Numerical integration of related Hankel transforms by quadrature and continued fraction expansion

Alan D. Chave*

Abstract

An algorithm is presented for the accurate evaluation of Hankel (or Bessel) transforms of algebraically related kernel functions, defined here as the non-Bessel function portion of the integrand, that is more widely applicable than the standard digital filter methods without enormous increases in computational burden. The algorithm performs the automatic integration of the product of the kernel and Bessel functions between the asymptotic zero crossings of the latter and sums the series of partial integrations using a continued fraction expansion, equivalent to an analytic continuation of the series. The integrands may be saved to allow the rapid computation of related transforms without recalculating the kernel or Bessel functions, and the integration steps use interlacing quadrature formulas so that no function evaluations are wasted when it is necessary to increase the order of the quadrature rule. The continued fraction algorithm allows very slowly divergent or even formally divergent integrals to be computed quite easily. The local error is controlled at each step in the algorithm, and accuracy is limited largely by machinie resolution. The algorithm is written in Fortran and is listed in an Appendix along with a driver program that illustrates its features. The driver program and subroutine are available from the SEG Business Office.

INTRODUCTION

Hankel transforms (sometimes called Bessel transforms) written in the standard form

$$
\begin{align*}
& \hat{f}(k)=\int_{0}^{\infty} d \rho \rho f(\rho) J_{v}(k \rho) \\
& f(\rho)=\int_{0}^{\infty} d k k \hat{f}(k) J_{v}(k \rho) \tag{1}
\end{align*}
$$

are ubiquitous in the mathematical treatment of physical problems involving cylindrical symmetry, as observed in disciplines like optics, electromagnetism, and seismology. The function J_{v}
in equation (1) is a Bessel function of the first kind of real order v which exhibits decaying, oscillatory behavior for increasing argument along the real axis, and equation (1) is formally equivalent to a double Fourier transform. The parameter k will be called the wavenumber, while ρ is usually the horizontal range. The pair $\{f(\rho), \hat{f}(k)\}$ is referred to as the kernel functions when it appears under the integral sign; the transforms may also be written with the multiplicative ρ and k terms absorbed into $f(\rho)$ and $\hat{f}(k)$, respectively. For most physical problems the order of the Bessel function is an integer, and for that case only the $v=0$ and 1 cases need be considered since higher order Bessel functions are related to them by standard recursion formulas. Integrals of the form (1) can be evaluated in closed form for only a restricted set of kernel functions (Watson, 1962), and recourse to numerical methods is generally required for the study of real problems.

The standard numerical approach to the computation of Hankel transforms has become the digital filter method since the work of Ghosh (1971). Suitable changes of the independent variables k and ρ in equation (1) are applied to turn the direct integrals into convolution integrals; these are discretized to a finite convolutional sum. The Bessel function of the new variable plays the role of a known digital filter through which the kernel functions are passed as the signal to yield the transformed result as the filter output. Design criteria for the filter are of necessity largely ad hoc and were discussed by Anderson (1979). Reasonable (5 figure) accuracy is typically achieved for monotonic, rapidly decreasing kernel functions at moderate values of ρ. More recent developments, including adaptive and lagged convolution to minimize kernel function evaluations, were covered by Anderson (1982).

For some types of problems the digital filter method is less useful; examples occur at very small values of the range ρ, where the kernel function may be changing rapidly when compared to the Bessel function, and when high numerical precision is required. Direct numerical integration of equation (1) was discussed by Cornille (1972) using the half-cycles of the Bessel function as subintervals combined with Euler's transformation to sum the series of partial integrations. A similar approach is adopted here, with several major improvements, including (1) interlacing quadrature formulas are used so that none of the costly kernel or Bessel function evaluations is

[^0]wasted when it is necessary to increase the order of the rule to achieve a desired accuracy, (2) automatic integration is feasible due to the use of interlacing quadrature weights, (3) the integrands may be saved so that algebraically related kernels can be treated without reevaluation of the kernels or Bessel functions, and (4) a continued fraction method is used to sum the series of partial integrations. The latter is a very general means for the summation of series ranging from rapidly convergent to divergent and is equivalent to the analytic continuation of the series. While the algorithm presented here is generally not as fast as the digital filter approach, it is far more efficient than other direct integration schemes and should be regarded as complementing rather than replacing the standard method.

