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Abstract
In this paper, an electro-elastic frictional contact problem is studied numerically as a hemi-
variational inequality. Convergence of the Galerkin approximation for the hemivariational
inequality is proved, and Céa’s type inequalities are derived for error estimation. The results
are applied to the electro-elastic contact problem, and an optimal order error estimate is
deduced for linear element approximation. Finally, two numerical examples are reported,
providing numerical evidence of the optimal convergence order theoretically predicted.

Keywords Hemivariational inequality · Galerkin approximation · Optimal order error
estimate · Electro-elastic material · Frictional contact

Mathematics Subject Classification 65N30 · 65N15 · 74M10 · 74M15

1 Introduction

This paper is devoted to numerical analysis of a static problem for contact between an
electro-elastic body and an electrically conductive foundation. Such contact phenomena
arise in engineering devices, e.g., switches in radiotronics and measuring equipment. The
main feature of the electro-elastic contact problem is the coupling between the mechanical
and electrical properties of the materials. In the coupled system, the forces acting on the body
affect the appearance of electric charge, and in turn, the action of the electric field generates
stress or strain in the body.Recently, various contact problems for piezoelectricmaterials have
attracted much interest. For existence and uniqueness of a weak solution of the contact prob-
lems, the reader is referred to Lerguet et al. (2007), Migórski (2006), Migórski et al. (2010),
Migórski et al. (2011). On numerical approximation of piezoelectric contact problems, only
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a few references can be found in the literature. In Barboteu et al. (2008a), two frictionless
contact models for electro-elastic materials are studied in the framework of a coupled system
consisting of a variational inequality and an elliptic equation. Linear finite element is used
to solve the problem numerically, and some error estimates are derived. In Barboteu and
Sofonea (2009), an algorithm based on the finite element method and the backward Euler
scheme is applied to solve a quasistatic contact model for electro-viscoelastic materials. An
augmented Lagrangian method is described, yet no error estimates or convergence results
are provided. In Sofonea et al. (2012), a quasistatic contact model for electro-elastic–visco-
plastic materials is investigated. The weak formulation is a coupled system involving an
evolutionary variational inequality and an elliptic equation. An error estimate is provided for
a fully discrete scheme. More references on piezoelastic contact problems can be found in
Barboteu et al. (2008b), Barboteu et al. (2008c), Han et al. (2007), Hüeber et al. (2013).

So far, the existing handful of papers on numerical analysis of piezoelectric contact
problems are for mathematical formulations in the form of variational inequalities. For
more complicated engineering applications, piezoelectric contact problems in the form of
hemivariational inequalities arise naturally. While variational inequalities are non-smooth
problems with convex structures, hemivariational inequalities are non-smooth problems
allowing non-convex terms. Recent years have witnessed the development of numerical anal-
ysis of hemivariational inequalities. In Han et al. (2014), a static varaitional–hemivariational
inequality is analyzed theoretically and numerically, and an optimal order error estimate is
presented for the first time in the literature on finite element solutions of hemivariational
inequalities. In Barboteu et al. (2015), a hyperbolic hemivariational inequality arising in
dynamic contact is studied and an optimal order error estimate is derived for the numerical
method based on the linear finite elements for the spatial discretization and the backward
Euler finite difference for the time derivative. More recent results on numerical analysis of
various types of hemivariational inequalities, including history-dependent hemivariational
inequalities, can be found in Han (2018), Han et al. (2019), Han et al. (2017), Han et al.
(2018), Xu et al. (2019a), Xu et al. (2019b) and the lengthy paper Han and Sofonea (2019).

Recently, a new contact model for piezoelectric materials is studied in Gamorski and
Migórski (2018). In this model, a unilateral Signorini-type contact condition with multival-
ued normal compliance is adopted. Strong coupling between the displacement and electric
potential appears in constitutive relation, contact condition, friction law and electric contact.
The weak formulation of the contact problem is a hemivariational inequality and existence
of a unique weak solution is proved. The purpose of this paper is to numerically study and
simulate the contact model in Gamorski andMigórski (2018). Galerkin approximation of the
hemivariational inequality is considered with convergence shown and Céa’s type inequalities
derived. For the new contact model, an optimal order error estimate is derived for linear finite
element solutions. This is the first paper containing an optimal order error bound for the
numerical solution of a hemivariational inequality modeling piezoelectric contact problems.

The rest of this paper is organized as follows. In Sect. 2, we recall some preliminaries in
nonlinear analysis. In Sect. 3, we present an abstract hemivariational inequality and consider
its Galerkin approximation. In Sect. 4, we state the new contact model for piezoelectric
materials. Galerkin approximation to the problem is analyzed, and an optimal order error
estimate is derived for linear finite element solutions. Finally in Sect. 5, we report numerical
results providing numerical evidence for the theoretically predicted optimal convergence
orders.
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2 Preliminaries

In this section, we recall some preliminary materials in nonlinear analysis. Let X be a normed
space and X∗ be its dual space, the duality pairing of X∗ and X is denoted by 〈·, ·〉X∗×X . The
norms in X and X∗ are denoted by ‖ ·‖X and ‖ ·‖X∗ , respectively. The notions of generalized
directional derivative and subdifferential will be needed (Clarke 1983).

Definition 1 Let φ : X → R be a locally Lipschitz function. The generalized directional
derivative (in the sense of Clarke) of φ at a point u ∈ X along a direction v ∈ X is defined
by

φ0(u; v) = lim sup
y→u, λ↓0

φ(y + λv) − φ(y)

λ
.

Definition 2 Let φ : X → R be a locally Lipschitz function. The subdifferential or the
generalized gradient (in the sense of Clarke) of φ at the point u ∈ X is the following subset
of the dual space X∗:

∂φ(u) = {ξ ∈ X∗ | φ0(u; v) ≥ 〈ξ, v〉X∗×X ∀ v ∈ X}.
The Clarke directional derivative is subadditive, i.e., for every u ∈ X ,

φ0(u; v1 + v2) ≤ φ0(u; v1) + φ0(u; v2) ∀ v1, v2 ∈ X .

More properties concerning the Clarke directional derivative and subdifferential can be found
in the books Clarke (1983); Denkowski et al. (2003); Migórski et al. (2013).

We also recall the following definitions, useful in the analysis of hemivariational inequality
problems (Han et al. 2014; Xu et al. 2019a, b).

Definition 3 An operator A : X → X∗ is called

(a) monotone, if 〈Au − Av, u − v〉X∗×X ≥ 0 for any u, v ∈ X ;
(b) strongly monotone, if 〈Au − Av, u − v〉X∗×X ≥ c ‖u − v‖2X for any u, v ∈ X with

some constant c > 0;
(c) pseudomonotone, if it is bounded and for any sequence un converging to u weakly in X

such that lim sup〈Aun, un − u〉X∗×X ≤ 0, then 〈Au, u − v〉X∗×X ≤ lim inf〈Aun, un −
v〉X∗×X for any v ∈ X .

3 An abstract hemivariational inequality and its Galerkin
approximation

Based on the problem introduced by Gamorski and Migórski (2018), an abstract hemivari-
ational inequality is presented in this section. We use the Galerkin method to approximate
the hemivariational inequality, derive Céa’s type inequality and show convergence of the
numerical solution. Below, C represents a generic positive constant which does not depend
on the mesh size h, but may depend on the data of the problem and the solution.

