
Copyright 2006, C. W. Gear
L2-1

Numerical Methods for Evolutionary Systems, Lecture 2
C. W. Gear

Celaya, Mexico, January 2007

Stiff Equations

The history of stiff differential equations goes back 55 years to the very early days of machine
computation. The first identification of stiff equations as a special class of problems seems to
have been due to chemists [chemical engineers] in 1952 (C.F. Curtiss and J.O. Hirschfelder,
Integration of stiff equations, Proc. of the National Academy of Sciences of U.S., 38
(1952), pp 235--243.)
For 15 years stiff equations presented serious difficulties and were hard to solve, both in
chemical problems (reaction kinetics) and increasingly in other areas (electrical engineering,
mechanical engineering, etc) until around 1968 when a variety of methods began to appear in
the literature.

The nature of the problems that leads to stiffness is the existence of physical phenomena with
very different speeds (time constants) so that, while we may be interested in relative slow
aspects of the model, there are features of the model that could change very rapidly. Prior to
the availability of electronic computers, one could seldom solve problems that were large
enough for this to be a problem, but once electronic computers became available and people
began to apply them to all sorts of problems, we very quickly ran into stiff problems. In fact,
most large problems are stiff, as we will see as we look at them in a little detail.

Copyright 2006, C. W. Gear
L2-2

t

y

Suppose the family of solutions to an ODE looks like the figure below.
This looks to be an ideal problem for integration because almost no matter where we start
the final solution finishes up on the blue curve. It shouldn’t matter much how big the local
error is (within reason) the final answer won’t be much different. Unfortunately …

Two different
initial values

Copyright 2006, C. W. Gear
L2-3

t

y

Consider the Forward Euler applied to this problem starting “close to” but not on the blue curve:

Initial value

Euler Steps

The error gets larger and
larger with every step!

Each Euler step has slope
equal to the slope of the
tangent at tn

Copyright 2006, C. W. Gear
L2-4

Let us examine a simple equation that illustrates the difficulty:

[()] (), (0) (0)y y g t g t y gλ′ ′= − + =
The general solution of this equation is

() exp()y g t c tλ= +
We have chosen initial conditions such that c = 0. Let us suppose that g(t) is a smooth, slowly
varying function like the blue curve on the previous two slides and that λ is a large, negative number.
Then the family of solutions looks like the earlier figure and we expect to see this behavior. Let us
look at the error behavior when we use Forward Euler.

1

2

1

2

1

2

()
([()] ())

 () () (1)

 (

L e t th e g lo b a l e r ro r b e T h e n :

o r

In th is , i

) () (1)
2

() (1)
2

()
2

s th e lo c a l

n n n

n n n n n n n

n n n

n n n

n n n

n

y g t
y y h y y h y g t g t

g t g t h

hg t g h

h g h

h g

ε
λ

λ ε

ξ λ ε

ε ξ λ ε

ξ

+

+

+

= −
′ ′= + = + − +
′= + + +

′′= − + +

′′= − + +

′′− e r ro r in th e s te p s ta r t in g

f ro m th e t ru e s o lu t io n , w h i le
i s th e e r ro r a t th e - th s te p " a m p li

() ()
f ie d " b y th e m e th o

(1)
d .

n n ny t g t h
n

λ ε= +

Obviously, if |(1 + h λ)| > 1 the error grows from step to step.
We say that the method is absolutely stable for values of hλ for which |(1 + h λ)| < 1

Copyright 2006, C. W. Gear
L2-5

Note that this depends only on the value of hλ, not on the function g(t) in our last example.
Generally we define absolute stability for the test equation y’ = λy. It applies to all methods and
the region of absolute stability is a region in the hλ -plane for which the method does not amplify
errors. Note that we consider complex values of λ. This is not because we expect to integrate in
the complex domain, but for systems of equations we will see that λ will be the eigenvalue of a
matrix, and this can be complex. For the Forward Euler method just discussed, the region of
absolute stability is as shown below: it is a disc of radius one centered at -1.

-

Complex
λh-plane

-2 -1 0

Region of
absolute stability

In this example, we want to follow the slowly varying blue curve since that is the solution
but there are fast components in the system, even though they damp out very quickly. It is
evident that if we use Forward Euler we will have to use a very small step size
commensurate with the fast components, even though they are not present in the system.