ALGORITHM DESCRIPTION

The algorithm applies numerical quadrature to the evaluation of a sequence of partial integration terms

$$
\begin{equation*}
p_{n}=\int_{z_{n}}^{z_{n+1}} d k \hat{g}(k) J_{v}(k \rho) \tag{2}
\end{equation*}
$$

where $\hat{g}(k)=k \hat{f}(k)$ in equation (1) and z_{n} is the nth zero of $J_{v}(x)$ normalized by the range ρ. Asymptotic forms for the large zeros of Bessel functions were given in Watson (1962) or standard references; these are quite adequate even for the smallest zeros in this work. The approximation of the linear functional (2) by a finite sum

$$
\begin{equation*}
p_{n} \approx \sum_{j=1}^{N} h_{j} \hat{g}\left(a_{j}\right) J_{v}\left(a_{j} \rho\right) \tag{3}
\end{equation*}
$$

where a_{j} is the abscissa and h_{j} is the weight, is covered in standard texts on numerical analysis (Ralston and Rabinowitz, 1978). Gauss formulas possess the property of minimizing the number of abscissa points (and hence integrand evaluations) required to achieve a specified accuracy when compared to other approaches. Most Gauss rules require recomputation of all of the integrands when the order is changed, so that the proper order must be predetermined for good efficiency. Patterson (1968) developed methods for the optimal addition of points to a quadrature formula so that only the new integrand values need to be calculated when the order is increased, making adaptive integration to a specified error computationally feasible. The weights h_{j} and a_{j} in equation (3) used in the algorithm of this paper consist of a three-point Gauss rule with extension to $7,15,31,63,127$, and 255 common-point, interlacing forms; these correspond to integrating polynomials of degree $5,11,23,47,95,191$, and 383 , respectively. In practice, each of the partial integrations (2) is computed by adding new weights to the quadrature rule until a combined relativeabsolute error criterion is satisfied. At each step, the kernel and Bessel function values are retained so that none of these costly evaluations need be repeated; these can optionally be placed in common storage so that algebraically related kernels can be treated without recomputing the integrands, in a manner similar to that used by Anderson (1979) with the digital filter method.

The complete integral is formally obtained by summing the partial integrations; direct summation is feasible only for rapidly convergent integrals. The terms in the series are often alternating in sign due to the Bessel function's oscillatory behavior, and the result may be very slowly convergent and will diverge if the kernel increases faster than $k^{1 / 2}$. Convergence
acceleration using various nonlinear transformations of the series were reviewed by Bender and Orszag (1978). The most general of these is the Pade approximant technique, which replaces a slowly converging or diverging series by a rapidly converging expression, each term of which is equivalent to the ratio of two finite sums. Padé summation should be regarded as a method for the analytic continuation of the series; diverging series suggest the presence of singularities which are removed by the transformation. General Pade algorithms require $O\left(N^{3}\right)$ operations, where N is the number of terms in the sum, but the closely related continued fraction approach yields similar results with only $O\left(N^{2}\right)$ operations. Sequential terms of the latter are formally equivalent to a stair-step path in the Pade table (Baker, 1975).

The series of partial integrations

$$
\begin{equation*}
S=\sum_{i=0}^{N} p_{i} \tag{4}
\end{equation*}
$$

may be recast into the continued fraction

$$
\begin{equation*}
S=\frac{d_{0}}{1+\frac{d_{1}}{\frac{1+d_{2}}{\vdots}}} \tag{5}
\end{equation*}
$$

where there is a direct correspondence between the continued fraction coefficients d_{i} and the summands p_{i}. As terms are added to equation (4), only the last coefficient in equation (5) is computed; recursive algorithms were given by Baker (1975) and Hänggi et al (1978, 1980). The latter is used in the algorithm of this paper.

In practice, the continued fraction (5) is reevaluated as additional partial integrations are added to the series (4) and the process terminates when a combined relative-absolute error criterion is satisfied. It is not necessary to compute a portion of the series explicitly and use the continued fraction method only in the asymptotic region of the kernel since the Pade approximants are an analytic continuation method rather than a simple convergence acceleration method. In the author's experience, the continued fraction converges quite rapidly, and more than 30 or so terms are almost never required. The continued fraction algorithm is only slightly effective for rapidly convergent integrals, but for slowly convergent or divergent ones the summation behavior is quite dramatic.

