 𝑐 is an

isomorphism on 𝐻𝑟
𝑇 (𝐺,𝑀). This shows the isomorphism 𝐻𝑟

𝑇 (𝐺,𝑀)
∼=−→ 𝐻𝑟+2

𝑇 (𝐺,𝑀).
For the second part, note 𝐻−1

𝑇 (𝐺,𝐴) = 𝑁𝐴/𝐷𝐴 and 𝐻0
𝑇 (𝐺,𝐴) = 𝐴𝐺/𝑁𝐴.

Corollary 25.12.2: cor:exact-hex Let 𝐺 be a finite cyclic group. Suppose that 1 → 𝐴 → 𝐵 →
𝐶 → 1 is an exact sequence of 𝐺-modules. Then there is an exact hexagon

exact-hexagon 𝐻0
𝑇 (𝐺,𝐴)

𝑓1
// 𝐻0

𝑇 (𝐺,𝐵)
𝑓2

&&

𝐻1
𝑇 (𝐺,𝐶)

𝑓6
88

𝐻0
𝑇 (𝐺,𝐶)

𝑓3xx

𝐻1
𝑇 (𝐺,𝐵)

𝑓5

ff

𝐻1
𝑇 (𝐺,𝐴)𝑓4

oo

(25.8)

Proof. We have 𝐻2
𝑇 (𝐺,𝐴)

∼= 𝐻0
𝑇 (𝐺,𝐴).

12.1 Herbrand quotient

herbrand

Definition 25.12.3: Let 𝐺 be a finite cyclic group and 𝐴 a finite 𝐺-module. Define the
Herbrand quotient to be

ℎ(𝐴) = ℎ(𝐺,𝐴) =
|𝐻2𝑛

𝑇 (𝐺,𝐴)|
|𝐻2𝑛−1

𝑇 (𝐺,𝐴)|

for any 𝑛.

This is well-defined by Theorem 25.12.1.
The following key properties of the Herbrand quotient will help us in computations.
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Proposition 25.12.4: herbrand-1 Let 𝐺 be a finite cyclic group. The Herbrand quotient sat-
isfies the following.

1. If 𝐴 is a finite 𝐺-module, then ℎ(𝐺,𝐴) = 1.

2. (ℎ is an Euler-Poincaré function) If 1 → 𝐴 → 𝐵 → 𝐶 → 1 is an exact sequence of
𝐺-modules, then

ℎ(𝐺,𝐵) = ℎ(𝐺,𝐴)ℎ(𝐺,𝐶).

(If two of these are defined then the other is defined.)

3. If 𝐺 acts trivially on Z, then ℎ(𝐺,Z) = |𝐺|.

4. If 𝑓 : 𝐴→ 𝐵 has finite kernel and cokernel, then ℎ(𝐴) = ℎ(𝐵).

Proof. 1. We use Theorem 25.12.1 to calculate the quotient. We have the exact sequences

0 //
𝑁𝐴 // 𝐴

𝑁 // 𝑁𝐴 // 0 0 // ker𝐷 // 𝐴 // 𝐷𝐴 // 0.

𝐴𝐺

Hence

|𝑁𝐴||𝑁𝐴| = |𝐴| = |𝐴𝐺||𝐷𝐴|,

giving

|𝐻1(𝐺,𝐴)| = |𝑁𝐴/𝐷𝐴| = |𝐴𝐺/𝑁𝐴| = |𝐻2(𝐺,𝐴)|.

2. Keeping the notation in the hexagon 25.8, we have

𝐻0(𝐺,𝐴) = | ker 𝑓1| ·
|𝐻0(𝐺,𝐴)|
| ker 𝑓1|

= |im𝑓6||im𝑓1|.

We can similarly calculate the other quantities to get the result.

3. Let |𝐺| = 𝑛, and [𝑛] denote multiplication by 𝑛. We have

ℎ(𝐺,Z) =
|𝐻0

𝑇 (𝐺,Z)|
|𝐻−1

𝑇 (𝐺,Z)|
=
|Z𝐺/𝑁Z|
|𝑁Z/𝐼𝐺Z|

=
|Z/𝑛Z|
| ker[𝑛]|

=
|𝐺|
1

= |𝐺|.

4. The exact sequence 1 → ker 𝑓 → 𝐴 → 𝐵 → coker 𝑓 → 1 gives ℎ(𝐺, ker 𝑓)ℎ(𝐺,𝐵) =
ℎ(𝐺,𝐴)ℎ(𝐺, coker 𝑓) (split the exact sequence into 2 short exact sequences and use
part 2). The result now follows from part 1.
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13 Tate’s Theorem

tate-thm-section Our main goal in this section is to prove the following.

Theorem 25.13.1 (Tate’s Theorem): tate-thm Let 𝐺 be a finite group and𝑀 be a 𝐺-module.
Suppose that for all subgroups 𝐻 ⊆ 𝐺,

1. 𝐻1(𝐻,𝑀) = 0 and

2. 𝐻2(𝐻,𝑀) is cyclic of order |𝐻|.

Then given a generator 𝑢 ∈ 𝐻2(𝐺,𝑀), there is an isomorphism

𝐻𝑟
𝑇 (𝐺,Z)

∙∪𝑢−−→ 𝐻𝑟+2
𝑇 (𝐺,𝑀)

for all 𝑟.

This is the main application of group cohomology to class field theory, as this will be the
inverse of the Artin map: for instance, in local class field theory we have

𝐻−2
𝑇 (𝐺(𝐿/𝐾),Z) = 𝐺(𝐿/𝐾)ab

𝐻0
𝑇 (𝐺(𝐿/𝐾), 𝐿×) = (𝐿×)𝐺(𝐿/𝐾)/Nm𝐿/𝐾(𝐿

×) = 𝐾×/Nm𝐿/𝐾(𝐿
×).

The conditions of Tate’s Theorem may seem unmotivated, but keep in mind that they are
basically the key conditions satisfied in the number-theoretic setting, when 𝐺 is taken to be
a Galois group and 𝑀 is taken to be a field (or idele group).

Class field theory was initially proved without group cohomology, but group cohomology
gives a much nicer way to organize and abstract the proof. This theorem is a key part
of that abstraction: isolating the key number-theoretic conditions that result in the Artin
isomorphism. In proving both local and global class field theory, we will spend significant
time showing that the hypothesis of Tate’s Theorem holds. (The key difference in local and
global class field theory is that we put in different things for 𝑀 .)

Proof. Serre [Ser79], Section IX.8.

14 Profinite groups

profinite-cohom In this section we study the cohomology groups when 𝐺 is a profinite group. In
this case topology becomes important. We will apply the results when 𝐺 is an infinite Galois
group.

We find that we have two ways of interpreting the resulting cohomology groups:

1. Imitate the previous construction but work in the category of topological 𝐺-modules
instead. I.e. feed in “category of topological groups” into our cohomology functor.

307



Number Theory, S25.15

2. Take the direct limit over finite quotients of 𝐺.

Definition 25.14.1: top-g-mod A topological 𝐺-module is a 𝐺-module that is a topological
group, and such that the map

𝜙 : 𝐺×𝑀 →𝑀

(𝑔,𝑚) ↦→ 𝑔𝑚

is continuous.

We will always give 𝑀 the discrete topology, so this is equivalent to the following condition:

𝑀 =
⋃︁

𝐻 open subgroup of 𝐺

𝑀𝐻 .

Indeed, because 𝑀 has the discrete topology, for the action to be continuous, 𝜋𝐺(𝜙
−1(𝑚))

must be open, where 𝜋𝐺 : 𝐺 ×𝑀 → 𝐺 is the projection. This is just the stabilizer of 𝑚,
so the stabilizer of 𝑚 must contain an open subgroup of 𝐺. Hence, every 𝑚 ∈ 𝑀 must be
contained in some 𝑀𝐻 .

We define 𝐻𝑛(𝐺,𝑀) as before, but now in the category of topological 𝐺-modules, i.e.
we replace every instance of Hom𝐺 with Homcont

𝐺 , since in this category the morphisms are
continuous 𝐺-homomorphisms. Note that the category of discrete 𝐺-modules has enough
injectives.

Theorem 25.14.2: profinite-lim2 Let 𝐺 be a profinite group. We have

𝐻𝑛(𝐺,𝑀) = lim−→𝐻𝑛(𝐺/𝑆,𝑀𝑆)

where the limit is over open normal subgroups 𝑆 and the maps are the inflation maps

Inf𝑛 : 𝐻𝑛(𝐺/𝑆,𝑀𝑆)→ 𝐻𝑛(𝐺/𝑇,𝑀𝑇 ), 𝑆 ⊇ 𝑇.

Proof. Milne [Mil08], II.4.2.

We have a similar result if we take the limit over 𝑀 .

Proposition 25.14.3: pr:H-commutes-lim Let𝐺 be a profinite group and suppose𝑀 = lim−→𝐻𝑟(𝐺,𝑀𝑖)
is a discrete 𝐺-module, and each 𝑀𝑖 injects into 𝑀 . Then

𝐻𝑛(𝐺,𝑀) = lim−→𝐻𝑛(𝐺,𝑀𝑖).

Proof. Milne [Mil08], II.4.4.
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15 Nonabelian cohomology

nonabelian-cohom In this section we define cohomology 𝐻𝑛(𝐺,𝐴) when 𝐴 is non-abelian. (It was
okay for 𝐺 to be non-abelian because we saw it in the guise of Z𝐺, but we needed 𝐴 to be in
an abelian category.) The cohomological construction fails and we instead imitate the results
of Theorem 25.7.2. (The description of 𝐻1 and 𝐻2 in Theorem 25.7.2 are useful because
derivations and factor sets are used to classify a lot of things.)

We will only be able to get a “piece” of the long exact sequence. Cohomology also lacks
a lot of structure: we speak not of cohomology groups, because they are now only pointed
sets. We write 𝐴 multiplicatively, as is the convention for nonabelian groups.

Definition 25.15.1: The category of pointed sets is the category whose objects are pairs
(𝐴, 𝑎), where 𝐴 is a set and 𝑎 ∈ 𝐴, and such that a morphism (𝐴, 𝑎)→ (𝐵, 𝑏) is a function
𝐴→ 𝐵 taking 𝑎 to 𝑏.

The kernel of 𝑓 : (𝐴, 𝑎) → (𝐵, 𝑏) is 𝑓−1(𝑏). Thus we can define an exact sequence of
pointed sets.

We now define the cohomology (pointed) sets. These will coincide with the definition in
the abelian case by Theorem 25.7.2, except we only retain the structure of a pointed set.

Definition 25.15.2: df:nonabelian-cocycles Let 𝐺 be a group and 𝐴 a group with 𝐺-action.

1. Define
𝐻0(𝐺,𝐴) = 𝐴𝐺 := {𝑎 ∈ 𝐴 : 𝑠𝑎 = 𝑎 for all 𝑠 ∈ 𝐺} .

The distinguished element is 1.

2. Define a 1-cocycle to be a map 𝑑 : 𝐺→ 𝐴 such that

𝑑(𝑥𝑦) = 𝑑(𝑥) · 𝑥𝑑(𝑦)

and let Der(𝐺,𝐴) be the set of 1-cocycles. Two cocycles 𝑑1, 𝑑2 are cohomologous if
there exists 𝑎 ∈ 𝐴 so that12

𝑑2(𝑥) = 𝑎−1 · 𝑑1(𝑥) · 𝑥𝑎.

Note this is an equivalence relation; define 𝐻1(𝐺,𝐴) to be the pointed set of 1-cocycles
modulo equivalence. The distinguished element is the unit cocycle 𝑑(𝑥) ≡ 1.

For an exact sequence of non-abelian 𝐺-modules

1→ 𝐴
𝑖−→ 𝐵

𝑝−→ 𝐶 → 1

with 𝑖(𝐴) E 𝐵, define the coboundary operator 𝛿 : 𝐻0(𝐺,𝐶) → 𝐻1(𝐺,𝐴) as follows:
given 𝑐 ∈ 𝐺𝐺, choose any 𝑏 ∈ 𝑝−1(𝑐) and set

𝛿(𝑐) = 𝑑 where 𝑑(𝑠) = 𝑖−1(𝑏−1𝑠(𝑏)).

12The analogue in the abelian case was 𝑑2(𝑥) = −𝑎+ 𝑑1(𝑥) + 𝑥𝑎.
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If furthermore 𝑖(𝐴) is in the center of 𝐵 (so 𝐴 is abelian), define Δ : 𝐻1(𝐺,𝐶) →
𝐻2(𝐺,𝐴) as follows: for 𝑑𝑐 ∈ 𝐻1(𝐺,𝐶), choose 𝑑𝑏 such that 𝑝*𝑑𝑏 = 𝑑𝑐, and set

[Δ(𝑑)](𝑥, 𝑦) = 𝑑𝑏(𝑠) · 𝑠(𝑑𝑏(𝑡)) · 𝑑𝑏(𝑠𝑡)−1.

Proof of well-definedness. Note the coboundary operator is defined by imitating the con-
struction in the snake lemma.

𝐶𝐺

��

𝐴
𝑖 //

𝑑1
��

𝐵
𝑝

//

𝑑1
��

𝐶

Der(𝐺,𝐴) 𝑖 // Der(𝐺,𝐵)

𝑐

��
𝑏

𝑝
//

𝑑1
��

𝑐

(𝑠 ↦→ 𝑖−1(𝑏−1𝑠(𝑏))) 𝑖 // (𝑠 ↦→ 𝑏−1𝑠(𝑏))

We need to show that 𝑠 ↦→ 𝑏−1𝑠(𝑏) is actually a cocycle; its image is in 𝐴 because 𝑠(𝑏) ≡ 𝑏−1

(mod 𝑖(𝐴)) by exactness; show that the cohomology class is independent of the choice of 𝑏.
The second part is similar. Everything is easy to prove so we omit it. See Serre [Ser79],

Appendix to Chapter VII.

Theorem 25.15.3 (Exact sequence in nonabelian cohomology): thm:nonabelian-les Let 1→ 𝐴
𝑖−→

𝐵
𝑝−→ 𝐶 → 1 be an exact sequence of non-abelian 𝐺-modules. Then the following is exact.

1 // 𝐻0(𝐺,𝐴)
𝑖0 // 𝐻0(𝐺,𝐵)

𝑝0
// 𝐻0(𝐺,𝐶) 𝛿 // 𝐻1(𝐺,𝐴)

𝑖1 // 𝐻1(𝐺,𝐵)
𝑝1
// 𝐻1(𝐺,𝐶)

Δ
��

𝐻2(𝐺,𝐴)

(with the last map present if 𝐴 is in the center of 𝐵).
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Chapter 26

Introduction to Galois cohomology

galois-cohomology-ch We will apply group (co)homology as follows: Take a Galois extension 𝐿/𝐾
and let 𝐺 := 𝐺(𝐿/𝐾). Take as a 𝐺-module a multiplicative or additive subgroup 𝑆 of 𝐿.
The special case that 𝐺 is cyclic will come up often, since if 𝐿/𝐾 is an unramified extension
of local fields, then 𝐺 is cyclic. Furthermore, the norm map 𝑁𝐺 has a natural interpretation:

1. If 𝑆 ⊆ 𝐿× then for 𝑎 ∈ 𝑆,

𝑁𝐺(𝑎) =
∏︁
𝜎∈𝐺

𝜎(𝑎) = Nm𝐿/𝐾(𝑎).

2. If 𝑆 ⊆ 𝐿+ then for 𝑎 ∈ 𝑆,

𝑁𝐺(𝑎) =
∑︁
𝜎∈𝐺

𝜎(𝑎) = tr𝐿/𝐾(𝑎).

In Section 2 we give an application to Kummer theory (characterizing certain abelian ex-
tensions 𝐿 of 𝐾 in terms of 𝐿×𝑛 ∩ 𝐾). Kummer theory will allow us to prove the linear
independence of 𝑛th roots.

Finally, we give two interpretations of Galois cohomology groups.

1. 𝐻1(𝐺(𝐿/𝐾),Aut(𝑉 )) parameterizes algebraic structures defined over 𝐾 that become
isomorphic in 𝐿 (Section 3). This is called descent.

2. 𝐻2(𝐺(𝐿/𝐾), 𝐿×) parameterizes classes of 𝐾-algebras “split” over 𝐿 (Section 4), i.e. it
is the Brauer group.

1 Basic results

galois-cohomology We prove two fundamental theorems on the cohomology of 𝐿× and 𝐿+.
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Theorem 26.1.1 (Hilbert’s Theorem 90): h90 (†) Let 𝐿/𝐾 be a Galois extension with Galois
group 𝐺. Then

𝐻1(𝐺,𝐿×) = {1}.

Moreover, if 𝐺 = ⟨𝜎⟩ is cyclic and 𝑢 ∈ 𝐿×, then the following are equivalent.

1. Nm𝐿/𝐾(𝑢) = 1.

2. There exists 𝑣 ∈ 𝐿× such that 𝑢 = 𝜎(𝑣)𝑣−1.

We will often abbreviate 𝐻1(𝐺(𝐿/𝐾), 𝐿×) as 𝐻1(𝐿/𝐾).

Proof. First suppose 𝐺 is finite. Let 𝑐 : 𝐺 → 𝐿× be a 1-cocycle; we have 𝑐𝜎𝜏 = 𝜎(𝑐𝜏 )𝑐𝜎.
Consider the function

𝑏(𝑒) :=
∑︁
𝜏∈𝐺

𝑐𝜏𝜏(𝑒).

By linear independence of the characters 𝜏 ∈ 𝐺, 𝑏 is not identically zero; hence there exists
𝑒 ∈ 𝐿× so that 𝑏(𝑒) ̸= 0. Operating by 𝜎 on both sides and using the cocycle condition gives

eq:h90pf𝜎(𝑏(𝑒)) =
∑︁
𝜏∈𝐺

𝜎(𝑐𝜏 )(𝜎𝜏)(𝑒) =
∑︁
𝜏∈𝐺

𝑐𝜎𝜏𝑐𝜎−1(𝜎𝜏)(𝑒) = 𝑐−1
𝜎 𝑏(𝑒) (26.1)

and 𝑐𝜎 = 𝑏(𝑒)𝜎(𝑏(𝑒))−1, so 𝑐 is a coboundary.

The infinite case follows from the finite case and Theorem 25.25.14.2.

For the second part, note that 𝐻1(𝐺,𝐿×) = ker(𝑁)/im(𝐷) = 0 gives ker(𝑁) = im(𝐷).

Here 𝑁 is the norm map Nm𝐿/𝐾 and 𝐷 is the map 𝜎 − 1, i.e. the map 𝑣 ↦→ 𝜎(𝑣)
𝑣
.

Next we think of 𝐿 as an additive group.

Theorem 26.1.2: h+0 Let 𝐿/𝐾 be a finite Galois extension. Then

𝐻𝑟(𝐺,𝐿+) = 0, 𝑟 > 0.

Proof. From the normal basis theorem 12.12.4.3, there exists 𝛼 ∈ 𝐿 such that {𝜎𝛼 : 𝜎 ∈ 𝐺}
is a basis for 𝐿 over 𝐾. We get that 𝐾[𝐺] ∼= 𝐿 as 𝐺-modules by the map∑︁

𝜎∈𝐺
𝑎𝜎𝜎 ↦→

∑︁
𝜎∈𝐺

𝑎𝜎𝜎𝛼.

Since 𝐾[𝐺] ∼= Ind𝐺{1}(𝐾),

𝐻𝑟(𝐺,𝐿+) ∼= 𝐻𝑟({1}, 𝐾) = 0

by Shapiro’s Lemma 25.8.7.
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2 Kummer theory

kummer We use Galois cohomology to prove the following.

Theorem 26.2.1 (Kummer theory): kummer-theorem Suppose 𝐾 is a field containing a primitive
𝑛th root of 1. Then there is a bijection between

1. Finite abelian extensions of 𝐾 of exponent dividing 𝑛 (i.e. for any 𝜎 in the Galois
group 𝐺(𝐿/𝐾), 𝜎𝑛 = 1).

2. Subgroups of 𝐾× containing 𝐾×𝑛 as a subgroup of finite index (i.e. subgroups of
𝐾×/𝐾×𝑛).

This correspondence is given by

𝐿 ↦→ 𝐾× ∩ 𝐿×𝑛

𝐾[𝐵
1
𝑛 ]← [ 𝐵.

Moreover,
degree-order[𝐿 : 𝐾] = [𝐾× ∩ 𝐿×𝑛 : 𝐾×] (26.2)

(Note in the reverse map, which 𝑛th roots we take doesn’t matter because 𝐾 contains 𝑛th
roots of unity.)

In the course of proving this theorem, we will show the following useful proposition.

Proposition 26.2.2: pr:kummer-char Let 𝐾 be a field containing a primitive 𝑛th root of 1 and
𝐿/𝐾 an abelian extension with Galois group 𝐺. Then there is a natural isomorphism

𝐾× ∩ 𝐿×𝑛/𝐾×𝑛 ∼= 𝐻1(𝐺, 𝜇𝑛) = Hom(𝐺, 𝜇𝑛)

𝑎 ↦→

�
𝜎 ↦→

𝜎
(︁
𝑎

1
𝑛

)︁
𝑎

1
𝑛

�
.

In particular, there is a natural isomorphism

𝐾×/𝐾×𝑛 ∼= 𝐻1(𝐺(𝐾𝑠/𝐾), 𝜇𝑛) = Hom(𝐺(𝐾𝑠/𝐾), 𝜇𝑛).

Proof. Let 𝐺 = 𝐺(𝐿/𝐾), and denote the forward map by 𝐵(𝐿) = 𝐾× ∩ 𝐿×𝑛. The key
step is showing that (26.2) holds; we do this by interpreting 𝐾× ∩𝐿×𝑛 as a 0th cohomology

module. The inclusions 𝐿 ⊇ 𝐾(𝐵(𝐿)
1
𝑛 ) and 𝐵(𝐾(𝐵

1
𝑛 )) ⊇ 𝐵 are easily seen to hold (Step

2), so (26.2) will give that equality holds (Steps 3-4).

Step 1: By Theorem 25.25.4.6, the short exact sequence of 𝐺-modules

1→ 𝜇𝑛 → 𝐿× 𝑥 ↦→𝑥𝑛−−−→ 𝐿×𝑛 → 1
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induces the long exact sequence

1→ 𝐻0(𝐺, 𝜇𝑛)→ 𝐻0(𝐺,𝐿×)→ 𝐻0(𝐺,𝐿×𝑛)→ 𝐻1(𝐺, 𝜇𝑛)→ 𝐻1(𝐺,𝐿×)→ · · · .

We need not go further because Hilbert’s Theorem 90 (Theorem 26.1.1) tells us

𝐻1(𝐺(𝐿/𝐾), 𝐿×) = 1.

Next, note that 𝐻0(𝐺,𝐻) is simply the subgroup of 𝐻 fixed by 𝐺, and that the subfield of
𝐿 fixed by 𝐺 is 𝐾. As 𝜇𝑛 ⊂ 𝐾, 𝐺 acts trivially on 𝜇𝑛 and 𝐻1(𝐺, 𝜇𝑛) = Hom(𝐺, 𝜇𝑛) by
Corollary 25.25.7.3. The sequence becomes

1→ 𝜇𝑛 → 𝐾× 𝑥 ↦→𝑥𝑛−−−→ 𝐾× ∩ 𝐿×𝑛 → Hom(𝐺, 𝜇𝑛)→ 1,

giving an isomorphism
𝐾× ∩ 𝐿×𝑛/𝐾×𝑛 ∼= Hom(𝐺, 𝜇𝑛).

The map is 𝜕1(𝑎) =
(︂
𝜎 ↦→ 𝜎(𝑎

1
𝑛 )

𝑎
1
𝑛

)︂
, as shown by tracing through the construction in Theo-

rem 25.25.3.3. This proves Proposition 26.2.2.

𝐾× ∩ 𝐿×𝑛

��

𝜇𝑛
𝑖 //

𝑑1
��

𝐿× 𝑥 ↦→𝑥𝑛 //

𝑑1
��

𝐿×𝑛

Der(𝐺, 𝜇𝑛)
𝑖 // Der(𝐺,𝐿×)

𝑎

��
𝑎

1
𝑛

𝑥 ↦→𝑥𝑛 //

𝑑1
��

𝑎(︂
𝜎 ↦→ 𝜎(𝑎

1
𝑛 )

𝑎
1
𝑛

)︂
𝑖 //

(︂
𝜎 ↦→ 𝜎(𝑎

1
𝑛 )

𝑎
1
𝑛

)︂
We claim that |Hom(𝐺, 𝜇𝑛)| = |𝐺|. Indeed, by the structure theorem for abelian groups,

𝐺 decomposes as (Z/𝑛1Z)×· · ·×(Z/𝑛𝑚Z) where 𝑛1, . . . , 𝑛𝑚 | 𝑛. To choose a homomorphism
for 𝐺 means choosing images for the generators of Z/𝑛1Z, . . . ,Z/𝑛𝑚Z; there are 𝑛1, . . . , 𝑛𝑚
possibilities, respectively, for a total of |𝐺|.

Then
[𝐿 : 𝐾] = |𝐺(𝐿/𝐾)| = [𝐾× ∩ 𝐿×𝑛 : 𝐾×].

This shows (26.2).
Step 2: Next note the following two inclusions.

1. 𝐾[𝐵(𝐿)
1
𝑛 ] ⊆ 𝐿: Anything in (𝐾× ∩ 𝐿×𝑛)

1
𝑛 is in the form (𝛽𝑛)

1
𝑛 and hence in 𝐿.

2. 𝐵(𝐾[𝐵
1
𝑛 ]) ⊇ 𝐵: Anything in 𝐵 is in the form (𝑏

1
𝑛 )𝑛 and hence in 𝐾× ∩𝐾(𝐵

1
𝑛 )×𝑛.

Step 3: We show that 𝐾[𝐵(𝐿)
1
𝑛 ] = 𝐿. By the inclusions in step 2,

[𝐿 : 𝐾] ≥ [𝐾[𝐵(𝐿)
1
𝑛 ] : 𝐾]

(26.2)
= [𝐵(𝐾[𝐵(𝐿)

1
𝑛 ]) : 𝐾×] ≥ [𝐵(𝐿) : 𝐾×].
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But [𝐿 : 𝐾] = [𝐵(𝐿) : 𝐾×] by (26.2), so equality holds everywhere. The first equality gives
the conclusion.

Step 4: We show that 𝐵(𝐾[𝐵
1
𝑛 ]) = 𝐵. We apply step 1 with 𝐿 = 𝐾[𝐵

1
𝑛 ] to get the

isomorphism

𝐵(𝐿) = 𝐾× ∩ 𝐿×𝑛/𝐾×𝑛 ∼=−→ Hom(𝐺, 𝜇𝑛)

𝑎 ↦→

�
𝜎 ↦→ 𝜎(𝑎

1
𝑛 )

𝑎
1
𝑛

�
.

Now 𝐵 ⊆ 𝐵(𝐿) gets mapped to a subgroup 𝐻 ′ ⊆ Hom(𝐺, 𝜇𝑛), which can be identified

with Hom(𝐺/𝐻, 𝜇𝑛)
1. But as the 𝑎

1
𝑛 generate 𝐿 over 𝐾 and the fixed field of 𝐺 is 𝐾,⋂︀

ℎ∈𝐻′ kerℎ = 1. Thus 𝐻 = {1}. Hence |𝐵(𝐿)| = |𝐺| = |𝐵|, and 𝐵 = 𝐵(𝐿).

Corollary 26.2.3 (𝑛th roots are linearly independent): Let 𝑆 be a set of nonzero integers
so that 𝑎

𝑏
is not a perfect 𝑛th power for any distinct 𝑎, 𝑏 ∈ 𝑆. Then the elements

𝑛
√
𝑠, 𝑠 ∈ 𝑆

are linearly independent over Q.

Proof. Step 1: It suffices to show that for distinct primes 𝑝1, . . . , 𝑝𝑘, we have

roots-right-degree[Q( 𝑛
√
𝑝1, . . . , 𝑛

√
𝑝𝑘) : Q] = 𝑛𝑘. (26.3)

Then a basis for this extension over Q is formed by taking products of basis elements for the
Q( 𝑛
√
𝑝𝑗):

basis-sqrt

{︁
𝑛
È
𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘 : 0 ≤ 𝑎𝑗 < 𝑛

}︁
. (26.4)

However, the radicands are exactly the representatives of elements in Q×/Q×𝑛. The elements
of 𝑆 are all represented by distinct elements of (26.4) modulo Q×, so the theorem will follow.
(To deal with 𝑠 ∈ 𝑆 negative, note if 𝑠 is negative then 𝑛

√
𝑠 is a not in R.)

We want to use Kummer theory to conclude (26.3). However, Q only has square roots
of unity (±1), so we have to consider all other roots separately. We may as well assume 2 | 𝑛.

1The subgroups of 𝐺 are in bijective correspondence with the subgroups of Hom(𝐺,𝜇𝑛) via the map

𝐻
Φ−→ {ℎ ∈ Hom(𝐺,𝜇𝑛) : 𝐻 ⊆ kerℎ} ∼= Hom(𝐺/𝐻,𝜇𝑛)⋂︁

ℎ∈𝐻′

kerℎ
Ψ←− 𝐻 ′

Indeed, clearly Ψ(Φ(𝐻)) ⊇ 𝐻, and we have equality since for every 𝑔 ∈ 𝐺∖𝐻 we can find ℎ ∈ Hom(𝐺,𝜇𝑛)
with kernel containing𝐻, so that ℎ(𝑔) ̸= 1. Since Hom(𝐺,𝜇𝑛) ∼= 𝐺, they have the same number of subgroups,
and this is a bijection.
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Step 2: We first show

roots-indpt-index1[Q(
√
𝑝1, . . . ,

√
𝑝𝑘) : Q] = 2𝑘. (26.5)

Let 𝐵 be the subgroup of Q× generated by 𝑝1, . . . , 𝑝𝑘 and Q×2. By Theorem 26.2.1,

[Q(𝐵
1
2 ) : Q] = [𝐵 : Q×2] = 2𝑘,

as needed.

Step 3: We now adjoin 𝑛th roots of unity such that we can apply Kummer theory for 𝑛th
roots. Let 𝑁 be a positive integers such that 𝑛 | 𝑁 and Q(

√
𝑝1, . . . ,

√
𝑝𝑘) ⊆ Q(𝜁𝑁) (every

quadratic extension is contained in a cyclotomic extension; we can take 𝑁 = 4𝑝1 · · · 𝑝𝑘𝑛).
However, if we look at 𝐾 := Q(𝜁𝑁), what if elements that aren’t 𝑛th powers in Q become

𝑛th powers? Fortunately, this doesn’t happen for 𝑛 ̸= 2. We show that for even 𝑛 ̸= 2 and
𝑚 ∈ Q not a perfect 𝑛

2
th power,

root-not-in-cyclotomic
𝑛
√
𝑚 ̸∈ Q(𝜁𝑁). (26.6)

By taking roots, we may assume that 𝑚 is not a perfect 𝑑th power for any 𝑑 | 𝑛.
Note 𝐿 := Q( 𝑛

√
𝑚, 𝜁𝑛) is a Galois extension of Q since it is the splitting field of 𝑋𝑛 −𝑚.

Note 𝑋𝑛−𝑚 is irreducible over Q because the constant term of any proper factor must be in

the form 𝑚
𝑗
𝑛 ̸∈ Q where 0 < 𝑗 < 𝑛. Hence there exists 𝜏 ∈ 𝐺(𝐿/Q) sending 𝑛

√
𝑚 to 𝜁𝑛 𝑛

√
𝑚.

Let 𝜎 ∈ 𝐺(𝐿/Q) denote complex conjugation. Then

𝜎𝜏( 𝑛
√
𝑚) = 𝜎(𝜁𝑛

𝑛
√
𝑚) = 𝜁−1

𝑛
𝑛
√
𝑚

𝜏𝜎( 𝑛
√
𝑚) = 𝜏( 𝑛

√
𝑚) = 𝜁𝑛

𝑛
√
𝑚.

Hence 𝐺(𝐿/Q) is not abelian. Since all cyclotomic extensions are abelian, 𝐿 cannot be
contained in an abelian extension, giving (26.6).

Let 𝐶 be the subgroup of Q(𝜁𝑁)
× generated by

√
𝑝1, . . . ,

√
𝑝𝑘 and Q(𝜁𝑁)

×𝑛
2 . We showed

above that 𝑛
√
𝑚 ̸∈ Q(𝜁𝑁)

×𝑛
2 for any 𝑚 not a perfect 𝑛

2
th power so [𝐶 : Q(𝜁𝑁)

×𝑛
2 ] =

(︀
𝑛
2

�𝑘
. By

Kummer Theory,

[Q(𝜁𝑁 , 𝑛
√
𝑝1, . . . , 𝑛

√
𝑝𝑘) : Q(𝜁𝑁)] = [Q(𝐶

𝑛
2 ) : 𝐾] = [𝐶 : Q(𝜁𝑁)

×𝑛
2 ] =

�𝑛
2

�𝑘
.

Since Q(
√
𝑝1, . . . ,

√
𝑝𝑘) ⊆ Q(𝜁𝑁) we get

roots-indpt-index2[Q( 𝑛
√
𝑝1, . . . , 𝑛

√
𝑝𝑘) : Q(

√
𝑝1, . . . ,

√
𝑝𝑘)] =

�𝑛
2

�𝑘
. (26.7)

Combining (26.5) and (26.7) gives (26.3), as needed.
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3 Nonabelian Galois cohomology

sec:nonabelian-galois-cohom Because of the definition of 𝐻1 in Section 25.15, we find that we can often
interpret 𝐻1(𝐺(𝐿/𝐾), 𝐴) as parameterizing certain algebraic structures, specifically a set of
them defined over 𝐾 that become isomorphic in 𝐿. (This is known as descent because it
answers the question, how many ways can an algebraic structure (or in general, a variety)
“descend” from 𝐿 to 𝐾?) In general,

𝐻1(𝐺(𝐿/𝐾), {automorphisms preserving 𝑉 over 𝐾})
∼= {𝐾-isomorphism classes that are 𝐿-congruent to 𝑉 }eq:descent (26.8)

In this section, we will see several examples where 𝐴 is an algebraic group. We could
also take 𝐴 to be an abelian variety (see Silverman [Sil86], Theorem X.2.2, for instance).

In particular, we find in the next section that a special cohomology group classifies algebra
structures over 𝐾: the Brauer group.

First, we need the following nonabelian generalization of Hilbert’s Theorem 90 (26.1.1).

Theorem 26.3.1 (Generalization of Hilbert’s Theorem 90): thm:gen-h90 For any finite Galois
extension 𝐿/𝐾, letting 𝐺 = 𝐺(𝐿/𝐾),

𝐻1(𝐺,GL𝑛(𝐿)) = 𝐻1(𝐺, SL𝑛(𝐿)) = 1.

Proof. As in Theorem 26.1.1, given a 1-cocycle 𝑐 : 𝐺→ 𝐺𝐿𝑛(𝐿), consider the function

𝑏 : GL𝑛(𝐿)→ℳ𝑛(𝐿)

𝑏(𝐴) :=
∑︁
𝜏∈𝐺

𝑐𝜏𝜏(𝐴).

Note that unlike in the proof of Theorem 26.1.1, we not only have to choose 𝐴 to be nonzero,
but also invertible.

Also define 𝑏 on 𝐿𝑛 in the same way:

𝑏 : 𝐿𝑛 → 𝐿𝑛

𝑏(x) :=
∑︁
𝜏∈𝐺

𝑐𝜏𝜏(x).

We show that {𝑏(x) : x ∈ 𝐿𝑛} generate 𝐿𝑛 as a vector space over 𝐿.2 Suppose a linear
functional 𝑓 : 𝐿𝑛 → 𝐿 vanishes on all the 𝑏(x). Then for every 𝛼 ∈ 𝐿,

0 = 𝑓(𝑏(𝛼x)) =
∑︁
𝜏∈𝐺

𝑓(𝑐𝜏𝜏(𝛼)𝜏(x)) =
∑︁
𝜏∈𝐺

𝜏(𝛼)𝑓(𝑐𝜏𝜏(x)).

By linear independence of characters, we get that all the coefficients of the 𝜏(𝛼) must be 0,
i.e. 𝑓(𝑐𝜏𝜏(x)) for all 𝑐𝜏 ,x. But 𝑐𝜏 ∈ GL𝑛(𝐿) is invertible, so 𝑓 must vanish identically on

2Note 𝑏 is not a 𝐿-linear transformation; it is a 𝐾-linear transformation.
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𝐿𝑛. We’ve shown that every linear functional vanishing on {𝑏(x)} vanishes on 𝐿𝑛; therefore
span𝐿{𝑏(x)} = 𝐿𝑛.

Thus we can choose x1, . . . ,x𝑛 such that y𝑗 = 𝑏(x𝑗) form a basis for 𝐿𝑛 over 𝐿. Let 𝐴 be
the matrix sending the canonical basis e𝑗 to the x𝑗. Then (note 𝜏 acts trivially on the 𝑒𝑗)

𝑏(𝐴)e𝑗 = 𝑏(𝐴e𝑗) = y𝑗

so 𝑏(𝐴) is invertible.
The the rest of the proof of Theorem 26.1.1 goes through: we have as in (26.1) that

𝑐𝜎 = 𝑏(𝐴)𝜎(𝑏(𝐴))−1,

i.e. 𝑐 is a coboundary. This shows 𝐻1(𝐺,GL𝑛(𝐿)) = 1.
For the second part, the exact sequence

1→ SL𝑛(𝐿)→ 𝐺𝐿𝑛(𝐿)
det−→ 𝐿× → 1

gives the long exact sequence 25.25.15.3

𝐻0(𝐺,GL𝑛(𝐿))
det // 𝐻0(𝐺,𝐿×) // 𝐻1(𝐺, SL𝑛(𝐿)) // 𝐻1(𝐺,GL𝑛(𝐿))

GL𝑛(𝐾) det // // 𝐾× 0.

As the map on the left is surjective, we get 𝐻1(𝐺, SL𝑛(𝐿)) = 1.

We have now established (26.8) when 𝑉 is a vector space: all vector spaces that become
isomorphic in 𝐿 have the same dimension to begin with so are isomorphic in 𝐾, so the right-
hand side of (26.8) is {1}, and if 𝑉 = 𝐾𝑛, GL𝑛(𝐿) is the group of automorphisms preserving
𝑉 over 𝐿, and Theorem 26.3.1 shows the right-hand side of (26.8) is {1}. We now extend
this to other algebraic structures.

To encode an algebraic structure, we consider vector spaces and tensors.

Example 26.3.2: ex:tensors

Let 𝑉 be a finite-dimensional vector space. The space 𝑉 ⊗𝑝 ⊗ 𝑉 *⊗𝑞 encodes. . .

𝑝 𝑞 Structure
1 0 vectors
0 1 linear functionals
1 1 linear operators
0 2 bilinear forms
1 2 algebra structures

We focus on the case 𝑝 = 1, 𝑞 = 2. Given a tensor
∑︀
𝑖 𝑣𝑖 ⊗ 𝑓𝑖 ⊗ 𝑔𝑖 ∈ 𝑉 ⊗ 𝑉 *⊗2, define a (not

necessarily commutative or associative) algebra structure on 𝑉 by

𝑣 · 𝑤 =
∑︁
𝑖

𝑓𝑖(𝑣)𝑔𝑖(𝑤)𝑣𝑖.
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Conversely, any algebra structure can be encoded in this way: Take a basis {𝑣𝑖} for 𝑉 and
a dual basis 𝑓𝑖 for 𝑉

*, and encode the structure by
∑︀
𝑖,𝑗(𝑣𝑖 · 𝑣𝑗)⊗ 𝑓𝑖 ⊗ 𝑔𝑗.

Definition 26.3.3: Let 𝑉 be a vector space over 𝐾 and 𝑥 ∈ 𝑉 ⊗𝑝⊗𝑉 *⊗𝑞 be a tensor of type
(𝑝, 𝑞). Two pairs (𝑉, 𝑥) and (𝑉 ′, 𝑥′) are isomorphic if there is a 𝐾-linear isomorphism

𝑓 : 𝑉 → 𝑉 ′

such that 𝑓(𝑥) = 𝑥′. Here, 𝑓 sends

eq:extend-tensor𝑥1⊗· · ·⊗𝑥𝑝⊗𝑓1⊗· · ·⊗𝑓𝑞 ↦→ 𝑓(𝑥1)⊗· · · 𝑓(𝑥𝑝)⊗(𝑓1∘𝑓−1)⊗· · ·⊗(𝑓𝑞 ∘𝑓−1). (26.9)

Given (𝑉, 𝑥) defined over 𝐾, we can consider it over 𝐿 by extending scalars; denote the
resulting pair by (𝑉𝐿 = 𝑉 ⊗𝐾 𝐿, 𝑥𝐿).

We say that (𝑉, 𝑥) and (𝑉 ′, 𝑥′) are 𝐿-isomorphic if (𝑉𝐿, 𝑥𝐿) and (𝑉 ′
𝐿, 𝑥

′
𝐿) are isomorphic.

Let 𝐸𝑉,𝑥(𝐿/𝐾) denote the 𝐿-isomorphism classes of pairs that are 𝐾-equivalent to (𝑉, 𝑥). If
𝐿/𝐾 is Galois, let 𝑠 ∈ 𝐺(𝐿/𝐾) act on 𝑣⊗𝛼 ∈ 𝑉 ⊗𝐾 𝐿 = 𝑉𝐿 by 𝑠(𝑣⊗𝐾 𝛼) := 𝑣⊗𝐾 𝑠(𝛼) and
let 𝑠 act on 𝐴𝐿 by conjugation:

𝑓 𝑠 := 𝑠 ∘ 𝑓 ∘ 𝑠−1.

Theorem 26.3.4 (Descent for tensors): thm:descent-tensors Let 𝐿/𝐾 be a Galois extension, 𝐺 =
𝐺(𝐿/𝐾), and let 𝐴𝐿 be the group of 𝐿-automorphisms of (𝑉𝐿, 𝑥𝐿). Define the map

𝜃 : 𝐸𝑉,𝑥(𝐿/𝐾)→ 𝐻1(𝐺,𝐴𝐿)

(𝑉 ′, 𝑥′) ↦→ (𝑑 : 𝜎 ↦→ 𝑓−1 ∘ 𝑓𝜎 = 𝑓−1 ∘ 𝜎 ∘ 𝑓 ∘ 𝜎−1)

where 𝑓 : (𝑉𝐿, 𝑥𝐿)→ (𝑉 ′
𝐿, 𝑥

′
𝐿) is any 𝐿-automorphism. Then 𝜃 is a bijection.

Proof. We show the following.

1. 𝜃 is well-defined. First, 𝜃(𝑉 ′, 𝑥′) is a cocycle as

𝑑(𝜎𝑡) = 𝑓−1𝜎𝑡𝑓𝑡−1𝜎−1 = (𝑓−1𝜎𝑓𝜎−1)[𝜎(𝑓−1𝑡𝑓𝑡−1)𝜎−1] = 𝑑(𝜎) ∘ 𝑑(𝑡)𝜎.

(See Definition 25.25.15.2.) Next, we show 𝜃(𝑉 ′, 𝑥′) does not depend on the choice of
𝑓 : Let 𝑑𝑓 (𝜎) = 𝑓−1𝜎𝑓𝜎−1 and 𝑑𝑔(𝑠) = 𝑔−1𝜎𝑔𝜎−1. Then

𝑑𝑔(𝜎) = 𝑔−1𝜎𝑔𝜎−1 = 𝑔−1𝑓(𝑓−1𝜎𝑓𝜎−1)𝜎𝑓−1𝑔𝜎−1 = (𝑓𝑔−1)−1𝑑𝑓 (𝜎)(𝑓𝑔
−1)𝜎

so 𝑑𝑓 and 𝑑𝑔 are cohomologous.

2. 𝜃 is injective. Suppose 𝜃(𝑉 ′
1 , 𝑥

′
1) = 𝜃(𝑉 ′

2 , 𝑥
′
2). We can choose the isomorphisms 𝑓1 and

𝑓2 such that 𝑓−1
1 𝑓𝜎1 = 𝑓−1

2 𝑓𝜎2 for all 𝜎 ∈ 𝐺(𝐿/𝐾). Then (𝑓2𝑓
−1
1 )𝜎 = 𝑓2𝑓

−1
1 for all

𝜎 ∈ 𝐺(𝐿/𝐾), i.e. 𝑓2𝑓
−1
1 is an isomorphism defined over 𝐾. Thus (𝑉 ′

1 , 𝑥
′
1) and (𝑉 ′

2 , 𝑥
′
2)

are 𝐾-isomorphic.
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3. 𝜃 is surjective. Let 𝑐𝜎 be a 1-cocycle of 𝐺 with values in 𝐴𝐿. Since 𝐴𝐿 ⊆ GL(𝑉𝐿), by
Theorem 26.3.1 there exists 𝑓 ∈ GL(𝑉𝐿) such that

𝑐𝜎 = 𝑓−1 ∘ 𝑓𝜎

Let 𝑓 operate on 𝑉 ⊗𝑝 ⊗ 𝑉 *⊗𝑞 as in (26.9) and let 𝑥′ = 𝑓(𝑥). As 𝑥 ∈ 𝑉 ⊗𝑝
𝐾 ⊗ 𝑉 *⊗𝑞

𝐾 and
𝑐𝜎 fixes 𝐾, we have

𝜎(𝑥′) = 𝑓𝜎(𝜎(𝑥)) = 𝑓𝜎(𝑥) = 𝑓 ∘ 𝑐𝜎(𝑥) = 𝑓(𝑥) = 𝑥′.

Thus 𝑥′ is rational over 𝐾 (i.e. in 𝑉 ⊗𝑝
𝐾 ⊗ 𝑉 *⊗𝑞

𝐾 ), and (𝑉, 𝑥′) maps to 𝑐𝜎.

Note that since we always take an isomorphism 𝑉 → 𝑉 ′, we can really consider all the
vector spaces to be the “same,” and just vary the tensors 𝑥. If we consider 𝑉 = 𝑉 ′, then we
abbreviate 𝑓 : (𝑉𝐿, 𝑥𝐿)→ (𝑉 ′

𝐿, 𝑥
′
𝐿) by 𝑓 : 𝑥→ 𝑥′.

Example 26.3.5: We can use Galois cohomology to classify quadratic forms over a field 𝐾.
Let Φ be a quadratic form (which corresponds to a bilinear form and can be represented by
a tensor of type (0, 2)), and 𝑂𝐿(Φ) be the orthogonal group of Φ, i.e. linear transformations
that preserve Φ. Then 𝐻1(𝐺(𝐿/𝐾), 𝑂𝐿(Φ)) classifies the quadratic forms over 𝐾 that are
𝐿-isomorphic to Φ.

4 Brauer group

brauer The Brauer group characterizes algebras over a field 𝐾. We already know a simple
way of making algebras: just consider the algebra of 𝑛× 𝑛 matrices,ℳ𝑛(𝐾). Thus, we will
essentially “mod out” by these when constructing the group.

As we will see, there is an isomorphism to a second cohomology group. Thus, we can apply
results about algebras over 𝐾 to Galois cohomology, or conversely, apply Galois cohomology
to get information on algebras over 𝐾.

First, we need some results from noncommutative algebra. We refer the reader to
Cohn [Coh03], Chapter 5, or Milne [Mil08], Chapter IV.1–2, for the proofs.

4.1 Background from noncommutative algebra

Definition 26.4.1: An algebra over a field 𝐾 is a ring 𝐴 with 𝐾 in its center3. Its
dimension is the dimension of 𝐴 as a 𝐾-vector space, denoted [𝐴 : 𝐾]. In this chapter we
assume all algebras to be finite-dimensional as 𝐾-vector spaces.

An algebra over 𝐾 is

1. simple if it has no proper two-sided ideals.

3The center of a ring 𝑅 is the set of elements commuting with all elements of 𝑅.
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2. central if its center in 𝐾.

An algebra is a division algebra if every nonzero element has an inverse.

Example 26.4.2: The algebra of 𝑛 × 𝑛 matrices ℳ𝑛(𝐾) is a central simple algebra over
𝐾.

Definition 26.4.3: Let 𝐴 be an algebra over 𝐾. We use “𝐴-module” to mean any finitely
generated left 𝐴-module 𝑉 ; the map 𝐴 → End(𝑉 ) is called a representation of 𝐴. The
module (or representation) is faithful if 𝑎𝑣 = 0 for all 𝑣 ∈ 𝑉 implies 𝑎 = 0, i.e. 𝐴 →˓
End(𝑉 ) is injective. A module is simple if it doesn’t contain a proper 𝐴-submodule, and
indecomposable if it is not the direct sum of two proper 𝐴-submodules. (Note that simple
implies indecomposable, but not vice versa.) A module is semisimple if it is the direct sum
of simple 𝐴-modules.4

We say 𝐴 is semisimple if it is semisimple as a module.

We need some basic results from noncommutative algebra.

Definition 26.4.4: Let 𝐵 ⊆ 𝐴 be a subalgebra. Define the centralizer of 𝐵 to be the
elements of 𝐴 commuting with 𝐵:

𝐶(𝐵) := {𝑎 ∈ 𝐴 : 𝑎𝑏 = 𝑏𝑎 for all 𝑏 ∈ 𝐵} .

Theorem 26.4.5 (Double centralizer theorem): thm:double-centralizer Let 𝐴 be a 𝐾-algebra, and
𝑉 a faithful semisimple 𝐴-module. Consider 𝐴 as a subalgebra of End𝐾(𝑉 ). Then

𝐶(𝐶(𝐴)) = 𝐴.

Proof. Milne [Mil08], Theorem IV.1.3, or Etingof [Eti], Theorem 4.54.

Theorem 26.4.6 (Wedderburn’s structure theorem): thm:wedderburn An algebra 𝐴 is semisimple
iff it is isomorphic to the direct sum of matrix algebras over division algebras.

If 𝐴 is an algebra over an algebraically closed field 𝐾 and 𝐾, then any semisimple algebra
over 𝐾 is isomorphic to a direct sum of matrix algebras over 𝐾.

Proof. Milne [Mil08], Theorem IV.1.15.
For the second part, we need to show the only division algebra over an algebraically

closed field 𝐾 is 𝐾 itself. Suppose 𝐷 is a division algebra and 𝛼 ∈ 𝐷. As [𝐷 : 𝐾] is
finite-dimensional, 𝐾(𝛼) is a finite extension of 𝐾. Hence 𝛼 ∈ 𝐾, giving 𝐷 = 𝐾.

4Equivalently, the radical of 𝐴 is trivial. If it is semisimple the factors in the decomposition are unique
up to isomorphism (Jordan-Hölder).
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Theorem 26.4.7 (Noether-Skolem theorem): thm:noether-skolem Let 𝑓, 𝑔 : 𝐴→ 𝐵 be homomor-
phisms, where 𝐴 is a simple 𝐾-algebra and 𝐵 is a central simple 𝐾-algebra. Then there
exists 𝑏 ∈ 𝐵 such that

𝑓(𝑎) = 𝑏 · 𝑔(𝑎) · 𝑏−1

for all 𝑎 ∈ 𝐴, i.e. 𝑓, 𝑔 differ by an inner automorphism of 𝐵.
In particular, taking 𝐴 = 𝐵 and 𝑔 = 1, all automorphisms of a central simple 𝐾-algebra

are inner (come from conjugation). In particular, this is true forℳ𝑛(𝐾).

4.2 Central simple algebras and the Brauer group

We now define the Brauer group.

Definition 26.4.8: Let 𝐴 and 𝐵 be simple algebras over 𝐾. We say 𝐴 and 𝐵 are similar
and write 𝐴 ∼ 𝐵 if

𝐴⊗𝐾ℳ𝑚(𝐾) ∼= 𝐵 ⊗𝐾ℳ𝑛(𝐾)

for some 𝑚,𝑛.
The Brauer group Br𝐾 is the set of similarity classes of central simple algebras over

𝐾, with multiplication defined by

[𝐴][𝐵] = [𝐴⊗𝐾 𝐵].

The Brauer group Br𝐿/𝐾 is the subgroup of classes of central simple algebras over 𝐾 that
are split over 𝐿, i.e. such that 𝐴⊗𝐾 𝐿 is a matrix algebra.

Proof (sketch) that this is a group. We need to check that. . .

1. The tensor product of two central simple algebras is central simple. By Wedderburn’s
Theorem 26.4.6 we can write the algebras as 𝐴 = 𝑀𝑚(𝐷) and 𝐵 = 𝑀𝑚′(𝐷′), where
𝐷,𝐷′ are division algebras. One can show 𝐴⊗𝐾 𝐷′ is simple; hence it equals 𝑀𝑛(𝐷

′′)
for some 𝐷′′. Then 𝐴⊗𝐾 𝐵 ∼= 𝑀𝑚′𝑛(𝐷

′′) is simple. It is central because 𝐶(𝐴⊗𝐾 𝐵) =
𝐶(𝐴)⊗𝐾 𝐶(𝐵) = 𝐾.

2. “∼” is an equivalence relation. If 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶, then 𝐴 ⊗𝐾ℳ𝑚(𝐾) ∼= 𝐵𝐾 ⊗𝐾
ℳ𝑛(𝐾), 𝐵 ⊗𝐾ℳ𝑛′(𝐾) ∼= 𝐶 ⊗𝐾ℳ𝑝(𝐾) for some 𝑚,𝑛, 𝑛′, 𝑝. Then

𝐴⊗𝐾ℳ𝑚𝑛′(𝐾) ∼= 𝐴⊗𝐾ℳ𝑚(𝐾)⊗𝐾ℳ𝑛′(𝐾) ∼= 𝐶⊗𝐾ℳ𝑛(𝐾)⊗𝐾ℳ𝑝(𝐾) ∼= 𝐶⊗𝐾𝑀𝑛𝑝(𝐾).

3. “∼” is preserved under the operation ⊗. If 𝐴𝑖 ⊗𝐾 ℳ𝑚𝑖
(𝐾) ∼= 𝐵𝑖 ⊗𝐾 ℳ𝑛𝑖

(𝐾) for
𝑖 = 1, 2, then 𝐴1 ⊗𝐾 𝐴2 ⊗𝐾ℳ𝑚1𝑚2(𝐾) ∼= 𝐵1 ⊗𝐾 𝐵2 ⊗𝐾ℳ𝑛1𝑛2(𝐾).

4. 𝐴 has an inverse. Letting 𝐴opp be the opposite algebra, we find that

𝐴⊗𝐾 𝐴opp ∼=ℳ𝑛(𝐾), 𝑛 = [𝐴 : 𝐾].
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5. The operation is commutative and associative. This follows since tensor product is
commutative and associative.

By Wedderburn’s Structure Theorem 26.4.6, each (central) simple algebra is 𝑀𝑛(𝐷) ∼=
𝑀𝑛(𝐾)⊗𝐾𝐷 for some (central) division algebra 𝐷, so every similarity class is represented by
a central division algebra. Thus to determine the Brauer group it suffices to classify central
division algebras.

Example 26.4.9: We have
BrR = {R,H}

where H denotes the quaternions: the algebra with basis 1, i, j,k = ij and relations i2 = 1,
j2 = 1, and ij = −ji.

Indeed, by Frobenius’s Theorem, the only finite-dimensional (associative) division alge-
bras over R are R, C, and H, and only R and H have center equal to R.

Proposition 26.4.10: For any algebraically closed field 𝐾,

Br𝐾 = 0.

Proof. By Wedderburn’s Theorem 26.4.6, all central simple algebras over 𝐾 areℳ𝑛(𝐾) for
some 𝑛.

4.3 Subfields and splitting of central simple algebras

An important way of studying a central simple algebra is to look at its subfields.

Theorem 26.4.11 (Double centralizer theorem, generalization): thm:dct-gen Let 𝐴 be a central
simple 𝐾-algebra and 𝐵 be a simple 𝐾-subalgebra. Let 𝐶 = 𝐶(𝐵). Then 𝐶 is simple,
𝐶(𝐶) = 𝐴, and

[𝐵 : 𝐾][𝐶 : 𝐾] = [𝐴 : 𝐾].

Proof. See Milne [Mil08], Theorem IV.3.1.

Corollary 26.4.12: Let 𝐴 be central simple over 𝐾, and 𝐿 be a subfield with 𝐾 ⊆ 𝐿 ⊆ 𝐴.
Then the following are equivalent.

1. 𝐿 = 𝐶(𝐿).

2. [𝐴 : 𝐾] = [𝐿 : 𝐾]2.

3. 𝐿 is the maximal commutative 𝐾-subalgebra of 𝐴.

Proof. Milne [Mil08], Corollary IV.3.4.
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The following describes the fields over which a central simple algebra splits.

Corollary 26.4.13: cor:csa-split Let 𝐴 be central simple over 𝐾. A finite extension field 𝑀
splits 𝐴 iff there exists an algebra 𝐵 ∼ 𝐴 containing 𝑀 with [𝐵 : 𝐾] = [𝐿 : 𝐾]2. In
particular, any subfield 𝐿 of 𝐴 of degree

È
[𝐴 : 𝐾] splits 𝐴.

If 𝐷 is a divison algebra of degree 𝑛2 over 𝐾, and 𝐿 is a field of degree 𝑛 over 𝐾
(equivalently a maximal commutative subfield of 𝐷), then 𝐿 splits 𝐷, i.e. 𝐷 ∼=ℳ𝑛(𝐿).

Proof. Milne [Mil08], IV.3.6, and 3.7.

Theorem 26.4.14: thm:all-split Every central division algebra over 𝐾 is split over some finite
Galois extension 𝐿/𝐾. Therefore

Br𝐾 = Br𝐾/𝐾 =
⋃︁

𝐿/𝐾 finite Galois

Br𝐿/𝐾 .

Proof. When 𝐾 is perfect, this follows directly from Corollary 26.4.13. The general case
requires a separate argument; see Milne [Mil08], IV.3.10.

Similar to the commutative case, we can define a valuation on division algebras.

Proposition 26.4.15: pr:div-alg-val Let 𝐷 be a division algebra of rank 𝑛2 over a local field
𝐾. Then 𝐷 admits a discrete valuation extending the valuation on 𝐾, such that for any
𝑎 ∈ (0, 1), ‖𝑥‖𝐷 := 𝑎𝑣(𝑥) defines a norm on 𝐷. The set of integral elements {𝑥 : 𝑣(𝑥) ≥ 0} is
a subring of 𝐷.

5 Brauer group and cohomology

5.1 The Brauer group is a second cohomology group

Definition 26.5.1: Let Br𝐿/𝐾,𝑛 denote the subset of Br𝐿/𝐾 consisting of [𝐴] where 𝐴⊗𝐾𝐿 ∼=
ℳ𝑛(𝐿). Note that Br𝐿/𝐾 =

⋃︀
𝑛∈N Br𝐿/𝐾,𝑛.

Theorem 26.5.2 (Cohomological interpretation of Brauer group): thm:brauer-cohom There are
canonical bijections

𝜃𝑛 : Br𝐿/𝐾,𝑛 → 𝐻1(𝐺,PGL𝑛(𝐾))

and canonical isomorphisms

𝛿 : Br𝐿/𝐾 → 𝐻2(𝐿/𝐾)

𝛿 : Br𝐾 → 𝐻2(𝐾)

where 𝐻2(𝐾) := 𝐻(𝐾/𝐾) = lim−→𝐿/𝐾 finite Galois
𝐻2(𝐿/𝐾).
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Proof. We can represent elements of Br𝐿/𝐾,𝑛 as algebras of dimension 𝑛2 over 𝐾, that are
𝐿-isomorphic to the algebraℳ𝑛(𝐿). By Example 26.3.2, we can encode the algebraℳ𝑛(𝐿)
by a tensor of type (1, 2). By Theorem 26.3.4,

eq:brauer-descentBr𝐿/𝐾,𝑛 ∼= 𝐻1(𝐺,Aut(ℳ𝑛(𝐿))). (26.10)

By the Noether-Skolem Theorem 26.4.7, every automorphism ofℳ𝑛(𝐿) is conjugation by an
element of GL𝑛(𝐾). Since the matrices that act trivially by conjugation are just the scalar
matrices, we have the short exact sequence

eq:noether-skolem1→ 𝐿× → GL𝑛(𝐿)→ Aut(ℳ𝑛(𝐿)) ∼= PGL𝑛(𝐿)→ 1. (26.11)

Along with (26.10) this proves the first part.
The long exact sequence 25.25.15.3 of (26.11) gives

0 = 𝐻1(𝐺,GL𝑛(𝐿))→ 𝐻1(𝐺,PGL𝑛(𝐿))
Δ𝑛−−→ 𝐻2(𝐺,𝐿×),

where the LHS follows from Theorem 26.3.1. Let 𝛿𝑛 = Δ𝑛 ∘ 𝜃𝑛; then 𝛿𝑛 is an injective map.
We show the following.

1. The 𝛿𝑛 for different 𝑛 combine compatibly into an injective group homomorphism
𝛿 : Br(𝐿/𝐾)→ 𝐻2(𝐿/𝐾): We need to show

𝛿𝑛𝑛′(𝐴⊗ 𝐴′) = 𝛿𝑛(𝐴)𝛿𝑛′(𝐴′)

for any 𝐴 ∈ Br𝐿/𝐾,𝑛 and 𝐴′ ∈ Br𝐿/𝐾,𝑛′ .

First, note that if 𝑎, 𝑎′ are tensors encoding the algebras 𝐴,𝐴′ on 𝑉 ⊗ 𝑉 *⊗2 and 𝑉 ′ ⊗
𝑉 ′*⊗2, then 𝑥 ⊗ 𝑥′ encodes the algebra 𝐴 ⊗ 𝐴′ on (𝑉 ⊗ 𝑉 ′) ⊗ (𝑉 ⊗ 𝑉 ′)*⊗2. Let 𝑥, 𝑥′

encode ℳ𝑛(𝐾) and ℳ𝑛′(𝐾), so that 𝑥 ⊗ 𝑥′ encodes ℳ𝑛𝑛′(𝐾). If 𝑓 : 𝑥 → 𝑎 and
𝑓 ′ : 𝑥′ → 𝑎′ are 𝐿-linear maps, then we have the 𝐿-linear map onℳ𝑛𝑛′(𝐿),

𝑓 ⊗ 𝑓 ′ : 𝑥⊗ 𝑥′ → 𝑎⊗ 𝑎′.

Now 𝜃𝑛, 𝜃𝑛′ map 𝐴 and 𝐴′ to 𝑐𝜎 = 𝑓−1 ∘ 𝑓𝜎 and 𝑐′𝜎 = 𝑓 ′−1 ∘ 𝑓 ′𝜎. Suppose 𝑐𝜎 and 𝑐′𝜎
are represented by conjugation by 𝑆𝜎 and 𝑆 ′

𝜎, respectively. Now 𝜃𝑛𝑛′ maps 𝐴⊗𝐴′ onto
𝑑𝜎 = (𝑓 ⊗ 𝑓 ′)−1 ∘ (𝑓 ⊗ 𝑓 ′)𝜎, which corresponds to conjugation by 𝑆𝜎⊗𝑆 ′

𝜎. Then by the
description of Δ in Theorem 25.25.15.2, we see that

𝛿𝑛𝑛′(𝐴⊗ 𝐴′) =
⌋︀
𝑎𝜎,𝜏 = 𝑖−1

𝑛𝑛′ [(𝑆𝜎 ⊗ 𝑆 ′
𝜎)𝜎(𝑆𝜏 ⊗ 𝑆 ′

𝜏 )(𝑆𝜎𝜏 ⊗ 𝑆 ′
𝜎𝜏 )

−1]
{︀
= 𝛿𝑛(𝐴)𝛿𝑛(𝐴

′)

where 𝑖𝑛𝑛′ is the inclusion map 𝐿× → GL𝑛𝑛′(𝐿). Under the inverse of 𝑖𝑛𝑛′ = 𝑖𝑛 ⊗ 𝑖𝑛′ ,
tensor product becomes simply the product.

2. 𝛿 is surjective. It suffices to show Δ𝑛 is surjective, where 𝑛 = [𝐿 : 𝐾].5 Take an
2-cocycle 𝑎𝜎,𝜏 ∈ 𝐻2(𝐺,𝐿×). We need to show that

𝑎𝜎,𝜏 = 𝑆𝜎𝜎(𝑆𝜏 )𝑆
−1
𝜎𝜏

5Incidentally, this shows that every equivalence class of algebras is represented by one of dimension at
most [𝐿 : 𝐾]2. This is consistent with results of the previous section.
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for some values of 𝑆𝜎 ∈ GL𝑛(𝐿). We identify 𝐿𝑛 with the group algebra 𝐿[𝐺], and let
𝑆𝜎 ∈ GL(𝐿[𝐺]) be the map sending 𝜏 to 𝑎𝜎,𝜏𝜎𝜏 (it is invertible as 𝑎𝜎,𝜏 ∈ 𝐿×). Then
we calculate for every 𝑢 ∈ 𝐺 ⊂ 𝐿[𝐺],

[𝑆𝜎𝜎(𝑆𝜏 )]𝑢 = [𝑎𝜎,𝜏𝑢𝜎(𝑎𝜏,𝑢)]𝜎𝜏𝑢

[𝑎𝜎𝜏𝑆𝜎𝜏 ]𝑢 = [𝑎𝜎,𝜏𝑎𝜎𝜏,𝑢]𝜎𝜏𝑢.

The right-hand sides are equal since 𝑎𝜎,𝜏 is a cocycle. Hence

𝑎𝜎,𝜏 = 𝑆𝜎𝜎(𝑆𝜏 )𝑆
−1
𝜎𝜏

is in the image of Δ𝑛.

3. 𝛿 gives an isomorphism Br𝐾 ∼= 𝐻2(𝐾): This follows from Theorem 26.4.14, the follow-
ing easy-to-check commutative diagram (which holds for any 𝐾 ⊆ 𝐿 ⊆𝑀),

𝐻2(𝐿/𝐾) �
� Inf //

𝛿

��

𝐻2(𝑀/𝐾)

𝛿

��

Br𝐿/𝐾
� � // Br𝑀/𝐾 ,

and taking the direct limit of the maps Br𝐿/𝐾 → 𝐻2(𝐿/𝐾).

Remark 26.5.3: Milne [Mil08] makes this correspondence more explicit. The relationship
between the two approaches can be seen by choosing a basis for the tensor product 𝑉 ⊗𝑉 *⊗2;
the coefficients are called the structure constants of the algebra. (We followed Serre; note
that the isomorphism in Serre is the opposite of the isomorphism in Milne.)

5.2 Exact sequence of Brauer groups

The importance of the Brauer group in class field theory is given by the following proposition.

Theorem 26.5.4: brauer2 Let 𝑀/𝐿/𝐾 be Galois extensions. Then there is an exact sequence

0 // 𝐻2(𝐿/𝐾) // 𝐻2(𝑀/𝐾) // 𝐻2(𝑀/𝐿)

Br𝐿/𝐾 Br𝑀/𝐾 Br𝑀/𝐿 .

For any Galois extension 𝐿/𝐾 there is an exact sequence

0 // 𝐻2(𝐿/𝐾) // 𝐻2(𝐾) // 𝐻2(𝐿)

Br𝐿/𝐾 Br𝐾 Br𝐿 .
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Proof. Since 𝐻1(𝐿/𝐾) = 0 by Hilbert’s Theorem 90 (26.1.1), the inflation-restriction exact
sequence 25.25.11.10 with 𝐺 = 𝐺(𝑀/𝐾) and 𝐻 = 𝐺(𝑀/𝐿) gives

0→ 𝐻2(𝐿/𝐾)
Inf−→ 𝐻2(𝑀/𝐾)

Res−−→ 𝐻2(𝑀/𝐿).

The equality with the Brauer groups follows from Theorem 26.5.2.
Taking the direct limit over all finite Galois extensions 𝑀/𝐾 gives the second result.

6 Problems

2.1 (Artin-Schreier) Let 𝐿/𝐾 be a Galois extension of degree 𝑝, with 𝐾/F𝑝 a finite exten-
sion. Prove that 𝐿 = 𝐾(𝛼) for some 𝛼 such that 𝛼𝑝 − 𝛼 ∈ 𝐾. (Hint: Consider a short
exact sequence as in the proof of Kummer theory. However, use the map 𝑥 ↦→ 𝑥𝑝 − 𝑥
instead of 𝑥 ↦→ 𝑥𝑝, and consider additive instead of multiplicative groups.)
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Chapter 27

Local class field theory

lcft We now prove the main theorems of class field theory using cohomology. Throughout this
chapter, 𝐾, 𝐿, etc. will denote nonarchimedean local fields, unless specified otherwise.1 The
main steps are the following.

1. Construct the invariant map 𝐻2(𝐾ur/𝐾)→ Q/Z. (Proposition 27.2.1)

(a) Show that 𝐻2(𝐺(𝐾ur/𝐾), 𝑈𝐾ur) = 0. (Theorem 27.1.1)

(b) From the decomposition𝐾ur× = 𝑈𝐾ur×Z and step 1, we get𝐻2(𝐺(𝐾ur/𝐾), 𝐾ur×) ∼=
𝐻2(𝐺(𝐾ur/𝐾),Z). (Note the projection 𝐾ur× → Z is the valuation map 𝑣𝐾ur .)
Relate 𝐻2(𝐺(𝐾ur/𝐾),Z) to Q/Z using the long exact sequence in cohomology
associated to 0→ Z→ Q→ Q/Z→ 0.

2. Now show that there is an isomorphism Br𝐾 := 𝐻2(𝐾/𝐾) ∼= 𝐻2(𝐾ur/𝐾) (Theo-
rem 27.3.1). Thus we can restrict attention to unramified extensions of 𝐾 and use step
1. Unramified extensions are easier to deal with! There are two approaches:

(a) By Theorem 26.26.5.4 there is an exact sequence

0→ 𝐻2(𝐾ur/𝐾)→ Br𝐾 → Br𝐾ur .

Show that Br𝐾ur = 0 by considering central simple algebras over local fields.

(b) Study the cohomology of 𝑈𝐿 when 𝐿/𝐾 is cyclic to conclude that the Herbrand
quotient ℎ(𝑈𝐿) is 1. From this get ℎ(𝐿×) = [𝐿 : 𝐾]. From this calculation and
Hilbert’s Theorem 90 (26.26.1.1), compute2

|𝐻1(𝐿/𝐾)| = 1,

|𝐻2(𝐿/𝐾)| = [𝐿 : 𝐾].

Conclude that𝐻2(𝐿/𝐾) is cyclic of order [𝐿 : 𝐾] and hence included in𝐻2(𝐾ur/𝐾),
for any finite 𝐿/𝐾.

1Local class field theory for R and C is trivial and left to the reader. (The only nontrivial field extension
is C/R.)

2This is the input for abstract class field theory according to Neukirch [Neu99].
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3. Combining the first two steps, we get the invariant map inv𝐾 : Br𝐾 → Q/Z. Show that
this is compatible with restriction and hence that (𝐺(𝐾/𝐾), 𝐾) is a class formation.
Note inv𝐾 restricts to 𝐻2(𝐿/𝐾) → 1

[𝐿:𝐾]
Z; supposing its image is generated by 𝑢𝐿/𝐾 ,

Tate’s Theorem 25.25.13.1 gives an isomorphism

𝐻−2
𝑇 (𝐺(𝐿/𝐾),Z)

∙∪𝑢𝐿/𝐾

∼=
// 𝐻0

𝑇 (𝐺,𝐿
×)

𝐺(𝐿/𝐾)ab 𝐾×/Nm𝐿/𝐾(𝐿
×)

that sends Frob𝐿/𝐾 to [𝜋] when 𝐿/𝐾 is unramified. Taking a direct limit, we get a
map 𝐾× → 𝐺(𝐾ab/𝐾). Note we only get a map from 𝐺ab (norm limitation).

4. Study the Hilbert symbol to prove the existence theorem (See Sections 6–7).

Unfortunately it is quite difficult to trace through the maps to find out what the Artin map
actually is—for this Lubin-Tate Theory is better.

1 Cohomology of the units

For an unramified extension, the cohomology of the units is trivial.

Theorem 27.1.1 (Cohomology of units): cohomology-units-trivial Suppose 𝐿/𝐾 is a finite unram-
ified extension of local fields with Galois group 𝐺. Let 𝑈𝐿 be the group of units of 𝐿.
Then

𝐻𝑟
𝑇 (𝐺,𝑈𝐿) = 1

for any 𝑟. Hence 𝐻𝑛(𝐺(𝐾ur/𝐾), 𝑈𝐾ur) = 0 for 𝑛 > 0.

Proof. We will show that
𝐻1
𝑇 (𝐺,𝑈𝐿) = 𝐻0

𝑇 (𝐺,𝑈𝐿) = 1.

Then it follows from Proposition 25.25.12.1 that all the Tate groups are trivial. The second
part follows from taking the direct limit.

We have
eq:L=ULxZ𝐿× = 𝑈𝐿 × 𝜋Z ∼= 𝑈𝐿 × Z (27.1)

where 𝜋 is a uniformizer for 𝐿. Since 𝐿/𝐾 is unramified, we can choose 𝜋 ∈ 𝐾. Then 𝐺
acts trivially on 𝜋, so acts trivially on Z in the decomposition above. Thus (27.1) gives a
decomposition of 𝐿× as a 𝐺-module (not just as a group). We have by Hilbert’s Theorem 90
(Theorem 26.26.1.1) and the fact that cohomology respects products (Proposition 25.25.6.7)
that

0 = 𝐻1(𝐺,𝐿×) = 𝐻1(𝐺,𝑈𝐿)×𝐻1(𝐺,Z).

Hence 𝐻1(𝐺,𝑈𝐿) = 1.
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It remains to show 𝐻0
𝑇 (𝐺,𝑈𝐿) = 1. To do this, let m be the maximal ideal of 𝐿, 𝑈

(𝑚)
𝐿 :=

1 +m𝑛, and consider the filtration

𝑈
(0)
𝐾 := 𝑈𝐾 ⊃ 𝑈

(1)
𝐾 ⊃ 𝑈

(2)
𝐾 ⊃ · · · .

Proposition 27.1.2 and 27.1.3 below show that each quotient has trivial cohomology:

𝐻0
𝑇 (𝐺,𝑈

(𝑖)
𝐿 /𝑈

(𝑖+1)
𝐿 ) = 1.

Then Lemma 27.1.4 gives that 𝐻0
𝑇 (𝐺,𝑈𝐿) = 1, as needed.

Proposition 27.1.2: units-filtration-2 Let 𝐾 be a complete field with discrete valuation, m be
the associated maximal ideal, and 𝑈

(𝑚)
𝐾 := 1 +m𝑚. Then we have isomorphisms

𝑈𝐾/𝑈
(1)
𝐾

∼=−→ 𝑘× 𝑈
(𝑚)
𝐾 /𝑈

(𝑚+1)
𝐾

∼=−→ 𝑘+

𝑢 ↦→ 𝑢 (mod m) 1 + 𝑎𝜋𝑚 ↦→ 𝑎 (mod m)

that preserve Galois action.

Proof. This is Proposition 22.22.4.8.

Proposition 27.1.3: cohom-finite-fields Let 𝑙/𝑘 be an extension of finite fields and 𝐺 := 𝐺(𝑙/𝑘).
Then

𝐻𝑟
𝑇 (𝐺, 𝑙

×) = {1}
𝐻𝑟
𝑇 (𝐺, 𝑙

+) = {0}

for all 𝑟 ∈ Z. Moreover, the maps Nm𝑙/𝑘 : 𝑙→ 𝑘 and tr𝑙/𝑘 : 𝑙→ 𝑘 are surjective.

Proof. By Hilbert’s Theorem 90 (26.26.1.1), 𝐻1(𝐺, 𝑙×) = 0. Since 𝐺 is cyclic and 𝑙 is finite,
by Proposition 25.25.12.4, ℎ(𝑙×) = 1, giving 𝐻2(𝐺, 𝑙×) = 0. Again since 𝐺 is cyclic, by
Theorem 25.25.12.1, all the Tate groups are 0.

From Theorem 26.26.1.2, 𝐻𝑟
𝑇 (𝐺, 𝑙

+) = 0 for 𝑟 ≥ 0.
For the second statement, just note

{1} = 𝐻0
𝑇 (𝐺, 𝑙

×) = (𝑙×)𝐺/𝑁𝐺(𝑙
×) = 𝑘×/Nm𝑙/𝑘(𝑙

×)

{0} = 𝐻0
𝑇 (𝐺, 𝑙

+) = 𝑙𝐺/𝑁𝐺(𝑙) = 𝑘/tr𝑙/𝑘(𝑙).

Lemma 27.1.4: filtration0-h Let 𝐺 be a finite group and 𝑀 be a 𝐺-module. Let

𝑀 =𝑀0 ⊇𝑀1 ⊇ · · ·

be a decreasing sequence of 𝐺-submodules and suppose 𝑀 = lim←−𝑀/𝑀 𝑖 (i.e. 𝑀 is complete

with respect to this filtration). If 𝐻𝑞(𝐺,𝑀 𝑖/𝑀 𝑖+1) = 0 for all 𝑖, then 𝐻𝑞(𝐺,𝑀) = 0.
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Proof. Let 𝑓 be a 𝑞-cocycle of 𝑀 . Since 𝐻𝑞(𝐺,𝑀/𝑀1) = 0, the long exact sequence of
0→𝑀1 →𝑀 →𝑀/𝑀1 gives 𝐻𝑞(𝐺,𝑀1)� 𝐻𝑞(𝐺,𝑀) and we can write 𝑓 = 𝑔0+𝑓1, where
𝑔0 = 𝛿ℎ0 is a coboundary in 𝑀 and 𝑓1 is a 𝑞-cocycle in 𝑀1. Given 𝑓𝑛 ∈ 𝐻𝑞(𝐺,𝑀𝑛), we can
write

𝑓𝑛 = 𝛿ℎ𝑛 + 𝑓𝑛+1

where ℎ𝑛 is a (𝑞 − 1)-cocycle of 𝑀𝑛 and 𝑓𝑛+1 is a 𝑞-cocycle of 𝑀𝑛+1. Then

𝑓 = 𝛿(ℎ1 + ℎ2 + · · · ),

the infinite series being defined in 𝐻𝑞−1(𝐺,𝑀) since ℎ𝑛 is a cochain with values in 𝑀𝑛, and
𝑀 is complete with respect to this filtration.

This proves Theorem 27.1.1. We record the following corollary, for easy reference.

Corollary 27.1.5: thm:local-nm-surj Suppose 𝐿/𝐾 is a finite extension of local fields. Then

𝑈𝐾 ⊆ Nm𝐿/𝐾 𝑈𝐿.

Proof. If 𝐿/𝐾 is Galois, then this follows since by Theorem 27.1.1

𝑈𝐾/Nm𝐿/𝐾 𝑈𝐿 = 𝐻0
𝑇 (𝐺(𝐿/𝐾), 𝑈𝐿) = {1}

so the norm map 𝑈𝐿 → 𝑈𝐾 is surjective.
For general extensions 𝐿/𝐾, consider the Galois closure and use transitivity of norms.

2 The invariant map

2.1 Defining the invariant maps

Proposition 27.2.1: invariant-map For any finite unramified Galois extension of local fields 𝐿/𝐾
there is a canonical isomorphism

inv𝐿/𝐾 : 𝐻2(𝐿/𝐾)
∼=−→ 1

[𝐿 : 𝐾]
Z/Z.

Taking the direct limit gives an injective map

inv𝐾ur/𝐾 : 𝐻2(𝐾ur/𝐾)→ Q/Z.

Proof. Consider the short exact sequence

1→ 𝑈𝐿 → 𝐿× 𝑣𝐿−→ Z→ 0.

Since 𝐻𝑛
𝑇 (𝐺,𝑈𝐿) = 0 for all 𝑛 by Theorem 27.1.1, taking the long exact sequence gives

��
���

�:0
𝐻2(𝐺,𝑈𝐿)→ 𝐻2(𝐿/𝐾)

∼=−→ 𝐻2(𝐺,Z)→����
��:0

𝐻3(𝐺,𝑈𝐿).
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We relate 𝐻2(𝐺,Z) to a lower cohomology group by considering the short exact sequence

0→ Z→ Q→ Q/Z→ 0.

Note 𝐻𝑛(𝐺,Q) is torsion for any 𝑛 > 0 by Corollary 25.25.11.6. Since Q is a divisible group,
so is 𝐻𝑛(𝐺,Q), by looking at the description of 𝐻𝑛 in terms of cocycles (Section 25.7). Hence
𝐻𝑛(𝐺,Q) = 0 for any 𝑛 > 0. Taking the long exact sequence of the above we get

���
���:0

𝐻1(𝐺,Q)→ 𝐻1(𝐺,Q/Z)
∼=−→ 𝐻2(𝐺,Z)→����

��:0
𝐻2(𝐺,Q).

Thus we get a map

eq:inv-unram inv𝐿/𝐾 : 𝐻2(𝐿/𝐾)
∼=−→ 𝐻2(𝐺,Z)

∼=←− 𝐻1(𝐺,Q/Z)
25.25.7.3∼= Hom(𝐺,Q/Z)

∼=−→ 1

[𝐿 : 𝐾]
Z/Z.

(27.2)
where the last is defined by taking the Frobenius element 𝜎 of 𝐺 and mapping 𝑓 ↦→ 𝑓(𝜎).
(Note 𝐺 is cyclic and 𝜎 generates 𝐺; the Frobenius is a canonical choice.)

Now define inv𝐾ur/𝐾 = lim−→𝐿/𝐾 finite Galois unramified
inv𝐿/𝐾 , taking the direct limit under

inflation. Since inflation is functorial, the first two maps in (27.2) commute with it. Identi-
fying 𝐻1(𝐺,Q/Z) ∼= Hom(𝐺,Q/Z), inflation sends a map 𝐺(𝐿/𝐾) → Q/Z to 𝐺(𝑀/𝐾) �
𝐺(𝐿/𝐾)→ Q/Z. Moreover, Frob𝐿/𝐾 is the projection of Frob𝑀/𝐾 to 𝐺(𝐿/𝐾). Hence Inf𝑀/𝐿

commutes with the inclusion map 1
[𝐿:𝐾]

Z/Z →˓ 1
[𝑀 :𝐾]

Z/Z, and the inv𝐿/𝐾 form a compatible
system under inflation.

Remark 27.2.2: Let 𝐾 be any nonarchimedean complete field (not necessarily local) with
residue field 𝑘. Then

𝐻𝑛(𝐿/𝐾) = 𝐻𝑛(𝑙/𝑘)×𝐻𝑛(𝐺(𝐿/𝐾),Q/Z).

Indeed, Proposition 27.1.2 and Theorem 26.26.1.2 still give

𝐻𝑟
𝑇 (𝐺,𝑈

(𝑖)
𝐿 /𝑈

(𝑖+1)
𝐿 ) ∼= 𝐻𝑟

𝑇 (𝐺, 𝑙
+) = 0

for 𝑖 ≥ 1. This gives 𝐻𝑟
𝑇 (𝐺,𝑈

(1)
𝐿 ) = 0 by Lemma 27.1.4. From the long exact sequence

associated to
1→ 𝑈

(1)
𝐿 → 𝑈𝐿 → 𝑈𝐿/𝑈

(1)
𝐿
∼= 𝑙× → 1

we get
𝐻𝑛(𝐿/𝐾) ∼= 𝐻𝑛(𝐺,𝑈𝐿)×𝐻𝑛(𝐺,Z) = 𝐻𝑛(𝐺, 𝑙×)×𝐻𝑛(𝐺,Z).

In the case of a local field, 𝑙 was finite so 𝐻𝑛(𝐺, 𝑙×) = 1.

2.2 Compatibility of the invariant maps

We show that the invariant maps are compatible, in the following sense.
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Theorem 27.2.3: thm:inv-compatible Let 𝐿/𝐾 be a Galois extension of local fields, and 𝑛 = [𝐿 :
𝐾]. Then

inv𝐾ur/𝐿 ∘Res𝐾/𝐿 = 𝑛 inv𝐾ur/𝐾

Proof. To do this we have to unravel all those steps we took to define inv𝐾ur/𝐾 . . . We first
prove this for two special cases.

1. 𝐿/𝐾 is unramified. Let 𝐺 = 𝐺(𝐾ur/𝐾) and 𝑆 = 𝐺(𝐾ur/𝐿). We claim the following
commutes.

𝐻2(𝐾ur/𝐾) //

Res
��

𝐻2(𝐺,Z)

Res
��

𝐻1(𝐺,Q/Z)oo
𝛾

//

Res
��

Q/Z
𝑛

��

𝐻2(𝐾ur/𝐿) // 𝐻2(𝑆,Z) 𝐻1(𝑆,Q/Z)oo
𝛾

// Q/Z.

For the squares involving Res, this follows from naturality of Res. For the last square,
identify 𝐻1(𝐺,Q/Z) = Hom(𝐺,Q/Z); Res becomes simply restriction of homomor-
phisms. Recall that 𝛾 was defined taking the Frobenius Frob(𝐾ur/𝐾) ∈ 𝐺(𝐾ur/𝐾)
and sending 𝑓 ∈ 𝐻1(𝐺,Q/Z) = Hom(𝐺,Q/Z) to 𝑓(𝜎), and we have

Frob𝑛𝐾ur/𝐾 = Frob𝐾ur/𝐿

by Proposition 24.24.1.4.

2. 𝐿/𝐾 is totally ramified. Note that 𝐺 = 𝐺(𝐾ur/𝐾) = 𝐺(𝐾ur𝐿/𝐿) = 𝐺(𝐿ur/𝐿) in
this case, from the description of 𝐾ur in Theorem 21.21.2.6. We show the following
commutes:

𝐻2(𝐾ur/𝐾) //

Res
��

𝐻2(𝐺,Z)
𝑛

��

𝐻1(𝐺,Q/Z)oo
𝛾

//

𝑛

��

Q/Z
𝑛

��

𝐻2(𝐾ur/𝐿) // 𝐻2(𝐺,Z) 𝐻1(𝐺,Q/Z)oo
𝛾

// Q/Z.

The first square commutes by commutativity of

𝐾ur× 𝑣𝐾 //� _

��

Z
𝑛
��

𝐿ur× 𝑣𝐿 // Z.

(and of course, naturality of cohomology). Here 𝑣𝐾 and 𝑣𝐿 are the valuation maps, i.e.
the projections 𝐾× ∼= 𝑈𝐾 × Z→ Z and 𝐿× ∼= 𝑈𝐿 × Z→ Z.

The general case follows by considering 𝐿/𝐿𝐼𝐿/𝐾 (totally ramified) and 𝐿𝐼𝐿/𝐾/𝐾 (unramified).
(See Theorem 15.15.7.2.)

334



Number Theory, S27.3

3 𝐻2(𝐾/𝐾) ∼= 𝐻2(𝐾ur/𝐾)

We prove the following.

Theorem 27.3.1: hkur The inclusion (inflation) map

𝐻2(𝐾ur/𝐾)→ 𝐻2(𝐾/𝐾)

is an isomorphism.

For short we write 𝐻2(𝐾) := 𝐻2(𝐾/𝐾).

3.1 First proof (Brauer group)

First proof. By Proposition 26.26.5.4 there is an exact sequence

0→ 𝐻2(𝐾ur/𝐾)→ 𝐻2(𝐾)→ 𝐻2(𝐾ur) =���
�:0

Br𝐾ur .

The last term is zero by Theorem 27.3.2 below. Thus we get 𝐻2(𝐾ur/𝐾) ∼= 𝐻2(𝐾), as
needed.

Theorem 27.3.2: brkur0 Let 𝐾 be a local field. Then Br𝐾ur = 0.

We need two lemmas.

Lemma 27.3.3: lem:brkur0-1 Suppose 𝐷 is a central division algebra of rank 𝑛2 > 1 over a
field 𝐾, and the residue field 𝑘 is perfect. Then there exists a commutative subfield 𝐿 of 𝐷
properly containing 𝐾, unramified over 𝐾.

Lemma 27.3.4: lem:brkur0-2 Keep the same hypotheses as Lemma 27.3.3. There is a subfield
of 𝐷 of degree 𝑛 unramified over 𝐾.

Note this is a maximal subfield by Corollary 26.4.13.

Proof of Lemma 27.3.3. Suppose by way of contradiction that every commutative subfield
𝐿 of 𝐷 properly containing 𝐾 is ramified. Then the extension of residue fields 𝑙/𝑘 must be
trivial (see Theorem 15.15.7.2). Let 𝑎 ∈ 𝐷 be integral and 𝜋 ∈ 𝐷 be a uniformizer for 𝐷.
(See Proposition 26.26.4.15.) Since 𝑙 = 𝑘, there exists 𝑏 ∈ 𝐾 such that 𝑏 ≡ 𝑎 (mod 𝜋), and
we can write 𝑎 = 𝑏+ 𝜋𝑏1 for some 𝑏1 ∈ O𝐷, where O𝐷 is the ring of integers in 𝐷. Iterating
this with 𝑏1, we find

𝑎 = 𝑏+ 𝜋𝑏1 + · · ·+ 𝜋𝑛−1𝑏𝑛−1 + 𝜋𝑛𝑏𝑛

where 𝑏1, . . . , 𝑏𝑛−1 ∈ O𝐾 and 𝑏𝑛 ∈ O𝐷. Thus 𝑎 is in the closure of 𝐾(𝜋). But 𝐾(𝜋) is closed
(it is a finite-dimensional vector space over 𝐾), so 𝑎 ∈ 𝐾(𝜋), i.e. 𝐷 = 𝐾(𝜋) and 𝐷 is
commutative, a contradiction.
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Proof of Lemma 27.3.4. Induct on 𝑛. The case 𝑛 = 1 is clear. Let 𝑛 ≥ 2. By Lemma 27.3.3
there exists a proper unramified extension 𝐾 ′/𝐾 inside 𝐷. Let 𝐷′ = 𝐶(𝐾 ′). Since 𝐷′ ⊆ 𝐷,
𝐷′ must be a division algebra (a finite dimensional integral domain must contain inverses).
Let its center be𝐾 ′′. The maximal commutative subfield of𝐷′ then has dimension

È
[𝐷′ : 𝐾 ′′]

over 𝐾 ′′, or dimension
È
[𝐷′ : 𝐾 ′′][𝐾 ′′ : 𝐾] =

È
[𝐷′ : 𝐾][𝐾 ′′ : 𝐾] over 𝐾. This is at most 𝑛,

since the field is also contained in 𝐷. But
È
[𝐷′ : 𝐾][𝐾 ′ : 𝐾] = 𝑛 by the double centralizer

theorem 26.26.4.11, so we must have 𝐾 ′′ = 𝐾. Thus 𝐷′ is a division algebra with center
𝐾 ′. Its degree over 𝐾 ′ is less than 𝑛2, so by the induction hypothesis, 𝐷′ has a maximal
commutative subfield 𝐿 containing 𝐾 ′, of degree

È
[𝐷′ : 𝐾 ′], and unramified over 𝐾 ′, hence

over 𝐾. We calculate

[𝐿 : 𝐾] = [𝐿 : 𝐾 ′][𝐾 ′ : 𝐾] =
È
[𝐷′ : 𝐾 ′][𝐾 ′ : 𝐾] =

È
[𝐷′ : 𝐾][𝐾 ′ : 𝐾] =

È
[𝐷 : 𝐾]

where we used Theorem 26.26.4.11 in the last step. This finishes the induction step.

Proof of Theorem 27.3.2. Suppose 𝐷 is a central division algebra over 𝐾ur of rank 𝑛2. Then
lemma 2 furnishes a subfield of 𝐾ur of degree 𝑛, unramified over 𝐾ur. Hence 𝑛 = 1, and 𝐷
is trivial. Thus Br𝐾ur = 0. This proves Theorem 27.3.2 and hence Theorem 27.3.1.

3.2 Second proof (Herbrand quotient calculation)

3.2.1 Herbrand quotient calculation

We first need the following lemma.

Lemma 27.3.5: subgroup-trivial-cohom Given a local field 𝐿, there exists an open subgroup 𝑉 of
𝑈𝐿 with trivial cohomology, i.e. 𝐻𝑞(𝐺, 𝑉 ) = 0 for all 𝑞.

Proof. The idea is to compare a multiplicative 𝐺-module 𝑉 with an additive 𝐺-module (more
accurately, compare the filtration of 𝑉 ), and use the same argument as in Theorem 1.26.1.2.3

By the normal basis theorem, 𝐿+ has a normal basis {𝜎(𝛼) : 𝜎 ∈ 𝐺}, i.e. it is free over
𝐾[𝐺]. Let 𝐴 =

∑︀
𝜎∈𝐺 O𝐾𝜎(𝛼).

4 By multiplying 𝛼 by a power of 𝜋𝐾 we may assume that
𝛼 ∈ O𝐿. Suppose that

𝜋𝑛𝐾O𝐿 ⊆ 𝐴 ⊆ O𝐿.

Let 𝑀 = 𝜋𝑛+1
𝐾 𝐴, 𝑉 = 1 +𝑀 and 𝑉 (𝑖) = 1 + 𝜋𝑖𝐾𝑀 . Note that

𝑀 ·𝑀 ⊆ 𝜋2𝑛+2
𝐾 𝐴 · 𝐴 ⊆ 𝜋𝐾𝜋

𝑛+1
𝐾 𝜋𝑛𝐾O𝐿 ⊆ 𝜋𝐾𝜋

𝑛+1
𝐾 𝐴 ⊆ 𝜋𝐾𝑀.

3If char(𝐿) = 0 there is a faster proof: Note that 𝑒𝑥 is a topological isomorphism from a neighborhood of
0 in the additive group 𝐿 to a neighborhood of 1 in the multiplicative group O𝐿. Moreover, it preserves the
action of 𝐺 because the fact that 𝐺 acts continuously on 𝐿 gives

𝑒𝜎𝑥 =
∞∑︁

𝑛=0

(𝜎𝑥)𝑛

𝑛!
=

∞∑︁
𝑛=0

𝜎(𝑥𝑛)

𝑛!
= 𝜎𝑒𝑥.

Now Theorem 1.26.1.2 applies directly.
4Warning: 𝐴 is a O𝐾 [𝐺]-module; we don’t know it is an O𝐿-module.
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This shows that

1. 𝑉 is a subgroup: Indeed, (1 +𝑀)(1 +𝑀) ⊆ 1 +𝑀 +𝑀 ·𝑀 ⊆ 1 +𝑀 by the above.

2. 𝑉 𝑖/𝑉 𝑖+1 ∼= 𝐴/𝜋𝐾𝐴 as 𝐺-modules. Indeed, if 𝑚1,𝑚2 ∈ 𝑀 , then for some 𝑚3 ∈ 𝑀 , we
have

(1+𝜋𝑖𝐾𝑚1)(1+𝜋
𝑖
𝐾𝑚2) = 1+𝜋𝑖𝐾(𝑚1+𝑚2)+𝜋

2𝑖
𝐾𝜋𝐾𝑚3 ≡ 1+𝜋𝑖𝐾(𝑚1+𝑚2) (mod 𝜋𝑖+1

𝐾 𝑀).

Hence

𝐻𝑞(𝐺, 𝑉 (𝑖)/𝑉 (𝑖+1)) = 𝐻𝑞(𝐺,𝑀/𝜋𝐾𝑀) = 0

for each 𝑞, since 𝑀/𝜋𝐾𝑀 is an induced module over 𝐺 (and has trivial cohomology by
Shapiro’s Lemma 25.8.1). (By construction 𝑀/𝜋𝐾𝑀 = Ind𝐺[(𝜋𝑛+1

𝐾 𝛼O𝐾)/(𝜋
𝑛+2
𝐾 𝛼O𝐾)].)

Lemma 27.1.4 applied to 𝑉 finishes the proof.

Proposition 27.3.6: herbrand-units-l Suppose 𝐿/𝐾 is cyclic of degree 𝑛. Then

ℎ(𝑈𝐿) = 1.

ℎ(𝐿×) = 𝑛.

Proof. Choose 𝑉 as in Lemma 27.3.5. Since 𝑉 is open, 𝑈𝐿/𝑉 is finite. By Proposi-
tion 25.25.12.4(1), ℎ(𝑈𝐿/𝑉 ) = 1. Hence

ℎ(𝑈𝐿) = ℎ(𝑉 )ℎ(𝑈𝐿/𝑉 ) = 1.

By Proposition 25.25.12.4(3), ℎ(Z) = |𝐺| = 𝑛. Since 𝐿× = 𝑈𝐿 × 𝜋Z
𝐿 we get

ℎ(𝐿×) = ℎ(𝑈𝐿)ℎ(Z) = 𝑛.

Theorem 27.3.7 (Class field axiom for local class field theory): thm:cfa-lcft Let 𝐿/𝐾 be a cyclic
extension of degree 𝑛. Then

|𝐻1(𝐿/𝐾)| = 1

|𝐻2(𝐿/𝐾)| = 𝑛.

Proof. The first follows directly from Hilbert’s Theorem 90 (26.1.1). For the second, we have
|𝐻2(𝐿/𝐾)| = ℎ(𝐿×)|𝐻1(𝐿/𝐾)| = 𝑛 using Proposition 27.3.6.

We want to show that |𝐻2(𝐿/𝐾)| = 𝑛 for all Galois extensions 𝐿/𝐾, and in fact𝐻2(𝐿/𝐾)
is cyclic of order 𝑛. We proceed in 2 steps.
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3.2.2 First inequality

We show that for all Galois extensions 𝐿/𝐾, |𝐻2(𝐿/𝐾)| ≥ [𝐿 : 𝐾]. In fact, we show the
following.

Lemma 27.3.8: lem:local-1eq Let 𝐿/𝐾 be a Galois extension of local fields of degree 𝑛. Then
𝐻2(𝐿/𝐾) contains a subgroup canonically isomorphic to 1

𝑛
Z/Z.

Proof. We prove this using Theorem 27.2.3, which relates the invariant maps on 𝐾ur/𝐾 and
𝐿ur/𝐿. By Theorem 26.26.5.4, we have the exact sequence 0 → 𝐻2(𝐿/𝐾) → 𝐻2(𝐾) →
𝐻2(𝐿). Inflation and restriction commute by functoriality of change of group, so we have
the commutative diagram with exact columns

eq:local-1eq 0

��

0

��

𝐻2(𝐿/𝐾)

��

ker(Res)oo

��

𝐻2(𝐾)

Res
��

𝐻2(𝐾ur/𝐾)? _Infoo

Res
��

𝐻2(𝐿) 𝐻2(𝐾ur/𝐿).? _Infoo

(27.3)

By Theorem 27.2.3, the map 𝐻2(𝐾ur/𝐾) → 𝐻2(𝐿ur/𝐿) corresponds to the multiplication-
by-[𝐿 : 𝐾] map after identifying both sides with a subgroup of Q/Z through the respective
invariant maps. Hence ker(Res) = 1

𝑛
Z/Z. The top map exists and is an injection because

the other two are (4-lemma). Hence 1
𝑛
Z/Z →˓ 𝐻2(𝐿/𝐾), as needed.

3.2.3 Second inequality

Next we show |𝐻2(𝐿/𝐾)| ≤ [𝐿 : 𝐾], so |𝐻2(𝐿/𝐾)| = [𝐿 : 𝐾].

Lemma 27.3.9: lem:local-2ineq Let 𝐿/𝐾 be a Galois extension of local fields of degree 𝑛. Then
𝐻2(𝐿/𝐾) ∼= 1

𝑛
Z/Z.

Proof. We already know that |𝐻2(𝐿/𝐾)| = [𝐿 : 𝐾] for 𝐿/𝐾 cyclic (Theorem 27.3.7). We
prove that |𝐻2(𝐿/𝐾)| = [𝐿 : 𝐾] by induction on the degree.

By Corollary 22.22.4.12, 𝐺(𝐿/𝐾) is solvable. Thus, if 𝐺(𝐿/𝐾) is not cyclic, it has a
normal subgroup 𝐺(𝐿/𝐾 ′). By Theorem 26.26.5.4 we have an exact sequence

0→ 𝐻2(𝐾 ′/𝐾)→ 𝐻2(𝐿/𝐾)→ 𝐻2(𝐿/𝐾 ′)

so
|𝐻2(𝐿/𝐾)| ≤ |𝐻2(𝐾 ′/𝐾)| · |𝐻2(𝐿/𝐾 ′)| = [𝐾 ′ : 𝐾][𝐿 : 𝐾 ′] = [𝐿 : 𝐾].

By Lemma 27.3.8, equality holds.
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3.2.4 Finishing the proof

Second proof of Theorem 27.3.1. Take any element 𝑎 ∈ 𝐻2(𝐾/𝐾); it is in 𝐻2(𝐿/𝐾) for
some finite Galois 𝐿/𝐾. The top injection in (27.3) is an isomorphism by Lemma 27.3.9,
and we get 𝑎 ∈ 𝐻2(𝐾ur/𝐾).

