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Abstract—This paper presents a numerical method for solv-
ing the Volterra integral equation with a convolution kernel. The
integral equation was first converted to an algebraic equation
using the Laplace transform, after which its numerical inversion
was determined by power series. The Padé approximants were
effectively used to improve the convergence rate and accuracy
of the computed series. The method is described and illustrated
with numerical examples. The results revealed that the method
is accurate and easy to implement.

Index Terms—Volterra integral equation, Laplace transform,
Taylor expansion, series solution, Padé approximant.

I. INTRODUCTION

VOLTERRA integral equations have many applications
in various areas, including mathematical physics, chem-

istry, electrochemistry, semi-conductors, scattering theory,
seismology, heat conduction, metallurgy, fluid flow, chemical
reaction and population dynamics[1], [2].

This paper focuses on a class of Volterra integral equations
with a convolution kernel given by

u(x) = f(x) +
∫ x

0

k(x− t)u(t)dt, x ∈ [0, T ], (1)

where the source function f and the kernel function k are
given, and u(x) is the unknown function. Several numerical
methods are available for approximating the Volterra integral
equation. In particular, Huang[3] used the Taylor expansion
of unknown function and obtained an approximate solution.
Yang[4] proposed a method for the solution of integral
equation using the Chebyshev polynomials, while Yousefi[5]
presented a numerical method for the Abel integral equation
by Legendre wavelets. Khodabin [6] numerically solved
the stochastic Volterra integral equations using triangular
functions and their operational matrix of integration. Kamyad
[7] proposed a new algorithm based on the calculus of
variations and discretisation method, in order to solve linear
and nonlinear Volterra integral equations. The Adomian de-
composition [8], [9], [10], Homotopy perturbation [10], [11]
and the Laplace decomposition methods[12] were proposed
for obtaining the approximate analytic solution of the integral
equation.

In this paper, Volterra integral equations were first reduced
to algebraic equations using the Laplace transform. We
obtained a series that was uniformly convergent to the exact
solution after applying the Taylor expansion and the inverse
Laplace transforms to the mentioned algebraic equations. The
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main advantage of this method is its simplicity, such that only
few of the terms of the expansion are needed to obtain good
convergent numerical results.

II. LAPLACE TRANSFORM AND THEIR PROPERTIES

This section provides the definition and properties of the
Laplace transform[13].

Definition II.1. The Laplace transform of a function
f(x), x > 0 is defined as

L[f(x)] = F (s) =
∫ +∞

0

e−sxf(x)dx,

where s can either be real or complex.

The Laplace transform has several properties, as explained
below:

1) Linearity property

L[af(x) + bg(x)] = aL[f(x)] + bL[g(x)],

where a, b are constants.
2) The convolution theorem

Let the Laplace transforms for the functions f1(x) and
f2(x) be given by

L[f1(x)] = F1(s), L[f2(x)] = F2(s).

The Laplace convolution product of these two functions is
defined by

L
[∫ x

0

f1(x− t)f2(t)dt

]
= F1(s)F2(s), (2)

Theorem II.2. [13] Suppose F (s) is the Laplace transform
of f(x), which has a Maclaurin power series expansion in
the form

f(x) =
∞∑

i=0

ai
xi

i!
. (3)

Taking the Laplace transform, it is possible to write formally

F (s) =
∞∑

i=0

ai

si+1
. (4)

Conversely, we derive (3) form a given expansion (4).

III. PADÉ APPROXIMANT

A Padé approximant refer to the ratio of two polynomials
constructed from the coefficients of the Taylor series expan-
sion of a function. The [L/M ] Padé approximant to a formal
power series y(t) =

∑∞
i=0 ait

i is given by:
[

L

M

]
=

PL(t)
QM (t)

=
p0 + p1t + · · ·+ pLtL

1 + q1t + · · ·+ qM tM
. (5)
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The two polynomials in the numerator and denominator of
(5) have no common factor, thus indicating the formal power
series expressed by

y(t) =
PL(t)
QM (t)

+ O(tL+M+1).

In this case, the Padé approximant [L/M ] is uniquely deter-
mined.

IV. SOLUTION OF VOLTERRA INTEGRAL EQUATION AND
ERROR ESTIMATE

In this section we solved Volterra integral equation (1) by
the Laplace transform and Taylor series. First, the Laplace
transform is applied to both sides of Equation(1)

L[u(x)] = L[f(x)] + L
[∫ x

0

k(x− t)u(t)dt

]

Using the Laplace transform property (2), the equation below
can be obtained

L[u] = L[f ] + L[k]L[u].

Thus, the given equation is equivalent to

L[u] =
L[f ]

1− L[k]
= F (s).