Let X be a reflexive Banach space with norm ‖ · ‖X and let X1 be a Banach space with
norm ‖ · ‖X1 . Their dual spaces are denoted by X∗ and X∗

1 . Let there be given a set K ⊂ X
and two operators A : X → X∗, γ : X → X1. Denote K1 = γ (K ); thus K1 ⊂ X1. Let
J : K1 × X1 → R be a function, Lipschitz continuous with respect to its second argument,
and let J 0 be the Clarke directional derivative of J with respect to its second argument. Given
f ∈ X∗, consider the following abstract hemivariational inequality.
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Problem 4 Find an element u ∈ K such that

〈Au − f , v − u〉X∗×X + J 0(γ u, γ u; γ v − γ u) ≥ 0 ∀ v ∈ K . (1)

The formof the problem is slightly different from that presented inGamorski andMigórski
(2018), to accommodate the need to derive optimal order error estimates.

Remark 5 In applications to contact mechanics, γ represents a trace operator, and X1 can
be chosen as the space of vector-valued or scalar-valued square integrable functions over
the contact boundary. Generally, the function J is defined as an integral over the contact
boundary, such as J (γ u) in Han (2018), Han et al. (2017), Han et al. (2018). In dealing with
multi-physics coupling problems, for example, problems with electro-elastic coupling, it is
useful to express the integral in the form J (u, u) (Gamorski and Migórski 2018).

The following conditions are needed in the well-posedness and numerical analy-
sis (Gamorski and Migórski 2018; Han et al. 2017):

K is a closed and convex subset of X with 0X ∈ K . (2)

γ ∈ L(X; X1), for some constant cγ > 0, ‖γ v‖X1 ≤ cγ ‖v‖X v ∈ X . (3)
⎧
⎪⎪⎨

⎪⎪⎩

A : X → X∗ is
(a) pseudomonotone;
(b) strongly monotone, i.e., there exists m A > 0 such that

〈Av1 − Av2, v1 − v2〉X∗×X ≥ m A‖v1 − v2‖2X ∀ v1, v2 ∈ X .

(4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

J : K1 × X1 → R is a function such that
(a) J (z, ·) is locally Lipschitz on X1 ∀ z ∈ K1;
(b) there exists c0, c1, c2 ≥ 0 such that ∀ z ∈ K1, ∀ w ∈ X1

‖∂ J (z, w)‖X∗
1

≤ c0 + c1‖z‖X1 + c2‖w‖X1;
(c) there exist αJ , βJ > 0 such that ∀ z1, z2 ∈ K1, ∀ w1, w2 ∈ X1.

J 0(z1, w1;w2 − w1) + J 0(z2, w2;w1 − w2)

≤ αJ ‖w1 − w2‖2X1
+ βJ ‖z1 − z2‖X1‖w1 − w2‖X1 .

(5)

αJ c2γ + max{βJ , c1}c2γ < m A. (6)

f ∈ X∗. (7)

The assumption 0X ∈ K is valid for various contact problems, which is used to simplify
the calculation (Han et al. 2017). For instance, we can derive the following two inequalities
from that

〈Av, v〉X∗×X = 〈Av − A0, v〉X∗×X + 〈A0, v〉X∗×X ,

〈∂ J (z, w),w〉X∗
1×X1 = 〈∂ J (z, w) − ∂ J (z, 0), w〉X∗

1×X1 + 〈∂ J (z, 0), w〉X∗
1×X1 .

Combining with (4) (b), (5) (b) and (5) (c), for any v ∈ X , z ∈ K1 and w ∈ X1, we have

〈Av, v〉X∗×X ≥ m A‖v‖2X − ‖A0‖X∗‖v‖X , (8)

〈∂ J (z, w),w〉X∗
1×X1 ≥ −αJ ‖w‖2X1

− (c0 + c1‖z‖X1)‖w‖X1 . (9)

The condition (4) (c) is equivalent to the inequality

〈∂ J (z1, w1) − ∂ J (z2, w2), w1 − w2〉X∗
1×X1 ≥ −αJ ‖w1 − w2‖2X1

− βJ ‖z1 − z2‖X1‖w1 − w2‖X1
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for any z1, z2 ∈ K1, for any w1, w2 ∈ X1 (Migórski et al. 2013). If βJ = 0, then the above
inequality reduces to the so-called relaxed monotonicity condition which is widely used in
the literature (Han 2018; Han et al. 2014, 2017, 2019).

The function J is defined on K1 × X1; thus, the condition (5) has differences with the
one presented in the paper Gamorski and Migórski (2018). The relation (6) is a modified
smallness condition. By slightly modifying the proof in Gamorski and Migórski (2018), we
have the existence of a unique solution to Problem 4.

Theorem 6 Assume (2)–(7). Then Problem 4 has a unique solution u ∈ K .

Now, we give a discrete scheme of Problem 4. Let Xh ⊂ X be a finite dimensional
subspace where h > 0 denotes a spatial discretization parameter. Assume K h ⊂ Xh ∩ K ,
which is used to approximate the set K . As for K , we assume 0 ∈ K h , an assumption valid
in our applications. Automatically, we have γ (K h) ⊂ γ (K ) = K1. Then, the Galerkin
approximation of Problem 4 is the following.

Problem 7 Find uh ∈ K h such that

〈Auh − f , vh − uh〉X∗×X + J 0(γ uh, γ uh; γ vh − γ uh) ≥ 0 ∀ vh ∈ K h . (10)

By a discrete analog of Theorem 6, we know that under assumptions (2)–(7), Problem 7
has a unique solution uh ∈ K h . The following uniform boundedness result on the discrete
solution will be useful in convergence analysis and error estimation.

Proposition 8 The solution uh ∈ K h of Problem 7 is uniformly bounded in X, independent
of h.

Proof We let vh = 0 in Problem 7 to get

〈Auh, uh〉X∗×X ≤ J 0(γ uh, γ uh;−γ uh) + 〈 f , uh〉X∗×X . (11)

We take z1 = z2 = γ uh , w1 = γ uh and w2 = 0 in (5) (c) to get

J 0(γ uh, γ uh;−γ uh) + J 0(γ uh, 0; γ uh) ≤ αJ ‖γ uh‖2X1
.

Thus,

J 0(γ uh, γ uh;−γ uh) ≤ αJ ‖γ uh‖2X1
− J 0(γ uh, γ 0; γ uh)

≤ αJ ‖γ uh‖2X1
+ (c0 + c1‖γ uh‖X1)‖γ uh‖X1

≤ (αJ + c1)c
2
γ ‖uh‖2X + c0cγ ‖uh‖X .

(12)

Obviously,

〈 f , uh〉X∗×X ≤ ‖ f ‖X∗‖uh‖X . (13)

Taking v = uh in (8), we have

m A‖uh‖2X − ‖A0‖X∗‖uh‖X ≤ 〈Auh, uh〉X∗×X . (14)

Combining (11), (12), (13) and (14), we get

m A‖uh‖2X ≤ (αJ + c1)c
2
γ ‖uh‖2X + (c0cγ + ‖A0‖X∗)‖uh‖X

≤ (αJ + c1)c
2
γ ‖uh‖2X + c3‖uh‖X ,
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where c3 = c0cγ + ‖A0‖X∗ . Recalling the condition (6), we find that

‖uh‖X ≤ c3
m A − (αJ + c1)c2γ

.

