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Numerical integration of related Hankel tiansforms 
by quadrature and continued fraction expansion 

Alan D. Chave* 

ABSTRACT 

An algorithm is presented for the accurate evaluation 
of Hankel (or Bessel) transforms of algebraically related 
kernel functions, defined here as the non-Bessel function 
portion of the integrand, that is more widely applicable 
than the standard digital filter methods without enor- 
mous increases in computational burden. The algorithm 
performs the automatic integration of the product of the 
kernel and Bessel functions between the asymptotic zero 
crossings of the latter and sums the series of partial 
integrations using a continued fraction expansion, 
equivalent to an analytic continuation of the series. The 
integrands may be saved to allow the rapid compu- 
tation of related transforms without recalculating the 
kernel or Bessel functions, and the integration steps use 
interlacing quadrature formulas so that no function 
evaluations are wasted when it is necessary to increase 
the order of the quadrature rule. The continued fraction 
algorithm allows very slowly divergent or even formally 
divergent integrals to be computed quite easily. The 
local error is controlled at each step in the algorithm, 
and accuracy is limited largely by machine resolution. 
The algorithm is written in Fortran and is listed in an 
Appendix along with a driver program that illustrates 
its features. The driver program and subroutine are 
available from the SEG Business Offtce. 

INTRODUCTION 

Hankel transforms (sometimes called Bessel transforms) writ- 
ten in the standard form 

Jo 

m f(P) = dk k&J,(b) 

are ubiquitous in the mathematical treatment of physical prob- 
lems involving cylindrical symmetry, as observed in disciplines 
like optics, electromagnetism, and seismology. The function J, 

in equation (1) is a Bessel function of the first kind of real order 
v which exhibits decaying, oscillatory behavior for increasing 
argument along the real axis, and equation (1) is formally 
equivalent to a double Fourier transform. The parameter k will 
be called the wavenumber, while p’ is usually the horizontal 
range. The pair {f(p),!(k)} is referred to as the kernel functions 
when it appears under the integral sign; the transforms may 
also be written with the multiplicative p and k terms absorbed 
into f (b) and/(k), respectively. For most physical Ijroblems the 
order of the Bessel function is an integer, and for that case only 
the v = 0 and 1 cases need be considered since higher order 
Bessel functions are related to them by standard recursion 
formulas. Integrals of the form (1) can be evaluated in closed 
form for only a restricted set of kernel functions (Watson, 1962), 
and recourse to numerical methods is generally required for the 
study of real problems. 

The standard numerical approach to the computation of 
Hankel transforms has become the digital filter method since 
the work of Ghosh (1971). Suitable changes of the independent 
variables k and p in equation (1) are applied to turn the direct 
integrals into convolution integrals; these,are discretized to a 
finite convolutional sum. The Bessel function of the new vari- 
able plays the role of a known digital filter through which the 
kernel functions are passed as the signal to yield the trans- 
formed result as the filter output. Design criteria for the filter 
are of necessity largely ad hoc and were discussed by Anderson 
(1979). Reasonable (5 figure) accuracy is typically achieved for 
monotonic, rapidly decreasing kernel functions at moderate 
values of p. More recent developments, including adaptive and 
lagged convolution to minimize kernel function evaluations, 
were covered by Anderson (1982). 

For some types of problems the digital filter method is less 
useful; examples occur at very small values of the range p, 
where the kernel function may be changing rapidly when com- 
pared to the Bessel function, and when high numerical preci- 
sion is required. Direct numerical integration of equation (1) 
was discussed by Cornille (1972) using the half-cycles of the 
Bessel function as subintervals combined with Euler’s transfor- 
mation to sum the series of partial integrations. A similar 
approach is adopted here, with several major improvements, 
including (1) interlacing quadrature formulas are used so that 
none of the costly kernel or Bessel function evaluations is 

Manuscript received by the Editor February 25, 1983; revised manuscript received May 31, 1983. 
*Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92693. 
0 1983 Society of Exploration Geophysicists. All rights reserved. 