Applying Theorem(II.2), F (s) can be expanded as an abso-
lutely convergent series, which is given by

L[u] =
c1

s
+

c2

s2
+

c3

s3
+ · · ·

where c1, c2, c3, · · · are the known constants. Considering
the inverse Laplace transform on both sides of the above
equation, we can then obtain

u(x) = c1 +
c2

Γ (2)
x +

c3

Γ (3)
x2 +

c4

Γ (4)
x3 · · · (6)

which is uniformly convergent to the exact solution. We
approximate the solution u(x) by using

un(x) = c1 +
c2

Γ (2)
x +

c3

Γ (3)
x2 + · · ·+ cn

Γ (n)
xn−1.

Let en(x) = u(x)−un(x) be the error function, where un(x)
is the estimation of the true solution u(x). Using Taylor’s
theorem and assuming that |u(n)(x)| ≤ M , the equation
below can be obtained

|en| = |u(x)− un(x)| ≤ M
cn+1

Γ (n + 1)
|xn|.

Padé approximants have the advantage of manipulating the
polynomial approximation into a rational function in order to
gain more information about u(x). Consequently, the series
(6) should be manipulated to construct Padé approximants,
such that the performance of the approximants shows supe-
riority over the series solutions.

V. NUMERICAL EXAMPLES

In this section, the effectiveness and simplicity of the
proposed method were demonstrated using three examples.
All the results were calculated using the symbolic calculus
software Mathematica.

Example V.1. Consider the Abel integral equation given by
∫ x

0

u(t)√
x− t

dt = e−x − 1, x ∈ [0, 1]. (7)

We using the Laplace transform and convolution property
given by

L[u]L[x−
1
2 ] = L[e−x − 1],

so that
L[u] =

−1√
π
√

s(s + 1)
= F (s).

Expanding the right hand side F (s) in the power of 1/s, we
obtain

L[u] =
1√
π

(
−

(
1
s

) 3
2

+
(

1
s

) 5
2

−
(

1
s

) 7
2

+
(

1
s

) 9
2

· · ·
)

.

By taking the inverse Laplace transform of both sides of the
above equation, the series solution can new be expressed as:

u(x) =
−2
√

x

π

(
1− 2

3
x +

4
15

x2 − 8
105

x3

+
16
945

x4 − 32
10395

x5 +
64

135135
x6

− 128
2027025

x7 − 256
34459425

x8 · · ·
)

,

(8)

which is consistent with the results obtained in a previous
work[9].

Padé approximants also have the advantage of manipulat-
ing the polynomial approximation into a rational function to
gain more information about u(x). The Padé approximants
[3/3], [4/4] and [5/5] of u(x) were constructed in order to
study the structure of the obtained solution(8). For example,
the Padé approximants [4/4] is given by

u(x) ≈ −2
√

x

π
· 1− 10

51x + x2 − 88
23205x3 + 2048

11486475x4

1 + 8
17x + 8

85x2 + 32
3315x3 + 16

36465x4
.

The numerical results show in Fig.1.

Example V.2. Consider the Abel integral equation of second
kind expressed as[5], [14]:

u(x) = 2
√

x−
∫ x

0

u(t)√
x− t

dt, x ∈ [0, 1]. (9)

The exact solution is u(x) = 1 − eπxerfc(
√

πx), where
erfc(

√
πx) is the complementary error function and defined

as
erfc(x) =

2√
π

∫ ∞

x

e−t2dt.

Applying the Laplace transform and convolution property
(2), we arrive at

L[u] = L[2
√

x]− L[x−
1
2 ]L[u].

Hence,

L[u] =
L[2

√
x]

1 + L[x−
1
2 ]

,
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Fig. 1. Numerical results for Example1

or equivalently,

L[u] =
√

π

s(
√

s + π)
= F (s).

The right hand side of F (s) expanded in the power of 1/s
as in

F (s) =π
1
2

(
1
s

) 3
2

− π

(
1
s

)2

+ π
3
2

(
1
s

) 5
2

− π2

(
1
s

)3

+ π
5
2

(
1
s

) 7
2

− π2

(
1
s

)4

+ π
7
2

(
1
s

) 9
2

− π4

(
1
s

)5

· · · .

(10)

By applying the inverse Laplace transform to (10), we obtain

u(x) =2x
1
2 − πx +

4π

3
x

3
2 − π2

2
x2 +

5π2

18
x

5
2

− π3

6
x3 +

16π3

105
x

5
2 − π4

24
x4 · · · .

(11)

Similarly, t = x
1
2 was first substituted, the Padé approximant

[3/3] and [4/4] of u(t) was constructed, and the approxima-
tion [4/4] was provided to the solution:

u(x) ≈ 2x
1
2 + 3.0829x + 2.0808x

3
2 + 0.5207x2

1 + 3.1123x
1
2 + 3.8347x + 2.2230x

3
2 + 0.5235x2

.