ALGORITHM USAGE

The algorithm contained in Appendix A is written in the ANSI X3.9-1978 (Fortran 77) version of Fortran. For generality, the kernel function is assumed to be complex valued, but complex arithmetic is not used internally, so that double precision calculations may be used when necessary. For best results, the computations should be done with at least 60 significant bits; this requires double precision on the common 32-bit machines (e.g., VAX, Prime). To use the routines on larger machines (e.g., CDC, CRAY-1), only the implicit double precision statements in the subroutines and the type declaration for the functions need be changed.

The usual entry point to the algorithm yields the automatic integration of the Hankel transform to a specified accuracy by increasing the order of the quadrature rule until a convergence criterion is satisfied. The call has the form

CALL BESAUT (BESR, BESI, ORDER, NL, NU, R, FUNCT, RERR, AERR, NPCS, NEW, IERR)

where the variable types follow the usual Fortran conventions. The input arguments are

ORDER = order of the Bessel function.
$\mathrm{NL}, \mathrm{NU}=$ lower and upper limit for the quadrature order, where $\mathrm{NL}, \mathrm{NU}=1, \ldots 7$ selects $3,7,15,31,63$, 127 , and 255 point rules. These parameters are provided to allow user control of the cost of the integration. For fully automatic integration, set $\mathrm{NL}=1$ and $\mathrm{NU}=7$.
$\mathrm{R}=$ argument of the Bessel function where $\mathrm{R} \geq 0$. This corresponds to the range ρ in (1).

FUNCT = subroutine to return the kernel function. FUNCT must be declared EXTERNAL in the calling program. The access is of the form

CALL FUNCT (X, YR, YI)

where X is the wavenumber [k in equation (1)] supplied by BESAUT and YR and YI are the returned real and imaginary parts of the kernel function. Any additional parameters should be passed to FUNCT in a common block.

RERR, AERR = relative and absolute error parameters used for termination. The algorithm controls the local error, defined as the difference between the result of two sequential quadrature orders, so that for termination

ABS (local error) \leq RERR* ABS (RESULT) + AERR
where RESULT is the answer at the higher quadrature order. The criterion must be satisfied separately by the real and imaginary parts. Setting AERR $=0$ results in a pure relative error test which may fail if the answer is very small. For a mixed error test, the criterion corresponds roughly to a relative error test when the solution is much larger than AERR and to an absolute error test when the solution is smaller than AERR. Note that both RERR and AERR must be nonnegative.

NPCS $=$ number of pieces into which the partial integration is divided at each step. This parameter is usually set to 1 . For very small values of R, when the kernel changes much more rapidly than the Bessel functions, it may be necessary to subdivide each interval by increasing NPCS from 1 . This should be done with caution, as it could result in excessive usage of computer time. Note that $\mathrm{NPCS} \geq 1$.

NEW $=$ parameter to indicate the storage mode for the integral evaluations. NEW $=1$ indicates the first call to BESAUT with a particular kernel function so that the product of the kernel and Bessel functions is calculated and saved for each abscissa value and partial integration. NEW $=2$ indicates that a previously saved result is to be used, and only additional abscissa values and partial integrations are computed explicitly. This allows algebraically related kernels to be treated without reinitializing. The storage arrangement is described below.

The output arguments are

[^1]tained at the highest order is contained in BESR and BESI when IERR $=1$.
An additional entry point, BESTRN, is described in the code contained in Appendix A. This subroutine returns the Hankel transform at a fixed Gauss order and has the additional capability of explicit calculation of the transform over an initial interval, allowing the user to defeat the continued fraction convergence method when desired.

The saved kernel abscissas and values are stored in COMMON/BESINT/with the form

DIMENSION NW(NTERM), KARG(255, NTERM),
KERN(510, NTERM)
COMMON/BESINT/NK,

NP, NPS, KARG, KERN

where NTERM is a parameter set in the code to keep storage requirements reasonable; it may be altered at compile time. The arrays KARG and KERN must be declared REAL or DOUBLE PRECISION. The abscissa values are stored in $\operatorname{KARG}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1, \ldots 2^{* *}(\mathrm{NK}(\mathrm{J})+1)-1, \mathrm{~J}=1, \ldots$ NPS and the corresponding real and imaginary parts of the integrands are stored in KERN (I, J), KERN (I + 1, J), $\mathrm{I}=1, \ldots 2^{*}$ (2** (NK (J) +2) -1) $\mathrm{J}=1, \ldots$ NPS, where the index I refers to the abscissa points for the quadrature rule arranged in the order used and J refers to the number of the partial integrands as in equation (2). The code automatically stops saving the result when storage is full, avoiding memory access problems. The treatment of related kernels is illustrated in the driver program of Appendix B.