4 Class formations

sec:class-formations The preceding sections show that

(𝐺(𝐾/𝐾), {𝐺(𝐿/𝐾) : 𝐿/𝐾 finite Galois} , 𝐾)

is a class formation. That is, it satisfies the basic axioms that allow us to obtain the
conclusions of class field theory. With the abstraction of class formations, when we prove
global class field theory, we only have to verify the axioms and we will get the desired
conclusions in the same way as in local class field theory.

4.1 Class formations in the abstract

Definition 27.4.1: An abstract Galois group is a group 𝐺 with a family of subgroups
of finite index {𝐺𝐿}𝐿∈𝑋 such that

1. (Closure under intersection) If 𝐿1, 𝐿2 ∈ 𝑋, then there exists 𝑀 such that

𝐺𝐿1 ∩𝐺𝐿2 = 𝐺𝑀 .

2. (Closure under superset) If 𝐺𝐿 ⊆ 𝐺′ ⊆ 𝐺 are subgroups, then 𝐺′ = 𝐺𝐾′ for some 𝐾 ′.

3. (Closure under conjugation) For every 𝑠 ∈ 𝐺 and 𝐿 ∈ 𝑋 there exists 𝐿′ so that

𝑠𝐺𝐿𝑠
−1 = 𝐺𝐿′ .

This definition is motivated by the fact that these are the key properties of Galois groups.

Proposition 27.4.2: A topological Galois group 𝐺(Ω/𝐾0) with all its closed subgroups, is
an abstract Galois group.

Proof. By the fundamental theorem of infinite Galois theory 12.12.8.4, the closed subgroups
of 𝐺(Ω/𝐾0) are exactly those in the form 𝐺(Ω/𝐾) with 𝐾0 ⊆ 𝐾 ⊆ Ω. The above properties
correspond to the following facts from Galois theory.

1. 𝐺(Ω/𝐾) ∩𝐺(Ω/𝐿) = 𝐺(Ω/𝐾𝐿).

2. The subgroups of 𝐺(Ω/𝐾0) containing 𝐺(Ω/𝐿) correspond to intermediate extensions
between 𝐾0 and 𝐿.
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3. 𝑠𝐺(Ω/𝐾)𝑠−1 = 𝐺(Ω/𝑠𝐾).

We transfer some terminology about Galois groups to the abstract case.

Definition 27.4.3: Let (𝐺, {𝐺𝐿}𝐿∈𝑋) be an abstract Galois group. The elements of 𝑋 are
called fields. The field 𝐾0 with 𝐺𝐾0 = 𝐺 is called the basefield. For 𝐺𝑀 ⊆ 𝐺𝐿, define [𝑀 : 𝐿]
to be [𝐺𝐿 : 𝐺𝑀 ]; we say 𝑀/𝐿 is a Galois extension if 𝐺𝑀 E 𝐺𝐿, and write

𝐺(𝑀/𝐿) = 𝐺𝐿/𝐺𝑀

(called the “Galois group” of 𝑀/𝐿). We say 𝑀/𝐿 is abelian, etc. if 𝐺(𝑀/𝐿) is abelian, etc.
The field𝑀 such that 𝐺𝐿1∩𝐺𝐿2 = 𝐺𝑀 is called the composite of 𝐿1 and 𝐿2, and denoted

by 𝐿1𝐿2; the field 𝐿′ such that 𝑠𝐺𝐿𝑠
−1 = 𝐺𝐿′ is denoted by 𝑠𝐿.

Note every extension 𝑀/𝐿 is contained in a Galois extension: Since [𝐺𝐿 : 𝐺𝑀 ] is finite
𝐺𝑀 has finitely many conjugates 𝑠𝐺𝑀𝑠

−1 in 𝐺𝐿; by the axioms 𝐺𝑀 ′ =
⋂︀
𝑠 𝑠𝐺𝐿𝑠

−1 for some
𝑀 ′, called the Galois closure of 𝑀/𝐿.

Definition 27.4.4: A formation is a triple (𝐺, {𝐺𝐾}𝐾∈𝑋 , 𝐴) where (𝐺, {𝐺𝐾}𝐾∈𝑋) is an
abstract Galois group and 𝐴 is a discrete topological 𝐺-module (see Definition 25.25.14.1).
Let 𝐴𝐾 := 𝐴𝐺𝐾 .

Define the norm Nm𝐿/𝐾 : 𝐴𝐿 → 𝐴𝐾 by letting Nm𝐿/𝐾(𝑎) =
∏︀
𝜎∈𝐺(𝐿′/𝐾)/𝐺(𝐿′/𝐾) 𝜎(𝑎) for

any 𝐿′ Galois over 𝐾.

For 𝐿/𝐾 Galois, we define 𝐻𝑛(𝐿/𝐾) := 𝐻𝑛(𝐺(𝐿/𝐾), 𝐴𝐿). We can define inflation,
restriction, and corestriction maps in the natural way, with Res𝐾/𝐿 = Res𝐺𝐾/𝐺𝐿

, and so
forth.

Definition 27.4.5: def:class-formation A class formation is a formation (𝐺, {𝐺𝐾}𝐾∈𝑋 , 𝐴) with
a homomorphism inv𝐿/𝐾 : 𝐻2(𝐿/𝐾) → Q/Z for each Galois extension 𝐿/𝐾, such that the
following hold.

1. 𝐻1(𝐿/𝐾) = 0 for every cyclic extension of prime degree.

2. inv𝐿/𝐾 is an isomorphism from 𝐻2(𝐿/𝐾) to 1
[𝐿:𝐾]

Z/Z.

3. (Compatibility under inflation) For any finite extension 𝑀/𝐿,

inv𝑀/𝐾 ∘ Inf𝑀/𝐿 = inv𝐿/𝐾 .

Hence we can define inv𝐾 : lim−→𝐿
𝐻2(𝐿/𝐾)→ Q/Z. (This axiom implies that inflations

are injective on 𝐻2, so we can think of 𝐻(𝐾) := lim−→𝐿
𝐻2(𝐿/𝐾) as

⋃︀
𝐿𝐻

2(𝐿/𝐾).)

4. (Compatibility with restriction) For any finite Galois extension 𝐿/𝐾,

inv𝐿 ∘Res𝐾/𝐿 = [𝐿 : 𝐾] inv𝐾 .
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Define the fundamental unit of 𝐿/𝐾 to be

𝑢𝐿/𝐾 = inv−1
𝐾

�
1

[𝐿 : 𝐾]

�
.

Proposition 27.4.6: Assume a formation satisfies axiom 1. Then for every Galois extension
𝐿/𝐾,

𝐻1(𝐿/𝐾) = 0.

Proof. First we show this when [𝐿 : 𝐾] is a prime power 𝑝𝑛. Induct on the degree. The base
case is given. Every 𝑝-group has a subgroup of index 𝑝, so there is 𝐾 ⊂ 𝐾 ′ ⊂ 𝐿 such that
𝐺(𝐾 ′/𝐾) has order 𝑝. By the inflation-restriction exact sequence 25.25.11.10, we get

0→����
���:0

𝐻1(𝐾 ′/𝐾)
Inf−→ 𝐻1(𝐾/𝐿)

Res−−→����
��:0

𝐻1(𝐿/𝐾 ′);

the first and last terms are 0 by axiom 1 and by the induction hypothesis. So 𝐻1(𝐾/𝐿) = 0.
For general 𝐿/𝐾, this shows 𝐻1(𝐺(𝐿/𝐾)𝑝, 𝐴𝐿) = 0, so the result follows from Corol-

lary 25.25.11.8.

Proposition 27.4.7: Assume a formation satisfies axiom 2. Transferring the action of Res,
Cor, and Inf to the subgroups of Q/Z, we get the following diagram:

𝑀

[𝑀 :𝐿]

𝐿

[𝐿:𝐾]

𝐻2(𝑀/𝐿)
inv𝐿 //

s S

Cor𝐿/𝐾

��

1
[𝑀 :𝐿]

Z/Z
t T

𝑖

��

𝐿

𝐾 𝐻2(𝑀/𝐾)
inv𝐾 //

Res𝐾/𝐿

YYYY

1
[𝑀 :𝐾]

Z/Z

[𝐿:𝐾]

WWWW

𝐾 𝐻2(𝐿/𝐾)
inv𝐾 //

dD

Inf𝑀/𝐿

ll
1

[𝐿:𝐾]
Z/Z

dD

𝑖

ll

(Note Cor𝐿/𝐾 ∘Res𝐾/𝐿 = [𝐿 : 𝐾].) Moreover (passing to the limit), the following hold.

1. For every extension 𝐿/𝐾,

Res𝐾/𝐿 : 𝐻2(𝐾)� 𝐻2(𝐿)

is surjective.

2. For every extension 𝐿/𝐾,

Cor𝐿/𝐾 : 𝐻2(𝐿) →˓ 𝐻2(𝐾)

is injective, and
inv𝐾 ∘Cor𝐿/𝐾 = inv𝐿 .

341



Number Theory, S27.4

3. For every 𝑠 ∈ 𝐺, letting 𝑠* : 𝐻2(𝐾)→ 𝐻2(𝑠𝐾),

inv𝑠𝐾 ∘𝑠* = inv𝐾 .

Proof. The surjectivity of Res𝐾/𝐿 in the diagram comes directly from the injectivity of inv𝐾
and inv𝐿 ∘Res𝐾/𝐿 = [𝐿 : 𝐾] inv𝐾 .

For the action of Cor𝐿/𝐾 , note

inv𝐾 ∘Cor𝐿/𝐾 ∘Res𝐾/𝐿 = inv𝐾 ∘[𝐿 : 𝐾] = inv𝐿 ∘Res𝐾/𝐿

where the first follows from Theorem 25.25.11.5 and the second from the axiom. Surjectivity
of Res𝐾/𝐿 gives inv𝐾 ∘Cor𝐿/𝐾 = inv𝐿, as needed.

Items 1 and 2 now follow from taking the direct limit.
For 3, let the basefield be 𝐾0; note the map 𝑠* : 𝐻2(𝐾0) → 𝐻2(𝑠𝐾0) = 𝐻2(𝐾0) is the

identity by Proposition 25.25.11.3, so inv𝑠𝐾0 ∘𝑠* = inv𝐾0 . For arbitrary 𝑥 ∈ 𝐻2(𝐾), by
surjectivity of Res𝐾/𝐿 we can write 𝑥 = Res𝐾/𝐿(𝑥0). Since Res and 𝑠* commute (transport
of structure),

inv𝑠𝐾(𝑠
*𝑥) = inv𝑠𝐾(𝑠

*Res𝐾0/𝐾 𝑥0) = inv𝑠𝐾 Res𝑠𝐾/𝑠𝐾0(𝑠
*𝑥0) = [𝑠𝐾 : 𝑠𝐾0] inv𝑠𝐾0(𝑥0) = inv𝐾(𝑥).

The reciprocity law follows from the properties of class formations.

Theorem 27.4.8 (Abstract reciprocity law): thm:abstract-reciprocity Let (𝐺, {𝐺𝐾}𝐾∈𝑋 , {𝐴𝐾}, inv𝐿/𝐾)
be a class formation. Then there is a isomorphism

𝐻−2
𝑇 (𝐺(𝐿/𝐾),Z)

𝑢𝐿/𝐾∪∙
∼=

// 𝐻0
𝑇 (𝐺,𝐴𝐿)

𝐺(𝐿/𝐾)ab 𝐴𝐾/Nm𝐿/𝐾(𝐴𝐿)

Here Nm𝐿/𝐾 means 𝑁𝐺𝐾/𝐺𝐿
. Denote the reverse map by 𝜑𝐿/𝐾 .

Proof. The identifications are from Theorem 25.25.8.3 and Definition 25.25.9.2. Axioms 1
and 2 for class formation give that the two conditions of Tate’s Theorem 25.25.13.1 are
satisfied.

This map is hard to calculate directly because cup products on negative Tate cohomology
are hard to deal with. The following helps us by transferring the cup products to nonnegative
Tate groups.

Theorem 27.4.9: thm:calculate-local-artin Keep the above hypothesis. Then for any 𝜒 ∈ Homcont(𝐺(𝐿/𝐾),Q/Z) =
𝐻1(𝐺,Q/Z) and 𝑎 ∈ 𝐴𝐾 ,

𝜒(𝜑𝐿/𝐾(𝑎)) = inv𝐾(𝑎 ∪ 𝛿𝜒).
Here 𝑎 denotes the image of 𝑎 in 𝐻0

𝑇 (𝐺(𝐿/𝐾), 𝐴𝐿) = 𝐴𝐿/Nm𝐿/𝐾 𝐴𝐿, and 𝛿 is the diagonal
morphism corresponding to the exact sequence 0→ Z→ Q→ Q/Z→ 0.
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Note this characterizes the reciprocity map since knowing the image of an element of an
abelian group under all homomorphisms to Q/Z is equivalent to knowing the element itself.5

Proof. Suppose 𝜒(𝜑𝐿/𝐾(𝑎)) =
𝑟
𝑛
.

By the definition of the Artin map as the inverse of 𝑢𝐿/𝐾 ∪ ∙, we have

𝑎 = 𝑢𝐿/𝐾 ∪ 𝜑𝐿/𝐾(𝑎).

We now calculate the following (for easy reference, we note which cohomology groups the
elements are in).

𝑎⏟ ⏞ 
0

∪ 𝛿𝜒⏟ ⏞ 
2

= [𝑢𝐿/𝐾⏟  ⏞  
2

∪𝜑𝐿/𝐾(𝑎)⏟  ⏞  
−2

] ∪ 𝛿𝜒⏟ ⏞ 
2

= 𝑢𝐿/𝐾⏟  ⏞  
2

∪[𝜑𝐿/𝐾(𝑎)⏟  ⏞  
−2

∪ 𝛿𝜒⏟ ⏞ 
2

] associativity

= 𝑢𝐿/𝐾⏟  ⏞  
2

∪[𝛿(𝜑𝐿/𝐾(𝑎)⏟  ⏞  
−2

∪ 𝜒⏟ ⏞ 
1

)] Theorem 25.25.10.1(4)

= 𝑢𝐿/𝐾⏟  ⏞  
2

∪ 𝛿(𝜒(𝜑𝐿/𝐾(𝑎)))⏟  ⏞  
0

Theorem 25.25.10.3(3)

= 𝑢𝐿/𝐾⏟  ⏞  
2

∪ 𝛿
� 𝑟
𝑛

�⏟  ⏞  
0

eq:calc-artin1 = 𝑢𝐿/𝐾⏟  ⏞  
2

∪ 𝑟⏟ ⏞ 
0

(27.4)

= 𝑟𝑢𝐿/𝐾 Theorem 25.25.10.3(1)

inv𝐾(𝑎 ∪ 𝛿𝜒) =
𝑟

𝑛
= 𝜒(𝜑𝐿/𝐾(𝑎)).

In (27.4), we use the map in the snake lemma to calculate 𝛿
(︀
𝑟
𝑛

�
: it pulls back to 𝑟

𝑛
∈ Q ∼=

𝐻−1
𝑇 (𝐺,Q); the norm maps it to 𝑟 = 𝑛 · 𝑟

𝑛
∈ Q ∼= 𝐻0

𝑇 (𝐺,Q) ⊇ 𝐻0
𝑇 (𝐺,Z). In the second-

to-last line, we note that ∙ ∪ 𝑟 is simply multiplication by 𝑟 in dimension 0, so Theorem
25.25.10.3(1) tells us it is multiplication by 𝑟 in dimension 2 as well.

We need several naturality properties of the reciprocity map.

Theorem 27.4.10: thm:reciprocity-natural Let 𝑀/𝐿/𝐾 be Galois extensions. The following are

5It may seem odd to calculate 𝜒 ∘ 𝜑𝐿/𝐾 instead of 𝜑𝐿/𝐾 directly but keep in mind that for general 𝐿/𝐾,
Frob𝐿/𝐾(p) is only defined to be a conjugacy class, and it is natural to look at the action of characters on
conjugacy classes because characters are class functions.
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commutative.

𝐴𝐿
Cor0=Nm𝐿/𝐾

//

𝜑𝑀/𝐿

��

𝐴𝐾

𝜑𝑀/𝐾

��

𝐴𝐾
� � Res0=𝑖 //

𝜑𝑀/𝐾

��

𝐴𝐿

𝜑𝑀/𝐿

��

𝐺(𝑀/𝐿)ab Cor−2

natural
// 𝐺(𝑀/𝐾)ab 𝐺(𝑀/𝐾)abRes−2=𝑉// 𝐺(𝑀/𝐿)ab

𝐴𝐾

𝜑𝐿/𝐾

��

𝑠* // 𝐴𝑠𝐾

𝜑𝑠𝐿/𝑠𝐾

��

𝐴𝐾

𝜑𝑀/𝐾

��

𝜑𝐿/𝐾

''

𝐺(𝐿/𝐾)ab 𝑠* // 𝐺(𝑠𝐿/𝑠𝐾) 𝐺(𝑀/𝐾)ab // 𝐺(𝐿/𝐾)ab.

Proof. First note that the maps in the first diagram are corestrictions and the maps in the
second diagram (on the right) are restrictions by Proposition 25.11.4.

From axiom 4 of Proposition 27.4.5, we have

Res𝐾/𝐿(𝑢𝑀/𝐾) = 𝑢𝑀/𝐿.

We will use Proposition 25.25.11.9, about the commutativity of cup products with re-
striction and corestriction. The first diagram follows from

Cor0𝐿/𝐾(𝑥 ∪ 𝑢𝑀/𝐿) = Cor0𝐿/𝐾(𝑥 ∪ Res𝐾/𝐿(𝑢𝑀/𝐾)) = Cor2𝐿/𝐾(𝑥) ∪ 𝑢𝑀/𝐾 , 𝑥 ∈ 𝐺(𝑀/𝐿)ab.

The second diagram follows from

Res0𝐾/𝐿(𝑥 ∪ 𝑢𝑀/𝐾) = Res−2
𝐾/𝐿(𝑥) ∪ 𝑢𝑀/𝐿.

The third diagram follows from the fact that the map 𝑠* : 𝐴𝐿→ 𝐴𝑠𝐾 takes 𝑢𝐿/𝐾 to 𝑢𝑠𝐿/𝑠𝐾 .
For the last diagram, let 𝜒 be a character on 𝐺(𝐿/𝐾), which gives a character 𝜒𝑀/𝐾 on

𝐺(𝑀/𝐾) using the projection 𝐺(𝑀/𝐾) → 𝐺(𝐿/𝐾). By Theorem 27.4.9 we have, for any
character 𝜒,

𝜒𝑀/𝐾(𝜑𝑀/𝐾(𝑎)) = inv𝐾(𝑎𝑀/𝐾 ∪ 𝛿𝜒𝑀/𝐾) = inv𝐾(𝑎𝐿/𝐾 ∪ 𝛿𝜒) = 𝜒(𝜑𝐿/𝐾(𝑎))

where 𝑎𝑀/𝐾 , 𝑎𝐿/𝐾 are the images in 𝐻0
𝑇 (𝑀/𝐾) and 𝐻0

𝑇 (𝐿/𝐾), respectively.

The fourth diagram means that the maps 𝜑𝐿/𝐾 are compatible, so we can define

𝜑𝐾 = lim←−
𝐿

𝜑𝐿/𝐾 : 𝐴→ 𝐺ab.

(Note 𝐴 =
⋃︀
𝐴𝐻 .)

Theorem 27.4.11 (Norm limitation): norm-limitation Let (𝐺, {𝐺𝐾}, {𝐴𝐾}, inv𝐿/𝐾) be a class
formation. Let 𝐿/𝐾 be an extension and 𝐸/𝐾 be the largest abelian subextension. Then

Nm𝐿/𝐾 𝐴𝐿 = Nm𝐸/𝐾 𝐴𝐸.
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Proof. Let 𝐿gal be the Galois closure of 𝐿. Transitivity of norms (just look at the definition
of norm...) gives us ⊆. Conversely, suppose 𝑎 ∈ Nm𝐸/𝐾 𝐴𝐸. Let 𝐺 = 𝐺(𝐿gal/𝐾) and
𝐻 = 𝐺(𝐿′/𝐿). Since 𝐸 is the largest abelian subextension of 𝐿gal abelian over 𝐾 and
contained in 𝐿, the subgroup of 𝐺 fixing it is 𝐺′𝐻. We have the commutative diagram

𝐴𝐿
𝜑
𝐿gal/𝐿

//

Nm𝐿/𝐾

��

𝐻/𝐻 ′

𝑖
��

𝐴𝐾
𝜑
𝐿gal/𝐾

//

𝜑𝐸/𝐾 ##

𝐺/𝐺′

����

𝐺/𝐺′𝐻

where 𝑖 is induced by inclusion. Because 𝑎 ∈ Nm𝐸/𝐾 𝐴𝐸, 𝜑𝐸/𝐾(𝑎) = 1 in 𝐺/𝐺′𝐻. Thus
𝜑𝐿gal/𝐾(𝑎) ∈ 𝐺′𝐻/𝐺′, and 𝜑𝐿gal/𝐾(𝑎) is in the image of 𝑖 and hence 𝑖 ∘𝜙𝐿′/𝐿, and there exists
𝑏 ∈ 𝐴𝐿 such that 𝜑𝐿gal/𝐾(𝑎) = 𝑖(𝜑𝐿gal/𝐿(𝑏)). Then

𝜑𝐿gal/𝐾(𝑎) = 𝑖(𝜑𝐿gal/𝐿(𝑏)) = 𝜑𝐿gal/𝐾(Nm𝐿/𝐾(𝑏)).

This means 𝑎
Nm𝐿/𝐾(𝑏)

∈ ker(𝜑𝐿gal/𝐾) = Nm𝐿gal/𝐾(𝐴𝐿′); say it equals Nm𝐿gal/𝐾(𝑐). Then

𝑎 = Nm𝐿/𝐾(𝑏Nm𝐿gal/𝐿(𝑐)) ∈ Nm𝐿/𝐾(𝐴𝐿),

as needed.

Definition 27.4.12: A subgroup 𝑆 of 𝐴𝐾 is a norm group if there exists an extension
𝐿/𝐾 such that 𝑆 = Nm𝐿/𝐾(𝐴𝐿).

Theorem 27.4.13 (Bijective correspondence): thm:abstract-bijection Let (𝐺, {𝐺𝐾}, {𝐴𝐾}, inv𝐿/𝐾)
be a class formation. Then there is a bijective correspondence between finite abelian exten-
sions of 𝐾 and the set of norm groups of 𝐴𝐾 , given by

𝐿 ↦→ Nm𝐿/𝐾(𝐴𝐿).

Furthermore, this is an inclusion-reserving bijection that takes intersections to products and
products to intersections:

𝐿 ⊆𝑀 ⇐⇒ Nm𝐿/𝐾(𝐴𝐿) ⊇ Nm𝑀/𝐾(𝐴𝑀)

Nm𝐿·𝐿′/𝐾(𝐴𝐿·𝐿′) = Nm𝐿/𝐾(𝐴𝐿) ∩ Nm𝐿′/𝐾(𝐴𝐿′)

Nm𝐿∩𝐿′/𝐾(𝐴𝐿∩𝐿′) = Nm𝐿/𝐾(𝐴𝐿) · Nm𝐿′/𝐾(𝐴𝐿′).

Finally, every subgroup of 𝐴𝐾 containing a norm group is a norm group.

Proof. Abbreviate Nm𝐿/𝐾(𝐴𝐿) by 𝑁𝐿.
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First we show 𝑁𝐿𝐿′ = 𝑁𝐿 ∩𝑁𝐿′ . By reciprocity,

𝑁𝐿 ∩𝑁𝐿′ = ker(𝜑𝐿/𝐾) ∩ ker(𝜑𝐿′/𝐾)
(*)
= ker(𝜑𝐿𝐿′/𝐾) = 𝑁𝐿𝐿′

where (*) comes from compatibility of the 𝜑 and the fact that the map 𝐺(𝐿𝐿′/𝐾) →
𝐺(𝐿/𝐾)×𝐺(𝐿′/𝐾) is injective.

If 𝐿 ⊆ 𝑀 , then 𝑁𝐿 ⊇ 𝑁𝑀 from transitivity of norms. Conversely, if 𝑁𝐿 ⊇ 𝑁𝑀 , then
by the above 𝑁𝐿 = 𝑁𝐿𝑁𝑀 = 𝑁𝐿𝑀 . Thus [𝐴𝐾 : 𝑁𝐿] = [𝐴𝐾 : 𝑁𝐿𝑀 ], and reciprocity gives
[𝐿 : 𝐾] = [𝐿𝑀 : 𝐾], i.e. 𝐿𝑀 = 𝐿, i.e. 𝐿 ⊆ 𝑀 . Thus, 𝐿 ↦→ 𝑁𝐿 is an inclusion-reversing
bijection.

Next we show that every subgroup containing a norm group is a norm group. Sup-
pose 𝑁𝐿 ⊆ 𝑁 ; we show 𝑁 is a norm group. We have that 𝜑𝐿/𝐾 maps 𝑁 isomorphically
onto 𝐺(𝐿/𝐾 ′), where 𝐾 ′ = 𝐿𝜑𝐿/𝐾(𝑁), the fixed field of 𝜑𝐿/𝐾(𝑁). Consider the following
commutative diagram from Theorem 27.4.10:

𝐴𝐾
𝜑𝐿/𝐾
// //

𝜑𝐾′/𝐾 %% %%

𝐺(𝐿/𝐾)

��

𝐺(𝐾 ′/𝐾).

From this we find

𝑁 = ker(𝜑𝐾′/𝐾) = 𝑁𝐾′

as needed.
Finally, we show 𝑁𝐿∩𝐿′ = 𝑁𝐿 · 𝑁𝐿′ . Note 𝐿 ∩ 𝐿′ is the largest extension contained in

both 𝐿 and 𝐿′, while 𝑁𝐿 ·𝑁𝐿′ is the smallest group containing both 𝑁𝐿 and 𝑁𝐿′ , and it is a
norm group by the above. Since 𝐿 ↦→ 𝑁𝐿 is an inclusion-reversing bijection, we must have
𝑁𝐿∩𝐿′ = 𝑁𝐿 ·𝑁𝐿′ .

4.2 Class formations for local class field theory

As promised, we apply the results of the last section to (𝐺(𝐾/𝐾), 𝐾) where 𝐾 is a local
field. (In the global case we will set 𝐴 to be the ideles instead.)

Theorem 27.4.14: thm:lcft-class-form Let 𝐿 be a local field. Then

(𝐺(𝐾/𝐾), {𝐺(𝐿/𝐾) : 𝐿/𝐾 finite Galois} , 𝐾)

is a class formation.

Proof. We verify the axioms of class formations.

1. 𝐻1(𝐿/𝐾) = 0 for every cyclic extension of prime degree, by Hilbert’s Theorem 90
(26.1.1).
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2. Take the composition of the isomorphism 𝐻2(𝐾) ∼= 𝐻2(𝐾ur/𝐾) of Theorem 27.3.1
with the invariant map 𝐻2(𝐾ur/𝐾)→ Q/Z to get

inv𝐾 : 𝐻2(𝐾)→ Q/Z.

The maps inv𝐿/𝐾 : 𝐻2(𝐿/𝐾) →˓ 𝐻2(𝐾) → Q/Z are isomorphisms onto their image,
which much be 1

[𝐿:𝐾]
Z/Z.

Now we verify that

inv𝐿 ∘Res𝐾/𝐿 = 𝑛 inv𝐾 , 𝑛 = [𝐿 : 𝐾].

This follows from the following commutative diagram. From Theorem 27.2.3, the
right square commutes; from the fact that inflation commutes with restriction (by
functoriality), the left square commutes.

𝐻2(𝐾)

Res𝐾/𝐿

��

𝐻2(𝐾ur/𝐾)∼=
Infoo

Res𝐾/𝐿

��

inv𝐾ur/𝐾
// Q/Z

𝑛

��

𝐻2(𝐿) 𝐻2(𝐿ur/𝐿)∼=
Infoo

inv𝐿ur/𝐿
// Q/Z.

(Note that the target of the restriction in the middle is 𝐻2(𝐾ur/𝐿), which is a subgroup
of 𝐻2(𝐿ur/𝐿).)

Applying results about class field theory, we get the main results of local class field theory,
restated below.

Theorem (Local reciprocity law, Theorem 24.24.2.1): For any nonarchimedean local field
𝐾, there exists a unique homomorphism

𝜑𝐾 : 𝐾× → 𝐺(𝐾ab/𝐾),

called the local Artin (reciprocity) map with the following properties.

1. (Relationship with Frobenius map) For any prime element 𝜋 of 𝐾 and any finite un-
ramified extension 𝐿 of 𝐾, 𝜑𝐾(𝜋) acts on 𝐿 as Frob𝐿/𝐾(𝜋).

2. (Isomorphism) Let 𝑝𝐿 be the projection 𝐺(𝐾ab/𝐾)→ 𝐺(𝐿/𝐾). For any finite abelian
extension 𝐿/𝐾, 𝜑𝐾 induces an isomorphism 𝜑𝐿/𝐾 : 𝐾×/Nm𝐿/𝐾(𝐿

×)→ 𝐺(𝐿/𝐾) mak-
ing the following commute:

𝐾× 𝜑𝐾 //

��

𝐺(𝐾ab/𝐾)

𝑝𝐿

��

𝐾×/Nm𝐿/𝐾(𝐿
×)

𝜑𝐿/𝐾

∼=
// 𝐺(𝐿/𝐾).
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3. (Compatibility with norm map) For any 𝐾 ⊆ 𝐾 ′, the following diagram commutes.

𝐾 ′× 𝜑𝐾′
//

Nm𝐾′/𝐾
��

𝐺(𝐾 ′ab/𝐾 ′)

∙|
𝐾ab

��

𝐾× 𝜑𝐾 // 𝐺(𝐾ab/𝐾)

Proof. By Theorem 27.4.14, (𝐺(𝐾/𝐾), {𝐺(𝐿/𝐾) : 𝐿/𝐾 finite Galois} , 𝐾) is a class forma-
tion. By the Abstract Reciprocity Law applied to 𝐴𝐾 = 𝐾, we thus have an isomorphism

𝐾×/Nm𝐿/𝐾 𝐿
× ∼=−→ 𝐺(𝐿/𝐾)ab. These maps are compatible by the first and fourth diagrams

in Theorem 27.4.10.
Next we show that 𝜑𝐾(𝜋) acts on 𝐿 as Frob𝐿/𝐾 . For the first, we use Theorem 27.4.9,

which says
𝜒(𝜑𝐿/𝐾(𝜋)) = inv𝐾(𝜋 ∪ 𝛿𝜒).

We calculate the invariant map on 𝜋 ∪ 𝛿𝜒, recalling that the map 𝐻1(𝐺,Q/Z) → Q/Z is
evaluation at the Frobenius:

𝐻2(𝐿/𝐾) // 𝐻2(𝐺,Z) 𝐻1(𝐺,Q/Z)𝛿oo // Q/Z

𝜋 ∪ 𝛿𝜒 // 𝑣(𝜋) ∪ 𝛿𝜒 = 1 ∪ 𝛿𝜒 1 ∪ 𝜒 //oo 𝜒(Frob𝐿/𝐾).

Thus 𝜒(𝜑𝐿/𝐾(𝜋)) = 𝜒(Frob𝐿/𝐾) for all characters 𝜒 on 𝐺(𝐿/𝐾), and 𝜑𝐿/𝐾(𝜋) = Frob𝐿/𝐾 .
We will prove uniqueness in Section 8.1

Proof of norm limitation, Theorem 24.2.6. This follows directly from Theorem 27.4.14 and
Theorem 27.4.11.

5 Examples

Before we move on to the existence theorem, we seek to understand the reciprocity map a
bit better.

5.1 Unramified case

The reciprocity map is easiest to understand for unramified extensions.

Example 27.5.1: ex:unramified-rec Suppose 𝐿/𝐾 is an unramified extension of local fields of
degree 𝑛 (possibly infinite). Then the reciprocity map is

𝜑𝐿/𝐾 : 𝐾×/Nm𝐿/𝐾(𝐿
×) ∼= 𝐾×/𝜋𝑛Z𝑈𝐾 → 𝐺(𝐿/𝐾)

𝑎 ↦→ Frob
𝑣(𝑎)
𝐿/𝐾 .
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Proof. There are many ways to see this. We know that any uniformizer maps to Frob𝐿/𝐾 .

But the uniformizers generate 𝐾×, so 𝜑𝐿/𝐾 must be the map 𝑎 ↦→ Frob
𝑣(𝑎)
𝐿/𝐾 . As Frob𝐿/𝐾 has

order 𝑛, the kernel is 𝜋𝑛Z𝑈𝐾 .

Alternatively, in the proof of Theorem 24.24.2.1 above, run the argument with arbitrary
𝑎 instead of 𝜋.

5.2 Ramified case

To understand the reciprocity map on ramified extensions, we have the following.

Proposition 27.5.2: pr:unit-to-inertia For any Galois extension of local fields 𝐿/𝐾,

𝜑𝐿/𝐾(𝑈𝐾) ⊆ 𝐼(𝐿/𝐾),

where 𝐼(𝐿/𝐾) is the inertia group.

Proof. By Theorem 15.15.7.2, 𝐿𝐼(𝐿/𝐾)/𝐾 is the maximal unramified subextension of 𝐿/𝐾,
so 𝑈𝐾 ⊆ ker(𝜑𝐿𝐼(𝐿/𝐾)/𝐾) from Example 27.5.1. This means that 𝜑𝐿/𝐾(𝑈𝐾) projects trivially

on 𝐺(𝐿𝐼(𝐿/𝐾)/𝐾), i.e. 𝜑𝐿/𝐾(𝑈𝐾) ⊆ 𝐼(𝐿/𝐾).

In fact, the reciprocity map relates filtration on the unit group 𝑈𝐾 with the filtration on
ramification groups (cf. Section 22.4.2), so Proposition 27.5.2 is just the beginning of the
story.

Theorem 27.5.3: The reciprocity map transforms the filtration

𝐾×/Nm𝐿/𝐾(𝐿
×) ⊇ 𝑈𝐾/Nm𝐿/𝐾(𝑈𝐿) ⊇ 𝑈

(1)
𝐾 /Nm𝐿/𝐾(𝑈

𝜓(1)
𝐿 ) ⊇ · · ·

into the filtration

𝐺(𝐿/𝐾) ⊇ 𝐺0 = 𝐼(𝐿/𝐾) ⊇ 𝐺(𝐿/𝐾)1 ⊇ · · · .

Proof. This uses more about local fields and local symbols than we’ll prove. See Serre [Ser79],
Chapter XV or Neukirch [Neu99], V.S6.

Example 27.5.4: For the totally ramified extension Q𝑝(𝜁𝑝∞)/Q𝑝, the reciprocity map sends

𝑝Z(1 + (𝑝𝑟)) ↦→ 𝐺(Q𝑝(𝜁𝑝∞)/Q𝑝(𝜁𝑝𝑟)).

The RHS is the 𝑟th upper ramification group 𝐺𝑟.

Explicit computation of the reciprocity map in the ramified case is difficult without
Lubin-Tate Theory.
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6 Hilbert symbols

sec:hilbert-symbol To prove the existence theorem, we need to show that every closed subgroup
of 𝐺 occurs as a norm group, i.e. as the kernel of some Artin map 𝜑𝐿/𝐾 . To do this, we
explicitly construct field extensions 𝐿/𝐾 that give these norm groups. We will construct
Kummer extensions, extensions that come from adjoining an 𝑛th root. We focus on these
extensions for several reasons.

1. Recall that we don’t have a way to directly calculate the action of 𝜑𝐿/𝐾 . Instead, we
calculate indirectly by Theorem 27.4.9: If we know 𝜒(𝜑𝐿/𝐾(𝑎)) for all characters on
𝐺(𝐿/𝐾), then we have determined 𝜑𝐿/𝐾(𝑎).

An easy source of characters comes from Kummer Theory 26.26.2.2, since the group
of characters is isomorphic to a cyclic group.6

2. We want to show that certain subgroups of norm groups are also norm groups. After
verifying several topological properties of 𝜑𝐾 , we can reduce this to a statement about
𝑝th powers/roots of norm groups. In the abstract existence theorem 27.7.2, properties
1 and 3 are easy to check; they are basically the reductions that allow property 2 to
be sufficient.

Recally from Proposition 26.26.2.2 that 𝐾×/𝐾×𝑛 ∼= Hom(𝐺(𝐾𝑠/𝐾), 𝜇𝑛). Thus the charac-
ters we get are in bijection with elements of 𝐾×/𝐾×𝑛. We can also consider 𝑎 ∈ 𝐾× as inside
𝐾×/𝐾×𝑛, and this gives us a sort of “duality”: the Kummer pairing. We will see eventually
that this is the source of reciprocity laws (Section 29.1), so these symbols are good for more
than just proving the existence theorem.

We assume throughout that 𝐾 contains a 𝑛th root of unity, and char(𝐾) - 𝑛.

Definition 27.6.1: Let 𝐺 = 𝐺(𝐾𝑠/𝐾). Define the local symbol

( , )𝑛 : 𝐻1(𝐺,Q/Z)×𝐻0(𝐺,𝐾𝑠×)⏟  ⏞  
𝐾×

→ 𝐻2(𝐺,𝐾𝑠×) = Br𝐾

(𝜒, 𝑏) = 𝑏 ∪ 𝛿𝜒

Here 𝛿 is with respect to the exact sequence 0→ Z→ Q→ Z/Q→ 0 and 𝑏 is the image of
𝐾𝑠× in 𝐻0

𝑇 (𝐺,𝐾
𝑠×).

We will drop the subscript 𝑛 when the context is clear.

Since cup product is bilinear and 𝛿 is linear, ( , ) is bilinear. If 𝐾 is local, by Theo-
rem 27.4.9, we have for any Galois 𝐿/𝐾 and any character 𝜒 on 𝐺(𝐿/𝐾),

eq:invk-calc inv𝐾(𝜒, 𝜑𝐿/𝐾(𝑎)) = inv𝐾(𝑎 ∪ 𝛿𝜒) = 𝜒(𝜑𝐿/𝐾(𝑎)). (27.5)

As promised, we now transfer this action to 𝐾×/𝐾×𝑛.

6Artin-Schreier theory, from exercise 26.2.1, is another source of characters.
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Definition 27.6.2: Suppose 𝐾 is a local field, and let 𝐺 = 𝐺(𝐾𝑠/𝐾). For 𝑎 ∈ 𝐾×, define
the character as in Proposition 26.26.2.2 by

𝜒𝑎(𝜎) =
𝜎(𝑎

1
𝑛 )

𝑎
1
𝑛

, 𝜒𝑎 ∈ 𝐻1
(︂
𝐺,

1

𝑛
Z/Z

)︂
∼= 𝐻1(𝐺, 𝜇𝑛),

where 𝐺 = 𝐺(𝐿/𝐾) and 𝐿 = 𝐾(𝑎
1
𝑛 ). Here we choose a root of unity 𝜁 to make a correspon-

dence 1
𝑛
Z/Z ∼= 𝜇𝑛.

Define the Hilbert symbol by

𝐾× ×𝐾× → Br𝐾 [𝑛] ∼=
1

𝑛
Z/Z ∼= 𝜇𝑛

(𝑎, 𝑏) := (𝜒𝑎, 𝑏) = 𝑏 ∪ 𝛿𝜒𝑎.

If 𝐾 is a global field, let (𝑎, 𝑏)𝑣 denote the Hilbert symbol where 𝑎, 𝑏 are considered as
elements of 𝐾𝑣.

Note that the image is in 1
𝑛
Z/Z, not just in Q/Z, because 𝑛𝜒𝑎 = 0.

We’ll abuse notation and not make a clear distinction between Br𝐾 [𝑛] ∼= 1
𝑛
Z/Z ∼= 𝜇𝑛,

where Br𝐾 [𝑛] denotes the 𝑛-torsion subgroup of Br𝐾 . The first isomorphism is given by
inv𝐾 and the second by 1

𝑛
↔ 𝜁. We transfer the 𝜒𝑎 from being defined on 𝜇𝑛 to 1

𝑛
Z/Z, then

transfer back from Br𝐾 [𝑛] ∼= 1
𝑛
Z/Z to 𝜇𝑛 at the end, so we may as well use the formula (27.5)

for the 𝜒𝑎 treated in 𝐻1(𝐺, 𝜇𝑛).
The following relates the Hilbert symbol to the Artin map.

Proposition 27.6.3: pr:hilbert-explicit We have

(𝑎, 𝑏) =
[𝜑𝐿/𝐾(𝑏)]( 𝑛

√
𝑎)

𝑛
√
𝑎

where 𝐿 = 𝐾( 𝑛
√
𝑎).

Proof. Formula (27.5) gives (remember we’re identifying Br𝐾 ∼= 1
𝑛
Z/Z ∼= 𝜇𝑛; by abuse of

notation we drop the “inv𝐾” because it is an isomorphism)

(𝑎, 𝑏) = (𝜒𝑎, 𝜑𝐿/𝐾(𝑏)) = 𝜒𝑎(𝜑𝐿/𝐾(𝑏)) =
[𝜑𝐿/𝐾(𝑏)]( 𝑛

√
𝑎)

𝑛
√
𝑎

where 𝐿 is any field Galois over 𝐾, containing 𝑛
√
𝑎.

Theorem 27.6.4: thm:hilbert-bilinear The Hilbert symbol descends to a nondegenerate skew-
symmetric bilinear map

𝐾×/𝐾×𝑛 ×𝐾×/𝐾×𝑛 → 𝜇𝑛

satisfying the following.

1. (𝑎, 𝑏) = 1 iff 𝑏 ∈ Nm
𝐾(𝑎

1
𝑛 )/𝐾

(𝐾(𝑎
1
𝑛 )×).
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2. If 𝑎 ∈ 𝐾×, 𝑥 ∈ 𝐾×, and 𝑥𝑛 − 𝑎 ̸= 0, then

(𝑎, 𝑥𝑛 − 𝑎) = 1.

In particular, (𝑎,−𝑎) = 1 = (𝑎, 1− 𝑎).

Proof. Everything that went into defining (, ) was linear in either variable (cup products,
evaluation homomorphisms, snake lemma morphism), so (, ) gives a bilinear map𝐾××𝐾× →
𝜇𝑛.

Suppose 𝜒 is an element of order 𝑛. Then its kernel ker(𝜒) has index 𝑛 in 𝐺(𝐾𝑠/𝐾).
Under the Artin map this corresponds to a extension 𝐿𝜒 of degree 𝑛, such that ker(𝜒) =
𝜑𝐾(Nm𝐿𝜒/𝐾(𝐿

×
𝜒 )). Then

(𝜒, 𝑏) = 𝜒(𝜑𝐾(𝑏)) = 0 ⇐⇒ 𝜑𝐾(𝑏) ∈ ker(𝜒)

iff 𝑏 ∈ Nm𝐿𝜒/𝐾(𝐿
×
𝜒 ).

We apply this to 𝜒 = 𝜒𝑎. Note that 𝜒 has order [𝐾(𝑎
1
𝑛 ) : 𝐾] and 𝜒𝑎(𝐺(𝐾

𝑠/𝐾(𝑎
1
𝑛 ))) = 0.

Hence 𝜑𝐾(Nm𝐾(𝑎
1
𝑛 )/𝐾

(𝐾(𝑎
1
𝑛 )×) ⊆ ker𝜒𝑎. By comparing indices in 𝐺(𝐾𝑠/𝐾), equality holds,

giving the first item.
For the second item, note that

𝑥𝑛 − 𝑎 =
𝑛−1∏︁
𝑗=0

(𝑥− 𝜁𝑗𝑛𝑎
1
𝑛 )

(for any choice of 𝑛th root). The factors in the product can be grouped into conjugates over

𝐾, so 𝑥𝑛 − 𝑎 is a norm from 𝐾(𝑎
1
𝑛 )/𝐾. Then (𝑎, 𝑥𝑛 − 𝑎) = 1 from the first item. Setting

𝑥 = 0, 1 gives (𝑎,−𝑎) = 1 and (𝑎, 1− 𝑎) = 1.
To show skew-symmetry, note from item 2 and bilinearity that

1 = (𝑎𝑏,−𝑎𝑏) = (𝑎,−𝑎)(𝑎, 𝑏)(𝑏, 𝑎)(𝑏,−𝑏) = (𝑎, 𝑏)(𝑏, 𝑎).

To show nondegeneracy, suppose 𝑏 ∈ 𝐾× such that (𝑎, 𝑏) = 1 for all 𝑎 ∈ 𝐾×; we show
𝑏 ∈ 𝐾×𝑛. The condition (𝑎, 𝑏) = 1 translates into 𝜒𝑎(𝜑𝐾(𝑏)) = 1 for all 𝑎. Now the image
of 𝜑𝐾 is dense in 𝐺(𝐿/𝐾)ab (because it is surjective for every finite extension 𝐿/𝐾, and

𝐺(𝐿/𝐾) has the profinite topology). Hence 𝜒𝑎 = 0. This means 𝑎
1
𝑛 ∈ 𝐾, i.e. 𝑎 ∈ 𝐾×𝑛.

Corollary 27.6.5: cor:hilbert-local Suppose 𝐾 is a local field, 𝐾(𝑎
1
𝑛 )/𝐾 is unramified, and 𝑏 is

a unit in 𝐾. Then (𝑎, 𝑏) = 1.
If 𝐾 is a global field, then (𝑎, 𝑏)𝑣 = 1 in 𝐾𝑣 unless either 𝑎 or 𝑏 is not a unit in 𝐾𝑣, or

𝐾(𝑎
1
𝑛 )/𝐾 is ramified (which happen at finitely many places).

Proof. Since 𝐾(𝑎
1
𝑛 )/𝐾 is unramified, 𝑈𝐾 ⊂ Nm

𝐾(𝑎
1
𝑛 )/𝐾

(𝐾(𝑎
1
𝑛 )×). The result now follows

from Theorem 27.6.4.
The second part says that (𝑎, 𝑏)𝑣 = 1 if 𝑎, 𝑏 are units in 𝐾𝑣 and 𝐾(𝑎

1
𝑛 )/𝐾 is unramified,

which is clear from part 1.
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Remark 27.6.6: In fact, (𝑎, 𝑏) = 𝑖(𝜒𝑎 ∪ 𝜒𝑏) where 𝑖 : 𝐻2(𝐺,Z/𝑛Z) → Br𝐾 . (See Serre, p.
207.) This explains the symmetry better but takes more work to prove.

7 Existence theorem

sec:local-existence We show that the existence theorem follows from several further (topological)
axioms on formations. We then prove that in local class field theory, these axioms are
satisfied.

7.1 Existence theorem in the abstract

First, a definition.

Definition 27.7.1: Let (𝐺, {𝐺𝐾}𝐾∈𝑋 , 𝐴) be a class formation. The universal norm
group 𝐷𝐾 of 𝐾 is the intersection of all norm groups of 𝐴𝐾 :

𝐷𝐾 =
⋂︁
𝐿/𝐾

Nm𝐿/𝐾(𝐴𝐿).

Theorem 27.7.2 (Abstract existence): thm:abstract-existence Suppose that (𝐺, {𝐺𝐾}𝐾∈𝑋 , 𝐴) is a
formation satisfying the following conditions.

1. For every extension 𝐿/𝐾, the norm homomorphism has closed image and compact
kernel.

2. Let [𝑝] denote the map 𝑥 ↦→ 𝑝𝑥 on 𝐴. For every prime 𝑝, there exists a field 𝐾𝑝 such
that for 𝐾 containing 𝐾𝑝, ker([𝑝]|𝐴𝐾

) is compact and im([𝑝]|𝐴𝐾
) contains 𝐷𝐾 .

3. There exists a compact subgroup 𝑈𝐾 of 𝐴𝐾 such that every closed subgroup of finite
index in 𝐴𝐾 containing 𝑈𝐾 is a norm group.

Then a subgroup of 𝐴𝐾 is a norm group iff it is closed of finite index.

If the conclusion holds, 𝑛𝐴𝐾 ⊆ 𝐷𝐾 for every 𝐾, because 𝑛𝐴𝐾 is closed of finite index
and hence a norm group. Conversely, 𝐷𝐾 ⊆

⋂︀
𝑛≥1 𝑛𝐴𝐾 because every norm group 𝑁 has

finite index so 𝑛 kills 𝐴𝐾/𝑁 for some 𝑛. Furthermore, 𝐷𝐾 must be divisible: else we could
find a norm group 𝑁 ⊇ 𝐷𝐾 , and 𝑛 such that 𝑛𝑁 ̸⊇ 𝐷𝐾 , even though 𝑛𝑁 is still of finite
index. (Note we write 𝐴𝐾 additively here, but in class field theory, 𝐴𝐾 = 𝐾 and 𝑛𝐴𝐾
actually means 𝐴𝑛𝐾 .) The most important condition is item 2, because it will give us these
two conditions. This gives us a large set of norm groups, and items 1 and 3 (which are more
topological in nature) will give us the rest of the desired norm groups.

Proof. Step 1: Suppose axiom 1 holds. We show that for every extension 𝐿/𝐾, Nm𝐿/𝐾(𝐷𝐿) =
𝐷𝐾 .

By transitivity of norms, Nm𝐿/𝐾(𝐷𝐿) ⊆ 𝐷𝐾 .
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Conversely, suppose 𝑎 ∈ 𝐷𝐾 . Since 𝑎 ∈ 𝐷𝐾 , for any extension 𝑀/𝐿, 𝐴𝑀 contains an
element 𝑏 such that Nm𝑀/𝐾(𝑏) = Nm𝐿/𝐾 Nm𝑀/𝐿(𝑏) = 𝑎. Thus

𝑆𝑀 := Nm−1
𝐿/𝐾(𝑎) ∩ Nm𝑀/𝐿(𝐴𝑀)

is nonempty. Since Nm has compact kernel, the first group is compact; since Nm has closed
image, the second group is closed; thus 𝑆𝑀 is compact. Since the 𝑆𝑀 for all 𝑀/𝐿 form
a directed system of compact subsets, 𝑆 =

⋂︀
𝑀 𝑆𝑀 is nonempty. Any element of 𝑆 is an

element of Nm−1
𝐿/𝐾(𝑎) ∩𝐷𝐿. This shows 𝑎 ∈ Nm𝐿/𝐾(𝐷𝐿).

Step 2: Suppose axioms 1 and 2 hold. We show 𝐷𝐾 is divisible and

𝐷𝐾 =
⋂︁
𝑛≥1

𝑛𝐴𝐾 .

First we show that for every prime 𝑝, 𝑝𝐷𝐾 = 𝐷𝐾 . Let 𝐿 be a field containing 𝐾𝑝,
𝑎 ∈ 𝐷𝐾 , and set

𝑆𝐿 = [𝑝]−1(𝑎) ∩ Nm𝐿/𝐾 𝐴𝐿.

Since [𝑝]−1(𝑎) is compact (as ker([𝑝]|𝐴𝐾
) is compact by axiom 2) and Nm𝐿/𝐾 𝐴𝐿 is closed,

𝑆𝐿 is compact. Now this set this nonempty: since 𝑎 ∈ 𝐷𝐾 = Nm𝐿/𝐾 𝐷𝐿 by step 1, we can
write 𝑎 = Nm𝐿/𝐾 𝑥, 𝑥 ∈ 𝐷𝐿. By axiom 2, 𝑥 = 𝑝𝑦 with 𝑦 ∈ 𝐴𝐾 , so 𝑏 := Nm𝐿/𝐾 𝑦 ∈ 𝑆𝐿. Then⋂︀
𝐿⊇𝐾𝑝

𝑆𝐿 is nonempty as in step 1. Hence 𝑎 ∈ 𝑝𝐷𝐾 .
This shows 𝑝𝐷𝐾 = 𝐷𝐾 , and we get 𝐷𝐾 =

⋂︀
𝑛≥1 𝑛𝐷𝐾 ⊆

⋂︀
𝑛≥1 𝑛𝐴𝐾 .

For the other direction, note that 𝑛𝑎 is the norm of any extension of degree 𝑛, so⋂︀
𝑛≥1 𝑛𝐴𝐾 ⊆ 𝐷𝐾 .

Step 3: Assume all the axioms. We prove the theorem.
First, note that any norm group is closed by axiom 1, and has finite index by the reci-

procity law 27.4.8. Indeed, by transitivity of norm, it suffices to consider Galois extensions,
and the reciprocity law says Nm𝐿/𝐾(𝐴𝐿) has index equal to 𝐺(𝐿/𝐾)ab.

Conversely, suppose 𝑆 is a closed subgroup of finite index 𝑛. We will find a norm subgroup
contained in 𝑆 and then apply Theorem 27.4.13. Since 𝐴𝐾/𝑆 has order 𝑛, we get 𝐷𝐾 ⊆
𝑛𝐴𝐾 ⊆ 𝑆, so ⋂︁

𝑁 norm group

(𝑁 ∩ 𝑈𝐾) = 𝐷𝐾 ∩ 𝑈𝐾 ⊆ 𝑆.

Since 𝑁 ∩𝑈𝐾 are compact (𝑁 is closed and 𝑈𝐾 is compact) and 𝑆 is open (closed subgroups
of finite index are also open), there exists 𝑁 such that

𝑁 ∩ 𝑈𝐾 ⊆ 𝑆.

Note 𝑈𝐾 +(𝑁 ∩𝑆) is closed of finite index in 𝐴𝐾 because 𝑁,𝑆 are closed of finite index;
we show we can replace 𝑈𝐾 with 𝑈𝐾 + (𝑁 ∩ 𝑆) above:

𝑁 ∩ (𝑈𝐾 + (𝑁 ∩ 𝑆)) ⊆ 𝑆.
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Suppose 𝑎 ∈ 𝑈𝐾 and 𝑎′ ∈ 𝑁 ∩ 𝑆 such that 𝑎 + 𝑎′ ∈ 𝑁 . Then 𝑎 ∈ 𝑁 , but 𝑁 ∩ 𝑈𝐾 ⊆ 𝑆 so
𝑎 ∈ 𝑆 as well. Thus 𝑎+ 𝑎′ ∈ 𝑆, as needed.

Now 𝑁 ∩ (𝑈𝐾 + (𝑁 ∩ 𝑆)) is is closed of finite index containing 𝑈𝐾 , so is a norm group
by axiom 3. By Theorem 27.4.13, we get 𝑆 is also a norm group.

7.2 Existence theorem for local class field theory

Proof of Theorem 24.24.2.3. We verify that the class formation for LCFT satisfies the three
axioms of Theorem 27.27.7.2.

1. To see that the norm map is closed, note that

Nm𝐿/𝐾(𝐿
×) ∩ 𝑈𝐾 = Nm𝐿/𝐾(𝑈𝐿)

because an element is a unit iff its norm is a unit. As 𝑈𝐿 is compact and Nm𝐿/𝐾

is continuous (Proposition 21.21.1.6), Nm𝐿/𝐾(𝑈𝐿) is compact and hence closed. Now
Nm𝐿/𝐾(𝐿

×) is a union of translates of 𝑈𝐿, therefore closed as well.

The kernel of Nm𝐿/𝐾 is a closed subset of 𝑈𝐿, hence compact.

2. Take 𝐾𝑝 containing all 𝑝th roots of unity. The kernel of the 𝑝th power map is the 𝑝th
roots of unity, which is a compact set. Suppose 𝐾 ⊇ 𝐾𝑝, and let 𝑏 ∈ 𝐷𝐾 be a universal
norm. Then (𝑎, 𝑏) = 1 for all 𝑎 by Theorem 27.6.4. Since the 𝑝th power Hilbert symbol
is nondegenerate on 𝐾×/𝐾×𝑝, 𝑎 ∈ 𝐾×𝑝. Thus 𝐷𝐾 ⊆ 𝐾×𝑝.

3. Take 𝑈𝐾 to be the group of units of𝐾×. The closed subgroups of finite index containing
𝑈𝐾 are just 𝜋𝑛Z𝑈𝐾 for 𝑛 ̸= 0; these are the norm groups of unramified extensions of
degree 𝑛 by Proposition 27.5.1. (Note these extensions exist—just adjoin appropriate
roots of unity.)

Proof of Theorem 24.24.2.5. This follows from Theorem 27.4.13, Theorem 27.4.14 (class for-
mation for LCFT), and the existence theorem just proved.

Note the existence theorem gives the following.

Corollary 27.7.3: cor:univ-norm-1 The universal norm group 𝐷𝐾 is {1}.

Proof. All open subgroups of finite index are norm groups by the Existence Theorem 24.24.2.3.
The intersection of all open subgroups of finite index is {1}, as ⋂︀𝑚,𝑛(1+(𝜋𝑚))𝜋𝑛Z = {1}.

8 Topology of the local reciprocity map

We now prove that 𝜑𝐾 gives a topological isomorphism 𝐾× → 𝑊 (𝐿/𝐾).
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Proof of Theorem 24.24.2.4. By Proposition 27.5.2, 𝜑𝐿/𝐾(𝑈𝐾) ⊆ 𝐼(𝐿/𝐾), so we have the
commutative diagram

1 // 𝑈𝐾 //

𝜑𝐿/𝐾

��

𝐾× 𝑣 //

𝜑𝐿/𝐾

��

Z //

��

1

1 // 𝐼(𝐿/𝐾) // 𝐺(𝐿/𝐾) // 𝐺(𝑙/𝑘) // 1.

where the rightmost vertical map sends 1 to the 𝑝th power Frobenius (𝑝 = |𝑘|). The vertical
maps factor as

eq:decomp-K/nmL 1 // 𝑈𝐾/Nm𝐿/𝐾(𝑈𝐿) //

𝜑𝐿/𝐾∼=
��

𝐾×/Nm𝐿/𝐾(𝐿
×) 𝑣 //

𝜑𝐿/𝐾∼=
��

Z/𝑓Z //

∼=
��

1

1 // 𝐼(𝐿/𝐾) // 𝐺(𝐿/𝐾) // 𝐺(𝑙/𝑘) // 1.

(27.6)

where 𝑓 = [𝑙 : 𝑘]. Recall 𝜑𝐾 = lim←−𝐿 𝜑𝐿/𝐾 . The intersection of all norm groups is {1} by

Corollary 27.7.3, so 𝜑𝐾 is injective on 𝐾×.

In forming 𝜑𝐾 = lim←−𝐿 𝜑𝐿/𝐾 , we are really considering the embedding

𝐾× →˓Ô𝐾× := lim←−
𝐿

𝐾×/Nm𝐿/𝐾(𝐿
×)

∼=−→ 𝐺(𝐾ab/𝐾).

Decomposing 𝐾×/Nm𝐿/𝐾(𝐿
×) as in (27.6), we have that

1. lim←−𝐿 𝑈𝐾/Nm𝐿/𝐾(𝑈𝐿) ∼= 𝑈𝐾 since 𝑈𝐾 is compact, hence complete, so 𝑈𝐾 ∼= 𝐼(𝐾ab/𝐾).

2. lim←−𝐿 Z/𝑓Z = ÒZ.
Thus 𝐾× →˓Ô𝐾× is the embedding 𝑈𝐾 × 𝜋Z →˓ 𝑈𝐾 × 𝜋̂︀Z.

Recalling that 𝑊 (𝐿/𝐾) is the inverse image of FrobZ ⊆ 𝐺(𝑘/𝑘), we get 𝜑𝐿/𝐾 : 𝐾× →
𝑊 (𝐿/𝐾) is a topological isomorphism. In summary, we have the diagram

1 // 𝑈𝐾 //

𝜑𝐾∼=
��

𝐾× //

𝜑𝐾∼=
��

𝜋Z //

∼=
��

1

1 // 𝐼(𝐾ab/𝐾) //

''

𝑊 (𝐾ab/𝐾) //
� _

��

FrobZ //� _

��

1

𝐺(𝐾ab/𝐾) // Frob
̂︀Z = 𝐺(𝑘/𝑘) // 1
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8.1 Uniqueness of the reciprocity map

sec:lcft-uniqueness Finally, we prove uniqueness. This finishes all the proofs of local class field
theory.

We first restate Lemma 24.24.6.7.

Lemma: Suppose that𝐾 is a nonarchimedean local field,𝐾ur is the maximal abelian unram-
ified extension of 𝐾, and 𝐿 is an abelian extension containing 𝐾ur. Let 𝑓 : 𝐾× → 𝐺(𝐿/𝐾)
be a homomorphism satisfying (1) and either (2) or (2)′:

1. The composition 𝐾× 𝑓−→ 𝐺(𝐿/𝐾)→ 𝐺(𝐾ur/𝐾) takes 𝛼 to Frob𝐾ur/𝐾(𝜋)
𝑣(𝛼).

2. For any uniformizer 𝜋 ∈ 𝐾, 𝑓(𝜋)|𝐾𝜋 = 1, where

𝐾𝜋 := 𝐿𝜑𝐾(𝜋).

2’. For any finite subextension 𝐾 ′/𝐾 of 𝐾𝜋, we have

𝑓(Nm𝐾′/𝐾(𝐾
′×))|𝐾′ = {1}.

Then 𝑓 equals the reciprocity map 𝜑𝐾 .

Proof of Lemma 24.24.6.7. It suffices to prove this for 𝐿 = 𝐾ab. We have the split exact
sequence

eq:lcft-uniq1→ 𝑈×
𝐾 → 𝐾× 𝑣−→ Z→ 1, (27.7)

where the splitting is determined by the map Z → 𝐾× sending 1 ↦→ 𝜋, and the map
𝐾× → 𝑈𝐾 sending 𝑎 ↦→ 𝑎

𝜋𝑣(𝑎) . Under the Artin map, (27.7) gets sent to the split exact
sequence of topological groups

1→ 𝐼(𝐾ab/𝐾) = 𝐺(𝐾/𝐾ur)→ 𝑊 (𝐾ab/𝐾)→ 𝑊 (𝐾ur/𝐾) ∼= Z→ 1

by Theorem 24.24.2.4. This gives the exact sequence

1→ 𝐺(𝐾ab/𝐾ur)→ 𝐺(𝐾ab/𝐾)→ 𝐺(𝐾ur/𝐾)→ 1,

where the splitting is by the map Z ∼= 𝐺(𝐾ur/𝐾) → 𝐺(𝐾ab/𝐾) sending 1 ↦→ 𝜑𝐾(𝜋). This
identifies 𝐺(𝐾ab/𝐾ur) with the quotient group 𝐺(𝐾𝜋/𝐾) where

𝐾𝜋 = 𝐿⟨𝜑𝐾(𝜋)⟩ = 𝐿𝜑𝐾(𝜋).

If (2)′ holds, then for any uniformizer 𝜋, we have that 𝜋 ∈ Nm𝐾′/𝐾(𝐾
′×) for every finite

subextension 𝐾 ′ of 𝐾𝜋. Then (2)′ gives that 𝑓(𝜋)|𝐾𝜋 = 1. Then (2) holds.
We now show if (1) and (2) hold, then 𝑓 = 𝜑. Indeed, (1) and (2) imply that 𝜑(𝜋)|𝐾ur𝐾𝜋 =

𝑓(𝜋)|𝐾ur𝐾𝜋 for any uniformizer 𝜋. But 𝐾ur𝐾𝜋 = 𝐾ab and the set of uniformizers generate
𝐾× (any unit is the quotient of two uniformizers). Hence 𝜑 = 𝑓 .
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Proof of uniqueness in Theorem 24.24.2.1. Suppose 𝜑′ is another map satisfying the condi-
tions of Theorem 24.24.2.1. It suffices to show 𝜑′ satisfies the conditions of Lemma 24.24.6.7
with 𝐿 = 𝐾ab. By assumption it satisfies (1). For condition (2)′, we have 𝜑𝐾(𝜋)|𝐾𝜋 = 1 by
definition of 𝐾𝜋. Hence 𝜋 is a norm from every finite subextension of 𝐾𝜋. By condition 2 of
Theorem 24.24.2.1, this shows 𝜑′

𝐾′/𝐾(Nm𝐾′/𝐾(𝐾
′×)) = {1} for every subextension 𝐾 ′/𝐾 of

𝐿, as needed. Hence 𝜑′ = 𝜑.

Problems

1. Using 𝜑𝐾 , construct a natural bijection between the following two sets.

∙ continuous characters𝑊 (𝐾/𝐾)→ C× (i.e. continuous representations𝑊 (𝐾/𝐾)→
GL1(C)).
∙ continuous character 𝐾× → C (i.e. continuous homomorphisms 𝐺𝐿1(𝐾) →
𝐺𝐿(C)).

This is the “local Langlands correspondence for 𝐺𝐿1 over 𝐾.” Local class field theory
generalizes more naturally in this form.
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Chapter 28

Global class field theory

gcft To prove the global reciprocity law we need to do two things, namely construct a map

𝜑𝐾 : I𝐾/𝐾×Nm𝐿/𝐾 I𝐿
∼=−→ 𝐺(𝐿/𝐾),

and show that it is an isomorphism. To show it is an isomorphism, we need to show that
the two sides have the same cardinality:1

|I𝐾/𝐾×Nm𝐿/𝐾 I𝐿| = [𝐿 : 𝐾].

The first inequality “≥” will be shown using cohomology, with lots of Herbrand quotient
calculations. The second inequality “≤” is most easily shown with 𝐿-functions, but can also
be shown with a more complicated cohomological argument.

To construct a map, there are two approaches. We can define 𝜑𝐾 to be the map whose
components are the local Artin map, and use the properties of the local Artin map given
by local class field theory. Alternatively, we can construct it directly in the global case,
without using local theory, and get local class field theory as a corollary. We will take the
first approach. For an account of the second, see Lang [Lan94].

1 Basic definitions

First, some basic definitions.

Definition 28.1.1: Define the action of 𝐺(𝐿/𝐾) on I𝐿 by permuting the places: For an
idele a = (𝑎𝑣)𝑣∈𝑉𝐿 , define 𝜎a by

(𝜎a)𝜎(𝑣) = 𝜎(𝑎𝑣).

Definition 28.1.2: Define the inclusion map I𝐾 →˓ I𝐿 by

(𝑎𝑣)𝑣∈𝑉𝐾 ↦→
(︀
(𝑎𝑣)𝑤|𝑣

�
𝑣∈𝑉𝐾

,

1More precisely, we use this to show the invariant map is an isomorphism, then get the Artin map from
the machinery of class formations.
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i.e. it is induced by componentwise inclusions 𝐾𝑣 →˓ 𝐿𝑤. Let the inclusion map C𝐾 →˓ C𝐿

be induced by the above inclusion.
For an infinite extension 𝑀/𝐾, define

I𝑀 = lim−→
𝐾⊆𝐿⊆𝑀

I𝐿, C𝑀 = lim−→
𝐾⊆𝐿⊆𝑀

C𝐿

where the limit is taken over finite Galois extensions 𝐿/𝐾.

For short, let 𝐻𝑛(𝐿/𝐾,𝐴) denote 𝐻𝑛(𝐺(𝐿/𝐾), 𝐴) and 𝐻2(𝐾,𝐴) := 𝐻𝑛(𝐾/𝐾,𝐴). As
in the local case, 𝐻𝑛(𝐿/𝐾) denotes 𝐻𝑛(𝐺(𝐿/𝐾), 𝐾×).

Proposition 28.1.3: pr:ilg-is-ik Let 𝐿/𝐾 be a Galois extension and 𝐺 = 𝐺(𝐿/𝐾). The inclu-

sion map I𝐾 →˓ I𝐿 sends I𝐾
∼=−→ I𝐺𝐿 and the inclusion map C𝐾 →˓ C𝐿 sends C𝐾

∼=−→ C𝐺
𝐿 .

Proof. The first part holds because 𝐺 acts transitively on all the places in 𝐿 dividing a single
𝑣 ∈ 𝑉𝐾 , so any element of I𝐺𝐿 has to be constant on all 𝑤 | 𝑣, i.e. in the image of I𝐾 .

For the second part2, take the long exact sequence in cohomology associated to

1→ 𝐿× → I𝐿 → C𝐿 → 1

to get

1 // 𝐻0(𝐺,𝐿×) // 𝐻0(𝐺, I𝐿) // 𝐻0(𝐺,C𝐿) // 𝐻1(𝐺,𝐿×)

𝐾× I𝐺𝐿 = I𝐾 C𝐺
𝐿 1

where the equality on the right is Hilbert’s Theorem 90 (Theorem 26.26.1.1) and the map
I𝐾 → C𝐺

𝐿 is induced by inclusion. Thus C𝐺
𝐿 = I𝐾/𝐾× = C𝐾 .

2 The first inequality

In this section we will prove the following.

Theorem 28.2.1 (First inequality of global class field theory): first-inequality If 𝐿/𝐾 is cyclic,
then

|I𝐾/𝐾×Nm𝐿/𝐾 I𝐿| ≥ [𝐿 : 𝐾].

To prove the inequality, we first express the left-hand side in terms of cohomology. Letting
𝐺 = 𝐺(𝐿/𝐾), we know that

𝐻0
𝑇 (𝐺,C𝐿) = C𝐾/Nm𝐿/𝐾 C𝐿 = I𝐾/𝐾×Nm𝐿/𝐾 I𝐿.

2which isn’t obvious, because we’re taking quotients here
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Then noting that the Herbrand quotient (with respect to 𝐺) of C𝐿 is ℎ(C𝐿) =
|𝐻0

𝑇 (𝐺,C𝐿)|
|𝐻−1

𝑇 (𝐺,C𝐿)|
,

we have that

eq:1st-ineq-herbrand|I𝐾/𝐾×Nm𝐿/𝐾 I𝐿| = |𝐻0
𝑇 (𝐺,C𝐿)| ≥ ℎ(C𝐿). (28.1)

To calculate ℎ(C𝐿) our plan is as follows.

1. First express C𝐿 in terms of something involving a finite set of places; we find 𝑇 so
that

I𝐿 = 𝐿×I𝑇𝐿.

(Proposition 28.2.2). Then calculation shows that ℎ(C𝐿) =
ℎ(I𝑇𝐿)

ℎ(𝑈𝑇
𝐿 )
, where 𝑈𝑇

𝐿 denotes

the 𝑇 -units in 𝐿.

2. Compute ℎ(I𝑆𝐿) =
∏︀
𝑣∈𝑆 𝑛𝑣. Note I𝑆𝐿 is a direct product, not a restricted direct product,

so we can just take the product of the Herbrand quotient of the factors. Breaking up
the places into 𝐺(𝐿/𝐾)-orbits, we can calculate ℎ(I𝑆𝐿) using the corollary to Shapiro’s
Lemma 25.25.8.7.

3. Compute ℎ(𝑈𝑆
𝐿 ) =

1
𝑛

∏︀
𝑣∈𝑆 𝑛𝑣 by relating it to a lattice of codimension 1 in R𝑠 by the

log map, where 𝑠 = |𝑆|. (See ANT, Chapter 18.) We use the fact that the Herbrand
quotient of a full lattice depends only on the vector space it resides in (Theorem 28.2.5)
to change to a more convenient lattice whose basis consists of vectors representing the
𝑠 places in 𝑈𝑆

𝐿 , i.e. the lattice Λ =
∏︀
𝑤∈𝑆 Z𝑒𝑤.

The set 𝑆 breaks up into 𝐺(𝐿/𝐾)-orbits, so the lattice breaks up into induced 𝑆-
modules, and we can calculate ℎ(𝑈𝑆

𝐿 ) using again using Shapiro’s Lemma 25.25.8.7.

4. Putting all the steps together gives

ℎ(C𝐿) = 𝑛,

as needed.

2.1 Reduce to finite number of places

Proposition 28.2.2: illis Let 𝐿 be a number field. There exists a finite set of places 𝑇 of 𝐿
such that

I𝐿 = 𝐿×I𝑇𝐿.

Proof. This basically follows from the finiteness of the class group.
For the first part, consider the map 𝑝 : I𝐿 → Cl𝐿, defined by sending

(𝑎𝑣)𝑣∈𝑉𝐿 ↦→
∏︁

𝑣=𝑣p∈𝑉 0
𝐿

p𝑣(𝑎p).
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(Map 𝑎 to the prime ideal whose valuation at each prime equals the valuations of the cor-
responding coordinates of 𝑎.) The kernel—the set sent to the principal ideals—is 𝐿×I𝑉∞

𝐿 ,
where 𝑉 ∞ is the set of infinite places. Thus we have an isomorphism I𝐿/𝐿×I𝑉∞

𝐿 → Cl𝐿
3.

The latter is finite; take the inverse image of a set of generators 𝐴. We can choose finite
𝑇 containing 𝑉 ∞ so that the coordinates of elements of 𝐴 are units outside of 𝑇 . Then I𝑇𝐿
generates I𝐿/𝐿×, as needed.

2.2 Cohomology of I𝑆𝐿 and I𝐿
Proposition 28.2.3: hilt Let 𝐿/𝐾 be a Galois extension of number fields. Let 𝑆 be a set
of places in 𝐾 and let I𝑆𝐿 := I𝑇𝐿 where 𝑇 = {𝑤 ∈ 𝑉𝐿 : 𝑤 | 𝑣 for some 𝑣 ∈ 𝑆}. Then for any
𝑖 > 0 we have

𝐻 𝑖(𝐺, I𝑆𝐿) =
∏︁
𝑣∈𝑆

𝐻 𝑖(𝐺(𝐿𝑣/𝐾𝑣), 𝐿
𝑣×)×

∏︁
𝑣 ̸∈𝑆

𝐻 𝑖(𝐺(𝐿𝑣/𝐾𝑣), 𝑈
𝑣).

This is also true for Tate groups if 𝐺 is finite.
In particular, if 𝐿/𝐾 is cyclic, and 𝑆 contains all ramified places, then

𝐻1(𝐺, I𝑆𝐿) = 1

𝐻2(𝐺, I𝑆𝐿) =
∏︁
𝑣∈𝑆

1

𝑛𝑣
Z/Z

ℎ(I𝑆𝐿) =
∏︁
𝑣∈𝑆

𝑛𝑣

where 𝑛𝑣 is the local degree [𝐿𝑤 : 𝐾𝑣], for any 𝑤 | 𝑣.

Proof. We have

I𝑆𝐿 =
∏︁
𝑤∈𝑇

𝐿×
𝑤 ×

∏︁
𝑤 ̸∈𝑇

𝑈𝑤

where 𝑈𝑤 := 𝑈𝐾𝑤 . We calculate the cohomology groups of each factor.

𝐻 𝑖

(︃
𝐺,

∏︁
𝑤∈𝑇

𝐿×
𝑤

)︃
= 𝐻 𝑖

�
𝐺,

∏︁
𝑣∈𝑆

∏︁
𝑤|𝑣
𝐿×
𝑤

�
=
∏︁
𝑣∈𝑆

𝐻 𝑖

�
𝐺,
∏︁
𝑤|𝑣
𝐿×
𝑤

�
cohomology respects products, Proposition 25.25.6.7

=
∏︁
𝑣∈𝑆

𝐻 𝑖(𝐺𝑣, 𝐿𝑣×) by Corollary 25.25.8.8 to Shapiro’s Lemma

eq:hilt1 =
∏︁
𝑣∈𝑆

𝐻 𝑖(𝐺(𝐿𝑣/𝐾𝑣), 𝐿
𝑣×) (28.2)

eq:hilt2 =

⎧⎨⎩1, 𝑖 = 1,∏︀
𝑣∈𝑆

1
𝑛𝑣
Z/Z, 𝑖 = 2.

(28.3)

3cf. Example 24.5.10; there I𝑉 ∞

𝐿 is written as U𝐿.
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For 𝑖 = 1, the last result follows from Hilbert’s Theorem 90, and for 𝑖 = 2, it follows from

the fact that inv𝐾𝑣 : 𝐻2(𝐺(𝐿𝑣/𝐾𝑣), 𝐿
𝑣×)

∼=−→ 1
𝑛𝑣
Z/Z is an isomorphism (a consequence of

the class formation for LCFT, Theorem 27.27.4.14, or actually just Theorem 27.27.3.1 and
Proposition 27.27.2.1).

For the units, we have,

eq:hilt3𝐻 𝑖

�
𝐺,

∏︁
𝑤 ̸∈𝑇

𝑈𝑤

�
=
∏︁
𝑣 ̸∈𝑆

𝐻 𝑖(𝐺(𝐿𝑣/𝐾𝑣), 𝑈𝑤) Proposition 25.25.6.7

(28.4)

eq:hilt4 = 1 if 𝑇 unramified, by Theorem 27.27.1.1.
(28.5)

For the general case, take the product of (28.2) and (28.4). For the special case, take the
product of (28.3) and (28.5). The Herbrand quotient calculation follows directly.

If we consider the full group I𝐿, we get the following result. (We won’t need this until
Section 5.)

Proposition 28.2.4: pr:hi-as-prod For any Galois extension 𝐿/𝐾 with Galois group 𝐺 and any
𝑛 ≥ 0, we have

𝐻𝑛(𝐺, I𝐿) ∼=
⨁︁
𝑣∈𝑉𝐾

𝐻𝑛(𝐿𝑣/𝐾𝑣).

This is also true for Tate groups when 𝐺 is finite.
In particular, we have

1. 𝐻1(𝐺, I𝐿) = 0.

2. 𝐻2(𝐺, I𝐿) =
⨁︀

𝑣∈𝑉𝐾
1
𝑛𝑣
Z/Z.

Proof. We have
I𝐿 = lim−→

𝑆 finite

I𝑆𝐿.

Hence using Proposition 25.25.14.3,

𝐻𝑛(𝐺, I𝐿) = 𝐻𝑛(𝐺, lim−→
𝑆

I𝑆𝐿)

= lim−→𝐻𝑛(𝐺, I𝑆𝐿)

=

⎧⎪⎪⎨⎪⎪⎩lim−→𝑆

∏︀
𝑣∈𝑆 𝐻

𝑛(𝐺𝑣, 𝐿𝑣×)×∏︀𝑣 ̸∈𝑆 𝐻
𝑛(𝐺𝑣, 𝑈 𝑣) =

⨁︀
𝑣∈𝑉𝐾 𝐻

𝑛(𝐺𝑣, 𝐿𝑣×), general case

1, 𝑛 = 1⨁︀
𝑣∈𝑉𝐾

1
𝑛𝑣
Z/Z, 𝑛 = 2

where the last statement follows from Proposition 28.2.3.
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2.3 Cohomology of lattices and 𝑈𝑇
𝐿

Proposition 28.2.5: cohom-lattice Suppose 𝐺 is finite cyclic, 𝑉 is a finite real vector space and
R[𝐺]-module, and 𝑀,𝑁 are two lattices in 𝑉 , stable under the action of 𝐺. Then

ℎ(𝑀) = ℎ(𝑁).

(If one is defined, so is the other.)

Proof. We proceed in 2 steps.

Step 1: We show that 𝑀 ⊗Z Q ∼= 𝑁 ⊗Z Q as 𝐺-modules. We know 𝑀 ⊗Z R = 𝑉 = 𝑁 ⊗Z R.
Suppose 𝑉 = R𝑛. Choose bases {𝛽𝑖} for 𝑀 and {𝛾𝑖} for 𝑁 . Let 𝐵(𝜎) and 𝐶(𝜎) be matrices
representing the action of a generator 𝜎 ∈ 𝐺 on these bases.4 A linear map𝑀⊗ZR→ 𝑁⊗ZR
represented by a matrix 𝐴 with respect to {𝛽𝑖} and {𝛾𝑖} is a isomorphism of 𝐺-modules if

𝐴 ·𝐵(𝜎) = 𝐶(𝜎) · 𝐴.

These determine a system of homogeneous linear equations in the entries of 𝐴, with coeffi-
cients in Z, since 𝐵(𝜎) and 𝐶(𝜎) have entries in Z.

Letting the solution space be 𝑊 ⊆ℳ𝑛×𝑛(R), we have

dimR𝑊 = dimQ(𝑊 ∩ℳ𝑛×𝑛(Q)),

because Gaussian elimination never needs to leave the world of Q. Hence we can find a
basis for 𝑊 contained inℳ𝑛×𝑛(Z), say {𝐴1, . . . , 𝐴𝑘}. By the existence of an isomorphism
between 𝑀 ⊗Z R and 𝑁 ⊗Z R, there exist 𝑎1, . . . , 𝑎𝑘 ∈ R such that 𝑎1𝐴1 + · · · + 𝑎𝑘𝐴𝑘 is
nonsingular, i.e.

det(𝑎1𝐴1 + · · ·+ 𝑎𝑘𝐴𝑘) ̸= 0.

The left hand side is hence a nonzero polynomial in the 𝑎𝑘; since it has coefficients in the
infinite field Q it has a solution over Q. Taking 𝐴 to be the corresponding linear combina-
tion, we get the desired 𝐺-isomorphism 𝑀 ⊗Z Q→ 𝑁 ⊗Z Q.

Step 2: We have an isomorphism 𝑓 : 𝑀 ⊗Z Q → 𝑁 ⊗Z Q; by scaling 𝑓 (since 𝑀,𝑁 are
finite-dimensional lattices) we may assume 𝑓 restricts to 𝑓 : 𝑀 → 𝑁 . Now 𝑁/𝑓(𝑀) is
finite; hence by Proposition 25.25.12.4(1) and (2),

ℎ(𝑁) = ℎ(𝑀)ℎ(𝑁/𝑓(𝑀)) = ℎ(𝑀).

Proposition 28.2.6: hult Let 𝐿/𝐾 be a finite cyclic extension of number fields of degree 𝑛.
Let 𝑆 be a set of places in𝐾 containing the infinite places and 𝑇 = {𝑤 ∈ 𝑉𝐿 : 𝑤 | 𝑣 for some 𝑣 ∈ 𝑆}.
We have

ℎ(𝑈𝑇
𝐿 ) =

1

𝑛

∏︁
𝑤∈𝑇

𝑛𝑤

4𝐺 cyclic is not important here; we could work with all elements of 𝐺.
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where 𝑈𝑇
𝐿 denotes the 𝑇 -units in 𝐿 and 𝑛𝑤 is the local degree [𝐿𝑤 : 𝐾𝑣], where 𝑤 | 𝑣.

Proof. Consider the map 𝐿 : 𝑈𝑇
𝐿 → R𝑇 defined by letting

𝐿(𝑎) = (ln |𝑎|𝑤)𝑤∈𝑇

where | · |𝑤 is the normalized valuation. Then 𝐿(𝑎) is a lattice of dimension |𝑇 | − 1 by
Dirichlet’s 𝑆-unit theorem 18.18.3.2; it is in the hyperplane where the sum of coordinates
is 0 (take the log of the product formula 20.31.1). The kernel of 𝐿 consists the roots of
unity in 𝐿, 𝜇 ∩ 𝐿, which is a finite group. By Proposition 25.25.12.4(1)–(2) applied to
1→ 𝜇 ∩ 𝐿→ 𝑈𝑇

𝐿 → 𝐿(𝑈𝑇
𝐿 )→ 0,

1-ineq-1ℎ(𝑈𝑇
𝐿 ) = ℎ(𝜇 ∩ 𝐿)ℎ(𝐿(𝑈𝑇

𝐿 )) = ℎ(𝐿(𝑈𝑇
𝐿 )) (28.6)

Let 𝐺(𝐿/𝐾) act on R𝑇 by permuting the coordinates corresponding to the places. Note
that 𝐿 is a 𝐺-module homomorphism with respect to this action. Let x be the vector
(1, 1, . . . , 1); note it is fixed by 𝐺(𝐿/𝐾). Note that

Λ := 𝐿(𝑈𝑇
𝐿 )⊕ (1, 1, . . . , 1)Z

is a full lattice in R𝑇 . By Proposition 25.25.12.4(2)–(3), we have

1-ineq-2ℎ(Λ) = ℎ(𝐿(𝑈𝑇
𝐿 ))ℎ(Z) = 𝑛 · ℎ(𝐿(𝑈𝑇

𝐿 )). (28.7)

Consider the lattice Λ′ = Z𝑇 in R𝑇 , where 𝑒𝑣 is the vector with 1 in the 𝑣 position and 0’s
elsewhere. By Proposition 28.2.5, ℎ(Λ) = ℎ(Λ′). Since 𝐺 permutes the places above 𝑣 ∈ 𝑆
transitively, we have

ℎ(Λ) = ℎ(Λ′) = ℎ

(︃⨁︁
𝑤∈𝑇

𝑒𝑤Z
)︃

= ℎ

�⨁︁
𝑣∈𝑆

⨁︁
𝑤|𝑣

𝑒𝑤Z

�
=
∏︁
𝑣∈𝑆

ℎ

�⨁︁
𝑤|𝑣

𝑒𝑤Z

�
cohomology respects products, Proposition 25.25.6.7

=
∏︁
𝑣∈𝑆

ℎ(𝐺𝑣,Z) by Corollary 25.25.8.8 to Shapiro’s Lemma

=
∏︁
𝑣∈𝑆
|𝐺𝑣| Proposition 25.25.12.4(3)

=
∏︁
𝑣∈𝑆

𝑛𝑣.

Together with (28.6) and (28.7), we get

ℎ(𝑈𝑇
𝐿 ) =

1

𝑛
ℎ(Λ′) =

1

𝑛

∏︁
𝑣∈𝑆

𝑛𝑣.
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2.4 Herbrand quotient of C𝐿

Lemma 28.2.7: hcl If 𝐿/𝐾 is a cyclic extension of number fields of degree 𝑛,

ℎ(C𝐿) = 𝑛.

Proof. Choose a set of places 𝑇 for 𝐿 containing the ramified places and satisfying the
conditions of Proposition 28.2.2. Enlarge 𝑇 so it is stable under 𝐺(𝐿/𝐾). Using Proposi-
tions 28.2.3 and 28.2.6, we have that

ℎ(C𝐿) = ℎ(𝐿×I𝑇𝐿/𝐿×) = ℎ(I𝑇𝐿/I𝑇𝐿 ∩ 𝐿×) =
ℎ(I𝑇𝐿)
ℎ(𝑈𝑇

𝐿 )
=

∏︀
𝑣∈𝑆 𝑛𝑣

1
𝑛

∏︀
𝑣∈𝑆 𝑛𝑣

= 𝑛

Proof of Theorem 28.2.1. We have

|I𝐾/𝐾×Nm𝐿/𝐾(I𝐿)| = |𝐻0
𝑇 (𝐺,C𝐿)| = ℎ(C𝐿)|𝐻−1

𝑇 (𝐺,C𝐿)| ≥ 𝑛

by Lemma 28.2.7.

2.5 The Frobenius map is surjective

sec:frob-surj Using the first inequality, we can already prove surjectivity of the Artin map, defined
on ideals.

Proposition 28.2.8: pr:frob-surj Let 𝐿/𝐾 be a finite abelian extension, and 𝑆 be a finite set
of primes. Define the map

𝜓𝐿/𝐾 : 𝐼𝑆 → 𝐺(𝐿/𝐾)

by setting 𝜓𝐿/𝐾(p) = Frob𝐿/𝐾(p) for primes p ̸∈ 𝑆 and extending to a group homomorphism.
Then 𝜓𝐿/𝐾 is surjective.

Proof. Let 𝐻 = im(𝜓𝐿/𝐾). By compatibility of the Frobenisus map, Frob𝐾𝐻/𝐾(p) is the
image of Frob𝐿/𝐾(p) under the projection 𝐺(𝐿/𝐾) → 𝐺(𝐾𝐻/𝐾). Hence the map 𝜓𝐾𝐻/𝐾 :
𝐼𝑆 → 𝐺(𝐾𝐻/𝐾) is trivial, giving (𝐾𝐻)𝑣 = 𝐾𝑣 for every 𝑣 ̸∈ 𝑆, and

I𝑆𝐾 ⊆ Nm𝐾𝐻/𝐾 I𝐾𝐻 .

However, 𝐾×I𝑆𝐾 is dense in I𝐾 by the weak approximation theorem 20.20.3.4, so 𝐾×I𝑆𝐾 =
𝐾×Nm𝐾𝐻/𝐾 I𝐾𝐻 = I𝐾 . But by the First Inequality 28.2.1,

[𝐾𝐻 : 𝐾] ≤ [I𝐾 : 𝐾×Nm𝐾𝐻/𝐾 I𝐾𝐻 ] = 1.

Hence 𝐾𝐻 = 𝐾, i.e. 𝐻 = 𝐺.
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3 The second inequality

We give two proofs of the second inequality, an analytic proof and an algebraic proof. The
first has the advantage of being short and sweet, while the second has the advantage of
staying completely within the algebraic realm, i.e. not requiring knowledge of 𝐿-functions.

Theorem 28.3.1 (Second inequality for global class field theory): thm:2ineq For any extension
𝐿/𝐾 of degree 𝑛, and 𝐺 = 𝐺(𝐿/𝐾), we have

1. |𝐻0
𝑇 (𝐺,C𝐿)| and |𝐻2(𝐺,C𝐿)| divide 𝑛.

2. (HT90 for ideles) |𝐻1(𝐺,C𝐿)| = 1.

In particular,
|I𝐾/𝐾×Nm𝐿/𝐾 I𝐿| ≤ [𝐿 : 𝐾].

3.1 Analytic approach

We first show the inequality |I𝐾/𝐾×Nm𝐿/𝐾 I𝐿| ≤ [𝐿 : 𝐾].

Proof of inequality. Let c be admissible for 𝐿/𝐾, i.e. such that U𝐾(1, c) ⊆ Nm𝐿/𝐾(I𝐿). By
Proposition 24.24.5.9 we know that I𝐾/𝐾×Nm𝐿/𝐾 I𝐿 ∼= 𝐼 c𝐿/𝑃𝐾(1, c)Nm𝐿/𝐾(𝐼

c
𝐿). We show

that
[𝐼 c𝐾 : 𝑃𝐾(1, c)Nm𝐿/𝐾(𝐼

c
𝐿)] ≤ [𝐿 : 𝐾].

Let𝐻 = 𝑃𝐾(1, c)Nm𝐿/𝐾 𝐼
c
𝐿 and let 𝜒 be a nontrivial character of 𝐼 c𝐾/𝐻, viewed as a character

of 𝐼 c𝐾/𝑃𝐾(1, c).
Define the Hecke 𝐿-series 𝐿c(𝑠, 𝜒) by

𝐿c(𝑠, 𝜒) :=
∏︁
p-c

1

1− 𝜒(p)
Np𝑠

=
∑︁
a⊥c

𝜒(a)

Na𝑠
,

where equality follows from expanding the product. Define

𝑚(𝜒) := ord𝑠=1 𝐿c(𝑠, 𝜒).

Since 𝐿c(𝑠, 𝜒) = (𝑠− 1)𝑚(𝜒)𝑔(𝑠, 𝜒) for some 𝑔(𝑠, 𝜒) nonzero at 𝑠 = 1, taking logs gives

ln𝐿c(𝑠, 𝜒) ∼ 𝑚(𝜒) ln(𝑠− 1) = −𝑚(𝜒) ln
1

𝑠− 1
.

Taking the sum over all characters of 𝐼
𝑆(m)
𝐾 gives

eq:2-ineq-anal ln 𝜁𝐾(𝑠) +
∑︁
𝜒 ̸=1

ln𝐿m(𝑠, 𝜒) ∼

⎡⎣1−∑︁
𝜒 ̸=1

𝑚(𝜒)

⎤⎦ ln 1

𝑠− 1
(28.8)
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where we use the fact that 𝜁𝐾(𝑠) := 𝐿(𝑠, 1) has a pole at 𝑠 = 1.
On the other hand, by the Taylor series expansion for ln,

ln𝐿c(𝑠, 𝜒) = −
∑︁
p-c

ln

�
1− 𝜒(p)

Np𝑠

�
=

∞∑︁
𝑛=1

∑︁
p-c

𝜒(p)𝑛

𝑛Np𝑛𝑠
∼
∑︁
p

𝜒(p)

Np𝑠
=

∑︁
K∈𝐼c/𝐻

𝜒(K)
∑︁

p∈K, p-c

1

Np𝑠

where in the last step we grouped together the primes based on what they are modulo 𝐻.
This is greater than the sum if we only include primes with 𝑓(P/p) = 1 (P in 𝐿). Again we
are off by at most a constant if we only include primes splitting completely in 𝐿, because
the ramified primes are at most a finite subset. We can then “unrestrict” to all the primes
of 𝐿, and be off by at most a constant in a neighborhood of 1, because the other terms are
in the form 1

𝑝𝑓𝑠
for 𝑓 > 1.

Let ℎ = [𝐼𝑆(m) : 𝐻]. We get, for 𝑠→ 1+,

ln 𝜁𝐾(𝑠) +
∑︁
𝜒 ̸=1

ln𝐿m(𝑠, 𝜒) ∼
∑︁
𝜒

∑︁
K∈𝐼c/𝐻

𝜒(K)
∑︁

p∈K, p-m

1

Np𝑠

% 𝑂(1) + ℎ
∑︁

p∈Spl(𝐿/𝐾)

1

Np𝑠
∑︁
𝜒

𝜒(K) =

⎧⎨⎩0, K ̸= 𝐻

ℎ, K = 𝐻.

∼ 𝑂(1) +
ℎ

𝑁

∑︁
𝑓(P)=1

1

NP𝑠
𝑁 primes above each p

∼ 𝑂(1) +
ℎ

𝑁
ln 𝜁𝐿(𝑠)

∼ 𝑂(1) +
ℎ

𝑁
ln

1

𝑠− 1
.

Combining this with (28.8) gives 𝑚(𝜒) = 0 (since ℎ
𝑁
> 0) for all 𝜒 ̸= 1, and ℎ ≤ 𝑁 , as

needed.

3.2 Algebraic approach

sec:2ineq-alg-proof The steps are as follows.

1. Carry out some preliminary local computations.

2. Consider the case where 𝐿/𝐾 is an extension such that 𝐺(𝐿/𝐾) ∼= (Z/𝑛Z)𝑟, and 𝐾
contains the 𝑛th roots of unity. Note this is a Kummer extension, so we can characterize
it in terms of 𝐿×𝑛 ∩𝐾. This will make computations easy for us.

We construct an explicit set 𝐸 with

𝐸 ⊆ Nm𝐿/𝐾 I𝐿 ⊆ I𝐾 .

We have [I𝐾 : 𝐾× Nm𝐿/𝐾 I𝐿] | [𝐼𝐾 : 𝐾×𝐸], so it suffices to show the latter equals 𝑛𝑟.
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3. Show this.

4. This implies the cyclic prime case, and that the cyclic prime case implies the general
case.

This section is incomplete; see Cassels-Frohlich [CF69], pg. 180-185.

3.2.1 Local computations

Proposition 28.3.2: pr:local-power-index Let 𝐾 be a local field with |𝜇𝑛∩𝐾| = 𝑚, i.e. 𝐾 contains
𝑚 𝑛th roots of unity. Then

[𝐾× : 𝐾×𝑛] =
𝑛𝑚

|𝑛|𝑣
and

[𝑈𝐾 : 𝑈𝑛
𝐾 ] =

𝑚

|𝑛|𝑣
.

Proof. There are two methods: appeal to the structure of 𝐾× or calculate a Herbrand
quotient.

3.2.2 Constructing 𝐸

Since 𝐿 is a Kummer extension we can write it in the form 𝐾( 𝑛
√
𝑎1, . . . , 𝑛

√
𝑎𝑟). Let 𝑆 be a

set of primes satisfying the following conditions.

1. 𝑆 contains all infinite places.

2. 𝑆 contains all divisors of 𝑛.

3. I𝐾 = 𝐾×I𝑆𝐾 . (This is possible by Proposition 28.2.2.)

4. 𝑆 contains all prime factors in the numerator and denominator of all 𝑎𝑖, i.e. the 𝑎𝑖 are
all 𝑆-units.

Define
𝐸 =

∏︁
𝑣∈𝑆

𝐾×𝑛
𝑉 ×

∏︁
𝑣∈𝑇

𝐾×
𝑣 ×

∏︁
𝑣 ̸∈𝑆∪𝑇

𝑈𝑣.

Lemma 28.3.3: 𝐸 ⊆ Nm𝐿/𝐾 I𝐿.

We want to calculate [I𝐾 : 𝐾×𝐸] but 𝐾×𝐸 is hard to deal with. 𝐸 however, is not,
because to calculate the index of 𝐸 we can appeal to Proposition 28.3.2. Thus we use the
following group theoretic fact.

Proposition 28.3.4: Let 𝐵 ⊆ 𝐴 and 𝐶 be subgroups of a group 𝐺. Then

[𝐶𝐴 : 𝐶𝐵][𝐶 ∩ 𝐴 : 𝐶 ∩𝐵] = [𝐴 : 𝐵].
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Then

[I𝐾 : 𝐾×𝐸] = [𝐾×I𝑆∪𝑇𝐾 : 𝐾×𝐸] =
[I𝑆∪𝑇𝐾 : 𝐸]

[𝐾× ∩ I𝑆∪𝑇𝐾 : 𝐾× ∩ 𝐸]
.

See Cassels-Frohlich.

3.3 Finishing the proof

Now we prove Theorem 28.3.1.

Proof of Theorem 28.3.1. Step 1: We show the theorem when [𝐿 : 𝐾] is prime. In this case,
both the first and second inequality hold, so

|𝐻2
𝑇 (𝐺,C𝐿)| = [I𝐾 : 𝐾×Nm𝐿/𝐾(I𝐿)] = [𝐿 : 𝐾].

Since ℎ(C𝐿) = 𝑛 by Lemma 28.2.7, we get |𝐻1
𝑇 (𝐺,C𝐿)| = 1. Finally, note 𝐻2

𝑇 (𝐺,C𝐿) =
𝐻0
𝑇 (𝐺,C𝐿) because 𝐺(𝐿/𝐾) is cyclic.

Step 2: We show the theorem when [𝐿 : 𝐾] is a prime power, by induction on the exponent.
Suppose |𝐺| = 𝑝𝑛. Every 𝑝-group has a normal subgroup of index 𝑝. Let 𝐻 ▷ 𝐺 be such a
group; it corresponds to 𝐻 = 𝐺(𝐿/𝐾 ′) for some extension 𝐾 ′/𝐾 of degree 𝑝. The inflation-
restriction exact sequence 25.25.11.10 gives

0→ 𝐻1(𝐺/𝐻,C𝐾′)⏟  ⏞  
=0 by prime case

Inf−→ 𝐻1(𝐺,C𝐿)
Res−−→ 𝐻1(𝐻,C𝐿)⏟  ⏞  

=0 by induction hypothesis

.

Thus 𝐻1(𝐺,C𝐿) = 0. This shows part 2. Using 𝐻1(𝐺,C𝐿) = 0, the inflation-restriction
exact sequence gives

0→ 𝐻2(𝐺/𝐻,C𝐾′)⏟  ⏞  
order 𝑝

Inf−→ 𝐻2(𝐺,C𝐿)
Res−−→ 𝐻2(𝐻,C𝐿)⏟  ⏞  

order |𝑝𝑛−1

by the case for cyclic extensions and the induction hypothesis. This shows |𝐻2(𝐺,C𝐿)| | 𝑝𝑛.
Finally,

|𝐻0
𝑇 (𝐺,C𝐿)| = [C𝐾 : Nm𝐿/𝐾 C𝐿] = [C𝐾 : Nm𝐾′/𝐾(C𝐾′)][Nm𝐾′/𝐾(C𝐾′) : Nm𝐿/𝐾(C𝐿)].

Now [C𝐾 : Nm𝐾′/𝐾(C𝐾′)] = 𝑝 by the cyclic case, and the surjection Nm𝐾′/𝐾 : C𝐾′/Nm𝐿/𝐾′(C𝐿)�
Nm𝐾′/𝐾(C𝐾′)/Nm𝐿/𝐾(C𝐿) and the induction hypothesis gives that the second factor divides
𝑝𝑛−1. This finishes the induction step.

Step 3: We show the theorem holds in general, using Corollary 25.25.11.7: the map

Res𝑛 : 𝐻𝑛(𝐺,𝑀)→ 𝐻𝑛(𝐺𝑝,𝑀)

is injective on the 𝑝-primary component. Using step 2, for 𝑛 = 1, this gives us that 𝑝 -
𝐻1
𝑇 (𝐺,C𝐿) for any 𝑝, i.e. 𝐻1

𝑇 (𝐺,C𝐿) = 0. For 𝑛 = 0, 2, this gives that 𝑣𝑝(|𝐻𝑛(𝐺,𝑀)|) ≤
𝑣𝑝(|𝐻𝑛(𝐺𝑝,𝑀)|) ≤ 𝑣𝑝(𝐺), giving part 1.
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3.4 Local-to-global principle for algebras

The fact that 𝐻1(𝐺,C𝐿) = 0 also gives the following corollary.

Theorem 28.3.5 (Brauer-Hasse-Noether Theorem): thm:b-h-n Let 𝐿/𝐾 be any Galois exten-
sion with Galois group 𝐺. Then the map

𝐻2(𝐺,𝐿×)→
⨁︁
𝑣∈𝑉𝐾

𝐻2(𝐺𝑣, 𝐿𝑣×)

is injective. A central simple algebra over a number field 𝐾 is split over 𝐾 iff it is split
locally everywhere.