1671 



1672 Chave 

wasted when it is necessary to increase the order of the rule to 
achieve a desired accuracy, (2) automatic integration is feasible 
due to the use of interlacing quadrature weights, (3) the inte- 
grands may be saved so that algebraically related kernels can 
be treated without reevaluation of the kernels or Bessel func- 
tions, and (4) a continued fraction method is used to sum the 
series of partia! integrations. The latter is a very general means 
for the summation of series ranging from rapidly convergent to 
divergent and is equivalent to the analytic continuation of the 
series. While the algorithm presented here is generally not as 
fast as the digital filter approach, it is far more efficient than 
other direct integration schemes and should be regarded as 
complementing rather than replacing the standard method. 

ALGORITHM DESCRlPTlON 

The algorithm applies numerical quadrature to the evalu- 
ation of a sequence of partial integration terms 

(2) 

where g^(k) = kf(k) in equation (1) and z, is the nth zero of J,(x) 
normalized by the range p. Asymptotic forms for the large zeros 
of Bessel functions were given in Watson (1962) or standard 
references; these are quite adequate even for the smallest zeros 
in this work. The approximation of the linear functional (2) by a 
finite sum 

j=l 

where aj is the abscissa and hj is the weight, is covered in 
standard texts on numerical analysis (Ralston and Rabinowitz, 
1978). Gauss formulas possess the property of minimizing the 
number of abscissa points (and hence integrand evaluations) 
required to achieve a specified accuracy when compared to 
other approaches. Most Gauss rules require recomputation of 
all of the integrands whetl the order is changed, so that the 
proper order must be predetermined for good efficiency. Pat- 
terson (1968) developed methods for the optimal addition of 
points to a quadrature formula so that only the new integrand 
values need to be calculated when the order is increased, 
making adaptive integration to a specified error compu- 
tationally feasible. The weights hj and aj in equation (3) used in 
the algorithm of this paper consist of a three-point Gauss rule 
with extension to 7, 15, 31, 63, 127, and 255 common-point, 
interlacing forms; these correspond to integrating polynomials 
of degree 5, 11,23,47,95, 191, and 383, respectively. In practice, 
each of the partial integrations (2) is computed by adding new 
weights to the quadrature rule until a combined relative- 
absolute error criterion is satisfied. At each step, the kernel and 
Bessel function values are retained so that none of these costly 
evaluations need be repeated; these can optionally be placed in 
common storage so that algebraically related kernels can be 
treated without recomputing the integrands, in a manner simi- 
lar to that used by Anderson (1979) with the digital filter 
method. 

The complete integral is formally obtained by summing the 
partial integrations; direct summation is feasible only for rap- 
idly convergent integrals. The terms in the series are often 
alternating in sign due to the Bessel function’s oscillatory be- 
havior, and the result may be very slowly convergent and will 
diverge if the kernel increases faster than k’!*. Convergence 

acceleration using various nonlinear transformations of the 
series were reviewed by Bender and Orszag (1978). The most 
general of these is the Pad6 approximant technique, which 
replaces a slowly converging or diverging series by a rapidly 
converging expression, each term of which is equivalent to the 
ratio of two finite sums. Pad& summation should be regarded as 
a method for the analytic continuation of the series; diverging 
series suggest the presence of singularities which are removed 
by the transformation. General Padt algorithms require O(N3) 
operations, where N is the number of terms in the sum, but the 
closely related continued fraction approach yields similar re- 
sults with only O(N*) operations. Sequential terms of the latter 
are formally equivalent to a stair-step path in the Padt table 
(Baker, 1975). 

The series of partial integrations 

S- ;pi 
i-0 

may be recast into the continued fraction 

s= d, 

d, ’ It- 
1 +d, 

(4) 

(5) 

where there is a direct correspondence between the continued 
fraction coefficients d, and the summands pi. As terms are 
added to equation (4), only the last coefficient in equation (5) is 
computed; recursive algorithms were given by Baker (1975) and 
HBnggi et al (1978, 1980). The latter is used in the algorithm of 
this paper. 

