
Fall 2019 CIS 3362 Homework #5 Solutions 

Number Theory, RSA 

 

1) What is the prime factorization of 1337834957760? 

 

Solution 

The prime factorization can be found by dividing by the smallest prime number until it is no longer 

a factor, and then continuing with each consecutive prime:  

 

2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 x 5 x 7 x 7 x 1053347 

 

= 26 x 34 x 5 x 72 x 1053347 
 

 

2) What is φ(1337834957760)? 

 

Solution 

Using the above prime factorization: 

 

φ(26) x φ(34) x φ(5) x φ(72) x φ(1053347) 

 

(26-25)x(34-33)x(5-50)x(72-7)x(1053347-10533470) 

 

(32)x(54)x(4)x(42)x(1053347) = 305790557184 

 

 

3) Using Fermat’s Theorem, determine the remainder when 1352672 is divided by 179. 

 

Solution 

Because 179 is prime, 135 and 179 are relatively prime. 

By the definition of relative primality: 

135178≡ 1 (mod 179) 

Using Fermat’s theorem: 

1352672≡(135178)15 x 1352 ≡ 1 x 18225 ≡ 146 (mod 179) 

 

4) Using Euler’s Theorem, determine 7429628993 mod 529984. 

 

Solution 

7429 is only divisible by 17 and 437, neither of which is a divisor of 529984, thus they are 

relatively prime. 

By Euler’s Theorem we can state 

7429φ(529984) ≡ 1 (mod 529984) 

First the prime factorization of 529984: 

26×72×132 

φ(26) x φ(72) x φ(132) = (26 – 25)(72 - 71)(132 - 131) = 209664 

7429628993 ≡ 7429628992 + 1 ≡ (7429209664)3 + 74291 ≡ 13 + 7429 ≡ 7429 (mod 529984) 



5) In an RSA scheme, p = 31, q = 19 and e = 77. What is d? 

 

Solution 

First we must find φ(31 x 19) = φ(31) x φ(19) = 30 x 18 = 540 

 

d = 77-1 (mod 540) 

 

Using the Extended Euclidean Algorithm: 

 

540 = 77 x 7 + 1 (shortest Euclidean ever) 

 

540 x 1 – 77 x 7 = 1 (mod 540) 

-7 x 77 = 1 (mod 540) 

-7 + 540 = 1 (mod 540) 

 

533 = 1 (mod 540) 

 

d = 533 

 

 

6) A primitive root, α, of a prime, p, is a value such that when you calculate the remainders of α, 

α2, α3, α4 , ... , αp-1, when divided by p, each number from the set {1, 2, 3, ..., p-1} shows up exactly 

once. Prove that a prime p has exactly φ(p-1) primitive roots. In writing your proof, you may 

assume that at least one primitive root of p exists. (Normally, this is the first part of the proof.) 

(Note: This question is difficult, so don't feel bad if you can't figure it out.) 

Solution 

We assume that at least one primitive root exists. Let’s call this α. We know that of the p-1 values 

1, 2, 3, …, p-1, exactly φ(p-1) of them share no common factor with p-1, based on the definition 

of φ. 

 

In order to prove the assertion, we must prove that αk is a primitive root if and only if gcd(k, p-1) 

= 1. If we can prove this, then from the list α, α2, α3, α4, ... , αp-1, the terms that are primitive roots 

are precisely the terms with the exponents that don’t share a common factor with p-1, of which 

there are exactly φ(p-1). 

 

Let gcd(k, p – 1) = 1. We will prove that αk is a primitive root. We prove this using proof by 

contradiction. Assume the opposite, that αk is NOT a primitive root. Then, we must have that two 

values in the list αk, α2k, α3k, …, αk(p-1) that are equivalent mod p. Let these two values be αik and 

αjk, where 0 < i < j < p. Thus, we have: 

 

αjk ≡ αik mod p 

αjk - αik ≡ 0 mod p 

αik(αjk-ik – 1) ≡ 0 mod p 

 

We know that p shares no common factors with αik. 

 



It follows that p | αjk-ik – 1. Thus 

 

αjk-ik – 1 ≡ 0 mod p 

α(j-i)k         ≡ 1 mod p 

 

Since α is a primitive root, we know that the exponent on the left must be a multiple of p – 1: 

 

(p – 1) | (j – i)k. 

 

We know that gcd(p – 1, k) = 1. Thus it follows that (p – 1) | (j – i). But this contradicts the fact 

that 0 < i < j < p, which means that i >= 1, j <= p-1, so j – i > 0 and j – i ≤ p – 2. 

 

This is our contradiction. It follows that our initial assumption that two values on the given list 

were equivalent mod p is faulty. If no two of these values are equivalent mod p, we can conclude 

that αk is a primitive root. 