Proof. Taking cohomology of 0→ 𝐿× → I𝐿 → C𝐿 → 0 gives

eq:b-h-n 𝐻1(𝐺,C𝐿) // 𝐻2(𝐺,𝐿×) // 𝐻2(𝐺, I𝐿) // · · ·

0 // Br𝐾
� � //

⨁︀
𝑣∈𝑉𝐾 Br𝐾𝑣

(28.9)

Here 𝐻1(𝐺,C𝐿) = 0 directly from HT90 for ideles (Theorem 28.3.1), and equality on the
right comes from

𝐻2(𝐺, I𝐿) =
⨁︁
𝑣∈𝑉𝐾

𝐻2(𝐿𝑣/𝐾𝑣)

(Proposition 28.2.4). Brauer group is 𝐻2 by Theorem 26.5.2. Injectivity of the bottom map
gives the result.

(We do need to check that in the above diagram, the map Br𝐾 →
⨁︀

𝑣∈𝑉𝐾 Br𝐾𝑣 is exactly
the map sending an algebra to its reduction over every local field. This is a matter of tracing
the long windy road between Br and 𝐻2 and left to the reader.)

4 Proof of the reciprocity law

To construct the Artin map in the local case, we constructed the invariant map inv𝐾 :
𝐻2(𝐾ur/𝐾)→ Q/Z. Then we used the fact that 𝐻2(𝐾ur) = 0, i.e. every 𝑎 ∈ 𝐻2(𝐾) splits
in an unramified extension, to conclude that 𝐻2(𝐾) ∼= 𝐻2(𝐾ur/𝐾).

In the global case we will construct the invariant map inv𝐾 : 𝐻2(𝐾𝑐/𝐾, I𝐾𝑐) → Q/Z,
for a certain infinite cyclotomic extension 𝐾𝑐. Then we show 𝐻2(𝐾𝑐, I𝐾) = 0, i.e. every
𝑎 ∈ 𝐻2(𝐾, I𝐾) splits in this cyclotomic extension, to conclude 𝐻2(𝐾, I𝐾) ∼= 𝐻2(𝐾𝑐/𝐾, I𝐾𝑐

).
We construct the global Artin map by taking the product of the local Artin maps:

𝜑𝐿/𝐾 : I𝐾 → 𝐺(𝐿/𝐾)

𝜑𝐿/𝐾(a) =
∏︁
𝑣∈𝑉𝐾

𝜑𝑣(𝑎𝑣).eq:artin-as-product (28.10)
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(Only a finite number of the factors—those where 𝐿𝑣/𝐾𝑣 is ramified or 𝑎𝑣 ̸∈ 𝑈𝑣—are not
equal to the identity.)

We need to show that 𝐾× ⊆ ker𝜑𝐿/𝐾 , so that it factors through I𝐾/𝐾× · Nm𝐿/𝐾 I𝐿.
Consider the following two properties.

(A) Define the map 𝜑𝐿/𝐾 as in (28.10). The map 𝜑𝐿/𝐾 takes the value 1 on the principal
ideles 𝐾× ⊆ I𝐾 .

(B) For all 𝛼 ∈ 𝐻2(𝐺(𝐿/𝐾), 𝐿×) = Br𝐿/𝐾 ,

inv(𝛼) :=
∑︁
𝑣∈𝑉𝐾

inv𝑣(𝑖(𝛼)) = 0.

Note in (B), inv𝑣 is defined as follows.

Definition 28.4.1: df:global-inv Define inv𝑣 as the following composition:

inv𝑣 : 𝐻
2(𝐺, I𝐿)

Res𝐺/𝐺𝑣−−−−−→ 𝐻2(𝐺𝑣, I𝐿)
𝐻2(𝐺𝑣 ,𝑝𝑣)−−−−−−→ 𝐻2(𝐺𝑣, (𝐿

𝑣)×)
inv−→ Q/Z

where 𝑝𝑣 : I𝐿 → (𝐿𝑣)× is the projection map. (This looks complicated, but it is just what
you think it is.)

We prove (A) for all finite abelian extensions of number fields and (B) for all finite Galois
extensions of number fields.

We first show that (A) holds for a special class of extensions, and then use an “unscrew-
ing” argument to show (A) and (B) hold for more general extensions. The plan of attack is
as follows.

1. Show (A) holds for Q(𝜁𝑚)/Q.

2. Show (A) holds for all cyclotomic extensions.

3. Show that (B) holds for 𝛼 split by a cyclotomic extension.

4. Every 𝛼 is split by a cyclic cyclotomic extension, so (B) holds for all 𝛼 ∈ 𝐻2(𝐾,𝐾
×
).?

5. Show that (A) holds for all abelian extensions.

Note that (A) is a statement about 𝐻−2
𝑇 → 𝐻0

𝑇 while (B) is a statement about 𝐻2. We
“transfer” the problem from (A) to (B) so that we can apply our characterization of 𝜑𝑣
in terms of the local invariant map (Theorem 27.27.4.9). First, we need an analogue of
Theorem 27.27.4.9 in the global case.

Lemma 28.4.2: lem:sum-inv Let 𝐺 = 𝐺(𝐿/𝐾). For all 𝑣 ∈ 𝑉𝐾 and all 𝜒 ∈ 𝐻1(𝐺,Q/Z) =
Hom(𝐺,Q/Z), we have inv𝑣(a ∪ 𝛿𝜒) = 𝜒𝑣(𝜑𝑣(𝑎𝑣)). (𝜒𝑣 is the restriction of 𝜒 to 𝐺𝑣 and a is
the image of a in 𝐻0

𝑇 (𝐺(𝐿/𝐾), I𝐿). Hence

inv(a ∪ 𝛿𝜒) =
∑︁
𝑣

inv𝑣(a ∪ 𝛿𝜒) = 𝜒(𝜑(𝑎)).
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Proof. Since restriction commutes with cup products (Proposition 25.25.11.9) and with 𝛿,
we have

inv𝑣(a ∪ 𝛿𝜒) = inv(𝑝𝑣 Res𝐺/𝐺𝑣(a ∪ 𝛿𝜒))
= inv(𝑝𝑣(a) ∪ 𝛿𝜒𝑣) Res𝐺/𝐺𝑣(𝜒) = 𝜒𝑣

= inv(𝑎𝑣 ∪ 𝛿𝜒𝑣) = 𝜒𝑣(𝜑𝑣(𝑎𝑣)).

We invoked Theorem 27.27.4.9 in the last step.
Taking the product gives the second statement:

𝜒(𝜑(a)) = 𝜒

�∏︁
𝑣

𝜑𝑣(𝑎𝑣)

�
=
∑︁
𝑣

𝜒𝑣(𝜑𝑣(a)) =
∑︁
𝑣

inv𝑣(a ∪ 𝛿𝜒).

4.1 (A) holds for Q(𝜁𝑛)/Q
Proposition 28.4.3: For any 𝑚 ∈ N,

𝜑Q(𝜁𝑚)/Q(Q×) = 1.

First reduce to the case where 𝑚 = 𝑝 is prime. We give two approaches.

Proof 1. By Example 24.24.4.3, we know the ideal version of global class field theory holds
for all cyclotomic extensions of Q. Note the maximal unramified extension of Q𝑝 is included
in Q𝑝(𝜁∞) for all 𝑝 (Theorem 21.21.2.6). Hence by Theorem 24.24.6.6(2), there is a map 𝜑′

satisfying the conditions of the idele version of GCFT, except that 𝜑′
R may not equal 𝜑R.

Letting 𝜑′
𝑣 be the restriction of 𝜑′ to 𝐾𝑣, we have (on 𝐺(Q(𝜁∞)/Q))

eq:idele-cft-cyclotomic𝜑′(a) = 𝜑′
R(𝑎R)

∏︁
𝑣∈𝑉 0

Q

𝜑′
𝑣(𝑎𝑣)

?
=

∏︁
𝑣∈𝑉Q

𝜑𝑣(𝑎𝑣) = 𝜑′(a) (28.11)

where the middle inequality is pending a proof that 𝜑′
R = 𝜑R. We check this is true.

Since 𝜑′
R is a map R/R>0 → 𝐺(C/R), it suffices to show complex conjugation is in the

image of 𝜑′. We have 𝐺(C/R) ∼= 𝐺(R(𝑖)/R), so consider 𝜑′ on 𝐺(Q(𝑖)/Q). As 𝜑′(Q×) = 1,
we have by (28.11) and the fact that Q(𝑖)/Q is only ramified at 2 that on 𝐺(Q(𝑖)/Q),

1 = 𝜑′(−7) = 𝜑′
2(−7)𝜑′

7(−7)𝜑′
R(−7)

Now −7 ≡ 1 (mod 8) so −7 ∈ NmQ2(𝑖)/Q2(Q2(𝑖)
×), and 𝜑′

2(−7) = 1. We have 𝑣7(−7) = 1, so
𝜑′(−7) equals the Frobenius element, complex conjugation. Hence 𝜑′

R(−7) is also complex
conjugation.

Thus (28.11) holds, and we have 𝜑Q(𝜁∞)/Q(Q×) = 𝜑′
Q(𝜁∞)/Q(Q×) = 1, as needed.

Proof 2. Use explicit computations of local symbols, obtained from Lubin-Tate theory. See
Cassels-Frohlich [CF69], p. 191.
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4.2 (B) holds for all cyclomic extensions

We prove the following more general proposition.

Proposition 28.4.4 (Devissage): 5
pr:gl-rec-devissage If (A) is true for 𝐿/𝐾, then (A) holds for

1. any subextension 𝑀/𝐾 and

2. any extension 𝐿𝐾 ′/𝐾 ′.

For an extension 𝐾 ′(𝜁𝑛)/𝐾
′, apply the proposition with 𝐿 = Q(𝜁𝑛) and 𝐾 = Q to obtain

the following.

Corollary 28.4.5: (A) holds for all cyclotomic extensions.

Proof of Proposition 28.4.4.

1. For any place 𝑣, 𝜑𝑀𝑣/𝐾𝑣 is the composition of 𝜑𝐿𝑣/𝐾𝑣 and the projection 𝐺(𝐿𝑣/𝐾𝑣)→
𝐺(𝑀 𝑣/𝐾𝑣). Since the global map is the product of the local maps, 𝜑𝑀/𝐾 is the com-
position of 𝜑𝐿/𝐾 and 𝐺(𝐿/𝐾)→ 𝐺(𝑀/𝐾). Hence 𝜑𝑀/𝐾(𝐾

×) = 1.

2. Let 𝐿′ = 𝐿 ·𝐾 ′. We have a natural inclusion 𝐺(𝐿′/𝐾 ′) →˓ 𝐺(𝐿/𝐾). The local Artin
map is compatible with basefield extension with respect to the norm map. Since the
norm on ideles is computed componentwise, it follows the map 𝜑 =

∏︀
𝑣∈𝑉𝐾 𝜑𝑣 is also

compatible with field extensions.

I𝐾′
𝜑𝐿′/𝐾′

//

Nm𝐾′/𝐾
��

𝐺(𝐿′/𝐾 ′)

𝑖
��

I𝐾
𝜑𝐿/𝐾

// 𝐺(𝐿/𝐾).

Suppose 𝑎 ∈ 𝐾 ′×. By commutativity and (A) for the extension 𝐿/𝐾, we have

𝑖 ∘ 𝜑𝐿′/𝐾′(𝑎) = 𝜑𝐿/𝐾 [Nm𝐾′/𝐾(𝑎)⏟  ⏞  
∈𝐾×

] = 1.

Since 𝑖 is injective, this implies 𝜑𝐾′/𝐾′(𝑎) = 1.

4.3 (A) for cyclotomic implies (B) for 𝛼 split by cyclic cyclotomic

This follows from the more general proposition:

Proposition 28.4.6: If 𝐿/𝐾 is cyclic, then (A) implies (B).

5Devissage means “unscrewing” in French.
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Proof. Since 𝐿/𝐾 is cyclic, we can take 𝜒 ∈ 𝐻1(𝐺,Q/Z) to be a generating character. We
have the following commutative diagram.

𝐾× � � //

∙∪𝛿𝜒
��

I𝐾
𝜑𝐿/𝐾

//

∙∪𝛿𝜒
��

𝐺(𝐿/𝐾)

𝜒

��

𝐻2(𝐺,𝐿×) // 𝐻2(𝐺, I𝐿) inv // Q/Z.

The left-hand square commutes by functoriality of cup products; the right-hand square
commutes by Lemma 28.4.2. Recall ∙ ∪ 𝛿𝜒 is an isomorphism for 𝐺 cyclic, by Proposi-
tion 25.25.12.1. Hence if 𝑎 ∈ 𝐻2(𝐺,𝐿×), then it is equal to 𝑏 ∪ 𝛿𝜒 for some 𝑏 ∈ 𝐾×, and

inv(𝑎) = inv(𝑏 ∪ 𝛿𝜒) = 𝜒(𝜑𝐿/𝐾(𝑏)) = 0.

In the last step we use (A) to give 𝜑𝐿/𝐾(𝑏) = 0.

4.4 (B) for cyclic cyclotomic implies (B) in general

It suffices to prove the following.

Theorem 28.4.7: thm:split-in-cyc-cyc For any 𝛽 ∈ 𝐻2(𝐾) there exists a cyclic cyclotomic exten-
sion 𝐿/𝐾 such that 𝛽 maps to 0 in 𝐻2(𝐿).

There exists a cyclotomic extension 𝐾𝑐 ⊆ 𝐾(𝜁∞) with 𝐺(𝐾𝑐/𝐾) ∼= ÒZ such that the
inclusion map

𝐻2(𝐾𝑐/𝐾)→ 𝐻2(𝐾)

is an isomorphism.

We first give a criterion for 𝛽 to map to 0 in 𝐻2(𝐿), then find a cyclotomic 𝐿/𝐾 where
this criterion holds.

Lemma 28.4.8: lem:criterion-split Let 𝛼 ∈ 𝐻2(𝐾). Then Res𝐾/𝐿(𝛼) = 0 in 𝐻2(𝐿) if and only if
[𝐿𝑣 : 𝐾𝑣] inv𝑣(𝛼) = 0 for every 𝑣 ∈ 𝑉𝐾 .

Proof. By the Brauer-Hasse-Noether Theorem 28.3.5, Res𝐾/𝐿(𝛼) = 0 in 𝐻2(𝐿/𝐾,𝐿×) iff
Res𝐾/𝐿(𝛼) = 0 in 𝐻2(𝐿𝑣/𝐾𝑣, 𝐿

𝑣×) = 0 for all 𝑣. Since inv𝐾𝑣 is an isomorphism, this is true
iff inv𝐾𝑣 Res𝐾𝑣/𝐿𝑣(𝛼) = 0 for all 𝑣. But we know

inv𝐾𝑣 Res𝐾𝑣/𝐿𝑣(𝛼) = [𝐿𝑣 : 𝐾𝑣] inv𝑣(𝛼),

from the class formation for LCFT (Theorem 27.27.4.14).

Lemma 28.4.9: lem:cyc-cyc-ext Suppose 𝐾/Q is a finite extension and 𝑆 be a finite set of places
of 𝐾. There exists a cyclic cyclotomic extension 𝐿/𝐾 such that

𝑚 | [𝐿𝑣 : 𝐾𝑣] for every finite 𝑣 ∈ 𝑆
2 | [𝐿𝑣 : 𝐾𝑣] for every real 𝑣 ∈ 𝑆.
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(The second condition is just equivalent to 𝐿 being complex.)

Proof. First consider the case 𝐾 = Q. Note that for an odd prime 𝑞,

𝐺(Q(𝜁𝑞𝑟)/Q) ∼= (Z/𝑞𝑟)× ∼= Z/(𝑞 − 1)𝑞𝑟−1 ∼= Z/(𝑞 − 1)× Z/𝑞𝑟−1.

Let 𝐿(𝑞𝑟) be the subextension of Q(𝜁𝑞𝑟) with Galois group Z/𝑞𝑟−1. Becuase Q𝑝 only has a
finite number of roots of unity, 𝑣𝑞([𝐿(𝑞

𝑟) : Q𝑝])→∞ as 𝑟 →∞.
Similarly for 𝑞 = 2,

𝐺(Q(𝜁2𝑟)/Q) ∼= (Z/2𝑟)× ∼= Z/2× Z/2𝑟−2.

The subextension Q(𝜁2𝑟 − 𝜁−1
2𝑟 ) corresponds to the automorphisms 𝜁 ↦→ 𝜁𝑠 with 𝑠 ≡ 1

(mod 4), which form a group isomorphic to Z/2𝑟−2. Let 𝐿(2𝑟) = Q(𝜁2𝑟 − 𝜁−1
2𝑟 ) (note this is

complex), then similarly lim𝑟→∞ 𝑣2([𝐿(2
𝑟) : Q]) =∞. Now take

𝐿 :=
∏︁
𝑞𝑖|2𝑚

𝐿(𝑞𝑟𝑖𝑖 )

for 𝑟𝑖 large enough. As it is a compositum of cyclic cyclotomic extensions of relatively prime
degrees, 𝐿 is cyclic cyclotomic.

Now suppose we are given general 𝐾. First construct Q(𝜁𝑛)/Q satisfying the conditions
for Q with 𝑚[𝐾 : Q]. Then take 𝐿 = 𝐾(𝜁𝑛). We have [𝐾𝑣(𝜁𝑛) : 𝐾

𝑣] | 𝑚 for finite primes 𝑣
of Q since [𝐾𝑣 : Q𝑣] | [𝐾 : Q].

We can take 𝐾𝑐 =
⋃︀
𝑆,𝑟𝑖 𝐾 ·

∏︀
𝑞𝑖∈𝑆 𝐿(𝑞

𝑟𝑖
𝑖 ).

Proof of Theorem 28.4.7. We know inv𝑣(𝛼) = 0 except for a finite number of primes, say
primes in 𝑆. Why? Suppose 𝑚 inv𝑣(𝛼) = 0. Use Lemma 28.4.9 to get 𝐿 = 𝐾(𝜁𝑁) such that
works for 𝑚 and 𝑆. Then by Lemma 28.4.8, Res𝐾/𝐿(𝛼) = 0 in 𝐻2(𝐾(𝜁𝑁)).

4.5 (B) implies (A) for all abelian extensions

This will follow from the following proposition.

Proposition 28.4.10: If 𝐿/𝐾 is abelian, then (B) for 𝐿/𝐾 implies (A) for 𝐿/𝐾.

Proof. Let 𝑎 ∈ 𝐾×. By Lemma 28.4.2, for any character 𝜒,

𝜒(𝜑𝐿/𝐾(𝑎)) = inv( 𝑎 ∪ 𝛿𝜒⏟  ⏞  
∈𝐻2(𝐿/𝐾,𝐿×)

) = 0.

Hence 𝜑𝐿/𝐾(𝑎) = 0.

We have now proved the following.

Theorem 28.4.11: thm:AB The following hold.
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(A) For an abelian extension 𝐿/𝐾, define the map 𝜑𝐿/𝐾 as in (28.10). The map 𝜑𝐿/𝐾 takes
the value 1 on the principal ideles 𝐾× ⊆ I𝐾 .

(B) For any 𝛼 ∈ 𝐻2(𝐾/𝐾),

inv(𝛼) :=
∑︁
𝑣∈𝑉𝐾

inv𝑣(𝛼) = 0.

5 The ideles are a class formation

sec:ideles-cf We now complete the proof of global class field theory by showing that the ideles are
a class formation and invoking the theorems in Section 27.4. In the local case, the 𝐺-modules
in the class formations are the fields themselves, but in the global case, the 𝐺-modules are
the ideles.

Theorem 28.5.1: thm:global-class-form Let 𝐾 be a global field. Then

(𝐺(𝐾/𝐾), {𝐺(𝐿/𝐾) : 𝐿/𝐾 finite Galois} ,C𝐾)

is a class formation.

Note that C
𝐺(𝐾/𝐿)

𝐾
= C𝐿 for each 𝐿 by Proposition 28.1.3.

Proof. We check the axioms in Definition 27.4.5.

Step 1: First, 𝐻1(𝐺(𝐿/𝐾),C𝐿) = 0 for every cyclic extension of prime degree (in fact every
finite extension), by Theorem 28.3.1.

Second, we need maps inv𝐿/𝐾 : 𝐻2(𝐿/𝐾,C𝐾)
∼=−→ Q/Z. Right now we just have a map

inv𝐿/𝐾 : 𝐻2(𝐺(𝐿/𝐾), I𝐿)→ Q/Z.

We need to show inv𝐿/𝐾 “factors through” 𝐻2(𝐺(𝐿/𝐾),C𝐿). We also need to show com-
patibility with inflation and restriction, and that

inv𝐿/𝐾 : 𝐻2(𝐺(𝐿/𝐾),C𝐿)
∼=−→ 1

[𝐿 : 𝐾]
Z/Z

for all 𝐿/𝐾. It is hard to show this directly, except in the cyclic case, when we know the
first inequality holds. As we will see, though, showing the cyclic case is enough, because by
Theorem 28.4.7, every element of 𝐻2(𝐺(𝐾/𝐾),C𝐾) is contained in 𝐻2(𝐺(𝐿/𝐾),C𝐿) for
some cyclic (in fact, also cyclotomic) 𝐿/𝐾.
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Step 2: Consider the following commutative diagram, whose columns are inflation-restriction
sequences.

0

��

0

��

0

��

0 // 𝐻2(𝐿/𝐾,𝐿×)
𝑖1 //

Inf
��

𝐻2(𝐿/𝐾, I𝐿)
𝑝1
//

Inf
��

inv
++

𝐻2(𝐿/𝐾,C𝐿)

Inf
��

0 // 𝐻2(𝑀/𝐾,𝑀×)
𝑖2 //

Res
��

𝐻2(𝑀/𝐾, I𝑀)
𝑝2
//

Res
��

inv
++

𝐻2(𝑀/𝐾,C𝑀)

Res
��

1
𝑛
Z/Z

0 // 𝐻2(𝑀/𝐿,𝑀×)
𝑖3 // 𝐻2(𝑀/𝐾, I𝑀)

inv
++

𝑝3
// 𝐻2(𝑀/𝐿,C𝑀) Q/Z

Q/Z.

The columns are exact by the inflation-restriction exact sequence (Proposition 25.25.11.10)
and the following:

1. 𝐻1(𝑀/𝐿,𝑀×) = 0 by Hilbert’s Theorem 90 (Theorem 26.26.1.1).

2. 𝐻1(𝑀/𝐿, I𝑀) = 0 by Proposition 28.2.4.

3. 𝐻1(𝑀/𝐿,C𝑀) = 0 by Theorem 28.3.1.

The rows are exact because they come from the long exact sequences of 0 → 𝐿× → I𝐿 →
C𝐿 → 0 and 0 → 𝑀× → I𝑀 → C𝑀 → 0, and the fact that 𝐻1 of C𝐿,C𝑀 is trivial (again
by Theorem 28.3.1).

Step 3: Next we show the maps inv are compatible with inflation. Indeed, since we have a
class formation for local class field theory (Theorem 27.27.4.14), for every 𝑤 | 𝑣 we have the
diagram

𝐻2(𝐿𝑤/𝐾𝑣)
inv𝐾𝑣 //

Inf
𝐿𝑤/𝐿𝑤

��

1
[𝐿𝑤:𝐾𝑣 ]

Z/Z

𝑖

��

𝐻2(𝐾𝑣)
inv𝐾𝑣 // Q/Z.

Now 𝐻2(𝐺(𝐿/𝐾), I𝐾) ∼=
⨁︀

𝑣∈𝑉𝐾 𝐻
2(𝐺𝑣, (𝐿𝑣)×) by Proposition 28.2.4 and inv =

∑︀
𝑣∈𝑉𝐾 inv𝑣,

so inv is compatible with inflation.

Step 4: Thus, we can take the direct limit over 𝑀 , noting direct limits preserve exactness,
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to get (we will explain the dashed and dotted lines)

eq:3x3-icf 0

��

0

��

0

��

0 // 𝐻2(𝐿/𝐾,𝐿×)
𝑖1 //

Inf
��

𝐻2(𝐿/𝐾, I𝐿)
𝑝1
//

Inf
��

inv1
++

𝐻2(𝐿/𝐾,C𝐿)

Inf
��

inv′1

&&

0 // 𝐻2(𝐾,𝐾
×
)

𝑖2 //

Res
��

𝐻2(𝐾, I𝐾)
𝑝2

//

Res

��
inv2

++

𝐻2(𝐾,C𝐾)

Res

��

inv′2

&&

1
𝑛
Z/Z

��

0 // 𝐻2(𝐿,𝐿
×
)

𝑖3 // 𝐻2(𝐿, I𝐾)

inv3
++

𝑝3
// 𝐻2(𝐿,C𝐾)

inv′3

&&

Q/Z

𝑛

��

Q/Z.

(28.12)

Step 5: Now we show the maps inv𝑗 are compatible under restriction. Again, since we have
a class formation for local class field theory (Theorem 27.27.4.14), we have the diagram

𝐻2(𝐾𝑣)
inv𝐾𝑣 //

Res𝐾𝑣/𝐿𝑤

��

Q/Z

[𝐿𝑤:𝐾𝑣 ]

��

𝐻2(𝐿𝑤)
inv𝐿𝑤 // Q/Z

Using 𝐻2(𝐺(𝐿/𝐾), I𝐾) ∼=
⨁︀

𝑣∈𝑉𝐾 𝐻
2(𝐺𝑣, (𝐿𝑣)×), we can write an element of 𝐻2(𝐾, I𝐾) as

x = (𝑥𝑣)𝑣∈𝑉𝐾 , where 𝑥𝑣 ∈ 𝐻2(𝐺𝑣, (𝐾𝑣)
×). On degree 0, Res𝐾/𝐿 is the diagonal imbedding

I𝐾
∼=−→ I𝐺𝐿 →˓ I𝐿 of Proposition 28.1.3, so on degree 2,

Res𝐾/𝐿 x =
(︁(︀
Res𝐾𝑣/𝐿𝑤 𝑥𝑣

�
𝑤|𝑣

)︁
𝑣∈𝑉𝐾

∈
⨁︁
𝑣∈𝑉𝐾

⨁︁
𝑤|𝑣

𝐻2(𝐺𝑤, 𝐾𝑣
×
).

The invariant map then sends this to∑︁
𝑣∈𝑉𝐾

∑︁
𝑤|𝑣

inv𝐿𝑤(Res𝐾𝑣/𝐿𝑤 𝑥𝑣) =
∑︁
𝑣∈𝑉𝐾

∑︁
𝑤|𝑣

𝑛𝑤/𝑣 inv𝐾𝑣 𝑥𝑣 = 𝑛
∑︁
𝑣∈𝑉𝐾

inv𝐾𝑣 𝑥𝑣 = 𝑛 inv𝐾 x,

using the fact that [𝐿 : 𝐾] =
∑︀
𝑤|𝑣 𝑛𝑤/𝑣, where 𝑛𝑤/𝑣 is the local degree.

Step 6: By Theorem 28.4.11, the bent maps are complexes, i.e. im(𝑖𝑗) ⊆ ker(inv𝑗) for all
three rows.

Thus the maps inv𝑗 factor through the images im(𝑝𝑗), for 𝑗 = 1, 2, 3 to give the maps inv′𝑗.
Be careful: we have only so far defined inv′1 : im(𝑝1)→ 1

𝑛
Z/Z, and not inv′1 : 𝐻

2(𝐿/𝐾,C𝐿)→
1
𝑛
Z/Z. We want to show that for certain extensions 𝐿/𝐾, the 𝑝𝑗 are in fact surjective, so

the map inv′𝑗 is an isomorphism 𝐻2(𝐿/𝐾,C𝐿)→ 1
𝑛
Z/Z.
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To do this we orders of im(inv1) and |𝐻2(𝐿/𝐾,C𝐿)|. Again, we use 𝐻2(𝐿/𝐾, I𝐿) ∼=⨁︀
𝑣∈𝑉𝐾

1
𝑛𝑣
Z/Z (Proposition 28.2.4). Making this identification using the invariant maps inv𝑣,

the invariant map takes (𝑎𝑣)𝑣 ∈
⨁︀

𝑣∈𝑉𝐾
1
𝑛𝑣
Z/Z to

∑︀
𝑣∈𝑉𝐾 𝑎𝑣. Thus im(inv1) = 1

lcm𝑣(𝑛𝑣)
Z/Z

and

|im(inv1)| = lcm𝑣(𝑛𝑣).

We have that

eq:lcmnv lcm𝑣(𝑛𝑣) = |im(inv1)| = |im(inv′1)| ≤ |im(𝑝1)| ≤ |𝐻2(𝐿/𝐾,C𝐿)| ≤ 𝑛, (28.13)

where the last step is the second inequality. We don’t get any information out of this unless
lcm𝑣(𝑛𝑣) = 𝑛. For certain extensions 𝐿/𝐾, we do know it is true, though.

Step 7: We show that if 𝐿/𝐾 is cyclic, then lcm𝑣(𝑛𝑣) = 𝑛. Let 𝑆 be the set of ramified
primes and infinite places of 𝐾. By Proposition 28.2.8, 𝐺(𝐿/𝐾) is generated by the elements
Frob𝐿/𝐾(p) for p ̸∈ 𝑆. Now

¬
Frob𝐿/𝐾(p)

)︂
is sent to a subgroup of index 𝑛𝑣 in 𝐺(𝐿/𝐾). Since

𝐺(𝐿/𝐾) to be generated by these elements, we must have lcm𝑣(𝑛𝑣) = 𝑛.

Then equality holds everywhere in (28.13), we have the exact sequence

0→ 𝐻2(𝐿/𝐾,𝐿×)→ 𝐻2(𝐿/𝐾, I𝐿)→ 𝐻2(𝐿/𝐾,C𝐿) ∼=
1

𝑛
Z/Z→ 0,

where the map 𝐻2(𝐿/𝐾, I𝐿)→ 1
𝑛
Z/Z is the invariant map.

Step 8: Taking the direct limit over all 𝐿 ⊆ 𝐾𝑐 (as defined in Theorem 28.4.7) we get

0 // 𝐻2(𝐾,𝐾×
𝑐 ) //

Inf
��

𝐻2(𝐾𝑐/𝐾, I𝐾𝑐) //

Inf
��

// 𝐻2(𝐾𝑐/𝐾,C𝐾𝑐)
∼= Q/Z

Inf
��

// 0

0 // 𝐻2(𝐾) // 𝐻2(𝐾, I𝐾)
inv // Q/Z

where the top row is exact. By Theorem 28.4.7, the left vertical map is an isomorphism.
The middle map is also an isomorphism because Theorem 28.2.4 gives that it is the map⨁︁

𝑣∈𝑉𝐾
𝐻2(𝐾𝑣

𝑐 /𝐾𝑣)→
⨁︁
𝑣∈𝑉𝐾

𝐻2(𝐾𝑣).

This is surjective because 𝐻2(𝐾𝑣
𝑐 /𝐾𝑣) ∼= Q/Z via the invariant map, 𝐾𝑣

𝑐 being the directed
union of 𝐿𝑤 with [𝐿𝑤 : 𝐾𝑣] arbitrarily divisible. Hence it is an isomorphism. Finally, the
right vertical map is clearly an isomorphism. Thus the bottom row is short exact and inv𝐾
gives an isomorphism 𝐻2(𝐾,C𝐾) → Q/Z, i.e. the map inv′2 in (28.12). Restricting to
𝐻2(𝐿′/𝐾,C𝐿′), it is an isomorphism to 1

[𝐿′:𝐾]
Z/Z for any 𝐿′, as needed.

We are now ready to reap the rewards of our hard work.
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Theorem (Global reciprocity, Theorem 24.24.6.1): Given a finite abelian extension 𝐿/𝐾,
there is a unique continuous homomorphism 𝜑𝐿/𝐾 that is compatible with the local Artin
maps, i.e. the following diagram commutes:

I𝐾
𝜑𝐿/𝐾
// 𝐺(𝐿/𝐾)

𝐾×
𝑣

𝜑𝑣
// //

?�

𝑖𝑣

OO

𝐺(𝐿𝑣/𝐾𝑣).
?�

OO

Moreover, 𝜑𝐿/𝐾 satisfies the following properties.

1. (Isomorphism) For every finite abelian extension 𝐿/𝐾, 𝜑𝐾 defines an isomorphism

𝜑𝐿/𝐾 : C𝐾/Nm𝐿/𝐾(C𝐿) = I𝐾/(𝐾× · Nm𝐿/𝐾(I𝐿))
∼=−→ 𝐺(𝐿/𝐾).

2. (Compatibility over all extensions) For 𝐿 ⊆𝑀 , 𝐿,𝑀 both finite abelian extensions of
𝐾, the following commutes:

𝐺(𝑀/𝐾)

𝑝𝐿
��

I𝐾

𝜑𝑀/𝐾
::

𝜑𝐿/𝐾
// 𝐺(𝐿/𝐾)

Thus we can define 𝜑𝐾 := lim←−𝐿/𝐾 abelian
𝜑𝐿/𝐾 as a map I𝐾 → 𝐺(𝐾ab/𝐾).

3. (Compatibility with norm map) 𝜑𝐾 is a continuous homomorphism I𝐾 → 𝐺(𝐾ab/𝐾),
and the following commutes.

I𝐿
𝜑𝐿 //

Nm𝐿/𝐾

��

𝐺(𝐿ab/𝐿)

∙|
𝐾ab

��

I𝐾
𝜑𝐾 // 𝐺(𝐾ab/𝐾)

Proof. By Theorem 28.5.1 and the abstract reciprocity law (Theorem 27.27.4.8) we get iso-
morphisms 𝜑′

𝐿/𝐾 : C𝐾/Nm𝐿/𝐾 C𝐿 → 𝐺(𝐿/𝐾) satisfying the required compatibility prop-
erties. We only have to check that 𝜑′

𝐿/𝐾 = 𝜑𝐿/𝐾 (recall we defined 𝜑𝐿/𝐾 as the product of
local maps). From Theorem 27.27.4.9, for every character 𝜒, 𝜒(𝜑′

𝐿/𝐾(a)) = inv𝐾(a ∪ 𝛿𝜒).
But this is also true for 𝜑𝐿/𝐾 by Proposition 28.4.2. Hence 𝜑𝐿/𝐾 = 𝜑′

𝐿/𝐾 , as needed.
Uniqueness is clear from the condition that 𝜑 restricts to the local Artin maps.

6 Existence theorem

We now prove the existence theorem for global class field theory.
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Proof of Theorem 24.24.6.3 and Theorem 24.24.6.4. This involves explicitly constructing norm
groups and calculating norm indices, which overlaps with Section 3.2. The proof is omitted
for now. See Cassels-Frohlich [CF69], pg. 201-202.

Theorem 24.24.6.4 now follows from the Existence Theorem and Theorem 27.4.13.

Finally, we prove that 𝜑𝐾 gives a topological isomorphism I𝐾/𝐾×(𝐾×
∞)0 → 𝐺(𝐾ab/𝐾).

This finishes the proof of all theorems of global class field theory.

Proof of Theorem 24.24.6.5. First we prove that 𝜑𝐾 is surjective. We know that 𝜑𝐻𝐾/𝐾 :
I𝐾 → 𝐺(𝐻𝐾/𝐾) is surjective, where 𝐻𝐾 is the Hilbert class field (See Definition 29.5), since
this is a finite extensions. Thus it suffices to show 𝜑𝐻𝐾/𝐾 : I𝐾 → 𝐺(𝐾ab/𝐻𝐾) is surjective.

We know that for each place 𝑣 of 𝐾, 𝜑𝐾 : 𝐾𝑣 � 𝑊 (𝐾ab
𝑣 /𝐾𝑣) is surjective (Theo-

rem 24.24.2.4). Restricting to 𝑈𝑣, we get that 𝜑𝐾 |𝑈𝑣 : 𝑈𝑣 � 𝐼(𝐾ab
𝑣 /𝐾𝑣) ∼= 𝐼𝑣(𝐾

ab/𝐾) is sur-
jective. Since 𝐾×

(︀∏︀
𝑣∈𝑉𝐾 𝑈𝑣

�
/𝐾× ⊆ I𝐾 , it suffices to show

∏︀
𝑣∈𝑉𝐾 𝐼𝑣(𝐾

ab/𝐾) = 𝐺(𝐾ab/𝐾).

Let 𝐾ab,ur
𝑣 denote the maximal abelian extension of 𝐾 unramified at 𝑣. We have by Theo-

rem 15.15.7.2 that∏︁
𝑣∈𝑉𝐾

𝐼𝑣(𝐾
ab/𝐾) =

∏︁
𝑣∈𝑉𝐾

𝐺(𝐾ab/𝐾ab,ur
𝑣 ) = 𝐺

�
𝐾ab/

⋂︁
𝑣∈𝑉𝐾

𝐾ab,ur
𝑣

�
= 𝐺(𝐾/𝐻𝐾)

since 𝐻𝐾 is the maximal abelian extension unramified at all places. This shows surjectivity.
To show the kernel is 𝐾×(𝐾×

∞)0, note that this is exactly the intersection of all open
subsets of finite index in I𝐾 . Add details.
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Chapter 29

Applications

ch:cft-app In this chapter we give several important applications of class field theory to number
theory, rewarding the reader for reading the difficult proofs in the last few chapters (or
conversely, motivating the reader to read the proofs).

Why is class field theory useful? It relates a field 𝐾 to its Galois group 𝐺(𝐾ab/𝐾), so
transfers information about the extensions of a field into information contained in the field
itself, or conversely, relates the behavior of elements in the field 𝐾, to their behavior in
various extension fields. Moreover, because the global Artin map is constructed from the
local Artin maps, questions in number theory involving global fields like Q can be understood
by patching together information from its completions (local fields). In the chapter, we will
use the full power of class field theory to give solutions to the following problems.

Throughout, we will assume that 𝐾 is a number field.

1. Reciprocity laws: We show, roughly, that whether a prime 𝑝 is a perfect 𝑛th power
modulo 𝑞, depends only on 𝑞 mod 𝑝 (actually, some multiple of 𝑝). Reciprocity hence
shows that the Legendre symbol

(︀
*
∙

�
, is like a group homomorphism in both the top

and bottom. The Artin isomorphism will give us the homomorphism in the bottom.

2. Local-to-global principle: We show the Hasse-Minkowski theorem: a quadratic
form has a solution in 𝐾 iff it has a solution in every completion of 𝐾.

3. Density of primes: We prove theChebotarev density theorem on the distribution
of prime ideals in a number field.

4. Splitting of primes: We show how a prime p splits in an abelian extension 𝐿/𝐾
depends only on p modulo a ray class group, since splitting behavior can be expressed
in terms of the Artin map (Proposition 24.24.1.3). We show this characterization
is unique to abelian extensions, and give some examples for splitting in nonabelian
extensions.

5. Maximal unramified abelian extension: We characterize the maximal unramified
abelian extension 𝐻𝐾 of a number field 𝐾, and show that all ideals of 𝐾 become
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principal in 𝐻𝐾 . 𝐻𝐾 can be computed for quadratic extensions using the modular
function 𝑗, which we show in Chapter 41.

6. Primes representated by quadratic forms: We relate quadratic forms to primes
using the Gauss correspondence (Theorem 17.17.5.1), then use the Hilbert class field
to characterize which primes are represented by a given quadratic form.

7. Artin and Hecke 𝐿-functions: We use class field theory to show that for abelian
extensions, all Artin L-functions are Hecke L-functions. This is useful because it is
relatively easy to show Hecke L-functions satisfy nice properties such as analytic con-
tinuation and functional equation. This was Emil Artin’s original motivation for class
field theory.

Finally, we describle how class field theory fits as the “1-dimensional case” of the Langlands
program.

1 Reciprocity laws

sec:rec-laws First we interpret and generalize the Legendre symbol using class field theory. We
derive a generalize reciprocity law using class field theory, and then specialize to quadratic,
cubic, and biquadratic reciprocity.

Reciprocity laws take two forms. The first is as follows.

Theorem 29.1.1 (Weak reciprocity): thm:weak-rec Let 𝐾 be a number field containing all 𝑛th
roots of unity. Let 𝑝 be a fixed prime. Then there exists a modulus m and a finite subset
𝑆 ∈ 𝐼m𝐾/𝑃𝐾,1(m), such that for all 𝑝 relatively prime to m,

𝑝 is a perfect 𝑛th power mod 𝑞 ⇐⇒ (𝑞 mod 𝑃𝐾,1(m)) ∈ 𝑆.

In fact, 𝑆 is the kernel of a certain homomorphism 𝐼𝐾(m)/𝑃𝐾,1(m)→ 𝜇𝑛.

This tells us that whether 𝑝 is a perfect 𝑛th power modulo 𝑞, depends only on the modular
properties of 𝑞, and is moreover characterized by a group homomorphism. However, it does
not give an efficient method to actually determine whether 𝑝 is a perfect 𝑛th power modulo
𝑞. To get this we turn to strong reciprocity.

We know that the Legendre symbol
(︁
∙
𝑝

)︁
(and its generalizations to 𝑛th powers,

(︁
∙
𝑝

)︁
𝑛
),

is a homomorphism in the upper component as well, so it is natural to relate these two

homomorphisms: what is their ratio
(︁
𝑝
𝑞

)︁
𝑛

(︁
𝑞
𝑝

)︁−1

𝑛
? This will give us a natural algorithm to

compute the Legendre symbol
(︁
𝑎
𝑝

)︁
𝑛
. We will prove strong reciprocity at the end of this

section, after we discuss the Hilbert symbol.
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1.1 Weak reciprocity and the Legendre symbol

The key observations linking reciprocity to the Artin map are that 𝑎 is a perfect 𝑛th power

modulo p iff 𝑎
Np−1

𝑛 ≡ 1 (mod p) (just like
(︁
𝑎
𝑝

)︁
= 𝑎

𝑝−1
2 in the quadratic case), and the

homomorphism 𝑎 ↦→ 𝑎
N𝑝−1

𝑛 can be linked to the Frobenius map.

Definition 29.1.2: Let 𝐾 be a number field containing an 𝑛th root of unity, and let p be
a prime ideal with 𝑎𝑛 ⊥ Np. Define the Legendre symbol

(︁
𝑎
p

)︁
𝑛
to be the unique 𝑛th root

of unity 𝜁 such that

𝜁 ≡ 𝑎
Np−1

𝑛 (mod p).

To see this is well-defined, note the following two points.

1. The 𝑛th roots of unity are distinct modulo p because 𝑛 ⊥ Np. Hence Np−1
𝑛

is an integer.

2. (𝑎
Np−1

𝑛 )𝑛 = 1 ≡ 1 (mod p) by Fermat’s little theorem so 𝑎
Np−1

𝑛 is equivalent to a unique
𝑛th root of unity.

Proposition 29.1.3: Let 𝐾 be a number field containing an 𝑛th root of unity, let p be a
prime ideal with 𝑎𝑛 ⊥ Np. Then 𝑎 is a perfect 𝑛th power modulo p iff

(︁
𝑎
p

)︁
𝑛
= 1.

Proof. Let the residue field of p be 𝑘. As 𝑘× has order Np−1 and is generated by 1 element,

𝑎 is a perfect 𝑛th power modulo p iff 𝑎
Np−1

𝑛 =
(︁
𝑎
p

)︁
𝑛
= 1.

Proposition 29.1.4:
(︁
𝑎
p

)︁
is a group homomorphism factoring through O𝐾/p.

Proof. Clear.

How can class field theory give us an expression like this? Well, the Frobenius element

corresponding to p acts like taking the Np power modulo 𝑝. How do we get to 𝑎
Np−1

𝑛 ? By
acting by the Frobenius on 𝑛

√
𝑎 instead.

Proposition 29.1.5: pr:leg-cft The following holds:�
𝑎

p

�
𝑛

=
[𝜓𝐿/𝐾(p)]( 𝑛

√
𝑎)

𝑛
√
𝑎

,

where 𝐿 = 𝐾( 𝑛
√
𝑎).

Proof. First note p - 𝑎𝑛 implies that 𝐾( 𝑛
√
𝑎)/𝐾 is unramified at p, by Theorem 21.21.2.5.

By definition 𝜓𝐿/𝐾(p) is the homomorphism that sends 𝑏 to 𝑏Np modulo p. Thus

[𝜓𝐿/𝐾(p)](
𝑛
√
𝑎) ≡ 𝑛

√
𝑎
Np ≡ 𝑎

Np−1
𝑛 𝑛
√
𝑎 (mod p).

But 𝑛
√
𝑎 satisfies 𝑋𝑛 − 𝑎 = 0, so (p, 𝐿/𝐾) must send 𝑛

√
𝑎 to 𝜁 𝑛

√
𝑎 where 𝜁 is some root of

unity. The above equation shows that we must have 𝜁 =
(︁
𝑎
p

)︁
𝑛
, as needed.
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We define
(︀
𝑎
b

�
𝑛
for any b ∈ 𝐼(𝑛𝑎)𝐾 by extending multiplicatively the map

(︀
𝑎
∙

�
, originally

defined for primes p. Equivalently (by Proposition 29.1.5), define
(︀
𝑎
b

�
=

[𝜓𝐿/𝐾(b)]( 𝑛√𝑎)
𝑛√𝑎 .1

We can now prove weak reciprocity.

Proof of Theorem 29.1.1. By Proposition 29.1.5,

eq:leg-symb-cft

�
𝑎

p

�
𝑛

=
[𝜓𝐾( 𝑛√𝑎)/𝐾(p)](

𝑛
√
𝑎)

𝑛
√
𝑎

. (29.1)

Taking 𝑎 = 𝑝 and p = (𝑞), we get�
𝑝

𝑞

�
𝑛

=
[𝜓𝐾( 𝑛

√
𝑝)/𝐾(𝑞)]( 𝑛

√
𝑝)

𝑛
√
𝑝

.

Let m be the conductor of𝐾( 𝑛
√
𝑝)/𝐾. Since 𝜓𝐾( 𝑛

√
𝑝)/𝐾 is an homomorphism on 𝐼m𝐾/𝑖(𝑃𝐾,1(m))

(Theorem 24.24.4.1), its kernel contains 𝑖(𝑃𝐾,1(m)). In other words, when 𝑞 ∈ 𝑖(𝑃𝐾,1(m)),

then
(︁
𝑝
𝑞

)︁
=

[𝜓𝐾( 𝑛√𝑞)/𝐾(𝑞)]( 𝑛
√
𝑝)

𝑛
√
𝑝

=
id( 𝑛

√
𝑝)

𝑛
√
𝑝

= 1 and 𝑝 is a perfect 𝑛th power modulo 𝑞.

1.2 Strong reciprocity and the Hilbert symbol

To prove strong reciprocity we need to actually compute (29.1). Supposing p is a principal
ideal (𝑏), our statement about reciprocity seems to suggest that 𝑏 and 𝑎 play similar roles in
the equation:2

eq:leg-symb-cft2

�𝑎
𝑏

�
𝑛
=

[𝜓𝐿/𝐾(𝑏)]( 𝑛
√
𝑎)

𝑛
√
𝑎

. (29.2)

However, (29.2) is not symmetric. We seek to symmetrize it.
But look at Proposition 26.26.2.2. Equation (29.1) is the character corresponding to the

element 𝑎 ∈ 𝐾×. Using the map in Kummer Theory, we can get the equation symmetric in
𝑎 and 𝑏. In fact, we did this already when we defined the Hilbert symbol.

If motivation was lacking when we defined the Hilbert symbol, hopefully this clears things
up: it explains and clarify the duality in 𝑎 and 𝑏 observed above by making it symmetric in
𝑎 and 𝑏.

Proposition 29.1.6: pr:hilbert-is-rec Let 𝑏 - 𝑛 be prime in 𝐾 and 𝐾𝑏 the completion at 𝑏. Let
(, )𝑏 : 𝐾

×
𝑏 /𝐾

×𝑛
𝑏 ×𝐾×

𝑏 /𝐾
×𝑛
𝑏 → 𝜇𝑛 denote the Hilbert symbol. Then for 𝑎 ⊥ 𝑏,

(𝑎, 𝑏)𝑏,𝑛 =
�𝑎
𝑏

�
𝑛
.

1We can extend the definition to all prime elements 𝑝 by definining
(︀
𝑎
𝑝

�
𝑛
=

𝜑𝐿/𝐾(𝑖𝑣(𝑝))(
𝑛
√
𝑎)

𝑛
√
𝑎

, then extend

the definition of
(︀
𝑎
𝑏

�
𝑛
to encompass any 𝑏 ∈ 𝐾× by multiplicativity. For instance, in the case 𝑛 = 2, this

gives the Jacobi symbol. For 𝑏 = 2,
(︀
𝑎
𝑏

�
tells us whether 𝑎 is a perfect square modulo any power of 2.

2Caution: we’re using the Artin map on ideals; we write 𝜓𝐿/𝐾(𝑏) to mean 𝜓𝐿/𝐾((𝑏)). In contrast,
𝜑𝐿/𝐾(𝑏) = 1 since 𝑏 ∈ 𝐾.
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In general, if 𝐾𝜋( 𝑛
√
𝑎)/𝐾𝜋(𝑎) is unramified,

(𝑎, 𝑏)𝜋,𝑛 =

(︃
(−1)𝑣(𝑎)𝑣(𝑏)𝑎𝑣(𝑏)𝑏−𝑣(𝑎)

𝜋

)︃
𝑛

.

where (𝑎, 𝑏)𝑣,𝑛 denotes (𝑎, 𝑏)𝑛 when 𝑎, 𝑏 are considered in 𝐾𝑣.

Proof. Proposition 29.1.5 and Proposition 27.27.6.3 give�𝑎
𝑏

�
𝑛
=

[𝜓𝐿/𝐾(𝑏)]( 𝑛
√
𝑎)

𝑛
√
𝑎

=
[𝜓𝐿𝑏/𝐾𝑏

(𝑏)]( 𝑛
√
𝑎)

𝑛
√
𝑎

= (𝑎, 𝑏)𝑏,𝑛.

For the second part write 𝑎 = 𝜋𝑗𝑢 and 𝑏 = 𝜋𝑘𝑢′ where 𝑢, 𝑢′ are units, and use bilinear-
ity 27.27.6.4 to compute

(𝜋𝑗𝑢, 𝜋𝑘𝑢′) = (𝜋, 𝜋𝑘𝑢′)𝑗(𝑢, 𝜋)𝑘 (𝑢, 𝑢′) = 1 since 𝐾( 𝑛
√
𝑎) unramified, 27.27.6.5

= (𝜋,−𝜋)𝑗𝑘(𝜋, (−1)𝑘𝑢′)𝑗
�𝑢
𝜋

�𝑘
𝑛

by the first part

= ((−1)𝑘𝑢′, 𝜋)−𝑗
�𝑢
𝜋

�𝑘
𝑛

(𝜋,−𝜋) = 1, Theorem 27.27.6.4(2)

=

(︃
(−1)𝑘𝑢′

𝜋

)︃−𝑗

𝑛

�𝑢
𝜋

�𝑘
𝑛

=

(︃
(−1)𝑗𝑘𝑢𝑘𝑢′−𝑗

𝜋

)︃
𝑛

=

(︃
(−1)𝑣(𝑎)𝑣(𝑏)𝑎𝑣(𝑏)𝑏−𝑣(𝑎)

𝜋

)︃
𝑛

.

The last main ingredient is the product formula for Hilbert symbols.

Theorem 29.1.7 (Product formula for Hilbert symbols): thm:hilbert-prod Let 𝐾 be a number
field containing the 𝑛th roots of unity. Then∏︁

𝑣∈𝑉𝐾
(𝑎, 𝑏)𝑣 = 1.

Proof. Using the fact that the global Artin map can be written as the product of local Artin
maps, ∏︁

𝑣∈𝑉𝐾
𝜑𝐾𝑣( 𝑛√𝑎)/𝐾𝑣

(𝑏) = 𝜑𝐾(𝑏) = 1,

because 𝜑𝐾 is the identity on 𝐾. Now operate on this by the character 𝜒(𝜎) = 𝜎( 𝑛√𝑎)
𝑛√𝑎 ∈ 𝐾

and use Proposition 27.27.6.3 to get∏︁
𝑣∈𝑉𝐾

(𝑎, 𝑏)𝑣 =
∏︁
𝑣∈𝑉𝐾

𝜒(𝜑𝐾( 𝑛√𝑎)/𝐾(𝑏)) = 1.
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Combining Proposition 29.1.6 and 29.1.7 gives the strong reciprocity law.

Theorem 29.1.8 (Strong reciprocity): thm:strong-rec Let 𝐾 be a number field containing a
primitive 𝑛th root of unity and suppose 𝑎, 𝑏, 𝑛 are pairwise relatively prime. Then�𝑎

𝑏

�
𝑛

�
𝑏

𝑎

�−1

𝑛

=
∏︁
𝑣|𝑛∞

(𝑏, 𝑎)𝑣,𝑛.

Suppose 𝑏, 𝑛 are relatively prime and 𝑎 is a prime dividing 𝑛. Then�𝑎
𝑏

�
𝑛
=

∏︁
𝑣|𝑛∞

(𝑎, 𝑏)𝑣,𝑛.

Proof. Suppose 𝑎, 𝑏, 𝑛 are pairwise relatively prime. For a number 𝑐 let 𝑆(𝑐) denote the finite
places 𝑣 where 𝑣(𝑐) ̸= 0. We calculate

(︀
𝑎
𝑏

�
𝑛
and

(︀
𝑏
𝑎

�
𝑛
using multiplicativity. We have�𝑎

𝑏

�
𝑛

�
𝑏

𝑎

�−1

𝑛

=

(︃
𝑎∏︀

𝜋∈𝑆(𝑏) 𝜋
𝑣𝜋(𝑏)

)︃(︃
𝑏∏︀

𝜋∈𝑆(𝑎) 𝜋
𝑣𝜋(𝑎)

)︃−1

(𝑏) =

� ∏︁
𝜋∈𝑆(𝑏)

𝜋𝑣𝜋(𝑏)

�
, (𝑎) =

� ∏︁
𝜋∈𝑆(𝑎)

𝜋𝑣𝜋(𝑎)

�
=

∏︁
𝑣𝜋∈𝑆(𝑏)

�𝑎
𝜋

�𝑣𝜋(𝑏)
𝑛

∏︁
𝑣𝜋∈𝑆(𝑎)

�
𝑏

𝜋

�−𝑣𝜋(𝑎)

𝑛

=
∏︁

𝑣𝜋∈𝑆(𝑏)

�𝑎
𝜋

�𝑣𝜋(𝑏)
𝑛

∏︁
𝑣𝜋∈𝑆(𝑎)

(︃
𝑏−𝑣𝜋(𝑎)

𝜋

)︃
𝑛

=
∏︁

𝑣∈𝑆(𝑏)
(𝑎, 𝑏)𝑣

∏︁
𝑣∈𝑆(𝑎)

(𝑎, 𝑏)𝑣 by Proposition 29.1.6

=
∏︁
𝑣-𝑛∞

(𝑎, 𝑏)𝑣 (𝑎, 𝑏)C = 1, (𝑎, 𝑏)𝑣 = 1 when 𝑎, 𝑏 ∈ 𝑈𝑣, 27.27.6.5

=
∏︁
𝑣|𝑛∞

(𝑏, 𝑎)𝑣

where in the last step we used the product formula 29.1.7, which tells us
∏︀
𝑣∈𝑉𝐾 (𝑎, 𝑏)𝑣 = 1.

Now suppose 𝑎 is a prime dividing 𝑛. Then again using multiplicativity, Proposi-
tion 29.1.6, and the fact that (𝑎, 𝑏)𝑣 = 1 for 𝑣 | 𝑛∞, 𝑛 - 𝑎 (Corollary 27.27.6.5),�𝑎

𝑏

�
𝑛
=

∏︁
𝑣𝜋∈𝑆(𝑏)

�𝑎
𝜋

�𝑣𝜋(𝑏)
=

∏︁
𝑣∈𝑆(𝑏)

(𝑎, 𝑏)𝑣 =
∏︁
𝑣|𝑛∞

(𝑎, 𝑏)𝑣.

In practice, we can compute the action of the Hilbert symbol for each 𝑣 | 𝑛∞, since
𝐾×
𝑣 /𝐾

×𝑛
𝑣 is a finite set. We will carry out these computations in the cases 𝑛 = 2, 4, for

𝐾 = Q and Q(𝑖).
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1.3 Quadratic and biquadratic reciprocity

We derive quadratic and biquadratic reciprocity using Theorem 29.1.8.

Theorem 29.1.9 (Quadratic reciprocity): Let 𝑝, 𝑞 be odd primes. Then�−1
𝑝

�
= (−1)

𝑝−1
2 ,

�
2

𝑝

�
= (−1)

𝑝2−1
8 ,

�
𝑝

𝑞

��
𝑞

𝑝

�
= (−1)

𝑝−1
2

· 𝑞−1
2 .

Proof. The first follows from definition of the Legendre symbol. By strong reciprocity 29.1.8,�
2

𝑝

�
= (2, 𝑝)2�

𝑝

𝑞

��
𝑞

𝑝

�
= (𝑝, 𝑞)2.

Let 𝑈 (𝑖) denote 1 + (2)𝑖 in Q2.

1. We have (2, 𝑝)2 = 1 iff 𝑝 is a norm from Q2(
√
2) (Theorem 27.27.6.4), iff 𝑝 is in the

form 𝑥2 − 2𝑦2 in Q2. Looking at this modulo 8, we must have 𝑝 ∈ {1, 5}2Z. This is
sufficient as we know [Q×

2 : NmQ2(
√
2)/Q2

(Q2(
√
2)×)] = [Q2(

√
2) : Q2] = 2, so we must

have NmQ2(
√
2)/Q2

(Q2(
√
2)×) = {1, 5}2Z. Hence (2, 𝑝)2 = 1 iff 𝑝 ≡ 1, 5 (mod 8), iff 𝑝2−1

8

is even. This gives �
2

𝑝

�
= (−1)

𝑝2−1
8 .

2. We have (𝑝, 𝑞)2 = 1 iff 𝑞 ∈ 𝑁 := NmQ2(
√
𝑝)/Q2(Q2(

√
𝑝)×), iff 𝑞 is in the form 𝑥2 − 𝑝𝑦2.

(a) If 𝑝 ≡ 1 (mod 4), then 𝑥2 − 𝑝𝑦2 can attain any odd residue modulo 8. Since
[𝑄 : 𝑁 ] = [Q2(

√
𝑝) : Q2] ≤ 2, we have 𝑈 (3)22Z = Q×2

2 ⊆ 𝑁 . Since 𝑁 contains all
residues modulo 8, 𝑈22Z ⊆ 𝑁 . Hence 𝑞 ∈ 𝑁 , and (𝑝, 𝑞)2 = 1.

(b) If 𝑝 ≡ 3 (mod 4), then 𝑥2 − 𝑝𝑦2 cannot be 3 (mod 4). Hence 𝑁 = 𝑈 (2)2Z, and
𝑞 ∈ 𝑁 iff 𝑞 ≡ 1 (mod 4). Hence (𝑝, 𝑞)2 = 1 iff 𝑞 ≡ 1 (mod 4).

It remains to note (−1)
𝑝−1
2

· 𝑞−1
2 = 1 iff either 𝑝 ≡ 1 (mod 4) or 𝑞 ≡ 1 (mod 4).

Theorem 29.1.10 (Biquadratic reciprocity): Suppose 𝑝, 𝑞 are primes in Z[𝑖] with 𝑝, 𝑞 ≡ 1
(mod (1 + 𝑖)3). Then �

𝑝

𝑞

�
4

= (−1)
N𝑝−1

4
·N𝑞−1

4

�
𝑞

𝑝

�
4

.

Note every prime contains an associate that is equivalent to 1 (mod 4).

Proof. Note 𝑝 ≡ 1 (mod (1 + 𝑖)3) means 𝑝 ≡ 1 or 1 + 2𝑖 (mod (1 + 𝑖)3).
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By strong reciprocity 29.1.8,�
𝑝

𝑞

�
4

�
𝑞

𝑝

�−1

4

= (𝑞, 𝑝)2,4 = (𝑝, 𝑞)−1
2,4.

We have (𝑝, 𝑞)2,4 = 1 iff 𝑞 ∈ NmQ2(
√
𝑝)/Q2(Q2(

√
𝑝)×). Consider 2 cases.

1. N𝑝 ≡ 1 (mod 8). Equivalently (writing out 𝑝 = 𝑎+𝑏𝑖 and calculating the norm), 𝑝 ≡ 1
(mod 8). We can calculate that (1 + 𝑖)3Z𝑈 (3) ⊆ 𝑁 := NmQ2(

√
𝑝,𝑖)/Q2(𝑖)(Q2(

√
𝑝, 𝑖)×), so

𝑞 ∈ 𝑁 . (The calculations are lengthy, but here’s the idea: by examining the structure
of Q2(𝑖), or using Proposition 28.28.3.2, we find that Q2(𝑖)

×4 = 𝑈 (7)(1 + 𝑖)4Z. Hence
the norm group 𝑁 satisfies

𝑈 (7)(1 + 𝑖)4Z ⊆ 𝑁 ⊆ Q2(𝑖)
×

and has index at most 4. Now calculate the norm of enough numbers in Q2(
√
𝑝, 𝑖) until

we can determine (1 + 𝑖)3Z𝑈 (3) ⊆ 𝑁 . Using a computer algebra system is advised.)

2. N𝑝 ≡ 5 (mod 8). Equivalently, 𝑝 ≡ 5 (mod 8). We can calculate that (1 + 𝑖)4Z𝑈 (3) ⊆
NmQ2(

√
𝑝)/Q2(Q2(

√
𝑝)×) but (1 + 2𝑖)(1 + 𝑖)4Z𝑈 (3) ̸⊆ NmQ2(

√
𝑝)/Q2(Q2(

√
𝑝)×). Hence

(𝑝, 𝑞)4 = 1 iff 𝑞 ≡ 1 (mod 4), i.e. iff N𝑞 ≡ 1 (mod 8).

In the case where N𝑝,N𝑞 ≡ 5 (mod 8), we have (𝑝, 𝑞)24 = (𝑝, 𝑞2)4 = 1 but (𝑝, 𝑞)4 ̸= 1 so
(𝑝, 𝑞)4 = −1.

1.4 Reciprocity for odd primes

We give an algorithm for finding reciprocity laws for Q(𝜁𝑝)/Q for 𝑝 prime, and then specialize
to 𝑝 = 3.

Theorem 29.1.11: thm:explicit-rec Let 𝑝 be an odd prime, let 𝐾 = Q(𝜁𝑝), and let 𝑣 be the
valuation corresponding to 1− 𝜁𝑝. Let 𝜋 = 1− 𝜁𝑝. Then the elements

𝜋

𝜂1 = 1− 𝜋 = 𝜁𝑝

𝜂2 = 1− 𝜋2

...
...

𝜂𝑝 = 1− 𝜋𝑝

generate𝐾×
𝑣 /𝐾

×𝑝
𝑣 , and (𝑎, 𝑏)𝑣 is the unique skew-symmetric pairing𝐾×

𝑣 ×𝐾×
𝑣 → 𝜇𝑝 satisfying

the following.

1. (𝜂𝑖, 𝜂𝑗)𝑣 = (𝜂𝑖, 𝜂𝑖+𝑗)𝑣(𝜂𝑖+𝑗, 𝜂𝑗)𝑣(𝜂𝑖+𝑗, 𝜋)
−𝑗
𝑣 .
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2. (𝜂𝑖, 𝜋)𝑣 =

⎧⎨⎩1, 1 ≤ 𝑖 ≤ 𝑝− 1

𝜁, 𝑖 = 𝑝.

Moreover, if 𝑖+ 𝑗 ≥ 𝑝+ 1, then (𝑎, 𝑏)𝑣 = 1 for all 𝑎 ∈ 𝑈 (𝑖) and 𝑏 ∈ 𝑈 (𝑗).

We start with the following lemma.

Lemma 29.1.12: Let𝐾 be a number field containing 𝑝th roots of unity. Let 𝜁 be a primitive
𝑝th root of unity, 𝜋 = 1− 𝜁, and p a prime dividing 𝜋. Suppose 𝑎 = 1 + 𝜋𝑝𝑐 with 𝜋 = 1− 𝜁
and 𝑐 ∈ O𝑣. Then for all 𝑏,

(𝑎, 𝑏)p = 𝜁−tr𝑘/F𝑝 (𝑐)𝑣p(𝑏).

We will just need the case where 𝐾 = Q(𝜁𝑝), in which case 𝑘 = F𝑝.

Proof. Because 𝑎 ̸∈ p, 𝐾( 𝑝
√
𝑎)/𝐾 is unramified by Lemma 20.21.2.5. We have (cf. Proposi-

tion 19.19.2.2)

𝜁𝑝 − 1

𝜁 − 1
= 0

=⇒ (1− 𝜋)𝑝 − 1

(1− 𝜋)− 1
= 0

=⇒ 𝜋𝑝−1 − 𝑝𝜋𝑝−2 + · · ·+ 𝑝 = 0

=⇒ 𝜋𝑝−1 ≡ −𝑝 (mod 𝑝𝜋)

and we get

eq:explicit-rec1

𝜋𝑝−1

𝑝
≡ −1 (mod p). (29.3)

Let 𝛼 = 𝑝
√
𝑎 be a 𝑝th root of 𝑎, and write 𝛼 = 1 + 𝜋𝑥, where 𝑥 ∈ 𝐿. Now 𝛼𝑚 −

𝑎 = 0 becomes (1 + 𝜋𝑥)𝑝 − (1 + 𝜋𝑝𝑐) = 0. Hence 𝑥 is a zero of the polynomial 𝑓(𝑋) =
1
𝜋𝑝 ((1 + 𝜋𝑥)𝑝 − (1 + 𝜋𝑝𝑐)). Using (29.4), we find that 𝑓(𝑋) is integral, so 𝑥 ∈ O𝐿, and that
modulo 𝜋,

𝑓(𝑋) =
1

𝜋𝑝
(𝜋𝑝𝑥𝑝 + 𝑝𝜋𝑥− 𝜋𝑝𝑐) ≡ 𝑥𝑝 − 𝑥− 𝑐 (mod 𝜋)

Let Np = 𝑝𝑓 . Letting 𝜎 be the Frobenius, we find that 𝜎(𝑥) ≡ 𝑥𝑝
𝑓
(mod p). Note that

𝑥𝑝
𝑗 ≡ (𝑥+ 𝑐)𝑝

𝑗−1 ≡ 𝑥𝑝
𝑗−1

+ 𝑐𝑝
𝑗−1

(mod p).

Hence by induction

eq:explicit-rec1𝜎(𝑥) = 𝑥𝑝
𝑓

= 𝑥+ 𝑐+ 𝑐𝑝 + · · ·+ 𝑐𝑝
𝑗−1

= 𝑥+ tr𝑘/F𝑝(𝑐) (29.4)

in 𝑘. Now by Proposition 27.27.6.3,

(𝑎, 𝑏)p =
[𝜑𝐾𝜋(𝛼)/𝐾𝜋(𝑏)](𝛼)

𝛼
=
𝜎𝑣(𝑏)(𝛼)

𝛼

391



Number Theory, S29.1

To get the second equality, note that by construction, 𝜑𝐾𝜋(𝛼)/𝐾𝜋(𝜋) is the Frobenius element;
as 𝐾𝜋(𝛼)/𝐾𝜋 is unramified, 𝑈𝐾𝜋 ⊆ ker𝜑𝐾𝜋(𝛼)/𝐾𝜋 (Example 27.27.5.1), and the Artin map
depends only on 𝑣(𝑏). We have

(𝑎, 𝑏)𝑣 = 𝜁𝑛 where 𝜁𝑛𝛼 = 𝜎𝑣(𝑏)(𝛼);

to find 𝑛 we reduce both sides modulo p𝜋. We calculate

𝜁𝛼 ≡ (1− 𝜋)(1 + 𝜋𝑥) ≡ 1 + (𝑥− 1)𝜋 (mod p𝜋) (29.5)

=⇒ 𝜁𝑛𝛼 ≡ 1 + (𝑥− 𝑛)𝜋 (mod p𝜋)eq:explicit-rec2 (29.6)

𝜎𝑣(𝑏)(𝑥) ≡ 𝑥+ 𝑣(𝑏)tr𝑘/F𝑝(𝑐) (mod 𝜋) by (29.4) (29.7)

=⇒ 𝜎𝑣(𝑏)(𝛼) ≡ 1 + (𝑥+ 𝑣(𝑏)tr𝑘/F𝑝(𝑐))𝜋 (mod p𝜋).eq:explicit-rec3 (29.8)

Matching (29.6) and (29.8) gives 𝑛 = −𝑣(𝑏)tr𝑘/F𝑝(𝑐) and

(𝑎, 𝑏)𝑣 = 𝜁−𝑣(𝑏)tr𝑘/F𝑝 (𝑐) (mod 𝜋).

In particular, note that (𝑎, 𝑏)𝑣 = 1 if 𝑎 ≡ 1 (mod 𝜋𝑝+1). By nondegeneracy of the pairing
(Theorem 27.27.6.4), we get that 𝑎 ∈ (𝐾×

𝑣 )
𝑝. Hence 𝑈 (𝑝+1) ⊆ (𝐾×

𝑣 )
𝑝.

Proof of Theorem 29.1.11. Note that 𝜂𝑖 generates 𝑈
(𝑖)/𝑈 (𝑖+1), and 𝜋 generates𝐾×

𝜋 /(𝐾
×
𝜋 )

𝑝𝑈 (1).
As mentioned above, 𝑈 (𝑝+1) ⊆ (𝐾×

𝜋 )
𝑝 so 𝜋, 𝜂1, . . . , 𝜂𝑝 generate 𝐾×

𝜋 /(𝐾
×
𝜋 )

𝑝. Since the group

has order 𝑝2

|𝑝|𝑣𝜋
= 𝑝𝑝+1 (Proposition 28.28.3.2), these generators are independent.

We use a relation between the 𝜂𝑖, 𝜂𝑗 to derive the first relation. Namely, we have 𝜂𝑗
𝜂𝑖+𝑗

+

𝜋𝑗 𝜂𝑖
𝜂𝑖+𝑗

= 1, so �
𝜂𝑗
𝜂𝑖+𝑗

, 𝜋𝑗
𝜂𝑖
𝜂𝑖+𝑗

�
𝑝

= 1

by Theorem 27.6.4. Note (𝑎,−1) = 1 for any 𝑎 because −1 is a 𝑝th power. Expanding the
above bilinearity gives

1 = (𝜂𝑗, 𝜋
𝑗𝜂𝑖)(𝜂𝑖+𝑗, 𝜋

𝑗𝜂𝑖)
−1 (𝜂𝑖+𝑗,−𝜂𝑖+𝑗)⏟  ⏞  

1

(𝜂𝑖+𝑗,−1)⏟  ⏞  
1

(𝜂𝑗, 𝜂𝑖+𝑗)
−1

= (𝜂𝑗, 𝜂𝑖) (𝜂𝑗, 𝜋
𝑗)⏟  ⏞  

=1, 𝜂𝑗+𝜋𝑗=1

(𝜂𝑖+𝑗, 𝜋)
−𝑗(𝜂𝑖+𝑗, 𝜂𝑖)

−1(𝜂𝑗, 𝜂𝑖+𝑗)
−1

= (𝜂𝑖, 𝜂𝑗)
−1(𝜂𝑖+𝑗, 𝜋)

−𝑗(𝜂𝑖+𝑗, 𝜂𝑖)
−1(𝜂𝑖+𝑗, 𝜂𝑗)

=⇒ (𝜂𝑖, 𝜂𝑗) = (𝜂𝑖, 𝜂𝑖+𝑗)(𝜂𝑖+𝑗, 𝜂𝑗)(𝜂𝑖+𝑗, 𝜋)
−𝑗.

This shows item 1. For item 2, note for 1 ≤ 𝑖 ≤ 𝑝− 1 that since 𝜂𝑖 + 𝜋𝑖 = 1,

1 = (𝜂𝑖, 𝜋
𝑖) = (𝜂𝑖, 𝜋)

𝑖 =⇒ 1 = (𝜂𝑖, 𝜋).
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For 𝑖 = 𝑝, we use the lemma to find

(𝜂𝑝, 𝜋)𝑣 = 𝜁−tr𝑘/F𝑝 (−1) = 𝜁

because 𝑘 = F𝑝.
Note that if 𝑖 + 𝑗 ≥ 𝑝 + 1, then 𝜂𝑖+𝑗 ∈ 𝑈 (𝑝+1) ⊆ (𝐾×

𝑣 )
𝑝 so item 1 gives that (𝜂𝑖, 𝜂𝑗) = 1.

Now as a skew-symmetric bilinear pairing (𝜂𝑖, 𝜂𝑗) is determined by items 1 and 2, because we
can expand (𝜂𝑖, 𝜂𝑗) using item 1, then repeatedly expand factors (the indices increase each
time) until we only have factors in the form (∙, 𝜋), and use item 2 to get a value out.

We now use this to derive cubic reciprocity.

Theorem 29.1.13 (Cubic reciprocity): thm:cubic-rec Let 𝐾 = Q(𝜔), where 𝜔 = 𝜁3 = −1+
√
−3

2
.

For 𝑎 ≡ ±1 (mod 3O𝐾), write

𝑎 = ±(1 + 3(𝑚+ 𝑛𝜔)).

Then �
𝑏

𝑎

�
3

=
�𝑎
𝑏

�
3

if 𝑏 ⊥ 𝑎, 𝑏 ≡ ±1 (mod 3O𝐾)�𝜔
𝑎

�
3
= 𝜔−𝑚−𝑛(︂

1− 𝜔
𝑎

)︂
3
= 𝜔𝑚.

Note that if 𝑞 ̸≡ 1 (mod 3) is prime, then 3 - |F×
𝑞 | so any element of F×

𝑞 is a cubic residue.
Note any element of 𝐾 relatively prime to 3 can be written in the from 𝜔𝑖(1 − 𝜔)𝑗𝑎 where
𝑎 ≡ ±1 (mod 3O𝐾).

Proof. First suppose 𝑎, 𝑏 ≡ 1 (mod 3). By Strong Reciprocity 29.1.8,�𝑎
𝑏

�
3

�
𝑏

𝑎

�−1

3

= (𝑏, 𝑎)3.

Note 𝑎, 𝑏 ∈ 𝑈 (2) so by Theorem 29.1.11, (𝑏, 𝑎)3 = 1. This shows the first equation.
For the second, letting 𝜋 = 1− 𝜔, note that

(1− 𝜋2)𝛼(1− 𝜋3)𝛽 = (1 + 3𝜔)𝛼(1 + 3(2𝜔 + 1))𝛽 ∈ [1 + 3(𝛽 + (2𝛽 + 𝛼)𝜔)]𝑈 (4)

Setting 𝛼 = 𝑛− 2𝑚 and 𝛽 = 𝑚, we get

𝑎 ∈ (1− 𝜋2)𝑛−2𝑚(1− 𝜋3)𝑚𝑈 (4)

(1− 𝜋2)2𝑚−𝑛(1− 𝜋3)−𝑚 ∈ 𝑎𝑈 (4)
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Now Theorem 29.1.11 tells us

(𝜔, 1− 𝜋2) = (𝜂1, 𝜂2) = (𝜂3, 𝜋)
−2 = 𝜔

(𝜔, 1− 𝜋3) = (𝜂1, 𝜂3) = 1

(𝜋, 1− 𝜋2) = (𝜂2, 𝜋)
−1 = 1

(𝜋, 1− 𝜋3) = (𝜂3, 𝜋)
−1 = 𝜔−1.

Thus �𝜔
𝑎

�
= (𝜔, (1− 𝜋2)2𝑚−𝑛(1− 𝜋3)−𝑚) = 𝜔−𝑚−𝑛�𝜋

𝑎

�
= (𝜋, (1− 𝜋2)2𝑚−𝑛(1− 𝜋3)−𝑚) = 𝜔𝑚.

As an application, we show the following.

Theorem 29.1.14: thm:2cubic If 𝑞 ≡ 1 (mod 3) is a prime, then 2 is a cubic residue modulo 𝑞
iff 𝑞 is in the form

𝑞 = 𝑥2 + 27𝑦2, for some 𝑥, 𝑦 ∈ Z.

Proof. Since 𝑞 ≡ 1 (mod 3), 𝑞 splits in O𝐾 as 𝛼𝛼. By multiplying by a root of unity, we
may assume 𝛼 ≡ 1 (mod 3O𝐾), i.e. 𝛼 is in the form 𝛼 = 3(𝑥 + 𝑦𝜔) ± 1. In order for 2 to
be a cubic residue, it must be a cubic residue modulo 𝛼. If 𝑎3 ≡ 2 (mod 𝛼), then 𝑎3 ≡ 2
(mod 𝛼), so it would also be a cubic residue modulo 𝛼 and hence modulo 𝑞.

Now
(︀
2
𝛼

�
= 1 iff

(︀
𝛼
2

�
= 1, by Cubic Reciprocity 29.1.13. Since 2 remains inert in O𝐾 , and

the only cube in F×
4 is 1, we get that 𝛼 must actually be in the form

𝛼 = 6(𝑥+ 𝑦𝜔)± 1.

Taking the norm gives
𝑝 = (6𝑥+ 3𝑦 ± 1)2 + 27𝑦2.

This is in the form 𝑥′2+27𝑦′2; conversely, any prime in the form 𝑥′2+27𝑦′2 must have 𝑥′ ≡ ±1
(mod 3), and hence is in the above form.

2 Hasse-Minkowski Theorem

The global Artin map can be expressed as the product of local Artin maps. From class
field theory, we get various “local-to-global” results such as the Hasse-Brauer-Noether The-
orem 28.28.3.5 and the Hasse Norm Theorem 29.2.2. The most famous is the local-to-global
principle for quadratic forms, the Hasse-Minkowski Theorem.

Definition 29.2.1: A quadratic form is said to represent 𝑎 if there is a solution to
𝑞(𝑋1, . . . , 𝑋𝑛) = 𝑎 with (𝑥1, . . . , 𝑥𝑛) ̸= (0, . . . , 0). A quadratic form representing 0 is said to
be isotropic.
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(For a review of quadratic forms, see Chapter 17.)
Where class field theory comes in is that a quadratic form in 2 variables representing

a number 𝑎 can be interpreted as a norm equation, 𝑎 = 𝑥2 + 𝑏𝑦2. We can write this as
𝑎 = (𝑥 + 𝑦

√
𝑏)(𝑥 − 𝑦

√
𝑏) = Nm𝐾(

√
𝑏)/𝐾(𝑥 + 𝑦

√
𝑏) when

√
𝑏 ̸∈ 𝐾. Class field theory gives us

a local-to-global theorem for norms, the Hasse Norm Theorem. This will prove the 𝑛 = 2
case of Hasse-Minkowski. Then a series of elaborate reductions will prove the local-to-global
principal for any number of variables.

2.1 Hasse norm theorem

Theorem 29.2.2 (Hasse norm theorem): thm:hasse-norm Suppose 𝐿/𝐾 is cyclic. Then 𝑎 is a
global norm iff it is a local norm everywhere: 𝑎 ∈ Nm𝐿/𝐾 𝐿

× iff 𝑎 ∈ Nm𝐿𝑣/𝐾𝑣 𝐿
𝑣× for all

𝑣 ∈ 𝑉𝐾 .

Compare this to the proof of Theorem 28.28.3.5.

Proof. The forward direction is clear.
Let 𝐺 = 𝐺(𝐿/𝐾). Take the long exact sequence in Tate cohomology of

0→ 𝐿× → I𝐿 → C𝐿 → 0

to get the top row of the following.

eq:hasse-norm 𝐻−1
𝑇 (𝐺,C𝐿) // 𝐻0

𝑇 (𝐺,𝐿
×) // 𝐻0

𝑇 (𝐺, I𝐿) // · · ·

0 // 𝐾×/Nm𝐿/𝐾 𝐿
× � � //

⨁︀
𝑣∈𝑉𝐾 𝐾

×
𝑣 /Nm𝐾𝑣(𝐿

𝑣×)

(29.9)

We explain the bottom row. First note the equalities of 𝐻0
𝑇 are by definition of 𝐻0

𝑇 , plus
Proposition 28.28.2.4. Next note cohomology is 2-periodic because 𝐺 is cyclic (Proposi-
tion 25.25.12.1), and 𝐻1

𝑇 (𝐺,C𝐿) = 0 by Theorem 28.28.3.1 (HT90 for ideles), so

𝐻−1
𝑇 (𝐺,C𝐿) = 𝐻1

𝑇 (𝐺,C𝐿) = 0.

Then (29.9) gives that the map 𝐾×/Nm𝐿/𝐾 𝐿
× →˓ ⨁︀

𝑣∈𝑉𝐾 𝐾
×
𝑣 /Nm𝐾𝑣(𝐿

𝑣×) is injective. If
𝑎 ∈ 𝐾× is a norm in every completion, then it is 0 in

⨁︀
𝑣∈𝑉𝐾 𝐾

×
𝑣 /Nm𝐾𝑣(𝐿

𝑣×), hence 0 in
𝐾×/Nm𝐿/𝐾 𝐿

×, hence a global norm.

2.2 Quadratic forms

We prove the following.

Theorem 29.2.3 (Hasse-Minkowski): hasse-minkowski Let 𝐾 be a number field. The following
hold.
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1. A quadratic form 𝑓 defined over 𝐾 represents 𝑎 iff 𝑓 represents 𝑎 in every completion
𝐾𝑣.

2. Two quadratic forms over𝐾 are equivalent iff they are equivalent over every completion
𝐾𝑣.

First we note that item 1 implies item 2.

Proof that 1 implies 2. The forward direction is clear. For the reverse direction, induct on
the rank 𝑛, 𝑛 = 0 being the base case. Suppose 𝑓, 𝑔 are equivalent over every completion
𝐾𝑣. Suppose 𝑓 represents 𝑎. Then 𝑓 represents 𝑎 over every 𝐾𝑣. Since 𝑔 ∼ 𝑓 over every 𝐾𝑣,
𝑔 represents 𝑎 over every 𝐾𝑣. By item 1, 𝑔 represents 𝑎.

Thus we can write 𝑓 ∼ 𝑎𝑋2 + 𝑓 ′, 𝑔 ∼ 𝑎𝑋2 + 𝑔′. Now 𝑎𝑋2 + 𝑓 ′ ∼ 𝑎𝑋2 + 𝑔′ over every
𝐾𝑣 implies (see Serre [Ser73, IV.1.7, Prop. 4]) 𝑓 ′ ∼ 𝑔′ over every 𝐾𝑣. By the induction
hypothesis, 𝑓 ′ ∼ 𝑔′ over 𝐾. Thus 𝑓 ∼ 𝑔.

Next we show that we can reduce item 1 to a statement about quadratic forms repre-
senting 0.

Lemma 29.2.4: Suppose char(𝐾) ̸= 2. An nondegenerate isotropic quadratic form over 𝐾
represents all of 𝐾.

Proof. Let 𝐵 be the bilinear form associated to 𝑞. Suppose x ̸= 0 is such that 𝑞(x) = 0. Since
𝑞 is nondegenerate, there exists y such that 𝐵(x,y) ̸= 0. Then 𝑞(x+𝑎y) = 𝑎2𝑞(y)+2𝑎𝐵(x,y)
attains every value as 𝑎 ranges over 𝐾.

Lemma 29.2.5: A quadratic form 𝑞(𝑋1, . . . , 𝑋𝑛−1) represents 𝑎 iff 𝑞(𝑋1, . . . , 𝑋𝑛−1)− 𝑎𝑋2
𝑛

represents 0.

Proof. For the forward direction, suppose 𝑞(𝑥1, . . . , 𝑥𝑛−1) = 𝑎. Then 𝑞(𝑥1, . . . , 𝑥𝑛−1)−𝑎·12 =
0.

For the reverse direction, let (𝑥1, . . . , 𝑥𝑛) be a solution. If 𝑥𝑛 = 0 then 𝑞(𝑥1, . . . , 𝑥𝑛) = 0 so
𝑞 represents 0. Thus 𝑞 is isotropic and represents 𝑎. If 𝑥𝑛 ̸= 0 then 𝑞

(︀
𝑥1
𝑥𝑛
, . . . , 𝑥𝑛−1

𝑥𝑛

�
= 𝑎.

Thus it suffices to prove item 1 of Hasse-Minkowski for 𝑎 = 0. Specifically, item 1 for
forms with 𝑛 variables is a consequence of item 1 for 𝑎 = 0 for forms with 𝑛 + 1 variables.
We now prove Hasse-Minkowski. Every quadratic form over a field not of characteristic 2
can be put in diagonal form, so it suffices to consider diagonal forms. By scaling, we may
assume one of the coefficients is 1.

2.2.1 Proof for 𝑛 ≤ 2

For 𝑛 = 1 the theorem is trivial. For 𝑛 = 2, we need the following.

Lemma 29.2.6: An element 𝑎 ∈ 𝐾 is a square iff it is a square in every completion 𝐾𝑣.
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Proof. (cf. the proof of Proposition 28.28.2.8) The forward direction is clear.
So suppose 𝑎 is a square in every completion. Then𝐾𝑣(

√
𝑎) = 𝐾 so Nm𝐾𝑣(

√
𝑎)/𝐾𝑣

𝐾𝑣(
√
𝑎)× =

𝐾×
𝑣 . This shows Nm𝐾(

√
𝑎)/𝐾(I𝐾(

√
𝑎)) = I𝐾 . By the first inequality 28.28.2.1,

[𝐾(
√
𝑎) : 𝐾] ≤ [I𝐾 : Nm𝐾(

√
𝑎)/𝐾(I𝐾(

√
𝑎))] = 1

so 𝐾(
√
𝑎) = 𝐾, i.e. 𝑎 is a square in 𝐾.

Now a quadratic form

𝑞(𝑋, 𝑌 ) = 𝑋2 − 𝑎𝑌 2

represents 0 iff 𝑎 is a square (it rearranges to
(︀
𝑋
𝑌

�2
= 𝑎), so 𝑞 represents 0 over 𝐾 if it

represents 0 over every 𝐾𝑣.

2.2.2 Proof for 𝑛 = 3

As promised, we re-express the condition for 𝑝(𝑥) to represent 0 as a condition on norms.

Lemma 29.2.7: lem:3var-norm Let 𝐾 be any field. A quadratic form

𝑞(𝑋, 𝑌, 𝑍) = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2

represents 0 iff 𝑐 ∈ Nm𝐾(
√
𝑏)/𝐾(𝐾(

√
𝑏)×).

Proof. Note if 𝑞(𝑥, 𝑦, 𝑧) = 0 with 𝑧 = 0, then 𝑏 must be a perfect square. If 𝑏 is a perfect
square then 𝐾(

√
𝑏)/𝐾 is trivial and 𝑐 is trivially a norm.

So it suffices to consider solutions with 𝑧 ̸= 0 and 𝑏 not a perfect square. In this case,

𝑥2 − 𝑏𝑦2 − 𝑐𝑧2 = 0

iff

𝑐 =
�𝑥
𝑧

�2
− 𝑏

�𝑦
𝑧

�2
=
�𝑥
𝑧
−
√
𝑏 · 𝑦
𝑧

� �𝑥
𝑧
+
√
𝑏 · 𝑦
𝑧

�
= Nm𝐾(

√
𝑏)/𝐾

�𝑥
𝑧
−
√
𝑏
𝑦

𝑧

�
.

By the Hasse Norm Theorem 29.2.2, 𝑐 ∈ Nm𝐾(
√
𝑏)/𝐾(𝐾(

√
𝑏)×) if this is true for every

completion 𝐾𝑣. Combined with the lemma above, this gives Hasse-Minkowski for 𝑛 = 3.
We will need the following in the proof for 𝑛 ≥ 5.

Lemma 29.2.8: 3-qf-almost The form 𝑓 = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2 represents 0 in a local field 𝐾𝑣 iff
(𝑏, 𝑐)𝑣 = 1. Moreover, 𝑓 represents 0 in 𝐾𝑣 for all but a finite number of places 𝑣.

Proof. Note 𝑓 represents 0 iff 𝑐 ∈ Nm𝐾(
√
𝑏)(𝐾(

√
𝑏)×), which is equivalent to (𝑏, 𝑐)𝑣 = 1 by

Theorem 27.27.6.4. Only finitely many of these are not equal to 1 by Corollary 27.27.6.5.
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2.2.3 Proof for 𝑛 = 4

We reduce the 𝑛 = 4 case to the 𝑛 = 3 case (but for a different field extension) by the following
string of equivalences. The brilliant idea here is to turn the quadratic form equation into a
quotient of norms.

Theorem 29.2.9: hm4 For any field 𝐾, the following are equivalent, for 𝑎, 𝑏, 𝑐 ∈ 𝐾×.

1. The form 𝑓(𝑋, 𝑌, 𝑍, 𝑇 ) = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2 + 𝑎𝑐𝑇 2 represents 0 in 𝐾.

2. 𝑐 is a product of norms from 𝐾(
√
𝑎) and 𝐾(

√
𝑏):

𝑐 ∈ Nm𝐾(
√
𝑎)/𝐾(𝐾(

√
𝑎)×)Nm𝐾(

√
𝑏)/𝐾(𝐾(

√
𝑏)×).

3. 𝑐 ∈ Nm𝐾(
√
𝑎,
√
𝑏)/𝐾(

√
𝑎𝑏)(𝐾(

√
𝑎,
√
𝑏)×).

4. The form 𝑔(𝑋, 𝑌, 𝑍) = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2 represents 0 in 𝐾(
√
𝑎𝑏).

Proof. (1) ⇐⇒ (2): If (𝑥, 𝑦, 𝑧, 𝑡) is a solution with 𝑧2 − 𝑎𝑡2 = 0, then 𝑥2 − 𝑏𝑦2 = 0 as
well. Then 𝑎, 𝑏 are squares in 𝐾 and (2) is clear. So it suffices to consider solutions with
𝑧2 − 𝑎𝑡2 ̸= 0. In that case,

𝑥2 − 𝑏𝑦2 − 𝑐𝑧2 + 𝑎𝑐𝑡2 = 0 ⇐⇒ 𝑐 =
𝑥2 − 𝑏𝑦2

𝑧2 − 𝑎𝑡2
= (𝑥−

√
𝑏𝑦)(𝑥+

√
𝑏𝑦)(𝑧 −

√
𝑎𝑡)−1(𝑧 +

√
𝑎𝑡)−1,

and this has a solution iff (2) holds.

(4) ⇐⇒ (3): Applying Lemma 29.2.7, we see (4) is equivalent to 𝑐 being a norm from
𝐾(
√
𝑏,
√
𝑎𝑏)/𝐾(

√
𝑎𝑏). But 𝐾(

√
𝑏,
√
𝑎𝑏) = 𝐾(

√
𝑎,
√
𝑏).

(2)⇐⇒ (3): This is the hard part. We consider the field extensions

𝐿 := 𝐾(
√
𝑎,
√
𝑏)

𝐿𝜎 = 𝐾(
√
𝑎) 𝐿𝜎𝜏 = 𝐾(

√
𝑎𝑏) 𝐿𝜏 = 𝐾(

√
𝑏)

𝐾

If any of 𝑎, 𝑏, 𝑎𝑏 is in 𝐾×2 then the result is clear: If 𝑎 ∈ 𝐾×2 then both (2) and (3) are true
for any 𝑐, since 𝐾(

√
𝑎) = 𝐾 and 𝐾(

√
𝑎,
√
𝑏) = 𝐾(

√
𝑎𝑏). If 𝑎𝑏 ∈ 𝐾×2 then 𝐾(

√
𝑎) = 𝐾(

√
𝑏)

so both (2) and (3) are equivalent to 𝑐 ∈ Nm𝐾(
√
𝑎)/𝐾(𝐾(

√
𝑎)×).

Now assume 𝑎, 𝑏, 𝑎𝑏 ̸∈ 𝐾×2. In this case 𝐺(𝐾(
√
𝑎𝑏)/𝐾) ∼= Z/2× Z/2 with the 3 subex-

tensions corresponding to 3 subgroups. Let 𝜎 be the non-identity element fixing 𝐾(
√
𝑎), 𝜏 fix
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𝐾(
√
𝑏) and 𝜌 = 𝜎𝜏 fix 𝐾(

√
𝑎𝑏). (I.e. 𝜎 switches ±

√
𝑏 and 𝜏 switches ±

√
𝑎.) We convert the

statements in (2) and (3) into the language of Galois theory, using the fixed field theorem.
Note (2) is equivalent to the following:

(2)′ : There exist 𝑥, 𝑦 ∈ 𝐿, 𝜎(𝑥) = 𝑥, 𝜏(𝑦) = 𝑦, 𝑥𝜌(𝑥)𝑦𝜌(𝑦) = 𝑐.

To go between these statements take

𝑥′ = 𝑧 −
√
𝑎𝑡, 𝑦 = 𝑥−

√
𝑏𝑦

and note 𝜌 conjugates both
√
𝑎 and

√
𝑏. Similarly, (3) is equivalent to the following.

(3)′ : There exists 𝑧 ∈ 𝐿, 𝑧𝜌(𝑧) = 𝑐;

just take 𝑧′ = (𝑥 −
√
𝑏𝑦)(𝑧 −

√
𝑎𝑧). To go from (2)′ to (3)′ just take 𝑧 = 𝑥𝑦. To go back

from (3)′ to (2)′ requires more work. Given 𝑧, let 𝑢 = 𝑧·𝜎(𝑧)
𝑐

. Now 𝜎(𝑢) = 𝑢 and 𝑢𝜌(𝑢) =
𝑧𝜌(𝑧)𝜎(𝑧)𝜎(𝜌(𝑧))

𝑐2
= 1. Since 𝜎(𝑢) = 𝑢. i.e. 𝑢 ∈ 𝐾(

√
𝑎), and 𝐺(𝐾(

√
𝑎)/𝐾) = {1, 𝜏 |𝐾(

√
𝑎)}, by

Hilbert’s Theorem 90 (26.26.1.1) there exists 𝑥 ∈ 𝐾(
√
𝑎) (i.e. 𝑥 satisfying 𝜎(𝑥) = 𝑥) such

that 𝜏(𝑥)
𝑥

= 𝑢. Set 𝑦 = 𝜌(𝑧)
𝑥
. We’ve chosen 𝑥 satisfying the conditions. For 𝑦, note

𝜏(𝑦) =
𝜎(𝑧)

𝜏(𝑥)
𝜏𝜌 = 𝜎

=
𝜎(𝑧)

𝑥𝑢

𝜏(𝑥)

𝑥
= 𝑢

=
𝑐

𝑥𝑧
𝑢 =

𝑧𝜎(𝑧)

𝑐

=
𝜌(𝑧)

𝑥
= 𝑦 𝑧𝜌(𝑧) = 𝑐.

Finally, 𝑥𝑦𝜌(𝑥𝑦) = 𝜌(𝑧)𝜌(𝜌(𝑧)) = 𝑐. This shows (2)′ =⇒ (3)′ and finishes the proof.

Now we show Hasse-Minkowski holds for 𝑛 = 4. By (1) ⇐⇒ (4) in Theorem 29.2.9,
Hasse-Minkowski for 𝑓 = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2 + 𝑎𝑐𝑇 2 over 𝐾 is equivalent to Hasse-Minkowski
for 𝑔 = 𝑋2 − 𝑏𝑌 2 − 𝑐𝑍2 over 𝐾(

√
𝑎𝑏), and we have already proved Hasse-Minkowski for

𝑛 = 3.

2.2.4 Proof for 𝑛 ≥ 5

We now prove Hasse-Minkowski for 𝑛 ≥ 5. We proceed by induction. The idea is to “replace”
𝑎𝑋2

1 + 𝑏𝑋2
2 by just 𝑐𝑋2.

Suppose it proved for 𝑛− 1, and write

𝑓(𝑋1, . . . , 𝑋𝑛) = 𝑎𝑋2
1 + 𝑏𝑋2

2 − 𝑔(𝑋3, . . . , 𝑋𝑛).

Suppose 𝑓 represents 0 in each 𝐾𝑣. Then there exists 𝑐𝑣 such that

𝑎𝑋2
1 + 𝑏𝑋2

2 = 𝑐𝑣 = 𝑔(𝑋3, . . . , 𝑋𝑛)
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has a nontrivial solution in 𝐾𝑣. By Lemma 29.2.8, there exists a finite set 𝑆 such that 𝑔
represents all elements of 𝐾𝑣 when 𝑣 ̸∈ 𝑆. We only need to focus on 𝑣 ∈ 𝑆.

Note 𝐾×2
𝑣 is open in 𝐾×

𝑣 by Theorem 21.21.1.5. By the Weak Approximation Theo-
rem 20.20.3.4, there exists 𝑐 such that 𝑐 ∈ 𝑐𝑣𝐾

×2
𝑣 for all 𝑣 ∈ 𝑆. Since 𝑐𝑣 is in the form

𝑎𝑥21 + 𝑏𝑥22, so is 𝑐. Then 𝑐 = 𝑔(𝑋3, . . . , 𝑋𝑛) has a solution for all 𝑣.
Thus

ℎ(𝑋,𝑋3, . . . , 𝑋𝑛) := 𝑐𝑋2 − 𝑔(𝑋3, . . . , 𝑋𝑛)

represents 0 in all 𝐾𝑣. By the induction hypothesis, it represents 0 in 𝐾 as well. Then 𝑓 rep-
resents 0: if 𝑐 = 𝑎𝑥21+𝑏𝑥

2
2 then replace the solution (𝑥, 𝑥3, . . . , 𝑥𝑛) with (𝑥𝑥1, 𝑥𝑥2, 𝑥3, . . . , 𝑥𝑛).

This finishes the proof.
We now use Hasse-Minkowski show that most quadratic forms in 𝑛 ≥ 5 variables represent

0.

Lemma 29.2.10: lots-rep-0 A form 𝑓 = 𝑋2 − 𝑏𝑋2 − 𝑐𝑍2 + 𝑎𝑐𝑇 2 represents every nonzero
element over a local field 𝐾 unless 𝐾 = R and 𝑓 is positive definite.

A form 𝑓 in 𝑛 ≥ 5 variables over 𝐾 represents 0 unless 𝐾 is real and 𝑓 is definite.

Proof. First we show that if 𝑓 does not represent 0 in 𝐾, then 𝑎, 𝑏 ̸∈ 𝐾×2, 𝑎𝑏 ∈ 𝐾×2, and 𝑐 ̸∈
Nm𝐾(

√
𝑎)𝐾(

√
𝑎)× = Nm𝐾(

√
𝑏)𝐾(

√
𝑏)×. If 𝑎 or 𝑏 is in𝐾×2 then 𝑓 clearly represents 0, so 𝑎, 𝑏 ̸∈

𝐾×2. By∼ (1) =⇒ ∼ (2) of Theorem 29.2.9, 𝑐 ̸∈ Nm𝐾(
√
𝑎)/𝐾(𝐾(

√
𝑎)×)Nm𝐾(

√
𝑏)/𝐾(𝐾(

√
𝑏)×).

If 𝐾(
√
𝑎) ̸= 𝐾(

√
𝑏), then the norm groups are distinct groups of index 2 in 𝐾×, by the cor-

respondence between norm groups and extensions. Then their product must be all of 𝐾×,
a contradiction. Hence, 𝐾(

√
𝑎) = 𝐾(

√
𝑏) and 𝑎𝑏 ∈ 𝐾×2. Then ∼ (2) becomes simply

𝑐 ̸∈ Nm𝐾(
√
𝑎)/𝐾(𝐾(

√
𝑎)×).

Conversely, suppose 𝑎, 𝑏 ̸∈ 𝐾×2, 𝑎𝑏 ∈ 𝐾×2, and 𝑐 ̸∈ Nm𝐾(
√
𝑎)𝐾(

√
𝑎)× = Nm𝐾(

√
𝑏)𝐾(

√
𝑏)×.

Let 𝑁 := Nm𝐾(
√
𝑎)/𝐾(𝐾(

√
𝑎)×); as noted it has index 2 in 𝐾×. Then⌋︀

𝑥2 − 𝑏𝑦2 − 𝑐𝑧2 + 𝑎𝑐𝑡2 : 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝐾 not all zero
{︀
= {𝑥2 − 𝑏𝑦2} − 𝑐{𝑧2 − 𝑎𝑡2} = 𝑁 − 𝑐𝑁

where 𝐴 ± 𝐵 denotes {𝑎± 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Since 𝑐 ̸∈ 𝑁 , 0 ̸∈ 𝑁 − 𝑐𝑁 . Since 𝑁 − 𝑐𝑁 is
invariant under multiplication by elements of 𝑁 , it is a union of cosets of 𝑁 . Suppose that
𝑁 − 𝑐𝑁 ̸= 𝐾×. Then 𝑁 − 𝑐𝑁 is either 𝑁 or 𝑐𝑁 , and

{𝑁 − 𝑐𝑁, 𝑐𝑁 − 𝑐2𝑁} = {𝑁, 𝑐𝑁}

so
𝑁 − 𝑐𝑁 + 𝑐𝑁 − 𝑐2𝑁 = 𝑁 + 𝑐𝑁.