The results shown in Fig. 2 demonstrate that the approximate
solutions obtained using the proposed method are in good
agreement with the exact solutions. When the solution u(x)
has a special form, the proposed method works well. Further-
more, the numerical results in Table1 reveal that higher order
accuracy can be achieved by increasing some terms of the
expansion. In this way, more terms would enhance the level
of accuracy of the numerical approximation. Moreover, by
comparing the results of the table, the results of the presented
method are more accurate than those of the wavelet method
presented in a previous work[14].

Example V.3. Consider the Volterra integral with a convo-
lution kernel given by[15]

u(x) +
∫ x

0

cos(x− t)u(t)dt = sin(x). (12)
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Fig. 2. Comparison of approximate solutions [4/4] and exact solution

TABLE I
COMPUTED ABSOLUTE ERRORS FOR EXAMPLEV.2

x
Presented method

[3/3]

Presented method
[3/3]

Wavelets method
(k = 0, M = 16)

0 0 0 0

0.1 7.26464× 10−7 4.33846× 10−9 1.15872× 10−2

0.2 4.50941× 10−6 4.87786× 10−8 1.13995× 10−2

0.3 1.21047× 10−5 1.82276× 10−7 9.55367× 10−3

0.4 2.34327× 10−5 4.42272× 10−7 1.68378× 10−3

0.5 3.81788× 10−5 8.53771× 10−7 7.61903× 10−3

0.6 5.59739× 10−5 1.43214× 10−6 1.53846× 10−3

0.7 7.64562× 10−5 2.18575× 10−6 3.09894× 10−3

0.8 9.92936× 10−5 3.11805× 10−6 2.98197× 10−3

0.9 1.24188× 10−4 4.22898× 10−6 7.08482× 10−4

The exact solution is u(x) = 2
√

3
3 sin(

√
3x/2)e−

x
2 . Taking

the Laplace transforms of both sides of (12) can yield

L[u] + L
[∫ x

0

cos(x− t)u(t)dt

]
= L[sin(x)]

Applying (2) we obtain

L[u] + L [cos(x)]L[u] = L[sin(x)],

which provides

L[u] =
L[sin(x)]

1 + L[cos(x)]
=

1
s2 + s + 1

.

Expanding the right hand side of the above equation in power
of 1/s, we obtain

L[u] =
1
s2
− 1

s3
+

1
s5
− 1

s6
+

1
s8
− 1

s9
+

1
s11

− 1
s12

· · · .

Applying the inverse Laplace transform to the above equa-
tion, we obtain

u(x) = x− x2

2
+

x4

4!
− x5

5!
+

x7

7!
− x8

8!
+

x10

10!
− x11

11!
· · · .

We construct the Padé approximants [3/3], [4/4] and [5/5]
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TABLE II
ABSOLUTE ERRORS OF [3/3], [4/4] AND [5/5]FOR EXAMPLEV.3

x [3/3] [4/4] [5/5]

0 0 0 0

0.1 2.47996× 10−13 2.12330× 10−15 4.16334× 10−17

0.2 6.34643× 10−11 1.04025× 10−12 3.05311× 10−16

0.3 1.62565× 10−9 3.81095× 10−11 2.86993× 10−14

0.4 1.62261× 10−8 4.83148× 10−10 6.49258× 10−13

0.5 9.66243× 10−8 3.42285× 10−9 7.20879× 10−12

0.6 4.14996× 10−7 1.67752× 10−8 5.10483× 10−11

0.7 1.42247× 10−6 6.37358× 10−8 2.64983× 10−10

0.8 4.13357× 10−6 2.00938× 10−7 1.09561× 10−9

0.9 1.05880× 10−5 5.49231× 10−7 3.80688× 10−9

1 2.45509× 10−5 1.34114× 10−6 1.15307× 10−8

of u(x):
[
3
3

]
=

x + x2 − 9x3

20

1 + 3x
2 + 3x2

10 + 13x3

120

,

[
4
4

]
=

x− 48x2

223 − 113x3

1561 + 149x4

9366

1 + 127x
446 + 437x2

6244 + 173x3

18732 + 470x4

374640

,

[
5
5

]
=

x− 4205x2

12627 − 775x3

16836 + 1285x4

50508 − 49363x5

21213360

1 + 4217x
25254 + 473x2

12627 + 11x3

4392 + 1277x4

4242672 − 797x5

42426720

.

The numerical results shown in Fig. 3 and Table 2 reveal that
higher order accuracy can be achieved by increasing some
terms of the expansion, that is, using more terms can enhance
the level of accuracy of the numerical approximation. This
fact ensures that the method is convergent.

VI. CONCLUSION

In this paper, we applied Laplace transform and Taylor
series to solve the Volterra integral equation with a con-
volution kernel. The properties of the Laplace transform,
together with Taylor series, are used to reduce the integral
equations to the algebraic equations. The method requires
much less computational work compared with traditional
methods. Although we only considered a model problem in
this paper, the main ideas and techniques used here are also
applicable to many other problems.
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Fig. 3. Comparison of approximate solutions [3/3],[4/4],[5/5] and exact solution
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