 

Now, the second part of the proof is that if gcd(p – 1, k) > 1, then αk is NOT a primitive root. Let 

c = gcd(p – 1, k) > 1. Now, consider the term (αk)(p-1)/c mod p. The exponent (𝑝−1)/𝑐 is clearly less 

than p – 1. Secondly, this is equivalent to 𝛼𝑘/𝑐 * (p-1) mod p. Notice that c divides evenly into k 

because c = gcd(k, p – 1), thus c is a divisor of k. Let m = 𝑘 / 𝑐, and 𝑚 ∈ 𝑍. Thus 𝛼𝑘/𝑐 * (p-1) ≡ 

(𝛼𝑝−1)/c ≡ 1𝑚 ≡ 1 (𝑚𝑜𝑑 𝑝). This means that αk isn’t a primitive root since raising it to a power less 

than p – 1 yields 1. 

 

Thus, we have shown that if AND only if gcd(p – 1, k) = 1, is αka primitive root of p. Thus, to 

count the number of primitive roots, we simply look at the list α, α2, α3, α4, ... , αp-1 and count the 

number of terms that have exponents relatively prime to p – 1. By definition of α, this number is 

exactly φ(p – 1). As a concrete example, if we know that 2 is a primitive root of p = 19, it follows 

that 21, 25, 27, 211, 213, and 217 are all primitive roots of 19, since 1, 5, 7, 11, 13 and 17 don’t share 

any common factors with 18, p – 1. 

 

Note: This solution is written by Sushant Kulkarni, a past TA of the course. 

 

  



7) One of the primitive roots (also called generators) mod 43 is 29. There are 11 other primitive 

roots mod 43. One way to list these is 29a1 mod 41,  29a2 mod 41, … 29a12 mod 41, where 0 < a1 

< a2 < … < a12. (Note: it’s fairly easy to see that a1 = 1, since 29 is a primitive root.) Find the 

values of a10, a11 and a12 and the corresponding remainders when 29a10, 29a11 and 29a12 are 

divided by 43. 

 

Solution 

The key idea here is from the proof of question 6, which shows that if g is a generator mod p, gx 

is also a generator if and only if gcd(x, p-1) = 1. Thus, the corresponding exponents, a1, a2, a3, 

…, refer to the 12 values that are relatively prime to 42. These 12 values are: 1, 5, 11, 13, 17, 19, 

23, 25, 29, 31, 37, and 41. Thus,  

 

a10 = 31, a11 = 37, and a12 = 41 

 

Now, use these three values and fast modular exponentiation to calculate the following three 

generators mod 43: 

 

2931 (mod 43) ≡ 30 (mod 43) 

2937 (mod 43) ≡ 28 (mod 43) 

2941 (mod 43) ≡ 3 (mod 43) 

 

 

8) In the Diffie-Hellman Key Exchange, let the public keys be p = 43, g = 20, and the secret keys 

be a = 25 and b = 29, where a is Alice’s secret key and b is Bob’s secret key. What value does 

Alice send Bob? What value does Bob send Alice? What is the secret key they share? 

 

Solution 

a) Alice sends Bob: ga (mod p) 

 

2025 (mod 43) ≡ 3 (mod 43) 

 

b) Bob sends Alice: gb (mod p) 

 

2029 (mod 43) ≡ 34 (mod 43) 

 

c) Shared key: (answer a)b (mod p) or (answer b)a (mod p) 

 

329 (mod 43) ≡ 18 (mod 43) 

 

3425 (mod 43) ≡ 18 (mod 43) 

 

  



9) For this question, you are going to implement a RSA protocol to send the TAs and me (Arup) a 

message. For our RSA system, the public keys are as follows: 

 

n = 135966249934813212187094231381 

e = 437623485647823657465674567 

 

Your message must be in Radix-64. Please google this format. It allows for 64 characters, encoding 

each with 6 bits. The characters are: all lowercase letters, all uppercase letters, all digits, the plus 

sign(+) and a forward slash (/). 

 

First, type your message in a textfile only using those 64 characters. Type 16 characters per line. 

To encrypt, you will encrypt each line, one by one. Please pad the last line with '+' characters as 

needed. Convert each line of 16 Raxix-64 characters to a 96 bit integer. This will be your plaintext 

for RSA. Use the public keys given above and calculate the ciphertext, which will be a number 

from 1 to n-1. Output this number to a textfile. Do this for each line of the message. Here is what 

you need to turn in for this question: 

 

1. Your code. 

 

2. A text file with your ciphertext. This should have one number per line, for each block of 16 

Radix-64 characters. 

 

If you did everything to specification, the TAs and I should be able to read your message. Please 

keep it clean =) You may address any one of the three of us in your message, or all three of us, if 

you'd like! 

 

Solution 

A sample code file, plaintext message and encrypted message are posted with this solution in the 

following files: 

 

sendmsg.py 

msg.txt 

msg.out 

 

Also, the grading "script", readmsg.py, is included. 