If −1 ∈ 𝑁 , then 𝑁 + 𝑐𝑁 = 𝑁 − 𝑐𝑁 is 𝑐𝑁 or 𝑁 , which is a contradiction because 0 is in the
LHS above. Hence −1 ̸∈ 𝑁 . Then

(𝑁 − 𝑐𝑁)− (𝑐𝑁 − 𝑐2𝑁) ∈ {𝑁 − 𝑐𝑁, 𝑐𝑁 −𝑁} = {𝑁, 𝑐𝑁}

Now 𝑐,−1 ̸∈ 𝑁 imply −𝑐 ∈ 𝑁 , so (𝑁 − 𝑐𝑁) − (𝑐𝑁 − 𝑐2𝑁) = 𝑁 + 𝑁 + 𝑁 + 𝑁 ∈ {𝑁, 𝑐𝑁}.
We have 12 + 12 + 12 + 12 = 22 ∈ 𝑁 and 32 + 42 = 52, so 𝑁 + 𝑁 + 𝑁 + 𝑁 = 𝑁 and
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𝑁 + 𝑁 = 𝑁 (as it is a union of cosets). This implies that there exists a choice of sign in
𝐾: 𝐾× is the disjoint union of the closed semigroups 𝑁 of “positive” elements and −𝑁 of
“negative” elements. If 𝐾 is 𝑝-adic then this cannot happen as we must have 𝑁 ⊇ Z = 𝐾
where ∙ denotes closure in the 𝑣-adic topology. The only possibility is 𝐾 = R. Because 𝑁
consists just of positive numbers, 𝑓 is positive definite. This proves the first part.

For the second part, write 𝑓(𝑋1, . . . , 𝑋𝑛) = 𝑔(𝑋1, . . . , 𝑋𝑛−1) − 𝑎𝑛𝑋2
𝑛. By the first part,

𝑔(𝑋1, . . . , 𝑋𝑛−1) represents every element of 𝐾× unless 𝐾 ∼= R and 𝑔 is positive definite.
(Just consider 𝑔(𝑋1, . . . , 𝑋4, 0, . . . , 0).) In the first case, 𝑔 represents 𝑎𝑛 so 𝑓 represents 0.
In the second case, 𝑔 represents all positive reals, and 𝑓 fails to represents all reals iff 𝑎𝑛 is
negative, i.e. 𝑓 is positive definite.

Corollary 29.2.11: A form 𝑓 in 𝑛 ≥ 5 variables represents 0 in 𝐾 unless there is a real
place 𝑣 with 𝑓 positive definite in 𝐾𝑣.

Proof. This follows directly from Lemma 29.2.10 and the Hasse-Minkowski Theorem 29.2.3.

3 Chebotarev density theorem

Definition 29.3.1: The density of a set of primes 𝑆 in 𝐾 is 𝑑 if

𝑑 = lim
𝑁→∞

|{p ∈ 𝑆 | Np ≤ 𝑁}|
{p | Np ≤ 𝑁}

.

The Dirichlet density of a set of primes 𝑆 in 𝐾 is 𝛿 if

𝛿 = lim
𝑠→1+

∑︀
p∈𝑆

1
Np𝑠

ln 1
𝑠−1

.

(Note that
∑︀

p
1

Np𝑠
∼ ln 1

𝑠−1
as 𝑠 → 1+ by a weak version of the prime number theorem for

number fields.)

Note if a set of primes has density 𝑑, then it has Dirichlet density 𝑑 (an exercise in
partial summation), but a set of primes having a Dirichlet density may not have a well-
defined density.

Theorem 29.3.2 (Chebotarev density theorem): cdt Let 𝐿/𝐾 be a finite Galois extension
of number fields, and let 𝐶 be a conjugacy class 𝐺. The set of prime ideals p of 𝐾 such that
(p, 𝐿/𝐾) = 𝐶 has density |𝐶|

|𝐺| .

In the special case that 𝐺 is abelian, the conjugacy classes are just elements and they
occur with density 1

|𝐺| . An especially notable case is the following.
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Example 29.3.3 (Dirichlet): Let 𝑛 ∈ N and 𝑘 be relatively prime to 𝑛. Then the set

{𝑞 prime | 𝑞 ≡ 𝑘 (mod 𝑛)}

has density 1
𝜙(𝑛)

.

Indeed, Chebotarev gives that the density of 𝑞 where (𝑞, 𝐿/𝐾) is a specific element is
1

𝜙(𝑛)
. By Example 24.24.1.6, this gives that the density of 𝑞 being a specific (relatively prime)

residue modulo 𝑛 is 1
𝜙(𝑛)

.

Example 29.3.4: If 𝐿/𝐾 is a Galois extension, then the density of primes of 𝐾 splitting
in 𝐿 is 1

[𝐿:𝐾]
.

Indeed, a prime splits completely iff (p, 𝐿/𝐾) = 1, by Proposition 24.24.1.3.

3.1 Proof

We prove a weaker form of the Chebotarev Density Theorem, with Dirichlet density. We
will need the following.

Theorem 29.3.5 (Dirichlet’s theorem for number fields): thm:dirichlet-nf Let 𝐾 be a number
field, let 𝐻 be a congruence subgroup modulo m, and let K be a class in 𝐼m𝐾/𝐻. The set of
prime ideals p of 𝐾 such that p ∈ K has density 1

[𝐼m𝐾 :𝐻]
.

Proof. See Lang [Lan94, VIII. S4] for the proof with Dirichlet density.

In the proof below, we use “density” to mean “Dirichlet density.”

Proof of Chebotarev Density Theorem 29.3.2. We can’t deal with nonabelian extensions di-
rectly, so the idea is to reduce to the abelian case as follows. Consider 𝐿/𝐿𝜎; this is cyclic.
A prime P in 𝐿 with (P, 𝐿/𝐾) = 𝜎 descends to a prime P′ such that (P′, 𝐿/𝐿𝜎) = 𝜎|𝐿𝜎 .
Since 𝐿/𝐿𝜎 is abelian, these primes P′ are characterzed by a modular condition, and we
can find their density using Theorem 29.3.5. Then we will relate the density of primes with
(p, 𝐿/𝐾) = 𝐶 to the density of primes with (P, 𝐿/𝐾) = 𝜎.

𝐿

𝐿𝜎

𝐾

𝑆𝐿,𝜎
1:1

𝑆𝐿′

𝑆

1: 𝑁
|𝐶|𝑓

Let
𝑆 = {p : (p, 𝐿/𝐾) = 𝐶} .

Note that fixing 𝜎 ∈ 𝐶, p ∈ 𝑆 iff there exists P | p in 𝐿 such that (P, 𝐿/𝐾) = 𝜎.
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Suppose 𝜎 ∈ 𝐶 has order 𝑓 . Then 𝐿/𝐿𝜎 is a cyclic extension of degree 𝑓 . Let c be the
conductor of this extension. The Artin map gives an isomorphism

𝐼 c𝐿𝜎/𝐻
∼=−→ 𝐺(𝐿/𝐾𝜎)

for some congruence subgroup 𝐻.
Let 𝑆𝐿,𝜎 be those primes in 𝐿 whose Frobenius element is 𝜎:

𝑆𝐿,𝜎 = {P : (P, 𝐿/𝐾) = 𝜎} .

(Note that
⋃︀
𝜎∈𝐶 𝑆𝐿,𝜎 gives all primes above those in 𝑆.) Let 𝑆𝐿′ be those primes in 𝐿′ := 𝐿𝜎

below a prime in 𝐿′:
𝑆𝐿′ = {P ∩ 𝐿𝜎 : P ∈ 𝑆𝐿,𝜎} .

We have a bijection 𝑆𝐿,𝜎 ∼= 𝑆𝐿′ by P ↦→ P ∩ 𝐿𝜎, because 𝜎 generates the decomposition
group 𝐷𝐿/𝐾(P), and 𝐿/𝐿𝐷𝐿/𝐾(P) has no splitting.

Now the density depends only on primes of degree 1 over Q. Since 𝐻 is a subgroup of
index 𝑓 in 𝐼 c𝐿𝜎 , by Theorem 29.3.5, 𝑆𝐿′ has density 1

𝑓
.

Given p such that (p, 𝐿/𝐾) = 𝐶, how many primes P above p satisfy (P, 𝐿/𝐾) = 𝜎?
Choose P0 above p. The primes above p are 𝜏P for 𝜏 ∈ 𝐺(𝐿/𝐾). Each prime is hit
|𝐷𝐿/𝐾(P)| = 𝑓 times. Now we have (𝜏P0, 𝐿/𝐾) = 𝜎 iff

𝜏(P0, 𝐿/𝐾)𝜏−1 = 𝜎.

The number of such 𝜏 is equal to the order of the stabilizer of the conjugation action (i.e.
the number of elements commuting with 𝜏) which is 𝑁 divided by the number of elements
in an orbit, i.e. 𝑁

|𝐶| . Hence the number of P lying above p with (P, 𝐿/𝐾) = 𝜎 is

𝑁/|𝐶|
𝑓

=
𝑁

|𝐶|𝑓
.

The density of 𝑆𝐿,𝜎 is 1
𝑓
. Now every 𝑁

|𝐶|𝑓 good primes in 𝐿 correspond to 1 good prime down
below, so we get the desired density to be

1/𝑓

𝑁/(|𝐶|𝑓)
=
|𝐶|
𝑁
.

3.2 Applications

Often, we will need Chebotarev just for the existence of infinitely many primes with (p, 𝐿/𝐾) =
𝐶, or just for the existence of a prime after we exclude a set of zero density. Here is a typical
application.

Corollary 29.3.6: cor:chebotarev-resfield1 Let 𝐾 be a number field. There exist infinitely many
primes 𝑝 of Q such that there is a prime p | 𝑝 of 𝐾 with (p, 𝐿/𝐾) = 𝐶 and Np = 𝑝.
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Proof. Chebotarev’s Theorem 29.3.2 says there is a positive Dirichlet density of primes p
with (p, 𝐿/𝐾) = 𝐶. The Dirichlet density of primes p with residue degree greater than 1
is 0, because a sum of terms of the form 1

𝑝𝑓𝑠
with 𝑓 ≥ 2 converges. Hence infinitely many

primes must remain.

Definition 29.3.7: For two sets 𝑆, 𝑇 , we write 𝑆
⊂∼ 𝑇 to mean 𝑆 ⊆ 𝑇 ∪ 𝐴 for some finite

set 𝐴, i.e. we have inclusion except for finitely many elements. We write 𝑆 ≈ 𝑇 if 𝑆
⊂∼ 𝑇

and 𝑆
⊃∼ 𝑇 .

Definition 29.3.8: Define

Spl(𝑀/𝐾) = {p prime of 𝐾 splitting completely in 𝑀}.̃︂Spl(𝑀/𝐾) = {p prime of 𝐾 unramified in 𝑀, 𝑓(P/p) = 1 for some P in 𝑀}.

If p is unramified in 𝐾 and 𝑓(P/p) = 1, we say that P is a split factor of p.

Note ̃︂Spl(𝑀/𝐾) = Spl(𝑀/𝐾) if 𝑀/𝐾 is Galois.
The following says that the primes that split in a Galois extension characterize the

extension uniquely, as well as giving inclusions between extensions.

Theorem 29.3.9: split-chebotarev Let 𝐿/𝐾 and 𝑀/𝐾 be finite field extensions.

1. If 𝐿/𝐾 is Galois, then 𝐿 ⊆𝑀 iff ̃︂Spl(𝑀/𝐾)
⊂∼ Spl(𝐿/𝐾).

2. If 𝑀/𝐾 is Galois, then 𝐿 ⊆𝑀 iff Spl(𝑀/𝐾)
⊃∼ Spl(𝐿/𝐾).

3. If 𝐿/𝐾 and 𝑀/𝐾 are Galois, then 𝐿 =𝑀 if and only if Spl(𝑀/𝐾) ≈ Spl(𝐿/𝐾).

In (1) and (2), inclusions actually hold.

Proof.

1. Suppose 𝐿 ⊆ 𝑀 , and p ∈ ̃︂Spl(𝑀/𝐾). Say that P | p and 𝑓(P/p) = 1. Let P′ =
P ∩ O𝐾 . Then 𝑓(P′/p) = 1. Additionally, 𝑒(P/p) = 1 implies 𝑒(P′/p) = 1. Since
𝐿/𝐾 is Galois, the ramification indices and residue field degrees are equal for all primes

above p. Hence ̃︂Spl(𝑀/𝐾)⊆ Spl(𝐿/𝐾).

Conversely suppose ̃︂Spl(𝑀/𝐾)
⊂∼ Spl(𝐿/𝐾). Let𝑁/𝐾 be a Galois extension containing

𝐿 and 𝑀 . It suffices to show 𝐺(𝑁/𝑀) ⊆ 𝐺(𝑁/𝐿); then Galois theory gives 𝑀 ⊇ 𝐿.

Take any 𝜎 ∈ 𝐺(𝑁/𝑀). By Chebotarev Density 29.3.2, there exist infinitely many
primes p in 𝐾 such that (p, 𝑁/𝐾) = [𝜎]. For such a prime p, let P be a prime lying
above p in 𝑁 such that (P, 𝑁/𝐾) = 𝜎 and let P′ = P ∩ O𝑀 . For such a prime we
have

𝛼 ≡ 𝜎(𝛼) ≡ 𝛼Np (mod P′), 𝛼 ∈ O𝑀 .
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The left equality holds because 𝜎 fixes 𝑀 and the right equality holds by definition
of (P, 𝑁/𝐾). Hence O𝑀/P

′ ⊆ FNp = O𝐾/p, and equality must hold. In other words,

𝑓(P′/p) = 1. Hence p ∈̃︂Spl(𝑀/𝐾). Since ̃︂Spl(𝑀/𝐾)
⊂∼ Spl(𝐿/𝐾), we can take p such

that p ∈ Spl(𝐿/𝐾) as well. Then 𝜎|𝐿 = 1 hence 𝐺(𝑁/𝑀) ⊆ 𝐺(𝑁/𝐿) and 𝑀 ⊇ 𝐿.

2. Suppose 𝐿 ⊆𝑀 . Then any prime splitting completely in 𝑀 splits completely in 𝐿, so
Spl(𝑀/𝐾) ⊆ Spl(𝐿/𝐾).

Conversely suppose Spl(𝑀/𝐾)
⊂∼ Spl(𝐿/𝐾). Let 𝐿gal be the Galois closure of 𝐿. Since

𝑀/𝐾 is Galois, ̃︂Spl(𝑀/𝐾) = Spl(𝑀/𝐾); we also have Spl(𝐿/𝐾) = Spl(𝐿gal/𝐾) (Any
prime splitting completely in 𝐿 splits completely in the Galois closure, by exercise 2 in
15.8). Thus ̃︂Spl(𝑀/𝐾) ⊆ Spl(𝐿gal/𝐾)

and we can apply part 1 to get 𝐿gal ⊆𝑀 ; a fortiori 𝐿 ⊆𝑀 .

3. Apply part 2 twice.

4 Splitting of primes

sec:splitting

4.1 Splitting of primes

Theorem 29.4.1: thm:splitting-of-primes Let 𝐿/𝐾 be an extension of number fields.

1. If 𝐿gal/𝐾 is abelian, then there is a modulus m and a congruence subgroup modulo m
such that

Spl(𝐿/𝐾) = {prime p ∈ 𝐻}.

2. If there exists K ∈ 𝐶𝐾(m) = 𝐼m𝐾/𝑃𝐾(1,m) such that

{prime p : p (mod 𝑃𝐾(1,m)) = K} ⊂∼ Spl(𝐿/𝐾),

(i.e. all but finitely many primes satisfying a certain modular condition split) then
𝐿gal/𝐾 is abelian.

In other words the law of decomposition of primes in an extension 𝐿/𝐾 is determined by
modular conditions iff 𝐿/𝐾 is an abelian extension.

Proof. 3 As Spl(𝐿/𝐾) = Spl(𝐿gal/𝐾), it suffices to consider 𝐿/𝐾 Galois.

3This proof is from http://mathoverflow.net/questions/11688.
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Part 1: By global class field theory, the kernel of the Artin map 𝐼m𝐾 → 𝐺(𝐿/𝐾) is a congruence
subgroup 𝐻. But we have by Proposition 24.24.1.3 that p splits completely iff 𝜓𝐿/𝐾(p) =
(p, 𝐿/𝐾) = 1. Hence

𝐻 = ker(𝜓𝐿/𝐾) = Spl(𝐿/𝐾).

Part 2: Let 𝐾m be the ray class field of 𝐾 modulo m and 𝑀 = 𝐿𝐾m. There is a natural map

𝑝 = 𝑝1 × 𝑝2 : 𝐺(𝑀/𝐾) →˓ 𝐺(𝐾m/𝐾)×𝐺(𝐿/𝐾)
∼=−→ 𝐶𝐾(m)×𝐺(𝐿/𝐾)

where the second map is given by 𝜓−1
𝐿/𝐾 in the first component.

For all but finitely many primes, we have the following string of facts.

1. p ∈ K.

2. p ∈ Spl(𝐿/𝐾).

3. (p, 𝐿/𝐾) = 1.

4. For any prime P | p in 𝑀 , 𝑝((P,𝑀/𝐾)) = (K, 1).

(1) =⇒ (2) is by assumption, (2) ⇐⇒ (3) is Proposition 24.24.1.3, and (3) ⇐⇒ (4) is
by compatibility of the Frobenius elements (the map 𝐺(𝑀/𝐾) → 𝐺(𝐿m/𝐾) × 𝐺(𝐿/𝐾) is
compatible with the map on residue fields 𝐺(𝑚/𝑘)→ 𝐺(𝑘m/𝑘)×𝐺(𝑙/𝑘)).

Suppose 𝜎 ∈ 𝐺(𝑀/𝐾) and 𝑝(𝜎) = (K, 𝑔). By Chebotarev’s Theorem there exist primes
P | p in 𝑀 and 𝐾, respectively, such that (P,𝑀/𝐾) = 𝜎. But (1) =⇒ (4) shows that
𝑔 = 1. Hence

𝑝(𝐺(𝑀/𝐾)) ∩ (K, 𝐺(𝐿/𝐾)) = {(K, 1)}.

Since 𝑝 is a group homomorphism that is surjective in the first component, 𝑝(𝐺(𝑀/𝐾)) ∩
(K′, 𝐺(𝐿/𝐾)) must consist of 1 element for every K′, in particular for K′ = 1. Thus if
𝑝(𝜎) = (𝑃𝐾(1,m), 𝑔), then 𝑔 = 1. Given a prime p splitting completely in 𝐾m, i.e. p such
that p ∈ 𝑃𝐾(1,m), take any P | p in 𝑀 . Then 𝑝(P,𝑀/𝐾) = (𝑃𝐾(1,m), 𝑔) for some 𝑔, so
𝑔 = 1 and

(p, 𝐿/𝐾) = (P,𝑀/𝐾)|𝐿 = 𝑝2(P,𝑀/𝐾) = 𝑔 = 1,

i.e. p splits completely in 𝐿. Thus Spl(𝐿m/𝐾)
⊂∼ Spl(𝐿/𝐾), showing by Theorem 29.3.9 that

𝐿 ⊆ 𝐿m.

For nonabelian extensions, the set of primes that split has to be specified by more than
just a modulo condition.

Example 29.4.2: ex:prime-split-nonab We show that a prime splits completely in Q(𝜁3,
3
√
2) iff

𝑝 ≡ 1 (mod 3) and 𝑝 is in the form 𝑥2 + 27𝑦2.
Note that Q(𝜁3,

3
√
2) is the splitting field of 𝑥3− 2 = 0. For an unramified prime, 𝑝 splits

completely iff the residue field extension has degree 1, i.e. 𝑥3 − 2 splits completely in F𝑝.
This is true iff 2 is a cubic residue modulo 𝑝. As we saw in Theorem 29.1.14, this is true iff
𝑝 is of the form 𝑥2 + 27𝑦2.
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4.2 Roots of polynomials over finite fields

We can recast the problem of splitting behavior in terms of finding roots of univariate
polynomials over finite fields. Let 𝐿/𝐾 be a finite extension, and 𝑓 ∈ O𝐾 [𝑋] be the minimal
polynomial of a primitive element in 𝐿/𝐾. Then Theorem 15.15.6.3 tells us that for a prime
p relatively prime to the conductor of 𝐿/𝐾, the factorization of 𝑓 in O𝐾/p corresponds to
the factorization of p. In particular, p splits completely iff 𝑓 splits completely, and p has a
split factor iff 𝑓 has a root in O𝐾/p.

Definition 29.4.3: Let 𝑁p(𝑓) denote the number of zeros of 𝑓 in O𝐾/p.

Thus we can rephrase Theorem 29.4.1 as follows.

Theorem 29.4.4: thm:roots-over-ff Let 𝑓 be an irreducible polynomial over 𝐾. Let 𝛼 be a root
of 𝑓 and 𝐿 be the Galois closure of 𝐾(𝛼).

1. For all except a finite number of primes, 𝑁p(𝑓) = 𝑚 iff 𝜓𝐿/𝐾(p) = [𝜎] for some
𝜎 ∈ 𝐺(𝐿/𝐾) fixes 𝑚 of the roots of 𝐿.

2. The sets {p : 𝑁p(𝑓) = 𝑚} are given by modular conditions iff 𝐿/𝐾 is abelian.

3. The density of primes p such that 𝑁p(𝑓) = 𝑚 is {𝜎∈𝐺(𝐿/𝐾):𝜎 fixes 𝑚 roots}
[𝐿:𝐾]

.

Proof. The first item follows from Theorem 15.15.6.3. The second item follows from this and
Theorem 29.4.1. The third item follows from the Chebotarev Density Theorem 29.3.2.

Even the reciprocity laws (at least, weak reciprocity) can be put in the same framework:
in a field 𝐾 containing 𝑛th roots of unity, 𝑎 is a perfect 𝑛th power modulo p iff 𝑥𝑛 − 𝑎
splits completely modulo p (the polynomial viewpoint), i.e. the prime p splits completely in
𝐾( 𝑛
√
𝑎)/𝐾 (the splitting viewpoint).

5 Hilbert class field

sec:hcf

Definition 29.5.1: The Hilbert class field of 𝐾 is the largest abelian field extension of
𝐾 unramified over 𝐾 at all places. (For infinite places this means that no real embedding
becomes complex.) It is denoted 𝐻𝐾 .

The large Hilbert class field of 𝐾 is the largest abelian field extension of 𝐾 unramified
over 𝐾 at all finite places, with no restrictions for infinite places (i.e. they are allowed to
ramify). It is denoted 𝐻+

𝐾 .

Note if 𝐾 is already totally complex then 𝐻𝐾 = 𝐻+
𝐾 .
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Proposition 29.5.2: pr:hcf The Hilbert class field and large Hilbert class field exist, and the
global reciprocity map gives isomorphisms

𝐺(𝐻𝐾/𝐾) ∼= Cl𝐾

𝐺(𝐻+
𝐾/𝐾) ∼= Cl+𝐾 .

Proof. The Hilbert class field is exactly the ray class field corresponding to the modulus 1,
and the narrow Hilbert class field is exactly the ray class field corresponding to the modulus
m =

∏︀
𝑣 real 𝑣. Indeed, by global class field theory the fields corresponding to congruence

subgroups of 𝐶𝐾(1) are just the fields unramified over 𝐾, and the fields corresponding to
congruence subgroups of 𝐶𝐾(m) are just the fields unramified at every infinite place.

The global reciprocity map gives the desired isomorphisms.

The most interesting property of the Hilbert class field is the following.

Theorem 29.5.3: Let 𝐾 be a global field. Every fractional ideal of 𝐾 becomes principal
in the Hilbert class field 𝐿 of 𝐾.

Proof. Let 𝑀 be the Hilbert class field of 𝐿. By Proposition 29.5.2, the global reciprocity

map gives 𝐶𝐾
∼=−→ 𝐺(𝐿/𝐾) and 𝐶𝐿

∼=−→ 𝐺(𝑀/𝐿). We will transfer the map 𝐶𝐾 → 𝐶𝐿 to the
Galois groups. By definition, 𝐿 is the maximal unramified abelian extension of 𝐾; since 𝑀
is also unramified over 𝐾, 𝐿 is the maximal abelian subextension of 𝑀/𝐾. But by Galois
theory, intermediate Galois extensions correspond to quotient groups of 𝐺(𝑀/𝐾). This
means that

𝐺(𝐿/𝐾) = 𝐺(𝑀/𝐾)/𝐺(𝑀/𝐿)

is the largest abelian quotient of 𝐺(𝐿/𝐾). From group theory this means that 𝐺(𝑀/𝐿) is
the derived subgroup (𝐺(𝐿/𝐾))′.

The following diagram commutes by compatibility of the Artin map (the last diagram in
Theorem 27.27.4.10 together with Theorem 28.28.5.1)

𝐶𝐾
𝜑𝐿/𝐾

∼=
//

��

𝐺(𝐿/𝐾)ab

𝑉
��

𝐶𝐿
𝜑𝑀/𝐿

∼=
// 𝐺(𝑀/𝐿)ab

where 𝑉 is the transfer.
However, the transfer map is 0 by Theorem 25.25.11.13 and the fact that 𝐺(𝑀/𝐿) =

𝐺(𝐿/𝐾)′. Hence the map 𝐶𝐾 → 𝐶𝐿 is trivial, i.e. every fractional ideal of 𝐾 becomes trivial
in 𝐿.

6 Primes represented by quadratic forms

sec:primes-rep-q We now give a complete characterization of which primes can be represented by
which binary (positive definite integral) quadratic forms. First consider the form 𝑥2 + 𝑛𝑦2.
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A prime is in the form 𝑝 = 𝑥2 + 𝑛𝑦2 iff 𝑝 splits as pp = (𝑥+ 𝑦
√
𝑛)(𝑥− 𝑦

√
𝑛) in Z[

√
−𝑛],

with its factors being principal ideals. We can think of this as saying that p goes to 0 in
the ideal class group of Z[

√
−𝑛]. Unfortunately, this is not the same class group as 𝐶𝐾 .

However, this class group is essentially a quotient of a ray class group (Theorem 17.17.6.2).
But by class field theory, we can find a field extension 𝐿 such that the Artin map to 𝐺(𝐿/𝐾)
is an isomorphism. The primes in the kernel of the Artin map are exactly those that split
completely in 𝐿, so this relates the equation 𝑥2+𝑛𝑦2 to the splitting of primes in the Hilbert
class field.

Definition 29.6.1: Let O be an integral quadratic order and 𝑓 := disc(O).

1. Suppose 𝑓 < 0. The field 𝐿 corresponding to the congruence subgroup

𝑃𝐾(Z, 𝑓) := {(𝑎) ∈ 𝐼𝐾(𝑓) : 𝑎 (mod 𝑓) ∈ Z (mod 𝑓)} ⊆ 𝐼𝐾(𝑓)

is called the ring class field of O.

2. Suppose 𝑓 > 0. The field 𝐿 corresponding to the congruence subgroup

𝑃𝐾(Z,∞𝑓) := {(𝑎) ∈ 𝐼𝐾(𝑓) : 𝑎 (mod 𝑓) ∈ Z (mod 𝑓)} ⊆ 𝐼𝐾(𝑓)

is called the ring class field of O.

The reason for this definition is that 𝐼𝐾(𝑓)/𝑃𝐾(Z,∞𝑓) ∼= 𝐼(O)/𝑃+(O) = 𝐶+(O) via the
map a ↦→ a ∩ O, by Theorem 17.17.6.2. (Ignore the ∞ when 𝐾 is imaginary; in this case
𝐶+(O) = 𝐶(O).)

Example 29.6.2: When O = O𝐾 , with 𝐾/Q a quadratic extension, then the ring class field
is just the large Hilbert class field of 𝐾, because 𝐼(O)/𝑃+(O) = 𝐶+

𝐾 .

Theorem 29.6.3: thm:p=x2+ny2 Let 𝑛 ≥ 1. Let 𝑄 be a quadratic form that corresponds to
a ⊆ 𝑅 under the Gauss correspondence 17.17.5.1, let 𝐾 = Frac(𝑅), and let 𝑝 be an odd
prime not dividing 𝑓 := disc(𝑅). Let b be the ideal corresponding to a under the map
𝐼𝐾(𝑓)/𝑃𝐾(Z,∞𝑓)→ 𝐼(O)/𝑃+(O) = 𝐶+(O). Let 𝐿 be the ring class field of 𝑅 and suppose
(𝐿/𝐾, b) = 𝜎. Then

𝑓 represents p ⇐⇒ (𝐿/Q, 𝑝) = [𝜎]

where [𝜎] denotes the conjugacy class of 𝜎 in 𝐺(𝐿/Q).

Proof. Let 𝐾 = Q(
√
−𝑛). We have the following string of equivalences.

1. 𝑄 represents 𝑝.

2. 𝑝𝑅 = pp in 𝑅 for some ideal p in the same ideal class as a.

3. 𝑝O𝐾 = pp for p ∼ b where the ideals are considered in 𝐼𝐾(𝑓)/𝑃𝐾(Z,∞𝑓).
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4. 𝑝O𝐾 = pp for (𝐿/𝐾, p) = 𝜎.

5. (𝐿/Q, 𝑝) = [𝜎].

The equivalence (1) ⇐⇒ (2) follows from Proposition 17.17.5.4. We have (2) ⇐⇒ (3)
by Theorem 17.17.6.2, which gives an isomorphism 𝐼𝐾(𝑓)/𝑃𝐾(Z,∞𝑓) → 𝐼(O)/𝑃+(O) =
𝐶+(O) by sending a to a∩O. By definition of ring class field, the Artin map is an isomorphism
𝐼𝐾(𝑓)/𝑃𝐾(Z,∞𝑓)→ 𝐺(𝐿/𝐾), so (3) ⇐⇒ (4).

For (4) ⇐⇒ (5), note by definition of the Artin symbol that (4) is equivalent to

𝑝 splits in O𝐾 and 𝜎(𝛼) ≡ 𝛼|𝑘| (mod P) for all 𝛼 ∈ 𝐿

where P is any prime dividing p in 𝐿. Since 𝑝 is unramified, 𝑝 splits in O𝐾 iff [𝑘 : F𝑝] = 1,
iff |𝑘| = 𝑝. Hence the above is equivalent to

𝜎(𝛼) ≡ 𝛼𝑝 (mod P)

This says exactly that (𝐿/Q, 𝑝) = [𝜎].

Corollary 29.6.4: Suppose 𝑛 ̸= 0 is an integer.

1. Let 𝐿 be the ring class field of Z[
√
−𝑛]. Then 𝑝 can be represented as

𝑝 = 𝑥2 + 𝑛𝑦2, 𝑥, 𝑦 ∈ Z

if and only if 𝑝 splits completely in 𝐿.

2. For −𝑛 ≡ 1 (mod 4), let 𝐿′ be the ring class field of Z
[︁
1+

√
−𝑛

2

]︁
. Then 𝑝 can be

represented as

𝑝 = 𝑥2 + 𝑥𝑦 +
1− 𝑛
2

𝑦2

iff 𝑝 splits completely in 𝐿′.

Remark 29.6.5: It is not hard to show that we can replace the conditions by the following
uniform statement: 4𝑝 can be represented as 4𝑝 = 𝑥2 + 𝑑𝑦2 iff 𝑝 splits completely in the
order of discriminant −𝑑.

Proof. These quadratic forms correspond to the principal ideals in Z[
√
−𝑛] and Z

[︁
1+

√
−𝑛

2

]︁
,

respectively (Example 17.17.5.3), so the theorem says 𝑝 can be represented by the quadratic
forms iff

(𝐿/𝐾, 𝑝) = 1.

This is true iff p splits completely in 𝐿 (Proposition 24.24.1.3).

How is this useful? Algorithmically, there are fast ways to find solutions to 𝑝 = 𝑥2 + 𝑛𝑦2

(Cornacchia’s algorithm), so we can obtain primes splitting completely in the Hilbert class
field 𝐻𝐾 . This means that the minimal polynomial of 𝐻𝐾/𝐾 factors completely modulo 𝑝.

410



Number Theory, S29.6

As we will in Chapter 41, the roots are the 𝑗-invariants of CM elliptic curves; the fact that
they are in F𝑝 gives us an easy way to calculate the action of the class group on elliptic
curves.

Additionally, this description of solutions to 𝑝 = 𝑥2 + 𝑛𝑦2 gives a way to find the density
of primes represented by a quadratic form.

Theorem 29.6.6: thm:density-qform Let 𝑄 be a primitive positive definite quadratic form of
discriminant 𝐷 < 0, and let 𝑆 be the set of primes represented by 𝑄. Then the density of
primes 𝑑(𝑆) represented by 𝑆 is

𝑑(𝑆) =

⎧⎨⎩ 1
2ℎ(𝐷)

, 𝑄 properly equivalent to its opposite,
1

ℎ(𝐷)
, else,

where ℎ(𝐷) is the class number of the quadratic ring with discriminant 𝐷. In particular, 𝑄
represents infinitely many prime numbers.

Note “𝑄 properly equivalent to its opposite” is equivalent to saying that the ideal class
corresponding to 𝑄 has order dividing 2.

Example 29.6.7: ℎ(−27) = 3 so 1
6
of all primes can be represented by the form 𝑥2 + 27𝑦2.

In fact, the ring class field of Z[
√
−27] is Q(𝜁3,

3
√
2), so 𝑝 = 𝑥2+27𝑦2 iff 𝑝 splits completely

in Q(𝜁3,
3
√
2). This shows Example 29.4.2 in a different way.

Proof of Theorem 29.6.6. Let 𝐾 be the quadratic field of discriminant 𝐷.
By Theorem 29.6.3, 𝑝 is represented by 𝑄 iff (𝐿/Q, 𝑝) = [𝜎] where 𝐿 is the ring class field

of the order corresponding to 𝑄 and 𝑄 corresponds to 𝜎 under the Gauss correspondence.
We need to find [𝜎], so we first need to understand 𝐺(𝐿/Q).

Since 𝐶(O) ∼= 𝐼𝐾(𝑓)/𝑃𝐾(Z, 𝑓) ∼= 𝐺(𝐿/𝐾) via the Artin map,

[𝐿 : 𝐾] = |𝐶(O)| = ℎ(𝐷) =⇒ [𝐿 : Q] = 2ℎ(𝐷).

Next we show 𝐺(𝐿/Q) = 𝐺(𝐿/𝐾) o 𝐺(𝐾/Q) where, denoting complex conjugation by
𝜎 ∈ 𝐺(𝐾/Q), we have 𝜎𝜏𝜎−1 = 𝜏−1 for all 𝜏 ∈ 𝐺(𝐿/𝐾). Letm be the modulus corresponding
to 𝑓O𝐾 , where 𝑓 is the conductor. By construction of 𝐿, it is the unique field such that
ker(𝜓𝐿/𝐾) = 𝑃𝐾(Z, 𝑓). However, because the Artin map commutes with Galois action (see
the third diagram in Theorem 27.4.10),

ker(𝜓𝜎(𝐿)/𝐾) = 𝜎 ker(𝜓𝐿/𝐾) = 𝜎𝑃𝐾(Z, 𝑓) = 𝑃𝐾(Z, 𝑓).

Uniqueness hence gives 𝜎(𝐿) = 𝐿, i.e. 𝜎 ∈ 𝐿. Hence |𝐺(𝐿/Q)| = 2|𝐺(𝐿/𝐾)| = [𝐿 : Q],
giving that 𝐿/Q is Galois. Given 𝜏 ∈ 𝐺(𝐿/𝐾), by surjectivity of the Frobenius map 28.28.2.8,
𝜏 = (𝐿/𝐾, p) for some p. Then by Lemma 24.24.1.2,

𝜎𝜏𝜎−1 = 𝜎(𝐿/𝐾, p)𝜎−1 = (𝐿/𝐾, 𝜎p) = (𝐿/𝐾, p) = (𝐿/𝐾, p)−1 = 𝜏−1,
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as needed.
From the structure of 𝐺(𝐿/Q), we see that the conjugacy class of any element 𝜎 is

{𝜎, 𝜎−1}. By the Chebotarev density theorem 24.29.3.2, the density of primes such that
(𝐿/Q, 𝑝) = [𝜎] = {𝜎, 𝜎−1} is hence

|[𝜎]|
[𝐿 : Q]

=

⎧⎨⎩ 1
2ℎ(𝐷)

, 𝜎 = 𝜎−1,
1

ℎ(𝐷)
, else,

as needed.

7 Introduction to the Langlands program

sec:intro-langlands In this section, we’ll give the big picture, and be content with morally, rather
than mathematically correct, statements.

Much of modern number theory is occupied with the relationship between the following
three objects.

1. Algebraic varieties, i.e. polynomial equations.

2. Galois representations, i.e. continuous functions from 𝐺(𝐾/𝐾) to algebraic groups
such as 𝐺𝐿𝑛(C).

3. Automorphic forms, i.e. continuous functions defined on an algebraic group on the
ideles, such as GL𝑛(A𝐾), and satisfying certain conditions.

The relationship between Galois representations and automorphic forms is known as the
Langlands correspondence. More precisely, there is a conjectural correspondence⎧⎪⎨⎪⎩ cuspidal automorphic

representations of GL𝑛(A𝐾)
algebraic at ∞

⎫⎪⎬⎪⎭↔ ⎧⎪⎨⎪⎩irreducible continuous
𝐺(𝐾/𝐾)→ GL𝑛(C)

algebraic at ℓ
.

⎫⎪⎬⎪⎭
We can define 𝐿-series from both Galois representations and automorphic forms. 𝐿-series

from Galois representations arise more naturally in number theory (because it is relatively
easy to go from algebraic varieties to Galois representations), but as automorphic forms are
analytic objects, 𝐿-series of automorphic forms are known to satisfy more properties. The
Langlands correspondence allows us to show that 𝐿-series of Galois representations arise
from automorphic forms, hence have nice analytic properties as well. This allows us to prove
various results about algebraic varieties, such as density theorems on the number of solutions
over finite fields, for example the Sato-Tate conjecture.

We first give some more precise definitions, then describe this relationship in the 1-
dimensional abelian case (which we have in fact proved!), and then give an overview of how
it generalizes.
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7.1 Definitions

Definition 29.7.1: Let 𝑘 be a topological field (for instance, C or Qℓ), and let 𝑉 ∼= 𝑘𝑛 be
a 𝑛-dimensional vector space over 𝑘. A 𝑛-dimensional Galois representation of 𝐾 over 𝑘
is a continuous homomorphism

𝜌 : 𝐺(𝐾𝑠/𝐾)→ GL(𝑉 ) = GL𝑛(𝑘).

Let p be a prime of 𝐾. We say 𝜌 is unramified at p if 𝐼p(𝐾
𝑠/𝐾) ⊆ ker(𝜌).

Let 𝐾 be a number field. Let Frob(p) be a Frobenius element of p in 𝐾p (defined in
𝐺(𝐾p/𝐾p) up to 𝐼(𝐾p/𝐾p)). Define the (modified) characteristic polynomial of 𝜌 at p
to be

𝑃𝜌(𝑋) := det(1−𝑋 · 𝜌(Frob(p))|𝑉 𝐼(𝐾p/𝐾p)).

(Here, 𝑉 𝐼(𝐾p/𝐾p) denotes the subspace of 𝑉 fixed by the inertia group. 𝑃𝜌(𝑋) is well-defined
because Frob(p) is defined up to 𝐼(𝐾p/𝐾p), and 𝐼(𝐾p/𝐾p) ⊆ ker(𝜌|

𝑉 𝐼(𝐾p/𝐾p)
). In particular,

if 𝜌 is unramified at p, then 𝑉 = 𝑉 𝐼(𝐾p/𝐾p).)

We can now define the 𝐿-function associated to a Galois representation.

Definition 29.7.2: In the above, suppose 𝑉 is a complex vector space and 𝐾 is a number
field. The local 𝐿-factor at a prime p is

𝐿p(𝜌, 𝑠) = 𝑃𝜌(Np−𝑠)−1.

The Artin 𝐿-function of 𝜌 is4

𝐿(𝜌, 𝑠) =
∏︁
p

𝐿p(𝜌, 𝑠).

We have the following conjecture.

Conjecture 29.7.3 (Artin’s conjecture): Every Artin 𝐿-function has analytic continuation
to C and satisfies a functional equation.

7.2 Class field theory is 1-dimensional Langlands

For a different take on some of these ideas, with concrete examples, see Dalawat [Dal11].

7.2.1 Galois representations are automorphic representations

We rephrase global class field theory in the form that generalizes under the Langlands pro-
gram.

4Sometimes infinite places are included. The factors at infinite places take more thought to define so we
exclude them here.
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Theorem 29.7.4 (Rephrase of GCFT): thm:rephrase-gcft There is a bijection between continuous
homomorphisms 𝜒 : A×

𝐾/𝐾
×(𝐾×

∞)0 → C× and continuous homomorphisms 𝜌 : 𝐺(𝐾/𝐾) →
GL1(C), given by the following.

{𝜒 : A×
𝐾/𝐾

×(𝐾×
∞)0 → C×} ↔ {𝜌 : 𝐺(𝐾/𝐾)→ GL1(C)}

𝜒 ↦→ 𝜒 ∘ 𝜑−1
𝐾

Proof. From Theorem 24.24.6.5, the Artin map gives a topological isomorphism A×
𝐾/𝐾

×(𝐾×
∞)0 →

𝐺(𝐾ab/𝐾). It remains to note that any function 𝐺(𝐾/𝐾) → GL1(C) factors through
𝐺(𝐾/𝐾)ab = 𝐺(𝐾ab/𝐾), since GL1(C) is abelian.

The functions on the left side have a special name.

Definition 29.7.5: A Hecke character is a continuous homomorphism A×
𝐾/𝐾

×(𝐾×
∞)0 →

C×, or equivalently, a homomorphism

𝜒 : C𝐾 → 𝑆1 := {𝑥 ∈ C : |𝑥| = 1}
with finite image. The conductor of 𝜒 is the smallest modulus m such that 𝜒 factors
through A×

𝐾/𝐾
×U𝐾(1,m) ∼= 𝐶𝐾(m).

The homomorphisms 𝜒 : A×
𝐾/𝐾

×(𝐾×
∞)0 → C are “automorphic functions” on GL1(A𝐾),

a.k.a. Hecke characters, and the homomorphisms 𝜌 : 𝐺(𝐾/𝐾)→ GL1(C) are 1-dimensional
“Galois representations.” Our correspondence is unsatisfactory, however, because we would
like to get all continuous homomorphisms A×

𝐾/𝐾
× → C×, not just those factoring through

A×
𝐾/𝐾

×(𝐾×
∞)0. Since 𝐺(𝐾ab/𝐾) has the profinite topology, any continuous homomorphism

𝐺(𝐾/𝐾)→ GL1(C) must have finite image, while functions A×
𝐾/𝐾

× → C× can have infinite
image. To remedy this, we introduce functions 𝐺(𝐾/𝐾)→ GL1(C) with infinite image (no
longer continuous under the complex topology).

For simplicity, we just consider the case of Q.

Example 29.7.6: We say a function 𝜋 : A×
Q/Q× → C is algebraic at ∞ if 𝜋(𝑖R(𝑥)) =

sign(𝑥)𝑚|𝑥|𝑛 for some 𝑚 ∈ {0, 1} and 𝑛 ∈ Z. We characterize all the continuous homomor-
phisms 𝜋 : A×

𝐾/𝐾
× → C× (“Grössencharacters”) that are algebraic at ∞.

It is enough to introduce 1 more character. Let ℓ be a prime of Q. Let | · | : A×
Q/Q× → C×

denote the map |x| = ∏︀
𝑣∈𝑉Q |𝑥𝑣|𝑣, and define 𝜒ℓ by

𝜒ℓ : 𝐺(Q/Q) // // 𝐺(Qab/Q) = 𝐺(Q(𝜁∞)/Q)
∼= // ÒZ× =

∏︀
𝑝 Z×

𝑝
// // GL1(Zℓ).

(We say 𝜒ℓ is “algebraic at ℓ.” Note there is a noncanonical field isomorphism Qℓ
∼= C, so

we can think of GL1(Zℓ) as being “inside” GL1(C).)
Every continuous homomorphism 𝜋 : A×

𝐾/𝐾
× → C× algebraic at ∞ is in the form

| · |𝑛 ·𝜒, where 𝜒 is a Hecke character. We can extend the correspondence in Theorem 29.7.4
by associating | · | with 𝜒ℓ:

𝜋 = | · |𝑛 · 𝜒↔ 𝜒𝑛ℓ · (𝜒 ∘ 𝜑−1
𝐾 )

where the right-hand side is now viewed in Qℓ instead of C.
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7.2.2 Artin 𝐿-functions are Hecke 𝐿-functions

Associated to each Hecke character is a 𝐿-function.

Definition 29.7.7: Let 𝜒 be a Hecke character and m be the conductor of 𝜒. The 𝐿-
function associated to 𝜒 is

𝐿(𝜒, 𝑠) :=
∏︁
p-m

1

1− 𝜒(p)Np−𝑠
.

Because 𝜒 admits a modulus, Hecke 𝐿-series have nice analytic properties.

Theorem 29.7.8 (Hecke, Tate): thm:l-analytic-cont Every Hecke 𝐿-series admits an analytic con-
tinuation to C and satisfies a functional equation.

For the details, see Tate’s thesis in [CF69].

Theorem 29.7.9: Any 1-dimensional Artin 𝐿-function is a Hecke 𝐿-function. Hence it has
analytic continuation and satisfies a functional equation.

Proof. Let 𝜌 : 𝐺(𝐾/𝐾) → GL1(C) be a 1-dimensional representation. By Theorem 29.7.4,
𝜌(Φp) = 𝜒(p) for some Hecke character 𝜒 : A×

𝐾/𝐾
× → C×. Let m be the modulus of 𝜌; note

it is also the conductor for 𝜒. Then

𝐿(𝜌, 𝑠) =
∏︁
p-m

1

1− 𝜌(Φp)Np−1
=
∏︁
p-m

1

1− 𝜒(p)Np−𝑠
= 𝐿(𝜒, 𝑠).

This theorem is another way of saying that the Artin map factors through a modulus,
and this is basically what allowed us to get all the density results in this chapter.

7.2.3 Algebraic varieties and Galois representations

We give examples of how to get Galois representations from algebraic varieties.
First consider the variety Q×

=
⌋︀
𝑥 ∈ Q : 𝑥 ̸= 0

{︀
. It is a group under multiplication,

and the torsion points Q×
[𝑚] are exactly the roots of unity 𝜇𝑚. We can define a Galois

representation by considering the action of 𝐺(Q/Q) on the 𝑙-power roots of unity. Define

the Tate module of Q×
by

𝑇ℓ(Q
×
) = lim←−

𝑛

Q×
[ℓ𝑛] = lim←−

𝑛

𝜇ℓ𝑛 ∼= Zℓ.

Then 𝐺(Q/Q) acts naturally on 𝑇ℓ(Q
×
) so we get a representation

𝜌 : 𝐺(Q/Q)→ Aut(𝑇ℓ(Q
×
)) ∼= Aut(Zℓ) →˓ GL1(Qℓ)
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sending the element 𝜑Q(𝑝) to 𝑝. The corresponding 𝐿-function is just a translate of the 𝜁
function, missing the factor ℓ:

∏︀
𝑝 ̸=ℓ

1
1−𝑝1−𝑠 . This construction is a good analogy for what

we will eventually do with elliptic curves, although it is a bit too “trivial” to capture any
significant number theory facts.

We give another example, with equations in 1 variable, which is a bit less natural but
show more of the number theory. Consider the variety defined by 𝑓(𝑋) = 0 where 𝑓 ∈ 𝐾[𝑋]
is a irreducible polynomial. Let 𝛼 be a root, and 𝐿 be the Galois closure of 𝐾(𝛼) over
𝐾. Let 𝛼1, . . . , 𝛼𝑛 be the roots of 𝑓 in 𝐿. 𝐺(𝐾/𝐾) acts by permuting the 𝛼𝑖, so we get
a representation 𝐺(𝐾/𝐾) → 𝑆𝑛. We can embed 𝑆𝑛 in some general linear group, to get
𝜌 : 𝐺(𝐾/𝐾) → GL𝑚(𝑘) for some 𝑘. Then to find how many roots 𝑓 has modulo p, we can
look at the trace of 𝜌(Frob(p)).

For example, consider 𝑓(𝑋) = 𝑋3−𝑋−1 over Q. We get a representation 𝜌 : 𝐺(𝐾/𝐾)→
𝑆3 → GL2(C), where we embed 𝑆3 →˓ GL2(C) as follows: we have a natural permutation
representation 𝑆3 →˓ GL3(C); now take out the trivial representation to get 𝑆3 →˓ GL2(C).
From this description we have 𝑁𝑝(𝑓) = tr(𝜌(Frob(p))) + 1, so we can get the number of
solutions of 𝑋3 −𝑋 − 1 ≡ 0 (mod 𝑝) from looking at the trace of Frobenius. Constructing
the 𝐿-function, the trace of Frobenius becomes the coefficient of 1

𝑝𝑠
. Now 𝜌 comes from

an automorphic form, so 𝐿 comes from a 2-dimensional automorphic form, i.e. a modular
form. We can write this modular form explicitly using theta functions or as an eta quotient.
At the end of the day, we have this striking fact: For 𝑝 ̸= 23, the number of solutions of
𝑋3 −𝑋 − 1 ≡ 0 (mod 𝑝) is 𝑁𝑝(𝑓) = 𝑎𝑝 + 1, where 𝑎𝑝 is the coefficient of the modular form

𝑞
∞∏︁
𝑘=1

(1− 𝑞𝑘)(1− 𝑞23𝑘) = 1

2

∑︁
(𝑥,𝑦)∈Z2

(𝑞𝑥
2+𝑥𝑦+6𝑦2 − 𝑞2𝑥2+𝑥𝑦+3𝑦2) =

∞∑︁
𝑛=1

𝑎𝑛𝑞
𝑛.

(See Serre’s article [Ser03].) In this example we have traced out a relationship

(algebraic variety)→(Galois representation)→(automorphic form).

7.3 Elliptic curves and 2-dimensional Langlands

7.3.1 Galois representations and automorphic representations

Definition 29.7.10: A 2-dimensional automorphic form is a continuous function GL2(Q)∖GL2(AQ)
satisfying certain conditions.

A large class of 2-dimensional automorphic forms can be related to modular forms. A
holomorphic function 𝑓(𝑧) : ℋ → C is a modular function of weight 𝑘 for a congruence
subgroup Γ ⊆ GL2(Z) if

𝑓(𝛾𝑧) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧) for all 𝛾 =

�
𝑎 𝑏
𝑐 𝑑

�
∈ Γ.

If Γ = Γ0(𝑁) :=

⌉︀
𝑀 ∈ SL2(Z) :𝑀 ≡

�
* *
0 *

�
(mod 𝑁)

«
, we say 𝑓 is of level 𝑁 . Here ℋ

denotes the upper half-plane {𝑧 : ℑ(𝑧) > 0} and 𝛾𝑧 = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

.
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A modular function is a modular form if it is holomorphic at cusps of ℋ* = ℋ∪P1(Q).
A cusp form is a modular form that vanishes at the cusps.

There is a way to go from modular forms to Galois representations; this is better under-
stood than going in the opposite direction. One of the biggest theorems in the 2-D case is
Serre’s conjecture, now a theorem, that tells us that we can go from Galois representations
to modular forms in certain cases.

Definition 29.7.11: We say a Galois representation is modular if there exists a cusp form
𝑓 of some level 𝑁 and a finite set 𝑆 such that

𝑓 =
∞∑︁
𝑛=1

𝑎𝑛𝑞
𝑛, tr(𝜌(Frob(𝑝))) = 𝑎𝑝 for 𝑝 ̸∈ 𝑆.

Theorem 29.7.12 (Serre’s conjecture; Khare, Wintenberger): Any irreducible odd Galois
representation 𝜌 : 𝐺(Q/Q)→ GL2(F𝑝) is modular.

7.3.2 Elliptic curves and Galois representations

Given an elliptic curve, we can define a Galois representation by looking at its torsion points.

Definition 29.7.13: Let 𝐸 be an elliptic curve over a number field 𝐾. It is known that the
𝑚-torsion points 𝐸[𝑚] over 𝐾 satisfy

𝐸[𝑚] ∼= Z/𝑚× Z/𝑚.

(See Silverman [Sil86, III.6.4].)
Define the ℓ-adic Tate module of 𝐸 by

𝑇ℓ𝐸 := lim←−
𝑛

𝐸[ℓ𝑛] ∼= Z2
ℓ .

As 𝐺(𝐾/𝐾) acts on 𝐸[ℓ𝑛] for each 𝑛, it acts on 𝑇ℓ𝐸, so we get a map

𝐺(𝐾/𝐾)→ Aut𝑇ℓ𝐸 = GL2(Zℓ) →˓ GL2(Qℓ),

called the ℓ-adic Galois representation of 𝐸.5

Thus we can define the 𝐿-series of an elliptic curve, by defining it as the 𝐿-series of the
corresponding Galois representation. (Roughly speaking, this definition is independent of
the choice of ℓ.) We’ll flesh out this definition in Section 41.7. Thus we have the (tentative)
correspondences

eq:ec-lang(Elliptic curves) 99K (Galois representations) 99K (cusp forms) (29.10)

eq:ec-lang2(𝐿-series of elliptic curve) 99K (𝐿-series of modular form). (29.11)

5Alternatively, let 𝑉ℓ𝐸 := 𝑇ℓ𝐸 ⊗Q and consider 𝐺(𝐾/𝐾) as acting on 𝑉ℓ𝐸.
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Again, more is known about 𝐿-series of modular forms since modular forms have nice ana-
lytic properties and transformation properties. The theory of Jacquet-Langlands establishes
analytic continuation and functional equations for 𝐿-series coming from modular forms.

This relationships in (29.10) and (29.11) are involved in the proof of two big theorems.

1. We now know the dotted lines in (29.10) are true, thanks to the following.

Theorem 29.7.14 (Modularity Theorem; Taniyama-Shimura-Weil): All elliptic curves
are modular.

The heart of this proof is in showing that the Galois representations associated to the
elliptic curves come from modular forms. This theorem (or rather, its earlier version
with semistable elliptic curves) is what allowed the proof of Fermat’s last theorem:
there is no nontrivial solution to 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 for 𝑛 > 2. A nontrivial solution would
give rise to an elliptic curve associated to a modular form that does not exist.

2. By working with 𝐿-functions of the elliptic curves, and reinterpreting them as 𝐿-
functions of certain automorphic forms as in (29.11), one can prove the following.

Theorem 29.7.15 (Sato-Tate conjecture; Barnet-Lamb, Geraghty, Harris, Taylor):
Let 𝐸 be an elliptic curve without complex multiplication, and let 𝐸(F𝑝) denote the
set of solutions to 𝐸 over F𝑝. The density of primes 𝑝 with |𝐸(F𝑝)| ∈ [𝑝+1+ 𝑎

√
𝑝, 𝑝+

1 + 𝑏
√
𝑝], for −1 ≤ 𝑎 ≤ 𝑏 ≤ 1 is

𝑑({𝑝 : |𝐸(F𝑝)| ∈ [𝑝+ 1 + 𝑎
√
𝑝, 𝑝+ 1 + 𝑏

√
𝑝]}) = 2

𝜋

∫︁ 𝑏

𝑎

√
1− 𝑥2 𝑑𝑥.

By the correspondence between elliptic curves and modular forms, another way to
phrase this theorem is that the distribution of coefficients of certain modular forms is
the same “semicircle” distribution.

This theorem is like the elliptic curve analogue of the Dirichlet’s theorem on the dis-
tribution of primes in congruence classes.

8 Problems

3.1 (from Serre, [Ser03]) Using Chebotarev’s Density Theorem, prove the following.

Theorem: Let 𝑓 ∈ Z[𝑋] be an irreducible polynomial of degree 𝑛 ≥ 2. Let 𝑁𝑝(𝑓)
denote the number of zeros of 𝑓 in F𝑝. Then the set 𝑃0(𝑓) of primes with 𝑁𝑝(𝑓) = 0
has a density 𝑐0(𝑓). Moreover, 𝑐0(𝑓) ≥ 1

𝑛
, with strict inequality if 𝑛 is not a prime

power.

You may use the following theorem from group theory.
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Theorem (Jordan): Let 𝐺 is a group acting transitively on a finite set 𝑆 with 𝑛 ≥ 2
elements. There exists 𝑔 ∈ 𝐺 having no fixed point in 𝑆. If 𝑛 is not a prime power,
then there exist at least 2 such 𝑔.

3.2 (All primes divide some coefficient of Δ) Let ℓ be a given prime, and𝐾ℓ be the maximal
extension of Q ramified only at ℓ. Given that there is a continuous homomorphism
(a.k.a. Galois representation)

𝜌ℓ : 𝐺(𝐾ℓ/Q)→ GL2(Fℓ)

such that
tr(𝜌ℓ(Frob𝐾ℓ/Q(𝑝))) = 𝜏(𝑝)

for all 𝑝 ̸= ℓ, and that there is an element in im(𝜌ℓ) with trace 0, prove that a positive
proportion of primes 𝑝 have the property that

ℓ | 𝜏(𝑝).

Note. Here 𝜏 is Ramanujan’s tau function, the coefficients of a certain modular form
Δ. For more on the relationship between Galois representations and congruences for
coefficients of modular forms, see Birch and Swinnerton-Dyer [SD72].

4.1 In Section 4, we showed that 𝐿/𝐾 is abelian iff the primes that split can be character-
ized by a modular condition. In this problem, we do more: given a Galois extension
𝐿/𝐾, characterize the maximal abelian subextension by looking at the primes that
split.

(a) Let m be a modulus for 𝐾, and suppose 𝐿/𝐾 is a Galois extension. Let 𝐻m be
the subset of the ray class field 𝐶𝐾(m) defined as follows:

𝐻m = {K : There exists p ∈ K such that p splits completely in 𝐿} .

Show that 𝐻m is a subgroup of 𝐶𝐾(m).

(b) Suppose we are given the groups 𝐻m for all m. Characterize the maximal abelian
subextension of 𝐿/𝐾.

6.1 Prove an analogue of Theorem 29.6.6 for positive discriminants.

6.2 Let 𝑛 > 0 be an integer such that 𝐾 = Q(
√
−𝑛) is an imaginary quadratic field, and

let

𝑄(𝑥, 𝑦) =

⎧⎨⎩𝑥2 + 𝑛𝑦2, 𝑛 ≡ 1 (mod 4)

𝑥2 + 𝑥𝑦 + 1−𝑛
2
𝑦2, 𝑛 ≡ 3 (mod 4).

(a) Find a condition on 𝐺(𝐻𝐾/𝐾) so that for all but a finite number of primes, the
primes represented by 𝑄 are given by a modulo condition. In other words, find
all 𝑛 such that there exists 𝑚 and a set of residues 𝑆 modulo 𝑚 such that if 𝑝 - 𝑚,
then 𝑝 is represented by 𝑄 iff 𝑝 is congruent to a residue in 𝑚. (Hint: combine
the results of Section 4 with Section 6.)
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(b) Find some values of 𝑛 for which |Cl(𝐾)| ≠ 1 and such that the primes represented
by 𝑄 are given by a modulo condition.

(c) Suppose 𝐺(𝐻𝐾/𝐾) satisfies the property you found in part 1. Characterize all
𝑛, not necessarily prime, such that 𝑄 represents 𝑛. (For simplicity, you can just
consider 𝑛 ⊥ 𝑚.) Compare to the statement in Example 17.17.3.4.)

1. (Genus theory) It is useful to group the equivalence classes of quadratic forms with
given discriminant into genera (plural of genus).

Definition 29.8.1: Define a similarity relation between primitive quadratic forms of
discriminant 𝑑 as follows. We say 𝑄1 ∼ 𝑄2 if 𝑄1 and 𝑄2 represent the same values in
(Z/𝑑Z)×. The similarity classes are called genera.

In this problem you will find an easy way to characterize the genera of discriminant 𝑑.

(a) Let 𝐻 be the subgroup of 𝐶(𝑑) such that 𝐶(𝑑)/𝐻 ∼= 𝐶(𝑑)[2] where 𝐺[𝑛] denotes
the 𝑛-torsion subgroup of 𝐺.

Prove that 𝑄1, 𝑄2 ∈ 𝐶(𝑑) are in the same genera iff 𝑄1, 𝑄2 are the same in
𝐶(𝑑)/𝐻.

In particular, conclude that the number of genera is a power of 2.

(b) Let 𝑀 be the ring class field of 𝐾 and let 𝐿 denote the subextension of 𝑀/𝐾
such that 𝐺(𝐿/𝐾) ∼= 𝐶(𝑑)[2]. (That is, under the Galois correspondence, 𝐿 ⊆𝑀
corresponds to 𝐻 ⊆ 𝐶(𝑑) = 𝐺(𝑀/𝐾).) Prove that 𝐿/Q is the maximal abelian
subextension of 𝑀/Q.

The fact that 𝐿/𝐾 is abelian, while 𝑀/𝐾 may not be, makes it much easier to prove
results pertaining to a genus of quadratic forms rather than an equivalence class of
quadratic forms.

2. (?) Let 𝑓, 𝑔 ∈ Q[𝑋] be two irreducible cubic polynomials. How can you determine
algorithmically whether 𝑓, 𝑔 have roots 𝛼, 𝛽 such that Q(𝛼) = Q(𝛽)? (from http://
math.stackexchange.com/questions/34522/cubic-polynomials-that-generate-the-same-extension?
rq=1)
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Chapter 30

Elementary estimates for primes

1 Chebyshev’s Theorem

Today we prove some asymptotic results about the distribution of prime numbers. Specifi-
cally, we derive estimates for the prime-counting functions

𝜗(𝑥) =
∑︁
𝑝≤𝑥

ln(𝑝)

𝜓(𝑥) =
∑︁
𝑝𝑘≤𝑥

ln(𝑝)

𝜋(𝑥) =
∑︁
𝑝≤𝑥

1

Note that we will always use 𝑝 to denote a prime.

Lacking the tools of complex analysis, it is difficult to find the exact asymptotic formulas;
however, our elementary methods suffice to determine the asymptotics up to a constant
multiple. Our main result is Chebyshev’s Theorem:

Theorem 30.1.1: [?, Theorem 6.3] There exist positive constants 𝑐1 and 𝑐2 such that

𝑐1𝑥 ≤ 𝜗(𝑥) ≤ 𝜓(𝑥) ≤ 𝜋(𝑥) ln(𝑥) ≤ 𝑐2𝑥. (30.1)

for all 𝑥 ≥ 2. Moreover,

lim inf
𝑥→∞

𝜗(𝑥)

𝑥
= lim inf

𝑥→∞

𝜓(𝑥)

𝑥
= lim inf

𝑥→∞

𝜋(𝑥) ln(𝑥)

𝑥
≥ ln(2) (30.2)

lim sup
𝑥→∞

𝜗(𝑥)

𝑥
= lim sup

𝑥→∞

𝜓(𝑥)

𝑥
= lim sup

𝑥→∞

𝜋(𝑥) ln(𝑥)

𝑥
≤ 2 ln(2) (30.3)

We will prove this in three steps.
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1.1 Comparing the three functions

Since all terms in the sum defining 𝜗(𝑥) are included in the sum defining 𝜓(𝑥), 𝜗(𝑥) ≤ 𝜓(𝑥).

For a given 𝑝 there are
⌊︁
ln(𝑥)
ln(𝑝)

⌋︁
choices for 𝑘 so that 𝑝𝑘 ≤ 𝑥, so

𝜓(𝑥) =
∑︁
𝑝𝑘≤𝑥

ln(𝑝) =
∑︁
𝑝≤𝑥

�
ln(𝑥)

ln(𝑝)

�
ln(𝑝) ≤

∑︁
𝑝≤𝑥

ln(𝑥) = 𝜋(𝑥) ln(𝑥).

This shows the middle two inequalities in (30.1).
Given 𝜗(𝑥) ≤ 𝜓(𝑥) ≤ 𝜋(𝑥) ln(𝑥), to show that the three quantities in (30.2) and (30.3)

are equal it suffices to show that

lim inf
𝑥→∞

𝜗(𝑥)

𝑥
≥ lim inf

𝑥→∞

𝜋(𝑥) ln(𝑥)

𝑥
, lim sup

𝑥→∞

𝜗(𝑥)

𝑥
≥ lim sup

𝑥→∞

𝜋(𝑥) ln(𝑥)

𝑥
(30.4)

To compare 𝜗(𝑥) =
∑︀
𝑝≤𝑥 ln(𝑝) and 𝜋(𝑥) ln(𝑥) =

∑︀
𝑝≤𝑥 ln(𝑥), note that for 𝑝 “close” to 𝑥, we

have ln(𝑝) “close” to ln(𝑥) and relatively large, while the terms for small 𝑝 will not contribute
much to either sum. Thus we can just consider the terms with 𝑝 > 𝑥1−𝛿, where 𝛿 ∈ (0, 1).

𝜗(𝑥) ≥
∑︁

𝑥1−𝛿<𝑝≤𝑥
ln(𝑝)

≥
∑︁

𝑥1−𝛿<𝑝≤𝑥
ln(𝑥1−𝛿)

= ln(𝑥1−𝛿)(𝜋(𝑥)− 𝜋(𝑥1−𝛿))
= (1− 𝛿) ln(𝑥)(𝜋(𝑥)− 𝜋(𝑥1−𝛿))
≥ (1− 𝛿) ln(𝑥)(𝜋(𝑥)− 𝑥1−𝛿)

Hence
𝜗(𝑥)

𝑥
≥ (1− 𝛿)𝜋(𝑥) ln(𝑥)

𝑥
− (1− 𝛿) ln(𝑥)

𝑥𝛿
.

Letting 𝛿 → 0 gives (30.4).

1.2 Upper Bound

We show that 𝜗(𝑥) ≤ 2𝑥 ln(𝑥). Instead of thinking about bounding 𝜗(𝑥), it is easier to think
about bounding 𝑒𝜗(𝑥) =

∏︀
𝑝≤𝑥 𝑝.

Lemma 30.1.2: [AD08, 3.?] For any 𝑥 ∈ N,∏︁
𝑝≤𝑥

𝑝 ≤ 4𝑥−1 (30.5)

Proof. Use strong induction on 𝑥. For 𝑥 = 1, 2 the statement holds. The induction step
from odd 𝑥 > 1 to 𝑥+ 1 is obvious, since 𝑥+ 1 is not a prime.

Consider the induction step from even 𝑥 to 𝑥+1. Let 𝑥 = 2𝑛. The key idea is that there
cannot be “too many” primes between 𝑛+ 2 and 2𝑛+ 1, because...
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1. These primes all divide
(︀
2𝑛+1
𝑛

�
= (2𝑛+1)!

𝑛!(𝑛+1)!
.

2.
(︀
2𝑛+1
𝑛

�
can easily be bounded from above:(︃

2𝑛+ 1

𝑛

)︃
=

1

2

(︃(︃
2𝑛+ 1

𝑛

)︃
+

(︃
2𝑛+ 1

𝑛+ 1

)︃)︃
≤ 1

2

𝑛∑︁
𝑖=0

(︃
2𝑛+ 1

𝑖

)︃
= 4𝑛.

Then ∏︁
𝑝≤𝑥+1

𝑝 =
∏︁

𝑝≤𝑛+1

𝑝
∏︁

𝑛+2≤𝑝≤2𝑛+1

𝑝 ≤ 4𝑛 ·
(︃
2𝑛+ 1

𝑛

)︃
≤ 42𝑛.

Taking the logarithm of both sides of (30.5) gives 𝜗(𝑥) ≤ (𝑥− 1) ln(4) ≤ 2𝑥 ln(𝑥).

1.3 Lower Bound

We show that lim inf𝑥→∞
𝜋(𝑥) ln(𝑥)

𝑥
≥ ln(2). First consider when 𝑥 is even, say equal to 2𝑛.

Like in Section 3, we consider a binomial coefficient, this time
(︀
2𝑛
𝑛

�
. We show that each

prime cannot appear as a factor in
(︀
2𝑛
𝑛

�
“too many” times, so it can be bounded above by

(2𝑛)𝜋(2𝑛). We can easily bound
(︀
2𝑛
𝑛

�
below:(︃

2𝑛

𝑛

)︃
≥ 22𝑛

2𝑛

since it is the largest among 2,
(︀
2𝑛
1

�
, . . . ,

(︀
2𝑛

2𝑛−1

�
. Putting these two bounds together will give

the desired bound for 𝜋(2𝑛).
We need the following to count the highest prime powers dividing

(︀
2𝑛
𝑛

�
:

Lemma 30.1.3: [AD08, Lemma 6.3] For every positive integer 𝑛,

𝑣𝑝(𝑛!) =

⌊ ln(𝑛)
ln(𝑝)⌋∑︁
𝑘=1

�
𝑛

𝑝𝑘

�
,

where 𝑣𝑝(𝑚) denotes the largest integer 𝑖 such that 𝑝𝑖|𝑚.

Proof. There are
⌊︁
𝑛
𝑝𝑘

⌋︁
multiples of 𝑝𝑘 less than or equal to 𝑛. In the sum

∑︀
𝑘≥1

⌊︁
𝑛
𝑝𝑘

⌋︁
, each

multiple of 𝑝𝑘 less than 𝑛 is counted 𝑘 times, once each as a multiple of 𝑝, 𝑝2, . . . , 𝑝𝑘.

From Lemma 30.1.3, we get

𝑣𝑝

(︃(︃
2𝑛

𝑛

)︃)︃
= 𝑣𝑝

�
(2𝑛)!

𝑛!2

�
= 𝑣𝑝((2𝑛)!)− 2𝑣𝑝(𝑛!) =

⌊ ln(2𝑛)
ln(𝑝) ⌋∑︁
𝑘=1

�
2𝑛

𝑝𝑘

�
− 2

�
𝑛

𝑝𝑘

�
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Since each term of the sum is at most 1,

𝑣𝑝

(︃(︃
2𝑛

𝑛

)︃)︃
≤
�
ln(2𝑛)

ln(𝑝)

�
≤ ln(2𝑛)

ln(𝑝)
.

Thus
22𝑛

2𝑛
≤
(︃
2𝑛

𝑛

)︃
=

∏︁
𝑝≤2𝑛

𝑝𝑣𝑝((
2𝑛
𝑛 )) ≤ (2𝑛)𝜋(2𝑛).

Taking logs and remembering 𝑥 = 2𝑛 gives 𝑥 ln(2) − ln(𝑥) ≤ 𝜋(𝑥) ln(𝑥), which gives the

desired bound. For odd 𝑥, the value of 𝜋(𝑥) ln(𝑥)
𝑥

can be compared to the value for 𝑥− 1.
Finally, (30.2) and (30.3), and the fact that all the prime-counting functions are positive

for 𝑥 ≥ 2, show the existence of 𝑐1 and 𝑐2 in (30.1). This finishes the proof of Theorem 30.1.1.

1.4 The 𝑛th prime

We found an estimate for the number of primes less than or equal to a given number; we
can use this bound to find an estimate for the 𝑛th prime number.

Theorem 30.1.4: Let 𝑝𝑛 denote the 𝑛th prime number. Then there exist constants 𝑐3, 𝑐4
such that

𝑐3𝑛 ln(𝑛) ≤ 𝑝𝑛 ≤ 𝑐4𝑛 ln(𝑛)

for all 𝑛 ≥ 2.

Proof. From Theorem 30.1.1,

𝑐1𝑝𝑛
ln(𝑝𝑛)

≤ 𝜋(𝑝𝑛) = 𝑛 ≤ 𝑐2𝑝𝑛
ln(𝑝𝑛)

, (30.6)

so
𝑛 ln(𝑝𝑛)

𝑐2
≤ 𝑝𝑛 ≤

𝑛 ln(𝑝𝑛)

𝑐1
.

The LHS is at least 𝑐3𝑛 ln(𝑛) by the trivial bound 𝑛 ≤ 𝑝𝑛. On the RHS, use the LHS of (30.6)

again to get ln(𝑝𝑛) ≤ ln
(︁
𝑛 ln(𝑝𝑛)
𝑐1

)︁
, giving ln(𝑝𝑛) ≤ 𝑐 ln(𝑛) for some 𝑐.
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Chapter 31

Crash course in complex analysis

complex-analysis Complex analysis is calculus on the complex numbers. The main functions of
study are complex differentiable functions.

Reference books: Lang or Ahlfors

1 Holomorphic functions

Definition 31.1.1: Let 𝑈 ⊆ C be an open set and 𝑓 : 𝑈 → C be a function. The derivative
of 𝑓 is

𝑓 ′(𝑧) := lim
Δ𝑧→0

𝑓(𝑧 +Δ𝑧)− 𝑓(𝑧)
Δ𝑧

if it exists. 𝑓 is holomorphic if its derivative exists at every point of 𝑈 . 𝑓 is meromorphic
if it is defined and holomorphic on 𝑈 except at a discrete set of points.

Write 𝑓(𝑥+ 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). Note that 𝑓 being differentiable is a much stronger
condition than being simply 𝑢 and 𝑣 being differentiable, because the limit of 𝑓 as Δ𝑧 → 0
along the real and complex directions must be equal:

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑥
=

1

𝑖

�
𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦

�
.

Thus we get the Cauchy-Riemann criteria: If 𝑓 is differentiable as a function of (𝑥, 𝑦), then
𝑓 is holomorphic iff

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
.

Another way to think about complex differentiability is that holomorphic maps preserve
angles (i.e. are conformal); we have

𝑓(𝑧 + 𝑟𝑒𝑖𝜃)− 𝑓(𝑧) ≈ 𝑟𝑒𝑖𝜃𝑓 ′(𝑧).

Because complex differentiability is such a strong property, holomorphic functions have
many nice properties. Hence it is often useful to take functions defined on the reals and
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extend them as far as possible on C. Some of the good properties are the following (to be
explained in the rest of the chapter); note they are not necessarily true for real differentiable
functions!

∙ A function is holomorphic iff it is analytic (has a power series expansion).

∙ A sequence of holomorphic functions with good convergence properties converges to a
holomorphic function.

∙ A bounded entire function is constant.

∙ If two holomorphic functions agree on a set containing a limit point, then they are
equal. Thus analytic continuations are unique.

∙ Bounds on a function give bounds on the derivative. Hence we can “differentiate”
asymptotic formulas.

∙ We can expand holomorphic functions into products or sums depending on their poles
and zeros—in much the same way that rational functions can be expanded into partial
fractions or factored.

2 Complex integration

We now give two definitions of the integral.

Definition 31.2.1: A path is a continuous function 𝛾 : [𝑎, 𝑏] → C. It is called a loop if
𝛾(𝑎) = 𝛾(𝑏). Let 𝑓 be a holomorphic function on 𝑈 and 𝛾 be a path in 𝑈 .

1. If 𝛾 is differentiable (except possibly at a finite number of points), define∫︁
𝛾
𝑓(𝑧) 𝑑𝑧 =

∫︁ 𝑏

𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡.

2. Define an (indefinite) integral of 𝑓 on a set 𝑉 to be a function 𝐹 on 𝑉 such that
𝐹 ′(𝑧) = 𝑓(𝑧). Given holomorphic 𝑓 , choose points 𝑡0, . . . , 𝑡𝑛 such that there exist open
sets 𝑈𝑗 ⊇ 𝑓(𝛾([𝑡𝑗−1, 𝑡𝑗])) such that 𝑓 has an integral 𝐹𝑗 on 𝑈𝑗. Define∫︁

𝛾
𝑓(𝑧) 𝑑𝑧 =

𝑛∑︁
𝑘=1

[𝐹𝑗(𝛾(𝑡𝑗))− 𝐹𝑗(𝛾(𝑡𝑗−1)].

Note that unlike in the real case, indefinite integrals may not exist globally, for example,
ln 𝑡 is locally an integral for 1

𝑡
but cannot be extended holomorphically to C∖{0}. We need

to establish the well-definedness of the second definition.
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Theorem 31.2.2 (Cauchy’s Theorem, version 1): cauchy1 Let 𝑓 be holomorphic on a closed
rectangle 𝑅, with boundary 𝜕𝑅. Then (using the first definition),∫︁

𝜕𝑅
𝑓 = 0.

From this one can show that integrals exist locally by defining

𝐹 (𝑧) =
∫︁ 𝑧

𝑧0
𝑓(𝑠) 𝑑𝑠

where the integral is along horizontal and vertical lines; moreover one gets well-definedness
in the second definition.

We can now define the logarithm of a function.

Definition 31.2.3: Let 𝑓 be a holomorphic function on a simply connected set 𝑈 (see
Definition 31.3.1), with 𝑓(𝑧) ̸= 0 on 𝑈 . Choose 𝑧0 ∈ 𝑈 and 𝑎0 such that 𝑒𝑎0 = 𝑧0.

(ln 𝑓)(𝑧) =
∫︁ 𝑧0

𝑧

𝑓 ′

𝑓
(𝑧) 𝑑𝑧.

Note different definitions of the logarithm will differ by integer multiples of 2𝜋𝑖, and
𝑒(ln 𝑓)(𝑧) = 𝑓(𝑧). The motivation comes from the fact that one would expect the derivative
of ln 𝑓(𝑧) to be 𝑓 ′

𝑓
(𝑧). We write (ln 𝑓)(𝑧) to emphasize that this is not simply a composite

of functions: We could have 𝑓(𝑧1) = 𝑓(𝑧2) but (ln 𝑓)(𝑧1) ̸= (ln 𝑓)(𝑧2).
1

We seek a generalization of Theorem 31.2.2 to meromorphic functions and arbitrary
paths.

3 Cauchy’s Theorem

Definition 31.3.1: homotopic Two paths 𝛾 and 𝜂 : [𝑎, 𝑏]→ C are homotopic if there exists a
continuous map

𝛾𝑠(𝑡) : [0, 1]× [𝑎, 𝑏]→ C

such that 𝛾0(𝑡) = 𝛾(𝑡) and 𝛾1(𝑡) = 𝜂(𝑡).
A subset of C is simply connected if it is pathwise connected and every loop in C is

homotopic to a point.

Theorem 31.3.2: Let 𝑈 be a simply connected open set containing 𝑧0. Every path 𝛾 around
𝑧0 in 𝑈∖{𝑧0} is homotopic to a circle going around 𝑧0 𝑛 times for some 𝑛 ∈ Z. This 𝑛 can
be calculated by

𝑛 = 𝑊 (𝛾, 𝑧0) :=
1

2𝜋𝑖

∫︁
𝛾

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧

and is called the winding number.

1Consider, for example, the case where 𝑓(𝑧) = 𝑧2 on C∖R≤0, and 𝑧1 = 𝑖, 𝑧2 = −𝑖.
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Theorem 31.3.3 (Global Cauchy’s formula): Let 𝑈 be a simply connected open set and
𝑓 : 𝑈 → C be holomorphic. Suppose 𝛾 is a loop in 𝑈 . Then

1

2𝜋𝑖

∫︁
𝛾

𝑓(𝑧)

𝑧 − 𝑧0
𝑑𝑧 = 𝑊 (𝛾, 𝑧0)𝑓(𝑧0).

4 Power series and Laurent series

As complex differentiability is a much stronger condition than differentiability for real func-
tions, holomorphic functions enjoy nicer properties. The most important one is the following.

Definition 31.4.1: A function 𝑓 : 𝑈 → C is analytic at 𝑧0 if it can be written as a power
series in a neighborhood around 𝑧0:

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛.

If 𝑓 is given by its power series representation then we must have 𝑎𝑛 = 𝑓 (𝑛)(𝑧)
𝑛!

.

Theorem 31.4.2: A function 𝑓 : 𝑈 → C is analytic iff and only iff it is holomorphic.

Note this is not true for real functions: for example, 𝑒−
1
𝑥2 has Taylor expansion equal to 0

at 0, but is not the zero function. This kind of irregularity does not happen for holomorphic
functions.

Corollary 31.4.3: A holomorphic function has infinitely many derivatives.

The following theorem says that for holomorphic functions, the radius of convergence is
“as large as it could possibly be.”

Theorem 31.4.4: radius-convergence Suppose 𝑓 is holomorphic on a disc 𝑁𝑟(𝑧0) of radius 𝑟 around
𝑧0. Then the Taylor series around 𝑧0 converges absolutely to 𝑓 on 𝑁𝑟(𝑧0).

Proof. Estimate coefficients using Cauchy’s theorem. Complex Analysis, Lang III.7.3.

We can generalize power series to allow terms with negative exponents.

Theorem 31.4.5: Suppose 𝑓 is defined on an annulus 𝐴 = {𝑧 : 𝑟 < |𝑧 − 𝑧0| < 𝑅}. Let 𝐶
be the circle of radius 𝑟′ ∈ (𝑟, 𝑅) around 𝑧0. Then 𝑓 has a Laurent expansion on 𝐴:

𝑓(𝑧) =
∞∑︁

𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛, 𝑎𝑛 =

1

2𝜋𝑖

∫︁
𝐶

𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝑑𝑧.

If 𝑓 is defined on {𝑧 : |𝑧 − 𝑧0| < 𝑅} then

𝑓 (𝑛)(𝑧0) =
𝑛!

2𝜋𝑖

∫︁
𝐶

𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝑑𝑧.
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The coefficient 𝑎−1 is called the residue of 𝑓 at 𝑧0:

Res𝑧0(𝑓) = 𝑎−1.

The following theorem controls the size of the derivatives of a complex analytic function by
its values of the function in a circle. Note that in the real analytic case we can’t make such
a statement!

Corollary 31.4.6: cor:cauchy-ineq Suppose 𝑓 is defined on {𝑧 : |𝑧 − 𝑧0| < 𝑅}, and let 𝐶 be a
circle of radius 𝑟 < 𝑅 around 𝑧0. Then

|𝑓 (𝑛)(𝑧)| ≤ 𝑛!

𝑟𝑛
max
𝑧∈𝐶

𝑓(𝑧)

and the 𝑛th coefficient in the power series expansion satisfies

𝑎𝑛 ≤
1

𝑟𝑛
max
𝑧∈𝐶

𝑓(𝑧).

Proof. Simply note that in the integral
∫︀
𝐶

𝑓(𝑧)
(𝑧−𝑧0)𝑛+1 𝑑𝑧, the denominator has constant absolute

value 𝑟𝑛+1, the numerator is bounded by max𝑧∈𝐶 𝑓(𝑧), and the arc length is 2𝜋𝑟.

Corollary 31.4.7 (Liouville): A bounded entire function is constant.

Proof. We can take 𝑟 →∞ in the inequality for 𝑛 = 1 to find that 𝑓 ′(𝑧) = 0 everywhere.

4.1 Cauchy’s residue formula

Using residues, we can state the most comprehensive form of Cauchy’s formula:

Theorem 31.4.8 (Residue formula): residue Suppose 𝑓 is meromorphic on simply connected
open 𝑈 , and 𝛾 is a loop in 𝑈 . Then∫︁

𝛾
𝑓(𝑠) 𝑑𝑠 = 2𝜋𝑖

∑︁
𝑧 pole of 𝑓

𝑊 (𝛾, 𝑧) Res𝑧(𝑓).

One useful application of this is counting zeros and poles of a function 𝑓 .

Definition 31.4.9: Define the order of 𝑓 at 𝑧0 to be the least integer so that the Laurent
expansion of 𝑓 at 𝑧0 has 𝑎𝑚 ̸= 0:

ord𝑓 (𝑧0) = 𝑚.

Note that ord𝑓 (𝑧0) > 0 signals a zero and ord𝑓 (𝑧0) < 0 signals a pole.

Corollary 31.4.10: Suppose 𝑓 is meromorphic on simply connected open 𝑈 , and 𝛾 is a
loop in 𝑈 . Then

1

2𝜋𝑖

∫︁
𝛾

𝑓 ′

𝑓
(𝑠) 𝑑𝑠 =

∑︁
𝜌

𝑊 (𝛾, 𝜌) ord𝑓 (𝜌).
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Proof. If 𝑓 has Laurent expansion 𝑎𝑚(𝑧 − 𝑧0)𝑚 + · · · at 𝑧0 then 𝑓 ′

𝑓
has Laurent expansion

𝑚𝑎𝑚(𝑧 − 𝑧0)𝑚−1 + · · ·
𝑎𝑚(𝑧 − 𝑧0)𝑚 + · · ·

= 𝑚(𝑧 − 𝑧0)−1 + · · ·

5 Convergence

Unlike in the real case, holomorphic functions behave nicely under infinite sums and pointwise
convergence. This is because by Cauchy’s theorem we can write 𝑓 as an integral, and integrals
preserve convergence.

Theorem 31.5.1 (Holomorphic functions converge to holomorphic functions): Let {𝑓𝑛}∞𝑛=1

be a sequence of holomorphic functions on 𝑈 .

1. Suppose 𝑓𝑛 → 𝑓 uniformly on compact subsets of 𝑈 . Then 𝑓 is holomorphic.

2. Suppose
∑︀∞
𝑛=1 𝑓𝑛 = 𝑓 converges absolutely and uniformly on compact subsets of 𝑈 .

Then 𝑓 is holomorphic.

6 Series and product developments

We know that locally, we can write a meromorphic function 𝑓 as a Laurent series
∑︀∞
𝑛=−∞ 𝑎𝑛𝑥

𝑛.
There are two other representations that are useful, depending on what information we have
about the function 𝑓 .

1. If we know the poles of 𝑓 , we can write 𝑓 as a sum of rational functions

𝑓(𝑧) =
∞∑︁
𝑛=1

[︂
𝑃𝑛

(︂
1

𝑧 − 𝑧𝑛

)︂
−𝑄𝑛(𝑧)

]︂
+ 𝑔(𝑧).

2. If 𝑓 is entire and we know the zeros of 𝑓 , we can write 𝑓 as an infinite product

𝑓(𝑧) = 𝑧𝑚𝑒𝑔(𝑧)
∞∏︁
𝑛=1

(︂
1− 𝑧

𝑧𝑛

)︂
𝑒𝑃𝑛( 𝑧

𝑧𝑛
).

(Think of this as “factoring” 𝑓 , much like a polynomial can be factored as in the
fundamental theorem of algebra.) These representations come about from convergence
properties of holomorphic functions—so we can be sure the infinite products converge
to holomorphic functions—and by Liouville’s theorem—if we engineer a function that
is close enough to 𝑓 then it must be equal to 𝑓 .
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Theorem 31.6.1 (Mittag-Leffler): Let 𝑧𝑛 be a sequence with lim𝑛→∞ |𝑧𝑛| =∞ (or a finite
sequence), and 𝑃𝑛 polynomials without constant term.

1. (Existence) There is a meromorphic function 𝑓 with poles exactly at 𝑧𝑛, with Laurent
expansion 𝑃𝑛

(︀
1

𝑧−𝑧𝑛

�
+ · · · at 𝑧𝑛.

2. (Uniqueness) All such functions 𝑓 are in the form

∞∑︁
𝑛=1

(︂
𝑃𝑛

(︂
1

𝑧 − 𝑧𝑛

)︂
−𝑄𝑛(𝑧)

)︂
+ 𝑔(𝑧)

where 𝑄𝑛 is a polynomial and 𝑔(𝑧) is analytic.

Proof. See Ahlfors [Ahl79, p. 187].

Warning: this does not converge for all 𝑃𝑛. Typically we take 𝑄𝑛 to the the first terms of
the Laurent expansion of 𝑃𝑛

(︀
1

𝑧−𝑧𝑛

�
, to ensure cancellation of high-order terms.

Definition 31.6.2: The order of an entire function 𝑓 is the smallest 𝛼 ∈ [0,∞] such that

|𝑓(𝑧)| -𝜀 𝑒|𝑧|
𝛼+𝜀

for all 𝜀 > 0.

Theorem 31.6.3: product-development Let 𝑧𝑛 be a sequence with lim𝑛→∞ |𝑧𝑛| =∞. If 𝑓 is entire
with order 𝛼 < ∞ with zeros 𝑧1, 𝑧2, . . . (with multiplicity, not including 0), then it has a
product formula

product-formula𝑓(𝑧) = 𝑧𝑟𝑒𝑔(𝑧)
∞∏︁
𝑛=1

(︂
1− 𝑧

𝑧𝑛

)︂
𝑒

𝑧
𝑧𝑛

+ 1
2(

𝑧
𝑧𝑛
)
2
+···+ 1

𝑚(
𝑧

𝑧𝑚
)
𝑚

, (31.1)

where

∙ 𝑚 = ⌊𝛼⌋,

∙ 𝑟 is the order of vanishing of 𝑓 at 0, and

∙ 𝑔 is a polynomial of degree at most 𝑎.

The product converges uniformly locally. Moreover,

num-zeros| {𝑘 : 𝑧𝑘 < 𝑅} | -𝜀 𝑅𝛼+𝜀. (31.2)

Conversely, if 𝑎 = ⌊𝛼⌋ and 𝑧𝑘 is a sequence satisfying (31.2), then the RHS of (31.1) defines
an entire function of order at most 𝛼.

Proof. See Ahlfors [Ahl79, p. 195].

Hence the order of a entire function gives an asymptotic bound for the number of zeros.2

2A function which grows faster is allowed to have more zeros—much like a polynomial with lots of zeros
grows fast simply because it has higher degree.
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7 Gamma function

To prove basic properties of the zeta function in the next chapter, we need to know the
properties of the gamma function.

Definition 31.7.1: Define the gamma function by

Γ(𝑠) =
∫︁ ∞

0
𝑥𝑠𝑒−𝑥

𝑑𝑥

𝑥
, ℜ𝑠 > 0.

We will begin by analytically continuing the gamma function and giving its basic prop-
erties.

Proposition 31.7.2 (Facts about Γ): gamma-facts

1. Γ(𝑠) can be analytically continued to a meromorphic function with poles −𝑛, 𝑛 ∈ N,
with residue (−1)𝑛

𝑛!
.

2. Γ(𝑠) = lim𝑛→∞
𝑛𝑠𝑛!

𝑠(𝑠+1)···(𝑠+𝑛) when 𝑠 ̸∈ −N.

3. 1
Γ(𝑠)

= 𝑠𝑒𝐶𝑠
∏︀∞
𝑛=1

(︀
1 + 𝑠

𝑛

�
𝑒−

𝑠
𝑛 .

4. Γ(𝑠+ 1) = 𝑠Γ(𝑠) so Γ(𝑛+ 1) = 𝑛!, 𝑛 ∈ N0.

5. Γ(𝑠)Γ(1− 𝑠) = 𝜋
sin𝜋𝑠

.

6. Γ(𝑠)Γ
(︀
𝑠+ 1

𝑚

�
· · ·Γ

(︀
𝑠+ 𝑚−1

𝑚

�
= (2𝜋)

𝑚−1
2 𝑚

1
2
−𝑚𝑠Γ(𝑚𝑠). In particular, Γ(𝑠)Γ

(︀
𝑠+ 1

2

�
=

𝜋
1
221−2𝑠Γ(2𝑠).

From the product development 31.6.3 we get the following.

Theorem 31.7.3 (Product development of Γ): gamma-product-development We have

Γ(𝑠) =
𝑒−𝛾𝑠

𝑠

∞∏︁
𝑘=1

𝑒
𝑠
𝑘

1 + 𝑠
𝑘

.

In the region
𝑅𝜀 = C∖({𝑠 : arg(𝑠) ∈ [𝜋 − 𝜀, 𝜋 + 𝜀]} ∪ {0}),

i.e. C with a wedge containing R≤0 deleted, we can define the function (ln Γ)(𝑠). By the
product formula, it equals

(ln Γ)(𝑠) = −𝛾𝑠− ln 𝑠+
∞∑︁
𝑘=1

� 𝑠
𝑘
− ln

�
1 +

𝑠

𝑘

��
.

The following asymptotic formulas will be useful.
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Theorem 31.7.4 (Stirling’s approximation): stirling Let 𝑃1(𝑡) = {𝑡} − 1
2
. For 𝑠 ∈ 𝑅𝜀,

(ln Γ)(𝑠) =
(︂
𝑠− 1

2

)︂
ln 𝑠− 𝑠+ 1

2
ln(2𝜋)−

∫︁ ∞

0

𝑃1(𝑡)

𝑧 + 𝑡

=
(︂
𝑠− 1

2

)︂
ln 𝑠− 𝑠+ 1

2
ln(2𝜋) +𝑂𝜀(|𝑠|−1)

Γ′(𝑠)

Γ(𝑠)
= ln 𝑠− 1

2𝑠
+𝑂𝜀(|𝑠|−2)

Γ(𝑠) ∼ 𝑠𝑠−
1
2 𝑒−𝑠
√
2𝜋
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Chapter 32

Dirichlet series

dirichlet For proofs see [Apo94].

1 Dirichlet series, convergence

Dirichlet series are the “power series of number theory.” As such, we will first need to get
acquainted with their analytic properties.

Definition 32.1.1: A Dirichlet series is a series of the form

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑓(𝑛)

𝑛𝑠

where 𝑓(𝑛) is an arithmetical function. Following convention, we let 𝑠 = 𝜎 + 𝑖𝑡, with 𝜎, 𝑡
real.

Let {𝜆(𝑛)} be a sequence strictly increasing to ∞. A general Dirichlet series with
exponents {𝜆(𝑛)}∞𝑛=1 is in the form

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑓(𝑛)𝑒−𝑠𝜆(𝑛).

An ordinary Dirichlet series has 𝜆(𝑛) = ln(𝑛). 1

Theorem 32.1.2 (Half-plane of convergence): Convergence: If the series
∑︀∞
𝑛=1 |𝑓(𝑛)𝑒−𝑠𝜆(𝑛)|

does not converge or diverge for all 𝑛, then there exists a real number 𝜎𝑐, called the abscissa
of convergence, such that

∑︀∞
𝑛=1 𝑓(𝑛)𝑛

−𝑠

∙ converges locally uniformly for 𝜎 > 𝜎𝑐, but

∙ does not converge for 𝜎 < 𝜎𝑐.

1A further generalization is given by the Laplace-Stieltjes transform,
∫︀∞
0 𝑒−𝑠𝑡𝑑𝛼(𝑡), where 𝛼 is a measure.

The “step” part of 𝛼 gives a Dirichlet while the continuous part gives a Laplace transform.
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In fact, if the series diverges for all 𝑠 with 𝜎 < 0, then

𝜎𝑐 = lim sup
𝑛→∞

ln |∑︀𝑛
𝑘=1 𝑎(𝑘)|
𝜆(𝑛)

.

Absolute convergence: If the series
∑︀∞
𝑛=1 |𝑒−𝑠𝜆(𝑛)| does not converge or diverge for

all 𝑛, then there exists a real number 𝜎𝑎, called the abscissa of absolute convergence,
such that

∑︀∞
𝑛=1 𝑓(𝑛)𝑛

−𝑠

∙ converges locally uniformly absolutely for 𝜎 > 𝜎𝑎, but

∙ does not converge absolutely for 𝜎 < 𝜎𝑎.

In fact, if the series diverges for all 𝑠 with 𝜎 < 0, then

𝜎𝑎 = lim sup
𝑛→∞

ln
∑︀𝑛
𝑘=1 |𝑎(𝑘)|
𝜆(𝑛)

.

In particular, for ordinary Dirichlet series (that diverge when 𝜎 < 0),

𝜎𝑎 = lim sup
𝑛→∞

𝑛
∑︀𝑛

𝑘=1
|𝑎(𝑘)|.

2 Basic properties

Proposition 32.2.1 (General facts): Let 𝐹 (𝑠) =
∑︀∞
𝑛=1 𝑓(𝑛)𝑛

−𝑠.

1. lim𝜎→∞ 𝐹 (𝜎 + 𝑖𝑡) = 𝑓(1) uniformly

2. (Uniqueness) If 𝐹 (𝑠) = 𝐺(𝑠) are absolutely convergent for 𝜎 > 𝜎𝑎 and are equal for 𝑠
in an infinite sequence {𝑠𝑘} with 𝜎𝑘 →∞, then 𝑓(𝑛) = 𝑔(𝑛).

3. (Non-vanishing in half-plane) Suppose 𝐹 (𝑠) ̸= 0 for some 𝑠 with 𝜎 > 𝜎𝑎. Then there
is a half-place 𝜎 > 𝑐 ≥ 𝜎𝑎 in which 𝐹 (𝑠) is never 0.

Proposition 32.2.2: (Operations on Dirichlet series)oper-on-dir Let 𝐹 (𝑠) =
∑︀∞
𝑛=1 𝑓(𝑛)𝑛

−𝑠 and
𝐺(𝑠) =

∑︀∞
𝑛=1 𝑔(𝑛)𝑛

−𝑠. Then

𝐹 (𝑠)𝐺(𝑠) =
∞∑︁
𝑛=1

ℎ(𝑛)

𝑛𝑠

where

ℎ(𝑛) = (𝑓 * 𝑔)(𝑛) =
∑︁
𝑑|𝑛
𝑓(𝑑)𝑔

�𝑛
𝑑

�
.
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Proof. Formally, by grouping together terms where 𝑚𝑛 is constant,

𝐹 (𝑠)𝐺(𝑠) =
∑︁

𝑚,𝑛∈N

𝑓(𝑚)

𝑛𝑠
𝑔(𝑛)

𝑛𝑠

=
𝑛∑︁
𝑘=1

� ∑︁
𝑚,𝑛∈N,𝑚𝑛=𝑘

𝑓(𝑚)𝑔(𝑛)

�
1

𝑘𝑠
.

Since the sums for 𝐹 and 𝐺 converge absolutely, so does the double sum above, and the
rearrangement of terms is valid.

Theorem 32.2.3 (Euler products): euler-product Let 𝑓 be a multiplicative arithmetical function
such that

∑︀∞
𝑛=1 𝑓(𝑛) converges absolutely. Then when ℜ𝑠 > 𝜎𝑎,

∞∑︁
𝑛=1

𝑓(𝑛)𝑛−𝑠 =
∏︁
𝑝

�
1 +

𝑓(𝑝)

𝑝
+
𝑓(𝑝2)

𝑝2
+ · · ·

�
.

If 𝑓 is completely multiplicative,

∞∑︁
𝑛=1

𝑓(𝑛)

𝑛𝑠
=
∏︁
𝑝

1

1− 𝑓(𝑝)𝑝−𝑠
.

Proposition 32.2.4 (Derivatives): dir-derivative The derivative is

𝐹 ′(𝑠) = −
∞∑︁
𝑛=1

𝑓(𝑛) ln𝑛

𝑛𝑠
.

Theorem 32.2.5 (Landau): landau Suppose 𝐹 (𝑠) is a holomorphic function that can be rep-
resented in 𝜎 > 𝑐 by the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑓(𝑛)𝑛−𝑠

with 𝑓(𝑛) ≥ 0 for all 𝑛 ≥ 𝑛0. If 𝐹 (𝑠) is analytic in some disc of radius 𝑟 around 𝑠 = 𝑐, then
𝐹 (𝑠) converges in 𝜎 > 𝜎 − 𝜀 for some 𝜀 > 0.

Hence, 𝐹 (𝑠) has a singularity at 𝑠 = 𝜎𝑐.

Proof. We reinterpret in terms of power series and apply Theorem 31.4.4.

Take 𝑎 = 𝑐 + 𝑟
2
. Since 𝐹 is analytic at in 𝑁𝑟(𝑎) ⊆ 𝑁𝑟(𝑐) ∪ {𝑧 : ℜ𝑧 > 𝑐}, it equals its

Taylor expansion there:

𝐹 (𝑠) =
∞∑︁
𝑘=1

𝐹 (𝑘)(𝑎)

𝑘!
(𝑠− 𝑎)𝑘.
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From Proposition 32.2.4, 𝐹 (𝑘)(𝑎) = (−1)𝑘∑︀∞
𝑛=1 𝑓(𝑛)(ln𝑛)

𝑘𝑛−𝑠. Plugging in and noting that
the sum converges absolutely (since 𝑓(𝑛) ≥ 0 for large 𝑛), we have, for 𝑠 ∈ 𝑁𝑟(𝑎),

𝐹 (𝑠) =
∞∑︁
𝑘=0

[︃(︃
(−1)𝑘

𝑘!

∞∑︁
𝑛=1

𝑓(𝑛)(ln𝑛)𝑘𝑛−𝑎
)︃
(𝑠− 𝑎)𝑘

]︃
=

∞∑︁
𝑛=1

[︃(︃ ∞∑︁
𝑘=0

(𝑠− 𝑎)𝑘(ln𝑛)𝑘

𝑘!

)︃
𝑛−𝑎

]︃
=

∞∑︁
𝑛=1

𝑓(𝑛)𝑒(𝑎−𝑠) ln𝑛𝑛−𝑎.