A second common block, COMMON/TEST/, may be used to access run statistics. There are three integer parameters in the block, containing the highest quadrature order used, the total number of calls to the kernel function routine, and the number of partial integrations required to achieve convergence.

In addition to the two subroutines listed above, there are six other functions or subroutines in the algorithm. These include three subroutines not normally accessed directly by the user

BESQUD computes the integral (2) over a specified interval at a specified quadrature order,

PADECF sums a complex series using the continued fraction algorithm of Hänggi et al (1978),

CF computes a continued fraction starting at the bottom in a numerically stable fashion,
and three functions that may be user supplied
JBESS (X, ORDER) returns the Bessel function of the first kind of order ORDER at argument X. This should be interfaced to standard library routines, e.g. IMSL or SLATEC. Note that JBESS is a REAL or DOUBLE PRECISION function,

ZEROJ (N, ORDER) returns the N th zero of the Bessel function of the first kind of order ORDER. The ORDER $=0$ and 1 case, computed using an asymptotic expansion, is contained in the routines in Appendix A,

DOT ($\mathrm{N}, \mathrm{X} 1, \mathrm{INCL}, \mathrm{X} 2, \mathrm{INC} 2$) returns the dot product of two vectors with variable incrementing allowed. The BLAS routine SDOT (Lawson et al, 1979) should be used on machines where single precision arithmetic of sufficient accuracy is available. A plug-in double precision replacement is contained in Appendix A.

EXAMPLES AND APPLICATIONS

A sequence of eight Hankel transforms of elementary functions was selected to demonstrate the features and capabilities of the algorithm; a driver program incorporating them is contained in Appendix B. The integrals are separated into four types, starting with the rapidly convergent forms

$$
\begin{align*}
\int_{0}^{\infty} d k k e^{-\alpha k^{2}} J_{0}(k \rho) & =\frac{e^{-\rho^{2} / 4 \alpha}}{2 \alpha} \tag{6}\\
\int_{0}^{\infty} d k e^{-k} J_{1}(k \rho) & =\frac{\sqrt{\rho^{2}+1}-1}{\rho \sqrt{\rho^{2}+1}} \tag{7}
\end{align*}
$$

and including the slowly convergent integrals

$$
\begin{align*}
\int_{0}^{\infty} d k J_{0}(k \rho) & =\frac{1}{\rho} \tag{8}\\
\int_{0}^{\infty} d k \frac{k}{\sqrt{k^{2}+\alpha^{2}}} J_{0}(k \rho) & =\frac{e^{-\alpha \rho}}{\rho} . \tag{9}
\end{align*}
$$

The algebraically divergent types

$$
\begin{gather*}
\int_{0}^{\infty} d k k J_{0}(k \rho)=0 \tag{10}\\
\int_{0}^{\infty} d k k \sqrt{k^{2}+\alpha^{2}} J_{0}(k \rho)=\frac{e^{-\alpha \rho}}{\rho^{3}}(\alpha \rho+1) \tag{11}
\end{gather*}
$$

and the oscillatory kernel forms

$$
\begin{align*}
& \int_{0}^{\infty} d k \cos k J_{1}(k \rho)=\frac{\sqrt{1-\rho^{2}}-1}{\rho \sqrt{1-\rho^{2}}} \quad(\rho \geq 1) \tag{12}\\
& \frac{1}{\rho} \tag{13}\\
& \int_{0}^{\infty} d k \frac{0}{k} J_{1}(k \rho)=\frac{\sqrt{\rho^{2}-1}}{\rho} \quad(\rho>1), \\
& (\rho<1) \quad(\rho \leq 1)
\end{align*}
$$

where $\alpha=(1+i) / \sqrt{2}$. Only the first pair of integrals (6)-(7) can be handled by the digital filter method, and the divergent pair (10)-(11) can only be numerically integrated using an analytic continuation algorithm such as the continued fraction expansion. The last three pairs of integrals are algebraically related, and the appropriate program feature is used in the driver of Appendix B.