In practice, the continued fraction (5) is reevaluated as ad- 
ditional partial integrations are added to the series (4) and the 
process terminates when a combined relative-absolute error 
criterion is satisfied. It is not necessary to compute a portion of 
the series explicitly and use the continued fraction method only 
in the asymptotic region of the kernel since the Pad6 approxi- 
mants are an analytic continuation method rather than a 
simple convergence acceleration method. In the author’s ex- 
perience, the continued fraction converges quite rapidly, and 
more than 30 or so terms are almost never required. The 
continued fraction algorithm is only slightly effective for rap- 
idly convergent integrals, but for slowly convergent or diver- 
gent ones the summation behavior is quite dramatic. 

ALGORITHM USAGE 

The algorithm contained in Appendix A is written in the 
ANSI X3.9-1978 (Fortran 77) version of Fortran. For gener- 
ality, the kernel function is assumed to be complex valued, but 
complex arithmetic is not used internally, so that double preci- 
sion calculations may be used when necessary. For best results, 
the computations should be done with at least 60 significant 
bits; this requires double precision on the common 32-bit ma- 
chines (e.g., VAX, Prime). To use the routines on larger ma- 
chines (e.g., CDC, CRAY-l), only the implicit double precision 
statements in the subroutines and the type declaration for the 
functions need be changed. 

The usual entry point to the algorithm yields the automatic 
integration of the Hankel transform to a specified accuracy by 
increasing the order of the quadrature rule until a convergence 
criterion is satisfied. The call has the form 
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CALL BESAUT (BESR, BE%, ORDER, NL, NU, R, 
FUNCT, RERR, AERR, NPCS, NEW, IERR) 

where the variable types follow the usual Fortran conventions. 
The input arguments are 

ORDER = order of the Bessel function. 
NL, NU = lower and upper limit for the quadrature 

order, where NL, NU = 1, 7 selects 3, 7, 15, 31, 63, 
127, and 255 point rules. These parameters are provided 
to allow user control of the cost of the integration. For 
fully automatic integration, set NL = 1 and NU = 7. 

R = argument of the Bessel function where R 2 0. 
This corresponds to the range p in (1). 

FUNCT = subroutine to return the kernel function. 
FUNCT must be declared EXTERNAL in the calling 
program. The access is of the form 

CALL FUNCT (X, YR, YI) 

where X is the wavenumber [k in equation (l)] supplied 
by BESAUT and YR and YI are the returned real and 
imaginary parts of the kernel function. Any additional 
parameters should be passed to FUNCT in a common 
block. 

RERR, AERR = relative and absolute error parame- 
ters used for termination. The algorithm controls the 
!ocaLerlm_ defined as the difference between the result of 
two sequential quadrature orders, so that for termination 

ABS (local error) 5 RERR* ABS (RESULT) + AERR 

where RESULT is the answer at the higher quadrature 
order. The criterion must be satisfied separately by the 
real and imaginary parts. Setting AERR = 0 results in a 
pure relative error test which may fail if the answer is 
very small. For a mixed error test, the criterion corre- 
sponds roughly to a relative error test when the solution 
is much larger than AERR and to an absolute error test 
when the solution is smaller than AERR. Note that both 
RERR and AERR must be nonnegative. 

NPCS = number of pieces into which the partial inte- 
gration is divided at each step. This parameter is usually 
set to 1. For very small values of R, when the kernel 
changes much more rapidly than the Bessel functions, it 
may be necessary to subdivide each interval by increas- 
ing NPCS from 1. This should be done with caution, as it 
could result in excessive usage of computer time Note 
that NPCS 2 1. 

NEW = parameter to indicate the storage mode for 
the integral evaluations. NEW = 1 indicates the first call 
to BESAUT with a particular kernel function so that the 
product of the kernel and Bessel functions is calculated 
and saved for each abscissa value and partial integration. 
NEW = 2 indicates that a previously saved result is to be 
used, and only additional abscissa values and partial 
integrations are computed explicitly. This allows alge- 
braically related kernels to be treated without reinitializ- 
ing. The storage arrangement is described below. 

The output arguments are 

BESR, BESI = real and imaginary parts of the Hankel 
transform. 

IERR = error flag, where IERR = 0 indicates a 
normal return and IERR = 1 indicates a failure to con- 
verge at the highest quadrature order. The solution ob- 

tained at the highest order is contained in BESR and 
BESI when IERR = 1. 