Thus, ‖uh‖X is uniformly bounded with respect to h. ��
To proceed further in convergence analysis and error estimation, we assume A : X → X∗

is Lipschitz continuous with a Lipschitz constant L A > 0, i.e.,

‖Au − Av‖X∗ ≤ L A‖u − v‖X ∀ u, v ∈ X . (15)

We also assume {K h} approaches K in the sense that

∀ v ∈ K , ∃ vh ∈ K h such that vh → v in X as h → 0. (16)

Theorem 9 Assume (2)–(7) and (15). Then, the following error bound holds for Problem 7:

‖u − uh‖2X ≤ C
(
‖u − vh‖2X + ‖γ u − γ vh‖X1 + R(u, vh)

)
∀ vh ∈ K h, (17)

where R(u, vh) is the residual term defined by

R(u, vh) = 〈Au, vh − u〉X∗×X + J 0(γ u, γ u; γ vh − γ u) − 〈 f , vh − u〉X∗×X . (18)

Proof Apply (4) (b) with v1 = u and v2 = uh ,

m A‖u − uh‖2X ≤ 〈Au − Auh, u − uh〉X∗×X

which is rewritten as

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉X∗×X + 〈Au, vh − u〉X∗×X (19)

+ 〈Au, u − uh〉X∗×X − 〈Auh, vh − uh〉X∗×X . (20)

Take v = uh in (1) to get

〈Au, u − uh〉X∗×X ≤ J 0(γ u, γ u; γ uh − γ u) + 〈 f , u − uh〉X∗×X . (21)

Using (10),

− 〈Auh, vh − uh〉X∗×X ≤ J 0(γ uh, γ uh; γ vh − γ uh) + 〈 f , uh − vh〉X∗×X . (22)

Combining (18)–(22), we have

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉X∗×X + R(u, vh) + RJ (u, uh, vh), (23)

where

RJ (u, uh, vh) = J 0(γ u, γ u; γ uh − γ u) + J 0(γ uh, γ uh; γ vh − γ uh)

−J 0(γ u, γ u; γ vh − γ u).

Use the subadditive property of the generalized directional derivative,

J 0(γ uh, γ uh; γ vh − γ uh) ≤ J 0(γ uh, γ uh; γ u − γ uh) + J 0(γ uh, γ uh; γ vh − γ u).
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Then,

RJ (u, uh, vh) ≤
[

J 0(γ u, γ u; γ uh − γ u) + J 0(γ uh, γ uh; γ u − γ uh)
]

+ J 0(γ uh, γ uh; γ vh − γ u) − J 0(γ u, γ u; γ vh − γ u).

Apply (5) (b) and (c),

RJ (u, uh, vh) ≤ αJ ‖γ u − γ uh‖2X1
+ βJ ‖γ u − γ uh‖2X1

+
(
2c0 + (c1 + c2)(‖γ u‖X1 + ‖γ uh‖X1)

)
‖γ u − γ vh‖X1 .

By Proposition 8, ‖γ uh‖X1 is bounded independent of h. So

RJ (u, uh, vh) ≤ (αJ + βJ ) c2γ ‖u − uh‖2X + C ‖γ u − γ vh‖X1 .

Hence, from (23), we have

m A‖u − uh‖2X ≤ L A‖u − uh‖X‖u − vh‖X + R(u, vh)

+ (αJ + βJ )c2γ ‖u − uh‖2X + C‖γ u − γ vh‖X1 .

Using the smallness condition (7), and applying the modified Cauchy–Schwarz inequality in
the form

L A‖u − uh‖X‖u − vh‖X ≤ ε ‖u − uh‖2X + L2
A

4 ε
‖u − vh‖2X

with a sufficiently small ε > 0, we have the error bound (17). ��
In the case K h ⊂ K , the residual term R(u, vh) is nonnegative. Additionally, in the case

K h
� K , R(u, vh)may be negative. Theorem 9 is the starting point for convergence analysis

and error estimation. Now, we give the convergence result for the numerical solution.

Theorem 10 Assume (2)–(7), (15) and (16). Then, the numerical solution of Problem 7
converges strongly to the solution of Problem 4.

Proof The residual term R(u, vh) can be bounded as follows:

R(u, vh) ≤
(

‖Au‖X∗ +
(

c0 + (c1 + c2)cγ ‖u‖X

)
+ ‖ f ‖X∗

)

‖u − vh‖X . (24)

Together with (17), we have

‖u − uh‖X ≤ C

(

‖u − vh‖X + ‖u − vh‖
1
2
X

)

∀ vh ∈ K h .

Choose vh ∈ K h such that vh → u as h → 0 to obtain ‖u − uh‖X → 0 as h → 0. ��
Now we consider the particular case where K = X , i.e., the original hemivariational

inequality is not constrained and is posed over the entire space X . In this case, Problem 4
takes the following form.

Problem 11 Find an element u ∈ X such that

〈Au − f , v − u〉X∗×X + J 0(γ u, γ u; γ v − γ u) ≥ 0 ∀ v ∈ X . (25)

The discrete scheme for Problem 11 is as follows.
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Problem 12 Find an discrete solution uh ⊂ Xh such that

〈Auh − f , vh − uh〉X∗×X + J 0(γ uh, γ uh; γ vh − γ uh) ≥ 0 ∀ vh ∈ Xh . (26)

Let us show that in this special case, the Céa’s type inequality takes a simpler form. We
replace v by 2u − v in (25) to get

〈Au − f , u − v〉X∗×X + J 0(γ u, γ u; γ u − γ v) ≥ 0 ∀ v ∈ X . (27)

Taking v = vh in (27), we get

〈Au, vh − u〉X∗×X ≤ J 0(γ u, γ u; γ u − γ vh) − 〈 f , u − vh〉X∗×X . (28)

Combining (20), (21), (22) and (28), we have

m A‖u − uh‖2X ≤ 〈Au − Auh, u − vh〉X∗×X + R̃J (u, uh, vh), (29)

where

R̃J (u, uh, vh) = J 0(γ u, γ u; γ u − γ vh) + J 0(γ u, γ u; γ uh − γ u)

+ J 0(γ uh, γ uh; γ vh − γ uh).

By the subadditive property of the generalized directional derivative,

J 0(γ uh, γ uh; γ vh − γ uh) ≤ J 0(γ uh, γ uh; γ vh − γ u) + J 0(γ uh, γ uh; γ u − γ uh).

Thus,

R̃J (u, uh, vh) ≤
[

J 0(γ u, γ u; γ uh − γ u) + J 0(γ uh, γ uh; γ u − γ uh)
]

+ J 0(γ u, γ u; γ u − γ vh) + J 0(γ uh, γ uh; γ vh − γ u).

Apply (6) (b), (c),

R̃J (u, uh, vh) ≤ (αJ + βJ )c2γ ‖u − uh‖2X
+

(
2c0 + (c1 + c2)cγ (‖u‖X + ‖uh‖X )

)
‖γ u − γ vh‖X1 .