Results for the eight test integrals at short, moderate, and long range for two values of the relative error parameter are shown in Tables 1 and 2. The columns show the integral number corresponding to integrals (G) - 13), the error flag IERR returned by BESAUT, the Bessel function argument R, the NEW parameters passed to BESAUT, the relative error RERR, the real and imaginary parts of the numerical result, the real and imaginary parts of the analytic result, the number of the quadrature rule used at the last iteration, the total number of calls to FUNCT, and the number of partial integrations used in the continued fraction algorithm at the last iteration. The absolute error AERR is always taken to be 1000 times smaller than the relative error.

Table 1 contains the results for $\operatorname{RERR}=10^{-5}$, which are comparable in accuracy to ZHANKS, where that algorithm is applicable (Anderson, 1979). Convergence is easily achieved for
all of the cases, with the two rapidly convergent integrals requiring the fewest number of partial integrations and the oscillatory kernel cases needing the most. In general, a higher order quadrature rule is required for small values of the range R; this is accomplished automatically by the code. Note that the divergent integrals are easily handled, requiring a comparable amount of computer time to the slowly convergent or oscillatory integrals. Integrals (6) and (7) were included in the test program for ZHANKS in Anderson (1979), and typically required 150 kernel function evaluations for similar accuracy to the results in Table 1. At moderate values of the parameter R, the direct method requires only slightly more computer time.
Table 2 shows similar computations with RERR $=10^{-10}$, a far more stringent requirement with a concomitant increase in computational overhead. Convergence was achieved for all cases save the rapidly divergent form (11) at the shortest range. This is caused by a lack of sufficient numerical precision in the

Fig. 1. The top plot shows the convergence behavior of the continued fraction algorithm (solid) and direct summation of the partial integrations (dashed) for the rapidly convergent integral (7) using a relative error requirement of 10^{-12}. The continued fraction expansion results in more rapid convergence by a factor of over 50 percent. The bottom plot shows similar results for the slowly convergent integral (14). The continued fraction expansion has converged after 18 terms in the series of partial integrations, while the direct sum has not converged after 100 terms.
I 1 गqBL

： 2	
爫	 いートツへすむ
$\stackrel{5}{2}$	
	ज
$\begin{aligned} & \text { F } \\ & \underline{y} \\ & \text { ren } \end{aligned}$	
	8
$\begin{aligned} & \stackrel{a}{E} \\ & \underset{\square}{x} \\ & \hline \end{aligned}$	－－－－－－－－¢－－
	8
	フ
	\％
	\％
	$0^{\circ} 0^{\circ} 0^{\top} 0_{1}^{\circ} 0^{\circ} 0^{\circ} 0^{\circ 0} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ \circ}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$	
	888885888588 응 8 옹 988
	$\sim_{0} 9$ ¢
	m $0 \sim 6$
	$\dot{1}^{\circ} 0^{\circ} 0^{\circ} \dot{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{\sim}{4}}$	
	m
$\begin{aligned} & \stackrel{\alpha}{0_{2}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	
$\stackrel{3}{\rightleftarrows}$	
	N－N－r－N－N－N－ー－N－N－N
\propto	
	N～NuN～NNg응ㅇㅇㅇㅇㅇ
$\xrightarrow[\sim]{\stackrel{\sim}{\sim}} \underset{\sim}{\text { ¢ }}$	
	000000000000000000000
之	
	ーNMナ

Table 2.