This converges for 𝑐−𝜀 ∈ 𝑁𝑟(𝑎). But because it has nonnegative real coefficients, this shows
𝜎𝑐 > 𝑐− 𝜀.

Proposition 32.2.6 (Logarithms): Assume 𝑓(1) ̸= 0. if 𝐹 (𝑠) ̸= 0 for 𝜎 > 𝜎0 ≥ 𝜎𝑎, then for
𝜎 > 𝜎0,

ln𝐹 (𝑠) = ln 𝑓(1) +
∞∑︁
𝑛=1

𝑓 ′ * 𝑓−1(𝑛)

ln𝑛
𝑛−𝑠.

Also talk about log diff of Euler product

3 Dirichlet generating functions

Definition 32.3.1: Let 𝑓 : N→ C be an arithmetic function. The Dirichlet generating
function of 𝑓 is

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑓(𝑛)

𝑛𝑠
.

To get the generating function of 𝑔(𝑛) =
∑︀
𝑑|𝑛 𝑓(𝑛), by Proposition 32.2.2, we simply

multiply by 𝜁(𝑠):

𝐹 (𝑠)𝜁(𝑠) =

�∑︁
𝑛

𝑓(𝑛)

𝑛𝑠

��∑︁
𝑛

1

𝑛𝑠

�
=
∑︁
𝑛

�∑︁
𝑑|𝑛
𝑓(𝑑)

�
1

𝑛𝑠
.

Note that the inverse of 𝜁(𝑠) is ∏︁
𝑝

(1− 𝑝−𝑠) =
∞∑︁
𝑛=1

𝜇(𝑛)

𝑛−𝑠 .

Hence by matching coefficients of

(𝐹 (𝑠)𝜁(𝑠))
1

𝜁(𝑠)

we get the Mobius inversion formula.
Table of dgf’s here
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4 Summing coefficients

Lemma 32.4.1: Dir-Mellin For 𝑦, 𝑐, 𝑇 > 0,2⃒⃒⃒⃒⃒
1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 𝑦𝑐min

�
1

𝜋𝑇 | ln 𝑦|
,
1

2

�
, 0 < 𝑦 < 1⃒⃒⃒⃒⃒

1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
− 1

2

⃒⃒⃒⃒⃒
≤ 𝑦𝑐

𝜋𝑇
, 𝑦 = 1⃒⃒⃒⃒⃒

1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
− 1

⃒⃒⃒⃒⃒
≤ 𝑦𝑐min

�
1

𝜋𝑇 | ln 𝑦|
, 1

�
, 𝑦 > 1

Proof. First suppose 𝑦 < 1. Take 𝑑 > 𝑐. By Cauchy’s theorem, since 𝑦𝑠

𝑠
is analytic in the

region below, we have∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑+𝑖𝑇

𝑐+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑐−𝑖𝑇

𝑑−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
= 0

where the path of integrations are those shown in the picture.

Hence, ⃒⃒⃒⃒⃒∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒∫︁ 𝑑+𝑖𝑇

𝑐+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑐−𝑖𝑇

𝑑−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 2

∫︁ 𝑑

𝑐
𝑦𝜎
𝑑𝜎

𝑇
+

⃒⃒⃒⃒⃒∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
.

Note that the last integral goes to 0 as 𝑑 → ∞, because |𝑦𝑠| = |𝑦𝑑| → 0. Hence, taking
𝑑→∞ gives ⃒⃒⃒⃒⃒∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 2

∫︁ ∞

𝑐

𝑦𝜎

𝑇
𝑑𝜎 = − 2𝑦𝑐

𝑇 ln 𝑦
=

2𝑦𝑐

𝑇 | ln 𝑦|
.

This gives
⃒⃒⃒

1
2𝜋𝑖

∫︀ 𝑐+𝑖𝑇
𝑐−𝑖𝑇 𝑦

𝑠 𝑑𝑠
𝑠

⃒⃒⃒
≤ 𝑦𝑐

𝜋𝑇
| ln 𝑦|.

2The integral 1
2𝜋𝑖

∫︀ 𝑐+∞𝑖
𝑐−∞𝑖 𝑓(𝑠)

𝑑𝑠
𝑠 is called the Mellin transform of 𝑓 .
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By Cauchy’s theorem applied to the smaller segment bounded by ℜ𝑠 = 𝑐 and the circle
with radius 𝑅 =

√
𝑐2 + 𝑇 2, (picture) we have⃒⃒⃒⃒⃒∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒∫︁
𝐶
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 𝜋𝑅

𝑦𝑐

𝑅
= 𝜋𝑦𝑐,

since 𝑦 < 1 and ℜ𝑠 > 𝑐 on the arc. Hence
⃒⃒⃒

1
2𝜋𝑖

∫︀ 𝑐+𝑖𝑇
𝑐−𝑖𝑇 𝑦

𝑠 𝑑𝑠
𝑠

⃒⃒⃒
≤ 𝑦𝑐

2
.

For 𝑦 > 1, take 𝑑 < 0. Note 𝑦𝑠

𝑠
is analytic in the region below except for a simple pole at

0 with residue 1 (since 𝑦𝑠 = 1 when 𝑠 = 0). Hence by Cauchy’s Theorem,∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑+𝑖𝑇

𝑐+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑐−𝑖𝑇

𝑑−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
= 2𝜋𝑖.

[INSERT PICCY]
Then ⃒⃒⃒⃒⃒∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
− 1

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒∫︁ 𝑑+𝑖𝑇

𝑐+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑐−𝑖𝑇

𝑑−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 2

∫︁ 𝑐

𝑑
𝑦𝜎
𝑑𝜎

𝑇
+

⃒⃒⃒⃒⃒∫︁ 𝑑−𝑖𝑇

𝑑+𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
.

The last term goes to 0 as 𝑑 → −∞, so the same argument applies as in the first part to
show

⃒⃒⃒
1

2𝜋𝑖

∫︀ 𝑐+𝑖𝑇
𝑐−𝑖𝑇 𝑦

𝑠 𝑑𝑠
𝑠
− 1

⃒⃒⃒
≤ 𝑦𝑐

𝜋𝑇 ln 𝑦
.

By Cauchy’s theorem applied to the larger segment bounded by ℜ𝑠 = 𝑐 and the circle
with radius 𝑅 =

√
𝑐2 + 𝑇 2, (picture) we have∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
+
∫︁
𝐶
𝑦𝑠
𝑑𝑠

𝑠
= 2𝜋𝑖⃒⃒⃒⃒⃒∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
− 1

⃒⃒⃒⃒⃒
≤
⃒⃒⃒⃒⃒∫︁
𝐶
𝑦𝑠
𝑑𝑠

𝑠

⃒⃒⃒⃒⃒
≤ 2𝜋𝑅

𝑦𝑐

𝑅
= 2𝜋𝑦𝑐,

since 𝑦 > 1 and ℜ𝑠 < 𝑐 on the arc. Hence
⃒⃒⃒

1
2𝜋𝑖

∫︀ 𝑐+𝑖𝑇
𝑐−𝑖𝑇 𝑦

𝑠 𝑑𝑠
𝑠

⃒⃒⃒
≤ 𝑦𝑐.

Proof for 𝑦 = 1 omitted.

Corollary 32.4.2: sum-coeff-Dir The partial sum of the coefficients of a Dirichlet series is given
by ∑︁

𝑛<𝑥

𝑎𝑛 +
𝑎𝑥
2
(𝑥 ∈ N0) =

1

2𝜋𝑖
lim
𝑇→∞

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠𝑓(𝑠)

𝑑𝑠

𝑠
.
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The error from truncating the integral is⃒⃒⃒⃒⃒(︃∑︁
𝑛<𝑥

𝑎𝑛 +
𝑎𝑥
2
(𝑥 ∈ N0)

)︃
−
�

1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠𝑓(𝑠)

𝑑𝑠

𝑠

�⃒⃒⃒⃒⃒
≤

∞∑︁
𝑛=1

�𝑥
𝑛

�𝑐
𝑎𝑛min

�
1,

1

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒� .
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Chapter 33

Zeta functions and the prime number
theorem

zeta-l-pnt

1 Prime number theorem: Outline

Definition 33.1.1: Define the prime-counting function

𝜋(𝑥) = | {𝑝 ≤ 𝑥 : 𝑝 prime} |.

Our goal in this chapter is to prove the following famous theorem (in all its error-bounded
glory).

Theorem 33.1.2 (Prime number theorem): pnt There is an effective constant 𝐶 > 0 such
that

𝜋(𝑥) = li(𝑥) +𝑂(𝑥𝑒−𝐶
√
ln𝑥)

for all 𝑥 ≥ 1.

Here li(𝑥) denotes the logarithmic integral

li(𝑥) =
∫︁ 𝑥

2

𝑑𝑡

ln 𝑡
.

Note that li(𝑥) = 𝑥
ln𝑥

+𝑂
(︁

𝑥
(ln𝑥)2

)︁
as 𝑥→∞, since integration by parts gives

li(𝑥) =
∫︁ 𝑥

2

𝑑𝑦

ln 𝑦
+𝑂(1) =

𝑥

ln𝑥
+
∫︁ 𝑥

2

𝑑𝑦

(ln 𝑦)2
+𝑂(1)

=
𝑥

ln𝑥
+𝑂

�
𝑥

(ln𝑥)2

�
.li-ibp (33.1)
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1.1 The big picture

We recommend Andrew Granville’s article IV.2 Analytic Number Theory in [Gow08] for an
overview.

How might we guess at the asymptotics for 𝜋(𝑥)? (In particular, why is it closer to li(𝑥)
than 𝑥

ln𝑥
?) By studying tables of primes up to 3 million, Gauss hypothesized that the density

of primes at around 𝑥 is around 1
ln𝑥

, and hence that the number of primes up to 𝑥 would
be the integral li(𝑥) =

∫︀ 𝑥
2

𝑑𝑡
ln 𝑡

. Making a table of 𝜋(𝑥) and the difference li(𝑥) − 𝜋(𝑥), we
find that the difference is slightly more than on the order of

√
𝑥, so this seems to be a good

estimate.

It is a common theme in analytic number theory to make conjectures about the distri-
bution of primes (or other subsets of interest) by assuming they are randomly distributed
according to some probability model. Often a simple model works for simple asymptotics up
to 𝑥, and the model needs to be refined or corrected when dealing with more complicated
quantities such as number of primes in a small interval, or spacing between primes.

Model 33.1.3 (Gauss-Cramér model): For 𝑛 ≥ 3, let 𝑋𝑛 be the random variable such that

𝑋𝑛 = 1 with probability
1

ln𝑛

𝑋𝑛 = 0 with probability 1− 1

ln𝑛
.

Then the sequence 𝑋𝑛 behaves similarly to the sequence

𝑎𝑛 = 1 if 𝑛 is prime

𝑎𝑛 = 0 otherwise.

The Gauss-Cramér model exactly predicts 𝜋(𝑥) ∼ li(𝑥). The model gives more than just
the asymptotics of 𝜋(𝑥), though, it can also be used to think about primes in short intervals
𝜋(𝑥+ 𝑦)− 𝜋(𝑥).

Problem 33.1.4: What are the shortcomings of the Gauss-Cramér model?

1.2 Main steps

The main steps in the proof are as follows.

1. When we have a Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=0

𝑎𝑛𝑛
−𝑠,
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we can get estimates for
∑︀𝑁
𝑛=0 𝑎𝑛 by “plucking out” those coefficients: The equation

1

2𝜋𝑖
lim
𝑇→∞

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑦𝑠
𝑑𝑠

𝑠
=

⎧⎪⎪⎨⎪⎪⎩1, if 𝑦 > 1
1
2
, if 𝑦 = 1

0, if 𝑦 < 1.

gives
1

2𝜋𝑖
lim
𝑇→∞

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠𝑓(𝑠)

𝑑𝑠

𝑠
=
∑︁
𝑛<𝑥

𝑎𝑛 +
𝑎𝑥
2
(𝑥 ∈ N0).

We use the more precise statement giving error bounds (Corollary 32.32.4.2).

We want a Dirichlet series where the sum of the first 𝑁 terms is related to 𝜋(𝑁). Let

𝜁(𝑠) =
∏︁

𝑝 prime

1

1− 𝑝−𝑠
=

∞∑︁
𝑛=1

1

𝑛𝑠
.

We consider the function

−𝜁
′(𝑠)

𝜁(𝑠)
=

∑︁
𝑝 prime

(ln 𝑝)𝑝−𝑠

1− 𝑝−𝑠
=

∞∑︁
𝑛=1

Λ(𝑛)𝑛−𝑠.

We use this function because 𝜓(𝑥) :=
∑︀
𝑛<𝑥 Λ(𝑛) gives information on 𝜋(𝑥), and − 𝜁′

𝜁

continues into a meromorphic function on C (since 𝜁 does). We now have the estimate

𝜓(𝑥) =
1

2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
−𝜁

′(𝑠)

𝜁(𝑠)
𝑥𝑠
𝑑𝑠

𝑠
+ (error).

2. We know 𝜁 has analytic continuation (Theorem 33.2.2). Hence we can move the path
of integration to 𝑐 < 0. From Cauchy’s integral formula, we get extra terms from
the horizontal integrals (integrals involving − 𝜁′

𝜁
) and terms 𝑥𝜌

𝜌
from Cauchy’s integral

theorem from the zeros of 𝜁(𝑠). This is why we care about its zeros! Zeros with large
real part contribute large error terms. We will need the following.

(a) We apply the product development (Theorem 31.31.6.3) on 𝜉(𝑠) = 𝜋− 𝑠
2 𝜁(𝑠)Γ

(︀
𝑠
2

�
to obtain

𝜁 ′(𝑠)

𝜁(𝑠)
=

∑︁
𝜌 zero of 𝜁

�
1

𝑠− 𝜌
+

1

𝜌

�
+ · · ·

(Theorem 33.2.5).

(b) Using the above equation for 𝜁′

𝜁
, we calculate the asymptotics of𝑁(𝑇 ), the number

of zeros in {𝜎 + 𝑖𝑡 : (𝜎, 𝑡) ∈ [0, 1]× [−𝑇, 𝑇 ]} (Theorem 33.3.2).

(c) From (a) to (b) we get a zero-free region for 𝜁 (which includes ℜ𝑠 ≥ 1) (Theo-
rems 33.3.1 and 33.3.3).
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From the zero-free region we get a bound for
∑︀ 𝑥𝜌

𝜌
, as well as the horizontal integrals.

If the Riemann hypothesis is true, then we can enlarge our zero-free region to ℜ𝑠 > 1
2
,

which is even better.

3. Finally we use the estimate for 𝜓(𝑥) to get an estimate for 𝜋(𝑥) (Lemma 33.4.2).

2 Riemann zeta function

Definition 33.2.1: The Riemann zeta function is defined by

𝜁(𝑠) =
∞∑︁
𝑛=1

1

𝑛𝑠

when ℜ𝑠 > 1. This will be generalized to 𝐿-functions 𝐿(𝑠, 𝜒) in Definition 34.34.2.1.

By Theorem 32.2.3 and by unique factorization in Z, we can write

𝜁(𝑠) =
∏︁

𝑝 prime

1

1− 𝑝−𝑠
.

By taking the logarithmic derivative, we have

−𝜁
′(𝑠)

𝜁(𝑠)
=
∑︁
𝑝

𝑑

𝑑𝑠
ln(1− 𝑝−𝑠) =

∑︁
𝑝

(ln 𝑝)
𝑝−𝑠

1− 𝑝−𝑠
=
∑︁
𝑝

ln 𝑝
∞∑︁
𝑘=1

𝑝−𝑘𝑠.

Interchanging order of summation gives

log-diff-zeta− 𝜁 ′(𝑠)

𝜁(𝑠)
=

∞∑︁
𝑛=1

Λ(𝑛)𝑛−𝑠, ℜ𝑠 > 1, (33.2)

where the von Mangoldt function Λ(𝑛) is defined as

Λ(𝑛) =

⎧⎨⎩ln 𝑝, 𝑛 = 𝑝𝑟, 𝑝 prime, 𝑟 ∈ N.
0, else

The most important property of 𝜁 is its analytic continuation and functional equation.

Theorem 33.2.2: zeta-continues 𝜁(𝑠) can be analytically continued to a meromorphic function
with a simple pole at 𝑠 = 0, 1. It satisfies the functional equation

𝜁(𝑠) = 2(2𝜋)𝑠−1Γ(1− 𝑠) sin
�𝜋𝑠
2

�
𝜁(1− 𝑠).

Letting 𝜉(𝑠) = 𝜋− 𝑠
2 𝜁(𝑠)Γ

(︀
𝑠
2

�
, we have1

𝜉(𝑠) = 𝜉(1− 𝑠).

Moreover, 𝜁(𝑠) has zeros −2N (the trivial zeros); all other zeros are in the critical strip
0 ≤ ℜ𝑠 ≤ 1.

1The factor Γ
(︀
𝑠
2

�
can be thought of as coming from the infinite place—see Chapter 36.
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To prove this, we first need the transformation law for the theta function; we will show
the functional equation for 𝜁 by writing it in terms of 𝜃. As we will prove a more generalized
transformation law, we will postpone the proof for 𝜃.

Definition 33.2.3: Define the theta function by

𝜃(𝑢) =
∑︁
𝑛∈Z

𝑒−𝜋𝑛
2𝑢, ℜ𝑢 > 0.

Proposition 33.2.4 (Transformation law for 𝜃): theta-law For all 𝑢 with ℜ𝑢 > 0,

𝜃
(︂
1

𝑢

)︂
= 𝑢

1
2 𝜃(𝑢).

This is a special case of Proposition 34.34.2.4.

Proof of Theorem 33.2.2. We first analytically continue 𝜁 to ℜ𝑠 > 0, show the functional
equation is true for 0 < ℜ𝑠 < 1, and use it to establish analytic continuation to C.

Note

continue-zeta-to-0𝜁(𝑠) =
1

𝑠− 1
+

∞∑︁
𝑛=1

[︂
𝑛−𝑠 −

∫︁ 𝑛+1

𝑛
𝑥−𝑠 𝑑𝑥

]︂
=

1

𝑠− 1
+

∞∑︁
𝑛=1

∫︁ 𝑛+1

𝑛
(𝑛−𝑠−𝑥−𝑠) 𝑑𝑥 (33.3)

Since for 𝑛 ≤ 𝑥 ≤ 𝑛+ 1 we have

|𝑛−𝑠 − 𝑥−𝑠| =
⃒⃒⃒⃒∫︁ 𝑥

𝑛
𝑠𝑥−𝑠−1 𝑑𝑥

⃒⃒⃒⃒
≤ |𝑠|𝑛−𝑠−1

bound-zeta-summands

⃒⃒⃒⃒∫︁ 𝑛+1

𝑛
𝑛−𝑠 − 𝑥−𝑠 𝑑𝑥

⃒⃒⃒⃒
≤ |𝑠|𝑛−𝑠−1, (33.4)

the sum (33.3) converges uniformly locally for ℜ𝑠 > 0 and extends 𝜁 to an analytic function
for ℜ𝑠 > 0.

We claim that

zeta-theta2𝜉(𝑠) =
∫︁ ∞

0
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢
, ℜ𝑠 > 1 (33.5)

Indeed, we have∫︁ ∞

0
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢
=
∫︁ ∞

0
2

∞∑︁
𝑛=1

𝑒−𝜋𝑛
2𝑢𝑢

𝑠
2
𝑑𝑢

𝑢

= 2
∞∑︁
𝑛=1

∫︁ ∞

0
𝑒−𝜋𝑛

2𝑢𝑢
𝑠
2
𝑑𝑢

𝑢

= 2
∞∑︁
𝑛=1

∫︁ ∞

0
𝑒−𝑢

� 𝑢

𝜋𝑛2

� 𝑠
2 𝑑𝑢

𝑢
𝑢←[

𝑢

𝜋𝑛2

= 2𝜋− 𝑠
2

(︃ ∞∑︁
𝑛=1

1

𝑛𝑠

)︃�∫︁ ∞

0
𝑒−𝑢𝑢

𝑠
2
𝑑𝑢

𝑢

�
= 2𝜋− 𝑠

2 𝜁(𝑠)Γ
�𝑠
2

�
= 2𝜉(𝑠).
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The theta transformation law 33.2.4 give that for ℜ𝑠 > 1,

2𝜉(𝑠) =
∫︁ 1

0
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢
+
∫︁ ∞

1
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢

=
∫︁ ∞

1

(︂
𝜃
(︂
1

𝑢

)︂
− 1

)︂
𝑢

𝑠
2
𝑑𝑢

𝑢
+
∫︁ ∞

1
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢
𝑢←[

1

𝑢

=
∫︁ ∞

1

(︂
𝑢−

1
2 𝜃
(︂
1

𝑢

)︂
− 1

)︂
𝑢

1−𝑠
2
𝑑𝑢

𝑢
+
∫︁ ∞

1
(𝑢

1−𝑠
2 − 𝑢−

𝑠
2 )
𝑑𝑢

𝑢
+
∫︁ ∞

1
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢

= −2

𝑠
− 2

1− 𝑠
+
∫︁ ∞

1
(𝜃(𝑢)− 1)𝑢

1−𝑠
2
𝑑𝑢

𝑢
+
∫︁ ∞

1
(𝜃(𝑢)− 1)𝑢

𝑠
2
𝑑𝑢

𝑢
.

The last expression converges for all ℜ𝑠 > 0, so in fact equals 2𝜁(𝑠) for all ℜ𝑠 > 0 by
uniqueness of analytic continuation. Since the last expression is symmetric under 1− 𝑠 ↦→ 𝑠,
the functional equation for 𝜉 follows.

The functional equation for 𝜉 gives

𝜁(𝑠) = 𝜋
𝑠
2Γ
�𝑠
2

�−1

𝜋− 1−𝑠
2 Γ

(︂
1− 𝑠
2

)︂
𝜁(1− 𝑠)

= 𝜋𝑠−
1
2
Γ
(︀
1−𝑠
2

�
Γ
(︀
𝑠
2

� 𝜁(1− 𝑠)

= 𝜋𝑠−
1
2Γ
(︂
1− 𝑠
2

)︂
Γ
�
1− 𝑠

2

� sin
(︀
𝜋𝑠
2

�
𝜋

𝜁(1− 𝑠) by Proposition 31.31.7.2(5)

= 2(2𝜋)𝑠−1 sin
�𝜋𝑠
2

�
Γ(1− 𝑠)𝜁(1− 𝑠) by Proposition 31.31.7.2(6)

Finally, the statement about zeros follows from the fact that 𝜁 has no zeros with ℜ𝑠 > 1
(as 𝜁′

𝜁
is holomorphic there) and the functional equation, noting sin

(︀
𝜋𝑠
2

�
= 0 exactly when 𝑠

is an even integer, with the zero at 𝑠 = 0 cancelled by the pole at 1 of 𝜁.

Theorem 33.2.5 (Product development of 𝜉): xi-product-development The function (𝑠2 − 𝑠)𝜉(𝑠) is
entire of order 1, and 𝜉(𝑠) has the product expansion

𝜉(𝑠) =
𝑒𝐴+𝐵𝑠

𝑠2 − 𝑠
∏︁

𝜌 zero of 𝜁

�
1− 𝑠

𝜌

�
𝑒

𝑠
𝜌 .

Then 𝜁′

𝜁
(𝑠) has the partial-fraction expansion

𝜁 ′

𝜁
(𝑠) = 𝐵 − 1

𝑠− 1
+

1

2
ln(𝜋)− 1

2

Γ′

Γ

�𝑠
2
+ 1

�
+

∑︁
𝜌 nontrivial zero of 𝜁

�
1

𝑠− 𝜌
+

1

𝜌

�
.

From now on, unless otherwise specified, when we say zero of 𝜁 we mean nontrivial zero.

Proof. Note (𝑠2 − 𝑠)𝜉(𝑠) is entire because 𝜉 only has 2 simple poles at 0, 1. To show it has
order 1 we need two inequalities.
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Step 1: There is no constant 𝐶 so that (𝑠2 − 𝑠)𝜉(𝑠) - 𝑒𝐶|𝑠|: Indeed, for real 𝑠 and any
constant 𝐶, by Stirling’s approximation 31.31.7.4 we have

(𝑠2 − 𝑠)𝜉(𝑠) = (𝑠2 − 𝑠)𝜋− 𝑠
2Γ
�𝑠
2

�
𝜁(𝑠)

% 𝑠−
1
2

� 𝑠

2𝑒𝜋

� 𝑠
2

% 𝑒𝐶𝑠.

Step 2: There is a constant 𝐶 so that (𝑠2 − 𝑠)𝜉(𝑠) - 𝑒𝐶|𝑠| ln |𝑠|: 𝑒|𝑠| ln |𝑠| ≥ 1 for all 𝑠 so it
suffices to prove this for sufficiently large 𝑠. By the integral and sum formulas for Γ and 𝜉,
and the fact that |𝑥𝑠| = |𝑥ℜ𝑠|, we have

|𝜉(𝜎 + 𝑡𝑖)| ≤ 𝜋−𝜎
2Γ
�𝜎
2

�
𝜁(𝜎), 𝜎 > 1.

By symmetry of 𝜉 is suffices to consider 𝜎 ≥ 1
2
. (“Nudging” |𝑠| in 𝑒𝐶|𝑠| ln |𝑠| by a constant

changes it by at most a constant factor.) Consider 2 cases.

1. 𝜎 > 2: Then 𝜋−𝜎
2 < 1 and 𝜁(𝜎) < 𝜁(2) so by Stirling’s approximation 31.31.7.4,

|𝜉(𝜎 + 𝑡𝑖)| - Γ
�𝜎
2

�
= 𝑒|(ln Γ)(𝜎)| = 𝑒(

𝜎
2
−1) ln 𝜎

2
−𝜎

2
+𝑂(1)

from which the result follows.

2. 1
2
≤ 𝜎 ≤ 2: From (33.4), we have for 𝑠 bounded away from 1,

𝜁(𝑠) ≤ 𝑂(1) + |𝑠|
∞∑︁
𝑛=1

𝑛− 3
2 = 𝑂(|𝑠|).

This time Γ
(︀
𝜎
2

�
= 𝑂(1) so

|(𝑠2 − 𝑠)𝜉(𝑠)| ≤
⃒⃒⃒⃒
𝑠2𝜋−𝜎

2 𝜁(𝑠)Γ
�𝜎
2

�⃒⃒⃒⃒
= 𝑂(|𝑠|3) - 𝑒𝐶|𝑠| ln |𝑠|.

This shows (𝑠2 − 𝑠)𝜉(𝑠) has order 1.

Step 3: By the product development 31.31.6.3, noting the the zeros of (𝑠2 − 𝑠)𝜉 are the
nontrivial zeros of 𝜁 (since Γ has no zeros and trivial zeros of 𝜁 come from the poles of Γ in
the definition of 𝜉), we get

(𝑠2 − 𝑠)𝜉(𝑠) = 𝑒𝐴+𝐵𝑠
∏︁

𝜌 zero of 𝜁

�
1− 𝑠

𝜌

�
𝑒

𝑠
𝜌 .

Dividing by 𝑠2 − 𝑠 and log-differentiating gives

𝜉′

𝜉
(𝑠) = 𝐵 − 1

𝑠
− 1

𝑠− 1
+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
.
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Since 𝜁(𝑠) = 𝜋
𝑠
2Γ
(︀
𝑠
2

�−1
𝜉(𝑠), we get

𝜁 ′

𝜁
(𝑠) =

1

2
ln𝜋 +

1

2

Γ′

Γ

�𝑠
2

�
+𝐵 − 1

𝑠
− 1

𝑠− 1
+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
=

1

2
ln𝜋 +

1

2

Γ′

Γ

�𝑠
2
+ 1

�
+𝐵 − 1

𝑠− 1
+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
, Γ(𝑧) =

Γ(𝑧 + 1)

𝑧
.

3 Zeros of zeta

Note that from the function equation, 𝜁(𝑠) has simple zeros at −2N. We call these trivial
zeros. More importantly for us are the zeros with real part in [0, 1].

Denote by 𝑁(𝑇 ) be the number of zeros of 𝜁 in {𝜎 + 𝑖𝑡 : (𝜎, 𝑡) ∈ [0, 1]× [−𝑇, 𝑇 ]}, count-
ing multiplicity. We first give asymptotics on the vertical distribution of zeros of 𝜁 (von
Mangoldt’s formula, Theorem 33.3.2), then give a zero-free region for 𝜁 (Theorem 33.3.3).

Lemma 33.3.1: weak-zeta-zeros Define ℒ(𝑡) = ln(|𝑡| + 2). For 𝑠 = 𝜎 + 𝑖𝑡 with 𝜎 ∈ [−1, 2], we
have2

weak-zeta-zeros-eq1

𝜁 ′(𝑠)

𝜁(𝑠)
= − 1

𝑠− 1
+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
+𝑂(ℒ) (33.6)

= − 1

𝑠− 1
+

∑︁
|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌
+𝑂(ℒ).

Moreover, there are 𝑂(ℒ) zeros 𝜌 with |ℑ(𝑠−𝜌)| < 1, i.e. the number of zeros with imaginary
part in [𝑡, 𝑡+ 1] is 𝑂(ln 𝑡), as 𝑡→∞.

Note this gives 𝑁(𝑇 ) = 𝑂(𝑇 ln𝑇 ). The next theorem will give an improvement of this
estimate.

Proof. Our strategy is this: at a point where we know 𝜁′

𝜁
is bounded (𝑠 = 2 + 𝑖𝑡), we use

Theorem 33.2.5 to get information on how many zeros of 𝜁 can be close to 𝑠. Then we use
compare 𝜁′

𝜁
(𝜎 + 𝑖𝑡) with 𝜁′

𝜁
(2 + 𝑖𝑡) to get the general estimate.

Step 1: Theorem 33.2.5 gives us

zeta2-zero-sum

𝜁 ′(𝑠)

𝜁(𝑠)
= − 1

𝑠− 1
+𝐵 +

1

2
ln 𝜋⏟  ⏞  

𝑂(1)

−1

2

Γ′

Γ

�𝑠
2
+ 1

�⏟  ⏞  
(𝐴)

+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�⏟  ⏞  
(𝐵)

. (33.7)

From Stirling’s approximation 31.31.7.4, (A) equals

gamma2-estimate ln
⃒⃒⃒⃒
𝜎

2
+ 1 + 𝑖

𝑡

2

⃒⃒⃒⃒
+𝑂(1) = 𝑂(ℒ) (33.8)

2Note 1
𝑠−1 = 𝑂(1) when 𝑠 is bounded away from 1.
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These two equations show (33.6).
Now suppose 𝑠 = 2 + 𝑖𝑡. Note that⃒⃒⃒⃒⃒

𝜁 ′(2 + 𝑖𝑡)

𝜁(2 + 𝑖𝑡)

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒ ∞∑︁
𝑛=1

Λ(𝑛)𝑛−2−𝑖𝑡
⃒⃒⃒⃒⃒
≤
⃒⃒⃒⃒⃒ ∞∑︁
𝑛=1

(ln𝑛)𝑛−2

⃒⃒⃒⃒⃒
<∞,

so the LHS of (33.7) is 𝑂(1). Hence (33.7) becomes

zeta2-zero-sum2𝑂(ℒ) =
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
. (33.9)

We estimate the terms with |ℑ(𝑠−𝜌)| < 1 by a constant to show that there aren’t too many
of them. From (33.9) and (33.8),

𝑂(ℒ) = ℜ
∑︁
𝜌

�
1

2 + 𝑖𝑡− 𝜌
+

1

𝜌

�
≥ ℜ

∑︁
𝜌

�
(2−ℜ𝜌)− (𝑡−ℑ𝜌)𝑖
(2−ℜ𝜌)2 + (𝑡−ℑ𝜌)2

�
since ℜ

�
1

𝜌

�
> 0

≥
∑︁
𝜌

1

4 + (𝑡−ℑ𝜌)2
since 0 ≤ ℜ𝜌 ≤ 1

zero-olnt ≥ 1

5
| {𝜌 : |ℑ(𝑠− 𝜌)| < 1} |+ 1

5

∑︁
|ℑ(𝑠−𝜌)|≥1

1

(𝑡−ℑ𝜌)2
. (33.10)

This proves the second part of the lemma.

Step 2: Now we consider general 𝑠 = 𝜎 + 𝑖𝑡, by comparing it to 2 + 𝑖𝑡. We have by (33.7)
and (33.8) that

𝜁 ′

𝜁
(𝑠)− 𝜁 ′

𝜁
(2 + 𝑖𝑡)⏟  ⏞  
𝑂(1)

= − 1

𝑠− 1
+𝑂(1) +

1

2

(︂
ln
⃒⃒⃒⃒
𝜎

2
+ 1 +

𝑡

2
𝑖
⃒⃒⃒⃒
− ln

⃒⃒⃒⃒
2 +

𝑡

2
𝑖
⃒⃒⃒⃒)︂⏟  ⏞  

𝑂(1)

+
∑︁
𝜌

�
1

𝑠− 𝜌
− 1

2 + 𝑖𝑡− 𝜌

�
= − 1

𝑠− 1
+𝑂(1) +

∑︁
|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌
−

∑︁
|ℑ(𝑠−𝜌)|<1

1

2 + 𝑖𝑡− 𝜌⏟  ⏞  
𝑂(ℒ)

+
∑︁

|ℑ(𝑠−𝜌)|≥1

(2− 𝜎)
(𝑠− 𝜌)(2 + 𝑖𝑡− 𝜌)⏟  ⏞  

𝑂(ℒ)

.

The first 𝑂(ℒ) is because there are at most 𝑂(ℒ) terms and each term is at most 1 in absolute
value; the second is from∑︁

|ℑ(𝑠−𝜌)|≥1

2− 𝜎
(𝑠− 𝜌)(2 + 𝑖𝑡− 𝜌)

= 𝑂

� ∑︁
|ℑ(𝑠−𝜌)|≥1

1

ℑ(𝑠− 𝜌)2

�
= 𝑂(ℒ);

the first equality is from 2−𝜎 = 𝑂(1) and ℑ(𝑠−𝜌) = ℑ(2+𝑖𝑡−𝜌); the second is by (33.10).
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Theorem 33.3.2 (von Mangoldt): zeta-zeros(*) As 𝑇 →∞,

𝑁(𝑇 ) =
𝑇

𝜋
ln
(︂
𝑇

2𝜋

)︂
− 𝑇

𝜋
+𝑂(ln𝑇 ).

Proof. As 𝜁 has only a countable number of zeros, we may assume 𝑇 is not the imaginary
part of any zero.

Let

ℛ = {𝜎 + 𝑖𝑡 : (𝑠, 𝑡) ∈ [−1, 2]× [−𝑇, 𝑇 ]}

and let 𝐶 be the boundary of ℛ. (PICTURE) From 𝜉(𝑠) = 𝜋− 𝑠
2 𝜁(𝑠)Γ

(︀
𝑠
2

�
, we see that 𝜉 has

the same zeros as 𝜁 in this region, and simple poles at 0 and 1. Hence by Cauchy’s residue
formula 31.31.4.8,

1

2𝜋𝑖

∮︁
𝐶

𝜉′(𝑠)

𝜉(𝑠)
𝑑𝑠 = 2𝑁(𝑇 )− 2.

Noting that 𝜉(𝑠) = 𝜉(𝑠) and 𝜉(𝑠) = 𝜉(1 − 𝑠), changes of variable show that the integral on
each of the sections of 𝐶 between 2, 1

2
+ 𝑖𝑇 , −1, and 1

2
− 𝑖𝑇 are the same.3 Let 𝐶 ′ be the

part from 1 to 1
2
+ 𝑖𝑇 . Thus the above equals

2

𝜋𝑖

∫︁
𝐶′

𝜉′(𝑠)

𝜉(𝑠)
𝑑𝑠 =

2

𝜋𝑖

∫︁
𝐶′
− ln 𝜋

2
+
𝜁 ′(𝑠)

𝜁(𝑠)
+

(︀
Γ
(︀
𝑠
2

��′
Γ
(︀
𝑠
2

� 𝑑𝑠
(
∏︀𝑛
𝑘=1 𝑓𝑘)

′∏︀𝑛
𝑘=1 𝑓𝑘

=
𝑛∑︁
𝑘=1

𝑓 ′
𝑘

𝑓𝑘

=
2

𝜋
ℑ
∫︁
𝐶′
− ln 𝜋

2
+
𝜁 ′(𝑠)

𝜁(𝑠)
+

(︀
Γ
(︀
𝑠
2

��′
Γ
(︀
𝑠
2

� 𝑑𝑠 (expression is real).

We break this up into 3 integrals and estimate each part separately.

1. ℑ ∫︀𝐶′ − ln𝜋
2
𝑑𝑠 = −𝑇

2
ln𝜋.

2. Using the estimate for 𝜁′

𝜁
in Lemma 33.3.1, we evaluate the second integral. Note that

ln 𝜁 is defined for ℜ𝑠 > 1 and is uniformly bounded for ℜ𝑠 = 2:

(ln 𝜁)(𝑠) =
∑︁

𝑝 prime

ln(1− 𝑝−𝑠)

|(ln 𝜁)(2 + 𝑖𝑡)| ≤
∑︁

𝑝 prime

2𝑝−2.

(Just bound ln linearly near 1, or expand in Taylor series.) Note ln(𝑥−𝜌) is well-defined

3We used 𝜉 because its symmetry allows us to do this.
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on 𝐶 ′ for any 𝜌. Hence by Theorem 33.3.1,

ℑ
∫︁
𝐶′

𝜁 ′

𝜁
(𝑠) 𝑑𝑠 = (ℑ(ln 𝜁)(2 + 𝑖𝑇 )−ℑ(ln 𝜁)(2)) +

∫︁ 1
2
+𝑖𝑇

2+𝑖𝑇

𝜁 ′

𝜁
(𝑠) 𝑑𝑠

= 𝑂(1) +
∫︁ 1

2
+𝑖𝑇

2+𝑖𝑇
ℑ

� ∑︁
|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌

�
+𝑂(ln𝑇 ) 𝑑𝑠

= 𝑂(ln𝑇 ) +
∑︁

|ℑ(𝑠−𝜌)|<1

ℑ(ln(𝑥− 𝜌))|
1
2
+𝑇 𝑖

2+𝑇 𝑖

≤ 𝑂(ln𝑇 ) + 2𝜋𝑂(ln𝑇 )

since there are at most ln𝑇 terms in the sum.

3. We estimate the last integral using Stirling’s formula 31.31.7.4. (Note that ln Γ is
well-defined for 𝑠 ∈ 𝐶 ′.)∫︁

𝐶′

(︀
Γ
(︀
𝑠
2

��′
Γ
(︀
𝑠
2

� =
�
ℑ(ln Γ)

�𝑠
2

�� 1
2
+𝑇 𝑖

2

= ℑ(ln Γ)
(︂
1

4
+
𝑇

2
𝑖
)︂

= ℑ
[︂(︂
−1

4
+
𝑇

2
𝑖
)︂
ln
(︂
1

4
+
𝑇

2
𝑖
)︂
−
(︂
1

4
+
𝑇

2
𝑖
)︂
+𝑂(1)

]︂
=
𝑇

2
ln
(︂
𝑇

2

)︂
− 𝑇

2
+𝑂(1).

Now put everything together to get

𝑁(𝑇 )− 2 =
2

𝜋

(︂
−𝑇
2
ln𝜋 +𝑂(ln𝑇 ) +

(︂
𝑇

2
ln
(︂
𝑇

2

)︂
− 𝑇

2
+𝑂(1)

)︂)︂
𝑁(𝑇 ) =

𝑇

𝜋
ln
(︂
𝑇

2𝜋

)︂
− 𝑇

𝜋
+𝑂(ln𝑇 ).

Theorem 33.3.3 (Zero-free region for 𝜁): zeta-zero-free There are no zeros of 𝜁 with ℜ𝑠 ≥ 1.
Moreover, there is a constant 𝑐 > 0 such that for |𝑡| > 2, every zero 𝜎 + 𝑖𝑡 satisfies

𝜎 < 1− 𝑐

ln |𝑡|
.

PICTURE!

Proof. We already noted 𝜁 has no zero for ℜ𝑠 > 1 (Theorem 33.2.2), so for the first part it
suffices to prove that no zero has real part 1.

If 𝜁 had a zero 1+𝑖𝑡, then 𝜁′

𝜁
would have a pole of positive residue at 1+𝑖𝑡. For 𝑠 = 𝜎+𝑖𝑡,

𝜎 > 1 we have − 𝜁′

𝜁
(𝑠) =

∑︀∞
𝑛=1

Λ(𝑛)
𝑛𝑠 , so this means that as 𝜎 → 1+, many of the important

terms would have 𝑛−𝑖𝑡 “close” to −1, to make it blow up in the negative direction. For those
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terms, we have 𝑛−2𝑖𝑡 “close” to 1. This would force − 𝜁′

𝜁
(𝜎 + 2𝑡𝑖) to have a pole of positive

residue at 1 + 2𝑡𝑖, i.e 𝜁 to have a pole at 1 + 2𝑡𝑖, contradicting the fact that it is analytic
there.

We now make this idea precise. What we want is an inequality between some function of
an angle and its double, so that if one is small it forces the other to be large. So we consider

0 ≤ 2(1 + cos 𝜃)2 = 3 + 4 cos 𝜃 + cos 2𝜃.

This gives
0 ≤ 3 + 4ℜ(𝑛−𝑖𝑡) + ℜ(𝑛−2𝑖𝑡).

Multiplying by Λ(𝑛)𝑛−𝜎 and summing, we get

zero-free-zeta-inequality0 ≤ 3

�
−𝜁

′

𝜁
(𝜎)

�
+4ℜ

�
−𝜁

′

𝜁
(𝜎 + 𝑡𝑖)

�
+ℜ

�
−𝜁

′

𝜁
(𝜎 + 2𝑡𝑖)

�
, 𝜎 > 1. (33.11)

Letting 𝑟 be the degree of the zero at 1 + 𝑡𝑖, we have by Lemma 33.3.1

0 ≤
(︂

3

𝜎 − 1
+𝑂(1)

)︂
−
(︂

4𝑟

𝜎 − 1
+𝑂(ℒ)

)︂
+ ℜ

�
−𝜁

′

𝜁
(𝜎 + 2𝑡𝑖)

�
as 𝜎 → 1+.

If 𝑟 ≥ 1, then this gives − 𝜁′

𝜁
(𝜎 + 2𝑡𝑖)→∞ as 𝜎 → 1+, contradiction. Hence 𝑟 = 0; 1 + 𝑖𝑡 is

not a zero.
For the second statement, we have to use the partial fraction decomposition 33.2.5.

Suppose 𝜌 = (1− 𝛿) + 𝑖𝑡 is a zero. By Lemma 33.3.1, we have

−𝜁
′(𝑠)

𝜁(𝑠)
= 𝑂(ln |𝑡|)−

∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
≤ 𝑂(ln |𝑡|)− 1

𝑠− 𝜌
.

Then

−ℜ𝜁
′

𝜁
(𝜎 + 𝑡𝑖) ≤ 𝑂(ln |𝑡|)− 1

𝜎 + 𝛿 − 1

−ℜ𝜁
′

𝜁
(𝜎 + 2𝑡𝑖) ≤ 𝑂(ln |2𝑡|) = 𝑂(ln |𝑡|).

For 𝜎 > 1, plugging this into (33.11) gives

0 ≤ 3

𝜎 − 1
+𝑂(ln |𝑡|)− 4

𝜎 + 𝛿 − 1

=⇒ 4

𝜎 + 𝛿 − 1
<

3

𝜎 − 1
+ 𝐶1 ln |𝑡|

for some 𝐶1. Now take 𝜎 = 1 + 4𝛿 to get

4

5𝛿
<

3

4𝛿
+ 𝐶1 ln |𝑡|,

giving

𝛿 >
1

20𝐶1 ln |𝑡|
as needed.
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4 Prime number theorem: proof

Now we gather everything together to prove the prime number theorem. We first show the
following.

Theorem 33.4.1 (von Mangoldt’s formula): von-Mangoldt-formula For an integer 𝑥 > 2 and 𝑥 ≥ 𝑇 ,

v-M-f𝜓(𝑥) = 𝑥−
∑︁

|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌
+𝑂

�
𝑥(ln𝑥)2

𝑇

�
. (33.12)

Proof. Step 1: We estimate 𝜓(𝑥) using Theorem 32.32.4.2. Suppose 𝑥 is an integer; the
theorem gives⃒⃒⃒⃒⃒

𝜓(𝑥)−
�∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠
�
−𝜁

′

𝜁
(𝑠)

𝑑𝑠

𝑠

��⃒⃒⃒⃒⃒
≤ Λ(𝑥) +

∑︁
𝑛≥1, 𝑛 ̸=𝑥

�𝑥
𝑛

�𝑐
Λ(𝑛)

1

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒
≤ ln(𝑥) +

∑︁
𝑛≥1, 𝑛 ̸=𝑥

�𝑥
𝑛

�𝑐 ln(𝑛)

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒ .
Take

𝑐 = 1 +
1

ln𝑥
.

Note that this makes 𝑥𝑐 = 𝑒𝑥 = 𝑂(𝑥). To estimate the sum we split it into several parts.

1. 1 ≤ 𝑛 < 𝑥
𝑒
: We have ∑︁

1≤𝑛<𝑥
𝑒

�𝑥
𝑛

�𝑐 ln𝑛

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒ - 𝑥 ln𝑥

𝑇

∑︁
1≤𝑛<𝑥

1

𝑛

∼ 𝑥(ln𝑥)2

𝑇
.

2. 𝑥
𝑒
≤ 𝑛 < 𝑒𝑥: We have∑︁

𝑥
𝑒
≤𝑛<𝑒𝑥, 𝑛 ̸=𝑥

�𝑥
𝑛

�𝑐
ln𝑛

1

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒ - ∑︁
𝑥
𝑒
≤𝑛<𝑒𝑥, 𝑛 ̸=𝑥

���
�

𝑒1+
1

ln 𝑥
ln𝑛

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒
-

1

𝑇

∑︁
𝑥
𝑒
≤𝑛<𝑒𝑥, 𝑛 ̸=𝑥

ln𝑥⃒⃒⃒
1− 𝑥

𝑛

⃒⃒⃒ using ln 𝑥 ∼ 𝑥− 1 when 𝑥 ≈ 1

-
𝑥 ln𝑥

𝑇

∑︁
𝑥
𝑒
≤𝑛<𝑒𝑥,𝑛 ̸=𝑥

1

|𝑛− 𝑥|

-
𝑥 ln𝑥

𝑇

∑︁
1≤𝑛<(𝑒−1)𝑥

1

𝑛

∼ 𝑥(ln𝑥)2

𝑇
.
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3. 𝑛 ≥ 𝑒𝑥: We have∑︁
𝑛≥𝑒𝑥

�𝑥
𝑛

�𝑐 ln𝑛
𝑇

<
𝑥

𝑇

∫︁ ∞

𝑒𝑥−1

ln 𝑦

𝑦𝑐
𝑑𝑦

ln 𝑦

𝑦𝑐
decreasing for 𝑦 > 𝑒

=
𝑥

𝑇

�−𝑦−𝑐+1 ln 𝑦

𝑐− 1
− 𝑦−𝑐+1

(𝑐− 1)2

�∞
𝑒𝑥−1

∼ 𝑥(ln𝑥)2

𝑇
.

Putting everything together gives

von-M-1

⃒⃒⃒⃒⃒
𝜓(𝑥)−

�∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠
�
−𝜁

′

𝜁
(𝑠)

�
𝑑𝑠

𝑠

�⃒⃒⃒⃒⃒
= 𝑂

�
𝑥(ln𝑥)2

𝑇
+ ln𝑥

�
. (33.13)

Step 2: We move the line of integration to ℜ𝑠 = −1. Assuming that 𝑇 is not the imaginary
part of any root, by Cauchy’s residue theorem 31.4.8 PICTURE∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠) 𝑑𝑠+

∫︁ −1+𝑖𝑇

𝑐+𝑖𝑇

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠) 𝑑𝑠⏟  ⏞  

𝐼ℎ,1

+
∫︁ −1−𝑖𝑇

−1+𝑖𝑇

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠) 𝑑𝑠⏟  ⏞  

𝐼𝑣

+
∫︁ 𝑐−𝑖𝑇

−1−𝑖𝑇

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠) 𝑑𝑠⏟  ⏞  

𝐼ℎ,2

=
𝜁 ′

𝜁
(0)−𝑥+

∑︁
|ℑ𝜌|<𝑇

𝑥𝜌

𝜌
.

Here 𝑥𝜌

𝜌
are the resuides at the zeros, −𝑥 comes from the pole of 𝜁 at 1, and 𝜁′

𝜁
(0) comes

from the pole of 1
𝑠
. Then

von-M-2

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑥𝑠

𝑠

�
−𝜁

′

𝜁
(𝑠)

�
𝑑𝑠− 𝑥 = 1 + 𝐼ℎ,1 + 𝐼ℎ,2 + 𝐼𝑣 −

∑︁
ℑ𝜌<𝑇

𝑥𝜌

𝜌
. (33.14)

We estimate each summand.

1. For the horizontal integrals, we use the estimate 33.3.1 to get⃒⃒⃒⃒⃒
𝜁 ′

𝜁
(𝑠)

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒⃒ ∑︁
|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌

⃒⃒⃒⃒⃒⃒
+𝑂(ln𝑇 ), 𝑠 = 𝜎 + 𝑇𝑖

≤
∑︁

|ℑ(𝑠−𝜌)|<1

1

ℑ(𝑠− 𝜌)
+𝑂(ln𝑇 ).

We would like to bound ℑ(𝑠− 𝜌) away from 0. To do this, note that there are 𝑂(ln𝑇 )
roots in with ℑ𝜌 ∈ [𝑇, 𝑇 +1] by Lemma 33.3.1. Hence by tweaking 𝑇 slightly4, we can

4Changing 𝑇 by a constant does not change the error term of (33.12); moreover the change in the LHS

sum is 𝑂
(︀

𝑥
𝑇 ln𝑇

�
= 𝑂

(︁
𝑥(ln 𝑥)2

𝑇

)︁
.
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assume |ℑ(𝑠 − 𝜌)| > 𝐶
ln𝑇

for all 𝜌. Also by Lemma 33.3.1 there are at most 𝑂(ln𝑇 )
terms in the sum, so the sum is 𝑂((ln𝑇 )2). Integrating gives⃒⃒⃒⃒⃒∫︁ −1±𝑇 𝑖

𝑐±𝑇 𝑖

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠)𝑑𝑠

⃒⃒⃒⃒⃒
= 𝑂((ln𝑇 )2)𝑂

(︂
1

𝑇

)︂ ∫︁ −1

𝑐
|𝑥𝑠| 𝑑𝑠

= 𝑂

�
(ln𝑇 )2

𝑇

�
𝑂(𝑥)

= 𝑂

�
𝑥(ln𝑥)2

𝑇

�
.

2. For the vertical integral, we use the same estimate, this time noting that |𝑠 − 𝜌| > 1
for every root 𝜌, since every zero satisfies ℜ𝜌 > 0. This gives that 𝜁′

𝜁
(𝑠) = 𝑂(ln𝑇 ), and⃒⃒⃒⃒⃒∫︁ −1−𝑇 𝑖

−1+𝑇 𝑖

𝑥𝑠

𝑠

𝜁 ′

𝜁
(𝑠) 𝑑𝑠

⃒⃒⃒⃒⃒
= 𝑂(ln𝑇 )

∫︁ −1+𝑇 𝑖

−1−𝑇 𝑖

𝑥−1

|𝑠|
𝑑𝑠

= 𝑂

�
ln𝑇

𝑥

�∫︁ 𝑇

−𝑇

1√
𝑡2 + 1

𝑑𝑡

= 𝑂

�
ln𝑇

𝑥

�∫︁ 𝑇+1

1

1

𝑡
𝑑𝑡

= 𝑂

�
(ln𝑇 )2

𝑥

�
= 𝑂

�
𝑥(ln𝑥)2

𝑇

�
.

Equations (33.13) and (33.14) together with the above two estimates give the theorem.

The final ingredient in the proof of the Prime Number Theorem is the estimate for∑︀
|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌
using the zero-free regions for 𝜁 and the estimate for number of zeros of 𝜁.

Proof of Theorem 33.1.2. First, note there can only be a finite number of zeros of 𝜁 with
|ℑ(𝜌)| < 2, so

∑︀
|ℑ(𝜌)|<2

𝑥𝜌

𝜌
= 𝑂(𝑥𝑟) for some fixed 𝑟 < 1.5 We estimate

∑︀
2≤|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌
in two

steps.

1. By Theorem 33.3.3, there is 𝑐 such that for 𝜌 with 2 ≤ |ℑ(𝜌)| < 𝑇 ,

|𝑥𝜌| = 𝑥ℜ𝜌 ≤ 𝑥1−
𝑐

ln𝑇 = 𝑥𝑒−
𝑐 ln 𝑥
ln𝑇 .

5In fact, there are zero such zeros.
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2. Using 𝑁(𝑇 ) = 𝑂(𝑇 ln𝑇 ) (Theorem 33.3.2 or the weaker remark after Lemma 33.3.1),∑︁
2≤|ℑ(𝜌)|<𝑇

1

|𝜌|
≤

∑︁
2≤|ℑ(𝜌)|<𝑇

1

ℑ(𝜌)

≤
∫︁ 𝑇

2

𝑑𝑁(𝑡)

𝑡
(Riemann-Steltjes integral)

=
𝑁(𝑇 )

𝑇
− 𝑁(2)

2
+
∫︁ 𝑇

2

𝑁(𝑡)

𝑡2
𝑑𝑡 integration by parts

= 𝑂(ln𝑇 ) +
∫︁ 𝑇

2
𝑂

�
ln 𝑡

𝑡

�
𝑑𝑡

pnt-step2 = 𝑂(ln𝑇 ) +𝑂((ln𝑇 )2) = 𝑂((ln𝑇 )2). (33.15)

Putting these two estimates together,⃒⃒⃒⃒⃒⃒ ∑︁
|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌

⃒⃒⃒⃒⃒⃒
≤ 𝑂(𝑥𝑟) + max

2≤|ℑ(𝜌)|<𝑇
(|𝑥𝜌|)

∑︁
2≤|ℑ(𝜌)|<𝑡

1

|𝜌|

≤ 𝑂(𝑥𝑟) +𝑂
(︁
𝑥𝑒−

𝑐 ln 𝑥
ln𝑇 (ln𝑇 )2

)︁
.xrhorho (33.16)

Combining with Theorem 33.4.1, and setting 𝑇 = 𝑒
√
ln𝑥 (so that 𝑥𝑒−

ln 𝑥
ln𝑇 = 𝑥

𝑇
), we get

|𝜓(𝑥)− 𝑥| = 𝑂

�
𝑥𝑟 + 𝑥𝑒−

𝑐 ln 𝑥
ln𝑇 (ln𝑇 )2 +

𝑥(ln𝑥)2

𝑇

�
= 𝑂

(︁
𝑥𝑟 + 𝑥𝑒−𝑐

√
ln𝑥 ln𝑥+ 𝑥(ln𝑥)2𝑒−

√
ln𝑥
)︁

= 𝑂(𝑥𝑒−𝐶
√
ln𝑥),

for some 𝐶 > 0. This shows

psi-asymptotic𝜓(𝑥) = 𝑥+𝑂(𝑥𝑒−𝐶
√
ln𝑥). (33.17)

Finally, we extract the asymptotics of 𝜋 from the following.

Lemma 33.4.2: partial-sum-pi We have the following estimates:

𝜋(𝑥) =
𝜓(𝑥)

ln𝑥
+
∫︁ 𝑥

2
𝜓(𝑦)

𝑑𝑦

𝑦(ln 𝑦)2
+𝑂(𝑥

1
2 ),

𝜓(𝑥) = 𝜋(𝑥) ln𝑥−
∫︁ 𝑥

2

𝜋(𝑦)

𝑦
𝑑𝑦 +𝑂(𝑥

1
2 ln𝑥).

Proof. Define

𝛾(𝑛) =

⎧⎨⎩1, 𝑛 prime,

0, 𝑛 not prime,
Λ1(𝑛) =

⎧⎨⎩ln𝑛, 𝑛 prime,

0, 𝑛 not prime,
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and

𝜓1(𝑥) =
∑︁
𝑛≤𝑥

Λ1(𝑛).

First note

|𝜓(𝑥)− 𝜓1(𝑥)| =
∑︁

2≤𝑟≤log2(𝑥)

∑︁
𝑝| 𝑝𝑟≤𝑥

ln 𝑝

≤
∑︁

2≤𝑟≤log2(𝑥)

𝑥
1
𝑟 ln𝑥

= 𝑂(𝑥
1
2 ln𝑥+ 𝑥

1
3 (ln𝑥)2) = 𝑂(𝑥

1
2 ln𝑥).psi-psi1-estimate (33.18)

Part 1: By partial summation 3.3.7.1 with 𝑢 = Λ1, 𝑈 = 𝜓1, and 𝑣 = 1
ln𝑥

,

𝜋(𝑥) =
∑︁
𝑛≤𝑥

𝛾(𝑛)

=
∑︁
𝑛≤𝑥

Λ1(𝑛)
1

ln𝑛

=
𝜓1(𝑥)

ln𝑥
+
∫︁ 𝑥

2
𝜓1(𝑡)

𝑑𝑡

𝑡(ln 𝑡)2

=
𝜓(𝑥)

ln𝑥
+𝑂(𝑥

1
2 ) +

∫︁ 𝑥

2
𝜓(𝑡)

𝑑𝑡

𝑡(ln 𝑡)2
+
∫︁ 𝑥

2
𝑂(𝑡−

1
2 ) 𝑑𝑡 by (33.18)

=
𝜓(𝑥)

ln𝑥
+
∫︁ 𝑥

2
𝜓(𝑡)

𝑑𝑡

𝑡(ln 𝑡)2
+𝑂(𝑥

1
2 ).

Part 2: By partial summation,

𝜓1(𝑥) =
∑︁
𝑛≤𝑥

𝛾(𝑛) ln(𝑛)

= 𝜋(𝑥) ln𝑥−
∫︁ 𝑥

2

𝜋(𝑡)

𝑡
𝑑𝑡.

Combining with (33.18) gives the result.

Putting (33.17) into Lemma 33.4.2,

𝜋(𝑥) =
𝑥

ln𝑥
+𝑂

�
𝑥𝑒−𝐶

√
ln𝑥

ln𝑥

�
+
∫︁ 𝑥

2

�
1

(ln 𝑦)2
+𝑂

�
𝑒−𝐶
√

ln 𝑦

(ln 𝑦)2

��
𝑑𝑦 +𝑂(𝑥

1
2 )

= li(𝑥) +𝑂(𝑥𝑒−𝐶
√
ln𝑥). by (33.1)
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5 The Riemann hypothesis

The following conjecture is worth one million dollars:

Conjecture 33.5.1 (Riemann hypothesis): All nontrivial zeros 𝑠 of 𝜁(𝑠) satisfy ℜ𝑠 = 1
2
.

Note that for no 𝜀 > 0 has it been proved that all zeros satisfy ℜ𝑠 < 1− 𝜀. Our zero-free
region, sadly, has a boundary approaching real part 1 as 𝑡→∞.

One reason that the Riemann hypothesis is important is that it gives a strong error bound
in the prime number theorem (as well as many other theorems of analytic number theory).

Theorem 33.5.2: Suppose 1
2
≤ 𝜃 < 1. The following are equivalent.

1. 𝜁(𝑠) has no zeros with ℜ𝑠 > 𝜃.

2. 𝜋(𝑥) = li(𝑥) +𝑂(𝑥𝜃 ln𝑥).

3. 𝜋(𝑥) = li(𝑥) +𝑂(𝑥𝜃+𝜀) for every 𝜀 > 0, where the constant depends on 𝜀.

In particular, the Riemann hypothesis is equivalent to 𝜋(𝑥) = li(𝑥) +𝑂(𝑥
1
2 ln𝑥).

Proof. (1) =⇒ (2): Suppose 𝜁(𝑠) has no zeros with ℜ𝑠 > 𝜃. Then using the estimate
in (33.15), we have ∑︁

|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌
≤ max

𝜌
|𝑥𝜌|

∑︁
|ℑ(𝜌)|<𝑇

1

|𝜌|

≤ 𝑥𝜃(ln𝑇 )2.

Now take 𝑇 = 𝑥 to find that

|𝜓(𝑥)− 𝑥| = 𝑂

�
𝑥𝜃(ln𝑇 )2 +

𝑥(ln𝑥)2

𝑇

�
= 𝑂(𝑥𝜃(ln𝑥)2).

Then using Lemma 33.4.2 and (33.1),

𝜋(𝑥) =
𝜓(𝑥)

ln𝑥
+
∫︁ 𝑥

2
𝜓(𝑦)

𝑑𝑦

𝑦(ln 𝑦)2
+𝑂(𝑦

1
2 )

= li(𝑥) +𝑂

(︃
𝑥𝜃(ln𝑥)2

ln𝑥

)︃
+
∫︁ 𝑥

2
𝑂

�
𝑥

1
2
−1(ln𝑥)2

(ln𝑥)2

�
𝑑𝑥

= li(𝑥) +𝑂(𝑥𝜃 ln𝑥).

(2) =⇒ (3): Item 2 is stronger than item 3.
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(3) =⇒ (1): Going the other way in Lemma 33.4.2,

𝜓(𝑥) = 𝜋(𝑥) ln𝑥−
∫︁ 𝑥

2

𝜋(𝑦)

𝑦
𝑑𝑦 +𝑂(𝑥

1
2 ln𝑥)

=

�
𝑥

ln𝑥
+
∫︁ 𝑥

2

𝑑𝑦

(ln 𝑦)2
+𝑂(𝑥𝜃+𝜀)

�
ln𝑥−

∫︁ 𝑥

2

(︃
1

ln𝑥
+

1

𝑦

∫︁ 𝑦

2

𝑑𝑡

(ln 𝑡)2
+
𝑂(𝑦𝜃+𝜀)

𝑦

)︃
𝑑𝑦 +𝑂(𝑥

1
2 ln𝑥)

= 𝑥+𝑂(𝑥𝜃+𝜀
′
)−

∫︁ 𝑥

2

𝑑𝑦

ln 𝑦
+
∫︁ 𝑥

2

𝑑𝑦

(ln 𝑦)2
ln𝑥−

∫︁ 𝑥

2

�∫︁ 𝑦

2

𝑑𝑡

(ln 𝑡)2
· 1
𝑦

�
𝑑𝑦⏟  ⏞  

0

for any 𝜀′ > 𝜀. Note the integrals above sum to 0 by integration by parts (𝑢 = ln 𝑦,
𝑑𝑣 = 𝑑𝑦

(ln 𝑦)2
).

By partial summation, for 𝜎 > 1,

−𝜁
′

𝜁
(𝑠) =

∑︁
𝑛

Λ(𝑛)𝑛−𝑠

= −
∫︁ ∞

1
𝜓(𝑛)𝑠𝑛−𝑠−1 𝑑𝑠

=
𝑠

𝑠− 1
+ 𝑠

∫︁ ∞

1
(𝜓(𝑥)− 𝑥)⏟  ⏞  
𝑂(𝑥𝜃+𝜀′ )

𝑥−𝑠−1 𝑑𝑥.

The last integral converges whenever 𝜎 > 𝜃 + 𝜀′, so 𝜁′

𝜁
has analytic continuation to 𝜎 > 𝜃.

This means 𝜁 has no zeros for 𝜎 > 𝜃.
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Chapter 34

𝐿-functions and Dirichlet’s theorem

l-func-dirichlet

1 Outline

Our goal in this chapter is to study the asymptotics of

𝜋(𝑥, 𝑎 mod 𝑁) = | {𝑝 ≤ 𝑥 : 𝑝 prime, 𝑝 ≡ 𝑎 (mod 𝑁)} |

where 𝑎 is relatively prime to 𝑁 . We define 𝜓(𝑥, 𝑎 mod 𝑁) =
∑︀
𝑛≤𝑥, 𝑛≡𝑎 (mod 𝑁) Λ(𝑛).

To study the distribution of primes in the arithmetic progression 𝑛 ≡ 𝑎 (mod 𝑁), we
study the asymptotics of 𝜓(𝑥, 𝑎 mod 𝑁). However, this does not come from a Dirichlet series
that we can easily estimate and that has nice multiplicative properties, like 𝜓(𝑥) comes from
𝜁(𝑥) =

∏︀
𝑝

1
1−𝑝−𝑠 (after logarithmic differentiation and extracting coefficients).

The solution is to write 𝜓(𝑥, 𝑎 mod 𝑁) in terms of Dirichlet series whose coefficients are
multiplicative. For example, when considering primes 𝑝 ≡ 1 (mod 4), we consider

𝐿(𝑠, 𝜒1) =
1

1𝑠
+

1

3𝑠
+

1

5𝑠
+

1

7𝑠
+

1

9𝑠
· · · =

∏︁
𝑝

1

1− 𝑝−𝑠
.

𝐿(𝑠, 𝜒2) =
1

1𝑠
− 1

3𝑠
+

1

5𝑠
− 1

7𝑠
+

1

9𝑠
· · · =

∏︁
𝑝≡1 (mod 4)

1

1− 𝑝−𝑠
∏︁

𝑝≡3 (mod 4)

1

1 + 𝑝−𝑠

The multiplicative structure is from the fact that the coefficients come from group homo-
morphisms (Z/𝑁Z)× → C, i.e. Dirichlet characters (see Definition 13.13.1.8).

Logarithmic differentiation gives

−𝐿
′

𝐿
(𝑠, 𝜒1) =

Λ(1)

1𝑠
+

Λ(3)

3𝑠
+

Λ(5)

5𝑠
+

Λ(7)

7𝑠
+

Λ(9)

9𝑠
· · ·

−𝐿
′

𝐿
(𝑠, 𝜒2) =

Λ(1)

1𝑠
− Λ(3)

3𝑠
+

Λ(5)

5𝑠
− Λ(7)

7𝑠
+

Λ(9)

9𝑠
· · ·

1

2

�
−𝐿

′

𝐿
(𝑠, 𝜒1)−

𝐿′

𝐿
(𝑠, 𝜒2)

�
=

Λ(1)

1𝑠
+

Λ(3)

3𝑠
+

Λ(5)

5𝑠
+

Λ(7)

7𝑠
+

Λ(9)

9𝑠
· · ·
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Taking the partial sum of coefficients of the last Dirichlet series gives the desired result. In
general, we can always estimate 𝜓(𝑥, 𝑎 mod 𝑁) using an average of these 𝐿-functions.

The main steps in the proof are the same, except with 𝜁 replaced by 𝐿 and an extra
recombination step at the end using character theory. The main steps are the following.

1. Functional equation and analytic continuation for 𝐿, Theorem 34.2.5.

2. Product development, Theorem 34.2.6.

3. Estimates on 𝐿′

𝐿
and asymptotics on number of zeros 𝑁(𝑇, 𝜒), Lemma 34.3.1.

4. Zero-free region for 𝐿, Theorem 34.3.3.

5. von Mangoldt’s formula 34.4.1.

If we conly cared about bounds for a fixed modulus 𝑁 , then that’s all there is to it.
However, to obtain error bounds independent of 𝑁 , we need a zero free region indepen-

dent of 𝑁 (Theorem 34.3.3). While in Theorem 33.33.3.3 we had the luxury of restricting
to large |𝑡|, here we have to work with small |𝑡|, and our resulting region may miss an
“exceptional” zero. We show there is at most 1 exception (Theorem 34.4.2) and prove a
version of the Prime Number Theorem for arithmetic progressions (Theorem 34.4.4). Later
we prove a stronger but ineffective bound on the “exceptional zero” (Theorem 34.5.4) and
obtain improved asymptotics (Theorem 34.5.1).

2 𝐿-functions

Definition 34.2.1: Let 𝜒 be a Dirichlet character. Define the 𝐿 function

𝐿(𝑠, 𝜒) :=
∞∑︁
𝑛=1

𝜒(𝑛)

𝑛𝑠
, ℜ𝑠 > 1.

By multiplicativity of 𝜒, 𝐿 has a product expansion

𝐿(𝑠, 𝜒) =
∏︁
𝑝

1

1− 𝜒(𝑝)𝑝−𝑠
.

Only the factors with 𝑝 - 𝑁 contribute. Note that if 𝜒 is of level 𝑁 and 𝜒 = 𝜒1𝜒2 with 𝜒1

primitive of level 𝑁1, then

in-terms-of-primitive𝐿(𝑠, 𝜒) = 𝐿(𝑠, 𝜒1)
∏︁

𝑝|𝑁, 𝑝-𝑁1

(1− 𝜒(𝑝)𝑝−𝑠). (34.1)

Thus for convenience we can often just prove results about primitive characters.
By logarithmic differentiation we have

𝐿′

𝐿
(𝑠, 𝜒) = −

∑︁
𝑝

(ln 𝑝)𝜒(𝑝)𝑝−𝑠

1− 𝑝−𝑠
= −

∞∑︁
𝑛=1

𝜒(𝑛)Λ(𝑛)

𝑛𝑠
.
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Theorem 34.2.2 (Generalized Poisson summation): gen-ps Let 𝑔 be a function Z/𝑁Z→ R,
and suppose 𝑓 is a 𝒞2 function satisfying

|𝑓(𝑥)|, |𝑓(𝑥)| ≤ 𝐶(1 + |𝑥|)−1−𝛿

for some 𝐶, 𝛿 > 0. Then ∑︁
𝑚∈Z

𝑓
�𝑚
𝑁

�
𝑔(𝑚) =

∑︁
𝑛∈Z

𝑓(𝑛)𝑔(𝑛).

In particular, if 𝜒 is a primitive multiplicative character modulo 𝑁 , then∑︁
𝑚∈Z

𝜒(𝑚)𝑓
�𝑚
𝑁

�
= 𝐺(𝜒, 𝜒+

1 )
∑︁
𝑛∈Z

𝜒(−𝑛)𝑓(𝑛).

where 𝜒+
𝑗 (𝑘) := 𝑒

2𝜋𝑖𝑗𝑘
𝑁 .

Here 𝑓(𝑛) denotes the Fourier transform

𝑓(𝑦) =
∫︁ ∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥

and 𝑔(𝑛) denotes the finite Fourier transform

𝑔(𝑛) =
∑︁

𝑚 (mod 𝑁)

𝑔(𝑚)𝑒−
2𝜋𝑖𝑚
𝑁 .

Proof. Consider the function
𝐹 (𝑥) =

∑︁
𝑚∈Z

𝑓(𝑥+𝑚).

Note this sum converges absolutely to a continuous function by the given conditions. Since
𝐹 (𝑥) has period 1 and is continuous, we can expand it in Fourier series:

𝐹 (𝑥) =
∞∑︁
𝑛=0

𝑎𝑛𝑒
2𝜋𝑖𝑛𝑥,

𝑎𝑛 =
∫︁ 1

0
𝐹 (𝑥)𝑒−2𝜋𝑖𝑛𝑥 𝑑𝑥 =

∫︁ 1

0

∑︁
𝑚∈Z

𝑓(𝑥+𝑚)𝑒−2𝜋𝑖𝑛𝑥 𝑑𝑥 =
∫︁ ∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑛𝑥 𝑑𝑥 = 𝑓(𝑛).

Plugging in 𝑥 = 𝑎
𝑁

gives

𝐹
� 𝑎
𝑁

�
=
∑︁
𝑛∈Z

𝑓(𝑛)𝑒2𝜋𝑖𝑛(
𝑎
𝑁 ).

Now we calculate ∑︁
𝑚∈Z

𝑓
�𝑚
𝑁

�
𝑔(𝑚) =

∑︁
𝑎 (mod 𝑁)

𝑔(𝑎)𝐹
� 𝑎
𝑁

�
=

∑︁
𝑎 (mod 𝑁)

𝑔(𝑎)
∑︁
𝑛∈Z

𝑓(𝑛)𝑒2𝜋𝑖𝑛(
𝑎
𝑁 )

=
∑︁
𝑛∈Z

𝑓(𝑛)
∑︁

𝑎 (mod 𝑁)

𝑔(𝑎)𝑒2𝜋𝑖𝑛(
𝑎
𝑁 )

=
∑︁
𝑛∈Z

𝑓(𝑛)𝑔(𝑛).
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For the second part, note that∑︁
𝑚∈Z

𝜒(𝑚)𝑓
�𝑚
𝑁

�
=
∑︁
𝑛∈Z

�̂�(𝑛)𝑓(𝑚)

=
∑︁
𝑛∈Z

𝐺(𝜒, 𝜒+
1 )𝜒(𝑛)𝑓(𝑛).

We apply Poisson summation to derive a transformation law for generalized theta func-
tions.

Definition 34.2.3: Let 𝜒 be a multiplicative character modulo 𝑁 . Define

𝜃𝜒(𝑢) =
∑︁
𝑛∈Z

𝜒(𝑛)𝑒−𝜋𝑛
2𝑢

𝜗𝜒(𝑢) =
∑︁
𝑛∈Z

𝜒(𝑛)𝑛𝑒−𝜋𝑛
2𝑢.

Note we need to work with 𝜗𝜒(𝑢) when 𝜒 is odd, since in this case 𝜃𝜒(𝑢) = 0 and we
cannot express 𝐿(𝑠, 𝜒) in terms of 𝜃𝜒.

Proposition 34.2.4 (Transformation law for 𝜃𝜒): theta-transforms Suppose 𝜒 is primitive. Then

𝜃𝜒(𝑢) =
𝐺(𝜒, 𝜒+

1 )

𝑁
√
𝑢

𝜃𝜒

(︂
1

𝑁2𝑢

)︂
𝜗𝜒(𝑢) = −

𝐺(𝜒, 𝜒+)𝑖

𝑁2𝑢
3
2

𝜗𝜒

(︂
1

𝑁2𝑢

)︂
.

Proof. Note the Fourier transform of 𝑒−𝜋𝑥
2
is itself; moreover, if 𝑓(𝑥) = 𝑔(𝑎𝑥) then 𝑓(𝑦) =

𝑔
(︀
𝑦
𝑎

�
. Hence

ℱ(𝑒−𝜋𝑢(𝑁𝑥)2) = 1

𝑁
√
𝑢
𝑒−

𝜋𝑦2

𝑢𝑁2 .

By the Poisson summation formula 34.2.2,

𝜃𝜒(𝑢) =
∑︁
𝑛∈Z

𝜒(𝑛)𝑒−𝜋𝑛
2𝑢

=
𝐺(𝜒, 𝜒+

1 )

𝑁
√
𝑢

∑︁
𝑛∈Z

𝜒(−𝑛)𝑒−
𝜋𝑛2

𝑢𝑁2

=
𝐺(𝜒, 𝜒+

1 )

𝑁
√
𝑢

𝜃𝜒

(︂
1

𝑁2𝑢

)︂
.

For the second part, note first that Ò𝑓 ′(𝑦) = 2𝜋𝑖𝑥𝑓(𝑦). Hence

ℱ(𝑁𝑥𝑒−𝜋𝑢(𝑁𝑥)2) =
(︂
− 1

2𝜋𝑢𝑁

)︂
ℱ
�
𝑑

𝑑𝑥
(𝑥𝑒−𝜋𝑢(𝑁𝑥)

2

)

�
= − 1

��2𝜋𝑢𝑁
·��2𝜋𝑖𝑦 1

𝑁
√
𝑢
𝑒−

𝜋𝑦2

𝑢𝑁2 = − 𝑖

𝑁2𝑢
3
2

𝑒−
𝜋𝑦2

𝑢𝑁2 .
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Then by Poisson summation,

𝜗𝜒(𝑢) =
∑︁
𝑛∈Z

𝜒(𝑛)𝑛𝑒−𝜋𝑛
2𝑢

= −𝐺(𝜒, 𝜒
+
1 )𝑖

𝑁2𝑢
3
2

∑︁
𝑛∈Z

𝜒(−𝑛)𝑛𝑒−
𝜋𝑛2

𝑢𝑁2

= −𝐺(𝜒, 𝜒
+
1 )𝑖

𝑁2𝑢
3
2

𝜗𝜒

(︂
1

𝑁2𝑢

)︂
.

From this we get the functional equation for the 𝐿-function. The proof is similar to that
of Theorem 33.2.2.

Theorem 34.2.5: l-continues Let 𝜒 be any character modulo 𝑁 . Then 𝐿(𝑠, 𝜒) has an mero-
morphic continuation to C. If 𝜒 is principal then 𝐿(𝑠, 𝜒) has a single pole at 1, and if 𝜒 is
nonprincipal then 𝐿(𝑠, 𝜒) is entire.

Now supose 𝜒 is primitive. Defining

𝜉(𝑠, 𝜒) :=
� 𝜋
𝑁

�− 𝑠+𝑎
2

Γ
�𝑠+ 𝑎

2

�
𝐿(𝑠, 𝜒),

where

𝑎 =

⎧⎨⎩0, if 𝜒(−1) = 1

1, if 𝜒(−1) = −1,

we have

𝜉(𝑠, 𝜒) :=
𝐺(𝜒, 𝜒+

1 )

𝑖𝑎
√
𝑞

𝜉(1− 𝑠, 𝜒).

Moreover, for any 𝜒, 𝐿(𝑠, 𝜒) has zeros at −2N+ 𝑎 (the trivial zeros) and all other zeros
are in the critical strip 0 ≤ ℜ𝑠 ≤ 1.

Note that for 𝜒 nonprincipal, partial cancellation in the Dirichlet series removes the pole
at 𝑠 = 1.

Proof. Note that it suffices to prove all statements for 𝜒 primitive, in light of (34.1). If 𝜒 is
principal, the result follows from the result for 𝜁, so suppose 𝜒 is nonprincipal. Use partial
summation 3.3.7.1 to find that for for 𝑠 > 1,

bound-L-summands𝐿(𝑠, 𝜒) =
∫︁ ∞

1
𝑆(𝑥)𝑠𝑥−𝑠−1 𝑑𝑥 (34.2)

where 𝑆(𝑥) =
∑︀
𝑛≤𝑥 𝜒(𝑛). (We use the fact that lim𝑁→∞ 𝑆(𝑁)𝑁−𝑠 = 0 when 𝑠 > 1.) Since

𝜒(1) + · · ·+ 𝜒(𝑁) = 0 by Corollary 13.13.1.7, 𝜒(1) + · · ·+ 𝜒(𝑛) ≤ 𝑁 . Then for ℜ𝑠 > 0, the
above integral converges absolutely, extending 𝐿(𝑠, 𝜒) holomorphically to ℜ𝑠 > 0.

469



Number Theory, S34.2

Case 1: Suppose 𝜒(−1) = 1; then 𝜒(−𝑛) = 𝜒(𝑛). We calculate∫︁ ∞

0
𝜃𝜒(𝑢)𝑢

𝑠
2
𝑑𝑢

𝑢

in two different ways.1 When 0 < ℜ𝑠 < 1,∫︁ ∞

0
𝜃𝜒(𝑢)𝑢

𝑠
2
𝑑𝑢

𝑢
=
∫︁ ∞

0

∑︁
𝑛∈Z

𝜒(𝑛)𝑒−𝜋𝑛
2𝑢𝑢

𝑠
2
𝑑𝑢

𝑢

= 2
∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑒−𝜋𝑛

2𝑢𝑢
𝑠
2
𝑑𝑢

𝑢
𝜒(−𝑛) = 𝜒(𝑛), 𝜒(0) = 0

= 2
∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑒−𝑢

� 𝑢

𝜋𝑛2

� 𝑠
2 𝑑𝑢

𝑢
𝑢←[

𝑢

𝜋𝑛2

= 2𝜋− 𝑠
2

(︃ ∞∑︁
𝑛=1

𝜒(𝑛)

𝑛𝑠

)︃�∫︁ ∞

0
𝑒−𝑢𝑢

𝑠
2
𝑑𝑢

𝑢

�
= 2𝜋− 𝑠

2𝐿(𝑠, 𝜒)Γ
�𝑠
2

�
.

Now using the transformation law 34.2.4,∫︁ ∞

0
𝜃𝜒(𝑢)𝑢

𝑠
2
𝑑𝑢

𝑢
=
∫︁ ∞

0

𝐺(𝜒, 𝜒+
1 )

𝑁
√
𝑢

𝜃𝜒

(︂
1

𝑁2𝑢

)︂
𝑢

𝑠
2
𝑑𝑢

𝑢

=
𝐺(𝜒, 𝜒+

1 )

𝑁

∫︁ ∞

0
𝜃𝜒

(︂
1

𝑁2𝑢

)︂
𝑢

𝑠
2
− 1

2
𝑑𝑢

𝑢

=
2𝐺(𝜒, 𝜒+

1 )

𝑁

∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑒−

𝜋𝑛2

𝑢𝑁2 𝑢
𝑠
2
− 1

2
𝑑𝑢

𝑢

=
2𝐺(𝜒, 𝜒+

1 )

𝑁

∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑒−𝑢

�
𝜋𝑛2

𝑢𝑁2

� 𝑠
2
− 1

2 𝑑𝑢

𝑢
𝑢←[

𝜋𝑛2

𝑢𝑁2

=
2𝐺(𝜒, 𝜒+

1 )𝜋
𝑠
2
− 1

2

𝑁 𝑠

∞∑︁
𝑛=1

𝜒(𝑛)

𝑛(1−𝑠)

∫︁ ∞

0
𝑒−𝑢𝑢

1−𝑠
2
𝑑𝑢

𝑢

=
2𝐺(𝜒, 𝜒+

1 )𝜋
𝑠
2
− 1

2

𝑁 𝑠
𝐿(1− 𝑠, 𝜒)Γ

(︂
1− 𝑠
2

)︂
.

Equating these two calculations gives the result.

Case 2: Suppose 𝜒(−1) = −1. We work with 𝜗𝜒 instead of 𝜃𝜒. To compensate for the extra

factor of 𝑛 in 𝜗𝜒, we need an extra factor of 𝑢
1
2 . We calculate∫︁ ∞

0
𝜗𝜒(𝑢)𝑢

𝑠+1
2
𝑑𝑢

𝑢

1Unlike in Theorem 33.33.2.2, there is no “−1” since 𝜒(0) = 0.
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in two different ways. First,∫︁ ∞

0
𝜃𝜒(𝑢)𝑢

𝑠+1
2
𝑑𝑢

𝑢
=
∫︁ ∞

0

∑︁
𝑛∈Z

𝜒(𝑛)𝑛𝑒−𝜋𝑛
2𝑢𝑢

𝑠+1
2
𝑑𝑢

𝑢

= 2
∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑛𝑒−𝜋𝑛

2𝑢𝑢
𝑠+1
2
𝑑𝑢

𝑢
−𝑛𝜒(−𝑛) = 𝑛𝜒(𝑛), 𝜒(0) = 0

= 2
∞∑︁
𝑛=1

𝜒(𝑛)𝑛
∫︁ ∞

0
𝑒−𝑢

� 𝑢

𝜋𝑛2

� 𝑠+1
2 𝑑𝑢

𝑢
𝑢←[

𝑢

𝜋𝑛2

= 2𝜋− 𝑠+1
2

∞∑︁
𝑛=1

𝜒(𝑛)

𝑛𝑠

∫︁ ∞

0
𝑒−𝑢𝑢

𝑠+1
2
𝑑𝑢

𝑢

= 2𝜋− 𝑠+1
2 𝐿(𝑠, 𝜒)Γ

(︂
𝑠+ 1

2

)︂
.

Now using the transformation law 34.2.4,∫︁ ∞

0
𝜃𝜒(𝑢)𝑢

𝑠+1
2
𝑑𝑢

𝑢
=
∫︁ ∞

0
−𝐺(𝜒, 𝜒

+)𝑖𝑦

𝑁2𝑢
𝜃𝜒

(︂
1

𝑁2𝑢

)︂
𝑢

𝑠+1
2
𝑑𝑢

𝑢

= −𝐺(𝜒, 𝜒
+)𝑖

𝑁2

∫︁ ∞

0
𝜃𝜒

(︂
1

𝑁2𝑢

)︂
𝑢

𝑠
2
−1𝑑𝑢

𝑢

= −2𝐺(𝜒, 𝜒+)𝑖

𝑁2

∞∑︁
𝑛=1

𝑛𝜒(𝑛)
∫︁ ∞

0
𝑒−

𝜋𝑛2

𝑢𝑁2 𝑢
𝑠
2
−1𝑑𝑢

𝑢

= −2𝐺(𝜒, 𝜒+)𝑖

𝑁2

∞∑︁
𝑛=1

∫︁ ∞

0
𝜒(𝑛)𝑛𝑒−𝑢

�
𝜋𝑛2

𝑢𝑁2

� 𝑠
2
−1
𝑑𝑢

𝑢
𝑢←[

𝜋𝑛2

𝑢𝑁2

= −2𝐺(𝜒, 𝜒+)𝑖𝜋
𝑠
2
−1

𝑁2𝑁𝑛−2

∞∑︁
𝑛=1

𝜒(𝑛)

𝑛1−𝑠

∫︁ ∞

0
𝑒−𝑢𝑢1−

𝑠
2
𝑑𝑢

𝑢

= −2𝐺(𝜒, 𝜒+)𝑖𝜋
𝑠
2
−1

𝑁 𝑠
𝐿(1− 𝑠, 𝜒)Γ

�
1− 𝑠

2

�
.

Again matching the two calculations gives the result.
From Proposition 31.31.7.2(5), Γ has no zeros, so we find that 𝐿(𝑠, 𝜒) is defined whenever

𝐿(𝑠, 𝜒) is defined; this 𝐿 is entire. The description of the zeros of 𝐿 follow from the functional
equation and the fact that Γ has poles at −N0.

Theorem 34.2.6 (Product development of 𝜉(𝑠, 𝜒)): xi-chi-product-development Suppose 𝜒 is primi-
tive of level 𝑁 > 1. The function 𝜉(𝑠, 𝜒) is entire of order 1 and has the product expansion

𝜉(𝑠, 𝜒) = 𝜉(0, 𝜒)𝑒𝐵𝑠
∏︁

𝜌 zero of 𝜉(𝑠,𝜒)

�
1− 𝑠

𝜌

�
𝑒

𝑠
𝜌 .

Then 𝐿′

𝐿
(𝑠, 𝜒) has the partial-fraction expansion

𝐿′

𝐿
(𝑠, 𝜒) = 𝐵 +

1

2
ln
(︂
𝑁

𝜋

)︂
− 1

2

Γ′

Γ

�𝑠+ 𝑎

2

�
+

∑︁
𝜌 nontrivial zero of 𝜁

�
1

𝑠− 𝜌
+

1

𝜌

�
.
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From now on, we only talk about nontrivial zeros of 𝜁.

Proof. We proceed as in Theorem 33.33.2.5. The argument is the same, the only major
differences being that 𝜉(𝑠, 𝜒) has no poles at 𝑠 = 0, 1, and the slight difference in definition
of 𝜁(𝑠, 𝜒) in terms of 𝐿(𝑠, 𝜒), versus the definition of 𝜉(𝑠) in terms of 𝜁(𝑠). (Namely, we have

𝑠+ 𝑎 instead of 𝑠, and an extra 𝑁− 𝑠+𝑎
2 . For completeness we give the proof.

To show it has order 1 we need two inequalities.

Step 1: There is no constant 𝐶 so that 𝜉(𝑠, 𝜒) - 𝑒𝐶|𝑠|: Indeed, for real 𝑠 and any constant
𝐶 ′ we have

𝜉(𝑠) =
� 𝜋
𝑁

�− 𝑠+𝑎
2

Γ
�𝑠+ 𝑎

2

�
𝐿(𝑠, 𝜒)

% 𝑠−
1
2

�
(𝑠+ 𝑎)𝑁

2𝑒𝜋

� 𝑠+𝑎
2

% 𝑒𝐶
′𝑠.

Step 2: There is a constant 𝐶 so that 𝜉(𝑠, 𝜒) - 𝑒𝐶|𝑠| ln |𝑠|: 𝑒|𝑠| ln |𝑠| ≥ 1 for all 𝑠 so it suffices
to prove this for sufficiently large 𝑠. By the integral and sum formulas for Γ and 𝜉, and the
fact that |𝑥𝑠| = |𝑥ℜ𝑠|, we have

|𝜉(𝜎 + 𝑡𝑖, 𝜒)| ≤
� 𝜋
𝑁

�−𝜎+𝑎
2

Γ
�𝜎 + 𝑎

2

�
𝐿(𝜎, 𝜒), 𝜎 > 1.

By symmetry of 𝜉 is suffices to consider 𝜎 ≥ 1
2
. (We have 𝜉(𝑠, 𝜒) = 𝐺(𝜒,𝜒+)

𝑖𝑎
√
𝑞
𝜉(1 − 𝑠, 𝜒), and

the multiplier has absolute value 1.) Consider 2 cases.

1. 𝜎 > 2: Then 𝜋−𝜎+𝑎
2 < 1 and 𝐿(𝜎, 𝜒) < 𝜁(2) so we have by Stirling’s approxima-

tion 31.31.7.4 that

|𝜉(𝜎+𝑡𝑖, 𝜒)| -
⃒⃒⃒⃒
𝑁

𝜎+𝑎
2 Γ

(︂
𝜎 + 𝑡𝑖+ 𝑎

2

)︂⃒⃒⃒⃒
= 𝑁

𝜎+𝑎
2 𝑒|(ln Γ)(𝜎+𝑎)| = 𝑁

𝜎+𝑎
2 𝑒(

𝜎+𝑎−1
2 ) ln 𝜎+𝑎

2
−𝜎+𝑎

2
+𝑂(1)

from which the result follows.

2. 1
2
≤ 𝜎 ≤ 2: For 𝑠 bounded away from 1, from (34.2),

𝐿(𝑠, 𝜒) = 𝑂(|𝑠|).

This time Γ
(︀
𝜎+𝑎
2

�
= 𝑂(1) so

|𝐿(𝑠, 𝜒)| ≤
⃒⃒⃒⃒⃒� 𝜋
𝑁

�−𝜎+𝑎
2

𝐿(𝑠, 𝜒)Γ
�𝜎 + 𝑎

2

�⃒⃒⃒⃒⃒
= 𝑂(|𝑠|) - 𝑒𝐶|𝑠| ln |𝑠|.

This shows 𝜉(𝑠) has order 1.
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Step 3: By the product development 31.6.3, noting the the zeros of 𝜉(𝑠, 𝜒) are the nontrivial
zeros of 𝐿(𝑠, 𝜒), we get

𝜉(𝑠, 𝜒) = 𝜉(0, 𝜒)𝑒𝐵𝑠
∏︁

𝜌 zero of 𝐿(𝑠,𝜒)

�
1− 𝑠

𝜌

�
𝑒

𝑠
𝜌 .

Logarithmic differentiation gives

𝜉′

𝜉
(𝑠, 𝜒) = 𝐵 +

∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
.

Since 𝐿(𝑠, 𝜒) =
(︀
𝜋
𝑁

� 𝑠+𝑎
2 Γ

(︀
𝑠+𝑎
2

�−1
𝜉(𝑠, 𝜒), we get

𝐿′

𝐿
(𝑠, 𝜒) =

1

2
ln
� 𝜋
𝑁

�
− 1

2

Γ′

Γ

�𝑠+ 𝑎

2

�
+𝐵 +

∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
.

3 Zeros of 𝐿

Lemma 34.3.1: weak-L-zeros Define ℒ = ln𝑁(|𝑡| + 2). Let 𝜒 be a primitive character of level
𝑁 . For 𝑠 = 𝜎 + 𝑖𝑡 with 𝜎 ∈ [−1, 2], we have

𝐿′

𝐿
(𝑠, 𝜒) =

∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
+𝑂(ℒ)

=
∑︁

|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌
+𝑂(ℒ).

Moreover, there are 𝑂(ln |𝑁𝑡|) zeros 𝜌 with |ℑ(𝑠 − 𝜌)| < 1, i.e. the number of zeros with
imaginary part in [𝑡, 𝑡+ 1] is 𝑂(ln𝑁𝑡), as 𝑡→∞.

Note this gives 𝑁(𝑇 ) = 𝑂(𝑇 ln(𝑁𝑇 )).

Proof. We follow the proof of Theorem 33.33.3.1. The case 𝑁 = 1 follows from there so we
assume 𝑁 > 1.
Step 1: Theorem 34.2.6 gives us

L2-zero-sum

𝐿′

𝐿
(𝑠, 𝜒) = 𝐵 +

1

2
ln
(︂
𝑁

𝜋

)︂⏟  ⏞  
𝑂(1+ln𝑁)

−1

2

Γ′

Γ

�𝑠+ 𝑎

2

�⏟  ⏞  
(𝐴)

+
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�⏟  ⏞  
(𝐵)

. (34.3)

From Stirling’s approximation 31.31.7.4, (A) equals

L-gamma2-estimateln
⃒⃒⃒⃒
𝜎 + 𝑎

2
+
𝑡

2
𝑖
⃒⃒⃒⃒
+𝑂(1) = 𝑂(ℒ). (34.4)
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Now suppose 𝑠 = 2 + 𝑖𝑡. Note that⃒⃒⃒⃒⃒
𝐿′

𝐿
(𝑠, 𝜒)

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒ ∞∑︁
𝑛=1

𝜒(𝑛)Λ(𝑛)𝑛−2−𝑖𝑡
⃒⃒⃒⃒⃒
≤
⃒⃒⃒⃒⃒ ∞∑︁
𝑛=1

(ln𝑛)𝑛−2

⃒⃒⃒⃒⃒
<∞,

so the LHS of (34.3) is 𝑂(1). Hence (34.3) becomes

L2-zero-sum2𝑂(ℒ) =
∑︁
𝜌

�
1

𝑠− 𝜌
+

1

𝜌

�
. (34.5)

Now finish the same way as in Theorem 33.33.3.1 to conclude the first step.

Step 2: Now we consider general 𝑠 = 𝜎 + 𝑖𝑡, by comparing it to 2 + 𝑖𝑡. We have by (34.3)
and (34.4) that

𝐿′

𝐿
(𝑠, 𝜒)−𝐿

′

𝐿
(2 + 𝑖𝑡)⏟  ⏞  
𝑂(1)

= 𝑂(1)+
∑︁

|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌
+

∑︁
|ℑ(𝑠−𝜌)|<1

1

2 + 𝑖𝑡− 𝜌⏟  ⏞  
𝑂(ℒ)

+
∑︁

|ℑ(𝑠−𝜌)|≥1

(2− 𝜎) + 𝑖𝑡

(𝑠− 𝜌)(2 + 𝑖𝑡− 𝜌)⏟  ⏞  
𝑂(ℒ)

.

Finish as in Theorem 33.33.3.1, the only difference being that ln |𝑡| is replaced by ln |𝑁𝑡|.

Theorem 34.3.2 (von Mangoldt): L-zeros(*) As 𝑇 →∞,

𝑁(𝑇, 𝜒) =
𝑇

𝜋
ln
(︂
𝑁𝑇

2𝜋

)︂
− 𝑇

𝜋
+𝑂(ln𝑁𝑇 ).

where the constant is independent of 𝑁 .

Proof. The proof is similar to Theorem 33.33.3.2. We’ll only need the weaker estimate
𝑁(𝑇, 𝜒) = 𝑂(𝑇 ln𝑁𝑇 ) so we omit the proof.

Theorem 34.3.3 (Zero-free region for 𝐿): L-zero-free There exists a constant 𝑐 > 0, independent
of 𝜒 and 𝑁 , such that the following holds for all primitive 𝜒 of level 𝑁 .

1. If 𝜒 is nonreal, and 𝑠 = 𝜎 + 𝑖𝑡 is a zero of 𝐿(𝑠, 𝜒), then

L-zero-bound𝜎 < 1− 𝑐

ℒ
. (34.6)

2. If 𝜒 is real, then with at most 1 exception (counting multiplicity), all zeros satisfy (34.6).
If it exists, the exceptional zero is real.

Unlike in Theorem 33.33.3.3, we have to worry about small |𝑡|. Fortunately, 𝐿(𝑠, 𝜒) has
no pole at 𝑠 = 1 to screw us up. Things are not so easy, however.
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Proof. We may assume 𝑁 ≥ 2.
As in Theorem 33.33.3.3, we have 0 ≤ 3 + 4 cos 𝜃 + cos 2𝜃, so

0 ≤ 3 + 4ℜ(𝜒(𝑛)𝑛−𝑖𝑡) + ℜ(𝜒(𝑛)2𝑛−2𝑖𝑡).

Multiplying by Λ(𝑛)𝑛−𝜎 and summing, we get

zero-free-L-inequality0 ≤ 3

�
−𝐿

′

𝐿
(𝜎, 𝜒0)

�
+ 4ℜ

�
−𝐿

′

𝐿
(𝜎 + 𝑡𝑖, 𝜒)

�
+ ℜ

�
−𝐿

′

𝐿
(𝜎 + 2𝑡𝑖, 𝜒2)

�
, 𝜎 > 1.

(34.7)
Suppose 1 < 𝜎 < 2 and 𝜌 = (1− 𝛿) + 𝑡𝑖 is zero. First we have

zfli1− 𝐿′

𝐿
(𝜎, 𝜒0) = −

𝜁 ′

𝜁
(𝜎, 𝜒0)−

∑︁
𝑝|𝑁

(ln 𝑝)𝑝−𝑠

1− 𝑝−𝑠
=

1

𝜎 − 1
+𝑂(ln𝑁). (34.8)

Next, we use the partial fraction decomposition 34.2.6. By Theorem 34.3.1 we have

zfli2ℜ
�
−𝐿

′

𝐿
(𝑠, 𝜒)

�
≤ 𝑂(ℒ)−

∑︁
𝜌

ℜ
�

1

𝑠− 𝜌

�
. (34.9)

1. Suppose 𝜒2 is not principal, i.e. 𝜒 is not real. Now (34.9) gives

ℜ
�
−𝐿

′

𝐿
(𝜎 + 𝑡𝑖, 𝜒)

�
≤ 𝑂(ℒ)− 1

𝜎 + 𝛿 − 1
. (34.10)

Also by Theorem 34.3.1

zero-free-L-inequalityℜ
�
−𝐿

′

𝐿
(𝜎 + 2𝑡𝑖, 𝜒2)

�
≤ 𝑂(ℒ(2𝑡)) = 𝑂(ℒ). (34.11)

The remainder of this case follows the lines of Theorem 33.33.3.3.

2. If 𝜒2 is principal, then we have

−𝐿
′

𝐿
(𝜎 + 2𝑡𝑖, 𝜒2) = −𝜁

′

𝜁
(𝜎 + 2𝑖𝑡) +

∑︁
𝑝|𝑁

ln 𝑝 · 𝑝−(𝜎+2𝑡𝑖)

1− 𝑝−(𝜎+2𝑡𝑖)⏟  ⏞  
𝑂(1) when 𝜎≥1

L-zero-free-eq0ℜ
�
−𝐿

′

𝐿
(𝜎 + 2𝑡𝑖, 𝜒2)

�
≤ 𝑂(ln(|𝑡|+ 2)) + ℜ

�
1

(𝜎 + 2𝑡𝑖)− 1

�
+𝑂(ln𝑁),

(34.12)

the last inequality following from Lemma 33.33.3.1.

Putting (34.8), (34.9), and (34.12) into (34.11) give

0 ≤
(︂

3

𝜎 − 1
+𝑂(ℒ)

)︂
+

(︃
−4

∑︁
𝜌

ℜ
�

1

𝜎 + 𝑡𝑖− 𝜌

�
+𝑂(ℒ)

)︃
+
(︂
ℜ
(︂

1

𝜎 + 2𝑡𝑖− 1

)︂
+𝑂(ℒ)

)︂
L-zero-free-eq1

(34.13)
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Fix 𝐶 ′ > 0; when 𝑠 = 𝜎+ 𝑖𝑡 and |𝑡| ≥ 𝐶′

ln𝑁
then 1

𝜎+2𝑡𝑖−1
= 𝑂(ln𝑁) so (34.11) holds and

we proceed as in item 1.