An additional entry point, BESTRN, is described in the code 
contained in Appendix A. This subroutine returns the Hankel 
transform at a fixed Gauss order and has the additional capa- 
bility of explicit calculation of the transform over an initial 
interval, allowing the user to defeat the continued fraction 
convergence method when desired. 

The saved kernel abscissas and values are stored in COM- 
MON/BESINT/with the form 

DIMENSION NW(NTERM), KARG(255, NTERM), 

KERN(510, NTERM) 

COMMON/BESINT/NK, 

NP, NPS, KARG, KERN 

where NTERM is a parameter set in the code to keep storage 
requirements reasonable; it may be altered at compile time
The arrays KARG and KERN must be declared REAL or 
DOUBLE PRECISION. The abscissa values are stored in 
KARG (I, J), I = 1, 2** (NK (J) + 1) - 1, J = 1, . . . NPS 
and the corresponding real and imaginary parts of the inte- 
grands are stored in KERN (I, J), KERN (I + 1, J), I = 1, .2* 
(2** (NK (J) + 2) - l), J = 1, NPS, where the index I refers 
tu then abscissa points for them quadrature rule afranged in the 
order used and J refers to the number of the partial integrands 
as in equation (2). The code automatically stops saving the 
result when storage is full, avoiding memory access problems. 
The treatment of related kernels is illustrated in the driver 
program of Appendix B. 

A second common block, COMMON/TEST/, may be used 
to access run statistics. There are three integer parameters in 
the block, containing the highest quadrature order used, the 
total number of calls to the kernel function routine, and the 
number of partial integrations required to achieve convergence. 

In addition to the two subroutines listed above, there are six 
other functions or subroutines in the algorithm. These include 
three subroutines not normally accessed directly by the user 

BESQUD computes the integral (2) over a specified 
interval at a specified quadrature order, 

PADECF sums a complex series using the continued 
fraction algorithm of HPnggi et al (1978), 

CF computes a continued fraction starting at the 
bottom in a numerically stable fashion, 

and three functions that may be user supplied 

JBESS (X, ORDER) returns the Bessel function of the 
first kind of order ORDER at argument X. This should 
be interfaced to standard library routines, e.g. IMSL or 
SLATEC. Note that JBESS is a REAL or DOUBLE 
PRECISION function, 

ZEROJ (N, ORDER) returns the Nth zero of the 
Bessel function of the first kind of order ORDER. The 
ORDER = 0 and 1 case, computed using an asymptotic 
expansion, is contained in the routines in Appendix A, 

DOT (N, Xl, INCL, X2, INC2) returns the dot prod- 
uct of two vectors with variable incrementing allowed. 
The BLAS routine SDOT (Lawson et al, 1979) should be 
used on machines where single precision arithmetic of 
sufficient accuracy is available. A plug-in double preci- 
sion replacement is contained in Appendix A. 
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EXAMPLES AND APPLICATIONS 

A sequence of eight Hankel transforms of elementary func- 
tions was selected to demonstrate the features and capabilities 
of the algorithm; a driver program incorporating them is con- 
tained in Appendix B. The integrals are separated into four 
types, starting with the rapidly convergent forms 

s m e - p*/4n 

0 
dk kcd2J,(kp) = 2a 

s 

cc 

0 
dk CkJ,(kp) = r$.’ 

2 

and including the slowly convergent integrals 

s 0 

wdk J,(kp) = ; 

s 

‘=dk o d&Jo(b) = 7. 
The algebraically divergent types 

a: 

dk kJ,(kp) = 0 

s m 

0 

dk kJ_ Jo (kp) = y (ap + 1) 

and the oscillatory kernel forms 

J&7-1 

s m 

dk cos kJ,(kp) = P&-T 
1 (P 2 1) 

0 - 
P 

0 

s 30 cos k 
dk - 45 (p > l), 

0 
k J,(b) = 

P 

(P < 1) (P 5 1) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

where a = (1 + n/J?. Only the first pair of integrals (6)-(7) can 
be handled by the digital filter method, and the divergent pair 
(lo)-(1 1) can only be numerically integrated using an analytic 
continuation algorithm such as the continued fraction ex- 
pansion. The last three pairs of integrals are algebraically relat- 
ed, and the appropriate program feature is used in the driver of 
Appendix B. 