NN	IERR	R	NEW	RERR	NUMERR	NUMERI	EXACTR	EXACTI	NG	NF	NI
1	0	0.05	1	0.1E-09	0.3535533215	-0.3532409596	0.		7	510	2
2	0	0.05	1	0.1E-09	$0.2495322244 \mathrm{E}-01$	$0.0000000000 \mathrm{E}+00$	$0.2495322244 \mathrm{E}-01$	$0.0000000000 \mathrm{E}+00$	5	126	2
3	0	0.05	1	0.1E-09	20.00000000	$0.0000000000 \mathrm{E}+00$	20.00000000	$0.0000000000 \mathrm{E}+00$	3	240	16
4	0	0.05	2	0.1E-09	19.29318268	-0.6824013726	19.29318266	-0.6824013839	7	3840	16
5	0	0.05	1	0.1E-09	-0.3874014568E-13	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	4	682	22
6	1	0.05	2	$0.1 \mathrm{E}-09$	-7999.770490	9.764380040	-7999.770489	9.764356133	7	24818	100
7	0	0.05	1	$0.1 \mathrm{E}-09$	-0.2504697287E-01	$0.0000000000 \mathrm{E}+00$	-0.2504697287E-01	$0.0000000000 \mathrm{E}+00$	6	2166	17
8	0	0.05	2	$0.1 \mathrm{E}-09$	$0.1311979782 \mathrm{E}-13$	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	6	0	14
1	0	2.00	1	$0.15-09$	0.2457791604	-0.1928180254E-01	0.2457791619	-0.1928179962E-01	4	186	6
2	0	2.00	1	$0.1 E-09$	0.2763932022	$0.0000000000 \mathrm{E}+00$	0.2763932023	$0.000000000 \mathrm{E}+00$	4	310	10
3	0	2.00	1	$0.1 \mathrm{E}-09$	0.5000000000	$0.0000000000 \mathrm{E}+00$	0.500000000	$0.0000000000 \mathrm{E}+00$	3	240	16
4	0	2.00	2	$0.15-09$	$0.1895626091 \mathrm{E}-01$	-0.1200712156	0.1895625755E-01	-0.1200712131	4	287	17
5	0	2.00	1	0.1E-09	$0.2580024523 \mathrm{E}-13$	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	4	558	18
6	0	2.00	2	0.1E-09	-0.5389270093E-01	$0.6576733896 \mathrm{E}-01$	-0.5389269888E-01	0.6576733929E-01	4	31	19
7	0	2.00	1	0.1E-09	0.5000000000	$0.0000000000 \mathrm{E}+00$	0.5000000000	$0.0000000000 \mathrm{E}+00$	4	961	31
8	0	2.00	2	$0.1 \mathrm{E}-09$	0.8660254038	$0.0000000000 \mathrm{E}+00$	0.8660254038	$0.0000000000 \mathrm{E}+00$	4	31	32
2	0	100.00	1	0.1E-09	-0.1624977841E-12	$0.9647859905 \mathrm{E}-13$	$0.0000000000 \mathrm{E}-00$	$0.0000000000 \mathrm{E}+00$	3	195	13
3	0	100.00	1	$0.1 E-09$	$0.9900005000 \mathrm{E}-02$	$0.0000000000 \mathrm{E}+00$	$0.9900005000 \mathrm{E}-02$	$0.0000000000 \mathrm{E}+00$	3	225	15
4	0	100.00	2	$0.1 \mathrm{E}-09$ $0.1 \mathrm{E}-09$	0.1000000000E-01	$0.0000000000 \mathrm{E}+00$	0.1000000000E-01	0.0000000000E +00	3	225	15
5	0	100.00	1	$0.1 \mathrm{E}-09$	-0.9360270729E-13	$0.0000000000 \mathrm{E}+00$	$-0.48520000000-34$ 0.00000000	$-0.1952576719 E-32$ $0.00000000 E+00$	3	195	13
6	0	100.00	2	0.1E-09	$0.1643696453 \mathrm{E}-13$	$0.3603324315 \mathrm{E}-13$	-0.1345885512E-34	$0.1434515570 \mathrm{E}-34$	3	15	14
7	0	100.00	1	0.1E-09	$0.1000000000 \mathrm{E}-01$	$0.0000000000 \mathrm{E}+00$	$0.1000000000 \mathrm{E}-01$	$0.0000000000 \mathrm{E}+00$	3	225	15
8	0	100.00	2	0.1E-09	0.9999499987	$0.0000000000 \mathrm{E}+00$	0.9999499987	$0.0000000000 \mathrm{E}+00$	3	45	18

continued fraction algorithm as larger and larger terms are added to the series, and better behavior would be obtained if this portion of the algorithm (subroutines PADECF and CF) used a longer word length (e.g., REAL * 16 on the VAX or DOUBLE PRECISION on a mainframe computer).