Note that uh is uniformly bounded; we have

R̃J (u, uh, vh) ≤ (αJ + βJ )c2γ ‖u − uh‖2X + C ‖γ u − γ vh‖X1 . (30)

Combine (29) and (30),

m A‖u − uh‖2X ≤ L A‖u − uh‖X‖u − vh‖X + (αJ + βJ )c2γ ‖u − uh‖2X
+ C‖γ u − γ vh‖X1 .

(31)

Using the smallness condition (7), we can derive the following Céa’s type inequality from
(31):

‖u − uh‖X ≤ C

(

‖u − vh‖X + ‖γ u − γ vh‖
1
2
X1

)

∀ vh ∈ Xh . (32)

Comparing (32) with (17), we observe that the residual term R(u, vh) in (17) results from
the constraint u ∈ K , and it is absent in (32) since Problem 11 and Problem 12 are inequality
problems without this constraint.
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4 Numerical approximation of an electro-elastic contact problem

In this section, we perform numerical analysis for the static electro-elastic contact model
studied in Gamorski and Migórski (2018). The weak formulation of the contact problem is
a coupled system involving two hemivariational inequalities. Existence and uniqueness of
a weak solution of the problem is proved in Gamorski and Migórski (2018). We use the
theoretical results in Sect. 3 for the discussion of the numerical solution of the electro-elastic
contact problem. Galerkin approximation of the problem is analyzed, and an optimal order
error estimate is derived for linear finite element solutions.

We start with a description of the physical setting. Let d = 2 or 3 be the spatial dimension
and symbols i, j, k, l be the subscripts satisfying 1 ≤ i, j, k, l ≤ d . An electro-elastic body
is in contact with an electrically conductive foundation, and the process is static. The body
occupies an open, bounded and connected domain Ω ⊂ R

d and is subject to mechanical
and electrical constraints. Let Γ be the boundary of Ω , which is assumed to be Lipschitz
continuous. The outward unit normal vector over Γ is denoted by ν. For the mechanical
boundary conditions, we assume Γ is divided into three parts ΓD , ΓN and ΓC with disjoint
relative interiors; for the electrical boundary conditions, we assume ΓD ∪ ΓN is partitioned
into two partsΓa andΓb with disjoint relative interiors.Moreover, we assumemeas(ΓD) > 0,
meas(Γa) > 0 and meas(ΓC ) > 0.

As usual, Rd denotes the d-dimensional Euclidean vector space, and S
d denotes the space

of second-order symmetric tensor field on R
d . The inner products and corresponding norms

in R
d and S

d are defined by

u · v = uivi , ‖u‖ = (u · u)
1
2 for all u = (ui ), v = (vi ) ∈ R

d ,

σ · τ = σi jτi j , ‖σ‖ = (σ · σ )
1
2 for all σ = (σi j ), τ = (τi j ) ∈ S

d ,

respectively. Note that summation convention over repeated indices is implied. For a dis-
placement u ∈ R

d , the symbols uν and uτ represent its normal and tangential components
on the boundary, respectively, defined by

uν = u · ν and uτ = u − uνν.

The linearized strain tensor ε(u) is defined by

ε(u) = (εi j (u)), εi j (u) = 1

2
(ui, j + u j,i ).

For a stress tensor σ ∈ S
d , the notation σν and σ τ represent its normal and tangential

components on Γ , respectively, denoted by

σν = (σν) · ν and σ τ = σν − σνν.

Divσ = (σi j, j ) is the divergence of σ . Notation A = (ai jkl) denotes an elasticity tensor of
fourth order.

Let D ∈ R
d be an electric displacement field, and divD = (Di,i ) be its divergence. Let ϕ

be an electric potential. The notation β = (βi j ) denotes a linear electric permittivity tensor of
second order. The symbol P = (pi jk) represents a linear piezoelectric tensor of third order.
We have

Pτ · v = τ · PTv ∀ τ ∈ S
d , v ∈ R

d ,
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wherePT is the transpose of the tensorP. We adopt the linear constitutive law from Batra and
Yang (1995) for the coupling of the mechanical and electrical responses of the piezoelectric
materials. The pointwise formulation of the electro-elastic contact problem is the following.

Problem 13 Find a displacement u : Ω → R
d , a stress field σ : Ω → S

d , an electric
potential ϕ : Ω → R and an electric displacement field D : Ω → R

d that satisfy the
differential equations:

σ = Aε(u) + PT∇ϕ in Ω, (33)

D = Pε(u) − β∇ϕ in Ω, (34)

Divσ + f0 = 0 in Ω, (35)

divD − q0 = 0 in Ω, (36)

with the standard boundary conditions:

u = 0 on ΓD, (37)

σν = fN on ΓN, (38)

ϕ = 0 on Γa, (39)

D · ν = qb on Γb, (40)

and the inequality boundary conditions:

uν ≤ g0, σν + ξ ≤ 0,
(σν + ξ)(uν − g0) = 0,
ξ ∈ hν(ϕ − ϕ0)∂ jν(uν − g0)

⎫
⎬

⎭
on ΓC, (41)

−στ ∈ hτ (ϕ − ϕ0, uν − g0)μ(‖uτ‖)∂ jτ (uτ ) on ΓC, (42)

D · ν ∈ he(uν − g0)∂ je(ϕ − ϕ0) on ΓC. (43)

Next, we give a short explanation for the relations (33)–(43). Equations (33) and (34)
represent the constitutive law for electro-elastic material, where A, P and β are elasticity,
piezoelectric and permittivity tensors, respectively. The relations (35) and (36) are the balance
equations for stress and electric displacement, respectively, where f0 is the density of volume
force and q0 is the density of the volume electric charge.

The displacement boundary condition is given by (37), i.e., the body is clamped on ΓD,
and the surface traction of density onΓN is (38). The relation (39) means the electric potential
vanishes on Γa, and in (40) a surface electric charge of density qb acts on Γb.

The condition (41) describes the contact on ΓC, which is modeled by unilateral con-
straint and multivalued normal compliance condition coupled with electric potential. Here,
g0 denotes the thickness of the elastic material laid on the rigid foundation, and ϕ0 denotes
the electric potential on the electrically conductive foundation, hν is the stiffness coefficient.

The inclusion (42) is a coupled relation for friction on ΓC, in which ∂ jτ is the Clarke
subdifferential, hτ is a function for the effect of electric potential and normal displacement,
and μ is the frictional coefficient.

The condition (43) describes a regularized condition for the electrical contact. The electri-
cal conductivity coefficient he is a nonnegative function, and ∂ je is the Clarke subdifferential
which is multivalued and nonmonotone. More interpretations about this electro-elastic con-
tact model can be found in Gamorski and Migórski (2018).
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The following hypotheses for Problem 13 are also imposed in Gamorski and Migórski
(2018). On the elasticity tensor A : Ω × S

d → S
d ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) A(·, ε) is measurable on Ω for all ε ∈ S
d ;

(b) A(x, ·) is continuous on S
d and A(x, 0) = 0 for a.e. x ∈ Ω;

(c) ‖A(x, ε)‖Sd ≤ a0(x) + a1‖ε‖Sd for all ε ∈ S
d , a.e. x ∈ Ω, where

a0 ∈ L2(Ω), a0 ≥ 0 and a1 ≥ 0;
(d) (A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA‖ε1 − ε2‖2

Sd for a.e. x ∈ Ω,

for all ε1, ε2 ∈ S
d with mA > 0.