This is the essence of stiffness. There are fast time constants in the system, although the
corresponding components are no longer present in the solution. However, they force the
step size to be small for stability – at least, with the method we have discussed.

Copyright 2006, C. W. Gear
L2-6

% Example of stiffness effect
% Forward Euler fo y' = -100*(y - sin(t)) + cos(t).
figure(10)
hold off
colorseq = 'rgbmc' %Colors for plot
for i = 1:5

h = .02 +(i-2)*.0001; %Vary step size near critical point
t = 0; %Initial Value
y = 0.0001; %Initial Value - note that it is not sin(0)
Y = [y]; %Accumulate y for plotting
T = [t]; %Ditto for t
while t < 2*pi

yp = -100*(y-sin(t))+cos(t);
y = y + h*yp;
t = t+h;
Y = [Y;y];
T = [T; t];

end
subplot(5,1,6-i); plot(T,(Y-sin(T)),['-' colorseq(i)]);
ylabel(['i = ' num2str(i)])

end
title('Error with different h''s. h = 0.0199: 0.0001 : 0.0203')

The Matlab code below illustrates the blow up in error once |(1 + h λ)| exceeds 1. in this example, λ is -
100, and h runs through the values 0.0199, 0.02, 0.0201, 0.0202, and 0.0203, so that (1 + h λ) is -0.99, -1,
-1.01, -1.02, and -1.03. The initial value is deliberately a small amount in error (0.0001).
The errors for the five cases are shown on the next slide. Note that the vertical scale on each plot is
different, getting larger the higher on the slide.
The first case is stable and we see that the initial error is damped, although only slowly since it the damping
factor (1 + h λ) is -0.99 at each step.
In the second case the error oscillates but doesn’t grow since (1 + h λ) is -1.
In the remaining three cases the error grows at ever increasing rates as h gets bigger.

Copyright 2006, C. W. Gear
L2-7

0 1 2 3 4 5 6 7
−2

0

2
x 10

−4

i =
 1

0 1 2 3 4 5 6 7
−5

0

5
x 10

−4

i =
 2

0 1 2 3 4 5 6 7
−5

0

5
x 10

−3

i =
 3

0 1 2 3 4 5 6 7
−0.05

0

0.05

i =
 4

0 1 2 3 4 5 6 7
−1

0

1

i =
 5

Error with different h’s. h = 0.0199 : 0.0001 : 0.0203

Copyright 2006, C. W. Gear
L2-8

In an earlier slide we only considered a single equation. What if we have a system of equations? Let
us consider the linear, constant coefficient case:

y’ = A[y – g(t)] + g’(t)
where A is a p by p matrix. Suppose A can be transformed to Jordan canonical form by

J = SAS-1

and let us assume that J is diagonal (this is not necessary but it simplifies the discussion). By making a
change of variables z = Sy we get the ODE

z’ = J(z – Sg(t)) + Sg’(t)
Since we have assumed that J is diagonal, this represents p independent ODEs, each of the form

z’i = λi(zi – ui(t)) + u’i(t)
where ui(t) is the i-th component of the vector Sg(t) and λi is an eigenvalue of A. Thus we can consider
each equation separately. A method will be absolutely stable for this problem if hλi is in the region of
absolute stability for all i.
When we have the general non-linear problem

y’ = f(y) (1)
we consider small perturbations. Consider the solution y(t) + ε(t). By subtracting (1) from

we get

and we see that the eigenvalues of the Jacobian matrix are the values that determine the
stability of the method.

() () [() ()]

'() / ()
 /

y t t f y t t

t f y t
f y

ε ε

ε ε

′ ′+ = +

= ∂ ∂
∂ ∂

Copyright 2006, C. W. Gear
L2-9

We saw that we define absolute stability in terms of the test equation y’ = λy. The general solution of
this equation is A.exp(λt) for an arbitrary constant of integration, A. If we perturb the solution by a
small amount, that perturbation also changes proportionally to exp(λt). How does this function
behave as t increases?