Figure 1 illustrates the power of the continued fraction expansion. The top plot shows the integral (7) with $R=2$ and $\operatorname{RERR}=10^{-12}, \mathrm{AERR}=10^{-15}$. The solid line shows the continued fraction result, which converged after 11 terms, and the dashed line shows the direct sum of the partial integrands, which required 18 terms for identical convergence. The bottom part of the figure shows the slowly convergent integral

$$
\begin{equation*}
\int_{0}^{x} d k J_{1}(k \rho)=\frac{1}{\rho} \tag{14}
\end{equation*}
$$

where the continued fraction result converges after 18 terms, but the direct sum is alternating and approaches the correct result very slowly. It is likely that numerical round-off will prevent the latter from ever reaching convergence.

The application of this algorithm to a geophysical problem was discussed in Chave and Cox (1982) for a seafloor-based horizontal electric dipole (HED). The two fundamental electromagnetic modes for this type of source are nearly out of phase, necessitating high accuracy in the calculation of the electromagnetic fields. Correction for the finite length of real sources requires integration with a combination of Hankel transforms as integrands, another application with fairly stringent precision requirements. The direct integration algorithm of this paper has worked well in this application, and yields good user control of the computer time and numerical accuracy.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research and by the National Science Foundation under grant OCE 81-10399.

REFERENCES

Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics, v. 44, p. 1287-1305.

1982, Fast Hankel transforms using related and lagged convolutions: ACM Trans on Math. Software, v. 8, p. 344-368.
Baker, G. A., Jr., 1975, Essentials of Padé approximants: New York, Academic Press.
Bender. C. M., and Orszag, 1978. Advanced mathematical methods for scientists and engineers: New York, McGraw-Hill.
Chave, A. D., and Cox. C. S., 1982, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans, 1. forward problem and model study: J. Geophys. Res., v. 87, p. 5327-5338.
Cornille, P., 1972, Computation of Hankel transforms: SIAM Rev.. v. 14, p. 278-285.

Ghosh, P. P., 1971, The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements: Geophys. Prosp., v. 19, p. 192-217.
Hänggi, P., Roesel, F., and Trautmann, P., 1978, Continued fraction expansions in scattering theory and statistical non-equilibrium mechanics: Z. Naturforsch., v. 33a, p. 402-417.

- 1980, Evaluation of infinite series by use of continued fraction expansions: a numerical study: J. Comp. Phys., v. 37, p. 252-258.
Lawson, C. L., Hanson, E. J., Kincaid, D. R.. and Krogh, F. T., 1979, Basic linear algebra subprograms for Fortran usage: ACM Trans. on Math. Software. v. 6, p. 308-323.
Patterson, T. N. L., 1968, The optimum addition of points to quadrature formulae: Math. Comp., v. 22, p. 847-856.
Ralston, A., and Rabinowitz, P., 1978, A first course in numerical analysis, 2nd ed. : New York, McGraw-Hill.
Watson, G. N., 1962, A treatise on the theory of Bessel functions, 2nd ed.: Cambridge, Cambridge Univ. Press.

Chave
Appendix

\cdots	HRNNNTANANM
	SODSOOOSOO
	1
A	
0	
0	600 AT- Sundiojose
0	NuNivuncomqo
O)	
N	
\cdots	
O)	-r-0¢w
\sim	กconerserndow
on	
\checkmark	$0 \times 100 \times N$
O)	ก®0-15-60500
0	
0	H $-6.0 \rightarrow N M \rightarrow$ N
\cdots	MOKOMNHATO
1	ccorocomm 0 +
0	
\bigcirc	- 0 -t-conot-
\cdots	MNuTC- ${ }^{\text {m }}$
(r)	Sincoremmy
	O-wnomनnmev
0	SOSTESOSOE
\cdots	-INNN-Hन-4m
©	STSOSOSNESE

RETUUR

[^0]: Manuscript received by the Editor February 25, 1983; revised manuscript received May 31, 1983.
 *Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093.
 (C) 1983 Society of Exploration Geophysicists. All rights reserved.

[^1]: BESR, BESI = real and imaginary parts of the Hankel transform.

 IERR $=$ error flag, where $\operatorname{IERR}=0$ indicates a normal return and IERR $=1$ indicates a failure to converge at the highest quadrature order. The solution ob-