Hence we consider 𝑡 < 𝐶′

ln𝑁
. We use a different approach. Note

−𝐿
′

𝐿
(𝜎, 𝜒0) ≥

𝐿′

𝐿
(𝜎, 𝜒) when 𝜎 ≥ 1

because the coefficients their coefficients are Λ(𝑛) ≥ −𝜒(𝑛)Λ(𝑛) (and they are real)2.
Putting in (34.8) and (34.9) give

1

𝜎 − 1
≥
∑︁
𝜌

ℜ
�

1

𝜎 − 𝜌

�
+𝑂(ln𝑁). (34.14)

Let 𝜎 = 1+ 2𝛿
ln𝑁

; we estimate the sum in terms of the real parts of 𝜎− 𝜌. For any zero
𝜌 we have

|ℑ𝜌| ≤ 𝛿

ln𝑁
=

1

2

2𝛿

ln𝑁
≤ ℜ(𝜎 − 𝜌)

L-zero-free-eq2|𝜎 − 𝜌|2 = [ℑ(𝜎 − 𝜌)]2 + [ℜ(𝜎 − 𝜌)]2 (34.15)

≤
(︂
1

4
+ 1

)︂
ℜ(𝜎 − 𝜌)2 = 5

4
ℜ(𝜎 − 𝜌)2. (34.16)

Hence (34.14) gives, for some constant 𝐴,(︂
𝐴+

1

2𝛿

)︂
ln𝑁 =

1

1− 𝜎
+ 𝐴 ln𝑁 ≥

∑︁
|ℑ(𝜌)|< 𝛿

ln𝑁

ℜ
�

1

𝜎 − 𝜌

�
=

∑︁
|ℑ(𝜌)|< 𝛿

ln𝑁

ℜ(𝜎 − 𝜌)
|𝜎 − 𝜌|2

≥
∑︁

|ℑ(𝜌)|< 𝛿
ln𝑁

4

5

∑︁
𝜌

1

1 + 2𝛿
ln𝑁
−ℜ(𝜌)

by (34.15).

If ℜ(𝜌) > 1 − 𝑐
ln𝑁

then it contributes 4
5
ln𝑁
2𝛿+𝑐

to the RHS sum. If there are two zeros
(counting multiplicity), then

8

5

1

2𝛿 + 𝑐
≤ 𝐴+

1

2𝛿
.

This would be a contradiction if

𝑐 <
2𝛿(3− 10𝐴𝛿)

5(2𝛿𝐴+ 1)
.

Now choose 𝛿 small enough and 𝑐 so that it works for case 1 and satisfies the above
inequality.

Finally, note 𝜁(𝑠, 𝜒) = 𝜁(𝑠, 𝜒) for real characters, so if 𝑠 is an (exceptional) zero so is
𝑠. Since there is at most one exceptional zero, it can only be real.

2Alternatively, put in 𝑡 = 0 in (34.11).
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4 Prime number theorem in arithmetic progressions

Theorem 34.4.1 (von Mangoldt’s formula): L-von-Mangoldt-formula For integer 𝑥 > 2, 𝑥 ≥ 𝑇 , and
𝜒 primitive of level 𝑁 > 1,

𝜓(𝑥, 𝜒) = −
∑︁

|ℑ(𝜌)|<𝑇

𝑥𝜌

𝜌
+𝑂

�
𝑥[(ln𝑥)2 + (ln𝑁𝑇 )2]

𝑇

�
.

If 𝜒 has associated primitive character 𝜒1, then for 𝑥 ≥ 1,

|𝜓(𝑥, 𝜒)− 𝜓(𝑥, 𝜒1)| = 𝑂(ln𝑁 ln𝑥).

Note that unlike in Theorem 33.4.1, we have 𝜓(𝑥, 𝜒) ≈ 0 as opposed to 𝜓(𝑥) ≈ 𝑥.
Remember this is expected because the average of values for a nontrivial character is 0, so
there is cancellation in the sum. Moreover, there is no pole at 𝑠 = 1 for 𝐿 as there was in 𝜁,
so the application of Cauchy’s Theorem in Step 2 will not give the 𝑥 term.

Proof. Step 1: We estimate 𝜓(𝑥) using Theorem 32.32.4.2. Suppose 𝑥 is an integer; the
theorem gives⃒⃒⃒⃒⃒

𝜓(𝑥, 𝜒)−
�∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇
𝑥𝑠
�
−𝐿

′

𝐿
(𝑠, 𝜒)

�
𝑑𝑠

𝑠

�⃒⃒⃒⃒⃒
≤ Λ(𝑥) +

∑︁
𝑛≥1, 𝑛 ̸=𝑥

�𝑥
𝑛

�𝑐
𝜒(𝑛)Λ(𝑛)

1

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒
≤ ln(𝑥) +

∞∑︁
𝑛≥1, 𝑛 ̸=𝑥

�𝑥
𝑛

�𝑐 ln(𝑛)

𝑇
⃒⃒⃒
ln
(︀
𝑥
𝑛

�⃒⃒⃒ .
The difference is 𝑂

(︁
𝑥(ln𝑥)2

𝑇

)︁
exactly as in (33.13).

Step 2: We move the line of integration to ℜ𝑠 = −1. Assuming that 𝑇 is not the imaginary
part of any root, by Cauchy’s theorem∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠+

∫︁ −1+𝑖𝑇

𝑐+𝑖𝑇

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠⏟  ⏞  

𝐼ℎ,1

+
∫︁ −1−𝑖𝑇

−1+𝑖𝑇

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠⏟  ⏞  

𝐼𝑣

+
∫︁ 𝑐−𝑖𝑇

−1−𝑖𝑇

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠⏟  ⏞  

𝐼ℎ,2

=
𝐿′

𝐿
(0, 𝜒)−

∑︁
|ℑ𝜌|<𝑇

𝑥𝜌

𝜌
. (34.17)

so

L-von-M-2

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑥𝑠

𝑠

�
−𝐿

′

𝐿
(𝑠)

�
𝑑𝑠 = 𝐼ℎ,1 + 𝐼ℎ,2 + 𝐼𝑣 +

𝐿′

𝐿
(0, 𝜒)−

∑︁
ℑ𝜌<𝑇

𝑥𝜌

𝜌
. (34.18)

We estimate each summand.
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1. For the horizontal integrals, we use the estimate 34.3.1 to get⃒⃒⃒⃒⃒
𝜁 ′

𝜁
(𝑠)

⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒⃒ ∑︁
|ℑ(𝑠−𝜌)|<1

1

𝑠− 𝜌

⃒⃒⃒⃒⃒⃒
+𝑂(ln𝑁𝑇 ), 𝑠 = 𝜎 + 𝑇𝑖

≤
∑︁

|ℑ(𝑠−𝜌)|<1

1

ℑ(𝑠− 𝜌)
+𝑂(ln𝑁𝑇 ).

We would like to bound ℑ(𝑠 − 𝜌) away from 0. To do this, note that for |𝑇 | > 2
large there are 𝑂(ln𝑁𝑇 ) roots in with ℑ𝜌 ∈ ±[𝑇, 𝑇 + 1] by Lemma 34.3.1. Hence by
tweaking 𝑇 slightly we can assume |ℑ(𝑠 − 𝜌)| > 𝐶

ln |𝑁𝑇 | . Also by Lemma 34.3.1 there

are at most 𝑂(ln𝑁𝑇 ) terms in the sum, so the sum is 𝑂((ln𝑁𝑇 )2). Integrating gives⃒⃒⃒⃒⃒∫︁ −1±𝑇 𝑖

𝑐±𝑇 𝑖

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠

⃒⃒⃒⃒⃒
= 𝑂((ln𝑁𝑇 )2)𝑂

(︂
1

𝑇

)︂ ∫︁ −1

𝑐
|𝑥𝑠| 𝑑𝑠

= 𝑂

�
𝑥(ln𝑁𝑇 )2

𝑇

�
.

2. For the vertical integral, we use the same estimate, this time noting that |𝑠 − 𝜌| > 1
for every nontrivial zero 𝜌, since ℜ𝜌 > 0. This gives that 𝜁′

𝜁
(𝑠) = 𝑂(ln𝑁𝑇 ) and∫︁ −1−𝑇𝑖

−1+𝑇 𝑖

𝑥𝑠

𝑠

𝐿′

𝐿
(𝑠, 𝜒) 𝑑𝑠 = 𝑂(ln𝑁𝑇 )

∫︁ −1+𝑇 𝑖

−1−𝑇 𝑖

𝑥−1

|𝑠|
𝑑𝑠

= 𝑂

�
ln(𝑁𝑇 ) ln(𝑇 )

𝑥

�
= 𝑂

�
𝑥(ln𝑁𝑇 )2

𝑇

�
.

3. Note by Lemma 34.3.1 that 𝐿′

𝐿
(0, 𝜒) = 𝑂(ℒ) = 𝑂(ln(𝑁 + 1)).

Step 1 and (34.18) together with the above estimates give the first part of the theorem.
For the second part, note that

𝜓(𝑥, 𝜒1)− 𝜓(𝑥, 𝜒) =
∑︁

1≤𝑛≤𝑥
(𝜒1(𝑛)− 𝜒(𝑛))Λ(𝑛)𝑛−𝑠

≤
∑︁

1≤𝑛≤𝑥, 𝑛=𝑝𝑟, 𝑝|𝑁
Λ(𝑛)

≤
∑︁
𝑝|𝑁

�
ln𝑥

ln 𝑝

�
ln 𝑝

≤
∑︁
𝑝|𝑁

ln𝑥 ln 𝑝 = ln𝑥 ln𝑁.

Theorem 34.4.2: only-1-char There is a constant 𝑐 > 0 such that for any distinct real 𝜒1 and
𝜒2 to moduli 𝑁1 and 𝑁2, at most one of 𝐿(𝑠, 𝜒1) and 𝐿(𝑠, 𝜒2) has a zero 𝛽 > 1− 𝑐

ln(𝑁1𝑁2)
.
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Corollary 34.4.3: only-1-char-2 There is a constant 𝑐 > 0 such that the following holds: Fix a
level 𝑁 . There is at most 1 character 𝜒 of level 𝑁 such that 𝐿(𝑠, 𝜒) has a zero with 𝜎 ≥ 1− 𝑐

ℒ .

Proof of Theorem 34.4.2. The product 𝜒1𝜒2 is a character with modulus 𝑁1𝑁2. By Theo-
rem 34.3.1, −𝐿′

𝐿
(𝜎, 𝜒) < 𝑂(ln𝑁1𝑁2) for 1 < 𝜎 < 2. Let

𝐹 (𝑠) = 𝜁(𝑠)𝐿(𝑠, 𝜒1)𝐿(𝑠, 𝜒2)𝐿(𝑠, 𝜒1𝜒2).

Then by logarithmic differentiation,

−𝐹
′

𝐹
(𝑠) = −𝜁

′

𝜁
(𝑠)− 𝐿′

𝐿
(𝑠, 𝜒1)−

𝐿′

𝐿
(𝑠, 𝜒2)−

𝐿′

𝐿
(𝑠, 𝜒1𝜒2)

=
∞∑︁
𝑛=1

(1 + 𝜒1(𝑛) + 𝜒2(𝑛) + 𝜒1(𝑛)𝜒2(𝑛))Λ(𝑛)𝑛
−𝑠

=
∞∑︁
𝑛=1

(1 + 𝜒1(𝑛))(1 + 𝜒2(𝑛))Λ(𝑛)𝑛
−𝑠 ≥ 0 (34.19)

onechar-eq (34.20)

since the coefficients are nonnegative.
Suppose 𝛽1, 𝛽2 are exceptional zeros of 𝐿(𝑠, 𝜒1), 𝐿(𝑠, 𝜒2); then putting Lemma 33.3.1

into (34.20) gives

𝑂(ln𝑁1𝑁2) +
1

𝜎 − 1
− 1

𝜎 − 𝛽1
− 1

𝜎 − 𝛽2
≥ 0.

Let 𝛿 = min(1− 𝛽1, 1− 𝛽2). Take 𝜎 = 1 + 2𝛿 to get 1
6𝛿
≤ 𝑂(ln𝑁1𝑁2), i.e. 𝛿 % ln𝑁1𝑁2 with

constant independent of 𝑁1, 𝑁2, i.e. there is an appropriate choice of constant so that 𝜒1, 𝜒2

are not both exceptional for level 𝑁1𝑁2.

Proof of Corollary 5.2. Fix a primitive character 𝜒 of level 𝑁 . Suppose 𝜒′ is of level 𝑁 ,
whose corresponding primitive characters has level 𝑁 ′. Then the theorem gives 𝑐 such that
at most one of 𝐿(𝑠, 𝜒′) and 𝐿(𝑠, 𝜒) has a zero 𝛽 > 1− 𝑐

ln𝑁 ′𝑁
≥ 1− 𝑐

ln𝑁
.

Theorem 34.4.4 (Prime number theorem in arithmetical progressions): pntap Let 𝐶 > 0 and
suppose 𝑥 > 𝑒𝐶(ln𝑁)2 . If there is no exceptional zero for level 𝑁 , there exists 𝐶 ′ > 0 such
that

𝜋(𝑥, 𝑎 mod 𝑁) = (1 +𝑂(𝑒−𝐶
′√ln𝑥))

li(𝑥)

𝜙(𝑁)
.

If there is an exceptional zero 𝛽 of level 𝑁 with associated character 𝜒,

𝜋(𝑥, 𝑎 mod 𝑁) =
1

𝜙(𝑁)
(li(𝑥)− 𝜒(𝑎) li(𝑥𝛽) +𝑂(𝑥𝑒−𝐶

′√ln𝑥)).

Proof. We have by column orthogonality 13.13.1.6 that

psi-mod-chi𝜓(𝜒, 𝑎 mod 𝑁) =
∑︁

𝑛≤𝑥, 𝑛≡𝑎 (mod 𝑁)

𝜒(𝑛)Λ(𝑁) =
∑︁
𝑛≤𝑥

1

𝜙(𝑁)

∑︁
𝜒∈Ø(Z/𝑁Z)×

𝜒(𝑎)𝜒(𝑛)Λ(𝑛) =
1

𝜙(𝑁)

∑︁
𝜒

𝜒(𝑎)𝜓(𝑥, 𝜒).

(34.21)

479



Number Theory, S34.4

Letting 𝜒1 be the primitive character associated to 𝜒, by Theorem 34.4.1 we have

psi-chi-estimate𝜓(𝑥, 𝜒) =

⎧⎨⎩−∑︀𝜌 zero of 𝜓(𝑥,𝜒1)
𝑥𝜌

𝜌
+𝑂

(︁
𝑥[(ln𝑥)2+(ln𝑁𝑇 )2]

𝑇
+ ln𝑁 ln𝑥

)︁
, 𝜒 nontrivial

𝜓(𝑥) +𝑂(ln𝑁 ln𝑥), 𝜒 trivial.

(34.22)
We estimate

∑︀
𝜌 nonexceptional zero of 𝜓(𝑥,𝜒1)

𝑥𝜌

𝜌
in two steps.3 Assume 𝑇 ≥ 2.

1. By Theorem 34.3.3, there is a constant 𝑐 such that for all |ℑ(𝜌)| < 𝑇 ,

|𝑥𝜌| = 𝑥ℜ𝜌 ≤ 𝑥1−
𝑐

ln𝑁𝑇 = 𝑥𝑒−
𝑐 ln 𝑥
ln𝑁𝑇

2. Note the zero free region in Theorem 34.3.3 means there is a constant 𝑑0, independent of
𝑁,𝜒, so that for all nonexceptional roots 𝜌, |𝜌| ≥ 𝑑0. Hence using 𝑁(𝑇 ) = 𝑂(𝑇 ln𝑁𝑇 )
(Lemma 33.3.1 or Theorem 34.3.2),∑︁
|ℑ(𝜌)|<𝑇

1

|𝜌|
≤

∑︁
|ℑ(𝜌)|<𝑇

1

max(ℑ(𝜌), 𝑑0)

≤
∫︁ 𝑇

0

𝑑𝑁(𝑡)

max(𝑡, 𝑑0)
(Riemann-Steltjes integral)

=
𝑁(𝑇 )

max(𝑇, 𝑑0)
+
∫︁ 𝑇

𝑑0

𝑁(𝑡)

𝑡2
𝑑𝑡 integration by parts

= 𝑂(ln𝑁𝑇 ) +
∫︁ 𝑇

𝑑0
𝑂

�
ln𝑁𝑡

𝑡

�
𝑑𝑡

= 𝑂(ln𝑁𝑇 ) +𝑂((ln𝑁𝑇 )2) = 𝑂((ln𝑁𝑇 )2).

Putting these two estimates together,⃒⃒⃒⃒⃒⃒ ∑︁
|ℑ(𝜌)|<𝑇, 𝜌 nonexceptional

𝑥𝜌

𝜌

⃒⃒⃒⃒⃒⃒
≤ max

|ℑ(𝜌)|<𝑇
(|𝑥𝜌|)

∑︁
|ℑ(𝜌)|<𝑡

1

|𝜌|

≤ 𝑂
(︁
𝑒−

𝑐 ln 𝑥
ln𝑁𝑇 (ln𝑁𝑇 )2

)︁
.

Combining with Theorem 34.4.1, setting 𝑇 = 𝑒
√
ln𝑥, and using 𝑁 < 𝑒𝐶

√
ln𝑥 we get

|𝜓(𝑥, 𝜒)− 𝑥| = 𝑂

�
𝑥𝑒−

𝑐 ln 𝑥
ln𝑁𝑇 (ln𝑁𝑇 )2 +

𝑥[(ln𝑥)2 + (ln𝑁𝑇 )2]

𝑇
+
𝑥(ln𝑇 )2

𝑇

�
−𝑥

𝛽

𝛽
− 𝑥1−𝛽

1− 𝛽

= 𝑂
�
𝑥𝑒−

𝑐
√
ln 𝑥

𝐶+1 (𝐶 + 1)2 ln𝑥+ 𝑥𝑒−
√
ln𝑥((ln𝑥)2 + (𝐶 + 1)2 ln𝑥) + 𝐶(ln𝑥)

3
2

�
−𝑥

𝛽

𝛽

psi-chi-asymptotic = 𝑂(𝑥𝑒−𝐶1

√
ln𝑥)−𝑥

𝛽

𝛽
(34.23)

3Here “nonexceptional” means with respect to level 𝑁 .
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for some 𝐶1 > 0 independent of 𝑁,𝜒, where the implied constant is independent of 𝑁,𝜒.
For the trivial character, (34.22) and (33.17) give

psi-chi-asymptotic2𝜓(𝑥, 𝜒) = 𝑥+𝑂(𝑥𝑒−𝐶2

√
ln𝑥 + ln𝑥 ln𝑇 ) = 𝑥+𝑂(𝑥𝑒−𝐶2

√
ln𝑥) (34.24)

Using (34.21), (34.23), and (34.24), we get

𝜓(𝜒, 𝑎 mod 𝑁) =
1

𝜙(𝑁)

(︃
𝑥−𝜒(𝑎)𝑥

𝛽

𝛽
+𝑂(𝑥𝑒−𝐶3

√
ln𝑥)

)︃
where the grayed-out portion appears only if there is an exceptional zero. (Note this can
happen for at most 1 character by Lemma 34.4.2.) It remains to transfer the asymptotics of
𝜓 to that for 𝜋.

The same argument as in Lemma 33.4.2 shows that

𝜋(𝑥, 𝑎 mod 𝑁) =
𝜓(𝑥, 𝑎 mod 𝑁)

ln𝑥
+
∫︁ 𝑥

2
𝜓(𝑦)

𝑑𝑦

𝑦(ln 𝑦)2
+𝑂(𝑥

1
2 ),

giving the estimate for 𝜋.

5 Siegel zero

sec:siegel-zero In this section we obtain bounds on the exceptional zero to get a better error bound
for prime number theorem on arithmetic progressions. We proceed in 2 steps.

1. Show that 𝐿′(𝛽, 𝜒) is small for 𝛽 close to 1.

2. Bound 𝐿(1, 𝜒) away from 0.

From this, we get that 𝐿(𝛽, 𝜒) cannot be 0 for 𝛽 too close to 1.
Then we will be able to show the following improved form of Theorem 34.4.4.

Theorem 34.5.1 (Siegel-Walfisz): Given any 𝐶 there exists a constant 𝐶 ′ depending only
on 𝐶 so that

𝜋(𝑥, 𝑎 mod 𝑁) =
li(𝑥)

𝜙(𝑁)
+𝑂(𝑥𝑒−𝐶

′(ln𝑥)
1
2 )

whenever
𝑁 ≤ (ln𝑥)𝐶 .

Unfortunately, this bound is ineffective; the proof does not give a way to compute a
suitable value of 𝐶 ′.

Of course, if the Riemann hypothesis were true then it would solve all our problems.

Theorem 34.5.2: If the Extended Riemann hypothesis holds (all nontrivial zeros of 𝐿(𝑠, 𝜒)
satisfy ℜ𝑠 = 1

2
), then

𝜋(𝑥, 𝑎 mod 𝑁) =
li(𝑥)

𝜙(𝑁)
+𝑂(𝑥

1
2 (ln𝑥)2)

for 𝑥 > 𝑁2, where the constant is independent of 𝑁 .
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5.1 𝐿′(𝛽, 𝜒) is not too large

Lemma 34.5.3: lem:L’-not-large There exists an absolute constant 𝐶 such that

|𝐿′(𝜎, 𝜒)| < 𝐶(ln𝑁)2

for any nontrivial Dirichlet character 𝜒 modulo 𝑁 and any 𝜎 with 1− 1
ln𝑁
≤ 𝜎 ≤ 1.

Proof. Because 𝐿(𝜎, 𝜒) =
∑︀∞
𝑛=1

𝜒(𝑛)
𝑛𝜎 , by Proposition 32.32.2.4 we can simply differentiate

term-by-term to get

𝐿′(𝜎, 𝜒) = −
∞∑︁
𝑛=1

𝜒(𝑛) ln𝑛

𝑛𝜎
.

Now we bound this sum by breaking it up into two parts.
First note that for 𝑛 ≤ 𝑁 , we have

1− 𝜎 ≤ 1

ln𝑁
≤ 1

ln𝑛
.

Hence

eq:siegel-zero-1

1

𝑛𝜎
=

1

𝑛
𝑛1−𝜎 ≤ 1

𝑛
𝑛

1
ln𝑛 =

𝑒

𝑛
. (34.25)

Step 1: We bound the sum from 𝑛 = 1 to 𝑁 . By (34.25),

eq:siegel-zero-2

⃒⃒⃒⃒⃒
𝑁∑︁
𝑛=1

𝜒(𝑛) ln𝑛

𝑛𝜎

⃒⃒⃒⃒⃒
≤

𝑁∑︁
𝑛=1

𝑒 ln𝑛

𝑛
< 𝐶1(ln𝑁)2 (34.26)

for some 𝐶1. The last step follows from estimating using the integral
∫︀𝑁
1

ln𝑥
𝑥
𝑑𝑥 = 1

2
(ln𝑁)2.

Step 2: Now we consider the sum from 𝑁 + 1 to ∞. Let 𝑈(𝑛) :=
∑︀𝑛
𝑚=𝐿+1 𝜒(𝑚) and 𝑣(𝑛) =

ln𝑛
𝑛𝜎 . By partial summation 3.3.7.1, we have

∞∑︁
𝑛=𝑁+1

𝜒(𝑛) ln𝑛

𝑛𝜎
= lim

𝐿→∞

⎡⎣−𝑈(𝐿)𝑣(𝐿) + 𝐿∑︁
𝑛=𝑁+1

𝑈(𝑛− 1)(𝑣(𝑛)− 𝑣(𝑛− 1))

⎤⎦ .
Since 𝑣(𝑛) decreases to 0 and |𝑈(𝑛)| ≤ 𝑁 (as

∑︀𝑘+𝑁−1
𝑛=𝑘 𝜒(𝑛) = 0 for any 𝑘), the first term

goes to 0 and we get the bound

eq:siegel-zero-3

⃒⃒⃒⃒⃒⃒
∞∑︁

𝑛=𝑁+1

𝜒(𝑛) ln𝑛

𝑛𝜎

⃒⃒⃒⃒⃒⃒
≤ 𝑁𝑣(𝑁) = 𝑁

ln𝑁

𝑁𝜎
≤ 𝑁(ln𝑁)

𝑒

𝑁
= 𝑒 ln𝑁. (34.27)

where in the last step we used (34.25).

Adding (34.26) and (34.27) together gives the desired bound.
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5.2 𝐿(1, 𝜒) is not too small

Theorem 34.5.4 (Siegel’s inequality): except-zero For each 𝜀 > 0 there exists 𝐶𝜀 > 0 such that

𝐿(1, 𝜒) > 𝐶𝜀𝑁
−𝜀

for all real Dirichlet characters 𝜒 modulo 𝑁 .
Thus there exists 𝐶 ′

𝜀 > 0 such that any real zero 𝛽 of 𝐿(𝑠, 𝜒) satisfies 1− 𝛽 > 𝐶 ′
𝜀𝑁

−𝜀.

First we prove the following lemma.

Lemma 34.5.5: lem:l1chi-not-small Let 𝜒1 and 𝜒2 be real primitive characters with modulus 𝑁1

and 𝑁2, let

𝐹 (𝑠) := 𝜁(𝑠)𝐿(𝑠, 𝜒1)𝐿(𝑠, 𝜒2)𝐿(𝑠, 𝜒1𝜒2),

and let

𝜆 = 𝐿(1, 𝜒1)𝐿(1, 𝜒2)𝐿(1, 𝜒1𝜒2).

Then the following inequality holds:

𝐹 (𝑠) >
1

2
− 𝐶𝜆

1− 𝑠
(𝑁1𝑁2)

8(1−𝑠),
7

8
< 𝑠 < 1.

Note the technique of getting information about a 𝐿-function of a single character by
looking at 𝐹 (𝑠)—a function defined using two characters—is a lot like what we did in showing
Corollary only-1-char-2 using Theorem 34.4.2. We’ll comment more later on why we looked at
𝐹 (𝑠).4

Proof. The main idea is to expand 𝐹 (𝑠) in power series and bound its coefficients (equiv-
alently, bound the derivatives of 𝐹 (𝑠)) using the inequality from Cauchy’s formula, orol-
lary 31.31.4.6.

We have

ln𝐹 (𝑠) = ln 𝜁(𝑠) + ln𝐿(𝑠, 𝜒1) + ln𝐿(𝑠, 𝜒2) + ln𝐿(𝑠, 𝜒1𝜒2)

=
∑︁
𝑝

�
ln

1

1− 𝑝−𝑠
+ ln

1

1− 𝜒1(𝑝)𝑝−𝑠
+ ln

1

1− 𝜒2(𝑝)𝑝−𝑠
+ ln

1

1− 𝜒1(𝑝)𝜒2(𝑝)𝑝−𝑠

�
=
∑︁
𝑝

∞∑︁
𝑚=1

(︂
1

𝑚
𝑝−𝑚𝑠 +

1

𝑚
𝜒1(𝑝

𝑚)𝑝−𝑚𝑠 +
1

𝑚
𝜒2(𝑝

𝑚)𝑝−𝑚𝑠 +
1

𝑚
𝜒1(𝑝

𝑚)𝜒2(𝑝
𝑚)𝑝−𝑚𝑠

)︂
=
∑︁
𝑝

∞∑︁
𝑚=1

1

𝑚
(1 + 𝜒1(𝑝

𝑚))(1 + 𝜒2(𝑝
𝑚))𝑝−𝑚𝑠.

4A deeper reason why we often look at 𝐹 (𝑠) is that it is the zeta function of a biquadratic field. Thus
we can prove nice facts about 𝐹 (𝑠) by combining algebraic and analytic theory. We’ll give proofs that don’t
require this knowledge.
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This means ln𝐹 (𝑠) is a Dirichlet series with all coefficients positive. Because the power series
of 𝑒𝑥 has positive coefficients, this means that 𝐹 (𝑠) also has all coefficients positive. We’re
allowed to substitute any absolutely convergent series into a power series. (Is this right?)

Suppose 𝐹 (𝑠) =
∑︀∞
𝑛=1

𝑓(𝑛)
𝑛𝑠 .

Now we expand 𝐹 (𝑠) in Taylor series at 𝑠 = 2. (We can’t do it at 𝑠 = 1 because 𝐹 (𝑠)
has a pole there.) We have

𝐹 (𝑠) =
∞∑︁
𝑚=0

𝑎𝑚(2− 𝑠)𝑚, 𝑎𝑚 = (−1)𝑚𝐹
(𝑚)(2)

𝑚!
.

We calculate the coefficients using 32.32.2.4 and get

𝑎𝑚 =
∞∑︁
𝑛=1

𝑓(𝑛)(ln𝑛)𝑚

𝑛2
≥ 0.

In particular, for 𝑚 = 1 we have 𝑎𝑚 ≥ 1 since 𝑓(1) ≥ 1. It’s 4.
Because we know 𝐹 (𝑠) has a pole of residue 𝜆 = 𝐿(1, 𝜒1)𝐿(1, 𝜒2)𝐿(1, 𝜒1𝜒2), we consider

the function

𝐹 (𝑠)− 𝜆

𝑠− 1
= 𝐹 (𝑠)− 𝜆

1− (2− 𝑠)
=

∞∑︁
𝑚=0

(𝑎𝑚 − 𝜆)(2− 𝑠)𝑚.

Let Ω be the circle of radius 3
2
(not its interior) centered at 2. Then for any 𝜒 of modulus 𝑁 ,

|𝐿(𝑠, 𝜒)| ≤ 𝐶1𝑁 for some 𝐶1, for all 𝑠 in a bounded region away from 0 because by (34.2)

|𝐿(𝑠, 𝜒)| =
⃒⃒⃒⃒∫︁ ∞

1
𝑆(𝑥)𝑠𝑥−𝑠−1 𝑑𝑥

⃒⃒⃒⃒
≤ 𝑁

∫︁ ∞

1
|𝑠𝑥−𝑠−1| 𝑑𝑥, 𝑆(𝑥) =

∑︁
𝑛≤𝑥

𝜒(𝑛).

Therefore,

eq:siegel-zero-4|𝐹 (𝑠)| ≤ (𝐶1𝑁1)(𝐶1𝑁2)(𝐶1𝑁1𝑁2) = 𝐶2(𝑁1𝑁2)
2, 𝐶2 = 𝐶4

1 (34.28)

and for 𝑠 ∈ Ω,

eq:siegel-zero-4

⃒⃒⃒⃒⃒�
𝜆

𝑠− 1

�⃒⃒⃒⃒⃒
≤ 2𝐿(1, 𝜒1)𝐿(1, 𝜒2)𝐿(1, 𝜒1𝜒2) ≤ 2𝐶2(𝑁1𝑁2)

2. (34.29)

Now we use the inequality from Cauchy’s formula, Corollary 31.31.4.6, to get

|𝑎𝑚 − 𝜆| ≤
1(︀
3
2

�𝑚 max
𝑧∈Ω

𝐹 (𝑠) ≤ 𝐶3𝑁
2
1𝑁

2
2

(︂
2

3

)︂𝑚
.

To bound 𝐹 (𝑠)− 𝜆
𝑠−1

=
∑︀∞
𝑚=0(𝑏𝑚 − 𝜆)(2− 𝑠)𝑚 when 7

8
< 𝑠 < 1, we first bound the sum

from some 𝑀 (to be determined) to ∞.
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Firstly,

∞∑︁
𝑚=𝑀

|𝑎𝑚 − 𝜆|(2− 𝑠)𝑚 ≤
∞∑︁

𝑚=𝑀

𝐶3𝑁
2
1𝑁

2
2

⃒⃒⃒⃒
2

3
(2− 𝑠)

⃒⃒⃒⃒𝑚
≤

∞∑︁
𝑚=𝑀

𝐶3𝑁
2
1𝑁

2
2

(︂
3

4

)︂𝑚
,

7

8
< 𝑠 < 1

≤ 𝐶4𝑁
2
1𝑁

2
2

(︂
3

4

)︂𝑀
≤ 𝐶4𝑁

2
1𝑁

2
2 𝑒

−𝑀/4, 𝑒−1/4 ≈ 0.78.

We choose 𝑀 so that 𝐶4𝑁
2
1𝑁

2
2 𝑒

−𝑀
4 ∈

[︁
1
2
𝑒−

1
4 , 1

2

]︁
. Note the lower bound rearranges to

𝑀 ≤ 8 ln𝑁1𝑁2 + 𝐶5. Then because the coefficients 𝑎𝑚 are all nonnegative, we can drop
some of them in the inequality to get

𝐹 (𝑠)− 𝜆

𝑠− 1
≥ 1− 𝜆

𝑀−1∑︁
𝑚=0

(2− 𝑠)𝑚 − 𝐶4𝑁
2
1𝑁

2
2 𝑒

−𝑀/4

> 1− 𝜆

1− 𝑠
[(2− 𝑠)𝑀 − 1]− 1

2
, 𝐶4𝑁

2
1𝑁

2
2 𝑒

−𝑀
4 ≤ 1

2

=⇒ 𝐹 (𝑠) >
1

2
− 𝜆

1− 𝑠
(2− 𝑠)𝑀

≥ 1

2
− 𝜆

1− 𝑠
𝑒𝑀(1−𝑠), 𝑒𝑥 ≤ 1 + 𝑥

>
1

2
− 𝐶6𝜆

1− 𝑠
(𝑁1𝑁2)

8(1−𝑠), 𝑀 ≤ 8 ln𝑁1𝑁2 + 𝐶5.

This finishes the proof of the lemma.

Proof of Theorem 34.5.4. Fix 𝜀 > 0. We want to choose 𝜒1 so that 0 ≥ 𝐹 (𝑠). Consider two
cases.

1. For some 𝜒, 𝐿(𝑠, 𝜒) has a real zero in the range
(︀
1− 1

16
𝜀, 1

�
. Then choose 𝜒1 to be

this character and 𝛽1 to be this zero. We then have 𝐹 (𝛽1) = 0.

2. Else, let 𝜒1 be any primitive character and 𝛽1 ∈
(︀
1− 1

16
𝜀, 1

�
. Note the following:

∙ In this case there are no zeros for any L-function in
(︀
1− 1

16
𝜀, 1

�
, so they all have

the same sign as their value at 1. The value at 1 is nonnegative (in fact, positive)
because the product expansion gives that the L-function is positive for 𝜎 > 1.

∙ 𝜁(𝑠) < 0 for 0 < 𝑠 < 1, and

Thus 𝐹 (𝛽1) < 0.
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In either case 𝐹 (𝛽1) ≤ 0, and the choice of 𝛽1 depends only on 𝜀. From Lemma 34.5.5, we
now get the inequality

0 ≤ 1

2
− 𝐶𝜆

1− 𝛽1
(𝑁1𝑁2)

8(1−𝛽1).

𝜆 > 𝐶𝜀,1(𝑁1𝑁2)
−8(1−𝛽1)

for some 𝐶𝜀,1 depending only on 𝜀. Now we also have an upper bound for 𝜆:

𝜆 = 𝐿(1, 𝜒1)𝐿(1, 𝜒2)𝐿(1, 𝜒1𝜒2)

< (𝐶1 ln𝑁1)𝐿(1, 𝜒2)(𝐶1 ln𝑁1𝑁2).

Now suppose that 𝑁2 ≥ 𝑁1. Combining the two inequalities and noting that ln𝑁1 is a
constant depending only on 𝜀 and is less than ln𝑁2, we have

𝐿(1, 𝜒2) > 𝐶𝜀,2𝑁
−8(1−𝛽1)
2 (ln𝑁2)

−1

> 𝐶𝜀,2𝑁
− 𝜀

2
2 (ln𝑁2)

−1

> 𝐶𝜀,3𝑁
−𝜀.

By choosing the constant to be smaller, we may ensure that this bound also works for
𝑁2 < 𝑁1.

Finally, combining Lemma 34.5.3 and the bound 𝐿(1, 𝜒) > 𝐶𝜀𝑁
−𝜀 immediately gives the

fact that any real zero of 𝐿(𝑠, 𝜒) must satisfy 𝛽 < 1− 𝐶 ′
𝜀𝑁

−𝜀.

Note that it was essential to work with 𝐹 (𝑠) rather than 𝐺(𝑠) = 𝜁(𝑠)𝐿(𝑠, 𝜒): Something
like Lemma 34.5.5 would go through, but if we used 𝐺(𝑠) then 𝐺(𝑠) may have a zero close
to 𝑠 = 1 so we don’t know the region where 𝐺(𝑠) is nonpositive, and we may have to take
𝑠 = 𝛽1 arbitrarily close to 1. This kills the proof because of the term 1

1−𝑠 . When we work
with 𝐹 (𝑠), the case where there is a zero close to 1 is dealt with nicely.

5.3 Proof of Siegel-Walfisz

Proof of Theorem 34.5.1. Suppose there is an exceptional zero 𝛽. By Siegel’s inequality 34.5.4,
for any 𝜀 > 0 we have

𝛽 − 1 < −𝐶𝜀𝑁−𝜀.

The prime number theorem in arithmetic progressions 34.4.4 gives

𝜋(𝑥, 𝑎 mod 𝑁) =
1

𝜙(𝑁)
(li(𝑥)− 𝜒(𝑎) li(𝑥𝛽) +𝑂(𝑥𝑒−𝐶

′√ln𝑥)).
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We show that li(𝑥𝛽) gets absorbed into the 𝑂 term. Indeed, we have

𝑥−𝐶𝜀𝑁−𝜀 ≤ 𝑒−𝐶
′√ln𝑥

⇐⇒ (ln𝑥)𝐶𝜀𝑁
−𝜀 ≥ 𝐶 ′

√
ln𝑥

⇐⇒
√
ln𝑥 ≥ 𝐶 ′

𝐶𝜀
𝑁 𝜀

⇐⇒
(︂
𝐶𝜀
𝐶 ′

)︂ 1
𝜀

(ln𝑥)
1
2𝜀 ≥ 𝑁.

Now given 𝑁 ≤ (ln𝑥)𝐶 , choose 𝜀 = 1
2𝐶

. For large enough 𝐶 ′, the equivalences above give

𝑥−𝐶𝜀𝑁−𝜀 ≤ 𝑒−𝐶
′√ln𝑥. Therefore,

li(𝑥𝛽) = 𝑂

(︃
𝑥
𝑥𝛽−1

𝛽 ln𝑥

)︃
= 𝑂(𝑥 · 𝑥−𝐶𝜀𝑁−𝜀

) = 𝑂(𝑥𝑒−𝐶
′√ln𝑥)

for some 𝐶 ′ > 0, as needed.
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Chapter 35

Special values of 𝐿-functions

0 Introduction

0.1 Points of interest

𝜋

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · eq:acnf-ex1 (35.1)

ln(
√
2 + 1)√
2

= 1− 1

3
− 1

5
− 1

7
+

1

9
+ · · · eq:acnf-ex2 (35.2)

2 ln
(︁
1+

√
5

2

)︁
√
5

= 1− 1

2
− 1

3
+

1

4
+

1

6
+ · · · eq:acnf-ex3 (35.3)

=
∞∑︁
𝑛=1

1

5𝑛+ 1
− 1

5𝑛+ 2
− 1

5𝑛+ 3
+

1

5𝑛+ 4

See Mazur’s article in PCTM [?]1 for an introduction to algebraic number theory that
highlights these formulas.

In this article we explore a formula that relates analytic with algebraic quantities: values
of the zeta function with the class number, regulator, and discriminant of a number field.
The main theorem is the following.

1Available online athttp://www.math.polytechnique.fr/˜chenevier/MAT552/barry_
mazur.pdf
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Theorem 35.0.1 (Analytic class number formula): thm:acnf Let 𝐾 be a number field.
Then

eq:acnf1Res𝑠=1 𝜁𝐾(𝑠) =
2𝑟1(2𝜋)𝑟2ℎ𝐾 Reg𝐾È

|Δ𝐾 |𝑤𝐾
(35.4)

where ℎ𝐾 is the class number, Reg𝐾 is the regulator, 𝑤𝐾 is the number of roots of
unity in 𝐾, Δ𝐾 is the discriminant, and 𝑟1, 2𝑟2 are the number of real and complex
embeddings of 𝐾.

For prerequisites on the zeta function, see http://web.mit.edu/˜holden1/www/
math/analytic-nt.pdf. For prerequisites on the class and unit group, see Chapters 3
and 5 of http://web.mit.edu/˜holden1/www/math/ant.pdf.)

2

0.2 Road map

Our plan is the following. First, we grok what’s going on by looking at the class number
formula for quadratic fields, which already show all the different types of behavior. To prove
the theorem for general𝐾 we need to get reacquainted with the embedding 𝜎 : 𝒪𝐾 → R𝑟×C𝑠.
Second, we’ll massage our formula into nicer forms for quadratic fields and for cyclotomic
fields, and see what algebraic information we can milk out from the class number formula.

How does this formula come about?3 𝜁𝐾(𝑠) is a sum over ideals of 𝒪𝐾 where the ideals
are weighted depending on their norm; we are “counting ideals” with appropriate weight.
The growth of 𝜁𝐾 near 𝑠 = 1 depends estimates for the number of ideals with norm < 𝑟. An
expression for the analytic quantitiy Res𝑠=1 𝜁𝐾(𝑠) then comes from combining the following
geometric and algebraic information.

1. Geometric: We count algebraic integers in 𝐾. Geometrically (using the embedding 𝜎),
they form a lattice in R𝑟×C𝑠. We can estimate the number of points in a given region
around the origin. This depends on the embedding, on the volume of a fundamental
parallelotope of the lattice. This is how we get the quantity4

2𝑟1(2𝜋)𝑟2È
|Δ𝐾 |

.

2. Algebraic: Note 𝜁𝐾(𝑠) is a sum over ideals, not over numbers in 𝒪𝐾 . So we need to
multiply by a factor that tells us what we’re off by in considering numbers rather than
ideals; we can do this because of the multiplicative structure of 𝒪𝐾 . This will depend

2Right now the section on regulators is missing; see http://en.wikipedia.org/wiki/Dirichlet’
s_unit_theorem#The_regulator.

3We follow the discussion in http://math.stackexchange.com/questions/292104/
how-to-derive-the-class-number-formula.

4The grouping of the 2𝜋 is actually a little misleading: volume calculation gives the 𝜋𝑟2 (think circles);

think of the 2𝑟2 as grouped with the
È
|Δ𝐾 |.
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on the units (the fundamental units and the roots of unity) and the class number. This
is how we get the factor

ℎ𝐾 Reg𝐾
𝑤𝐾

.

0.3 First explorations

Make sure you remember the following.

1. How to show Res𝑠=1 𝜁(𝑠) = 1. (Used a “summation by parts” argument. The
same argument analytically continued 𝜁(𝑠) from ℜ𝑠 > 1 to ℜ𝑠 > 0.)

2. The embeddings used to prove the finiteness of the class group and find the
rank of the unit group. The definition of the regulator.

Problem 35.0.2: Recall that the zeta function for Q can be defined as

𝜁(𝑠) =
∏︁

prime 𝑝

�
1− 1

𝑝𝑠

�
=

∞∑︁
𝑛=1

1

𝑛𝑠

for 𝑠 > 1. How do we modify this definition to define the zeta function for an arbitrary
finite extension 𝐾/Q?

The identity above relied on unique factorizaiton. In general we only have unique factor-
ization of ideals, and we measure the size of an ideal with the norm. So we define

𝜁𝐾(𝑠) =
∑︁
a∈𝐼𝐾

1

Na𝑠

and find by unique factorization of ideals that it equals5
∏︀

p⊆O𝐾 prime

(︁
1− 1

Np𝑠

)︁
.

First we explore the class number formula for quadratic number fields.

5We always restrict to nonzero ideals
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Problem 35.0.3: 1. Consider the zeta function for 𝐾 = Q(𝑖). When we expand
out 𝜁𝐾(𝑠) =

∑︀
𝑛
𝑎𝑛
𝑛𝑠 , what do the coefficients 𝑎𝑛 represent?

2. Evaluate Res𝑠=1 𝜁𝐾(𝑠) (recall how we evaluated Res𝑠=1 𝜁(𝑠)), using some area
calculations.

3. Can you write 𝜁𝐾(𝑠) in terms of 𝐿-functions you are familiar with? De-
rive (35.1).

4. Do the same for Z[
√
−2], Z

[︁
1+

√
−3

2

]︁
] and Z[

√
−5]. What’s different about the

last case?

5. Do the same for Z[
√
2] and Z

[︁
1+

√
5

2

]︁
. (The argument is more complicated, but

make a guess.) Derive (35.2) and (35.3).

6. Conjecture the general class number formula (we already told you, but don’t
look back). Try to generalize your arguments for quadratic fields to prove it.

7. We saw that in (35.1) through (35.3) that we can evaluate in closed form series
of the form

∑︀± 1
𝑛
(where the ± are periodic). Can you do this in general?

Given a character 𝜒 : Z/𝑁 → {−1, 1}, evaluate in closed form

∞∑︁
𝑛=1

𝜒(𝑛)

𝑛

in 2 ways: algebraically, as in (35.1) through (35.3), and analytically (without
mentioning algebraic quantities). Try to simplify your formula as much as
possible. What happens when you equate these two?

Hint for the analytic expression: (a) power series are nice, (b)
∑︀ 1

𝑛
reminds us

of logarithms. However we seem to have nasty sums such as
∑︀
𝑛≡𝑚 (mod 𝑝)

1
𝑛𝑠 .

What’s the technique?

For a leisurely account of the class number formula for quadratic fields (assuming few
prerequisites) see the PROMYS notes [?]. We will discuss 1–5 in Section 1, 6 in Section 1.1,
and 7 in Section 2.
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1 The analytic class number formula

sec:acnf

1.1 Quadratic fields

subsec:acnf-qf This section will be mostly to build intution for the general case; we will give a
self-contained proof of the general case in the next section.

1. We have 𝜁𝐾(𝑠) =
∑︀

a∈𝐼𝐾
1

Na𝑠
=
∑︀∞
𝑛=1

𝑎𝑛
𝑛𝑠 where

𝑎𝑛 = the number of ideals of norm 𝑛.

Now we specialize to the case 𝐾 = Q(𝑖). Every ideal is principal, of the form (𝑎+ 𝑏𝑖),
and its norm is 𝑎2 + 𝑏2. So does 𝑎𝑛 count the number of solutions to 𝑎2 + 𝑏2 = 𝑛?
Almost: multiplying by a root of unity gives the same ideal. (𝑎 + 𝑏𝑖), (𝑖(𝑎 + 𝑏𝑖)),
(𝑖2(𝑎+ 𝑏𝑖)), (𝑖3(𝑎+ 𝑏𝑖)) represent the same ideal, so 𝑎𝑛 is 1

4
the number of solutions.

We can think of this another way: each ideal is of the form (𝑎 + 𝑏𝑖) for a unique pair
(𝑎, 𝑏) ∈ Z2 with 𝑎 > 0 and 𝑏 ≥ 0 (“in the first quadrant”). Hence 𝑎𝑛 counts the number
of solutions

𝑎𝑛 = |
⌋︀
(𝑎, 𝑏) ∈ Z2, 𝑎 > 0, 𝑏 ≥ 0 : 𝑎2 + 𝑏2 = 𝑛

{︀
|.

2. We don’t have a nice expression for 𝑎𝑛 that we can work with analytically, but we can
work with

∑︀𝑛
𝑘=1 𝑎𝑛: it counts the number of solutions

𝑛∑︁
𝑘=1

𝑎𝑘 = |
⌋︀
(𝑎, 𝑏) ∈ Z2, 𝑎 > 0, 𝑏 ≥ 0 : 𝑎2 + 𝑏2 ≤ 𝑛

{︀
|,

i.e., the points inside the circle of radius
√
𝑛 in the first quadrant.

This suggests that we use summation by parts on 𝜁𝐾 :

𝜁𝐾 =
∑︁
𝑛

𝑎𝑛𝑛
−𝑠

=
∞∑︁
𝑛=1

(︃
𝑛∑︁
𝑘=1

𝑎𝑘

)︃
(𝑛−𝑠 − (𝑛+ 1)−𝑠)

=
∞∑︁
𝑛=1

(︃
𝑛∑︁
𝑘=1

𝑎𝑘

)︃∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥.

Now we need to estimate
∑︀𝑛
𝑘=1 𝑎𝑘. It is approximately the area of the circle of radius√

𝑛 in the first quadrant, so

eq:acnf-area

𝑛∑︁
𝑘=1

𝑎𝑘 =
𝜋

4
𝑛+ 𝑒𝑛 where 𝑒𝑛 = 𝑂(

√
𝑛). (35.5)
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(The standard argument is to consider a square for each lattice point; these squares ex-
actly cover the sector except possibly for a strip near the boundary of area proportional
to the circumference, ∼

√
𝑛.) Putting this in, we have for 𝑠 ≥ 1,

eq:acnf-qi𝜁𝐾(𝑠) =
∞∑︁
𝑛=1

�𝜋
4
𝑛+ 𝑒𝑛

� ∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥 (35.6)

writing 𝑛 = (𝑥− 𝑛) + 𝑛,

=
∞∑︁
𝑛=1

𝜋

4

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠 +

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1

)︂
=
𝜋

4

∫︁ ∞

1
𝑥−𝑠 𝑑𝑥+

𝜋

4

∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥

)︂
=
𝜋

4

1

𝑠− 1
+
𝜋

4

∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥

)︂⏟  ⏞  
𝑂(𝑛−𝑠− 1

2 )

since 𝑒𝑛 = 𝑂(𝑛
1
2 ). The last sum converges for ℜ𝑠 > 1

2
to an analytic function, so

we obtain an analytic continuation for 𝜁𝐾 to ℜ𝑠 > 1
2
. (We have ℜ𝑠 > 1

2
rather than

ℜ𝑠 > 0 for 𝜁 because of the error term.) Reading off the coefficient of 1
𝑠−1

, we see

Res𝑠=1 𝜁𝐾(𝑠) =
𝜋

4
.

Summarizing, the 𝜋 comes from an area calculation, and the 4 comes from the fact
there are 4 roots of unity in Q(𝑖).

3. We’d like to write 𝜁𝐾(𝑠) =
∏︀

p

(︁
1− 1

Np𝑠

)︁
in terms of primes over 𝑝. In a quadratic field,

a prime 𝑝 in Z either

(a) is inert in 𝐾, i.e., is a prime of norm 𝑝2 in 𝐾

(b) splits into 2 primes of norm 𝑝, or

(c) ramifies.

For a field of discriminant 𝐷, these cases happen when
(︀
𝑝
𝐷

�
= 1,

(︀
𝑝
𝐷

�
= −1, and 𝑝 | 𝐷,

respectively. We get

𝜁𝐾(𝑠) =
∏︁

𝑝 inert

1

1− 𝑝−2𝑠

∏︁
𝑝 splits

�
1

1− 𝑝−𝑠

�2 ∏︁
𝑝 ramifies

�
1

1− 𝑝−𝑠

�
=
∏︁
𝑝

1

1− 𝑝−𝑠
∏︁

𝑝 inert

�
1

1 + 𝑝−𝑠

� ∏︁
𝑝 splits

�
1

1− 𝑝−𝑠

�
= 𝜁(𝑠)

∏︁
𝑝-𝐷

(︃
1

1−
(︀
𝑝
𝐷

�
𝑝−𝑠

)︃
𝜁𝐾(𝑠) = 𝜁(𝑠)𝐿 (𝑠, 𝜒) , 𝜒 =

� ∙
𝐷

�
.eq:acnf-zeta1 (35.7)
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(The 𝐿 function encodes the splitting law for primes in 𝐾.) Consider 𝐾 = Q(𝑖). Here

𝜒(𝑛) =

⎧⎨⎩1, 𝑛 ≡ 1 (mod 4)

−1, 𝑛 ≡ 3 (mod 4).
Now we know Res1(𝜁𝐾) = 1, so we must have

𝜋

4
= 𝐿 (𝑠, 𝜒) =

∑︁
𝑛

𝜒(𝑛)

𝑛𝑠
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Incidentally, note that the identity (35.7) gives (via expanding the Dirichlet series) the
formula

|
⌋︀
(𝑎, 𝑏) ∈ Z2 : 𝑎2 + 𝑏2 = 𝑛

{︀
= 4(𝑑1(𝑛)− 𝑑3(𝑛))

where 𝑑𝑖(𝑛) is the number of divisors of 𝑛 that are ≡ 𝑖 (mod 4).

4. For
√
−2, what changes in the above calculations?

(a) We now count instead the solutions to 𝑥2 + 2𝑦2 ≤ 𝑛. Alternatively, keeping
the shape the same, we’re counting the lattice points inside the circle where the
lattice is generated by 1 and

√
2𝑖 (each rectangle has area

√
2; in general it has

area
√︁

|Δ𝐾 |
4

). The number of points is approximately
√
2𝜋𝑛.

(b) There are only 2 roots of unity, so we would count points in the whole upper part
of the circle/ellipse, and divide by 2 instead of 4.

Similarly for
√
−3 we get

√
3
2
𝜋𝑛 and we divide by 6. We get

Res 𝜁Q(
√
2𝑖)(𝑠) =

𝜋√
22

= 1− 1

3
− 1

5
+

1

7
+

1

9
− 1

11
− 1

13
+

1

15
+ · · ·

Res 𝜁Q(
√
3𝑖)(𝑠) =

𝜋
√
3
2
· 6

= 1− 1

5
+

1

7
− 1

11
+

1

13
− 1

17
+ · · ·

For
√
−5, the problem is that the class number is > 1: a prime can now split into

nonprincipal ideals, so we can’t simply count the number of solutions to 𝑥2 + 5𝑦2 = 1.
We’ll do this rigorously later, but it makes sense that since there are 2 ideal classes,
we’ll only capture half the sum in this way, and we’ll have to multiply by 2.

In general, if 𝑑 is a imaginary quadratic field with discriminant 𝐷, then

eq:acnf2Res𝑠=1 𝜁𝐾(𝑠) =
2𝜋ℎ𝐾È
|𝐷𝐾 |𝑤𝐾

. (35.8)
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5. Recall the embedding we use in order to apply geometry to𝐾 = Q(
√
𝑑) with 𝑑 positive:

𝑥+ 𝑦
√
𝑑 ↦→ (𝑥+ 𝑦

√
𝑑, 𝑥− 𝑦

√
𝑑) =: (𝑥′, 𝑦′). The area of the fundamental parallelogram

of this lattice 𝐿 is
È
|Δ𝐾 |.

The norm is different now; it is 𝑥′𝑦′ = 𝑥2 − 𝑑2𝑦. Again we have a factor ℎ𝐾 . We now
count lattice points under the hyperbola 𝑥′𝑦′ < 𝑛 in the first and second quadrant.
However, now associates can differ not just by a root of unity (−1), but also by a unit,
which must be some power 𝜀𝑛 of the fundamental unit 𝜀 (which is sent to the lattice
point (𝜀, 1

𝜀
)). Drawing a picture, we see that each 𝑥+𝑦

√
𝑑 with norm at most 𝑛 has an

associate in the region bounded by 𝑥′𝑦′ = 𝑛 and the lines joining the origin and (1, 1),
and the origin and (𝜀, 1

𝜀
), or the rotation of this region by 90∘. The area of these slices

can be calculated to be 2 ln 𝜀. Thus we expect around 2 ln 𝜀√
|Δ𝐾 |

lattice points. We obtain

the following:

If 𝑑 is a real quadratic field and 𝜀 a fundamental unit, then (note 𝑤𝐾 = 2)

eq:acnf3Res𝑠=1 𝜁𝐾(𝑠) =
2ℎ𝐾 ln 𝜀È
|𝐷𝐾 |

(35.9)

In the case of
√
5, the discriminant is 5, the character is 𝜒(𝑛) =

(︀
𝑛
5

�
, and the funda-

mental unit is 1+
√
5

2
, so

1− 1

2
− 1

3
+

1

4
+

1

6
− · · · = Res𝑠=1 𝜁Q(

√
5)(𝑠) =

2 ln
(︁
1+

√
5

2

)︁
√
5

.

1.2 Proof in general

subsec:acnf

We now prove Theorem 35.0.1 in 4 steps. Note that both (35.8) and (35.9) are special
cases of (35.4): in the first case there is 1 pair of complex embeddings, hence the factor of
𝜋; in the second there are 2 real embeddings, hence the factor of 2. In general the area of
a fundamental parallelotope is

È
|Δ𝐾 |2−𝑟2 (Proposition 16.3.1). The group of units of a real

quadratic field is 1-dimensional, so the regulator is simply the logarithm of the fundament
unit.

1.2.1 Reduce to sum over principal ideals

We reduce 𝜁𝐾(𝑠) to a sum over numbers in 𝒪𝐾 , not ideals. We separate the sum by ideal
classes:

𝜁𝐾(𝑠) =
∑︁
a

1

Na𝑠
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=
∑︁

[𝐼]∈Cl𝐾

∑︁
a∈[𝐼]

1

Na𝑠

where the sum [𝐼] ∈ Cl𝐾 is over ideal classes.

Now for each [𝐼] choose b𝐼 ∈ [𝐼]−1

=
∑︁

[𝐼]∈Cl𝐾

∑︁
a∈[𝐼]

1

N(ab𝐼)𝑠
N(b𝐼)

𝑠

=
∑︁

[𝐼]∈Cl𝐾

∑︁
(𝛼),𝛼∈b𝐼

1

N(𝛼)𝑠
N(b𝐼)

𝑠
eq:acnf4 (35.10)

since a ↦→ ab𝐼 is a bijection from the ideals in [𝐼] to principal ideals that are divisible by b,
i.e., principal ideals in the form (𝛼), 𝛼 ∈ b. If we manage to show each of the inner sums is
2𝑟1 (2𝜋)𝑟2 Reg𝐾√

|Δ𝐾𝑤𝐾

, then we’ll be done.

1.2.2 Reduce to sum over numbers

The sums are now over principal ideals, but we’d like them to be over elements. The
obstruction is that many elements will give the same ideal, so we’d like a canonical way of
choosing a generator of (𝛼). We’d like a region such that every set of associated elements
has exactly one element in that region, a kind of fundamental domain.

Any two generators will differ by a product 𝜁𝜀𝑎11 · · · 𝜀
𝑎𝑟+𝑠−1

𝑟+𝑠−1 where 𝜁 is a root of unity and
𝜀1, . . . , 𝜀𝑟+𝑠−1 are the fundamental units.

If we have a vector space, and we say 2 elements are equivalent if they differ by an element
of a lattice, we know what a fundamental domain would look like—a parallelotope. We have
here a product rather than a Z-linear combination, so we’ll have to embed and then take
logs.

Recall the embedding and the log map from Proposition 18.2.2:

𝐿 : 𝒪×
𝐾

𝜎=(𝜎1,...,𝜎𝑟+𝑠)−−−−−−−−→ R𝑟 × C𝑠 ℓ=(ln |·|,...,ln |·|,ln 2|·|,... ln 2|·|)−−−−−−−−−−−−−−−−−→ R𝑟+𝑠.

(The kernel of this map is the roots of unity.) Recall that 𝐿(𝑈𝐾) is the subspace with
𝑥1+ · · ·+𝑥𝑟+𝑠 = 0, i.e. the subspace with x ·(1, . . . , 1) = 0. We choose our canonical element
𝛼 such that the projection of ℓ−1(𝛼) onto this subspace is in the fundamental parallelotope
made by the ℓ−1(𝜀1), . . . , ℓ

−1(𝜀𝑟+𝑠−1), i.e. we require

eq:acnf-latticeℓ−1(𝛼) ∈ ([0, 1]ℓ−1(𝜀1) + · · ·+ [0, 1]ℓ−1(𝜀𝑟+𝑠−1))⏟  ⏞  
=:𝑃

+R(1, . . . , 1) (35.11)

(For a set 𝑆 of scalars and a vector 𝑣 we let 𝑆𝑣 = {𝑠𝑣 : 𝑠 ∈ 𝑆}.) Taking the inverse image
under 𝜎 and noting the kernel is the roots of unity (Proposition 18.2.2), we have the following.

∙ For any 𝛼 ∈ 𝒪𝐾 , there are exactly 𝑤𝐾 associates 𝛽 of 𝛼 such that

𝜎(𝛽) ∈ R𝐿−1(𝑃 ).
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Combining with (35.10),

eq:acnf5𝜁𝐾(𝑠) =
1

𝑤𝐾

∑︁
[𝐼]∈Cl𝐾

N(b𝐼)
𝑠

∑︁
𝛼∈Rℓ−1(𝑃 )∩b𝐼

1

N(𝛼)𝑠
(35.12)

1.2.3 Reduce to a volume calculation

Now we show how the sums in (35.10) reduce to a volume calculation. We claim the following.

Lemma 35.1.1: lem:acnf-vol Let 𝐿 be a lattice in R𝑛, and let Δ(𝐿) denote the volume of its
fundamental parallelotope.6 Let 𝑉 be a bounded, measurable set containing the origin that
the points 𝐵(𝜕𝑉, 𝑐) at a distance of at most 𝑐 from the boundary satisfy

Vol[𝐵(𝜕𝑉, 𝑐)] -𝑐 𝑡
𝑛−1.

(There aren’t too many points near the surface.)7 Then

1. The number of points inside 𝑡𝑉 satisfies

|𝑡𝑉 ∩ 𝐿| = Vol(𝑉 )

Δ(𝐿)
𝑡𝑚 +𝑂(𝑡𝑚−1)

2. Suppose [0, 1]𝑉 = 𝑉 . Let 𝑁(𝑥) = (inf {𝑐 > 0 : 𝑥 ∈ 𝑐𝑉 })𝑚 (the norm associated to 𝑉 ,
made homogeneous of degree 𝑚). The function

𝑓(𝑠) =
∑︁
𝑥∈𝐿

1

𝑁(𝑥)𝑠

is meromorphic for ℜ𝑠 ≥ 1− 1
𝑚

with Res𝑠=1 𝑓(𝑠) =
Vol(𝑉 )
Δ(𝐿)

.

Proof. 1. Take a fundamental parallelotope and place one at each point in 𝑡𝑉 ∩ 𝐿; now
bound the difference between this area and the area of 𝑡𝑉 , cf. (35.5).

2. This is exactly as in (35.6). Noting that the number of 𝑥 ∈ 𝐿 with 𝑁(𝑥) ≤ 𝑛 is

6Distinguish this from Δ𝐾 ; the relationship between Δ𝐾 and Δ(𝐿) is given by Δ(𝐿) =
È
|Δ𝐾 |2−𝑟2 ; see

Proposition 16.3.1.
7See also VI.S2 in Lang. His Theorem 2 is phrased in terms of (𝑛−1)-Lipschitz parametrizable boundaries.
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Vol(𝑉 )
Δ(𝐿)

𝑛+ 𝑒𝑛 for some 𝑒𝑛 = 𝑂(𝑛
𝑚−1
𝑚 ),

𝑓(𝑠) =
∞∑︁
𝑛=1

�
Vol(𝑉 )

Δ(𝐿)
𝑛+ 𝑒𝑛

�∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥

writing 𝑛 = (𝑥− 𝑛) + 𝑛,

=
∞∑︁
𝑛=1

Vol(𝑉 )

Δ(𝐿)

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠 +

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1

)︂
=

Vol(𝑉 )

Δ(𝐿)

∫︁ ∞

1
𝑥−𝑠 𝑑𝑥+

Vol(𝑉 )

Δ(𝐿)

∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥

)︂
=

Vol(𝑉 )

Δ(𝐿)

1

𝑠− 1
+

Vol(𝑉 )

Δ(𝐿)

∞∑︁
𝑛=1

(︂∫︁ 𝑛+1

𝑛
𝑥−𝑠−1(𝑥− 𝑛) 𝑑𝑥+ 𝑒𝑛

∫︁ 𝑛+1

𝑛
𝑥−𝑠−1 𝑑𝑥

)︂⏟  ⏞  
𝑂(𝑛−𝑠− 1

𝑚 )

since 𝑒𝑛 = 𝑂(𝑛
𝑚−1
𝑚 ). The last sum converges for ℜ𝑠 > 1 − 1

𝑚
to an analytic function,

so we obtain an analytic continuation for 𝜁𝐾 to ℜ𝑠 > 1 − 1
𝑚
. (We have ℜ𝑠 > 1 − 1

𝑚

rather than ℜ𝑠 > 0 for 𝜁 because of the error term.) Reading off the coefficient of 1
𝑠−1

,
we see

Res𝑠=1 𝑓(𝑠) =
Vol(𝑉 )

Δ(𝐿)
.

1.2.4 Calculate the volume

We will apply Lemma 35.1.1 to
𝑉 = [0, 1]ℓ−1(𝑃 )b𝐼

where 𝑃 is as in (35.11). Here, the norm is 𝑁(x) = |𝑥1 · · ·𝑥𝑟1+𝑟2| on [0,∞)𝑉 ⊆ R𝑟1 × C𝑟2 .
We calculate the volume of 𝑉 : We want to evaluate (note 𝑥𝑖 ∈ R or C)

Vol(𝑉 ) =
∫︁
· · ·

∫︁
[0,1]ℓ−1(𝑃 )

𝑑𝑥1 . . . . . . 𝑑𝑥𝑟1+𝑟2 =
∫︁
· · ·

∫︁
[0,1]𝑒diag(1,...,1,

1
2 ,... 12 )𝑃

2𝑟1(2𝜋)𝑟2𝑥𝑟1+1 · · ·𝑥𝑟1+𝑟2 𝑑𝑥1 . . . 𝑑𝑥𝑟1+𝑟2

where diag(1, . . . , 1, 2, . . . , 2) sends (𝑥1, . . . , 𝑥𝑟1 , 𝑥𝑟1+1, . . . , 𝑥𝑟1+𝑟2) ↦→ (𝑥1, . . . , 𝑥𝑟1 , 2𝑥𝑟1+1, . . . , 2𝑥𝑟1+𝑟2)
and we note that the integral only depends on |𝑥𝑖|, so

1. for the integrals over R we can take the integral over 𝑥𝑖 > 0 and double them (recall
−1 is in the kernel of 𝐿), and

2. for the ones over C we can switch to polar coordinates (𝜃, 𝑟) ∈ R/2𝜋 × R≥0, and
integrate over 𝜃 to get 2𝜋.

We know the area of 𝑃 , so we change coordinates to make the integral over 𝑃 . Change

coordinates via the map ℓ (so 𝑥𝑖 =

⎧⎨⎩𝑒𝑥′𝑖 , 1 ≤ 𝑖 ≤ 𝑟1

𝑒𝑥
′
𝑖/2, 𝑟1 < 𝑖 ≤ 𝑟1 + 𝑟2

) which has determinant of
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Jacobian 2−𝑟2𝑒𝑥
′
1 · · · 𝑒𝑥′𝑟𝑒𝑥′𝑟+1/2 · · · 𝑒𝑥

′
𝑟1+𝑟2

/2 to get∫︁
· · ·

∫︁
𝑃−[0,∞)(1,...,1)

2𝑟1(2𝜋)𝑟2𝑒𝑥
′
𝑟+1/2 · · · 𝑒𝑥′𝑠/2(2−𝑟2𝑒𝑥′1 · · · 𝑒𝑥

′
𝑟1+𝑟2

/2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑠)

= 2𝑟1𝜋𝑟2
∫︁
· · ·

∫︁
𝑃−[0,∞)(1,...,1)

𝑒𝑥
′
1 · · · 𝑒𝑥

′
𝑟1+𝑟2 𝑑𝑥′1 . . . 𝑑𝑥

′
𝑠)

setting 𝑦 =
1√

𝑟1 + 𝑟2
(𝑥′1 + · · ·+ 𝑥′𝑟1+𝑟2); the integral

∫︁
𝑃
in the hyperplane of 𝑃

= 2𝑟1𝜋𝑟2
∫︁
𝑃

∫︁ 0

−∞
𝑒𝑦

√
𝑟1+𝑟2 𝑑x 𝑑𝑦

= 2𝑟1𝜋𝑟2
∫︁
𝑃

1√
𝑟1 + 𝑟2

𝑑x

= 2𝑟1𝜋𝑟2Vol(𝑃 )
1√

𝑟1 + 𝑟2

= 2𝑟1𝜋𝑟2 Reg𝐾 .

(Reference for last line) Now each sum in (35.12) has, by Lemma 35.1.1, residue equal to

Res𝑠=1

∑︁
𝛼∈Rℓ−1(𝑃 )∩b𝐼

1

N(a)𝑠
=

Vol(𝑉 )

Δ(𝜎(b𝐼))

=
2𝑟1𝜋𝑟2 Reg𝐾È
|Δ𝐾 |2−𝑟2N(b𝐼)

by Prop. 16.3.1

=⇒ Res𝑠=1 𝜁𝐾(𝑠) =
1

𝑤𝐾

∑︁
[𝐼]∈Cl𝐾

Nb𝐼

�
Res𝑠=1

∑︁
𝛼∈R𝐿−1(𝑃 )∩b𝐼

1

N(a)𝑠

�
=

1

𝑤𝐾

∑︁
[𝐼]∈Cl𝐾

Nb𝐼
2𝑟1𝜋𝑟2 Reg𝐾È
|Δ𝐾 |2−𝑟2N(b𝐼)

=
2𝑟1(2𝜋)𝑟2 Reg𝐾

𝑤𝐾
È
|Δ𝐾 |

.

This finishes the proof.

2 Special values of 𝐿-functions

sec:special-l

2.1 Evaluating 𝐿(1, 𝜒) for quadratic characters

We were able to find closed forms for the sums (35.1)–(35.3). The same method works in
general.

We now evaluate 𝐿(1, 𝜒) for quadratic characters in 2 ways. First, we know that we
have an algebraic expression for it. If 𝜒 has conductor 𝐷, then letting 𝐾 be the field with
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discriminant 𝐷, ??
𝐿(1, 𝜒) = Res𝑠=1 𝜁𝐾(𝑠) = ...

Second, we find an closed form for it analytically. Equating these two will give us a way to
calculate the class number analytically.

Theorem 35.2.1 (Formulas for 𝐿-functions): Let 𝜒 be a character modulo 𝑚. Let 𝜏(𝜒)
denote the Gauss sum

∑︀
𝑗∈(Z/𝑚) 𝜒(𝑗)𝜒

+(𝑗) where 𝜒+(𝑗) = 𝜁𝑗 is the additive character. We
have

𝐿(1, 𝜒) =

⎧⎨⎩− 𝜏(𝜒)
𝑚

∑︀
𝑘∈(Z/𝑚)× 𝜒(𝑘) ln sin

𝜋𝑘
𝑚
, 𝜒 even

𝜋𝑖𝜏(𝜒)
𝑚2

∑︀
𝑘∈(Z/𝑚)× 𝜒(𝑘)𝑘, 𝜒 odd.

In particular, if 𝐾 is a real quadratic field with discriminant 𝐷, then

𝐿(1, 𝜒) = − 1

ln 𝜀

∑︁
0<𝑘<𝐷

2
,𝑥⊥𝐷

𝜒(𝑥) ln sin
𝜋𝑘

𝑚
.

(In [?], this is Theorem 3, p. 336 and Theorem 1, p. 344.)

Proof. We write 𝐿(1, 𝜒) as a sum over residues modulo 𝑛, and then write the nasty sum∑︀
𝑛≡𝑚

1
𝑛𝑠 (partial zeta functions) in terms of nice sums using characters. We have

𝐿(1, 𝜒) =
∞∑︁
𝑛=1

𝜒(𝑛)
1

𝑛
=

∑︁
𝑘∈Z/𝑚

𝜒(𝑘)
∑︁

𝑛≡𝑘 (mod 𝐷)

1

𝑛

=
∑︁

𝑘∈Z/𝑚
𝜒(𝑘)

∑︁
𝑗∈Z/𝑚

1

𝑚

∑︁
𝑛

𝜁(𝑛−𝑘)𝑗
1

𝑛
orthogonality of characters

=
1

𝑚

∑︁
𝑘∈Z/𝑚

∑︁
𝑗∈Z/𝑚

𝜒(𝑘)𝜁−𝑗𝑘
∞∑︁
𝑛=1

𝜁𝑛𝑗

𝑛
.

The inner sum is just the Taylor series of a logarithm. We have8

∞∑︁
𝑛=1

𝜁𝑛𝑗

𝑛
= − ln(1− 𝜁𝑗).

Letting 𝜒+
𝑗 (𝑛) = 𝜁𝑛𝑗, we find the sum equals (using Proposition 13.2.2)

𝐿(1, 𝜒) = − 1

𝑚

∑︁
𝑗∈Z/𝑚

∑︁
𝑘∈Z/𝑚

𝜒(𝑘)𝜁−𝑗𝑘 ln(1− 𝜁𝑗)

= − 1

𝑚

∑︁
𝑗∈Z/𝑚

𝐺(𝜒, 𝜒+
−𝑗) ln(1− 𝜁𝑗)

= −𝜏(𝜒)
𝑚

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗) ln(1− 𝜁𝑗)

8We use the fact that if
∑︀∞

𝑛=1 𝑒
𝑖𝜃𝑛𝑎𝑛 converges, then lim𝑟→1− 𝑟

𝑛𝑒𝑖𝜃𝑛𝑎𝑛 equals that sum.
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where by Theorem 13.2.1 the sum is 0 for 𝑗 ̸⊥ 𝑚. actually a slight generalization We want
to express this sum in terms of ln of real values. We use a standard trick: match up 𝑗 and
−𝑗 in the sum. We consider two cases.

1. 𝜒 is even, i.e., 𝜒(𝑗) = 𝜒(−𝑗). Then the sum equals

−𝜏(𝜒)
𝑚

1

2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗)(ln(1− 𝜁𝑗) + ln(1− 𝜁−𝑗)) = −𝜏(𝜒)
𝑚

1

2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗)(ln(1− 𝜁𝑗)2𝜁−𝑗)

= −𝜏(𝜒)
𝑚

1

2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗) ln((𝜁
𝑗
2 − 𝜁−

𝑗
2 )2)

= −𝜏(𝜒)
𝑚

∑︁
𝑗∈(Z/𝑚)×

𝜒(𝑗) ln(2 sin
𝜋𝑗

𝑚
)

= −𝜏(𝜒)
𝑚

∑︁
𝑗∈(Z/𝑚)×

𝜒(𝑗) ln(sin
𝜋𝑗

𝑚
)

where the 2 came out as a ln 2 and we use
∑︀
𝑗∈Z/𝑚 𝜒(𝑗) = 0.

𝜒 is odd, i.e., 𝜒(−𝑗) = −𝜒(𝑗). Then the sum equals

−𝜏(𝜒)1
2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗)(ln(1− 𝜁𝑗)− ln(1− 𝜁−𝑗)) = −𝜏(𝜒)
𝑚

1

2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗)(ln(𝜁𝑗))

= −𝜏(𝜒)
𝑚

1

2

∑︁
𝑗∈(Z/𝑚)×

𝜒(−𝑗)
(︂
2𝜋𝑖𝑗

𝑚

)︂
=
𝜋𝑖𝜏(𝜒)

𝑚2

∑︁
𝑗∈(Z/𝑚)×

𝜒(𝑗)𝑗

2.2 The class number counts quadratic residues/nonresidues

Where else does the class number appear? There is no explicit formula for the fundamental
unit, but remarkably we can find an explicit formula that works for all real quadratic fields
and gives a power of the fundamental unit. The class number appears as the exponent.

Theorem 35.2.2: Let 𝐾 be a real quadratic field with discriminant 𝐷 and character 𝜒.
Then

𝜂 :=
∏︁

𝑎⊥𝐷,0<𝑎<𝐷
2

�
sin

𝜋𝑎

𝐷

�−𝜒(𝑎)
is a unit and if 𝜀 > 1 is the fundamental unity,

𝜀ℎ = 𝜂.

In particular,
∏︀
( 𝑏
𝑝)=−1 sin

𝜋𝑏
𝑝
>
∏︀
(𝑎
𝑝)=1 sin

𝜋𝑎
𝑝
.
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For 𝑝 ≡ 1 (mod 4), think of the last statement as saying that quadratic residues mod 𝑝
cluster at the beginning of (0, 𝑝/2) (where sin 𝜋𝑥

𝑝
is small) and the quadratic residues mod 𝑝

cluster at the end. What about 𝑝 ≡ 3 (mod 4)?

Proof. Exponentiate both sides of

ℎ = − 1

ln 𝜀

∑︁
𝑥⊥𝐷,0<𝑥<𝐷

2

𝜒(𝑥) ln sin
𝜋𝑥

𝐷

(ln 𝜀)ℎ =
∑︁

𝑥⊥𝐷,0<𝑥<𝐷
2

ln sin
𝜋𝑥

𝐷
(−𝜒(𝑥))

𝜀ℎ =
∏︁

𝑎⊥𝐷,0<𝑎<𝐷
2

�
sin

𝜋𝑎

𝐷

�−𝜒(𝑎)
.

In the imaginary quadratic case, we have an explicit formula for the class number that
depends just on calculating quadratic residues, and not on any anything analytic (ln, sin,...).

Theorem 35.2.3: Let 𝑝 ≡ 3 (mod 4) and let 𝑅,𝑁 be the number of quadratic residues
and nonresidues in (0, 𝑝

2
). Then the class number of Q(

√
−𝑝)is

ℎ =

⎧⎨⎩1
3
(𝑅−𝑁), 𝑝 ≡ 3 (mod 8)

𝑅−𝑁, 𝑝 ≡ 7 (mod 8).

In particular, 𝑅 > 𝑁 .

(p. 346 in BS)

Proof. We use an averaging argument: to simplify a sum we pair up elements like 𝜒(𝑥), 𝜒(𝑚−
𝑥) or 𝜒(𝑥), 𝜒(𝑚

2
+ 𝑥) for cancellation.

Consider 2 cases.

1. If |𝐷| is even, it is a multiple of 4. Note 2𝑟−1 + 1 is not a quadratic residue modulo 2𝑟

for 𝑟 ≥ 2 (why), so 𝑚
2
+ 1 is not a quadratic residue modulo 𝑚, and 𝜒(𝑚) = −1. We

pair up 𝜒(𝑥), 𝜒(𝑥+ 𝑚
2
) to get

ℎ =
1

2

∑︁
0<𝑥<𝑚

2

𝜒(𝑥).

2. If |𝐷| is odd, noting the character of an imaginary quadratic field is odd, 𝜒(−1) = −1,
again we pair up 𝜒(𝑥) and 𝜒(𝑚− 𝑥) to get

ℎ = − 2

|𝐷|
∑︁

0<𝑥<𝑚
2

𝜒(𝑥)𝑥+
∑︁

0<𝑥<𝑚
2

𝜒(𝑥).
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There is a sum of 𝜒(𝑥)𝑥, but there’s a trick to get rid of it. We instead flip some of
the 𝑥 into 𝑚− 𝑥, so that we hit exactly the multiples of 2, and then take out a 𝜒(2).
We get

ℎ𝜒(2) = − 4

|𝐷|
∑︁

0<𝑥<𝑚
2

𝜒(𝑥)𝑥+
∑︁

0<𝑥<𝑚
2

𝜒(𝑥).

Subtracting we get

ℎ =
1

2− 𝜒(2)
∑︁

0<𝑥<𝑚
2
,𝑥⊥𝐷

𝜒(𝑥).

Now apply to 𝑝 ≡ 3 (mod 4), Z
[︁
−1+

√
−𝑝

2

]︁
.

Note that there does not seem to be an “elementary” proof of 𝑅 > 𝑁 for 𝑝 ≡ 3 (mod 8).
See http://mathoverflow.net/questions/25707/intuition-for-a-formula-that-expresses-the-class-number-of-an-imaginary-quadrati
for a discussion.

3 Cyclotomic!

We can calculate for cyclotomic

ℎ =
𝑝𝑝/2

2𝑚−1𝜋𝑚𝑅

∏︁
𝜒 ̸=𝜒0

𝐿(1, 𝜒)

for even and odd characters

|𝐿(1, 𝜒2𝑘) =
2
√
𝑝
|
𝑚−1∑︁
𝑟=0

𝜃2𝑘𝑟 ln |1− 𝜁𝑔𝑟 |

|𝐿(1, 𝜒2𝑘−1) =
𝜋

𝑝3/2
|𝐹 (𝜃2𝑘−1)|

and

ℎ =
2𝑚−1

𝑅

𝑚−1∏︁
𝑘=1

⃒⃒⃒⃒⃒
𝑚−1∑︁
𝑟=0

𝜃2𝑘𝑟 ln |1− 𝜁𝑔𝑟 |
⃒⃒⃒⃒⃒⏟  ⏞  

=ℎ+

1

(2𝑝)𝑚−1
|𝐹 (𝜃) · · ·𝐹 (𝜃)𝑝−2|⏟  ⏞  

ℎ*

.

Show directly ℎ+ is class number of totally real subfield.
problem for CFT: Show that if 𝐿/𝐾 is an extension with no proper unramified extension,

then ℎ𝐾 | ℎ𝐿.

3.1 Appendix

Theorem 35.3.1: Let 𝑃 be the fundamental parallelogram of 𝐿(𝑈𝐾), and let Vol be the
(𝑟1 + 𝑟2 − 1)-dimensional area. Then

Reg𝐾 =
1√

𝑟1 + 𝑟2
.
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Proof. The regulator is defined by deleting any column of the matrix with rows 𝐿(𝜀𝑖), i.e.,
it is the area of the projection to a hyperplane 𝑥𝑖 = 0.

These projections have the same area.
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Chapter 36

Zeta and 𝐿-functions in number fields

l-nf In this chapter we will define zeta and 𝐿-functions in number fields, to obtain density
theorems for primes in those fields, in particular:

1. Prime Number Theorem for number fields, and

2. Chebotarev Density Theorem.

To define 𝐿-functions, we will have to generalize our definition of characters.
As in the previous two chapters, we need a functional equation and analytic continuation

of the 𝐿-function in order to get good asymptotic estimates. This presents a significant
challenge. There are two approaches:

1. (Hecke) Generalize the proof for the 𝐿-functions over Q. Namely, use a higher-
dimensional analogue of theta functions.

2. (Tate) This is an illustration of the local-to-global principle. First define 𝐿-functions
over local (complete) fields. This is easier because there is only a single prime to work
with. Then put these 𝐿-functions together to get a 𝐿-function for the global field.

Note that 𝐿-functions over complete fields are much simpler—provided that you have the
background in measure theory and functional analysis. We will give the required background
in Section 5.

As an illustration, note that the functional equation for 𝜁 (and similarly 𝐿) becomes more
transparent (𝜉(𝑠) = 𝜉(1− 𝑠)) after we define 𝜉:

𝜉(𝑠) = 𝜋− 𝑠
2Γ
�𝑠
2

�
𝜁(𝑠) = 𝜋− 𝑠

2Γ
�𝑠
2

�⏟  ⏞  
?

∏︁
𝑝 prime

1

1− 𝑝−𝑠
.

The presence of the term in front seems quite mysterious. However, we can think of it as
coming from the infinite place; so instead of thinking of 𝜉 as a product over primes we should
think of it as coming from a product over places. We will define the zeta-function over a
local field 𝐾 by

𝜁(𝑓, 𝑠) =
∫︁
𝐾×

𝑓(𝑎) ‖𝑎‖𝑠𝑣 𝑑𝑎
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where we choose for 𝑓 a function that is its own Fourier transform (to get a good transfor-
mation law). Note that the measure here is the Haar measure on 𝐾×. For the case 𝐾 = Q𝑝,
𝑓 is a characteristic function; by calculating this integral on the sets {𝑎 : 𝑣𝑝(𝑎) = 𝑛}, 𝑛 ∈ Z
and summing, we get a geometric series which becomes the factor 1

1−𝑝−𝑠 up to a constant.

For the real place, we choose 𝑓(𝑥) = 1
2𝜋
𝑒−2𝜋𝑥2 and get 𝜋− 𝑠

2Γ
(︀
𝑠
2

�
out. Magic.

1 Zeta and 𝐿-functions

2 Class number formulas

3 Density theorems (weak form)

4 Analytic continuation: Hecke’s proof

5 Measure theory and functional analysis

measure-theory

5.1 Measure theory

For a set 𝐸 ̸= 𝜑 define the power set

𝒫(𝐸) = 2𝐸 = {Γ : Γ ⊆ 𝐸}.

Definition 36.5.1: A subset ℬ ⊆ 𝒫(𝐸) is a 𝜎-algebra it satisfies the following properties:

1. 𝐸 ∈ ℬ.

2. ℬ is closed under complementation: Γ ∈ ℬ implies Γ𝑐 = 𝐸∖Γ ∈ ℬ.

3. {Γ𝑛 : 𝑛 ≥ 1} ⊆ ℬ implies
⋃︀∞
𝑛=1 Γ𝑛 ∈ ℬ.

Note that items 2 and 3 imply that a countable intersection of elements in ℬ is in ℬ, and
a difference of sets in ℬ is in ℬ.

Definition 36.5.2: We call (𝐸,ℬ) is a measurable space. A measure on (𝐸,ℬ) is a map
𝜇 : ℬ → [0,∞] such that

1. 𝜇(𝜑) = 0.

2. (Countable additivity) If {Γ𝑛 : 𝑛 ≥ 1} is a family of pairwise disjoint subsets of 𝐸,
then

𝜇

(︃ ∞⋃︁
𝑛=1

Γ𝑛

)︃
=

∞∑︁
𝑛=1

𝜇(Γ𝑛),
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i.e. the volume of the whole is the sum of the volume of the parts.

Compare this to the definition of a topological space—measurable spaces have measure-
able sets while topologies have open sets.

Example 36.5.3: Define a measure 𝜇 on the integers Z by associating some 𝜇𝑖 ≥ 0 for each
integer 𝑖, and setting

𝜇(Γ) =
∑︁
𝑖∈Γ

𝜇𝑖.

Our strategy is to start with some class of nice, well-defined subsets, and generate more.

Definition 36.5.4: For a family of subsets 𝒞 ⊆ 𝒫(𝐸), define the 𝜎-algebra generated by
𝒞, denoted by 𝜎(𝒞), to be the smallest 𝜎-algebra containing 𝒞. In other words it is the
intersection of all 𝜎-algebras containing 𝒞. (This is well-defined since the power set is a
𝜎-algebra containing 𝒞.)

If 𝐸 is a topological space and 𝒞 = {Γ ⊆ 𝐸 : Γ open} then 𝜎(𝒞) = ℬ𝐸 is called the Borel
𝜎-algebra. (The sets are called Borel sets.)

Lebesgue showed that there exists a unique measure on ℬR𝑁
such that 𝜇R𝑁 (𝐼) = vol(𝐼)

for rectangles 𝐼.
DEFINE integrals given a measure... DEFINE 𝐿𝑟...
The following shows that given one measure, “essentially” all other measures can be

written in terms of an integral.

Theorem 36.5.5 (Riesz representation): Suppose that (𝐸,ℬ, 𝜈) is a 𝜎-finite measure space
and 𝜇 is a finite measure on (𝐸,ℬ) with 𝜇 ≤ 𝜈. Then there is a unique 𝜙 ∈ 𝐿1(𝜈;R) such
that

𝜇(Γ) =
∫︁
Γ
𝜙𝑑𝜈

for all Γ ∈ ℬ.

Proof. Stroock [add reference], 8.1.2.

Definition 36.5.6: Let 𝜇 be a Borel measure on a locally compact Hausdorff space 𝑋 and
𝐸 be a subset. 𝜇 is outer regular on 𝐸 if 𝜇(𝐸) = inf {𝜇(𝑈) : 𝑈 ⊇ 𝐸,𝑈 open} and inner
regular on 𝐸 if 𝜇(𝐸) = sup {𝜇(𝐾) : 𝐾 ⊆ 𝐸,𝐾 compact}.

A Radon measure on 𝑋 is a Borel measure that is finite on compact sets, regular on
all Borel sets, and inner regular on all open sets.

5.2 Haar measure

Definition 36.5.7: Let 𝐺 be a topological group and 𝜇 a Borel measure. 𝜇 is left trans-
lation invariant if for all Borel subsets 𝐸 of 𝐺, 𝜇(𝑠𝐸) = 𝜇(𝐸). Ditto for right translation
invariant.
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Let 𝐺 be a locally compact topological group. A left (right) Haar measure on 𝐺 is a
nonzero Radon measure 𝜇 on 𝐺 that is left (right) translation-invariant. A bi-invariant Haar
measure is a Haar measure that is both left and right invariant.

Theorem 36.5.8: Let 𝐺 be a locally compact group. Then there exists a left/right Haar
measure, unique up to scalar multiple.

Proof. [RV99], Theorem 1.8.

5.3 Fourier inversion and Pontryagin duality

Definition 36.5.9: Let 𝐺 be an abelain topological group. A continuous complex char-
acter on 𝐺 is continuous homomorphism 𝐺→ 𝑆1, where 𝑆1 = {𝑧 ∈ C : |𝑧| = 1}.1

Under multiplication, the continuous complex characters form a group Ò𝐺, called the
Pontryagin dual of 𝐺. Give it the compact-open topology, i.e. the topology such that

𝑊 (𝐾,𝑉 ) =
⌋︀
𝜒 ∈ Ò𝐺 : 𝜒(𝐾) ⊆ 𝑉

{︀
, 𝐾 compact, 𝑉 open

is a neighborhood base for the trivial character.

Definition 36.5.10: Let 𝐺 be a locally compact topological group. A Haar-measurable
function 𝜙 : 𝐺 → C in 𝐿∞(𝐺) is of positive type if for any 𝑓 ∈ 𝒞𝑐(𝐺) (continuous,
compact support), x

𝐺×𝐺

𝜙(𝑠−1𝑡)𝑓(𝑠) 𝑑𝑠𝑓(𝑡) 𝑑𝑡 ≥ 0.

Definition 36.5.11: Let 𝑓 ∈ 𝐿1(𝐺). The Fourier transform of 𝑓 is the function ̂︀𝑓 : Ò𝐺→
C defined by ̂︀𝑓(𝜒) = ∫︁

𝐺
𝑓(𝑦)𝜒(𝑦) 𝑑𝑦.

Definition 36.5.12: Define 𝑉 (𝐺) to be the complex span of continuous functions of positive
type ib 𝐺 and 𝑉 1(𝐺) = 𝑉 (𝐺) ∩ 𝐿1(𝐺).

Theorem 36.5.13 (Fourier inversion): There exists a Haar measure on Ò𝐺 such that for all
𝑓 ∈ 𝑉 1(𝐺),

𝑓(𝑦) =
∫︁̂︀𝐺 ̂︀𝑓(𝜒)𝜒(𝑦) 𝑑𝜒.

The Fourier transform 𝑓 ↦→ ̂︀𝑓 identifies 𝑉 1(𝐺) with 𝑉 1(Ò𝐺).
Example 36.5.14: The Pontryagin dual of R is R, via the identification 𝑦 ↦→ 𝑒2𝜋𝑖𝑥𝑦. The
Fourier transform is ̂︀𝑓(𝑦) = ∫︁

R
𝑓(𝑥)𝑒−𝑖𝑥𝑦 𝑑𝑥.

1Alternatively, 𝐺→ R/Z, thought of additively.

510



Number Theory, S36.6

The Fourier inversion formula reads

𝑓(𝑥) = 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇
∫︁
R
̂︀𝑓(𝑦)𝑒𝑖𝑥𝑦 𝑑𝑥

The Pontryagin dual of R/Z is Z, via the identification 𝑒2𝜋𝑖𝑛𝑥. The Fourier transform iŝ︀𝑓(𝑦) = ∫︁
R/Z

𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥

and the Fourier inversion formula reads

𝑓(𝑦) = 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇
∑︁
𝑛∈Z

̂︀𝑓(𝑦)𝑒2𝜋𝑖𝑛𝑦.
The Pontryagin dual of an abelain group 𝐺 can be identified (noncanonically) with 𝐺

itself. Fourier inversion formula gives character formula! Connect with stuff in chapter on
characters.

Theorem 36.5.15 (Pontryagin duality): The map 𝛼 : 𝐺→ ̂︁̂︁𝐺 defined by

𝛼(𝑦)(𝜒) = 𝜒(𝑦)

is an isomorphism of topological groups. Hence 𝐺 and Ò𝐺 are mutually dual.

Measure on local fields. Relate to metric. Ostrowski’s theorem again.

Theorem 36.5.16: thm:rest-prod Suppose

𝐺 =
′∏︁
𝑣

(𝐺𝑣, 𝐻𝑣)

is a restricted direct product of locally compact abelian groups 𝐺𝑣 with respect to open
subgroups 𝐻𝑣. Then Ò𝐺 ∼= ′∏︁Ó𝐺𝑣.

APPLY TO IDELES/ADELES!

6 Analytic continuation: Tate’s thesis

The main steps of the proof are as follows.

1. Define an additive and multiplicative measure on local fields, and classify all characters
on these fields. We divide into three cases: real, complex, and p-adic.

2. Define local 𝐿-functions and prove a functional equation for them. This functional
equation comes directly from the Fourier inversion formula applied to the local fields.
Compute the functional equation in each of the three cases.
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3. Show that the adele ring—a restricted direct product of local fields—behaves nicely as
a product. That is, the following hold.

(a) The measure is the product of local measures.

(b) Products of nice (continuous, 𝐿1) functions on the 𝐾𝑣 give nice functions on 𝐾.

(c) The Fourier transform of a product is the product of the Fourier transforms.

Moreover, the adele is self-dual, because it is a restricted product of self-dual spaces.

4. Establish the Poisson formula and Riemann-Roch Theorem. Embed 𝐾 into A𝐾 and
think of 𝐾 as a “lattice” in A𝐾 to apply the Riemann-Roch Theorem. The local
functional equations plus the Riemann-Roch Theorem give the analytic continuation
and functional equation for the global 𝐿-function. This formula gives a relationship
between a character and its dual, but we know that A𝐾 is self-dual.

5. Specialize to the case of Hecke characters to obtain the classical functional equation.

We now carry out this program.

6.1 Haar measure on local fields

6.2 Local functional equation

Definition 36.6.1: Let 𝑓 be a NICE function. Define the local 𝐿-function of 𝑓 to be the
function on quasi-characters with positive exponent given by

𝐿(𝑓, 𝑐) =
∫︁
𝐾
𝑓(𝑥)𝑐(𝑥) 𝑑×𝑥.

Traditionally, we think of 𝐿 functions as functions of a complex variable. We recover this
viewpoint if we write 𝑐 in the form

𝑐(𝑥) = 𝑐0(𝑥)|𝑥|𝑠 = 𝑐0(𝑥)|𝑥|𝜎+𝑖𝑡,

where 𝑐0(𝑥) is a character in the same equivalence class as 𝑐(𝑥). Then fixing 𝑐0, we can think
of 𝐿(𝑓, 𝑐) as a function in 𝑠:

𝐿(𝑓, 𝑐0, 𝑠) := 𝐿(𝑓, 𝑐0| · |𝑠).

Lemma 36.6.2: For any 𝑓, 𝑔 NICE and any quasi-character 𝑐 with exponent in (0, 1),

𝐿(𝑓, 𝑐)𝐿(̂︀𝑔, ̂︀𝑐) = 𝐿( ̂︀𝑓, ̂︀𝑐)𝐿(𝑔, 𝑐).
Here ̂︀𝑐(𝑥) = |𝑥|𝑐(𝑥)−1.

In other words, where it is defined 𝐿(𝑓,𝑐)

𝐿(̂︀𝑓,̂︀𝑐) is a function determined only by 𝑐. Thus we get

the following.
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Theorem 36.6.3 (Local functional equation for 𝐿): thm:local-l-feq A local 𝐿-function has ana-
lytic continuation to the domain of all quasi-characters given by a functional equation

𝐿(𝑓, 𝑐) = 𝜌(𝑐)𝐿( ̂︀𝑓, ̂︀𝑐),
where 𝜌(𝑐) is a function independent of 𝑓 .

We now calculate the functional equations for 𝐾 real, complex, and p-adic. To calculate
𝜌(𝑐), it suffices to choose a nice 𝑓 and compute

𝜌(𝑐) =
𝐿(𝑓, 𝑐)

𝐿( ̂︀𝑓, ̂︀𝑐)
since this function is independent of 𝑓 . The results are summarized in the following table.

Theorem 36.6.4: The quasi-characters for𝐾 are given in the top row of the table. Defining
the corresponding functions 𝑓 as in the second row, th Fourier transforms of those functionŝ︀𝑓 are those given in the third row, the 𝜁-functions are given in the fourth row, and the
functions 𝜌(𝑐) are given in the fifth row.

R C 𝐾p

𝑐 |𝑥|𝑠
sign(𝑥)|𝑥|𝑠

𝑐𝑛(𝛼)|𝑥|𝑠
where 𝑐𝑛(𝑟𝑒

𝑖𝜃) = 𝑒𝑖𝑛𝜃
𝑐𝑛(𝛼) character
of conductor f = p𝑛

𝑓 𝑓(𝑠) = 𝑒−𝜋𝑠
2

𝑓±(𝑠) = 𝑠𝑒−𝜋𝑠
2

𝑓𝑛(𝑠) =⎧⎨⎩𝑠|𝑛|𝑒−2𝜋|𝑠|2 , 𝑛 ≥ 0

𝑠|𝑛|𝑒−2𝜋|𝑠|2 , 𝑛 ≤ 0

𝑓𝑛 = 𝑒2𝜋𝑖𝜆(𝑠)1(df)−1

𝑓 ̂︀𝑓(𝑦) = 𝑓(𝑦)Ó𝑓±(𝑦) = 𝑖𝑓±(𝑦)

̂︁𝑓𝑛(𝑦) = 𝑖|𝑛|𝑓−𝑛(𝑦) ̂︁𝑓𝑛 = (Nd)
1
2Nf11+f

𝐿 𝐿(𝑓, | · |𝑠) = 𝜋− 𝑠
2Γ
(︀
𝑠
2

�
𝐿(𝑓±, | · |𝑠) = 𝜋− 𝑠+1

2 Γ
(︀
𝑠+1
2

�
𝐿( ̂︀𝑓,Ô| · |𝑠) = 𝜋

𝑠−1
2 Γ

(︀
1−𝑠
2

�
𝐿(Ó𝑓±,Ö±| · |𝑠) =
𝑖𝜋

𝑠−2
2 Γ

(︀
2−𝑠
2

�
𝐿(𝑓𝑛, 𝑐𝑛| · |𝑠) =
(2𝜋)1−𝑠+

|𝑛|
2 Γ

(︁
𝑠+ |𝑛|

2

)︁
𝐿(̂︁𝑓𝑛,×𝑐𝑛| · |𝑠) =
𝑖|𝑛|(2𝜋)𝑠+

|𝑛|
2 Γ

(︁
1− 𝑠+ |𝑛|

2

)︁
𝐿(𝑓𝑛, 𝑐𝑛| · |𝑠) =

Nd−𝑠Nd𝑠𝐺

�
𝑐𝑛𝑒

2𝜋𝑖
(︀

∙
𝜋ordp(df)

��
𝐿(̂︁𝑓𝑛,×𝑐𝑛| · |𝑠) = Nd

1
2𝜇×(1 + f)

𝜌 𝜌(| · |𝑠) =
21−𝑠𝜋−𝑠 cos

(︀
𝜋𝑠
2

�
Γ(𝑠)

𝜌(±| · |𝑠) =
−𝑖21−𝑠𝜋−𝑠 sin

(︀
𝜋𝑠
2

�
Γ(𝑠)

𝜌(𝑐𝑛| · |𝑠) =
(−𝑖)𝑛 (2𝜋)1−𝑠Γ(𝑠+ |𝑛|

2 )
(2𝜋)𝑠Γ((1−𝑠)+ |𝑛|

2 )

𝜌(| · |𝑠) = Nd𝑠−
1
2
1−Np𝑠−1

1−Np−𝑠

𝜌(| · |𝑠) =

N(df)𝑠−
1
2Nf−

1
2𝐺

�
𝑐, 𝑒

2𝜋𝑖
(︀

∙
𝜋ordp(df)

��
7 Density theorems (strong form)
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Chapter 37

Theta and elliptic functions

1 Theta functions

Definition 37.1.1: A theta function of degree 𝑛 on [𝜔1, 𝜔2] with parameter 𝑏 ̸= 0 is an
entire function 𝑓(𝑧) such that

𝑓(𝑧 + 𝜔1) = 𝑓(𝑧), 𝑓(𝑧 + 𝜔2) = 𝑏𝑒
− 2𝜋𝑖𝑛𝑧

𝜔1 𝑓(𝑧).

We aim to classify all such functions. For simplicity assume 𝜔1 = 1 and 𝜔2 = 𝜏 , with
ℑ𝜏 > 0. (Rescale.)

Proposition 37.1.2: The space of theta functions of degree 𝑛 and parameter 𝑏 forms a
𝑛-dimensional space. They are in the form

∞∑︁
𝑘=0

𝑎𝑘𝑞
𝑘

where 𝑞 = 𝑒2𝜋𝑖𝑧, 𝑎0, . . . , 𝑎𝑛−1 can be freely chosen, and the coefficients satisfy the recursive
relation

𝑎𝑚+𝑝𝑛 = 𝑏−𝑝𝑞
𝑚𝑝+

𝑛𝑝(𝑝−1)
2

0 𝑎𝑚, 𝑞0 = 𝑒−2𝜋𝑖𝜏 .

DARN there are so many different definitions of the theta function. In particular, the
following is a theta function of degree 1 and parameter 𝑏:

𝜃(𝑧) =
∑︁
𝑘∈Z

(−1)𝑘𝑞
𝑘(𝑘−1)

2 𝑒2𝜋𝑖𝑘𝑧 = 𝐶(𝑞0)
∞∏︁
𝑛=0

(1− 𝑞𝑛0 𝑞)(1− 𝑞𝑛+1
0 𝑞−1).

We have the following analogue of the fundamental theorem of algebra.