If we split λ into its real and imaginary parts as λ = μ + iν then we see that the solution behaves like

A.exp(μt) [cos(νt) + i sin(νt)]

Hence, the solution decays whenever the real part of λ is negative. Obviously we might like to find a
numerical method that also had this property. Initially this was thought to be a very important
property for a method, and it was given a name.

DEFINITION: A numerical method is A-stable if for the test equation y’ = λy the method has a
decreasing solution whenever Real(λ) < 0.

This region is referred to the “negative half plane” and a method is A-stable if its stability region
includes the negative half-plane.
Looking back four slides we see that the stability region of the Forward Euler method includes very
little of the negative half plane, and it is not A-stable.

There are A-stable methods, but often their computational cost offsets any advantage they may have.
None-the-less, we have to find methods that have better performance than we just saw with Forward
Euler. All of the methods we have discussed this far have poor performance for stiff equations, but
before we look at other methods, let’s look at the stability properties of these methods.

Copyright 2006, C. W. Gear
L2-10

We usually determine the regions of absolute stability by calculating the boundary of that region where the
amplification factor is one. We can then determine which parts are stable by a continuity argument – if a
point is stable, then any point connected to it by a continuous curve that does not cross the boundary is also
stable.
In our plot for the Forward Euler method, we drew the circle where |(1 + hλ)| = 1, and since it is clearly
stable when hλ = -1 because then |(1 + hλ)| = 0, the interior of this circle is the region of absolute
stability.
We can approach the Runge-Kutta methods in the same way. If we ask what happens when we apply the 4-th

4th order RK method to y’ = λy we will find that we get the recurrence relation
yn+1 = [1 + hλ + (hλ)2/2 + (hλ)3/6 + (hλ)4/24]yn

(It is no accident that the polynomial above is the first five terms of the power series expansion for exp(λt).)
We can find the absolute stability region boundary by finding the values of hλ for which

[1 + hλ + (hλ)2/2 + (hλ)3/6 + (hλ)4/24]yn = exp(iθ)

for θ in [0,2π] (i.e., the amplification has magnitude exactly one). The result is the following. Note that, like
the Forward Euler method, it does not go very far
into the negative half plane, although it does cover
a little more area than the Forward Euler method
which became unstable when hλ< -2 whereas
this is stable until hλ < -2.8 approximately.

Copyright 2006, C. W. Gear
L2-11

When we have multi-step methods it is a little easier to plot the regions of absolute stability. If we
replace y’ with λy in the general method below

and look for solutions of the form yn = ξn we get the following equation

which means we can compute

to find hλ values on the absolute stability boundary by substituting

1 1 11 0

1 1 1
1 0

1 0

[] /

exp(i), [0, 2]

q q
n i n i i n ii i

q qn n i n i
i ii i

q qq q i q i
i ii i

y y h hy

h

h

α β

ξ α ξ β λξ

λ ξ α ξ β ξ

ξ θ θ π

+ + − + −= =

+ + − + −
= =

− −
= =

′= +

= +

= −

= ∈

∑ ∑

∑ ∑

∑ ∑

The next slides show the regions of absolute stability for the Adams Bashforth and Adams
Moulton methods discussed in the last lecture

Copyright 2006, C. W. Gear
L2-12

Adams Bashforth Stability regions. k = 1 corresponds to the Forward Euler
method – the circular region. Note that they get smaller and smaller as the
order, k, which is equal to the step number gets larger. This means that
one would have to use smaller and smaller step sizes as one increased the
order if stability was a problem.

Copyright 2006, C. W. Gear
L2-13

Stability region for Adams-Moulton methods of order k (step number is k-1). This stability plot assumes
that we have somehow solved the implicit equation exactly, although we haven’t yet discussed how.

Note that the regions are much larger than those for the Adams Bashforth method. When we use
Adams Moulton in conjunction with Adams Bashforth in a predictor corrector mode, we get a stability
region somewhere between the two – not as good as Adams Moulton, and not as bad as Adams
Bashforth.

We will be discussing orders 1 and 2 later because they have a special property – they are actually A-
stable if you can solve the implicit equation exactly.