(44)

On the electric permittivity tensor β = (βi j ),

⎧
⎨

⎩

(a) βi j = β j i ∈ L∞(Ω);
(b) there exists constant m > 0 such that

βi j (x)ξiξ j ≥ m‖ξ‖2
Rd for all ξ = (ξi ) ∈ R

d , a.e. x ∈ Ω.

(45)

On the piezoelectric tensor P = (Pi jk),

{
(a) Pi jk ∈ L∞(Ω);
(b) Pτ · v = τ · PTv for τ ∈ S

d , v ∈ R
d .

(46)

The electro-elastic constitutive law is described by the above three tensors, which reduces to
the decoupled state in the case P = 0.

The densities of volume force, surface contraction, volume electric charge and surface
electric charge satisfy the following regularities

f 0 ∈ L2(Ω; R
d), f N ∈ L2(ΓN; R

d), q0 ∈ L2(Ω), qb ∈ L2(Γb). (47)

The gap function g0 and the electric potential ϕ0 satisfy

g0 ≥ 0 a.e. on ΓC and g0, ϕ0 ∈ L∞(Ω). (48)

The stiffness coefficient hν : ΓC × R → R satisfies
⎧
⎨

⎩

(a) ∀ r ∈ R, hν(·, r) is measurable on ΓC;
(b) hν(x, ·) is continuous on R for a.e. x ∈ ΓC;
(c) 0 ≤ hν(x, r) ≤ hν for all r ∈ R, a.e. x ∈ ΓC with hν > 0.

(49)

The functions jν : ΓC × R → R satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) ∀ r ∈ R, jν(·, r) is measurable on ΓC, and there exists e1 ∈ L2(ΓC)

such that jν(·, e1(·)) ∈ L1(ΓC);
(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC;
(c) |∂ jν(x, r)| ≤ c0ν + c1ν |r | for all r ∈ R, a.e. x ∈ ΓC with c0ν, c1ν ≥ 0;
(d) j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2 for all r1, r2 ∈ R,

a.e. x ∈ ΓC with α jν ≥ 0.

(50)

The functions hτ : ΓC × R × R → R satisfies
⎧
⎨

⎩

(a) ∀ r1, r2 ∈ R, hτ (·, r1, r2) is measurable on ΓC;
(b) hτ (x, ·, ·) is continuous on R for a.e. x ∈ ΓC;
(c) 0 ≤ hτ (x, r1, r2) ≤ hν for all r ∈ R, a.e. x ∈ ΓC with hτ > 0.

(51)
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The coefficient of friction μ : ΓC × R+ → R+ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

(a) ∀ r ∈ R+, μ(·, r) is measurable on ΓC;
(b) |μ(·, r1) − μ(·, r2)| ≤ Lμ|r1 − r2| for all r1, r2 ∈ R+, a.e. x ∈ ΓC

with Lμ > 0;
(c) μ(x, r) ≤ μ0 for all r ∈ R+, a.e. x ∈ ΓC with μ0 > 0.

(52)

The function jτ : ΓC × R
d → R satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) ∀ ξ ∈ R
d , jτ (·, ξ) is measurable on ΓC, and there exists e2 ∈ L2(ΓC; R

d)

such that jτ (·, e2(·)) ∈ L1(ΓC);
(b) jτ (x, ·) is locally Lipschitz on R

d for a.e. x ∈ ΓC;
(c) |∂ jτ (x, ξ)| ≤ c0τ + c1τ‖ξ‖Rd for all ξ ∈ R

d , a.e. x ∈ ΓC with c0τ , c1τ ≥ 0;
(d) j0τ (x, ξ1; ξ2 − ξ1) + j0τ (x, ξ2; ξ1 − ξ2) ≤ α jτ ‖ξ1 − ξ2‖2Rd for all ξ1, ξ2 ∈ R

d ,

a.e. x ∈ ΓC with α jτ ≥ 0.

(53)

Finally, for the condition (43), the function he : ΓC × R → R satisfies
⎧
⎨

⎩

(a) ∀ r ∈ R, he(·, r) is measurable on ΓC;
(b) he(x, ·) is continuous on R for a.e. x ∈ ΓC;
(c) 0 ≤ he(x, r) ≤ he for all r ∈ R, a.e. x ∈ ΓC with he > 0.

(54)

The function je : ΓC × R → R satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) ∀ r ∈ R, je(·, r) is measurable on ΓC, and there exists e3 ∈ L2(ΓC)

such that je(·, e3(·)) ∈ L1(ΓC);
(b) je(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC;
(c) |∂ jν(x, r)| ≤ c0e + c1e|r | for all r ∈ R, a.e. x ∈ ΓC with c0e, c1e ≥ 0;
(d) j0e (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α je |r1 − r2|2 for all r1, r2 ∈ R,

a.e. x ∈ ΓC with α je ≥ 0.

(55)

The function spaces for mechanical and electrical unknowns in Problem 13 are as follows:

H = L2(Ω; R
d), H = L2(Ω; S

d), and H1 = {τ ∈ H | Divτ ∈ H}
with the corresponding inner products

(u, v)H =
∫

Ω

u · vdx,

(σ , τ )H =
∫

Ω

σ · τdx,

(σ , τ )H1 = (σ , τ )H + (Divσ ,Divτ )H .

The space

V = {v = (vi ) ∈ H1(Ω; R
d) | v = 0 a.e. on ΓD}

is a closed subspace of H1(Ω; R
d) and the set

K = {v ∈ V | vν ≤ g0 a.e. on ΓC}
is used for the admissible displacement field. Obviously, K is a closed convex subset of V
with 0V ∈ K . Sincemeas(ΓD) > 0, it follows fromKorn’s inequality that V is aHilbert space
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with the inner product (u, v)V = (ε(u), ε(v))H and norm ‖v‖V = ‖ε(v)‖H for u, v ∈ V .
Let W and Φ be the function spaces defined by

W = {D ∈ H | divD ∈ L2(Ω)}, Φ = {ϕ ∈ H1(Ω) | ϕ = 0 a.e. on Γa}.
On the space Φ, the inner product (ϕ, ψ)Φ = (∇ϕ,∇ψ)H and norm ‖ψ‖Φ = ‖∇ψ‖H for
all ϕ,ψ ∈ Φ are considered. Since meas(Γa) > 0, by Poincaré’s inequality, we can conclude
that Φ is a Hilbert space. Let Y = V × Φ, the inner product and norm are

( y, z)Y = (u, v)V + (ϕ, ψ)Φ, ‖ y‖Y = ( y, y)
1
2
Y ∀ y = (u, ϕ), z = (v, ψ) ∈ Y .

Denote U = K × Φ, which is a closed and convex subset of Y with 0Y ∈ U .
For the trace operators γ1 : V → L2(ΓC; R

d) and γ2 : Φ → L2(ΓC), we have
‖γ1v‖L2(ΓC;Rd ) ≤ ‖γ1‖‖v‖V for all v ∈ V and ‖γ2w‖L2(ΓC) ≤ ‖γ2‖‖w‖Φ for all w ∈ Φ by
Sobolev trace theorem. Let Y1 = L2(ΓC; R

d) × L2(ΓC), and γ : Y → Y1 be an operator
defined by γ y = (γ1u, γ2ϕ) for all y = (u, ϕ) ∈ Y . Denote cγ = max{‖γ1‖, ‖γ2‖}. Then,
‖γ y‖Y1 ≤ cγ ‖ y‖Y . Let U1 = γ1(K ) × L2(ΓC). Then U1 is a convex, closed subset of Y1

with 0Y1 ∈ U1. Below, we omit the operators γ1 and γ2 for simplicity where no ambiguity
may arise.