Theorem 37.1.3: Any theta function of degree 𝑛 is in the form

𝑓(𝑧) = 𝐾𝜃(𝑧 − 𝑧1) · · · 𝜃(𝑧 − 𝑧𝑛)𝑞𝑟

for some 𝑧1, . . . , 𝑧𝑛 ∈ C and 𝑟 ∈ Z.
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1.1 Transformation law

2 Elliptic functions

Definition 37.2.1: An elliptic function on the lattice Λ is a meromorphic function 𝑓(𝑧)
on C such that

𝑓(𝑧 + 𝜔) = 𝑓(𝑧) for all 𝜔 ∈ Λ, 𝑧 ∈ C.

Denote the space of all such functions by C(Λ).

There are nice relationships involving the zeroes and poles of elliptic functions.

Theorem 37.2.2: Let 𝑓 be an elliptic function on Λ.

1.
∑︀
𝑤∈C/Λ Res𝑤(𝑓) = 0.

2.
∑︀
𝑤∈C/Λ ord𝑤(𝑓) = 0, i.e. in a fundamental parallelogram there are as many zeros as

poles, counting multiplicities.

3.
∑︀
𝑤∈C/Λ ord𝑤(𝑓)𝑤 ∈ Λ.

Proof. 1.

2.

3. Label the edges of the fundamental parallelogram as follows.

𝛼 + 𝜔2
𝐶2 // 𝛼 + 𝜔1 + 𝜔2

𝐶3ww

𝛼

𝐶1

;;

𝛼 + 𝜔1𝐶4

oo

We calculate
∫︀
𝜕𝑃

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 in two ways.

Way 1:∫︁
𝜕𝑃

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 =

�∫︁
𝐶1

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 +

∫︁
𝐶3

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧

�
+

�∫︁
𝐶2

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 +

∫︁
𝐶4

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧

�
.

Noting that 𝐶3 is just 𝐶1 shifted by 𝜔1 and reversed, and that 𝐶2 is just 𝐶4 shifted by
𝜔2 and reversed, this equals∫︁
𝜕𝑃

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 =

∫︁
𝐶1

�
𝑧𝑓 ′(𝑧)

𝑓(𝑧)
− (𝑧 + 𝜔1)𝑓

′(𝑧 + 𝜔1)

𝑓(𝑧 + 𝜔1)

�
𝑑𝑧+

∫︁
𝐶4

�
𝑧𝑓 ′(𝑧)

𝑓(𝑧)
− (𝑧 + 𝜔2)𝑓

′(𝑧 + 𝜔2)

𝑓(𝑧 + 𝜔2)

�
𝑑𝑧.

Since 𝑓 is elliptic, 𝑓(𝑧) = 𝑓(𝑧 + 𝜔1) = 𝑓(𝑧 + 𝜔2), giving∫︁
𝜕𝑃

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 = −𝜔1

∫︁
𝐶1

𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 − 𝜔2

∫︁
𝐶4

𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧.
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Now ln(𝑓(𝑧)) can be defined in a neighborhood around 𝐶1 and 𝐶4, since 𝑓 has no poles
or zeros on 𝜕𝑃 . Since 𝑓(𝛼) = 𝑓(𝛼+𝜔1) = 𝑓(𝛼+𝜔2), we have ln(𝑓(𝛼+𝜔1))−ln(𝑓(𝛼)) =
2𝜋𝑖𝑐1 and ln(𝑓(𝛼))− ln(𝑓(𝛼+𝜔2)) = 2𝜋𝑖𝑐2 for some integers 𝑐1 and 𝑐2. But these equal
the above integrals by definition of ln 𝑓(𝑧), so∫︁

𝜕𝑃

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
𝑑𝑧 = −2𝜋𝑖(𝜔1𝑐1 + 𝜔2𝑐2). (37.1)

Way 2: Note Res𝑎
𝑓 ′(𝑧)
𝑓(𝑧)

= ord𝑎 𝑓 so Res𝑎
𝑧𝑓 ′(𝑧)
𝑓(𝑧)

= 𝑎 ord𝑎 𝑓 . Letting 𝑎𝑘 be the poles and
zeros of 𝑓 in 𝑃 , we get by Cauchy’s Theorem that∫︁

𝜕𝑃

𝑧𝑓 ′(𝑧)

𝑓(𝑧)
= 2𝜋𝑖

∑︁
𝑘

Res𝑎𝑘
𝑓 ′(𝑧)

𝑓(𝑧)
= 2𝜋𝑖

∑︁
𝑘

𝑚𝑘𝑎𝑘. (37.2)

Equating (37.1) and (37.2) give∑︁
𝑘

𝑚𝑘𝑎𝑘 = −𝜔1𝑐1 − 𝜔2𝑐2 ≡ 0 (mod Λ).

Definition 37.2.3: The order of an elliptic function is the number of poles in a fundamental
parallelogram.

It turns out that elliptic functions can be expressed as quotients of theta functions.

Theorem 37.2.4:

𝑓(𝑧) = 𝐾
𝜃(𝑧 − 𝑎1) · · · 𝜃(𝑧 − 𝑎𝑘)
𝜃(𝑧 − 𝑏1) · · · 𝜃(𝑧 − 𝑏𝑘)

,
𝑘∑︁
𝑖=1

𝑎𝑖 =
𝑘∑︁
𝑖=1

𝑏𝑖.

3 Weierstrass ℘-function

Our basic example of an elliptic function is the following.

Definition 37.3.1: Define the Weierstrass ℘-function for the lattice Λ by

℘(𝑧) =
1

𝑧2
+

∑︁
𝜆∈Λ∖{0}

�
1

(𝑧 − 𝜆)2
− 1

𝜆2

�
.

Proposition 37.3.2: The series defining ℘ converges absolutely and locally uniformly on
C − {Λ}. ℘ is an even elliptic function with period Λ, analytic except for a double pole at
each point of Λ,

In fact, we will see that it is the building block for all elliptic functions.
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Proof.

Theorem 37.3.3: Every even elliptic function can be written as a polynomial in ℘. Every
elliptic function can be written as a polynomial in ℘ and ℘′.

Theorem 37.3.4:

℘(𝑧)− ℘(𝑎) = 𝜃(𝑧 + 𝑎)𝜃(𝑧 − 𝑎)
𝜃(𝑧)2

· 𝜃′(0)2

𝜃(𝑎)𝜃(−𝑎)
.

Theorem 37.3.5 (Weierstrass differential equation):

℘′(𝑧)2 = 4(℘(𝑧)− 𝑒1)(℘(𝑧)− 𝑒2)(℘(𝑧)− 𝑒3) = 4℘(𝑧)3 − 60𝐺4⏟  ⏞  
𝑔2

℘(𝑧)− 140𝐺6⏟  ⏞  
𝑔3

(𝑧)

This says that for every 𝑧, the point (℘(𝑧), ℘′(𝑧)) lies on the elliptic curve 𝑦2 = 4𝑥3 −
60𝐺4−140𝐺6. Together with surjectivity and the Uniformization Theorem 37.3.6 this implies
that all elliptic curves can be parameterized in this way. (NONZERO DISC.)

Theorem 37.3.6 (Unifomization theorem): uniformization Let 𝐴,𝐵 ∈ C satisfy 𝐴3 − 27𝐵2 ̸= 0.
Then there exists a unique lattice Λ ⊂ C such that 𝑔2(Λ) = 𝐴 and 𝑔3(Λ) = 𝐵.

3.1 ℘ and lattices

Theorem 37.3.7: Let 𝐿 be the lattice corresponding to ℘(𝑧). For 𝛼 ∈ C∖Z, the following
are equivalent.

1. ℘(𝛼𝑧) is rational function in ℘(𝑧).

2. 𝛼𝐿 ⊆ 𝐿.

3. There is an order O in an imaginary quadratic field 𝐾 such that 𝛼 ∈ O and 𝐿 is
homothetic to a proper O-ideal.

Then

℘(𝛼𝑧) =
𝐴(℘(𝑧))

𝐵(℘(𝑧))

for relatively prime polynomials 𝐴 and 𝐵 such that

deg(𝐴) = deg(𝐵 + 1) = [𝐿 : 𝛼𝐿] = N𝛼.

Proof. (1) =⇒ (2): Suppose that ℘(𝛼𝑧) = 𝐴(℘(𝑧))
𝐵(℘(𝑧))

with 𝐴 and 𝐵 relatively prime. Then

𝐵(℘(𝑧))℘(𝛼𝑧) = 𝐴(℘(𝑧)). (37.3)

For any 𝜔 ∈ 𝐿, ℘(𝜔) has a pole of order 2, and each linear factor ℘(𝑧) + 𝑟 of 𝐴(℘(𝑧)) and
𝐵(℘(𝑧)) has a pole of order 2. In particular, for 𝜔 = 0, we get that the order is

2 deg(𝐵) + 2 = 2deg(𝐴)
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showing that deg(𝐴) = deg(𝐵) + 1. Now take any 𝜔 ∈ 𝐿. Counting the order of 𝜔 on both
sides, we find that ℘(𝛼𝑧) has a pole of order 2 at 𝜔. Thus 𝛼𝜔 ∈ 𝐿. This shows 𝛼𝐿 ⊆ 𝐿.

(2) =⇒ (1): For any 𝑤 ∈ 𝐿, since 𝛼𝐿 ⊆ 𝐿we have

℘(𝛼(𝑧 + 𝑤)) = ℘(𝛼𝑧 + 𝛼𝑤⏟ ⏞ 
∈𝐿

) = ℘(𝛼𝑧).

Hence ℘(𝑧) is elliptic with 𝐿 as a lattice of periods. Since it is even, by (?) it is a rational
function in ℘.

(2) =⇒ (3): By a homothety we may suppose 𝐿 = ⟨1, 𝜏⟩. Since 𝐿 has rank 2 as a
Z-module, 𝜏 must be of degree 2 over Q. Now take

O = {𝛽 ∈ Q(𝜏) : 𝛽𝐿 ⊆ 𝐿} ,

i.e. the “codifferent.”
(3) =⇒ (2): Easy.

Now, supposing (1) is true, rearrange ℘(𝛼𝑧) = 𝐴(℘(𝑧))
𝐵(℘(𝑧))

to get

𝐴(𝑥) = ℘(𝛼𝑧)𝐵(𝑥) = 0. (37.4)

Fix 𝑧 so that 2𝑧 ̸∈ 1
𝛼
𝐿 and such that 𝐴(𝑥) − ℘(𝛼𝑧)𝐵(𝑥) has distinct zeros. (Claim: Given

polynomials 𝐴, 𝐵, there are only a finite nmber of values of 𝑐 so that 𝐴 − 𝑐𝐵 has multiple
roots.) Let {𝑤𝑖} be a set of coset representatives for 𝐿 in 1

𝛼
𝐿. We claim that the roots

of (37.4) are exactly 𝑧 + 𝑤𝑖.
We have

𝐴(℘(𝑧 + 𝑤𝑖))− ℘(𝛼𝑧)𝐵(℘(𝑧 + 𝑤𝑖)) = 𝐴(℘(𝑧 + 𝑤𝑖))− ℘(𝛼(𝑧 + 𝑤𝑖))𝐵(℘(𝑧 + 𝑤𝑖)) = 0

by blah, so ℘(𝑧 + 𝑤𝑖) are roots of (37.4).
Now if ℘(𝑧+𝑤𝑖) = ℘(𝑧+𝑤𝑗) then by BLAH, (𝑧+𝑤𝑖) = ±(𝑧+𝑤𝑗) (mod 𝐿), giving either

2𝑧 ≡ 𝑤𝑖 − 𝑤𝑗 ∈ 1
𝛼
𝐿 and 2𝑧 ∈ 1

𝛼
, or 𝑤𝑖 ≡ 𝑤𝑗 (mod 𝐿). The first is impossible by assumption

on 𝑧, so 𝑖 = 𝑗. This shows the roots are distinct.
Finally, given any root of (37.4), by surjectivity of ℘ we can write it in the form ℘(𝑦).

We have

℘(𝛼𝑦) =
𝐴(℘(𝑦))

𝐵(℘(𝑦))
= ℘(𝛼𝑧),

where the first equality is by definition of 𝐴 and 𝐵 and the second is because ℘(𝑦) is a root
of (37.4). Then by BLAH, 𝛼𝑦 ± 𝛼𝑧 ≡ 0 (mod 𝐿). Since ℘ is even, we may replace 𝑦 by −𝑦
as necessary, to get 𝛼(𝑦 − 𝑧) ≡ 0 (mod 1

𝛼
𝐿). Thus 𝑦 ∈ 𝑧 + 1

𝛼
𝐿 and ℘(𝑦) = ℘(𝑧 + 𝑤𝑖) for

some 𝑖, as needed.
Since (37.4) has [𝐿 : 1

𝛼
𝐿] = [𝛼𝐿 : 𝐿] roots, (37.4) and hence 𝐴 has degree [𝛼𝐿 : 𝐿].

Note the equivalence (2) ⇐⇒ (3) (which incidentally has nothing to do with elliptic
functions) gives that a lattice is a proper fractional ideal of O iff it has O as its ring of complex
multiplication. Nonzero fractional ideals are homothetic iff they determine the same element
in the ideal class group. Hence there is a correspondence between IDEAL CLASS GRP and
homothety classes of lattices with O as full ring of complex multiplication.
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Chapter 38

Modular forms on SL2(Z)

1 SL2(Z) and congruence subgroups

Definition 38.1.1: SL2(Z) is the group of 2× 2 integer matrices with determinant 1.

SL2(Z) :=
⌉︀�

𝑎 𝑏
𝑐 𝑑

�
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, 𝑎𝑑− 𝑏𝑐 = 1

«
.

Define PSL2(Z) = SL2(Z)/{±1}. Define the following subgroups:

Γ(𝑁) =

⌉︀
𝑀 ∈ SL2(Z) :𝑀 ≡

�
1 0
0 1

�
(mod 𝑁)

«
Γ1(𝑁) =

⌉︀
𝑀 ∈ SL2(Z) :𝑀 ≡

�
1 *
0 1

�
(mod 𝑁)

«
Γ0(𝑁) =

⌉︀
𝑀 ∈ SL2(Z) :𝑀 ≡

�
* *
0 *

�
(mod 𝑁)

«
.

Any subgroup of SL2(Z) containing Γ(𝑁) for some 𝑁 is called a congruence subgroup.

Definition 38.1.2: SL2(Z) acts on the upper half plane ℋ by�
𝑎 𝑏
𝑐 𝑑

�
𝑧 =

𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

We now collect some facts about SL2(Z) and its congruence subgroups.

Proposition 38.1.3: The matrices 𝑆 = ( 0 1
−1 0 ) and 𝑇 = ( 1 1

0 1 ) generate SL2(Z).
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1.1 Cosets

Proposition 38.1.4: We have the following:

[SL2(Z) : Γ0(𝑁)] = 𝑁
∏︁
𝑝|𝑁

�
1 +

1

𝑝

�
[Γ0(𝑁) : Γ1(𝑁)] = 𝑁

∏︁
𝑝|𝑁

�
1− 1

𝑝

�
[Γ1(𝑁) : Γ(𝑁)] = 𝑁.

Moreover,

1. Set of coset reps for Γ0(𝑁) in SL2(Z)?

2. Let 𝑆 = {(𝑎, 𝑏) ∈ (Z/𝑁Z)2 : gcd(𝑎, 𝑏) = 1}. For each

(𝑧, 𝑡) ∈ 𝑃 :=
𝑆 − {(0, 0)}
(Z/𝑁Z)×

take an integer matrix of the form ( 𝑥 𝑦𝑧 𝑡 ). These matrices form a set of right coset
representatives for Γ0(𝑁) in SL2(Z).

Proof. 1. Let 𝐺 be the group

{(𝑎, 𝑦)|𝑎 ∈ (Z/𝑁Z)×, 𝑦 ∈ Z/𝑁Z}/{±(1, 0)}

with the operation
(𝑎, 𝑦)(𝑎′, 𝑦′) = (𝑎𝑎′, 𝑎𝑦′ + 𝑎′−1𝑦).

The fact that 𝐺 is a group can be shown directly, or by noting that the group structure
on 𝐺 is the “pushforward” of the group structure on Γ0(𝑁) by 𝜋 below. We claim that

1→ Γ(𝑁)→ Γ0(𝑁)
𝜋−→ 𝐺→ 1

is a short exact sequence, where

𝜋

��
𝑎 𝑏
𝑁𝑐 𝑑

��
= (𝑎, 𝑏) mod 𝑁.

We verify:

(a) 𝜋 is surjective: Given (𝑎, 𝑏) ∈ 𝐺, we can choose 𝑏 so that 𝑎 ≡ 𝑎 (mod 𝑁), 𝑏 ≡ 𝑏
(mod 𝑁) so that gcd(𝑎, 𝑏) = 1. Let 𝑑 be an integer such that 𝑎𝑑 ≡ 1 (mod 𝑁). By
Bézout’s Theorem we can find 𝑘, 𝑙 so that 𝑎𝑘−𝑙𝑏 = 1−𝑎𝑑

𝑁
. Then 𝑎(𝑑+𝑘𝑁)−𝑁𝑙𝑏 =

1, and the following matrix is in SL2(Z).

𝜋

��
𝑎 𝑏
𝑁𝑙 𝑑+ 𝑘𝑁

��
= (𝑎, 𝑏).
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(b) ker(𝜋) = Γ(𝑁): The inclusion Γ(𝑁) ⊆ ker(𝜋) is clear. Conversely, if 𝐴 =�
𝑎 𝑏
𝑁𝑐 𝑑

�
∈ Γ0(𝑁), 𝜋(𝐴) = (1, 0), then 𝑎 ≡ 1 (mod 𝑁) and 𝑏 ≡ 0 (mod 𝑁);

moreover 𝑎𝑑− (𝑁𝑐)𝑑 = 1 and 𝑎 ≡ 1 (mod 𝑁) imply 𝑏 ≡ 1 (mod 𝑁).

First suppose 𝑁 ̸= 2. Then |𝐺| = 1
2
𝜙(𝑁)𝑁 , so

[PSL2(Z) : Γ0(𝑁)] =
[PSL2(Z) : Γ(𝑁)]

|𝐺|
=

𝑁3

2

∏︀
𝑝|𝑁

(︁
1− 1

𝑝2

)︁
𝑁
∏︀
𝑝|𝑁

(︁
1− 1

𝑝

)︁ = 𝑁
∏︁
𝑝|𝑁

�
1 +

1

𝑝

�
.

For 𝑁 = 2, [PSL2(Z),Γ(𝑁)] = 6 and |𝐺| = 2, so [PSL2(Z) : Γ0(𝑁)] = 3 (and the above
formula works as well).

1.2 Useful decompositions

Bruhat

1.3 Fundamental domains

Definition 38.1.5: Let 𝐻 be a subgroup of SL2(Z). A fundamental domain for 𝐻 is a
subset of ℋ such that the following hold.

1.

2 Modular forms

Definition 38.2.1: A modular function on SL2(Z) is a function 𝑓 : ℋ → C such that

1. 𝑓 is meromorphic on ℋ.

2. 𝑓 satisfies the following transformation property.

𝑓

��
𝑎 𝑏
𝑐 𝑑

�
𝑧

�
= (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧) for all

�
𝑎 𝑏
𝑐 𝑑

�
∈ SL2 .

If moreover 𝑓 is holomorphic on ℋ we say 𝑓 is a weakly holomorphic modular form, and
if 𝑓 is holomorphic on ℋ* = ℋ∪{∞}, we say that 𝑓 is a modular form. (𝑓 is “holomorphic
at ∞” if 𝑓 has a Fourier expansion with nonnegative exponents

𝑓(𝑧) =
∑︁
𝑛≥0

𝑎𝑛𝑞
𝑛, 𝑞 = 𝑒2𝜋𝑖𝑧.)
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We say 𝑓 is a cusp form is 𝑎0 = 0 above. We denote

𝑀 !
𝑘 = weakly holomorphic modular forms of weight 𝑘

𝑀𝑘 = modular forms of weight 𝑘

𝑆𝑘 = cusp forms of weight 𝑘.

Note we will generalize this definition several times (add references when I put them in)

Theorem 38.2.2 (Weight formula): Let 𝑓 be a modular form of weight 𝑘. Then

𝑘 = 6ord𝑖(𝑓) + 4 ord𝜔(𝑓) + 12 ord𝑖∞(𝑓) + 12
∑︁
𝑧∈𝑅∘

Γ

ord𝑧(𝑓).

Proof. Don’t feel like writing... will be vastly generalized using Riemann-Roch anyway.

3 Eisenstein series

The following will be our most important source of modular forms.

Definition 38.3.1: Let 𝑘 ≥ 4 be even. Define the Eisenstein series of weight 𝑘 as a
function on lattices to be

𝐺𝑘(Λ) =
∑︁

𝜔∈Λ∖{0}

1

𝜔2𝑘
.

Define the Eisenstein series as a function on ℋ to be

𝐺𝑘(𝑧) = 𝐺𝑘((1, 𝑧)) =
∑︁

(𝑎,𝑏)∈Z2∖{0}

1

(𝑎+ 𝑏𝑧)2𝑘
.

Define the normalized Eisenstein series as 𝐸𝑘 =?𝐺𝑘.

Note that if 𝑘 is odd, 𝐺𝑘 as defined above will be 0.

Proposition 38.3.2: 𝐺𝑘 is absolutely convergent, and is a modular form of weight 𝑘.

Theorem 38.3.3: The Fourier expansion of 𝐸𝑘 is

𝐸𝑘(𝑧) = 1− 2𝑘

𝐵𝑘

∞∑︁
𝑛=1

𝜎𝑘−1(𝑛)𝑞
𝑛

where 𝐵𝑘 is the 𝑘th Bernoulli number: 𝑡
𝑒𝑡−1

= 1 +
∑︀
𝑛≥1

𝐵𝑛

𝑛!
𝑡𝑛.

Definition 38.3.4: Define

Δ =
𝐸3

4 − 𝐸2
6

1728

as a function either on lattices or on ℋ.
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Δ is a cusp form of weight 12, normalized so its first term is 𝑧. As we will see, it spans
the space of cusp forms of weight 12.

The functions 𝐺4, 𝐺6 parameterize elliptic curves over C. (See...) The following will be
important in establishing a connection between elliptic curves and lattices.

Theorem 38.3.5 (Uniformization theorem): The map Γ→ C2∖{Δ = 0} defined by

Γ ↦→ (𝐺4, 𝐺6)

is surjective (bijection?).

4 The spaces 𝑀𝑘

Theorem 38.4.1: The set⌉︀
𝐸𝑘−12𝑟Δ

𝑟 : 0 ≤ 𝑟 ≤
�
𝑘

12

�
, 𝑘 − 12𝑟 ̸= 2

«
is a basis for 𝑀𝑘. Thus

dim(𝑀𝑘) =

⎧⎨⎩� 𝑘12� , 𝑘 ≡ 2 (mod 12),�
𝑘
12

�
+ 1, 𝑘 ̸≡ 2 (mod 12),

dim(𝑆𝑘) =

⎧⎨⎩� 𝑘12�− 1, 𝑘 ≡ 2 (mod 12),�
𝑘
12

�
, 𝑘 ̸≡ 2 (mod 12).

5 Dedekind eta function

Theorem 38.5.1 (Transformation properties of 𝜂): The function 𝜂(𝜏) = 𝑞
1
24
∏︀∞
𝑛=1(1 − 𝑞𝑛)

satisfies

𝜂(𝜏 + 1) = 𝑒
2𝜋𝑖
24 𝜂(𝜏)

𝜂
(︂−1
𝜏

)︂
=

√︂
𝜏

𝑖
𝜂(𝜏).

There are two main ingredients to the proof.

1. Derive transformation properties for twisted theta functions 𝜃𝜒 using the Poisson sum-
mation formula.

2. Write 𝜂 in terms of theta functions using the Pentagonal Number Theorem ??.

Proof. For the first part, note

𝜂(𝜏 + 1) = 𝑒
2𝜋𝑖(𝜏+1)

24

∞∏︁
𝑛=1

(1− 𝑒2𝜋𝑖(𝜏+1)) = 𝑒
𝜋𝑖
12

∞∏︁
𝑛=1

(1− 𝑒2𝜋𝑖𝜏 ) = 𝜂(𝜏).
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For the second part, recall the transformation formula for the theta function (Proposi-
tion 34.34.2.4)

𝜃𝜒(𝜏) =
𝐺(𝜒, 𝑒

2𝜋𝑖∙
𝑟 )

𝑞
√
𝜏

𝜃𝜒

�
1

𝑞2𝑢

�
(38.1)

where 𝜒 is a primitive multiplicative character modulo 𝑟.
By the Pentagonal Number Theorem,

𝜂(𝜏) = 𝑞
1
24

∞∏︁
𝑛=1

(1− 𝑞𝑛)

= 𝑞
1
24

∑︁
𝑛∈Z

(−1)𝑛𝑞
3𝑛2+𝑛

2

=
∑︁
𝑛∈Z

(−1)𝑛𝑞
36𝑛2+12𝑛+1

24

=
∑︁
𝑛∈Z

(−1)𝑛𝑒−𝜋(6𝑛+1)2(−𝜏
24 )

=
1

2

(︃∑︁
𝑛∈Z

(−1)𝑛𝑒−𝜋(6𝑛+1)2(−𝜏
24 ) +

∑︁
𝑛∈Z

(−1)𝑛𝑒−𝜋(−6𝑛−1)2(−𝜏
24 )
)︃

= 𝜃𝜒

(︂−𝜏
24

)︂
(38.2)

where 𝜒(𝑛) is the character modulo 12 taking values 1,−1,−1, 1 at 1, 5, 7, 11, respectively.

First note 𝐺(𝜒, 𝑒
2𝜋𝑖∙
𝑟 ) = 𝑒

𝜋𝑖
6 − 𝑒 5𝜋𝑖

6 − 𝑒 7𝜋𝑖
6 + 𝑒

11𝜋𝑖
6 = 2

√
3. Hence

𝜂
(︂
−1

𝜏

)︂
= 𝜃𝜒

(︂
𝑖

12𝜏

)︂
by (38.2)

=
𝐺(𝜒, 𝑒

2𝜋𝑖∙
𝑟 )

12
È
𝑖/(12𝜏)

𝜃𝜒

(︂
12𝜏

144𝑖

)︂
by (38.1)

=

Ê
−𝑖𝜏
��12
�
��2
√
3𝜃𝜒

(︂
12𝜏

144𝑖

)︂
=
√
−𝑖𝜏𝜂(𝜏). by (38.2)

6 Derivatives of modular forms

Let 𝑓 be a modular form of weight 𝑘. Is 𝑓 ′ (derivative with respect to 𝜏) a modular form?
Differentiating the transformation law gives

𝑓

�
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

�
= (𝑐𝜏 + 𝑑)𝑘𝑓(𝜏)

𝑓 ′
�
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

�
(𝑐𝜏 + 𝑑)−2 = 𝑘(𝑐𝜏 + 𝑑)𝑘−1𝑐𝑓(𝜏) + (𝑐𝜏 + 𝑑)𝑘𝑓 ′(𝜏)
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𝑓 ′
�
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑

�
= 𝑘(𝑐𝜏 + 𝑑)𝑘+1𝑐𝑓(𝜏)⏟  ⏞  

Uh-oh.

+(𝑐𝜏 + 𝑑)𝑘+2𝑓 ′(𝜏). (38.3)

Unfortunately, 𝑓 ′ isn’t quite modular. So we need to construct a modified notion of derivative
(which we’ll call 𝜃) that takes 𝑀𝑘 to 𝑀𝑘+2. To do this, we will use the derivative and the 𝑃
function, defined below in terms of the 𝜂 function.

Definition 38.6.1: Define

𝑃 (𝜏) =
24

2𝜋𝑖

𝜂′(𝜏)

𝜂(𝜏)
.

Theorem 38.6.2:

1. 𝑃 = 𝐸2, i.e.

𝑃 = 1− 4

𝐵2⏟ ⏞ 
24

∞∑︁
𝑛=1

𝜎1(𝑛)𝑞
𝑛.

2. 𝑃 satisfies the transformation law

𝑃 (𝛾𝜏) = (𝑐𝜏 + 𝑑)2𝑃 (𝜏) +
12𝑐

2𝜋𝑖
(𝑐𝜏 + 𝑑)⏟  ⏞  

“nonmodular” part

. (38.4)

Proof. For item 1, note that 𝑑
𝑑𝜏

= 2𝜋𝑖𝑞 𝑑
𝑑𝑞

by the chain rule so

𝑑

𝑑𝜏
ln 𝜂(𝜏) = 2𝜋𝑖𝑞

(︃ ∞∑︁
𝑛=0

𝑑

𝑑𝑞
ln(1− 𝑞𝑛) + 𝑑

𝑑𝑞
ln 𝑞

1
24

)︃
𝜂′(𝜏)

𝜂(𝜏)
= 2𝜋𝑖

(︃ ∞∑︁
𝑛=0

𝑛𝑞𝑛

1− 𝑞𝑛
+

1

24

)︃
= 2𝜋𝑖

�
∞∑︁
𝑛=0

∑︁
𝑚>0,𝑛|𝑚

𝑞𝑚 +
1

24

�
= 2𝜋𝑖

�∑︁
𝑚≥1

𝜎1(𝑚)𝑞𝑚 +
1

24

�
.

For item 2, note ⟨𝑆, 𝑇 ⟩ = GL2(Z), so 𝛾 can be written as a product of 𝑆 =

�
0 −1
1 0

�
, 𝑇 =�

1 1
0 1

�
, 𝑇−1 =

�
1 1
0 1

�
. The base case is trivial. For the induction step, first differentiate

the transformation laws for 𝜂 to get

1

𝜏 2
𝜂′(𝑆𝜏) =

𝜏−
1
2

2
√
𝑖
𝜂(𝜏) +

𝜏
1
2

√
𝑖
𝜂′(𝜏)

𝜂′(𝑇𝜏) = 𝑒
2𝜋𝑖
24 𝜂(𝜏).
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Using this we can calculate how 24
2𝜋𝑖

𝜂′

𝜂
transforms under 𝜂. The induction step comes from

checking that if 𝛾 =

�
𝑎 𝑏
𝑐 𝑑

�
then

𝑃 (𝑆𝛾𝜏) = (𝑎𝜏 + 𝑏)2𝑃 (𝜏) +
12𝑎

2𝜋𝑖
(𝑎𝜏 + 𝑏)

𝑃 (𝑇±1𝛾𝜏) = 𝑃 (𝛾𝜏).

Now we are ready to define our differential operator.

Definition 38.6.3: For 𝑓 a weight 𝑘 modular form, define

𝜕𝑘(𝑓) = (12𝜃 − 𝑘𝑃 )𝑓
where

𝜃 = 𝑞
𝑑

𝑑𝑞
=

1

2𝜋𝑖

𝑑

𝑑𝜏
.

Theorem 38.6.4:

1. 𝜕𝑘 is a map from 𝑀𝑘 to 𝑀𝑘+2.

2. 𝜕 is a derivation, i.e. for 𝑓 ∈𝑀𝑚, 𝑔 ∈𝑀𝑛, we have

𝜕𝑚+𝑛(𝑓𝑔) = (𝜕𝑚𝑓)𝑔 + 𝑓(𝜕𝑛𝑔).

3. The following hold (𝑃 = 𝐸2, 𝑄 = 𝐸4, 𝑅 = 𝐸6):

𝜕2𝑃 = −𝑄 𝜃𝑃 =
1

12
(𝑃 2 −𝑄)

𝜕4𝑄 = −4𝑅 𝜃𝑄 =
1

3
(𝑃𝑄−𝑅)

𝜕6𝑅 = −6𝑄2 𝜃𝑅 =
1

2
(𝑃𝑅−𝑄2).

Proof. For part 1, calculate (𝜕𝑓)(𝐴𝜏) using (38.3) and (38.4).
For part 2,

𝜕𝑚+𝑛(𝑓𝑔) =
1

2𝜋𝑖
(𝑓𝑔)′−(𝑚+𝑛)𝑃𝑓𝑔 =

1

2𝜋𝑖
𝑓 ′𝑔−𝑚(𝑃𝑓)𝑔+

1

2𝜋𝑖
𝑓𝑔′−𝑛𝑓(𝑃𝑔) = (𝜕𝑚𝑓)𝑔+𝑓(𝜕𝑛𝑔).

For part 3, more calculations show that 𝜕2𝑃 + 𝑃 2 is a modular form. The equalities
follow from using dim(𝑀4) = dim(𝑀6) = dim(𝑀8) = 1 and matching constant terms of the
𝑞-series.

Remark 38.6.5: Since 𝑄,𝑅 generate the space of modular forms, this completely describes
the action of 𝜕 on modular forms. The fact that it is a derivation means that we can calculate
its action on a polynomial in 𝑃,𝑄,𝑅 as if it were actually a derivative, taking note what
𝜕2𝑃, 𝜕4𝑄, 𝜕6𝑅 are. This is since for polynomials, stuff like the chain rule can be derived from
the product rule, which we have.
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7 The 𝑗-function

Definition 38.7.1: Define the 𝑗-function (on lattices or ℋ) by

𝑗 =
𝐸3

4

Δ
.

Since 𝐸3
4 and Δ are modular forms of weight 12, 𝑗 is a modular function of weight 0.

The function 𝑗 has some very nice properties.

Theorem 38.7.2: 𝑗 takes on every value in C exactly once in its fundamental domain.
in/excluding boundaries the right way

Theorem 38.7.3: A function on ℋ is a modular function of weight 0 if and only if it is a
rational function of 𝑗.

7.1 The modular polynomial Φ𝑚

Definition 38.7.4: Define Φ𝑚(𝑋, 𝑌 ) so that Φ𝑚(𝑗, 𝑌 ) is the minimal polynomial of 𝑗(𝑁𝑧)
over C(𝑗).

Note this is well-defined because C(𝑗) ∼= C(𝑋).
This will be important when we define the moduli space of an elliptic curve, because

(𝑗(𝑧), 𝑗(𝑁𝑧)) will map the moduli space to an algebraic curve whose associated function
field is C(𝑗(𝑧), 𝑗(𝑁𝑧)).

Proposition 38.7.5: The following are true.

1. Φ𝑚(𝑋, 𝑌 ) ∈ Z.

2. Φ𝑚(𝑋, 𝑌 ) is symmetric for 𝑚 > 1.

3. (Kronecker’s congruence) If 𝑝 is prime, then

Φ𝑝(𝑋, 𝑌 ) = (𝑋𝑝 −𝑋)(𝑌 𝑝 − 𝑌 ) (mod 𝑝).

4. If 𝑚 is squarefree then Φ𝑚(𝑋,𝑋) has leading coefficient ±1.

Proof. 1.

2. 𝐹 (𝑋, 𝑌 ) = 𝐹 (𝑌,𝑋): Replacing 𝑧 with − 1
𝑁𝑧

in

𝐹 (𝑗(𝑧), 𝑗(𝑁𝑧)) = 0
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gives

𝐹
(︂
𝑗
(︂
− 1

𝑁𝑧

)︂
, 𝑗
(︂
−1

𝑧

)︂)︂
= 0.

Note that 𝑗 is invariant under 𝛾 = ( 0 1
−1 0 ) ∈ SL2(Z) which sends 𝑧 to −1

𝑧
. Hence

𝑗
(︀
− 1
𝑁𝑧

�
= 𝑗(𝑁𝑧), 𝑗

(︀
−1
𝑧

�
= 𝑗(𝑧), and we get

𝐹 (𝑗(𝑁𝑧), 𝑗(𝑧)) = 0.

Since 𝐹 (𝑋, 𝑌 ) is irreducible in C[𝑋, 𝑌 ], so is 𝐹 (𝑌,𝑋). Then 𝐹 (𝑌, 𝑗) is also the irre-
ducible polynomial of 𝑌 over C(𝑗), so replacing 𝑗 with𝑋, this says that 𝐹 (𝑌,𝑋)|𝐹 (𝑋, 𝑌 ).
The only way for this to happen is if 𝐹 (𝑋, 𝑌 ) = 𝑐𝐹 (𝑌,𝑋). We have 𝐹 (𝑋, 𝑌 ) =
𝑐𝐹 (𝑌,𝑋) = 𝑐2𝐹 (𝑋, 𝑌 ), so 𝑐 = ±1. If 𝑐 = −1, then 𝐹 (𝑋, 𝑌 ) = −𝐹 (𝑌,𝑋), and putting
𝑋 = 𝑌 gives 𝐹 (𝑋,𝑋) = 0. This shows 𝑋 − 𝑌 |𝐹 (𝑋, 𝑌 ), which is impossible since
𝐹 (𝑋, 𝑌 ) is irreducible with degree [Γ(1) : Γ0(𝑁)] > 1. Thus 𝐹 (𝑋, 𝑌 ) = 𝐹 (𝑌,𝑋).

3.

Lemma 38.7.6: Let 𝛾1, . . . , 𝛾𝑝+1 be coset representatives for [Γ(1) : Γ0(𝑝)]. Then

{𝑗(𝑝𝛾1𝑧), . . . , 𝑗(𝑝𝛾𝑝+1𝑧)} = {𝑗(𝑝𝑧)} ∪
⌉︀
𝑗

�
𝑧 + 𝑘

𝑝

�
: 0 ≤ 𝑘 < 𝑝

«
.

Proof. There are indeed 𝑝+1 coset representatives because 𝜇 = 𝑁
∏︀

prime 𝑞|𝑁

(︁
1 + 1

𝑞

)︁
=

𝑝+1 in this case. Given 𝛾 = ( 𝑎 𝑏𝑐 𝑑 ), we have 𝑝𝛾𝑧 =
(︀
𝑝𝑎 𝑝𝑏
𝑐 𝑑

�
𝑧. For any 𝛾′ ∈ Γ(1), we have

𝑗(𝛾′𝑝𝛾𝑧) = 𝑗(𝑝𝛾𝑧) since 𝑗 is invariant under Γ(1). By Lemma 6.3.1 we can multiply(︀
𝑝𝑎 𝑝𝑏
𝑐 𝑑

�
on the left by some matrix in Γ(1) to get some

(︀
𝑎′ 𝑏′

0 𝑑′

�
with 𝑎′𝑑′ = det

(︀
𝑝𝑎 𝑝𝑏
𝑐 𝑑

�
= 𝑝

and 0 ≤ 𝑏′ < 𝑑′. The 𝑝 + 1 possible matrices are
(︀
𝑝 0
0 1

�
and

(︀
1 𝑘
0 𝑝

�
for 0 ≤ 𝑘 < 𝑝. We

claim that all these are in fact attained. Let 𝑀 be one of these matrices. Then by the
Elementary Divisors Theorem there exist 𝐴,𝐵 ∈ Γ(1) such that 𝐴𝑀𝐵 =

(︀
𝑝 0
0 1

�
. But

then 𝑀 = 𝐴−1𝑁𝐵, so 𝑗(𝑀𝑧) = 𝑗(𝐴−1𝑁𝐵𝑧), and we could have picked 𝐵 as a coset
representative (the choice doesn’t matter anyways). The lemma follows upon noting
that

(︀
𝑝 0
0 1

�
𝑧 = 𝑝𝑧 and

(︀
1 𝑘
0 𝑝

�
𝑧 = 𝑧+𝑘

𝑝
.

Let 𝜁𝑝 be a 𝑝th root of unity. We have that 1− 𝜁𝑝|𝑝: indeed

𝑝 = 𝑥𝑝−1 + · · ·+ 1|𝑥=1 = (1− 𝜁𝑝) · · · (1− 𝜁𝑝−1).

When we expand 𝑗
(︁
𝑧+𝑘
𝑝

)︁
, its coefficients are roots of unity times the coefficients of

𝑗(𝑧). However, roots are unity are congruent to 1 modulo p, since 𝜁𝑘𝑝 − 1 = (𝜁𝑝 −
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1)(𝜁𝑘−1
𝑝 + · · ·+ 1). Then

𝐹 (𝑗(𝑧), 𝑌 ) =
𝑝+1∏︁
𝑖=1

(𝑌 − 𝑗(𝛾𝑖𝑝𝑧))

= (𝑌 − 𝑗(𝑝𝑧))
𝑝∏︁

𝑘=1

�
𝑌 − 𝑗

�
𝑧 + 𝑘

𝑝

��
≡ (𝑌 − 𝑗(𝑝𝑧))

�
𝑌 − 𝑗

�
𝑧

𝑝

��𝑝
(mod 1− 𝜁𝑝)

≡ (𝑌 − 𝑗(𝑧)𝑝) (𝑌 𝑝 − 𝑗(𝑧)) (mod 1− 𝜁𝑝),

the last equation following because raising the 𝑗 function to the 𝑝th power is the
same, modulo 𝑝, as raising each term to the 𝑝th power, and the coefficients (which are
integers) are not affected modulo 𝑝, while the exponents are multiplied by 𝑝. Replacing
𝑗(𝑧) by 𝑋 we get

𝐹 (𝑋, 𝑌 ) ≡ (𝑌 −𝑋𝑝)(𝑌 𝑝 −𝑋) ≡ 𝑋𝑝+1 + 𝑌 𝑝+1 −𝑋𝑝𝑌 𝑝 −𝑋𝑌 (mod 1− 𝜁𝑝).

However, ⟨1− 𝜁𝑝⟩ ∩ Z = ⟨𝑝⟩ (it contains ⟨𝑝⟩, and ⟨𝑝⟩ is maximal in Z), and we know
𝐹 (𝑋, 𝑌 ) has integer coefficients, so congruence holds modulo 𝑝.

8 𝑗 and Hilbert class fields

Our main theorem in this section (Theorem ??) is that values of the 𝑗-function at quadratic
integers (or equivalently quadratic ideals) generate Hilbert class fields of quadratic exten-
sions. To prove this we first need a result on 𝑗 in terms of lattices.

Definition 38.8.1: A cyclic sublattice 𝐿′ ⊆ 𝐿 is a lattice such that 𝐿/𝐿′ is a cyclic group.

Theorem 38.8.2 (Correspondence between roots of Φ and cyclic sublattices): Let 𝑚 ∈ N.
The following are equivalent.

1. Φ𝑚(𝑢, 𝑣) = 0.

2. There is a lattice 𝐿 with cyclic sublattice 𝐿′ ⊆ 𝐿 of index 𝑚 such that 𝑢 = 𝑗(𝐿′) and
𝑣 = 𝑗(𝐿).

We first characterize cyclic sublattices.

Lemma 38.8.3: The cyclic lattices of ⟨1, 𝜏⟩ are exactly those given by

𝐿′ = ⟨𝑑, 𝑎+ 𝑏𝜏⟩ ,
�
𝑎 𝑏
0 𝑑

�
∈ 𝐶(𝑚), (38.5)
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where

𝐶(𝑚) =

⌉︀�
𝑎 𝑏
0 𝑑

�
: 𝑎𝑑 = 𝑚, 𝑎 > 0, 0 ≤ 𝑏 < 𝑑, gcd(𝑎, 𝑏, 𝑑) = 1

«
.

Moreover, these give rise to distinct lattices.

Proof. Suppose 𝐿′ = ⟨𝑑, 𝑎𝜏 + 𝑏⟩. Then the presentation of the Z-module 𝐿/𝐿′ is given by

( 𝑎 𝑏0 𝑑 ). By the structure theorem for modules, we have ( 𝑎 𝑏0 𝑑 ) ∈ SL2(Z)
�
𝑑1 0
0 𝑑2

�
SL2(Z) for

some 𝑑1 | 𝑑2 and that 𝐿/𝐿′ ∼= Z/𝑑1Z×Z/𝑑2Z. Note that multiplying by a matrix in SL2(Z)
preserves the gcd of the entries. Hence we find that 𝑑1 = gcd(𝑎, 𝑏, 𝑑). Hence

𝐿′ is cyclic ⇐⇒ gcd(𝑎, 𝑏, 𝑑) = 1. (38.6)

This shows that all lattices in the form (38.5) are cyclic.
Now given a cyclic sublattice 𝐿′, let 𝑑 ∈ N be the smallest integer in 𝐿′, and 𝑎 + 𝑏𝜏 be

such that 𝐿′ = ⟨𝑑, 𝑎𝜏 + 𝑏⟩. We may change 𝑏 by a multiple of 𝑑 so that 0 ≤ 𝑏 < 𝑑. Since
𝑚 = [𝐿 : 𝐿′] = | 𝑎 𝑏0 𝑑 | = 𝑎𝑑 and gcd(𝑎, 𝑏, 𝑑) = 1 by (38.6), ( 𝑎 𝑏0 𝑑 ) ∈ 𝐶(𝑚).

Uniqueness follows since 𝑑 is the least positive integer in 𝐿′ = ⟨𝑑, 𝑎𝜏 + 𝑏⟩, and once 𝑑 is
determined, 𝑎 = 𝑚

𝑑
and 𝑏 are determined.

Proof of Theorem 38.8.2. By Lemma 38.8.3, when 𝐿′ = [𝑑, 𝑎 + 𝑏𝜏 ], letting 𝜎 = ( 𝑎 𝑏0 𝑑 ), we
have

𝑗(𝐿′) = 𝑗(𝑑[1, 𝜎𝜏 ]) = 𝑗([1, 𝜎𝜏 ]).

Then
Φ𝑚(𝑋, 𝑗(𝜏)) =

∏︁
𝜎∈𝐶(𝑚)

(𝑋 − 𝑗(𝜎𝜏)) =
∏︁

𝐿′ cyclic in 𝐿, [𝐿:𝐿′]=𝑚

(𝑋 − 𝑗(𝐿′)).

Hence any pair (𝑗(𝐿), 𝑗(𝐿′)) is a solution; conversely, given a solution (𝑋, 𝑌 ), we have
𝑌 = 𝑗(𝐿) for some 𝐿, and the above gives 𝑋 = 𝑗(𝐿′).

Theorem 38.8.4: Let O be an order in an imaginary quadratic field and a a O-ideal. Then
𝑗(a) is an algebraic integer and 𝐾(𝑗(a)) is the ring class field of O.

Proof. Let 𝑀 = 𝐾(𝑗(a)) and 𝐿 be the ring class field of O.
Step 1: Suppose 𝛼a is a cyclic sublattice of a; let 𝑚 = N(𝛼). We have

Φ𝑚(𝑗(a), 𝑗(a)) = Φ𝑚(𝑗(𝛼a), 𝑗(a)) = 0, (38.7)

where the first equality is by Theorem 38.8.2 and the second is because a and 𝛼a are similar
lattices. Hence 𝑗(a) is a root of Φ𝑚(𝑋,𝑋).

Pick 𝛼 so that N𝛼 is squarefree. To do this we note that by Theorem ??.??

Spl(𝐿/Q) ≈ {𝑝 prime : 𝑝 = 𝑁(𝛼) for some 𝛼 ∈ O} . (38.8)

Choosing such 𝛼, we have [a : 𝛼a] = 𝑁(𝛼) = 𝑝, so 𝛼a must be cyclic. Then the leading
coefficient of Φ𝑚(𝑋,𝑋) is ±1 by Proposition (38.7.5), so 𝑗(a) is an algebraic integer.
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Step 2: We show 𝑀 = 𝐿 by examining how primes split in 𝐿 and 𝑀 , i.e. we show

Spl(𝑀/𝐾) ≈ Spl(𝐿/𝐾) and use Theorem ??.29.3.9. First we show Spl(𝑀/𝐾)
⊃∼ Spl(𝐿/𝐾).

Take p ⊆ Spl(𝐿/Q). The idea is to use Kronecker’s congruence: We know that we have

𝑎𝑝 ≡ 𝑎 (mod 𝑝) for every 𝑎 ∈ F ⇐⇒ F = F𝑝. (38.9)

When we have 𝑋, 𝑌 equal to values of 𝑗 in a field extension 𝑀/𝐾 and Φ𝑝(𝑋, 𝑌 ) = 0, then
this congruence gives us information about the residue field of𝑀 . We will find that it equals
F𝑝, so 𝑀/𝐾 is unramified, giving that p splits completely in 𝐿.

By (38.8), for all but finitely many 𝑝 ∈ Spl(𝐿/Q), 𝑝 = 𝑁(𝛼) for some 𝛼 ∈ O. As in (38.7),
we get 0 = Φ𝑝(𝑗(a), 𝑗(a)). By Kronecker’s congruence, 0 = −(𝑗(a)𝑝 − 𝑗(a))2 (mod 𝑝), so

𝑗(a)𝑝 ≡ 𝑗(a) (mod 𝑝); (38.10)

a fortiori this holds modulo P.
Next note O𝐾 [𝑗(a)] has finite index in O𝑀 , because the fact that 𝑀 = 𝐾(𝑗(a)) gives it

is a full lattice in O𝑀 (considering them as Z-modules).
Now assume 𝑝 - [O𝑀 : O𝐾 [𝑗(a)]]; we will show that (38.10) implies the congruence

𝛼𝑝 ≡ 𝛼 (mod P) (38.11)

for 𝛼 ∈ O𝑀 . First, take p = P ∩𝐾, and note that 𝑝 ∈ Spl(𝑀/Q) implies that the residue
degree of P is 𝑝, and hence 𝛼𝑝 ≡ 𝛼 (mod p) and a fortiori modulo P for 𝛼 ∈ O𝐾 . So (38.11)
holds for 𝛼 ∈ O[𝑗(a)]. Now for arbitrary 𝛼 ∈ O𝑀 , letting 𝑁 = [O𝑀 : O𝐾 [𝑗(a)]] we know

(𝑁𝛼)𝑝 ≡ 𝑁𝛼 (mod P);

in particular, 𝑁𝑝 ≡ 𝑁 (mod P);

But 𝑝 - 𝑁 means 𝑁 is invertible in 𝑚 := O𝑀/P, so dividing these two equations gives the
desired answer.

Now by (38.9), (38.11) gives that |𝑚| = 𝑝, i.e. 𝑓(P/𝑝) = 1 and p ∈ Spl(𝑀/Q).
From this step we obtain 𝑀 ⊆ 𝐿.

Step 3: Next we show ̃︂Spl(𝑀/Q)
⊂∼ Spl(𝐿/𝑄). Take 𝑝 ∈ ̃︂Spl(𝑀/Q); assume 𝑝 unramified in

𝑀 and relatively prime to
Δ =

∏︁
{a,b}∈𝐶𝐾

(𝑗(a)− 𝑗(b)).

(Note this is in O𝐿 by step 2.) Using the description of Spl(𝐿/Q) given in step 1, it suffices
to show 𝑝 = 𝑁(𝛼) for some 𝛼.

We have 𝑓(P/𝑝) = 1 for some P in 𝑀 above 𝑝. Let P′ lie above P in 𝐿. Let p =
P ∩ O𝐾 ; we see 𝑓(p/𝑝) = 1 so (𝑝) splits as pp in 𝐾 and Np = 𝑝. Hence pa is cyclic in a.
Theorem (38.8.2) and Kronecker’s congruence give

0 ≡ Φ𝑝(𝑗(pa), 𝑗(a)) ≡ (𝑗(a)− 𝑗(pa)𝑝)(𝑗(pa)𝑝 − 𝑗(a)) (mod 𝑝);
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this holds modulo P′ as well. Hence we have

𝑗(a) ≡ 𝑗(pa)𝑝 (mod P′) or 𝑗(pa)𝑝 ≡ 𝑗(a) (mod P′).

By assumption, 𝑓(P/p) = 1, so O𝐿/P ∼= F𝑝 and 𝑗(a)𝑝 ≡ 𝑗(a) (mod P′). Together with the
above we find that1

𝑗(pa) ≡ 𝑗(a) (mod P′).

If a, pa are in distinct ideal classes, then P′ | 𝑗(pa)− 𝑗(a) | Δ, contradicting the fact that 𝑝
and Δ are relatively prime. Thus they are in the same ideal class, and p = (𝛼) is a principal
ideal. This means 𝑝 = N𝛼 is in 38.8, as needed.

Combining steps 2 and 3 gives 𝐿 =𝑀 .

9 Hecke operators

Hecke operators give a map on modular forms. We first define their action on lattices.

Definition 38.9.1: Let ℒ denote the set of full lattices in C, and 𝒦 = Z⊕ℒ denote the free
abelian group generated by the elements of ℒ. Define the Hecke operator on 𝒦 by setting

𝑇 (𝑛)[Λ] =
∑︁

Λ′∈ℒ, [Λ:Λ′]=𝑛

[Λ′]

and extending linearly.

The sum is finite because any Λ′ in the sum must contain 𝑛Λ, and Λ/𝑛Λ is finite. We
may think of modular forms as functions on lattices 𝑓(𝑧) = 𝐹 ((1, 𝜏)), hence 𝑇 (𝑛) induces a
map on the space of modular forms of dimension 𝑘, 𝑀𝑘:

𝑇 (𝑛) · 𝑓(𝜏) = 𝑛𝑘−1𝐹 (𝑇 (𝑛)Γ(1, 𝜏)).

Note the constant 𝑛𝑘−1 is just to make formulas nicer.

Proposition 38.9.2: 𝑇 (𝑛) is a map 𝑀𝑘 → 𝑀𝑘, and restricts to a map on cusp forms
𝑆𝑘 → 𝑆𝑘.

Proof. Let 𝐴 =

�
𝑎 𝑏
𝑐 𝑑

�
∈ SL2(Z). We have

𝑇 (𝑛) · 𝑓(𝐴𝜏) = 𝑛𝑘−1𝐹 (𝑇 (𝑛)Γ(𝐴𝜏, 1))

= 𝑛𝑘−1𝐹 [𝑇 (𝑛)(𝑐𝜏 + 𝑑)−1Γ(𝑎𝜏 + 𝑏, 𝑐𝜏 + 𝑑)]

= 𝑛𝑘−1(𝑐𝜏 + 𝑑)−𝑘𝐹 [𝑇 (𝑛)Γ(𝑎𝜏 + 𝑏, 𝑐𝜏 + 𝑑)] 𝐹 homogeneous,

= (𝑐𝜏 + 𝑑)−𝑘𝑛𝑘−1𝐹 [𝑇 (𝑛)Γ(𝜏, 1)] (𝜏, 1) = (𝑎𝜏 + 𝑏, 𝑐𝜏 + 𝑑)

= (𝑐𝜏 + 𝑑)−𝑘𝑇 (𝑛) · 𝑓(𝜏).

1In the first case we can take 𝑝th roots because 𝑝 ⊥ |O𝐿/P
′|.
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In the following subsections, we prove several key properties of the Hecke operator, and
the Hecke algebra (the algebra generated by the 𝑇 (𝑛)).

∙ The operators 𝑇 (𝑛) are multiplicative.

∙ The Hecke algebra is commutative.

∙ The Hecke operators (on modular forms) are self-adjoint with respect to the Petersson
inner product.

We will prove the last two items more generally, for a generalization of the Hecke operators,
𝑇𝛼 where 𝛼 is a matrix. We will then compute the explicit action of 𝑇 (𝑛) on the Fourier
coefficients of modular forms. The main application of Hecke operators is that we can
diagonalize 𝑀𝑘 with respect to the Hecke algebra; thus we can speak of eigenfunctions in
𝑀𝑘. Using the multiplicativity of 𝑇 (𝑛), we how that the coefficients of these eigenfunctions
are multiplicative.

9.1 Hecke operators on lattices

Definition 38.9.3: Define 𝑅(𝑛) : 𝒦 → 𝒦 by

𝑅(𝑛)[Λ] = [𝑛Λ].

Theorem 38.9.4 (Multiplicativity of Hecke operators, I): For any 𝑚,𝑛,

𝑇 (𝑚)𝑇 (𝑛) =
∑︁

𝑑|gcd(𝑚,𝑛), 𝑑>0

𝑑𝑅(𝑑)𝑇
�𝑚𝑛
𝑑2

�
.

In particular, the following hold.

1. If 𝑚 ⊥ 𝑛, then
𝑇 (𝑚)𝑇 (𝑛) = 𝑇 (𝑚𝑛)

2. If 𝑝 is prime and 𝑟 ≥ 1 then

𝑇 (𝑝𝑟)𝑇 (𝑝) = 𝑇 (𝑝𝑟+1) + 𝑝𝑅(𝑝)𝑇 (𝑝𝑟−1).

Translating these properties to modular forms we get the following.

Theorem 38.9.5 (Multiplicativity of Hecke operators, II): For any 𝑚,𝑛,

𝑇 (𝑚)𝑇 (𝑛)𝑓 =
∑︁

𝑑|gcd(𝑚,𝑛), 𝑑>0

𝑑𝑘−1𝑇
�𝑚𝑛
𝑑2

�
𝑓.

In particular, the following hold.

1. If 𝑚 ⊥ 𝑛 then
𝑇 (𝑚)𝑇 (𝑛)𝑓 = 𝑇 (𝑚𝑛)𝑓.

2. If 𝑝 is prime and 𝑟 ≥ 1,

𝑇 (𝑝)𝑇 (𝑝𝑟) = 𝑇 (𝑝𝑟+1)𝑓 + 𝑝𝑘−1𝑇 (𝑝𝑟−1)𝑓.
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10 Simultaneous Eigenforms

Definition 38.10.1: A simultaneous eigenform is a modular form 𝑓 that is an eigen-
function for every Hecke operator 𝑇𝑛.

Write
𝑓(𝜏) =

∑︁
𝑚≥0

𝑐(𝑚)𝑞𝑚.

We know that
(𝑇𝑛𝑓)(𝜏) =

∑︁
𝑚≥0

𝛾𝑛(𝑚)𝑞𝑚

where
𝛾𝑛(𝑚) =

∑︁
𝑑|gcd(𝑚,𝑛)

𝑑𝑘−1𝑐
�𝑚𝑛
𝑑2

�
.

To find properties/criteria for eigenfunctions 𝑓 , we compare:

𝑓(𝜏) = 𝑐(0) + 𝑐(1)𝑞 + · · · (38.12)

(𝑇𝑛𝑓)(𝜏) = 𝜎𝑘−1(𝑛)𝑐(0) + 𝑐(𝑛)𝑞 + · · · . (38.13)

First, we consider the nonvanishing of 𝑐(1). Keep the above notation.

Theorem 38.10.2 (Apostol, 6.14): Suppose 𝑘 ≥ 4 is even, and 𝑓 ∈ 𝑀𝑘 is a simultaneous
eigenform. Then

𝑐(1) ̸= 0.

Proof. Let 𝜆(𝑛) denote the eigenvalue corresponding to 𝑓 for 𝑇𝑛. From (38.12) and (38.13)
we get

𝑐(𝑛) = 𝜆(𝑛)𝑐(1).

If 𝑐(1) = 0 then 𝑐(𝑛) = 0 for all 𝑛, so 𝑓 is a constant, contradiction.

The previous theorem allows us to normalize a simultaneous eigenform so 𝑐(1) = 1.

Theorem 38.10.3 (Simultaneous eigenforms have multiplicative coefficients): Suppose

𝑓(𝜏) =
∑︁
𝑛≥1

𝑐(𝑛)𝑞𝑛 ∈ 𝑆𝑘

with 𝑘 ≥ 12 even. Then the following are equivalent.

1. 𝑓 is a simultaneous normalized eigenform.

2. For all 𝑚 ≥ 𝑛,

𝑐(𝑚)𝑐(𝑛) =
∑︁

𝑑|gcd(𝑚,𝑛)
𝑑𝑘−1𝑐

�𝑚𝑛
𝑑

�
.
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Moreover,

𝜆(𝑛) = 𝑐(𝑛).

Proof. Again from (38.12) and (38.13), if 𝑓 is a simultaneous eigenform we have

𝜆(𝑛) = 𝑐(𝑛).

Now 𝜆(𝑛)𝑓(𝜏) = (𝑇𝑛𝑓)(𝜏) is equivalent to

𝑐(𝑛)𝑐(𝑚) = 𝜆(𝑛)𝑐(𝑚) = 𝛾𝑛(𝑚) =
∑︁

𝑑|gcd(𝑚,𝑛)
𝑑𝑘−1𝑐

�𝑚𝑛
𝑑

�
.

for all 𝑚,𝑛 ≥ 1.

10.1 Examples

We can use Theorem 38.10.3 to conclude the multiplicativity of the coefficients 𝜏(𝑛) of Δ.

Corollary 38.10.4: Write Δ(𝜏) =
∑︀∞
𝑛=0 𝜏(𝑛)𝑞

𝑛. Then

𝜏(𝑚)𝜏(𝑛) =
∑︁

𝑑|gcd(𝑚,𝑛)
𝑑11𝜏

�𝑚𝑛
𝑑2

�
.

In particular,

𝜏(𝑚𝑛) = 𝜏(𝑚)𝜏(𝑛) when 𝑚 ⊥ 𝑛

𝜏(𝑝𝑛+1) = 𝜏(𝑝𝑛)𝜏(𝑝)− 𝑝11𝜏(𝑝𝑛−1).

Theorem 38.10.5 (Noncuspidal eigenforms): The only normalized simultaneous eigenform
in 𝑀2𝑘 − 𝑆2𝑘 is −𝐵2𝑘

4𝑘
𝐸2𝑘.

Proof. The fact that −𝐵2𝑘

4𝑘
𝐸2𝑘 is a normalized simultaneous eigenform follows from Theo-

rem (38.10.3). (The conditions there hold by simple calculation.)

Suppose 𝑓(𝜏) =
∑︀
𝑚≥0 𝑐(𝑚)𝑞𝑚 is a normalized simultaneous eigenform. Use (38.12)

and (38.13) to match coefficients in 𝜆(𝑛)𝑓(𝜏) = (𝑇𝑛𝑓)(𝜏). We get

𝜆(𝑛)��
�𝑐(0) = 𝜎𝑘−1(𝑛)��

�𝑐(0)

𝜆(𝑛)𝑐(1) = 𝑐(𝑛)

So the only possibility is 𝜆(𝑛) = 𝜎𝑘−1(𝑛), and this completely determines all the 𝑐(𝑛) by the
second equation above. (Then only one value of 𝑐(0) will work.)
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11 Existence

Theorem 38.11.1: There exists a basis of simultaneous eigenforms for 𝑀2𝑘.

Proof. Since we already have a simultaneous eigenform in 𝑀2𝑘 − 𝑆2𝑘 and dim(𝑀2𝑘) −
dim(𝑆2𝑘) = 1, it suffices to show that there is a basis of simulatenous eigenforms for 𝑆2𝑘.

We proceed in three steps.

1. Define the Petersson inner product on 𝑆2𝑘 by

⟨𝑓, 𝑔⟩ =
∫︁
𝑅Γ

𝑓(𝜏)𝑔(𝜏)𝑦𝑘
𝑑𝑥𝑑𝑦

𝑦2
.

(Here 𝜏 = 𝑥+ 𝑦𝑖.) It’s clear that this is positive definite. Note the following:

(a) 𝑑𝑥𝑑𝑦
𝑦2

is the Haar measure with respect to SL2(Z) (it is invariant under the action

of SL2(Z)).
(b) 𝑓(𝜏)𝑔(𝜏)𝑦𝑘 is invariant under transformation by SL2(Z): Using

ℑ(𝐴𝜏) = ℑ(𝜏)
|𝑐𝜏 + 𝑑|2

we get

𝑓(𝐴𝜏)𝑔(𝐴𝜏)(ℑ𝐴𝜏)𝑘 = 𝑓(𝜏)(𝑐𝜏 + 𝑑)−𝑘𝑔(𝜏)(𝑐𝜏 + 𝑑)−𝑘
𝑦𝑘

|𝑐𝜏 + 𝑑|2𝑘
= 𝑓(𝜏)𝑔(𝜏)𝑦𝑘.

(c) The integral converges. Since 𝑓 is cuspidal, 𝑓(𝜏) = 𝑂(𝑒−|𝜏 |) = 𝑂(𝑒−𝑦). Thus the
integral is dominated by ∫︁ 1

2

− 1
2

∫︁ ∞

𝑐
𝐶𝑒−𝑦𝑦𝑘−2 𝑑𝑥 𝑑𝑦 <∞.

2. The Hecke operators 𝑇𝑛 are self-adjoint under this inner product, i.e.

⟨𝑇𝑛𝑓, 𝑔⟩ = ⟨𝑓, 𝑇𝑛𝑔⟩ .

(See pg. 82-86 of Brubaker’s notes http://math.mit.edu/˜brubaker/785notes.
pdf.)

3. We use the following linear algebra theorems.

Theorem 38.11.2 (Spectral theorem): A self-adjoint linear operator on a finite-
dimensional C-vector space has an orthogonal basis of eigenvectors (so is diagonal-
izable).
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Theorem 38.11.3: Let ℱ be a commuting family of diagonalizable linear operators
on a finite-dimensional vector space. Then ℱ is simultaneously diagonalizable.

Since the Hecke operators commute, the two theorems, combined with item 2, give the
desired result.
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Chapter 39

Height functions

[Kob84], [Sil86], [HS00], [Sil07]

1 Heights on projective space

Let 𝐾 be a number field. We aim to define a function ℎ on P𝑛(𝐾) with the following
properties.

1. There is a bounded number of points with small height.

2. The height encases nice arithmetical and geometrical information about the point, and
behaves well under rational maps.

It is natural to define the height in terms of the absolute values, or places, on 𝐾. The finite
places will capture how divisible the coordinates of a point 𝑃 are by various primes, while
the infinite places captures the more geometrical notion of distance. We will thus define the
height as a product over all places on 𝐾.

Definition 39.1.1: Let 𝐾 be a number field, and 𝑃 = (𝑥0, . . . , 𝑥𝑛) ∈ P𝑛(𝐾). Define the
multiplicative height and logarithmic height of 𝑃 to be

𝐻𝐾(𝑃 ) =
∏︁

𝑣∈𝑀𝐾

max{‖𝑥0‖𝑣 , . . . , ‖𝑥𝑛‖𝑣}
𝑛𝑣

ℎ𝐾(𝑃 ) = log𝐻𝐾(𝑃 ) =
∑︁
𝑣∈𝑀𝐾

−𝑛𝑣min{𝑣(𝑥0), . . . , 𝑣(𝑥𝑛)}

where 𝑛𝑣 = [𝐾𝑣 : Q𝑣]. (Recall that the normalized absolute value has ‖𝑥‖𝑣 = |𝑥|𝑛𝑣
𝑣 .)

Note that the value of 𝐻𝐾(𝑃 ) is independent of the choice of homogeneous coordinates
for 𝑃 , because by the Product Formula ??.31.1, for any 𝑐 ∈ 𝐾× we have∏︁

𝑣∈𝑀𝐾

max{‖𝑐𝑥0‖𝑣 , . . . , ‖𝑐𝑥𝑛‖𝑣} =
∏︁

𝑣∈𝑀𝐾

‖𝑐‖𝑣
∏︁

𝑣∈𝑀𝐾

max{‖𝑥0‖𝑣 , . . . , ‖𝑥𝑛‖𝑣}

=
∏︁

𝑣∈𝑀𝐾

max{‖𝑥0‖𝑣 , . . . , ‖𝑥𝑛‖𝑣}.
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Note that for the case 𝑛 = 1, we will often write 𝐻𝐾(𝑥) to mean 𝐻𝐾(1 : 𝑥), and likewise
for ℎ𝐾 and the other height functions to be defined.

Example 39.1.2: Suppose that 𝑃 ∈ P𝑛(Q), and write 𝑃 = (𝑥0 : . . . : 𝑥𝑛) where gcd(𝑥0, . . . , 𝑥𝑛) =
1. Then

𝐻(𝑃 ) = max{|𝑥0|, . . . , |𝑥𝑛|}.
Indeed, for each prime 𝑝, one of 𝑥0, . . . , 𝑥𝑛 is not divisible by 𝑝, so max{|𝑥0|𝑝, . . . , |𝑥𝑛|𝑝} = 1.
The only factor that contributes is from the real place.

For the special case 𝑛 = 1, if 𝑎
𝑏
is such that gcd(𝑎, 𝑏) = 1, then we simply have

𝐻
�𝑎
𝑏

�
= 𝐻(𝑎 : 𝑏) = max{|𝑎|, |𝑏|}.

Proposition 39.1.3 (Elementary properties of height):

1. 𝐻𝐾(𝑃 ) ≥ 1 for all 𝑃 ∈ P𝑛(𝐾).

2. If 𝐿/𝐾 is a finite extension, then

𝐻𝐿(𝑃 ) = 𝐻𝐾(𝑃 )
[𝐿:𝐾].

3. The action of the Galois group on P𝑛(𝑄) leaves height invariant, i.e. for any 𝜎 ∈
𝐺(Q/Q) and 𝑃 ∈ P𝑛(Q),

𝐻(𝜎(𝑃 )) = 𝐻(𝑃 ).

Proof.

1. Scale the coordinates of 𝑃 so that one of them equals 1. Then by definition, 𝐻𝐾(𝑃 ) ≥ 1.

2. Use formula (??) by Lemma ??.

3. The Galois group permutes the places.

In light of item 2, we can define an absolute height on P𝑛.

Definition 39.1.4: Let 𝑃 ∈ P(Q). Let 𝐾 be any finite extension of Q containing the
coordinates of 𝑃 . Define the absolute multiplicative/logarithmic height of 𝑃 to be

𝐻(𝑃 ) = 𝐻𝐾(𝑃 )
1

[𝐾:Q]

ℎ(𝑃 ) = log𝐻(𝑃 ) =
1

[𝐾 : Q]
ℎ𝐾(𝑃 ).

Define the field of definition of 𝑃 = (𝑥0 : · · · : 𝑥𝑛) to be the smallest field 𝐾 such that
𝑃 ∈ P(𝐾). We have that

Q(𝑃 ) = Q
�
𝑥0
𝑥𝑗
, . . . ,

𝑥𝑛
𝑥𝑗

�
where 𝑗 is any index such that 𝑥𝑗 ̸= 0.
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Theorem 39.1.5: For any 𝐵 and 𝐷, the set⌋︀
𝑃 ∈ P𝑛(Q) : 𝐻(𝑃 ) ≤ 𝐵 and [Q(𝑃 ) : Q] ≤ 𝐷

{︀
is finite. In particular, the number of points with height bounded by 𝐵 in any fixed number
field 𝐾 is finite.

Proof. Step 1: First note the theorem holds if we only consider points in Q, i.e. the set

{𝑃 ∈ P𝑛(Q) : 𝐻(𝑃 ) ≤ 𝐵}

is finite. Indeed, this follows from the characterization of the height on Q in Example 39.1.2
and the fact that there are finitely many points in (Z ∩ [−𝐵,𝐵])𝑛.

Step 2: Next, we reduce to the case 𝑛 = 1, as follows. Choose coordinates of 𝑃 so that 𝑥𝑗 = 1
for some 𝑗. Then for any 𝑖, we have

𝐻(𝑃 ) =
∏︁

𝑣∈𝑀Q(𝑃 )

max
1≤𝑗≤𝑛

{‖𝑥𝑗‖𝑣} ≥
∏︁

𝑣∈𝑀Q(𝑃 )

max{‖𝑥𝑗‖𝑣 , 1} ≥ 𝐻(𝑥𝑗).

Hence it suffices to show that⌋︀
𝑥 ∈ Q : 𝐻(𝑥) ≤ 𝐵 and [Q[𝑥] : Q] ≤ 𝐷

{︀
(39.1)

is finite. It will follow from this that there are finitely many choices for each 𝑥𝑗, and hence
a finite number of possibilities for 𝑃 .

Step 3: We would like to work with Q. To do so, we consider the minimal polynomial 𝑓 of 𝑥.
The lemma below shows that the height of the point formed from the coefficients is bounded
in terms of the roots of the polynomial. A finite number of possibilities for 𝑓 will mean a
finite number of possibilities for 𝑥.

Lemma 39.1.6: Let

𝑓(𝑋) = 𝑎𝑑𝑋
𝑑 + 𝑎𝑑−1𝑋

𝑑−1 + · · ·+ 𝑎0 = (𝑋 − 𝑟1) · · · (𝑋 − 𝑟𝑑) ∈ Q[𝑋]

be a monic polynomial of degree 𝑑. Then1

𝐻(𝑎0 : · · · : 𝑎𝑑) ≤ 2𝑑−1
𝑑∏︁
𝑗=1

𝐻(𝑟𝑗).

Proof. We prove this by induction on 𝑑. The base case 𝑑 = 1 holds by definition of 𝐻(𝛼).
Suppose the lemma proved for polynomials of degree 𝑑− 1. Let

𝑔(𝑋) = 𝑏𝑑−1𝑋
𝑑−1 + · · ·+ 𝑏0 = (𝑋 − 𝑟1) · · · (𝑋 − 𝑟𝑑−1).

1A closely related quantity to the RHS is the Mahler measure of a polynomial, defined as 𝑀(𝑓) =
|𝑎𝑑|

∏︀𝑛
𝑖=1 max(1, |𝑥𝑖|).
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Then

𝑎𝑘 = 𝑟𝑑𝑏𝑘 + 𝑏𝑘−1,

where for convenience 𝑏−1 = 0.
Let 𝐾 be the field of definition for (𝑎0 : . . . : 𝑎𝑛) and define

𝜀𝑣(𝑚) :=

⎧⎨⎩1, 𝑣 ∈𝑀0
𝐾 (i.e. 𝑣 nonarchimedean)

𝑚, 𝑣 ∈𝑀∞
𝐾 (i.e. 𝑣 archimedean).

(39.2)

By the triangle inequality,

|𝑎𝑘|𝑣 ≤ 𝜀𝑣(2)max{|𝑟𝑑𝑏𝑘|𝑣, |𝑏𝑘−1|𝑣}
≤ 𝜀𝑣(2)max{|𝑟𝑑|𝑣, 1}max{|𝑏𝑘|𝑣, |𝑏𝑘−1|𝑣}.

Hence

max
0≤𝑘≤𝑑

(|𝑎𝑘|𝑣) ≤ 𝜀𝑣(2)max{|𝑟𝑑|𝑣, 1} max
0≤𝑘≤𝑑−1

|𝑏𝑘|𝑣.

Take the product over all 𝑣 ∈ 𝑀𝐾 and noting that there are at most [𝐾 : Q] archimedean
places (since each corresponds to a real embedding or a pair of complex conjugate embed-
dings), we get ∏︁

𝑣∈𝑀𝐾

max
0≤𝑘≤𝑑

(|𝑎𝑘|𝑣) ≤ 2[𝐾:Q]
∏︁

𝑣∈𝑀𝐾

max
0≤𝑘≤𝑑−1

{|𝑏𝑘|𝑣, 1}.

Raising each side to the power 1
[𝐾:Q]

gives

𝐻𝐾(𝑎0 : . . . : 𝑎𝑛) ≤ 2𝐻(𝑟𝑘)𝐻(𝑏𝑘) ≤ 2𝑑−1
𝑑∏︁
𝑗=1

𝐻(𝛼𝑗)

where the last step follows from the induction hypothesis.

Suppose 𝑥 is in the set (39.1). Let 𝑓(𝑋) = 𝑎𝑑𝑋
𝑑 + · · · + 𝑎0 be the minimal polynomial

of 𝑥, and 𝑥1, . . . , 𝑥𝑑 be the conjugates of 𝑥. Note 𝑑 ≤ 𝐷. Further noting that all conjugates
of 𝑥 have the same height (Proposition 39.1.3(3)), we have by the lemma that

𝐻(𝑎𝑑 : . . . : 𝑎0) ≤ 2𝑑−1
𝑒∏︁
𝑗=1

𝐻(𝑥𝑗) = 2𝑑−1𝐻(𝑥)𝑑 ≤ 2𝐷−1𝐵𝐷.

This means all the coefficients 𝑎𝑘 have absolute value at most 2𝐷−1𝐵𝐷. This shows there
are a finite number of possibilities for 𝑓 and hence a finite number of possibilities for 𝑥.

As a first application, we prove the following famous theorem of Kronecker.

Theorem 39.1.7 (Kronecker): Suppose 𝛼 ∈ Q has all conjugates lying on the unit circle.
Then 𝛼 is a root of unity.
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Proof. First we show that 𝐻(𝛼) = 1. To this end, let 𝐾 = Q(𝛼). If 𝑣 is a finite place of 𝐾,
then |𝛼|𝑣 = 1 since 𝛼 is a unit. If 𝑣 is an infinite place of 𝐾, then it is determined by a real
or complex embedding, and |𝛼|𝑣 = 1 by assumption. This proves our claim.

It is easy to see from the definition of𝐻 that𝐻(𝛼𝑛) = 1 for all 𝑛. Furthermore 𝛼𝑛 ∈ Q(𝛼)
for each 𝛼. However, by Theorem (39.1) there are a finite number of 𝑥 ∈ Q such that
𝑥 ∈ Q(𝛼) and 𝐻(𝑥) = 1. Hence 𝛼𝑗 = 𝛼𝑘 for some 𝑗 ̸= 𝑘, and 𝛼 is a (𝑘 − 𝑗)th root of
unity.

Remark 39.1.8: It is informative to unravel the arguments leading to the theorem above.
For each 𝛼𝑗, we have that the minimal polynomial of 𝑓𝑗 has bounded degree; moreover it
has bounded coefficients, simply because all conjugates of 𝛼𝑗 have absolute value 1. (This
is essentially the argument in Theorem 39.1.5.) Hence there are a finite number of 𝑓𝑗, and
𝛼𝑗 = 𝛼𝑘 for some 𝑗 ̸= 𝑘.

2 Height functions and rational maps

Next we consider how height transforms under rational functions.

Theorem 39.2.1: Let 𝜑 : P𝑛 → P𝑚 be a rational map over Q. Write 𝜑 = (𝑓0, . . . , 𝑓𝑚),
where the 𝑓𝑗 are homogeneous of degree 𝑑. Let 𝑍 = 𝑍(𝑓0, . . . , 𝑓𝑚), the subset of common
zeros of the 𝑓𝑗 and 𝐷 = P𝑛(Q)∖𝑍. Then

ℎ(𝜑(𝑃 )) ≤ 𝑑ℎ(𝑃 ) +𝑂(1) for all 𝑃 ∈ P𝑛(Q).

Moreover, if 𝑋 is a closed variety contained in 𝐷 (so 𝜑 defines a morphism 𝑋 → P𝑚), then

ℎ(𝜑(𝑃 )) = 𝑑ℎ(𝑃 ) +𝑂(1) for all 𝑃 ∈ 𝑋(Q). (39.3)

In particular, if 𝜙 is a morphism then ℎ(𝜑(𝑃 )) = 𝑑ℎ(𝑃 ) +𝑂(1) for all 𝑃 ∈ P(Q).

Proof. Let 𝐾/Q be a finite extension contain the field of definition for 𝜑 and 𝑃 . To obtain
the upper bound on ℎ(𝜑(𝑃 )) we calculate the valuations of the 𝑓𝑗(𝑃 ) and use the triangle
inequality. Each 𝑓𝑗 can be written in the form

𝑓𝑗(𝑥) =
∑︁
|𝑒|=𝑑

𝑎𝑒𝑥
𝑒.

Note there are
(︀
𝑛+𝑑
𝑑

�
terms in the above sum. Defining 𝜀𝑣(𝑡) as in (39.2), we get that by the

triangle inequality that

|𝑓𝑗(𝑥)|𝑣 ≤ 𝜀𝑣

(︃
𝑛+ 𝑑

𝑑

)︃
max
𝑒

(|𝑎𝑒|𝑣) max
1≤𝑗≤𝑛

(|𝑥𝑗|𝑣)𝑑

and hence

max
1≤𝑗≤𝑚

|𝑓𝑗(𝑥)|𝑣 ≤ 𝜀𝑣

(︃
𝑛+ 𝑑

𝑑

)︃
max
𝑒

(|𝑎𝑒|𝑣) max
1≤𝑗≤𝑛

(|𝑥𝑗|𝑣)𝑑.
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Multiplying over all 𝑣 ∈ 𝑀𝐾 , taking the [𝐾 : Q]th root, and noting that there are at most
[𝐾 : Q] archimedean valuations, we get

𝐻(𝜑(𝑃 )) = 𝐻(𝑓0(𝑃 ) : . . . : 𝑓𝑛(𝑃 )) ≤
(︃
𝑛+ 𝑑

𝑑

)︃
𝐻((𝑎𝑒))𝐻(𝑃 )𝑑

where (𝑎𝑒) is the point with coordinates equal to the 𝑎𝑒; note 𝐻((𝑎𝑒)) is a constant depending
on 𝜑. Taking the logarithm gives the first part.

For the second part, we will relate the height of 𝑃 with the height of 𝜑(𝑃 ) by writing
powers of 𝑥𝑖 in terms of the 𝑓𝑖 by the Nullstellensatz. Let 𝑋 = 𝑍(𝑔1, . . . , 𝑔𝑛′). Since
𝑍(𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝑚′) = 𝑋 ∩ 𝑍 = 𝜑, by the Nullstellensatz,È

(𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝑚′) = 𝐼(𝑍(𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝑚′)) = (𝑥1, . . . , 𝑥𝑚).

Hence there are polynomials 𝑝𝑘,1, . . . , 𝑝𝑘,𝑚, 𝑞𝑘,1, . . . , 𝑞𝑘,𝑚′ and 𝑒 ∈ N such that such that

𝑝𝑘,1𝑓1 + · · ·+ 𝑝𝑘,𝑚𝑓𝑚 + 𝑞𝑘,1𝑔1 + · · ·+ 𝑞𝑘,𝑚𝑔𝑚 = 𝑥𝑒𝑘.

By taking the terms of highest degree we may assume the 𝑝𝑗 and 𝑞𝑗 are homogeneous. For
any point 𝑃 ∈ 𝑋, we have 𝑔𝑗(𝑃 ) = 0 so the above becomes

𝑝𝑘,1(𝑃 )𝑓1(𝑃 ) + · · ·+ 𝑝𝑘,𝑚(𝑃 )𝑓𝑚(𝑃 ) = 𝑥𝑒𝑘.

Let 𝐺 be the point with coordinates equal to 𝑏 where 𝑏 is the coefficient of some 𝑝𝑘,𝑗 or 𝑞𝑘,𝑗.
Since the 𝑝𝑘,𝑗 have degree 𝑑, we see that |𝑝𝑘,𝑗(𝑃 )|𝑣 ≤ |𝐺|𝑣max1≤𝑗≤𝑛(|𝑥𝑗|𝑣)𝑒−𝑑. Taking the
valuation and using the triangle inequality,

|𝑥𝑘|𝑚𝑣 ≤ 𝜀𝑣(𝑚)|𝐺|𝑣 max
1≤𝑗≤𝑛

(|𝑥𝑗|𝑣)𝑚−𝑑 max
1≤𝑗≤𝑛

(|𝑓𝑗(𝑃 )|𝑣).

=⇒ max
1≤𝑗≤𝑛

(|𝑥𝑗|𝑣)𝑑 ≤ 𝜀𝑣(𝑛)|𝐺|𝑣 max
1≤𝑗≤𝑛

(|𝑓𝑗(𝑃 )|𝑣).

Taking the product over all 𝑣 ∈𝑀𝐾 and taking the [𝐾 : Q]th root gives

𝐻(𝑃 )𝑑 ≤ 𝑚𝐻(𝐺)𝐻(𝜑(𝑃 )).

Taking logarithms gives the desired result.

This theorem has an immediate application to the dynamics of rational maps on number
fields. Define a preperiodic point of a function 𝑓 to be a point 𝑃 such that there exist
𝑚 ̸= 𝑛 with 𝑓𝑚(𝑃 ) = 𝑓𝑛(𝑃 ).

Theorem 39.2.2 (Northcott): Let 𝜑 : P𝑁(𝐾) → P𝑁(𝐾) be a morphism of degree 𝑑 ≥ 2
over a number field 𝐾. Then the set PrePer(𝜑) ⊂ P𝑁(𝐾) is of bounded height.

In particular, the set of preperiodic points of 𝜑 in 𝐾 is finite.

Corollary 39.2.3: Let 𝜑 be a rational function on P1(𝐾). There are a finite number of
points 𝑃 such that 𝜑𝑚(𝑃 ) = 𝜑𝑛(𝑃 ) for some 𝑚 ̸= 𝑛.
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Proof. Theorem 39.2.1 gives us the lower bound

ℎ(𝜑(𝑄)) ≥ 𝑑ℎ(𝑄)− 𝐶 for all 𝑄 ∈ P𝑁(𝐾). (39.4)

Suppose 𝜑𝑚(𝑃 ) = 𝜑𝑚+𝑘(𝑃 ). Then repeated application of the above gives

ℎ(𝜑𝑚(𝑃 )) = ℎ(𝜑𝑚+𝑘(𝑃 )) ≥ 𝑑ℎ(𝜑𝑚+𝑘−1(𝑃 ))−𝐶 ≥ · · · ≥ 𝑑𝑘ℎ(𝜑𝑚(𝑃 ))−𝐶(1+ 𝑑+ · · ·+ 𝑑𝑘−1).

Hence we get

ℎ(𝜑𝑚(𝑃 )) ≤ 𝐶

𝑑− 1
.

On the other hand, (39.4) also gives

ℎ(𝜑𝑚(𝑃 )) ≥ 𝑑𝑚ℎ(𝑃 )− 𝐶(1 + 𝑑+ · · ·+ 𝑑𝑚−1).

Putting these two bounds together gives

ℎ(𝑃 ) ≤ 𝐶

(𝑑− 1)𝑑𝑚
+

𝐶

𝑑− 1
≤ 2𝐶.

The second part now follows from Theorem 39.1.5.
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Chapter 40

Diophantine approximation

1 Approximation theorems

Any real number can be approximated to an arbitrary degree by rational numbers. However,
we would like these approximations to be “efficient,” that is, have good approximations
without having denominators that are too large. Dirichlet’s theorem gives a measure of how
well we can be guaranteed to do this.

Theorem 40.1.1 (Dirichlet): Given 𝛼 ∈ R, there are infinitely many rational numbers
𝑝
𝑞
∈ Q such that ⃒⃒⃒⃒⃒

𝑝

𝑞
− 𝛼

⃒⃒⃒⃒⃒
≤ 1

𝑞2
.

In the other direction, it turns out that algebraic numbers cannot be approximated too
closely by rationals.

Theorem 40.1.2 (Liouville): (†) Let 𝛼 ∈ Q. There is a constant 𝐶 := 𝐶(𝛼) such that for
every 𝑝

𝑞
∈ Q, ⃒⃒⃒⃒⃒

𝑝

𝑞
− 𝛼

⃒⃒⃒⃒⃒
≥ 𝐶

𝑞𝑑
.

(Equivalently, for every 𝜀 > 0, there are only finitely many 𝑝
𝑞
∈ Q such that

⃒⃒⃒
𝑝
𝑞
− 𝛼

⃒⃒⃒
≤ 𝐶

𝑞𝑑
.)

Proof. Assume 𝛼 ̸∈ Q. Let 𝑓 be the minimal polynomial of 𝛼.

Note that 𝑞𝑛𝑓
(︁
𝑝
𝑞

)︁
is a nonzero integer, so⃒⃒⃒⃒⃒

𝑞𝑛𝑓

�
𝑝

𝑞

�⃒⃒⃒⃒⃒
≥ 1 =⇒

⃒⃒⃒⃒⃒
𝑓

�
𝑝

𝑞

�⃒⃒⃒⃒⃒
≥ 1

𝑞𝑛
.

On the other hand, by the Intermediate Value Theorem there exists 𝑥 between 𝑝
𝑞
and 𝛼 such
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that ⃒⃒⃒⃒⃒
𝑓

�
𝑝

𝑞

�⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒
𝑓

�
𝑝

𝑞

�
− 𝑓(𝛼)

⃒⃒⃒⃒⃒
= 𝑓 ′(𝑥)

⃒⃒⃒⃒⃒
𝑝

𝑞
− 𝛼

⃒⃒⃒⃒⃒
.

Assuming
⃒⃒⃒
𝑝
𝑞
− 𝛼

⃒⃒⃒
< 1, there is a constant 𝐶 such that this is at most 𝐶

⃒⃒⃒
𝑝
𝑞
− 𝛼

⃒⃒⃒
. Combining

the above two inequalities gives ⃒⃒⃒⃒⃒
𝑝

𝑞
− 𝛼

⃒⃒⃒⃒⃒
≥ 1

𝐶𝑞𝑛

for all 𝑝
𝑞
with 1

𝑝
𝑞
−𝛼 < 1, as needed.

In fact, Liouville’s Theorem can be made much stronger: 𝑑 can be replaced by 2 + 𝜀 for
any 𝜀 > 0. This is the Thue-Siegel-Roth Theorem. We will state it for arbitrary number
fields, keeping in mind that the case for Q is that described above. Recall that the natural
measure of arithmetic complexity on 𝐾 is the height function 𝐻𝐾 (which in the case of Q is
related to the numerator and denominator of the fraction).

Theorem 40.1.3 (Thue-Siegel-Roth): Let 𝐾 be a number field, and 𝛼 ∈ 𝐾. For every 𝐶,
there are only finitely many 𝑝

𝑞
∈ Q such that⃒⃒⃒⃒⃒

𝑝

𝑞
− 𝛼

⃒⃒⃒⃒⃒
≤ 𝐶

𝑞2+𝜀
.

Remark on effectivity.

2 Thue-Siegel-Roth Theorem

Lemma 40.2.1 (Siegel’s lemma): For a 𝑚× 𝑛 matrix 𝑀 let |𝑀 | = max 1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

|𝑚𝑖𝑗|

Suppose 𝐴 ∈ Mat𝑚×𝑛(Z), with 𝑛 > 𝑚. Let the row sums be

𝐴𝑖 =
𝑛∑︁
𝑗=1

|𝑎𝑖𝑗|.

Then there exists a nonzero solution 𝑇 = (𝑡1, . . . , 𝑡𝑛)
𝑇 of 𝐴𝑇 = 0 such that

|𝑇 | ≤ (𝐶1 · · ·𝐶𝑚)
1

𝑛−𝑚 ≤ (𝑁 |𝐴|)
𝑚

𝑛−𝑚 .

Proof. The key idea is to use the pigeonhole principle: Consider a set 𝑆 of 𝑇 with |𝑇 | small,
say

𝑆 = {𝑇 : 0 ≤ 𝑡𝑖 ≤𝑀} .

When

|𝑆| > | {𝐴𝑇 : 𝑇 ∈ 𝑆} |, (40.1)
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then there must be 𝑇1 and 𝑇2 so that 𝐴𝑇1 = 𝐴𝑇2, or 𝐴(𝑇1 − 𝑇2) = 0. We can choose 𝑀
large enough so that (40.1) holds: because there are more unknowns than equations, the
LHS grows faster in 𝑀 . This value of 𝑀 will give our bound.

Let 𝑅𝑖 be the 𝑖th row of 𝐴. Note that fixing 𝑖,� ∑︁
𝑗|𝑎𝑖𝑗<0

𝑎𝑖𝑗

�
|𝑇 | ≤ 𝑅𝑖𝑇 ≤

� ∑︁
𝑗|𝑎𝑖𝑗>0

𝑎𝑖𝑗

�
|𝑇 |,

so there are at most 𝐴𝑖 = ⌈𝑀⌉
∑︀𝑛
𝑗=1 |𝑎𝑖𝑗| possibilities for 𝑅𝑖𝑇 . Thus we have

|𝑆| = (𝑀 + 1)𝑛

| {𝐴𝑇 : 𝑇 ∈ 𝑆} | = (1 + ⌊𝑀⌋𝐴1) · · · (1 + ⌊𝑀⌋𝐴𝑚) ≤ 𝐴1 · · ·𝐴𝑚(1 + ⌊𝐵⌋)𝑛.

Taking 𝑀 = (𝐴1 · · ·𝐴𝑚)
1

𝑛−𝑚 gives (40.1). As noted, using the Pigeonhole Principle gives the
existence of 𝑇1 and 𝑇2 with 𝐴𝑇1 = 𝐴𝑇2; take the vector 𝑇1 − 𝑇2.

3 𝑆-unit equation

Theorem 40.3.1 (S-unit equation): Let 𝑆 ⊆ 𝑀𝐾 be a finite set of places, and 𝑎, 𝑏 ∈ 𝐾×.
Then the equation

𝑎𝑥+ 𝑏𝑦 = 1

has a finite number of solutions in 𝑆-units 𝑥, 𝑦 ∈ 𝑈(𝑆)×.

Proof. Let 𝑚 be a large integer, to be chosen. Every solution is in the form 𝑥 = 𝛼𝑋𝑚

and 𝑦 = 𝛽𝑌 𝑚 for 𝛼, 𝛽 coset representatives in 𝑈(𝑆)×/𝑈(𝑆)×𝑚. There are a finite number
of cosets since by Dirichlet’s 𝑆-unit theorem ??.18.3.2 𝑈(𝑆) is finitely generated. Thus it
suffices to show that each equation 𝑎𝛼𝑋𝑚 + 𝑏𝛽𝑌 𝑚 = 1 has finitely many solutions. Let
𝐴 = 𝑎𝛼 and 𝐵 = 𝑏𝛽. Then

𝐴𝑋𝑚 +𝐵𝑌 𝑚 = 1.

Write this as ∏︁
𝜁𝑚=1

(︂
𝑋

𝑌
− 𝜁𝛾

)︂
=

1

𝐴𝑌 𝑚
.

where 𝛾 is a 𝑚th root of −𝐵
𝐴
.

Assume by way of contradiction that there are infinitely many solutions. We have∏︁
𝜁𝑚=1

⃒⃒⃒⃒
𝑋

𝑌
− 𝜁𝛾

⃒⃒⃒⃒
𝑣
=
⃒⃒⃒⃒

1

𝐴𝑌 𝑚

⃒⃒⃒⃒
𝑣
;

we show that for some solution, this forces 𝑋
𝑌

to be too close to 𝜁𝛾. Since 𝐻𝐾(𝑌 ) =∏︀
𝑣∈𝑆 max{1, |𝑌 |𝑛𝑣

𝑣 }, we get |𝑌 |𝑣 ≥ 𝐻𝐾(𝑌 )
1

|𝑆[𝐾:Q] for some 𝑣. (Why?)
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Chapter 41

Complex multiplication

ch:CM In this chapter, we combine class field theory with the theory of elliptic curves, first
to characterize the maximal abelian extension of 𝐾, then to illustrate the relationships in
Section 29.7 for CM elliptic curves. We will assume basic facts about elliptic curves (for an
introduction see Silverman [Sil86, Chapter III]).

We know that every elliptic curve over C has endomorphism ring either equal to Z or
a quadratic order. In the second case, the elliptic curve is said to have complex multi-
plication. This gives the elliptic curve a lot more structure. On one hand, it is useful
algebraically—as we will see, torsion points of a CM elliptic curve give abelian extensions of
imaginary quadratic fields. In general, because of the added structure, much more is known
about CM elliptic curves than other elliptic curves, and they can act as a kind of “testing
ground” or “first case” of general conjectures.

On the other hand, CM elliptic curves have practical uses—for instance, if we take an CM
elliptic curve corresponding to a specific endomorphism ring, we can easily compute its order.
Hence we can generate an elliptic curve with near-prime order, useful in cryptography. This
is much more efficient than generating random elliptic curves and using Schoof’s algorithm
to find their orders.

There are several big theorems about complex multiplication. In Section 2, we specialize
our knowledge about the relationship between elliptic curves over C and complex tori to CM
elliptic curves and build a toolbox of basic facts. However, since we are interested in number
theory, we want to take curves defined over C and define them over Q instead—which we do
in Section 3. Once we have these basics, we can then prove the big theorems.

We suppose 𝐸 has CM by a quadratic order O ⊂ 𝐾 (i.e. End(𝐸) ∼= O), where 𝐾 is a
quadratic extension of Q. Then the following hold.

1. The 𝑗-invariant 𝑗(𝐸) generates the ring class field of O over 𝐾. In particular, if
O = O𝐾 , then 𝑗(𝐸) generates the Hilbert class field of 𝐾, the maximal unramified
abelian extension (Theorem 41.4.4):

𝐾(𝑗(𝐸)) = 𝐻𝐾 .

2. If 𝐸 is defined over 𝐻𝐾 , and we adjoin certain functions of torsion points of 𝐸, then
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we get the maximal abelian extension of 𝐾 (Theorem 41.5.4):

𝐾(𝑗(𝐸), ℎ(𝐸tors)) = 𝐾ab.

Compare this with the Kronecker-Weber Theorem, which says the maximal abelian
extension of Q is generated by roots of unity (torsion points of Q×

).

3. 𝑗(𝐸) is moreover an algebraic integer (We omit this; see Silverman AT, [Sil94, II.6].)

4. The action of the idele class group sending 𝐾/a to 𝐾/x−1a corresponds to the Galois
action on the corresponding elliptic curves, where the Galois action is given by the
Frobenius element of 𝜎. This is the Main Theorem of Complex Multiplication 41.6.2,
and plays an important part in taking moduli spaces initially defined only over C and
defining them over algebraic number fields.

5. The 𝐿-series of a CM elliptic curve is particularly easy to understand, because it is a
product of 2 Hecke 𝐿-series (Theorem 41.7.5).

Two “big ideas” we’ll consistently see are the following.

1. We expect abelian extensions because for CM elliptic curves (with endomorphism ring
O𝐾 , say), the image of the map 𝐺(𝐿/𝐻𝐾) →˓ Aut(𝐸[𝑚]) commutes with O𝐾 , not just
Z and hence must be abelian, with appropriate 𝐿.

2. We can use torsion points 𝐸[𝑚] to “keep book” on the action of Frobenius, in the same
way that we used the roots of unity 𝜇𝑚 to keep book on the action of Frobenius on
𝐺(Q(𝜇𝑚)/Q).

1 Elliptic curves over C
The following theorem helps us understand elliptic curves over C.

Theorem 41.1.1: thm:lattice-ec-eoc Let 𝑔2(Λ) = 60𝐺4(Λ) and 𝑔3(Λ) = 140𝐺6(Λ), where 𝐺𝑛 is
the Eisenstein series. Let Λ be a lattice in C and ℘ be the associated Weierstrass ℘-function.

There is a complex analytic isomorphism between the complex torus C/Λ and the elliptic
curve over C,

𝑦2 = 4𝑥3 − 𝑔2(Λ)𝑥− 𝑔3(Λ)

given by

Φ(𝑧) = (℘(𝑧), ℘′(𝑧)).

The map Φ gives an equivalence of categories between the following.

1. Objects: Complex tori C/Λ, where Λ is a lattice in C.
Maps: Multiplication-by-𝛼 C/Λ1 → C/Λ2 where 𝛼Λ1 ⊆ Λ2.
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2. Objects: Elliptic curves over C.
Maps: Isogenies.

Proof. Silverman [Sil86, VI.5.1.1, 5.3]

The endomorphism ring of a lattice Λ ⊂ C is either Z or an imaginary quadratic order,
so the same is true of an elliptic curve 𝐸 over C. If the endomorphism ring is a quadratic
order O, we say 𝐸 has complex multiplication by O.

2 Complex multiplication over C
sec:cm-C

2.1 Embedding the endomorphism ring

We know the endomorphism ring End(𝐸) of a CM elliptic curve corresponds to a quadratic
order O but since any quadratic order has conjugation as an isomorphism, we need to specify
a way to embed End(𝐸) into C.

Example 41.2.1: ex:which-i Consider the curve 𝐸 : 𝑦2 = 𝑥3 + 𝑥. We note that the endomor-
phisms

𝜑1(𝑥, 𝑦) = (−𝑥, 𝑖𝑦)
𝜑2(𝑥, 𝑦) = (−𝑥,−𝑖𝑦)

both square to −1. Which one should we call [𝑖], multiplication by 𝑖?

Fortunately, we have a way of embedding End(Λ) into C, where Λ is the lattice corre-
sponding to 𝐸, because Λ itself is in C. This to give a canonical way of embedding End(𝐸)
into C.

Proposition 41.2.2: pr:normalize-cmec Let 𝐸/C be a CM elliptic curve with complex multiplica-

tion by O. There is a unique isomorphism [·] : O
∼=−→ End(𝐸) satisfying either of the following

equivalent conditions.

1. [𝛼] is the unique morphism making the following diagram commute, where the top
map is multiplication by 𝛼.

C/Λ 𝑚𝛼 //

Φ
��

C/Λ

Φ
��

𝐸Λ
[𝛼]

// 𝐸Λ

2. For any invariant differential 𝜔 ∈ Ω𝐸, [𝛼]
*𝜔 = 𝛼𝜔.

Moreover, we have the following.
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3. Define [·]1 and [·]2 for elliptic curves 𝐸1 and 𝐸2. For any morphism 𝜑 : 𝐸1 → 𝐸2,

𝜑 ∘ [𝛼]1 = [𝛼]2 ∘ 𝜑.

In other words, multiplication by 𝛼 commutes with all morphisms.

4. For any 𝜎 ∈ Aut(C),
[𝛼]𝜎𝐸 = [𝜎(𝛼)]𝜎(𝐸),

i.e. it commutes with Galois action.

The pair (𝐸, [·]) is called a normalized elliptic curve. After we prove this proposition,
we will assume all CM elliptic curves are normalized.