Results for the eight test integrals at short, moderate, and 
long range for two values of the relative error parameter are 
shown in Tables 1 and 2. The columns show the integral 
number corresponding~to integrais <f+ji3j, thcerrorl?agi~ER~R~ 

returned by BESAUT, the Bessel function argument R, the 
NEW parameters passed to BESAUT, the relative error RERR, 
the real and imaginary parts of the numerical result, the real 
and imaginary parts of the analytic result, the number of the 
quadrature rule used at the last iteration, the total number of 
calls to FUNCT, and the number of partial integrations used in 
the continued fraction algorithm at the last iteration. The abso- 
lute error AERR is always taken to be 1000 times smaller than 
the relative error. 

Table 1 contains the results for RERR = 10m5, which are 
comparable in accuracy to ZHANKS, where that algorithm is 
applicable (Anderson, 1979). Convergence is easily achieved for 

all of the cases, with the two rapidly convergent integrals 
requiring the fewest number of partial integrations and the 
oscillatory kernel cases needing the most. In general, a higher 
order quadrature rule is required for small values of the range 
R; this is accomplished automatically by the code. Note that 
the divergent integrals are easily handled, requiring a com- 
parable amount of computer time to the slowly convergent or 
oscillatory integrals. Integrals (6) and (7) were included in the 
test program for ZHANKS in Anderson (1979), and typically 
required 150 kernel function evaluations for similar accuracy to 
the results in Table 1. At moderate values of the parameter R, 
the direct method requires only slightly more computer time

Table 2 shows similar computations with RERR = lo-“, a 
far more stringent requirement with a concomitant increase in 
computational overhead. Convergence was achieved for all 
cases save the rapidly divergent form (11) at the shortest range. 
This is caused by a lack of sufficient numerical precision in the 
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FIG. 1. The top plot shows the convergence behavior of the 
continued fraction algorithm (solid) and direct summation of 
the partial integrations (dashed) for the rapidly convergent 
integral (7) using a relative error requirement of lo-“. The 
continued fraction expansion results in more rapid convergence 
by a factor of over 50 percent. The bottom plot shows similar 
results for the slowly convergent integral (14). The continued 
fraction expansion has converged after 18 terms in the series of 
partial integrations, while the direct sum has not converged 
after 100 terms. 
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continued fraction algorithm as larger and larger terms are 
added to the series, and better behavior would be obtained if 
this portion of the algorithm (subroutines PADECF and CF) 
used a longer word length (e.g., REAL * 16 on the VAX or 
DOUBLE PRECISION on a mainframe computer). 
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Figure I illustrates the power of the continued fraction ex- 
pansion. The top plot shows the integral (7) with R = 2 and 
RERR = 10-r’, AERR = lo- t5, The solid line shows the con- 

tinued fraction result, which converged after 11 terms, and the 

dashed line shows the direct sum of the partial integrands, 
which required 18 terms for identical convergence. The bottom 
part of the figure shows the slowly convergent integral 

0 
nk J,(kp) = f. (14) 

where the continued fraction result converges after 18 terms, 
but the direct sum is alternating and approaches the correct 
result very slowly. It is likely that numerical round-off will 
prevent the latter from ever reaching convergence. 

The application of this algorithm to a geophysical problem 
was discussed in Chave and Cox (1982) for a seafloor-based 
horizontal electric dipole (HED). The two fundamental electro- 
magnetic modes for this type of source are nearly out of phase, 
necessitating high accuracy in the calculation of the electro- 
magnetic fields. Correction for the finite length of real sources 
requires integration with a combination of Hankel transforms 
as integrands, another application with fairly stringent preci- 
sion requirements. The direct integration algorithm of this 
paper has worked well in this application, and yields good user 
control of the computer time and numerical accuracy. 

This work was supported by the office of Naval Research 

and by the National Science Foundation under grant OCE 

81-10399. 
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