The functionals f ∈ V ∗ and q ∈ Φ∗ are defined by

〈 f , v〉V ∗×V = ( f 0, v)H + ( f N, v)L2(ΓN;Rd ) ∀ v ∈ V ,

〈q, ψ〉Φ∗×Φ = (q0, ψ)L2(Ω) − (qb, ψ)L2(Γb)
∀ ψ ∈ Φ,

respectively. Theweak formulation of Problem13has been derived inGamorski andMigórski
(2018).

Problem 14 Find a displacement u ∈ K and an electric potential ϕ ∈ Φ such that
(
Aε(u) + PT∇ϕ, ε(v) − ε(u)

)

H
+

∫

ΓC

(
hν(ϕ − ϕ0) j0ν (uν − g0; vν − uν)

+ hτ (ϕ − ϕ0, uν − g0)μ(‖uτ‖) j0τ (uτ ; vτ − uτ )
)
dΓ

≥ 〈 f , v − u〉V ∗×V ∀ v ∈ K ,

(56)

(
β∇ϕ − Pε(u),∇(ψ − ϕ)

)

H
+

∫

ΓC

he(uν − g0) j0e (ϕ − ϕ0;ψ − ϕ)dΓ

≥ 〈q, ψ − ϕ〉Φ∗×Φ ∀ ψ ∈ Φ.

(57)

Note that Problem 14 is equivalent to the following system.

Problem 15 Find (u, ϕ) ∈ K × Φ such that
(
Aε(u) + PT∇ϕ, ε(v) − ε(u)

)

H
+

(
β∇ϕ − Pε(u),∇(ψ − ϕ)

)

H

+
∫

ΓC

(
hν(ϕ − ϕ0) j0ν (uν − g0; vν − uν)

+ hτ (ϕ − ϕ0, uν − g0)μ(‖uτ‖) j0τ (uτ ; vτ − uτ )

+ he(uν − g0) j0e (ϕ − ϕ0;ψ − ϕ)
)
dΓ

≥ 〈 f , v − u〉V ∗×V + 〈q, ψ − ϕ〉Φ∗×Φ ∀ (v, ψ) ∈ K × Φ.

(58)
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It is shown in Gamorski and Migórski (2018) that under assumptions (44)–(55) and a
smallness condition

max{hνα j ν, hτμ0α j τ , heα j e}c2γ < min{mA, mβ}, (59)

Problem 15 has a unique solution (u, ϕ) ∈ K × Φ.
Next, we introduce the Galerkin approximation for Problem 15. Assume Ω is a polyg-

onal/tetrahedtron and {T h} is a regular family of triangular/tetrahedral partitions of Ω .
The partitions are compatible with the boundary splittings Γ = ΓD ∪ ΓN ∪ ΓC and
ΓD ∪ ΓN = Γa ∪ Γb, i.e., if the intersection between the side/face of an element and the
boundary is nonempty and its d − 1 dimensional measurement is positive, then the associ-
ated side/face lies entirely in one of the sets Γ D, Γ N, Γ C or Γ a, Γ b. Corresponding to each
partition {T h}, define

V h = {vh ∈ C(Ω)d | vh |T ∈ P1(T )d for T ∈ T h, vh = 0 on ΓD},
Φh = {ϕh ∈ C(Ω) | ϕh |T ∈ P1(T ) for T ∈ T h, ϕh = 0 on Γa}.

Define K h = {vh ∈ V h | vh
ν ≤ g0 at node points on ΓC}. We only consider the specific case

K h ⊂ K for simplicity, similar results can be generalized to the case of K h
� K (Han

(2018); Xu et al. (2019b)). The discrete scheme for Problem 15 is the following.

Problem 16 Find (uh, ϕh) ∈ K h × Φh such that
(

Aε(uh) + PT∇ϕh, ε(vh) − ε(uh)

)

H
+

(

β∇ϕh − Pε(uh),∇(ψh − ϕh)

)

H

+
∫

ΓC

(

hν(ϕ
h − ϕ0) j0ν (uh

ν − g0; vh
ν − uh

ν )

+ hτ (ϕh − ϕ0, uh
ν − g0)μ(‖uh

τ‖) j0τ (uh
τ ; vh

τ − uh
τ )

+ he(u
h
ν − g0) j0e (ϕh − ϕ0;ψh − ϕh)

)

dΓ

≥ 〈 f , vh − uh〉V ∗×V + 〈q, ψh − ϕh〉Φ∗×Φ ∀ (vh, ϕh) ∈ K h × Φh .

(60)

Similar to Problem 15, there is a unique solution to Problem 16. Now we use Theorem 9
to bound the error. For this purpose, we need to assume solution regularities:

(u, ϕ) ∈ H2(Ω; R
d) × H2(Ω) (61)

and the trace of (u, ϕ) satisfies

uν ∈ H2(ΓC), uτ ∈ H2(ΓC; R
d), ϕ ∈ H2(ΓC). (62)

The operator A : Y → Y ∗ is defined by

〈A y, z〉Y ∗×Y =
(
Aε(u) + PT∇ϕ, ε(v)

)

H
+

(
β∇ϕ − Pε(u),∇ψ

)

H
(63)

for all y = (u, ϕ) ∈ Y , z = (v, ψ) ∈ Y . The functional J : U1 × Y1 → R is defined by

J (γ z, γ y) =
∫

ΓC

(
hν(ψ − ϕ0) jν(uν − g0)

+ hτ (ψ − ϕ0, vν − g0)μ(‖vτ‖) jτ (uτ )

+ he(vν − g0) je(ϕ − ϕ0)
)
dΓ .

(64)
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for all y = (u, ϕ) ∈ Y , z = (v, ψ) ∈ U . The functional f̃ ∈ Y ∗ is defined by

〈 f̃ , z〉Y ∗×Y = 〈 f , v〉V ∗×V + 〈q, ψ〉Φ∗×Φ ∀ z = (v, ψ) ∈ Y .

