Number: $\qquad$

Name:

Unit 2B: Properties of Quadrilaterals and Similarity

Geometry

## Spring 2019

| Quadrilateral Properties Chart |  | $\begin{aligned} & \frac{v}{\sigma} \\ & \frac{\pi}{0} \\ & \vdots \\ & \vdots \\ & \alpha \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \frac{م}{\xi} \\ & \frac{1}{\alpha} \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{\partial}{v} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \\ & \text { O } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$ |  | さ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKETCH EACH QUADRILATERAL |  |  |  |  |  |  |  |
| 2 pair of opposite sides are \|| |  |  |  |  |  |  |  |
| Exactly 1 pair of opposite sides are \|| |  |  |  |  |  |  |  |
| 2 pair of opposite sides are $\cong$ |  |  |  |  |  |  |  |
| 2 pair of adjacent sides are $\cong$ |  |  |  |  |  |  |  |
| Exactly 1 pair of $\cong$ sides |  |  |  |  |  |  |  |
| All sides are $\cong$ |  |  |  |  |  |  |  |
| Opposite $\angle \mathrm{s} \cong$ |  |  |  |  |  |  |  |
| Exactly 1 pair of $\cong$ angles |  |  |  |  |  |  |  |
| All $\angle \mathrm{S} 90^{\circ}$ |  |  |  |  |  |  |  |
| Both diagonals bisect each other |  |  |  |  |  |  |  |
| Diagonals are $\cong$ |  |  |  |  |  |  |  |
| Diagonals are perpendicular |  |  |  |  |  |  |  |
| One diagonal is bisected |  |  |  |  |  |  |  |
| Diagonals bisect both pair of opposite angles |  |  |  |  |  |  |  |
| One diagonal bisects opposite angles |  |  |  |  |  |  |  |
| Consecutive $\angle$ 's are supplementary |  |  |  |  |  |  |  |

$\qquad$
$\qquad$

## Quadrilateral:

Both pairs of opposite sides are $\qquad$ .

- Both pairs of opposite sides are $\qquad$ .
- Diagonals bisect each other.
- Both pairs of opposite angles are $\qquad$ .
(ALL angles are congruent - $\qquad$
- Consecutive angles are $\qquad$ .
- Diagonals are $\qquad$ .


## Quadrilateral:

$\qquad$

- Both pairs of opposite sides are $\qquad$ .
- Both pairs of opposite sides are
- Diagonals $\qquad$
- Both pairs of opposite angles are
(ALL angles are congruent -
$\qquad$ .
$\qquad$

- Consecutive angles are $\qquad$ -
- Diagonals are $\qquad$ .


## Quadrilateral:

$\qquad$

- Both pairs of consecutive sides are $\qquad$ .

- Diagonals are $\qquad$ .
- Exactly one pair of opposite angles are $\qquad$ . (angles formed by 1 small side and 1 large side are _).

- Short diagonal is $\qquad$ .
No parallel sides $\qquad$ .

Quadrilateral: $\qquad$

- Both pairs of opposite sides are $\qquad$ .
- Both pairs of opposite sides are
(ALL sides are $\qquad$ ).
- Diagonals $\qquad$ .
- Diagonals are $\qquad$ .
- Diagonals $\qquad$ .
- Both pairs of opposite angles are $\qquad$ .
- Consecutive angles are $\qquad$

Quadrilateral: $\qquad$

- Both pairs of opposite sides are $\qquad$ .
- Both pairs of opposite sides are
- Diagonals are $\qquad$ .
- Diagonals $\qquad$ .
- Diagonals are $\qquad$ .
- Diagonals $\qquad$ .
- Both pairs of opposite angles are $\qquad$ .
- Consecutive angles are $\qquad$ .

Quadrilateral: $\qquad$

- Exactly
(These are called $\qquad$
- Exactly $\qquad$

(Same $\qquad$ ).


## Quadrilaterals are polygons with

 .- Diagonals $\qquad$ each other.




## Rhombus

- ALL of the properties of a parallelogram PLUS:
- All sides are $\qquad$
- Diagonals are $\qquad$
- Diagonals $\qquad$ angles



## Rectangle

- ALL of the properties of a parallelogram PLUS
- Has four $\qquad$
- Diagonals are $\qquad$



## Other Quadrilaterals



Trapezoid
One pair of
lines


Isosceles Trapezoid
Base angles are
One pair of $\qquad$ lines

$\qquad$ Date: $\qquad$

## Quadrilateral Practice




EFGH is a square. We know that the diagonals are $\qquad$
And that the diagonals lengths are $\qquad$
Find $m \measuredangle E J F$

Find the measure of $\overrightarrow{H F}$
$\qquad$
$\qquad$

## Quadrilaterals

1. Given that $\square F G H J$ is a parallelogram, find $M H$ and $F H$.

2. Find $x$, and $y$.


3. Find the values of $x$ and $y$.


1
7. Find $\mathrm{x}, \mathrm{y}$ and z in $\square K L M N$.


8. Gates As shown, a gate contains several parallelograms. Find $m \angle A D C$ when $m \angle D A B=65^{\circ}$.


Find the measure of angles B, C, and D in each figure below.

10.

11.

14.


Find the value of $x$ in each figure below.
15.

16.


## Parallelograms

## Definition:

quadrilateral whose $\qquad$ .

## $\overline{A B} \| \overline{\mathrm{CD}}$ and $\overline{\mathrm{BC}} \| \overline{A D}$



Symbol:
A smaller version $\qquad$ .


Naming:

- A parallelogram is named using $\qquad$ .
- You can start from any one vertex, but you must continue in a
- For example, the figure above can be either $\square A B C D$ or $\square$ ADCB.


## Properties of a parallelogram



1. Both pairs of opposite sides are congruent.
2. Both pairs of opposite angles are congruent.
3. Consecutive angles are supplementary.
4. Diagonals bisect each other but are not congruent

## Examples



1. Draw $\square$ HKLP.
2. $\mathrm{HK}=$ $\qquad$ and $\mathrm{HP}=$ $\qquad$ .
3. $m<K=m<$ $\qquad$ .
4. $m<L+m<$ $\qquad$ $=180^{\circ}$.
5. If $\mathrm{m}<\mathrm{P}=65^{\circ}$, then $\mathrm{m}<\mathrm{H}=$ $\qquad$ , $\mathrm{m}<\mathrm{K}=$ $\qquad$ and $\mathrm{m}<\mathrm{L}=$ $\qquad$ .
6. Draw the diagonals with their point of intersection labeled $M$.
7. If $\mathrm{HM}=5$, then $\mathrm{ML}=$ $\qquad$
8. If $K M=7$, then $K P=$ $\qquad$
9. If $\mathrm{HL}=15$, then $\mathrm{ML}=$ $\qquad$
10. If $\mathrm{m} \angle \mathrm{HPK}=36^{\circ}$, then $\mathrm{m} \angle \mathrm{PKL}=$ $\qquad$ .