Proof. The uniqueness and existence of [𝛼] satisfying item 1 follows directly from the equiv-
alence of categories (Theorem 41.1.1).

Define [𝛼] as in item 1. For any invariant differential 𝜔 on 𝐸Λ, since Φ is an analytic
isomorphism, we can consider its pullback to C/Λ; it will be 𝑐 𝑑𝑧 for some 𝑐 (The space
of invariant differentials on C/Λ is 1-dimensional.) Clearly, 𝑚*

𝛼(𝑐 𝑑𝑧) = 𝑐 𝑑(𝛼𝑧) = 𝛼𝑐 𝑑𝑧.
Transferring this to the bottom row of the commutative diagram gives [𝛼]*𝜔 = 𝛼𝜔. For
uniqueness, note the map

Hom(𝐸1, 𝐸2) →˓ Hom(Ω𝐸2 ,Ω𝐸1)eq:ec-diff-inj (41.1)

𝜑→ 𝜑*

is injective when all isogenies 𝐸1 → 𝐸2 are separable (in particular, in characteristic 0), i.e.
the action of an isogeny of elliptic curves on an invariant differential completely determines
the morphism. Taking 𝐸1 = 𝐸2 and considering the preimage of multiplication-by-𝛼 gives
uniqueness in item 2.

A simple diagram chase shows that (𝜑∘[𝛼]1)* and ([𝛼]2∘𝜑)* act the same way on 𝜔 ∈ Ω𝐸2 .
Then (41.1) gives item 3.

The proof of item 4 is similar.

Example 41.2.3: The definition using differentials is useful for calculations. Revisiting the
above Example 41.2.1, we see that we should let

[𝑖](𝑥, 𝑦) = (−𝑥, 𝑖𝑦).

Indeed, defining [𝑖] in this way, we check that

[𝑖]*
𝑑𝑥

𝑦
=
𝑑(−𝑥)
𝑖𝑦

= 𝑖
𝑑𝑥

𝑦
.
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2.2 The class group parameterizes elliptic curves

Let 𝐾 be an imaginary quadratic field and O an order inside 𝐾.

Definition 41.2.4: Let 𝐿 be a field. Define

Ell𝐿(O) = {elliptic curves 𝐸/𝐿 with End(𝐸) ∼= O}

ℰ ll𝐿(O) =
{elliptic curves 𝐸/𝐿 with End(𝐸) ∼= O}

isomorphism over 𝐿
,

i.e. ℰ ll𝐿(O) is the set of elliptic curves over 𝐿 whose endomorphism ring is O. If we omit 𝐿,
we assume 𝐿 = C.

If 𝐸 ∈ Ell(O), then its corresponding lattice Λ must be homothetic to a fractional ideal
of O: indeed, we can scale the lattice so that 1 ∈ Λ; then O ⊆ Λ so Λ ⊆ 𝐾; since it is a
lattice it must be a fractional O-ideal. Now note an O-ideal a has endomorphism ring O
iff a is a proper ideal (see Definition 17.17.4.5).1 Hence we get a correspondence between
isomorphism classes of elliptic curves [𝐸] ∈ ℰ ll(O) and proper O-ideals up to homothety.
However, two fractional ideals a and b are homothetic iff 𝜆a = b for some 𝜆, i.e. iff they
are equivalent in the class group. Thus the class group of O parameterizes all isomorphism
classes of elliptic curves with endomorphism ring O. This is summarized in the following.

ℰ ll(O) =
{elliptic curves 𝐸/C with End(𝐸) ∼= O}

isomorphism over C
=
{proper fractional O-ideal}

principal O-ideals
= Cl(O).

We state this as a theorem.

Theorem 41.2.5: thm:ell=cl We have a bijection

ℰ ll(O) ∼= Cl(O)

where [𝐸] ∈ ℰ ll(O) is sent to a [a], where a is a fractional ideal homothetic to the lattice
corresponding to 𝐸.

We get much more than this, however. ℰ ll(O) is a priori just a set; however, Cl(O) is a
group. We can define the action of 𝐼(O) on Ell(O) since 𝐼(O) acts on lattices. This action
will descend to an action of Cl(O) on ℰ ll(O), since isomorphic elliptic curves correspond to
equivalent ideals.

Theorem 41.2.6: There is a group action of Id(O) on Ell(O) given by

a𝐸Λ = 𝐸a−1Λ

where 𝐸Λ denotes the elliptic curve corresponding to the lattice Λ.
This descends to a simply transitive group action of Cl(O) on ℰ ll(O).

1When 𝑅 = O𝐾 , all ideals are proper, so this distinction is not important. The reader unfamiliar with
non-maximal orders can take 𝑅 = O𝐾 throughout.
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Proof. Just check that if Λ has endomorphism ring O, then so does the lattice a−1Λ. (Note
that b𝐿 is defined by {𝑠𝛼 : 𝑠 ∈ b, 𝛼 ∈ 𝐿}.)

For the second part, note that 𝐸Λ
∼= a𝐸 = 𝐸a−1Λ iff Λ and a−1Λ are homothetic, i.e. a is

principal.

Remark 41.2.7: Another way of saying that Cl(O) acts simply transitively on ℰ ll(O) is
that ℰ ll(O) is a torsor or principal homogeneous space for Cl(O).

This action will be fundamental to our understanding of CM elliptic curves. Later on we
will relate this to the Galois action. The interplay between these two actions is the source
for much of the richness of CM theory.

2.3 Ideals define maps

For any 𝑛 ∈ Z and any elliptic curve 𝐸, 𝑛 defines the multiplication by 𝑛 map [𝑛] : 𝐸 →
𝐸. When 𝐸 has CM, we saw in Theorem 41.2.2 that 𝛼 ∈ O defines (canonically) the
multiplication by 𝛼 map [𝛼] : 𝐸 → 𝐸. We now extend this to ideals: if a is a proper O-ideal,
a determines a “multiplication by a” map. The only difference is that [a] is now a map
𝐸 → a𝐸.

Definition 41.2.8: Let 𝐸 ∈ Ell(O) correspond to the lattice Λ. Let a be a proper integral
ideal of O. We have a𝑅 ⊆ 𝑅, so a determines a map C/Λ→ C/a−1Λ, sending 𝑧 ↦→ 𝑧. Define
the multiplication by a-map as the corresponding map on elliptic curves

[a] : 𝐸 → 𝐸a−1Λ = a𝐸.

Proposition 41.2.9: pr:E[a] Do we need 𝑅 = O𝐾? Let 𝐸 ∈ Ell(O𝐾). We have the following.

1. The kernel of [a] (the “a-torsion points”) is

𝐸[a] := {𝑃 ∈ 𝐸 : [𝛼]𝑃 = 0 for all 𝛼 ∈ a} ∼= O𝐾/a.

2. The degree of [a] is
deg([a]) = |𝐸[a]| = N(a),

and in particular, deg([𝛼]) = |𝐸[𝛼]| = Nm𝐾/Q(𝛼).

Proof. Silverman AT [Sil94, pg. 102-3].

3 Defining CM elliptic curves over Q

sec:cm-Q We show that we do not lose anything if we just consider elliptic curves over Q instead
of over C. To do this, we look at the 𝑗-invariants.
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Proposition 41.3.1: pr:j-alg Suppose 𝐸 is an elliptic curve with CM by a quadratic order O.
Then 𝑗(𝐸) ∈ Q, i.e. 𝑗(𝐸) is algebraic.

Proof. Let 𝜎 be any automorphism of C over Q. We look at how 𝜎 acts on 𝑗(𝐸).
Note that 𝐸𝜎 is defined by taking any equation for 𝐸 and operating on all the coefficients

of 𝐸 by 𝜎, so 𝜎(𝑗(𝐸)) = 𝑗(𝐸𝜎).
First note that End(𝐸) ∼= End(𝐸𝜎) by the map 𝜑 ↦→ 𝜑𝜎. Hence End(𝜎(𝐸)) = O as

well. But Cl(O) is finite, and as |Cl(O)| = |ℰ ll(O)| (Theorem 41.2.5) we see that the 𝐸𝜎

lie in finitely many isomorphism classes. Because isomorphic elliptic curves have the same
𝑗-invariant, there are a finite number of possibilities for 𝑗(𝐸𝜎).

As {𝜎(𝑗(𝐸)) : 𝜎 ∈ Aut(C)} is finite, 𝑗(𝐸) must be algebraic.

This allows us to prove the following.

Theorem 41.3.2: thm:ell-c-q We have

ℰ llC(O) ∼= ℰ llQ(O).

Proof. We use the following properties of the 𝑗-invariant. ([Sil86, III.1.4])

1. For every 𝑗 ∈ 𝐾, there exists an elliptic curve 𝐸/𝐾 with 𝑗(𝐸) = 𝑗.

2. Let 𝐾 be an algebraically closed field and 𝐸1, 𝐸2 be elliptic curves defined over 𝐾.
Then 𝐸1

∼= 𝐸2 over 𝐾 iff 𝑗(𝐸1) = 𝑗(𝐸2). (The backwards direction does not necessarily
hold if 𝐾 is not algebraically closed.)

We show that the map
eq:ellqcℰ llQ(O)→ ℰ llC(O) (41.2)

is an isomorphism (of sets, in fact, of Cl(O)-modules). The map is well-defined, because any
automorphism over Q is an automorphism over C.

By Lemma 41.3.1, if [𝐸] ∈ ℰ llC(O) then 𝑗(𝐸) ∈ Q. By item 1, there exists an elliptic
curve 𝐸 ′ defined over Q with 𝑗(𝐸 ′) = 𝑗(𝐸). Then 𝐸 ′ is isomorphic to 𝐸 over C. Thus
the map (41.2) above is surjective. It is injective because if 𝐸,𝐸 ′ are defined over Q and
isomorphic over C, then item 2 says 𝑗(𝐸) = 𝑗(𝐸 ′); and the other direction of item 2 says
that 𝐸 ∼= 𝐸 ′ over Q.

It is also important to know what fields we can define elliptic curves and isogenies over.

Proposition 41.3.3: Suppose 𝐸 is an elliptic curve with CM by O ⊂ 𝐾, where 𝐾 is an
imaginary quadratic field.

1. If 𝐸 is defined over 𝐿 then endomorphisms of 𝐸 can be defined over 𝐿𝐾.

2. If 𝐸1, 𝐸2 are defined over 𝐿 then there exists a finite extension 𝑀/𝐿, so that every
isogeny 𝐸1 → 𝐸2 is defined over 𝑀 .
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Proof. For item 1, note that all endomorphisms are in the form [𝛼] and use Proposi-
tion 41.2.2(4).

For item 2, first we claim that any isogeny 𝜑 is defined over a finite extension of 𝐿. For
any 𝜎 ∈ Aut(C) fixing 𝐿, 𝜑𝜎 is a map 𝐸1 → 𝐸2 having the same degree as 𝜑. Any isogeny is
determined by its kernel, up to automorphism of 𝐸1 and 𝐸2. As 𝐸1 has a finite number of
subgroups of given index and deg(𝜑) = ker(𝜑), there are finitely many isogenies of a given
degree. Hence {𝜑𝜎 : 𝜎 ∈ 𝐺(C/𝐿)} is finite, showing 𝜑 is defined over a finite extension of 𝐿.

Now Hom(𝐸1, 𝐸2) is a finitely generated group, so we can take the field of definition for
a finite set of generators.

4 Hilbert class field

4.1 Motivation: Class field theory for Q(𝜁𝑛) and Kronecker-Weber

sec:kw-cm

4.1.1 The case of Q

First we give some motivation for the next two sections by making an analogy with class
field theory for Q(𝜁𝑛). We can think of 𝜇𝑛, the 𝑛th roots of unity, as the analogue of 𝐸[𝑛]:

𝜇𝑛 are the 𝑛-torsion points of the group variety Q×
under multiplication, and 𝐸[𝑛] are the

𝑛-torsion points of an elliptic curve. To emphasize this analogy, we write 𝐾×[𝑛] to denote
the 𝑛th roots of unity in 𝐾.

Recall how we established class field theory for Q(𝜁𝑛): given a prime 𝑝, we want to find
(𝑝,Q(𝜁𝑛)/Q). To do this we looked at the action of (𝑝,Q(𝜁𝑛)/Q) on Q×[𝑛] = 𝜇𝑛, by taking
everything modulo 𝑝. We know by definition of (𝑝,Q(𝜁𝑛)/Q) how it must act on the residue
field extension 𝑙/F𝑝 and hence on F×

𝑝 [𝑛]. Suppose 𝑝 - 𝑛. Because the maps

Q×[𝑛] →˓ F×
𝑝 [𝑛]

End(Q×[𝑛]) →˓ End(F×
𝑝 [𝑛])eq:end-inj (41.3)

are injective (the first is because 𝑝 - 𝑛 and the second is a direct consequence of the first),
once we know how (𝑝,Q(𝜁𝑛)/Q) acts on F×

𝑝 [𝑛], we know it acts on Q×
𝑝 [𝑛], so we know exactly

what automorphism it is:

(𝑝,Q(𝜁𝑛)/Q)(𝜁𝑛) = 𝜁𝑝𝑛.

In particular, since 𝜁𝑛 is a 𝑛-torsion point (i.e. 𝜁𝑛𝑛 = 1) this only depends on 𝑝 (mod 𝑛).
Hence we get the Artin map 𝜓Q(𝜁𝑛)/Q factoring through the modulus ∞𝑛:2

𝜓Q(𝜁𝑛)/Q : 𝐼Q/𝐼Q(1, 𝑛∞)
∼=−→ 𝐺(Q(𝜁𝑛)/Q).

2The ∞ is a technical detail coming from the fact that Q is totally real.
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Finally, since every modulus divides ∞𝑛 for some 𝑛, we get the Kronecker-Weber Theorem

Qab = Q(𝜁∞) = Q(Q×[∞]).

In summary, we found the ray class groups and thus the maximal abelian extension by
looking at how (𝑝,Q(𝜁𝑛)/Q) acted on Q×[𝑛]:

thm:max-ab-Q Q×[𝑛] ̃︀∙
reduction

//

�

F×
𝑝 [𝑛]

�

𝐼Q/𝑃Q(1, 𝑛∞)
𝜓Q(𝜁𝑛)/Q

// 𝐺(Q(𝜁𝑛)/Q) ̃︀∙ // 𝐺(F𝑝(𝜁𝑛)/F𝑝).
(41.4)

4.1.2 The case of 𝐾

One big difference when we’re working over an imaginary quadratic field 𝐾 is that while
we had ClQ = 1, we have Cl𝐾 is nontrivial in general. This corresponds to the fact that
there is only 1 nonisomorphic “version” of G𝑚(Q) = Q×, but multiple elliptic curves with
endomorphism ring by the same order O. Hence 𝐺(𝐾ab/𝐾) no longer operates on the same
elliptic curve. Instead we have to analyze it in two steps.

1. Consider the action of 𝐺(𝐻𝐾/𝐾) on ℰ llQ(O), i.e. equivalence classes of elliptic curves
with CM by O.

2. Consider the action of 𝐺(𝐾ab/𝐻𝐾) on the torsion points 𝐸tors of a single elliptic curve.

In both cases, we will understand the action by looking at how the Frobenius elements of
the Galois groups act.

4.1.3 The case of 𝐾: Part 1

We have two natural actions on the set of elliptic curve ℰ llQ(O𝐾), namely the action of

𝐺(𝐾/𝐾) and Cl(O𝐾). Our first task is to relate these, i.e. find a dotted map that preserves
the action on ℰ llQ(O𝐾):

eq:G-cl-compat ℰ llQ(O𝐾)

� �

𝐺(𝐾/𝐾) // Cl(O𝐾).

(41.5)

We’ll see that this map factors through 𝐺(𝐿/𝐾) where 𝐿 = 𝐾(𝑗(𝐸)). We have a map
𝜓𝐿/𝐾 : 𝐼 f𝐾/𝑃𝐾(1, f)→ 𝐺(𝐿/𝐾); we show that f = 1 and the composition of the two maps is
an isomorphism, and that in fact we have

eq:G-cl-compat2 ℰ llQ(O𝐾)

� �

𝐼𝐾/𝑃𝐾
Ψ𝐿/𝐾

//

a↦→[a]

22𝐺(𝐿/𝐾) // Cl(O𝐾).

(41.6)
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We establish (41.6) by looking at the reduction of the elliptic curves modulo some P.
Since 𝐺(𝐻𝐾/𝐾) ∼= Cl(O𝐾) this will show that 𝐿 = 𝐻𝐾 , the Hilbert class field of 𝐾.

4.1.4 The case of 𝐾: Part 2

We can now do the same thing we did with Q, use the torsion points of elliptic curves to
find the ray class fields and the maximal abelian extensions. We can’t work directly over
𝐾 because Cl𝐾 is nonzero, but if we imitate the argument (with some modifications) over
Q for 𝐻𝐾 we will get the ray class fields of 𝐾. We let 𝐿𝑛 = 𝐾(𝑗(𝐸), ℎ(𝐸[𝑛])) where ℎ is a
Weber function (to be defined).

Let 𝑙𝑛, 𝑙 be the residue fields of 𝐿𝑛 and 𝐻𝐾 modulo some prime. We show 𝐿𝑛 is the ray
class field for (𝑛) by constructing the diagram

eq:rcf-k 𝐸[𝑛] ̃︀∙
reduction

//

�

Ü𝐸[𝑛]
�

Nm𝐻𝐾/𝐾(𝐼
𝑛
𝐻𝐾

)/𝑃𝐾(1, 𝑛)
𝜓𝐿𝑛/𝐾

∼=
// 𝐺(𝐿𝑛/𝐻𝐾)

̃︀∙ // 𝐺(𝑙𝑛/𝑙).

(41.7)

We now carry out these two parts.

4.2 The Galois group and class group act compatibly

We establish the map in (41.5).

Theorem 41.4.1: thm:map-G-cl There exists a map 𝐹 : 𝐺(𝐾/𝐾) → Cl(O𝐾) such that for any
elliptic curve 𝐸,

[𝐸𝜎] = 𝐹 (𝜎)𝐸.

This map factors through 𝐺(𝐾ab/𝐾).

As a reminder, the action of Cl(O𝐾) on ℰ llQ(O𝐾) is such that if 𝐸 = 𝐸Λ, then 𝐹 (𝜎)𝐸 =
𝐸𝐹 (𝜎)−1Λ. Theorem 41.4.1 expresses a deep relationship because the left-hand side expresses
an algebraic action, while the right-hand side expresses an analytic action, as it is defined
on lattices and the map between 𝐸 and C/Λ is inherently analytic.

Proving this theorem essentially boils down to showing the Galois action commutes with
the action on Cl(O𝐾).

Proposition 41.4.2: For all 𝐸,

𝜎([a][𝐸]) = [𝜎(a)][𝜎(𝐸)].

Proof. Suppose 𝐸 corresponds to Λ, i.e. 𝐸 ∼= C/ΛC. Then we have the exact sequence

0→ Λ→ C→ 𝐸 → 0.
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Then a𝐸 corresponds to a−1Λ. Take a resolution for a:

𝑅𝑚 𝐴−→ 𝑅𝑛 → a→ 0.

Take a “Hom product” and use the Snake Lemma. See [Sil94, II.2.5].

Proof of Theorem 41.4.1. See [Sil94, II.2.4].

4.3 Hilbert class field

Before we proceed with finding the Hilbert class field, we need to show injectivity of the
reduction map like in (41.3).

Theorem 41.4.3: thm:ec-hom-red Suppose 𝐸1 and 𝐸2 are elliptic curves defined over 𝐿 with
good reduction at P. Then the reduction map

Hom(𝐸1, 𝐸2)→ Hom(Ý𝐸1,Ý𝐸2)

is injective and preserves degrees.

Proof. See Silverman AT [Sil94, pg. 124] (Also see Silverman’s errata).

Eventually rewrite this to work for all orders. The main theorem of this section is the
following.

Theorem 41.4.4 (𝑗(𝐸) generates the Hilbert class field): thm:j-generates-hilbert Let 𝐸 be an elliptic
curve with CM by O𝐾 . Then

1. 𝐾(𝑗(𝐸)) = 𝐻𝐾 , the Hilbert class field of 𝐾.

2. 𝐺(𝐾/𝐾) acts transitively on the isomorphism classes of curves in ℰ ll(O𝐾).

3. For any ideal a ∈ 𝐼𝐾 ,
[𝐸𝜓𝐻𝐾/𝐾(a)] = [a][𝐸].

In particular, the action of Frobenius on the 𝑗-invariant is given by operating by [p] on
the elliptic curve:

[𝐸(p,𝐻𝐾/𝐾)] = [p][𝐸].

Proof. Step 1: First we show the following: There exists a finite set of primes 𝑆 of Z such
that for any 𝑝 ̸∈ 𝑆 that splits completely in 𝐾, 𝑝 = pp, we have

𝐹 ((p, 𝐿/𝐾)) = [p] ∈ Cl(O𝐾).

This will show the dotted map in (41.6) is the identity for a large number of primes p.
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We have the map [p] : 𝐸 → p𝐸. We show that this is “like” the 𝑝th power Frobenius
map. To do this, we show that it is inseparable of degree 𝑝 (this is why we needed 𝑝 to be
split)3, and then look at the 𝑗-invariants of the reduced maps modulo p.

As ℰ llQ(O𝐾) = ℰ llC(O𝐾) is finite, we can find a finite extension 𝐿/𝐾 and representatives
𝐸1, . . . , 𝐸ℎ of classes in ℰ llC(O𝐾), that are defined over 𝐿. Let 𝑆 be a set of primes containing
the primes that satisfy one of the following conditions.

1. 𝑝 ramifies in 𝐿. (Primes that ramify always cause trouble.)

2. 𝐸 or some 𝐸𝑖 has bad reduction at some prime of 𝐿 lying over 𝑝.

3. 𝑣𝑝(Nm𝐿/Q(𝑗(𝐸𝑖)−𝑗(𝐸𝑘))) ̸= 0 for some 𝑖 ̸= 𝑘. (This allows us to know what equivalence
class an elliptic curve lies in, just by looking at its reduction modulo 𝑝.)

Let Λ be the lattice such that 𝐸(C) ∼= C/Λ, and let a be an integral ideal relatively prime
to p such that ap = (𝛼) is principal (This exists by Corollary 15.15.2.5). By the equivalence
of categories 41.1.1, the following maps on complex tori correspond to isogenies of elliptic
curves:

C/Λ 𝑖 //

Φ∼=
��

C/p−1Λ 𝑖 //

Φ∼=
��

C/p−1a−1Λ
[𝛼]

∼=
//

Φ∼=
��

C/Λ

Φ∼=
��

𝐸
𝜑1

// p𝐸
𝜑2

// ap𝐸
𝜑3
∼=

// 𝐸

Let the composition of the top maps be 𝑓 and the composition of the bottom maps be 𝑔.

Let 𝜔 be an invariant differential on 𝐸. Then 𝜔′ = Φ*𝜔 is an invariant differential on
C/Λ. It is in the form 𝑐 𝑑𝑧. The composition of the top maps is just multiplication by 𝛼, so
𝑓 *𝜔′ = 𝛼𝜔′. By commutativity, we get 𝑔*𝜔 = 𝛼𝜔 as well.

Let 𝑝 ̸∈ 𝑆 and P | p | 𝑝 in 𝐿, 𝐾, Q, respectively. Since 𝐸 has good reduction at P, we
can reduce the elliptic curves and maps modulo P to get̃︀𝑔*̃︀𝜔 = ̃︀𝛼̃︀𝜔 = 0

since P | 𝛼. By a criterion for separability (𝑔 is separable iff 𝑔* does not act as 0 on Ω𝐸), ̃︀𝑔
is inseparable. Now

deg(𝜑1) = Np = 𝑝,

deg(𝜑2) = Na ⊥ 𝑝,

deg(𝜑3) = 1.

An inseparable map must have degree divisible by 𝑝, and the composition of separable maps
is separable, so ̃︁𝜑1 must be inseparable.

3If p is not split, one can still show the map is inseparable of degree 𝑝2, with some more work.
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Any inseparable map factors through the Frobenius map:

pE-factors-frob
Ü𝐸 //Ü𝜑1   

𝜑𝑝
// Ü𝐸(𝑝)

∼= 𝜀
��̃︂p𝐸.

(41.8)

We have 𝑝 deg(𝜀) = deg(𝜑𝑝) deg(𝜀) = deg(̃︁𝜑1) = 𝑝 so deg(𝜀) = 1. This shows 𝜀 is an
isomorphism.

Thus we have ̃︂p𝐸 ∼= Ü𝐸(𝑝).

Now by definition of the Frobenius element (it is the 𝑝th power map modulo P), we have
𝑗(Ü𝐸(𝑝)) = 𝑗(Ü𝐸)𝑝 = 𝑗(𝐸)(p,𝐿/𝐾) modulo P. Putting everything together,

𝑗(p𝐸) ≡ 𝑗(Ü𝐸(𝑝)) ≡ 𝑗(𝐸(p,𝐿/𝐾)) (mod P).

But we chose 𝑝 so that nonisomorphic curves have 𝑗-invariants that are not congruent mod-
ulo 𝑝 (item 3). Therefore, p𝐸 ∼= 𝐸(p,𝐿/𝐾). This shows that the action of p is the same as the
action of (p, 𝐿/𝐾), i.e. 𝐹 ((p, 𝐿/𝐾)) = [p].

Step 2: We show that 𝐹 : 𝐺(𝐾/𝐾) → Cl(O𝐾) has kernel equal to 𝐺(𝐾/𝐾(𝑗(𝐸))), and so
factors through 𝐺(𝐾(𝑗(𝐸))/𝐾) →˓ Cl(O𝐾). Indeed,

ker(𝐹 ) = {𝜎 : 𝐹 (𝜎)𝐸 = 𝐸}
= {𝜎 : 𝐸𝜎 = 𝐸} definition of 𝜎

= {𝜎 : 𝑗(𝐸)𝜎 = 𝑗(𝐸)} 𝑗 parameterizes isomorphism classes

= 𝐺(𝐾/𝐾(𝑗(𝐸))).

We let 𝐿 = 𝐾(𝑗(𝐸)).

Step 3: Let f be the conductor of 𝐿/𝐾. We extend Step 1 to all ideals a: for all a we have

𝐹 ((a, 𝐿/𝐾)) = [a] ∈ Cl(O𝐾);

in other words f = 1 and the following composition is the identity map.

eq:F(a)=[a] 𝐼𝐾/𝑃𝐾
𝜓𝐿/𝐾

//

Id

∼=
88

𝐺(𝐿/𝐾) �
� 𝐹 // Cl(O𝐾). (41.9)

Given a ∈ 𝐼 f𝐾 , there are infinitely many p ∈ 𝐼 f𝐾 in the same class as a with degree 1 by
Corollary 29.29.3.6. Choose such a prime p, that does not divide a prime in 𝑆. Note a, p
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differ by an ideal in 𝑃𝐾(1, f) so they have the same image by the Artin symbol. Step 1 shows
that

𝐹 ((a, 𝐿/𝐾)) = 𝐹 ((p, 𝐿/𝐾))
Step 1
= [p] = [a].

In particular, for any principal ideal (𝛼) ∈ 𝐼 f𝐾 , we have 𝐹 (((𝛼), 𝐿/𝐾)) = 1. However, by
definition the conductor is the smallest p such that 𝛼 ≡ 1 (mod f) implies ((𝛼), 𝐿/𝐾) = 1,
so we must have f = (1).4 Thus the map 𝐹 : 𝐼 f𝐾/𝑃𝐾(1, f) → 𝐺(𝐿/𝐾) we had originally is
actually just 𝐹 : 𝐼𝐾/𝑃𝐾 → 𝐺(𝐿/𝐾), and we get (41.9).

Step 4: Since the conductor is divisible by exactly the ramifying primes, 𝐿/𝐾 is unramified,
and 𝐿 ⊆ 𝐻𝐾 . On the other hand, the map 𝐹 ∘ 𝜓𝐿/𝐾 : 𝐼𝐾/𝑃𝐾 → Cl(O𝐾) is an isomorphism
because 𝐹 ∘𝜓𝐿/𝐾 is just the identity map. This gives [𝐿 : 𝐾] = |Cl(O𝐾)| = [𝐻𝐾 : 𝐾]. Hence
𝐿 = 𝐻𝐾 . This shows item 1.

Step 5: Item 3 now follows immediately, since we already showed 𝐸𝜓𝐿/𝐾(a) = [a]𝐸 and we now
know 𝐿 = 𝐻𝐾 . Item 2 follows since the fact that the composition in (41.9) is an isomorphism
means the map 𝐹 : 𝐺(𝐿/𝐾)→ Cl(O𝐾) is surjective. Since 𝐹 transfers the action of 𝐺(𝐿/𝐾)
on ℰ llQ(O𝐾) to Cl(O𝐾), and Cl(O𝐾) acts simply transitively on ℰ llQ(O𝐾), we get that the
same is true for 𝐺(𝐿/𝐾).

5 Maximal abelian extension

We next carry out part 2 of our outline in Section 4.1. We construct the ray class fields for
𝐾, then take their compositum to get the maximal abelian extension.

Definition 41.5.1: Suppose 𝐸 has CM by an order in 𝐾, and 𝐸 is defined over 𝐻𝐾 . A
Weber function is an isomorphism ℎ : 𝐸/Aut(1)→ P1 defined over 𝐻𝐾 . (So if 𝑓 : 𝐸 → 𝐸 ′

is an automorphism, then ℎ(𝑃 ) = ℎ(𝑓(𝑃 )).)

We can always fix a concrete Weber function.

Example 41.5.2: The simplest Weber function is the following. If 𝐸 has the form

𝑦2 = 𝑥3 + 𝐴𝑥+𝐵, 𝐴,𝐵 ∈ 𝐻𝐾 ,

then take

ℎ(𝑃 ) =

⎧⎪⎪⎨⎪⎪⎩𝑥, 𝐴𝐵 ̸= 0

𝑥2, 𝐵 = 0

𝑥3, 𝐶 = 0.

4Technically, we only have ((𝛼), 𝐿/𝐾) = 1 for (𝛼) ⊥ f, and a priori ((𝛼), 𝐿/𝐾) is not defined for (𝛼) ⊥ f.
(We don’t know f = 1 yet.) The proper way to conclude f = (1) is transfer the problem over to ideles: We

know 𝜓𝐿/𝐾(𝑃 f
𝐾) = 1, so 𝜑𝐿/𝐾(𝐾×Uf

𝐾) = 1. By If𝐾/𝐾(1, f)U𝐾(1, f) ∼= I𝐾/𝐾×U𝐾(1, f) we conclude that
𝜑𝐿/𝐾(𝐾×U𝐾) = 1. Hence f = 1.
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In the 3 cases, respectively, Aut(𝐸) is 1, Z/2 or Z/4, and Z/3 or Z/6.
We can define a Weber function that is “model independent,” i.e. doesn’t change under

if we change to an isomorphic elliptic curve, by

ℎ(𝑓(𝑧)) =

⎧⎪⎪⎨⎪⎪⎩
𝑔2(Λ)𝑔3(Λ)

Δ(Λ)
℘(𝑧,Λ), 𝑗(𝐸) ̸= 0, 1728

𝑔2(Λ)2

Δ(Λ)
℘(𝑧,Λ)2, 𝑗(𝐸) = 1728

𝑔3(Λ)
Δ(Λ)

℘(𝑧,Λ)3, 𝑗(𝐸) = 0.

This is because the expressions have “weight 0.”

The importance of the Weber function is given below. It would not be true if ℎ(𝑃 ) were
just defined as ℎ(𝑥, 𝑦) = 𝑥.

Lemma 41.5.3: lem:K-ab-ext Let 𝐸 be an elliptic curve with CM by O.

1. The extension 𝐾(𝑗(𝐸), 𝐸tors)/𝐾(𝑗(𝐸)) is abelian.

2. The extension 𝐾(𝑗(𝐸), ℎ(𝐸tors))/𝐾 is abelian.

The first statement is important because it tells us 𝐺(𝐾/𝐾(𝑗(𝐸))) acts in an abelian
way on 𝐸tors. Thus the “Galois representation” of the Galois group on 𝐸tors is abelian. Thus,
as we will see, it will decompose into two Grössencharacters.

Proof. We have an injective map 𝐺(𝐾(𝑗(𝐸), 𝐸[𝑚])/𝐾(𝑗(𝐸))) →˓ Aut(𝐸[𝑚]).5 Now, the
image of 𝐺 in Aut(𝐸[𝑚]) commutes with O𝐾 , so is contained in

AutO𝐾/𝑚O𝐾
(𝐸[𝑚]) ∼= AutO𝐾/𝑚O𝐾

(O𝐾/𝑚O𝐾) ∼= (O𝐾/𝑚O𝐾)
×

which is abelian.
For the second, suppose 𝜎, 𝜏 ∈ 𝐺(𝐾(𝑗(𝐸), ℎ(𝐸tors))/𝐾). We show that 𝜎𝜏 = 𝜏𝜎. Since

𝐾(𝑗(𝐸))/𝐾 is abelian, 𝜎𝜏𝜎−1𝜏−1 fixes 𝑗(𝐸). Now 𝜎𝜏𝜎−1𝜏−1 gives an automorphism of
𝐸 ′ = 𝜏𝜎(𝐸) because

(𝜎𝜏𝜎−1𝜏−1)𝜏𝜎(𝐸) = 𝜎𝜏(𝐸) ∼= 𝜏𝜎(𝐸),

as the Galois action factors through 𝐺(𝐾ab/𝐾) and hence is abelian (Theorem 41.4.1) (alter-
natively, because 𝜎𝜏𝜎−1𝜏−1 fixes 𝑗(𝐸)). As 𝐸 is defined over 𝐻𝐾 , we actually have equality.

Since ℎ is invariant under automorphism, for any 𝑃 ∈ 𝐸tors,

ℎ(𝑃 ) = ℎ(𝜎𝜏𝜎−1𝜏−1𝑃 ) = 𝜎𝜏𝜎−1𝜏−1ℎ(𝑃 ).

(We know ℎ is defined over 𝐻𝐾 and 𝜎𝜏𝜎−1𝜏−1 fixes 𝐻𝐾 = 𝐾(𝑗(𝐸)).) Hence 𝜎𝜏𝜎−1𝜏−1 fixes
ℎ(𝐸tors) as well, and 𝜎𝜏𝜎

−1𝜏−1 = 1.

5Since 𝐸[𝑚] = Z/𝑚× Z/𝑚, if we choose a basis for 𝐸[𝑚], we have Aut(𝐸[𝑚]) ∼= GL2(Z/𝑚), so we have
a Galois representation.
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Theorem 41.5.4: thm:max-abe-ext-K Suppose 𝐾 is a quadratic imaginary field and 𝐸 has CM by
O𝐾 .

1. For an integral ideal a of O𝐾 , 𝐿a := 𝐻𝐾(ℎ(𝐸[a])) = 𝐾(𝑗(𝐸), ℎ(𝐸[a])) is the ray class
field of 𝐾 modulo a.

2. The maximal abelian extension of 𝐾 is

𝐾(𝑗(𝐸), ℎ(𝐸tors)).

Proof. Step 1: We need the following lemma.

Lemma 41.5.5: lem:comm-in-image Suppose 𝐸 is an elliptic curve defined over 𝐿 with CM by O𝐾 ,
and has good reduction at P. Let Ü𝐸 be the reduction modulo P. Let 𝜃 : End(𝐸)→ End(Ü𝐸)
be the reduction map on endomorphisms. Then for any 𝛾 ∈ End(Ü𝐸),

𝛾 ∈ im(𝜃) ⇐⇒ 𝛾 commutes with every element in im(𝜃).

Proof. Since 𝐸 has good reduction, the map End(𝐸) →˓ End(Ü𝐸) in injective. Consider 2
cases.

1. End(Ü𝐸) is a quadratic order. Then End(𝐸) = End(Ü𝐸) (as End(𝐸) is a maximal order)
so this case is clear.

2. End(Ü𝐸) is an order in a quaternion algebra. Then End(𝐸) ⊗ Q is its own centralizer
in the quaternion algebra End(Ü𝐸)⊗Q, by the Double Centralizer Theorem 26.26.4.11.

Step 2: We show that in general, we can lift the Frobenius map.

Proposition 41.5.6: pr:ec-lift-frob Suppose 𝐸 has CM by O𝐾 and is defined over 𝐻𝐾 . Let
P | p | 𝑝 in 𝐻𝐾 , 𝐾, Q, respectively, with p having degree 1 and 𝑝 ̸∈ 𝑆, 𝑆 being defined as in
the proof of Theorem 41.4.4. Then the 𝑝th power Frobenius map can be lifted to a map on
𝐸, i.e. there is 𝜆 making the following commute:

𝐸 𝜆 //

��

𝐸(p,𝐻𝐾/𝐾)

��Ü𝐸 ̃︀𝜆=𝜑𝑝
// Ü𝐸(𝑝).

Moreover, if 𝐸 corresponds to the complex torus C/Λ, then up to isomorphism, 𝜆 corresponds
to the map C/Λ→ C/p−1Λ. (Recall that 𝐸(p,𝐻𝐾/𝐾) ∼= p𝐸 by Theorem 41.4.4.)
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Proof. We need to show 𝜑𝑝 is the reduction of some map; we do this by first reducing the
problem to showing a certain endomorphism is in the image of 𝜃 and then showing the
conditions of the previous lemma hold.

Again we use (41.8): ̃︁𝜑1 : Ü𝐸 → ̃︂p𝐸 is “like” the Frobenius map. We know ̃︁𝜑1 is the

reduction of a map, namely the map 𝜑1 : 𝐸 → p𝐸. Now note ̃︂p𝐸 ∼= ã𝐸(p,𝐿/𝐾) = Ü𝐸(𝑝), the first
from Thm 41.4.4 and the second from definition of the Frobenius element.

Let 𝜎 = (p, 𝐿/𝐾). It remains to show that 𝜀 : ̃︂𝐸𝜎 →̃︂p𝐸 ∼= ̃︂𝐸𝜎 is the reduction of a map

𝜀′, because then 𝜀′−1 ∘ 𝜑1 will be the desired map. Let Ý[𝛼] ∈ Aut(̃︂𝐸𝜎) be the reduction of

a map [𝛼]. To show 𝜀 commutes with [𝛼], we consider ̃︁𝜑1 = 𝜀 ∘ 𝜑𝑝, and consider how [𝛼]

“commutes” with ̃︁𝜑1 and 𝜑𝑝.

1. ̃︁𝜑1: By normalization (Proposition 41.2.2(3)), we know

𝜑1 ∘ [𝛼]𝐸 = [𝛼]𝐸𝜎 ∘ 𝜑1.

2. 𝜑𝑝: Note that for any morphism of varieties 𝑓 : 𝑉 → 𝑊 over a field of characteristic
𝑝, the following commutes, where 𝜑𝑉 , 𝜑𝑊 are the 𝑝th power Frobenius maps on 𝑉 and
𝑊 :

𝑉
𝑓
//

𝜑𝑉
��

𝑊

��
𝜑𝑊
��

𝑉 (𝑝) 𝑓𝜎
//𝑊 (𝑝)

𝜑𝑊 ∘ 𝑓 = 𝑓𝜎 ∘ 𝜑𝑉 .

Applying this to [𝛼]𝐸,

𝜑𝑝 ∘ß[𝛼]𝐸 =ß[𝛼]𝜎𝐸 ∘ 𝜑𝑝 = à[𝛼]𝐸𝜎 ∘ 𝜑𝑝,

where in the last step we used Theorem 41.2.2(4), noting 𝜎(𝛼) = 𝛼 since 𝛼 ∈ 𝐾 and
𝜎 ∈ 𝐺(𝐻𝐾/𝐾).

Hence à[𝛼]𝐸𝜎 ∘ 𝜀 ∘ 𝜑𝑝⏟  ⏞  
𝜑1

1
= 𝜀 ∘ 𝜑𝑝 ∘ß[𝛼]𝐸 2

= 𝜀 ∘à[𝛼]𝐸𝜎 ∘ 𝜑𝑝.

Cancelling 𝜑𝑝 gives
à[𝛼]𝐸𝜎 ∘ 𝜀 = 𝜀 ∘à[𝛼]𝐸𝜎 , so Lemma 41.5.5 shows 𝜀 is the reduction of some

𝜀′, as needed.

To finish, note that 𝜑1 does indeed correspond to C/Λ→ C/p−1Λ. Hence 𝜆 corresponds
to C/Λ→ C/p−1Λ, up to some automorphism.

Step 3: When (p, 𝐻𝐾/𝐾) = 1, 𝜆 is just an endomorphism of 𝐸, hence equals [𝛼] for some 𝛼.
In fact, the following proposition shows it is [𝜋] for some 𝜋 generating p, so that multiplication
by 𝜋 corresponds to the 𝑝th power Frobenius in the reduction.

573



Number Theory, S41.5

Proposition 41.5.7: pr:pi-is-frob Suppose 𝐸 has CM by O𝐾 and is defined over 𝐻𝐾 . For all
but finitely many degree 1 prime ideals p with (p, 𝐻𝐾/𝐾) = 1 (equivalently, such that p is
principal), there exists a unique 𝜋 such that p = (𝜋) and the following commutes.

𝐸
[𝜋]
//

��

𝐸

��Ü𝐸 𝜑𝑝
// Ü𝐸.

Proof. Since (p, 𝐻𝐾/𝐾) = 1, Proposition 41.5.6 gives a diagram

𝐸
𝜆 //

��

𝐸

��Ü𝐸 𝜑𝑝
// Ü𝐸.

for some 𝜆. We know 𝜆 is in the form [𝜋], and show 𝜋 satisfies the desired conditions. We
have by Proposition 41.2.9 that

Nm𝐾/Q(𝜋) = deg([𝜋]) = deg(𝜑) = 𝑝 = Np

so either (𝜋) = p or (𝜋) = p. As always, when we’re deciding between conjugates, normaliza-
tion comes to the rescue. Take 𝜔 ∈ Ω𝐸 whose reduction modulo P is nonzero. Normalization
says that [𝜋]*𝜔 = 𝜋𝜔 so ̃︀𝜋̃︀𝜔 = Ý[𝜋]*̃︀𝜔 = 𝜑*

𝑝̃︀𝜔 = 0,

the last step since the Frobenius map is inseparable. We get P | 𝜋, forcing (𝜋) = p.
For uniqueness, note the map

O𝐾
[·]
∼=
// End(𝐸)

̃︀𝐸 // End(Ü𝐸)
is injective for 𝐸 having good reduction at P (Theorem 41.4.3).

Step 4: Consider (41.7). We need to show that 𝑃𝐾(1, a) is exactly the kernel of the Artin
map 𝜓𝐿a/𝐾 . Note that 𝑃𝐾(1, a) and ker(𝜓𝐿a/𝐾) are both subgroups of 𝑃 a

𝐾 = ker(𝜓𝐻𝐾/𝐾) =
ker(𝜓𝐿a/𝐾(∙)|𝐻𝐾

). It suffices to show that for all but finitely many primes p of degree 1 such
that (p, 𝐻𝐾/𝐾) = 1, we have p ∈ 𝑃𝐾(1, a) iff p ∈ ker(𝜓𝐿a/𝐾).

Let p satisfy the conditions of Proposition 41.5.7. Since the reduction of 𝜓𝐿/𝐾(p) is
the Frobenius map, we get that 𝜓𝐿/𝐾(p) = [𝜋], for some 𝜋 such that (𝜋) = p.6 Since
(p, 𝐻𝐾/𝐾) = 1, we have the commutative diagram

eq:pi-is-frob 𝐸
𝜓𝐿/𝐾(p)=[𝜋]

//

��

𝐸

��Ü𝐸 𝜑𝑝
// Ü𝐸.

(41.10)

6Note the analogy with the cyclotomic case. 𝜓𝐿/𝐾(p) acts on torsion points as [𝜋], just as in the cyclotomic
case it acted as the 𝑝th power map, that corresponds to [𝑝] if we consider the natural map Z→ End(Q(𝜁𝑛)).
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We have the following string of equivalences, for all but finitely many degree 1 primes p
with (p, 𝐻𝐾/𝐾) = 1,

1. p ∈ 𝑃𝐾(1, a).

2. p = (𝜋) where 𝜋 = 𝑢𝛼 where 𝑢 is a unit and 𝛼 ≡ 1 (mod a).

3. For all a-torsion points 𝑃 ∈ 𝐸[a], ℎ([𝜋]𝑃 ) = ℎ(𝑃 ).

3′. For all a-torsion points 𝑃 ∈ Ü𝐸[a], ̃︀ℎ(Ý[𝜋]Ü𝑃 ) = ̃︀ℎ(Ü𝑃 ).
4. (p, 𝐿a/𝐾) fixes ℎ(𝐸[a]).

5. p ∈ ker(𝜓𝐿a/𝐾).

(1)⇐⇒ (2) is clear.
For (2) =⇒ (3), note that for all a torsion points 𝑃 ∈ 𝐸[a],

ℎ([𝜋]𝑃 ) = ℎ([𝑢][𝛼]𝑃 )

= ℎ([𝛼]𝑃 ) ℎ is Aut(𝐸)-invariant

= ℎ(𝑃 ) 𝛼 ≡ 1 (mod a) and 𝑃 ∈ 𝐸[a].

Note it is important that ℎ be Aut(𝐸)-invariant.
For (3′) =⇒ (2), let 𝑃 ∈ 𝐸[a] be a torsion point. By [Sil86, VII.3.1b], 𝐸[a] →˓ Ü𝐸[a] is

injective for p - a and 𝐸 with good reduction at p. Since ℎ is an isomorphism (in particular,
an injection) 𝐸/Aut(𝐸) → P1, we get that [𝜋]𝑃 = [𝑢]𝑃 for some [𝑢] ∈ Aut(𝐸). But
𝐸[a] ∼= O𝐾/a, so we can choose 𝑢 such that 𝜋 ≡ 𝑢 (mod a). Then there exists 𝛼 such that
𝜋 = 𝑢𝛼, with 𝛼 ≡ 1 (mod a).

For (3) =⇒ (4), we calculate the action of (p, 𝐿/𝐾) on a torsion point 𝑃 ∈ 𝐸[a], in the
reduced curve: ã𝑃 (p,𝐿/𝐾) = 𝜑𝑝(Ü𝑃 ) = ß[𝜋]𝑃 ,
the second equality from Proposition 41.5.7. This allows us to understand the action on the
nonreduced curve, since 𝐸[a] →˓ Ü𝐸[a] is injective for p - a and p of good reduction. We get

𝑃 (p,𝐿/𝐾) = [𝜋]𝑃.

Thus (3) implies

ℎ(𝑃 )(p,𝐿/𝐾) = ℎ(𝑃 (p,𝐿/𝐾)) (p, 𝐿/𝐾) fixes 𝐻𝐾 and 𝐸 defined over 𝐻𝐾

= ℎ([𝜋]𝑇 )

= ℎ(𝑇 ) by (3).

Now we prove (4) =⇒ (3′). Let 𝜎 ∈ 𝐺(𝐾/𝐾) be an automorphism such that 𝜎|𝐾ab =
(p, 𝐾ab/𝐾). Then for any 𝑃 ∈ 𝐸[a],̃︀ℎ(Ý[𝜋]Ü𝑃 ) (41.10)

= ̃︀ℎ(𝜑(Ü𝑃 )) = áℎ(𝑃 𝜎) = ßℎ(𝑃 )𝜎 = ̃︀ℎ(Ü𝑃 ),
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the last two equalities since 𝜎|𝐻 = 1, ℎ is defined over 𝐻, and 𝜎|𝐿a fixes ℎ(𝐸[a]) by assump-
tion. Thus (3′) holds.

Now (4)⇐⇒ (5) comes from the fact that (p, 𝐿a, 𝐾) already fixes 𝐾(𝑗(𝐸)), so to fix 𝐿a

it only needs to fix ℎ(𝐸[a]).

Step 7: The maximal abelian extension is the union of the all ray class fields. Note every c
divides 𝑛 for some 𝑛 so we can just restrict to ray class fields corresponding to (𝑛) for some
𝑛 ∈ N:

𝐾ab =
⋃︁
𝑛

𝐾(𝑗(𝐸), ℎ(𝐸[𝑛])) = 𝐾(𝑗(𝐸), ℎ(𝐸tors)).

6 The Main Theorem of Complex Multiplication

Given 𝜎 ∈ Aut(C/𝐾), consider the map 𝜎 : 𝐸(C)→ 𝐸𝜎(C). We would like to know how this
map acts on torsion points. This is since to get Galois representations of elliptic curves, we
look at how 𝜎 acts on torsion points—often specializing to torsion points that are a power
of a prime.

Because we are considering CM elliptic curves, we can identify the torsion points with

𝐾/a, for some ideal a. Namely, given an analytic isomorphism 𝑓 : C/a
∼=−→ 𝐸(C), we can

restrict it to 𝐾/a to get

𝑓 |𝐾/a : 𝐾/a
∼=−→ 𝐸tors →˓ 𝐸(C).

The main theorem of complex multiplication tells us we can transfer the map 𝜎 : 𝐸(C)→
𝐸𝜎(C) via an analytic isomorphism to a multiplication-by-an-idele map [x−1] : 𝐾/a →
𝐾/x−1a, where x and 𝜎 are related in terms of the Artin map (to be made precise).

Definition 41.6.1: Let x =
∏︀

p∈𝑉 0
𝐾
p𝑚(p)∏︀

𝑣∈𝑉∞
𝐾
𝑣𝑚(𝑣) ∈ I𝐾 be an idele. Let a be an ideal,

and define xa by

xa = 𝑝(x)a =

� ∏︁
p∈𝑉𝐾

p𝑚(p)

�
a.

Define the map
eq:mult-idele-map[x] : 𝐾/a→ 𝐾/xa (41.11)

as follows. Note 𝐾/a ∼=
∏︀

p𝐾p/a𝐾p by the Chinese Remainder Theorem, where 𝑥 is just
identified with its images in the 𝐾p/a𝐾p: (𝑥p)p∈𝑉 0

𝐾
. Then (41.11) sends

eq:mult-by-idele(𝑎p) ↦→ (𝑥p𝑎p) where x = (𝑥p). (41.12)

Theorem 41.6.2 (Main Theorem of Complex Multiplication): thm:mt-cm Suppose 𝐸 is an
elliptic curve with CM by O𝐾 . Let 𝜎 ∈ Aut(C/𝐾) and x ∈ I𝐾 be such that

𝜎|𝐾ab = 𝜑𝐾(x).
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Fix an analytic isomorphism 𝑓 : C/a
∼=−→ 𝐸(C). Then there exists a unique analytic isomor-

phism 𝑓 ′ : 𝐾/x−1a→ 𝐸𝜎(C) such that the following commutes:

𝐾/a
x−1
//

𝑓

��

𝐾/x−1a

𝑓 ′

��

𝐸(C) 𝜎 // 𝐸𝜎(C).

Remark 41.6.3: The map (41.12) can be a bit weird to think about: For instance, consider
the simpler case 𝐾 = Q, a = Z. Take the idele x with 1’s everywhere except 𝑥5 = 2. Then
[x] sends 1

2
↦→ 1

2
, 1
3
→ 1

3
, 1
7
→ 1

7
and so forth but sends 1

5
→ 2

5
. So it is surprising that

x−1 : 𝐾/a→ 𝐾/x−1a can be related analytically to 𝐸(C)→ 𝐸𝜎(C).

Compare this theorem to Proposition 41.5.7. Rather tan just dealing with the Frobenius
element of a prime, we deal with the Artin map of an idele.

Proof. Note uniqueness follows from the fact that topologically, the closure of 𝐾/x−1a is
C/x−1a, and any continuous function is determined by its values on a dense set.

First we prove this for 𝐸 defined over Q(𝑗(𝐸)) and a integral. We do this in 2 steps.
Step 1: Approximate 𝜎 by a field automorphism 𝜆 that is the Frobenius element of a prime
p. (The Frobenius element is something much more concrete to work with than the abstract
Artin map of an idele.) We will take better and better approximations, which determine the
action on 𝐸[𝑚] for larger and larger 𝑚, and take an inverse limit.

So let 𝐿′
𝑚 be the Galois closure of 𝐾(𝑗(𝐸), 𝐸[𝑚])/𝐾. By Corollary ??.??, there are

infinitely many primes with P | p in 𝐾 and 𝐿 such that

(P, 𝐿/𝐾) = 𝜎|𝐿′
𝑚
, N(p) = 1.

We can furthermore choose p satisfying the following, because each condition excludes only
finitely many primes.

1. p is unramified in 𝐿′
𝑚.

2. p ̸∈ 𝑆, where 𝑆 is defined as in the proof of Theorem 41.4.4.

3. p - 𝑚.

By Proposition 41.5.6, there exists a map 𝜆 : 𝐸 → 𝐸𝜎 that reduces to 𝜑𝑝 modulo P. OnÜ𝐸[𝑚], both 𝜆 and 𝜎 act as 𝜑𝑝. Because P - 𝑚 by item 3, the reduction map modulo P,

𝐸[𝑚]→ Ü𝐸[𝑚], is injective. Hence 𝜆 and 𝜎 act the same on 𝐸[𝑚]:

eq:la=si𝜆|𝐸[𝑚] = 𝜎|𝐸[𝑚] : 𝐸[𝑚]→ 𝐸𝜎[𝑚]. (41.13)
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But we know how the map 𝜆 acts: Proposition 41.5.6 tells us that the map 𝜆 : 𝐸 → 𝐸𝜎

corresponds to the map on complex tori 𝑖 : C/a→ C/p−1a.7 Hence we have the commutative
diagram

eq:mt-cm-1 C/a 𝑖 //

𝑓

��

C/p−1a

𝑓 ′′

��

𝐸(C) 𝜆 // 𝐸𝜎(C)

(41.14)

for some analytic isomorphism 𝑓 ′′.
Step 2: By Theorem 41.5.4, the ray class group modulo 𝑚 is 𝐾𝑚 = 𝐾(𝑗(𝐸), ℎ(𝐸[𝑚])). Note
𝐾𝑚 ⊆ 𝐿′

𝑚. Now by assumption, p was chosen so that the images of p and x under the Artin
map both project to 𝜎|𝐾𝑚 :

𝜑𝐾𝑚/𝐾(x) = 𝜎|𝐾𝑚 = 𝜓𝐾𝑚/𝐾(p) = 𝜑𝐾𝑚/𝐾(𝑖p(𝜋))

where 𝜓, 𝜑 denote the Artin map on ideals and on ideles, respectively, and 𝜋 is the uniformizer
of p in 𝐾p. We have

ker𝜓𝐾𝑚/𝐾 = 𝐾×U𝐾(1,𝑚).

(See Definition 24.24.5.8 for notation.) This follows from the definition of the ray class field
and from the correspondence between ray class groups in Definition 24.24.4.5 and idele class
groups in Example 24.24.5.10. We have x ∈ 𝑖p(𝜋) ker𝜑𝐾𝑚/𝐾 , giving

x = 𝛼 · 𝑖p(𝜋) · u, 𝛼 ∈ 𝐾×, u ∈ U𝐾(1,𝑚).

We now compose (41.14) with the homothety 𝛼−1, and note (x) = (𝛼)p, to get the desired
map C/x−1a→ 𝐸𝜎(C):

eq:mt-cm-2 C/a 𝑖 //

𝑓

��

C/p−1a
𝛼−1
//

𝑓 ′′

��

C/x−1a

𝑓 ′𝑚yy

𝐸(C) 𝜆 // 𝐸𝜎(C)

(41.15)

Here, 𝑓 ′
𝑚(𝑧) := 𝑓 ′′(𝛼𝑧).

This isn’t quite what we want yet, though, because the top row is the map 𝛼−1 rather
than the map x−1. We need to show that for 𝑚-torsion points, 𝛼−1 acts the same as x−1.
Then we would have

𝜎(𝑓(𝑡)) = 𝜆(𝑓(𝑡)) = 𝑓 ′
𝑚(𝛼

−1𝑡) = 𝑓 ′
𝑚(x

−1𝑡), 𝑡 ∈ 𝑚−1a/a.

The first equality is since 𝜎, 𝜆 were by construction the same on 𝐸[𝑚] (41.13), so 𝜎 ∘ 𝑓 and
𝜆 ∘ 𝑓 are the same on 𝑚−1a/a. The second is by commutativity of (41.15).

7The map 𝜎 and x−1 appearing in the theorem statement are bijections, while 𝜆 and 𝑖 are not. This is
okay, though, because we only use 𝜆, 𝑖 to approximate 𝜎 on 𝑚-torsion, and 𝜆, 𝑖 are injective on 𝑚-torsion,
since P - 𝑚.
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To show the third equality, we note that

𝑓 ′
𝑚(𝛼

−1𝑡) = 𝑓 ′
𝑚(x

−1𝑡) for all 𝑡 ∈ 𝑚−1a/a

(𝑓 ′
𝑚 bijective) ⇐⇒ 𝛼−1𝑡− x−1𝑡 ∈ a for all 𝑡 ∈ 𝑚−1a

⇐⇒ 𝛼−1𝑡q − 𝑥−1
𝑞 𝑡q ∈ aq for all 𝑡 ∈ 𝑚−1a, q

(multiplying by 𝑥q = 𝛼[𝑖p(𝜋)]q𝑢q) ⇐⇒ [𝑖p(𝜋)]q𝑢q𝑡− 𝑡 ∈ aq for all 𝑡 ∈ 𝑚−1aq

⇐⇒ ([𝑖p(𝜋)]q𝑢q − 1)aq ⊆ 𝑚aq

𝑢q ∈ U𝐾(1,𝑚) ⇐⇒ ([𝑖p(𝜋)]q − 1)aq ⊆ 𝑚aq.

Consider 2 cases.

1. q ̸= p. In this case, [𝑖p(𝜋)]q = 1, so this is trivial.

2. q = p: [𝑖p(𝜋)]p = 𝜋, and 𝜋−1 is a unit. By assumption p - 𝑚. hence (𝜋−1)a = a = 𝑚a.

Step 3: We now show that the maps 𝑓 ′
𝑚 are all actually the same for 𝑚 ≥ 3. Indeed,

𝑓 ′
𝑚|𝐸[𝑚] = 𝑓 ′

𝑚𝑛|𝐸[𝑚] by construction, so 𝑓 ′
𝑚, 𝑓

′
𝑚𝑛 differ by an automorphism that fixes 𝐸[𝑚].

This automorphism must be [𝜁] for some element of norm 1 in 𝐾, and 𝑓 ′
𝑚 = [𝜁] ∘ 𝑓 ′

𝑚𝑛. Since
𝑓 ′
𝑚, 𝑓

′
𝑚𝑛 are isomorphisms, this says

𝐸[𝑚] ⊆ ker[1− 𝜁]

The only possibilities are 𝜁 a 4th or 6th root of unity, and if 𝜁 ̸= 1, then [1− 𝜁] has norm at
most 4. So for 𝑚 ≥ 3, 𝜁 = 1, and 𝑓 ′

𝑚 = 𝑓 ′
𝑚𝑛.

Step 4: Finally, we show the theorem holds for general 𝐸/𝐿. Any elliptic curve 𝐸 has a
model 𝐸 ′ defined over 𝑀 ′ = Q(𝑗(𝐸)), corresponding to a complex torus C/a′ with a′ an
integral ideal (see the left face below). Let 𝐸 → 𝐸 ′ be an isomorphism and 𝐾/a→ 𝐾/a′ be
the corresponding map on torsion. Then the existence of 𝑓 ′

𝐸′ for 𝐸 ′/𝐿 gives the existence of
𝑓 ′
𝐸 for 𝐸/𝐿, by choosing 𝑓 ′

𝐸 to make the below diagram commute.

𝐾/a
x−1

//

∼=

##

𝑓𝐸

��

𝐾/x−1a

𝑓 ′𝐸

��

∼=

&&

𝐾/a′
x−1

//

𝑓𝐸′

��

𝐾/x−1a′

𝑓 ′
𝐸′

��

𝐸(C) 𝜎 //

$$

𝐸𝜎(C)
∼=

&&

𝐸 ′(C) // 𝐸 ′𝜎(C).
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6.1 The associated Grössencharacter

The Main Theorem involved 2 different elliptic curves, and 2 different analytic isomorphisms.
In the special case that 𝜎 fixes 𝐸, the curves will be the same, and by nudging the map
upstairs by a constant depending on x, we can restate the theorem using a consistent choice
of 𝑓 . (Compare to how we specialized from Proposition 41.5.6 to 41.5.7.) The action of
𝜑𝐿(x) on the elliptic curve will “essentially” correspond to multiplication by 𝜒𝐸/𝐿 on 𝐾/a.

Theorem 41.6.4 (Grössencharacter of an elliptic curve): thm:grossen-ec Let 𝐸/𝐿 be an elliptic
curve with complex multiplication by O𝐾 , and suppose 𝐾 ⊆ 𝐿. Let x ∈ I𝐿 and y =
Nm𝐿/𝐾(x) ∈ I𝐾 . Then there exists a unique 𝛼 = 𝛼𝐸/𝐿(𝑥) ∈ 𝐾× with the following properties.

1. 𝛼O𝐾 = (y).

2. For any fractional ideal a ⊆ 𝐾 and any analytic isomorphism 𝑓 : C/a → 𝐸(C), the
following commutes.

𝐾/a
𝛼y−1

//

𝑓
��

𝐾/a

𝑓
��

𝐸(𝐿ab)
𝜑𝐿(x)

// 𝐸(𝐿ab).

Moreover, defining 𝜒𝐸/𝐿 : I𝐿 → C× by

𝜒𝐸/𝐿(x) := 𝛼𝐸/𝐿(x)[Nm𝐿/𝐾(x
−1)]∞,

𝜒𝐸/𝐿 is a Grössencharacter of 𝐾, and 𝜒𝐸/𝐿 is ramified at P (i.e. 𝜒𝐸/𝐿(𝑈P) is not identically
1) iff 𝐸 has bad reduction at P.

Proof. Part 1: Since 𝑓 is an isomorphism, uniqueness is clear. To construct 𝛼, choose any
𝜎 ∈ Aut(C/𝐿) such that 𝜎|𝐿ab = 𝜑𝐿(x). We use Theorem 41.6.2 with 𝜎 and y ∈ I𝐾 , noting
the following points.

1. 𝐸𝜎 = 𝐸 since 𝐸 is defined over 𝐿 and 𝜎 fixes 𝐿.

2. The image of 𝑓 is contained in 𝐸(𝐿ab) as 𝐸tors ∈ 𝐸(𝐿ab) by Lemma 41.5.3.

3. By compatibility of the Artin map, 𝜑𝐿(x)|𝐾ab = 𝜑𝐾(Nm𝐿/𝐾 x) = 𝜑𝐾(y).

We obtain an analytic map 𝑓 ′ making the following commute.

𝐾/a
y−1
//

𝑓
��

𝐾/y−1a

𝑓 ′

��

𝐸(𝐿ab)
𝜑𝐿(x)

// 𝐸(𝐿ab).

Because
C/y−1a ∼= 𝐸𝜎(C) ∼= 𝐸(C) ∼= C/a,
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we have that y−1a is homothetic to a, i.e. there exists 𝛽 so that 𝛽 takes 𝐾/y−1a back to
𝐾/a. Defining 𝑓 ′′(𝑥) = 𝑓 ′(𝛽−1𝑥), we have that it differs from 𝑓 by some automorphism [𝜁]:
𝑓 ∘ [𝜁] = 𝑓 ′′. Let 𝛼 = 𝛽𝜁. Then we can extend the above diagram as follows.

𝐾/a
y−1
//

𝑓
��

𝐾/y−1a

𝑓 ′

��

𝛼 // 𝐾/a

𝑓zz

𝐸(𝐿ab)
𝜑𝐿(x)

// 𝐸(𝐿ab)

As 𝛼y−1a = a, we get (𝛼) = (y).
To see that 𝛼 is independent of 𝑓 and the ideal a, let 𝑓 ′ be another analytic isomorphism

𝐾/a′ → 𝐸(𝐿ab). Let the map 𝐾/a′ → 𝐾/a be multiplication-by-𝛾. Then 𝑓(𝛾𝑥) is also an
analytic isomorphism 𝐾/a′ → 𝐸(𝐿ab). Hence 𝛾−1𝑓−1 ∘ 𝑓 ′ is an automorphism [𝜁] of 𝐾/a′,
i.e. 𝑓 ′(𝑥) = 𝑓([𝜁]𝛾𝑥). Thus 𝜑𝐿(x)[𝑓

′(𝑥)] = 𝑓 ′(𝛼y−1𝑥) as well.

Part 2: 𝛼𝐸/𝐿 and hence 𝜒𝐸/𝐿 is a homomorphism since it’s clear that 𝜑𝐿(xx
′) ∘ 𝑓 = 𝑓 ∘

𝛼𝛼′yy′−1, and 𝜑𝐿(x
−1) ∘ 𝑓 = 𝑓 ∘ 𝛼−1y.

We need to check that 𝜒𝐸/𝐿(𝐿
×) = 1 and that 𝜒𝐸/𝐿 factors through a modulus.

For the first point, note 𝜑𝐿(𝐿
×) = 1, the identity element of 𝐺(𝐿ab/𝐿). Let 𝑖 : 𝐾× → I𝐾 ,

𝐿× → I𝐿 be the diagonal maps, and suppose x = 𝑖(𝑥). We have y = Nm𝐿/𝐾(𝑖(𝑥)) =
𝑖(Nm𝐿/𝐾(𝑥)). Then 𝛼 is just the element such that 𝛼Nm𝐿/𝐾(𝑥)

−1 induces the identity map,
i.e. 𝛼 = Nm𝐿/𝐾(𝑥) = [Nm𝐿/𝐾 x]∞, so 𝜒𝐸/𝐿(x) = 1.

For the second point, fix 𝑚 ≥ 3 (𝑚 = 3 works fine). We’ll show that for any idele x in a
small enough open subset of finite index, 𝜑𝐿(x) acts just like multiplication by 𝛼𝐸/𝐿(x) and
fixes 𝐸[𝑚], without the extra Nm𝐿/𝐾(x)∞ factor, so that 𝛼 will actually be 1.

Let 𝐵𝑚 be the kernel of the Artin map I𝐿 → 𝐺(𝐿(𝐸[𝑚])/𝐿) (abelian by Lemma 41.5.3),
so that it induces an isomorphism

eq:LEm𝜑𝐿(𝐸[𝑚])/𝐿 : I𝐿/𝐵𝑚

∼=−→ 𝐺(𝐿(𝐸[𝑚])/𝐿). (41.16)

We show that
𝑈𝑚 := 𝐵𝑚 ∩ 𝐿× (︀Nm−1

𝐿/𝐾 U𝐾(1,𝑚)
�
⊆ ker𝜒𝐸/𝐿.

This is of finite index in I𝐿 since 𝐵𝑚 is open of finite index in I𝐿 and 𝐾×U𝐾(1,𝑚) is open
of finite index in I𝐾 .

Fixing an analytic isomorphism 𝑓 : C/a
∼=−→ 𝐸(C), we get that for any 𝑡 ∈ 𝑚−1a/a and

any x ∈ 𝑈𝑚, 𝑓(𝑡) ∈ 𝐸[𝑚] so

𝑓(𝑡) = 𝑓(𝑡)𝜑𝐿(x) by (41.16) and x ∈ 𝐵𝑚

= 𝑓(𝛼Nm𝐿/𝐾(x)
−1𝑡) by the Main Theorem 41.6.2

= 𝑓(𝛼𝑡) 𝑡 ∈ 𝑚−1a/a and Nm𝐿/𝐾(x)p ≡ 1 (mod 𝑚O𝐾p) for all p.

Thus multiplication by 𝛼 fixes 𝑚−1a/a, i.e. 𝛼 ≡ 1 (mod 𝑚O𝐾). Note Nm𝐿/𝐾(x)
−1 ∈

U𝐾(1,𝑚), so
(𝛼) = (y) = (Nm𝐿/𝐾(x)) = O𝐾
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and 𝛼 is a unit. Together with 𝛼 ≡ 1 (mod 𝑚O𝐾), we get 𝛼 = 1.8

Part 3: The relationship between ramification and bad reduction hinges on the Néron-Ogg-
Shafarevich Criterion. See [Sil94, pg. 169-170].

Note that if 𝜒𝐸/𝐿 is unramified at P, then 𝜒𝐸/𝐿(𝑖P(𝑈P)) = 1, so it makes sense to talk
about 𝜒𝐸/𝐿(P) (defined as 𝜒𝐸/𝐿(𝑖P(𝜋)) for any uniformizer 𝜋).

Proposition 41.6.5: Let 𝐸/𝐿 be an elliptic curve with CM by O𝐾 , with 𝐾 ⊆ 𝐿. Let P
be a prime of 𝐿 of good reduction, let Ü𝐸 be the reduction of 𝐸 modulo P. Let 𝜑P be the

Frobenius on Ü𝐸. Then the following commutes.

𝐸
[𝜒𝐸/𝐿(P)]

//

����

𝐸

��Ü𝐸 𝜑P
// Ü𝐸

Proof. Let 𝜋 be a uniformizer of 𝐿P, and let 𝜛 = 𝑖P(𝜋). Note that 𝜛∞ = 1. Hence
Nm𝐿/𝐾(𝜛)∞ = 1, giving

𝜒𝐸/𝐿(P) = 𝜒𝐸/𝐿(𝜛) = 𝛼𝐸/𝐿(𝜛).

If 𝑚 is an integer such that P - 𝑚, then Nm𝐿/𝐾(𝜛) fixes 𝑚−1a/a (since it is 1 at all Q with
Q | 𝑚). Then

𝑓(𝑡)𝜑𝐿(𝜛) = 𝑓([𝛼𝐸/𝐿(𝜛)] Nm𝐿/𝐾(𝜛)−1𝑡) definition of 𝛼𝐸/𝐿

= 𝑓([𝜒𝐸/𝐿(P)] Nm𝐿/𝐾(𝜛)−1𝑡)

= [𝜒𝐸/𝐿(P)]𝑓(Nm𝐿/𝐾(𝜛)−1𝑡) 𝑓 preserves the action of O𝐾

= [𝜒𝐸/𝐿(P)]𝑓(𝑡) Nm𝐿/𝐾(𝜛) fixes 𝑚−1a/a.

Modulo P, 𝜑𝐿(𝜛) is just the 𝑞th power Frobenius map, so we get

𝜑P|̃︀𝐸[𝑚]
= å[𝜒𝐸/𝐿(P)]|𝐸[𝑚].

Since an isogeny is determined by its action on 𝐸[𝑚] for 𝑚 → ∞ (the kernel of a nonzero
isogeny is finite), we get that this is true for 𝐸, not just 𝐸[𝑚], as needed.

To study the Galois representation 𝐺(𝐾/𝐻𝐾) → Aut𝐸tors of 𝐸, we reduce modulo a
prime P of 𝐿, and show that on this reduced curve, the 𝑞th power Frobenius acts exactly as
multiplication by the Grössencharacter. In particular, the 𝑞th power Frobenius is represented
by multiplication by 𝜒𝐸/𝐿(P) when we think of 𝐸tors as 𝐾/a. Thinking of 𝐸tors as a 2-
dimensional space Q2, this says exactly that the eigenvalues of the Frobenius acting on 𝐸tors

is exactly 𝜒𝐸/𝐿(P) and 𝜒𝐸/𝐿(P). Typically we just restrict our attention to ℓ-power torsion
points for some ℓ.

8Any number in the form 𝑚𝜏 + 1, 𝜏 ∈ O𝐾 with norm 1 has norm at least (Nm𝐾/Q(𝑚)− 1)2 − 1, by the
triangle inequality. In order for it to have norm 1, 𝜏 = 0.
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7 𝐿-series of CM elliptic curve

sec:l-series-cmec

7.1 Defining the 𝐿-function

We define the 𝐿-series of an elliptic curve as the 𝐿-series of the corresponding Galois repre-
sentation.

Definition 41.7.1: df:E-L1 Let 𝐸 be an elliptic curve defined over 𝐾, and 𝜌ℓ the associated
Galois representation 𝐺(𝐾/𝐾)→ Aut𝑉ℓ𝐸 ∼= GL2(Qℓ).

Define the local 𝐿-factor of 𝐸 at a prime p of 𝐾 as follows. Choose ℓ such that p - ℓ,
and let

𝐿p(𝐸, 𝑠) := 𝐿p(𝜌ℓ, 𝑠) = det(1− 𝑞−𝑠 Frob(p)|(𝑉ℓ𝐸)𝐼p)−1,

where 𝑞 = Np and 𝐼p is the inertia subgroup of 𝐺(𝐾/𝐾). (Choose an embedding Qℓ →˓ C.)
The 𝐿-series of 𝐸 is the product of local factors

𝐿p(𝐸/𝐾, 𝑠) :=
∏︁
p

𝐿p(𝐸, 𝑠).

Remark 41.7.2: This is (almost) the same as saying: fix a prime ℓ and let 𝐿(𝐸/𝐾, 𝑠) :=
𝐿(𝜌ℓ, 𝑠). The only difference is that we run into trouble with the local factor 𝐿p(𝜌ℓ, 𝑠) on
the right hand side, so we have to choose a different ℓ′ and let this local factor be 𝐿p(𝜌ℓ′ , 𝑠)
instead.

The following is an equivalent definition (that is more concrete).

Definition 41.7.3: df:E-L2 Let 𝑁 be the conductor9 of the elliptic curve 𝐸. Define the local
𝐿-factor by

𝐿P(𝐸, 𝑠) = 1− 𝑎𝑞𝑞−𝑠 + 𝜒(𝑞)𝑞𝑞−2𝑠, 𝑎𝑞 = 𝑞 + 1− |𝐸(F𝑞)|, 𝜒(𝑞) =

⎧⎨⎩1, 𝑚 ⊥ 𝑁

0, else

where 𝑞 = Np. Thus

𝐿𝑣(𝐸, 𝑠) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 𝑎𝑞𝑞−𝑠 + 𝑞𝑞−2𝑠, good reduction

1− 𝑞−𝑠, split multiplicative reduction

1 + 𝑞−𝑠, non-split multiplicative reduction

1, additive reduction.

9𝑁 is divisible by exactly the primes of bad reduction
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Note that 𝑎𝑞, the “trace of Frobenius,” is related to the number of points of 𝐸 over F𝑞.
Hence the 𝐿-function contains information about the number of points of 𝐸 over each F𝑞.

Showing that these two definitions are equivalent requires us to show that (𝑉ℓ𝐸)
𝐼p is 2,

1, or 0-dimensional when 𝐸 has good, multiplicative, and additive reduction, respectively.
The general idea is that the action of 𝐼p on 𝑉ℓ𝐸 contains exactly the information lost by
looking at the reduced elliptic curve, since 𝐼p is exactly the kernel of 𝐷p(𝐾/𝐾) → 𝐺(𝑘/𝑘),
so nontrivial action of 𝐼p corresponds to bad reduction.

In the CM case, we cannot have multiplicative reduction, so the 𝐿-series is particularly
simple. We will show that the two definitions are equivalent in this case.

Theorem 41.7.4: thm:cmec-no-mr Let 𝐸/𝐾 be a CM elliptic curve. Then 𝐸 cannot have mul-
tiplicative reduction at any prime.

Proof. An elliptic curve 𝐸 has potential good reduction iff its 𝑗-invariant is integral [Sil86,
VII.5.5]. CM have integral 𝑗-invariants, so have potential good reduction, i.e. have good or
multiplicative reduction.

Proof that Definitions 41.7.1 and 41.7.3 are equivalent in the CM case. Suppose 𝐸 has CM
by an order O in 𝐾, and 𝐸 is defined over 𝐿. By Néron-Ogg-Shafarevich, 𝐼p acts trivially
on 𝑉ℓ𝐸 iff 𝐸 has good reduction at p. Let 𝑞 = Np.

In the case of good reduction we need to show det(1−𝑞−𝑠 Frob(p)|𝑉ℓ𝐸) = 1−𝑎𝑞𝑎−𝑠+𝑞𝑞−2𝑠.
Every endomorphism 𝜑 on 𝐸 satisfies 𝜑2 − tr(𝜑)𝜑+deg(𝜑) = 0, where tr(𝜑) = 1+ deg(𝜑)−
deg(1− 𝜑). Since Frob(p) acts as the Frobenius morphism 𝜑p, its characteristic polynomial
is

det(𝜆− Frob(p)) = 𝜆2 − tr(𝜑p)𝜆+ deg(𝜑p).

But

deg(𝜑p) = 𝑞

tr(𝜑p) = 1 + deg(𝜑p)− deg(1− 𝜑p)

= 𝑞 + 1− ker(1− 𝜑p)

= 𝑞 + 1− |𝐸(F𝑞)|.

(This part of the proof doesn’t use the fact that 𝐸 has CM.)

Since 𝐸 has no multiplicative reduction by Theorem 41.7.4, it remains to prove that
𝑊 := (𝑉ℓ𝐸)

𝐼p = 0 when 𝐸 has multiplicative reduction. We know by Néron-Ogg-Shafarevich
that dim(𝑊 ) ≤ 1. But because 𝐸 is CM, 𝑉ℓ𝐸 ∼= (lim←−𝑛 ℓ

−𝑛a/a) ⊗ Q has the structure of a
O𝐾 ⊗ Qℓ-vector space. If 𝑎 ∈ 𝑊 , then for any 𝛼 ∈ 𝐾, 𝛼𝑎 ∈ 𝑊 because [𝛼] commutes with
the Galois action. Hence 𝑊 is not just a Qℓ-subspace of 𝑉 , but also a O𝐾 ⊗ Qℓ-subspace.
Hence its dimension over Qℓ is even, and must be 0.
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7.2 Analytic continuation

Theorem 41.7.5 (Deuring): thm:cmec-l Let 𝐸/𝐿 be an elliptic curve with CM by O𝐾 with
𝐾 ⊆ 𝐿.Then

𝐿(𝐸/𝐿, 𝑠) = 𝐿(𝑠, 𝜓𝐸/𝐿)𝐿(𝑠, 𝜓𝐸/𝐿).

Corollary 41.7.6 (Analytic continuation of 𝐿-function for CM elliptic curves): cor:cmec-l-ac

Let 𝐸/𝐿 be an elliptic curve with CM by O𝐾 . Then 𝐿 admits an analytic continuation to
C and satisfies a functional equation relating its values at 𝑠 and 2− 𝑠.

This theorem for general elliptic curves is very deep (it follows from the Modularity
Theorem and the analytic properties of 𝐿-functions associated to modular forms).

Proof of Theorem 41.7.5. By Theorem 41.7.4, 𝐸 has no multiplicative reduction. Let P be
a prime, and consider 2 cases.

1. 𝐸 has good reduction at P. Choose any ℓ not dividing P. The characteristic poly-
nomial of the action of 𝜑P on 𝑉ℓ𝐸 is det(𝜆 − 𝜑P|𝑉ℓ𝐸). However, if we make the
identification 𝐸tors

∼= 𝐾/a, we have

𝑉ℓ𝐸 = lim←− ℓ
−𝑛a/a,

and we know that 𝜑P acts on 𝐸tors
∼= 𝐾/a as multiplication by 𝜒𝐸/𝐿(P). Therefore,

the eigenvalues of the action of 𝜑P on 𝑉ℓ𝐸 are just 𝜒𝐸/𝐿(P) and 𝜒𝐸/𝐿(P), and

det(𝜆− 𝜑P|𝑉ℓ𝐸) = (𝜆− 𝜒𝐸/𝐿(P))(𝜆− 𝜒𝐸/𝐿(P)).

Taking 𝜆 = 𝑝𝑠 and dividing by 𝑝2𝑠 gives

𝐿P(𝐸/𝐿, 𝑠) = det(1− 𝑝−𝑠𝜑P|𝑉ℓ𝐸) = 𝐿P(𝑠, 𝜒𝐸/𝐿)𝐿(𝑠, 𝜒𝐸/𝐿).

2. 𝐸 has bad reduction at P. Then 𝜒𝐸/𝐿(P) = 0 by definition, and 𝐿P(𝐸/𝐿, 𝑠) = 1 =
(1− 𝜒𝐸/𝐿(P))(1− 𝜒𝐸/𝐿(P)) = 𝐿P(𝑠, 𝜒𝐸/𝐿)𝐿(𝑠, 𝜒𝐸/𝐿).

Multiplying together all the local factors gives the result.

Proof of Corollary 41.7.6. The 𝐿-functions of Grössencharacters have analytic continuation
(Theorem 29.29.7.8, which works for Grössencharacters as well). Thus the result follows
directly from Theorem 41.7.5.

Thus we have carried out the program in Section 29.7 for CM elliptic curves, to get the
correspondences.

(CM Elliptic curves)→ (Galois representation)→ (2 Grössencharacters)

Remember Grössencharacters are 1-dimensional automorphic representations. If we wanted
a modular form, we can use the technique of automorphic induction to construct a modular
form from 2 Grössencharacters.
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Chapter 42

Local dynamics: Good reduction

In order to study the dynamics of rational maps on Q or a global number field, we reduce
it modulo various primes to rational maps on local fields, and then piece the information
together to get information about our original system.

1 Nonarchimedean chordal metric

Inspired by the chordal metric on the projective line P1(C)

𝜌([𝑥1 : 𝑦1], [𝑥2 : 𝑦2]) =
|𝑥1𝑦2 − 𝑥2𝑦1|È

|𝑥1|2 + |𝑦1|2
È
|𝑥2|2 + |𝑦2|2

giving P1(C) the topology of the Riemann sphere, we define for a nonarchimedean valuation
𝑣 the following:

𝜌𝑣([𝑥1 : 𝑦1], [𝑥2 : 𝑦2]) =
|𝑥1𝑦2 − 𝑥2𝑦1|𝑣

max(|𝑥1|𝑣, |𝑦1|𝑣)max(|𝑥2|𝑣, |𝑦2|𝑣)
.

It is clear that scaling the coordinates for the two points does not change this value. For con-
venience, we will often “normalize” coordinates so that 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝑅 and max(|𝑥1|𝑣, |𝑦1|𝑣) =
max(|𝑥2|𝑣, |𝑦2|𝑣) = 1 (i.e. at least one of 𝑥1, 𝑦1 and at least one of 𝑥2, 𝑦2 is a unit). Then the
formula becomes

𝜌𝑣([𝑥1 : 𝑦1], [𝑥2 : 𝑦2]) = |𝑥1𝑦2 − 𝑥2𝑦1|𝑣 = |( 𝑥1 𝑥2𝑦1 𝑦2 )|𝑣 .

In particular,
𝜌𝑣([𝑥1 : 𝑦1], [0 : 1]) = |𝑥1|𝑣.

Proposition 42.1.1: 𝜌𝑣 is a nonarchimedean metric satisfying 𝜌𝑣(𝑃1, 𝑃2) ≤ 1 for any 𝑃1, 𝑃2.

Proposition 42.1.2: The metric 𝜌𝑣 is invariant under fractional linear transformations.
That is, letting

𝑓(𝑥, 𝑦) =
𝑎𝑥+ 𝑏𝑦

𝑐𝑥+ 𝑑𝑦
,

�
𝑎 𝑏
𝑐 𝑑

�
∈ PGL2(𝑅),
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we have that
𝜌𝑣(𝑓(𝑃1), 𝑓(𝑃2)) = 𝜌𝑣(𝑃1, 𝑃2).

Note: for convenience, we will sometimes write 𝑓 ∈ PGL2(𝑅).

Proof. Normalize coordinates. Note that [𝑎𝑥𝑖 + 𝑏𝑦𝑖 : 𝑐𝑥𝑖 + 𝑑𝑦𝑖] are normalized coordinates
for 𝑓(𝑃𝑖) because multiplying the coordinates by the inverse matrix of ( 𝑎 𝑏𝑐 𝑑 ) gives�

𝑑 −𝑏
−𝑐 𝑎

��
𝑎𝑥𝑖 + 𝑏𝑦𝑖
𝑐𝑥𝑖 + 𝑑𝑦𝑖

�
=

�
𝑥𝑖
𝑦𝑖

�
;

since max(|𝑥𝑖|𝑣, |𝑦𝑖|𝑣) = 1 and 𝑥𝑖, 𝑦𝑖 are 𝑅-linear combinations of 𝑎𝑥𝑖 + 𝑏𝑦𝑖 and 𝑐𝑥𝑖 + 𝑑𝑦𝑖, we
must have max(|𝑎𝑥𝑖 + 𝑏𝑦𝑖|𝑣) = max(|𝑐𝑥𝑖 + 𝑑𝑦𝑖|𝑣).

Hence

𝜌𝑣(𝑓(𝑃1), 𝑓(𝑃2)) =

⃒⃒⃒⃒⃒
det

��
𝑎 𝑏
𝑐 𝑑

��
𝑥1 𝑥2
𝑦1 𝑦2

��⃒⃒⃒⃒⃒
𝑣

=

⃒⃒⃒⃒⃒
det

�
𝑥1 𝑥2
𝑦1 𝑦2

�⃒⃒⃒⃒⃒
𝑣

= 𝜌𝑣(𝑃1, 𝑃2).

Proof of 42.1.1(2). Wemay operate by linear fractional transformations on the points 𝑃1, 𝑃2, 𝑃3

without changing the values on either side. Hence we make the following reductions.

1. Applying 𝑓 = 𝑌
𝑋

as necessary, we can assume |𝑥2|𝑣 ≤ |𝑦2|𝑣 = 1.

2. Apply 𝑓 = 𝑦2𝑋−𝑥2𝑌
𝑌

so that |𝑃2| = [0 : 1]. (Note ( 𝑦2 −𝑥2
0 1 ) ∈ PGL2(𝑅) since |𝑦2|𝑣 = 1.)

The inequality now follows from

𝜌𝑣(𝑃1, 𝑃3) = |𝑥1𝑦3 − 𝑥3𝑦1|𝑣
≤ max{|𝑥1𝑦3|𝑣, |𝑥3𝑦1|𝑣}
= max{|𝑥1|𝑣, |𝑥3|𝑣}
= max{𝜌𝑣(𝑃1, 𝑃2), 𝜌𝑣(𝑃2, 𝑃3)} since 𝑃2 = [0 : 1].

Definition 42.1.3: Let (𝐾, | · |) be a field with valuation, and 𝜑(𝑧) ∈ 𝐾(𝑧) be a nonconstant
rational map. The multiplier of 𝜑 at a fixed point 𝛼 ∈ 𝐾 is

𝜆𝛼(𝜑) = 𝜑′(𝛼).

If 𝛼 has exact period 𝑛 for 𝜑, then we define

𝜆𝛼(𝜑) = (𝜑𝑛)′(𝛼) = 𝜑′(𝛼)𝜑′(𝜑(𝛼)) · · ·𝜑′(𝜑𝑛−1(𝛼)).

(The latter follows by the chain rule.) We say that

𝛼 is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
superattracting, if 𝜆𝛼(𝜑) = 0

attracting, if 𝜆𝛼(𝜑) < 1

neutral, if 𝜆𝛼(𝜑) = 1

repelling, if 𝜆𝛼(𝜑) > 1.

If 𝜆𝛼(𝜑) = 1, we say that 𝜑 is rationally or irrationally neutral according to whether or not
𝜆𝛼(𝜑) is a root of unity. [Analogy with C case?]
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2 Reduction of maps

Let 𝐾 be a field with normalized discrete valuation 𝑣, let 𝑅 be the ring of integers, p the
maximal ideal, and 𝑘 = 𝑅/p the residue field. Given a point 𝑃 ∈ P𝑁(𝐾), choose coordinates
[𝑥0 : . . . : 𝑥𝑛] so that 𝑥𝑗 ∈ 𝑅 for all 𝑗 and at least one 𝑥𝑖 has valuation 0, and defineÜ𝑃 = [̃︁𝑥0, . . . ,Ý𝑥𝑛].

We similarly define the reduction of a rational map 𝜑 as follows: First write 𝜑(𝑋, 𝑌 ) =
[𝐹 (𝑋, 𝑌 ) : 𝐺(𝑋, 𝑌 )] in normalized form, i.e. 𝐹,𝐺 ∈ 𝑅[𝑋, 𝑌 ] and at least one coefficient of
𝐹 or 𝐺 is in 𝑅×. Then we let ̃︀𝜑 = [Ü𝐹 : Ü𝐺].
Proposition 42.2.1 (Basic properties of reduction):

1. Ý𝑃1 =Ý𝑃2 if and only if 𝜌𝑣(𝑃1, 𝑃2) < 1.

2. For 𝑃,𝑄 ∈ P1(𝐾) and 𝑓 ∈ PGL2(𝑅), Ü𝑃 = Ü𝑄 if and only if ß𝑓(𝑃 ) = ß𝑓(𝑄).
3. Let 𝑃1, 𝑃2, 𝑃3 be points with distinct reductions. There exists a fractional linear trans-

formation 𝑓 ∈ PGL2(𝑅) such that

𝑓(𝑃1) = 0, 𝑓(𝑃2) = 1, and 𝑓(𝑃3) =∞.

(Note that we can always find 𝑓 ∈ PGL2(𝐾).)

Proof. Normalize coordinates.

1. Suppose 𝑥1𝑦2 ≡ 𝑥2𝑦1 (mod p). If 𝑥1𝑥2 ̸≡ 0 (mod p), thenÝ𝑃2 = [̃︁𝑥1̃︁𝑥2 : ̃︁𝑥1̃︁𝑦2] = [̃︁𝑥1̃︁𝑥2 : ̃︁𝑦1̃︁𝑥2] =Ý𝑃1.

If 𝑥1𝑥2 ≡ 0 (mod p), then 𝑃1 = 𝑃2 = [0 : 1].

2. Combine part 1 with Proposition 42.1.2.

3. We build 𝑓 as a composition of the following.

(a) Applying 𝑓1 =
𝑌
𝑋

= ( 0 1
1 0 ) as necessary, we may assume 𝑣(𝑥1) ≥ 𝑣(𝑦1). Normalize

again so 𝑣(𝑦1) = 0.

(b) Apply 𝑓2 =
𝑦1𝑋−𝑥1𝑌

𝑌
= ( 𝑦1 −𝑥1

0 1 ) so 𝑃1 = [0 : 1] = 0.

(c) Apply 𝑓3 =
𝑋

𝑦3𝑋−𝑥3𝑌 =
(︀

1 0
𝑦3 −𝑥3

�
, which fixes 𝑃1 and send 𝑃3 to [1 : 0] =∞.

(d) Apply 𝑓4 =
𝑦2𝑋
𝑥2𝑌

=
(︀
𝑦2 0
0 𝑥2

�
to scale 𝑃2. (Map in PGL(R)?)

Define the resultant of 𝜑 = [𝐹 : 𝐺] to be Res(𝐹,𝐺) (see Section 9.5). Note 𝜑 is defined
up to (𝑅×)2𝑑 where 𝑑 = deg 𝜑.
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Theorem 42.2.2 (Upper bound on expansion in chordal metric): Let 𝜑 : P1(𝐾)→ P1(𝐾).
Then

𝜌𝑣(𝜑(𝑃1), 𝜑(𝑃2)) ≤ |Res(𝜑)|−2
𝑣 𝜌𝑣(𝑃1, 𝑃2).

Proof. Let [𝑥 : 𝑦] be normalized. By Proposition 9.5.2(2) (suitably homogenized), there exist
𝐹1, 𝐺1, 𝐹2, 𝐺2 such that

𝐹1𝐹 +𝐺1𝐺 = Res(𝜑)𝑋2𝑑−1

𝐹2𝐹 +𝐺2𝐺 = Res(𝜑)𝑌 2𝑑−1.

By the triangle inequality,

|Res(𝜑)𝑋2𝑑−1|𝑣 ≤ max(|𝐹 (𝑥, 𝑦)|𝑣, |𝐺(𝑥, 𝑦)|𝑣)
|Res(𝜑)𝑌 2𝑑−1|𝑣 ≤ max(|𝐹 (𝑥, 𝑦)|𝑣, |𝐺(𝑥, 𝑦)|𝑣)

Since max{|𝑥|𝑣, |𝑦|𝑣} = 1, we get

|Res(𝜑)|𝑣 ≤ max(|𝐹 (𝑥, 𝑦)|𝑣, |𝐺(𝑥, 𝑦)|𝑣) (42.1)

which bounds the extent to which 𝐹 (𝑥, 𝑦), 𝐺(𝑥, 𝑦) can both be divisible by high powers of p.
Take 𝑃1, 𝑃2 to be normalized. We have the factorization

𝐹 (𝑋1, 𝑌1)𝐺(𝑋2, 𝑌2)− 𝐹 (𝑋2, 𝑌2)𝐺(𝑋1, 𝑌1) = (𝑋1𝑌2 −𝑋2𝑌1)𝐻(𝑋1, 𝑌1, 𝑋2, 𝑌2)⏟  ⏞  
∈𝑅[𝑋1,𝑌1,𝑋2,𝑌2]

. (42.2)

Hence

𝜌𝑣(𝜑(𝑃1), 𝜑(𝑃2)) =
|𝐹 (𝑋1, 𝑌1)𝐺(𝑋2, 𝑌2)− 𝐹 (𝑋2, 𝑌2)𝐺(𝑋1, 𝑌1)|𝑣

max{|𝐹 (𝑋1, 𝑌1)|𝑣, |𝐺(𝑋1, 𝑌1)|𝑣}max{|𝐹 (𝑋2, 𝑌2)|𝑣, |𝐺(𝑋2, 𝑌2)|𝑣}
(42.1)

≤ |𝐹 (𝑋1, 𝑌1)𝐺(𝑋2, 𝑌2)− 𝐹 (𝑋2, 𝑌2)𝐺(𝑋1, 𝑌1)|𝑣
|Res(𝜑)|2𝑣

(42.2)
=
|(𝑋1𝑌2 −𝑋2𝑌1)𝐻(𝑋1, 𝑋2, 𝑌1, 𝑌2|𝑣

|Res(𝜑)|2𝑣

≤ 𝜌𝑣(𝑃1, 𝑃2)

|Res(𝜑)|2𝑣
.

Proposition 42.2.3: Let 𝜑 : P1 → P1 be defined over 𝐾, and write 𝜑 = [𝐹 : 𝐺] in
normalized form. The following are equivalent.

1. deg 𝜑 = deg ̃︀𝜑.
2. Ü𝐹 (𝑋, 𝑌 ) = Ü𝐺(𝑋, 𝑌 ) = 0 has no solutions [𝛼 : 𝛽] ∈ P1(𝑘).

3. Res(𝜑) ∈ 𝑅×.
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4. Res(Ü𝐹 , Ü𝐺) ̸= 0.

We say that 𝜑 has good reduction if the above are satisfied.

Proof. Note that deg 𝜑 − deg ̃︀𝜑 equals the number of common roots of Ü𝐹 = Ü𝐺. This shows
(1) ⇐⇒ (2). Now (2), (3), and (4) are equivalent by applying Proposition 9.9.5.2 to Ü𝐹 andÜ𝐺.
Proposition 42.2.4 (Basic facts about reduction): Let 𝜑, 𝜓 : P1 → P1 be rational maps
with good reduction.

1. ̃︀𝜑(Ü𝑃 ) = ß𝜑(𝑃 ) for all 𝑃 ∈ P1(𝐾).

2. 𝜑 ∘ 𝜓 has good reduction and ˜𝜑 ∘ 𝜓 = 𝜑 ∘ 𝜓.

3. Reduction sends Per(𝜑)→ Per( ̃︀𝜑) and PrePer(𝜑)→ PrePer( ̃︀𝜑). Moreover it preserves
exact periods.

Proof. Use the characterization of good reduction given by Proposition 42.2.3(2).

Definition 42.2.5: The Fatou set of 𝜑 is the maximal open set on which {𝜑𝑛 : 𝑛 ∈ N} is
equicontinuous. The Julia set is the complement of the Fatou set.

Theorem 42.2.6: Let 𝜑 : P1 → P1 be a rational map with good reduction. Then

1. 𝜑 is everywhere nonexpanding:

𝜌𝑣(𝜑(𝑃1), 𝜑(𝑃2)) ≤ 𝜌𝑣(𝑃1, 𝑃2).

2. 𝜑 has empty Julia set.

Proof. 1. Use Theorem 42.2.2 and the fact that 𝜌𝑣(𝑃1, 𝑃2) < 1 when Ý𝑃1 = Ý𝑃2 (Proposi-
tion ??(1)).

2. A nonexpanding map is equicontinuous with constant 1.

3 Periodic points

We now characterize periodic points of 𝜑.

Theorem 42.3.1: Let (𝐾, | · |𝑣) be a nonarchimedean local field, 𝑘 be its residue field,
and 𝜑 : P1(𝐾) → P1(𝐾) be a rational function of degree 𝑑 ≥ 2 with good reduction. Let
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𝑃 ∈ P1(𝐾) be a periodic point of 𝜑. Let

𝑛 = period of 𝑃 for 𝜑

𝑚 = period of Ü𝑃 for ̃︀𝜑
𝑟 = order of 𝜆̃︀𝜑(Ü𝑃 ) = ( ̃︀𝜑𝑚)′(𝑃 ) in 𝑘×
𝑝 = |𝑘|.

Then 𝑛 = 𝑚, or 𝑚𝑟𝑝𝑒 for some 𝑒 ∈ N0.

Proof. Replacing 𝜑 by 𝜑𝑚 and 𝑚 by 1, we may assume 𝑚 = 1, i.e. Ü𝑃 is a fixed point of ̃︀𝜑. If
𝜑(𝑃 ) = 𝑃 we are in the first case, so assume this does not happen. We may further assume
𝑃 = [0 : 1], by taking 𝑓 sending [0, 1] to 𝑃 and replacing 𝜑 with 𝑓−1 ∘ 𝜑 ∘ 𝑓 .

Our main technique is to write the iterates 𝜑𝑖(0) in terms of 𝜑′(0) by considering the
Taylor expansion. Write

𝜑(𝑧) =
𝑎𝑑𝑋

𝑑 + · · ·+ 𝑎0
𝑏𝑑𝑧𝑑 + · · ·+ 𝑏0

= 𝜇+ 𝜆𝑧 + · · ·

where 𝜇 = 𝑎0
𝑏0
∈ p (because ≀𝜑(0) = 0) and 𝜆 = 𝜑′(0). By induction, we find that

𝜑𝑖(𝑧) = 𝜇(1 + 𝜆+ · · ·+ 𝜆𝑖−1)⏟  ⏞  
𝜑𝑖(0)

+ 𝜆𝑖⏟ ⏞ 
(𝜑𝑖)′(0)

𝑧 + · · ·

Since 𝜑𝑛(0) = 0, this gives

1 + 𝜆+ · · ·+ 𝜆𝑛−1 ≡ 0 (mod p). (42.3)

Consider two cases.

1. 𝜆 ̸≡ 1 (mod p). Then 𝑟 ≥ 2. Multiplying (42.3) by 𝜆− 1 gives 𝜆𝑛 ≡ 1 (mod p). This
shows 𝑟 | 𝑛. If 𝑛 ̸= 𝑟, then replace 𝜑 with 𝜑𝑟. Then 𝜆 is replaced with 𝜆𝑟, so we are in
the second case.

2. 𝜆 ≡ 1 (mod p). Then (42.3) gives us 𝑛 ≡ 0 (mod p); hence 𝑝 | 𝑛 and we can replace
𝜑 with 𝜑𝑝 and 𝑛 by 𝑛

𝑝
. Then we are in this case again, and we repeat until 𝑛 = 1.

Corollary 42.3.2: Let 𝜑 : P1 → P1 be a rational map with good reduction.

1. Every periodic point of 𝜑 is nonrepelling.

2. If ̃︀𝜑 is separable, then 𝜑 has finitely many attracting periodic points.

Theorem 42.3.3: Let 𝐾 be number field, and 𝜑 : P1 → P1 be a rational map over 𝐾.
Suppose 𝜑 has good reduction at p and q, with different residue characteristics. Let 𝑃 be a
periodic point with period 𝑛. Then

𝑛 ≤ (Np2 − 1)(Nq2 − 1).

In particular, Per(𝜑,𝐾) is finite for any 𝜑.
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Proof. We have that

𝑚p ≤ |P1(F𝑝)| = Np+ 1

𝑟p ≤ |F×
𝑝 | = Np− 1

and similarly for q. By Theorem 42.3.1, we get

𝑛 = 𝑚p𝑟
𝑒
p𝑝
𝑒′ = 𝑚q𝑟

𝑓
q 𝑞

𝑓 ′

for some 𝑒, 𝑓 ∈ {0, 1} and 𝑒′, 𝑓 ′ ∈ N0. Since 𝑝, 𝑞 are relatively prime, 𝑛 ≤ 𝑚p𝑟p𝑚q𝑟q, giving
the desired bound.

The second part now follows from the fact that the coefficients of 𝜑 can have nonzero
valuation only for a finite number of primes, and the fact that 𝜑𝑛(𝑃 ) = 𝑃 can only have
finitely many solutions for a fixed 𝑛.
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