Let Y h = V h × Φh , U h = K h × Φh , yh = (uh, ϕh) ∈ U h and sh = (vh, ψh) ∈ U h ,
the conditions in Theorem 9 can be verified straightforward (see Gamorski and Migórski
(2018)). Using the theoretical result (17), we get

‖ y − yh‖2Y ≤ C
(
‖ y − sh‖2Y + ‖ y − sh‖Y1 + R( y, sh)

)
, (65)

where

R( y, sh) = 〈A y, sh − y〉Y ∗×Y + J 0(γ z, γ y; γ sh − γ y) − 〈 ˜f , sh − y〉Y ∗×Y . (66)

J 0 can be bounded by (Gamorski and Migórski (2018))

J 0(γ z, γ y; γ sh − γ y) ≤
∫

ΓC

(

hν(ψ − ϕ0) j0ν (uν − g0; vh
ν − uν)

+ hτ (ψ − ϕ0, vν − g0)μ(‖uτ‖) j0τ (uτ ; vh
τ − uτ )

+ he(vν − g0) j0e (ϕ − ϕ0;ψh − ϕ)

)

dΓ ,

(67)

then we have

R( y, sh) ≤ R1( y, sh) + R2( y, sh),

where

R1( y, sh) =
(
Aε(u) + PT∇ϕ, ε(vh) − ε(u)

)

H

+
∫

ΓC

(

hν(ϕ − ϕ0) j0ν (uν − g0; vh
ν − uν)

+ hτ (ϕ − ϕ0, uν − g0)μ(‖uτ‖) j0τ (uτ ; vh
τ − uτ )

)

dΓ

− ( f0, vh − u)H − ( fN , vh − u)L2(ΓN; Rd ),

(68)

and

R2( y, sh) =
(
β∇ϕ − Pε(u),∇(ψh − ϕ)

)

H

+
∫

ΓC

(

he(uν − g0) j0e (ϕ − ϕ0;ψh − ϕ)

)

dΓ

− (q0, ψ
h − ϕ)L2(Ω) + (qb, ψ

h − ϕ)L2(Γb)
.

(69)

We use (58) to bound the residual terms R1( y, sh) and R2( y, sh). Define

σ = Aε(u) + PT∇ϕ in Ω,

D = Pε(u) − β∇ϕ in Ω.

In addition to the solution regularity assumptions (61), we further assume

σ ∈ H1(Ω; S
d), D ∈ H1(Ω; R

d). (70)
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Note that (70) follows from (61) ifP and β are continuously differentiable onΩ , andA(x, ε)

is a smooth function of x and ε. The solution regularity (70) further implies

σν ∈ L2(ΓC; R
d), D · ν ∈ L2(ΓC).

Define spaces

Ṽ = {̃v ∈ C∞(Ω; R
d) | ṽ = 0 on ΓD ∪ ΓC},

Φ̃ = {ϕ̃ ∈ C∞(Ω) | ϕ̃ = 0 on Γa ∪ ΓC}.
On one hand for any ṽ ∈ Ṽ , we take (u ± ṽ, ϕ) ∈ Ṽ × Φ in (58) to get

(
Aε(u) + PT∇ϕ, ε(̃v)

)

H
= 〈 f , ṽ〉V ∗×V ∀ ṽ ∈ Ṽ . (71)

Using Green’s formula, we get

−(Divσ , ṽ)H +
∫

Γ

σν · ṽdΓ =
∫

Ω

f 0 · ṽdx +
∫

ΓN

f N · ṽdΓ . (72)

Since ṽ ∈ Ṽ is arbitrary, we can deduce the following pointwise relations (cf. Han and
Sofonea 2002, Section 8.1) for derivation details on a similar problem) from (71),

Divσ + f 0 = 0 a.e. in Ω, (73)

σν = f N a.e. on ΓN . (74)

Multiplying (73) with vh − u and integrating over Ω , we use Green’s formula and (74) to
get

∫

Ω

σ · (ε(vh) − ε(u))dx −
∫

Ω

f 0 · (vh − u)dx −
∫

ΓN

f N · (vh − u)dΓ

=
∫

ΓC

σν · (vh − u)dΓ .

Then,

R1( y, sh) =
∫

ΓC

(

σν · (vh − u) + hν(ϕ − ϕ0) j0ν (uν − g0; vh
ν − uν)

+ hτ (ϕ − ϕ0, uν − g0)μ(‖uτ‖) j0τ (uτ ; vh
τ − uτ )

)

dΓ .

Together with (49)–(53) and regularity σν ∈ L2(ΓC ; R
d), we have

R1( y, sh) ≤ C‖u − vh‖L2(ΓC ;Rd ). (75)

On the other hand for any ϕ̃ ∈ Φ̃, we take (u, ϕ ± ϕ̃) ∈ K × Φ̃ in (58) to get
(
β∇ϕ − Pε(u),∇ϕ̃

)

H
= 〈q, ϕ̃〉Φ∗×Φ ∀ ϕ̃ ∈ Φ̃. (76)

Using Green’s formula, we get

(divD, ϕ̃)L2(Ω) −
∫

Γ

D · νϕ̃dΓ = (q0, ϕ̃)L2(Ω) − (qb, ϕ̃)L2(Γb)
. (77)
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Since ϕ̃ ∈ Φ̃ is arbitrary, we obtain

divD − q0 = 0 a.e. in Ω, (78)

D · ν = qb a.e. on Γb. (79)

Multiplying (78) with ψh − ϕ and integrating over Ω , we obtain the following equation by
Green’s formula and (79),

∫

Ω

−D · ∇(ψh − ϕ)dx −
∫

Ω

q0(ψ
h − ϕ)dx +

∫

Γb

qb(ψ
h − ϕ)dΓ

=
∫

ΓC

−D · ν(ψh − ϕ)dΓ .

Thus

R2( y, sh) =
∫

ΓC

(

− D · ν(ψh − ϕ) + he(uν − g0) j0e (ϕ − ϕ0;ψh − ϕ)

)

dΓ .

Combining (54), (55) and D · ν ∈ L2(ΓC ), we have

R2( y, sh) ≤ C‖ϕ − ψh‖L2(ΓC ). (80)

Therefore

R( y, sh) ≤ C
(
‖u − vh‖L2(ΓC ;Rd ) + ‖ϕ − ψh‖L2(ΓC )

)
. (81)

Together with (65), we have

‖u − uh‖2V + ‖ϕ − ϕh‖2Φ ≤ C inf
vh∈K h

(
‖u − vh‖2V + ‖u − vh‖L2(ΓC;Rd )

)

+ C inf
ψh∈Φh

(
‖ϕ − ψh‖2Φ + ‖ϕ − ψh‖L2(ΓC)

)
.

(82)

Using standard interpolation error estimation Atkinson and Han (2009); Ciarlet (1978),
we summarize the optimal error estimate for linear element method in the form of a theorem.

Theorem 17 Assume (44)–(55), (59) and solution regularities (61)–(62), (70). Then the fol-
lowing error bound holds for the numerical solution:

‖u − uh‖2V + ‖ϕ − ϕh‖2Φ ≤ C h2. (83)

5 Numerical experiments

In this section, we report results from two numerical experiments on two-dimensional models
for Problem 13. The emphasis is on numerical evidence for convergence behaviors predicted
in the theoretical analysis.

We first provide the configuration for the numerical examples. Let Ω = (0, L1)× (0, L2)

be a rectangle. The divisions for the boundary Γ satisfy that Γ = ΓD ∪ΓN ∪ΓC, ΓD ∪ΓN =
Γa ∪ Γb. For the numerical simulation, we let Γa = ΓD and Γb = ΓN ; see Figure 1.

The elasticity tensor A satisfies

(Aε)i j = Eκ

1 − κ2 (ε11 + ε22)δi j + E

1 + κ
εi j , 1 ≤ i, j ≤ 2.
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Fig. 1 The body Ω (left) and the mesh T h(Ω) (right)

E is Young’s modulus, κ is the Poisson ratio of the material and δi j denotes the Kronecker
symbol. The electric permitivity tensor β satisfies β i j = 5δi j , and the piezoelectric tensor P
satisfies

Pε =
(
1

4
(ε11 + ε22),

1

8
(ε12 + ε21)

)T

. (84)

To facilitate numerical implementation, simplified contact conditions are considered and
presented as follows. We set hν = 0, then ξ = 0, and the condition (41) changes to the
classical Signorini contact condition

uν ≤ g0, σν ≤ 0, σν(uν − g0) = 0 on ΓC . (85)

The condition (42) is simplified by

− στ ∈ S∂ jτ (uτ ) on ΓC, (86)

where S ≥ 0 is a given value, and the function jτ (uτ ) is defined by

jτ (uτ ) =
∫ ‖uτ ‖

0
η(t)dt, and η(t) = (a − b)e−αt + b (87)

with a ≥ b > 0 and α > 0 (Han et al. (2017)). Additionally, the relation (86) is equivalent
to the frictional condition

‖σ τ‖ ≤ η(0)S if ‖uτ‖ = 0, −σ τ = η(‖uτ‖)S
uτ

‖uτ‖ if uτ �= 0 on ΓC . (88)

For the condition (43), two different versions are used in the numerical examples below.
For the domainΩ , a uniform rectangular finite element mesh T h(Ω) is used, in which the

intervals [0, L1] and [0, L2] are divided into 1/h equal parts; see Figure 1. In the numerical
experiments, continuous linear element spaces are used. The following parameters are used
in the numerical experiments

L1 = 1m, L2 = 1m, E = 1N/m2, κ = 0.3,

g0 = 0.025m, α = 100, a = 0.04, b = 0.02, S = 1N,

f 0 = 0, f N = (0,−0.25 x)T N/m, q0 = 1, qb = 0.

Numerical example 1
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Fig. 2 The displacement of Ω (left) and the electric potential of Ω (right)

Fig. 3 The normal displacement on ΓC (left) and the tangential displacement on ΓC (right)

In this example, we consider a single-valued electric contact condition. Thus, the rela-
tion (43) is

D · ν = qC on ΓC , (89)

where qC : R → R+ is continuous. Define

je(t) =
∫ t

0
qC (s)ds, t ∈ R,

we know that ∂ je(t) = qC (t) for all t ∈ R by (Migórski et al. 2013, Lemma 3.50). Thus, the
Eq. (89) is of the form (43).

In computation we take qC = 0, i.e., there is no electric charge on the contact surface ΓC .
The numerical solution with h = 1/64 is presented in Fig. 2, and the normal and tangential
displacements on ΓC with different mesh sizes are depicted in Fig. 3.

To calculate the errors and convergence rates of the displacement and the electric potential,
we take the numerical solution on a fine mesh with h = 1/512 as the “reference” solution,
and report the numerical results in Table 1 and Fig. 4. From the numerical results, we can
see that the numerical convergence orders of ‖u− uh‖1 and ‖ϕ −ϕh‖1 in H1-norm are both
near 1, which matches the theoretical error estimate (83).
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Table 1 Errors and numerical convergence orders for Example 1

h 1/8 1/16 1/32 1/64 1/128

‖u − uh‖1 9.4929e–3 5.6033e–3 2.9126e–3 1.5235e–3 7.3063e–4

Order – 0.7606 0.9440 0.9349 1.0602

‖ϕ − ϕh‖1 2.9941e–4 8.2339e–5 2.8658e–5 1.3003e–5 6.4240e–6

Order – 1.8625 1.5226 1.1401 1.0173

‖u − uh‖0 1.0682e–3 3.8120e–4 1.2311e–4 4.2323e–5 1.2260e–5

Order – 1.4866 1.6306 1.5404 1.7875

‖ϕ − ϕh‖0 9.8648e–5 2.2000e–5 4.3434e–6 8.5122e–7 2.4684e–7

Order – 2.1648 2.3406 2.3512 1.7860

10−2 10−1

10−4

10−2

ln(h)

ln
(e
rr
or
)

‖u − uh‖1
‖ϕ − ϕh‖1

10−2 10−1

10−7

10−5

10−3

ln(h)

ln
(e
rr
or
)

‖u − uh‖0
‖ϕ − ϕh‖0

Fig. 4 The log–log plot of H1 errors (left) and the log–log plot of L2 errors (right)

Numerical example 2
In the second numerical example, we use the original subdifferential form (43), i.e.,

D · ν ∈ he(uν − g0)∂ je(ϕ − ϕ0) on ΓC .

Here we use he as in Gamorski and Migórski (2018):

he(r) =
⎧
⎨

⎩

0 if r < −δe,

ke
r+δe
δe

if − δe ≤ r ≤ 0,
ke if r > 0,

(90)

where ke ≥ 0 is the electrical conductivity coefficient, and δe > 0 is small parameter. je is
defined by

je(t) =
{
0 if t < 0,
−e−ct + dt + 1 if t ≥ 0,

(91)

where c and d are two positive parameters. Its generalized subdifferential is

∂ je(t) =
⎧
⎨

⎩

0 if t < 0,
[0, c + d] if t = 0,
ce−ct + d if t > 0.

(92)

The following parameters are also needed in computation

δe = 0.005, ke = 1, ϕ0 = 0.03, c = 0.01, d = 0.01.

Numerical solution with h = 1/64 is illustrated in Fig. 5. The normal displacement, the
tangential displacement and the electric potential on ΓC obtained on different mesh sizes are
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Fig. 5 The displacement of Ω (left) and the electric potential of Ω (right)

Fig. 6 The normal displacement on ΓC (left) and the tangential displacement on ΓC (right)
Fig. 7 The electric potential on
ΓC

depicted in Fig. 6 and Fig. 7. Using the numerical solution with mesh size h = 1/512 as the
“reference” solution, we present the numerical errors and numerical convergence orders of
displacement and electric potential in Table 2 and Fig. 8. Again, we observe that the numerical
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Table 2 Errors and numerical convergence orders for Example 2

h 1/8 1/16 1/32 1/64 1/128

‖u − uh‖1 9.4991e–3 5.6053e–3 2.9174e–3 1.5238e–3 7.3226e–4

Order – 0.7610 0.9421 0.9370 1.0572

‖ϕ − ϕh‖1 4.1270e–4 1.0951e–4 3.3055e–5 1.5291e–5 6.7134e–6

Order – 1.9140 1.7281 1.1122 1.1876

‖u − uh‖0 1.0735e–3 3.8166e–4 1.2264e–4 4.2366e–5 1.2442e–5

Order – 1.4920 1.6379 1.5335 1.7677

‖ϕ − ϕh‖0 1.4790e–4 3.0958e–5 4.1839e–6 9.5847e–7 2.5814e–7

Order – 2.2562 2.8874 2.1260 1.8926

10−2 10−1

10−4

10−2

ln(h)

ln
(e
rr
or
)

‖u − uh‖1
‖ϕ − ϕh‖1

10−2 10−1

10−7

10−5

10−3

ln(h)

ln
(e
rr
or
)

‖u − uh‖0
‖ϕ − ϕh‖0

Fig. 8 The log–log plot of H1 errors (left) and the log–log plot of L2 errors (right)

convergence orders of ‖u− uh‖1 and ‖ϕ −ϕh‖1 are both close to the theoretically predicted
value of 1.
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