Copyright 2006, C. W. Gear
L2-14

[()] ()

/ (,)

y y g t g t

y F y t

λ

λ

′ ′= − +

′ =

Let us go back to the simple equation where we first saw the problem of stiffness and consider what
happens as λ gets extremely negative (i.e.,).

We see that for all t. If, instead, we had the ODE

it is clear that when we need to solve the implicit equation F(y,t) = 0. For this reason,
if we want to handle arbitrarily large (negative) λ we have to use an implicit method.

Consider the Backward Euler Method:
yn+1 = yn + hy’n+1

Substituting y’ = f(y) we get

yn+1 = yn + hf(yn+1)
This is an implicit equation for yn+1 that has to be solved by some means. In the last lecture we
discussed using the Predictor-Corrector functional iteration

This converges only if Note that when f(y) = λ(y – g(t)) + g’(t) then .
Hence functional iteration will not work because with stiff equations we have the situation that.

1
1 1()n

p p
n ny hfy y+
+ += +

λ → ∞

λ → ∞

()y g t→

/ 1h f y∂ ∂ <

/ 1h f y hλ∂ ∂ = >>

/f y λ∂ ∂ =

Copyright 2006, C. W. Gear
L2-15

The Backward Euler method is the simplest method that is suitable for stiff equations. Let us
assume that somehow we can solve the implicit equation and look at its region of absolute
stability. Substituting y’ = λy into yn+1 = yn + hy’n+1 we get

yn+1 = yn/(1 - hλ)

so we see that the amplification factor is 1 /(1 - hλ) This is less than one in magnitude except
when |(1 - hλ)| ≤1 which is the interior of the unit circle of radius 1 centered at +1 in the right-
half plane as shown below. It is clear that this method is A-Stable because the stability region
includes the whole left-half plane.

-

Complex
hλ-plane

210

Region of absolute stability
is exterior of this region

Copyright 2006, C. W. Gear
L2-16

We can see why the Backward Euler method works for stiff equations graphically, just as we saw eariler
why the Forward Euler method is unstable.

t

y

Backward Euler Steps

The error gets smaller with every
step – the method finds the forward
point such that the slope there
goes through the starting point.

Initial value

Copyright 2006, C. W. Gear
L2-17

We have seen that handling an arbitrarily stiff equation (arbitrarily fast time constants)
requires the use of an implicit method. The Backward Euler method illustrates the
issues when we have to solve

yn+1 = yn + h.f(yn+1)

for yn+1.
We have already observed that functional iteration cannot be used because
and so it would not converge. The next obvious choice is Newton’s method. this takes
the form

Implicit Equations

1
1 1 1 1[] [()]p p p p

n n n n n
fI h y y y y hf y
y

+
+ + + +

⎡ ⎤∂
− − = − − −⎢ ⎥∂⎣ ⎦

where is the p-th iterate in the Newton iteration. In typical use we get a first guess by
using an explicit predictor formula. In most cases, one Newton iteration is sufficient to get
accuracy comparable to the accuracy of the implicit corrector formula. Since, for large systems
of ODEs the computation of the Jacobian and LU decomposition of the matrix involving it is
expensive and because the Jacobian typically changes slowly with time, codes usually do not
re-evaluate unless the Newton iteration does not appear to be converging.

Note that whereas the computational effort in the integration formula for a system of s equations
is roughly proportional to s, the computational effort in the Newton iteration can increase like s2

or s3.

While the solution of the non-linear equations is computationally expensive, it is often much less
costly than using an explicit method with very small step sizes for stiff equations.

1
p
ny +

/ 1h f y∂ ∂

/f y∂ ∂

Copyright 2006, C. W. Gear
L2-18

The Backward Euler Method is A-stable (if we can solve the implicit equation exactly. This method is
actually the first-order Adams Moulton method. A (q+1)-st order Adams Moulton Method has the form

where the β coefficients are chosen to achieve order q+1. If q = 0, we see that it is the Backward
Euler method. If we choose q = 1 we get the method

yn+1 = yn + h(y’n + y’n+1)/2

This is known as the Trapezoidal rule. It has order 2 and is also A-Stable. In fact, it’s region of
absolute stability is exactly the negative half plane. In that sense, it might be considered an
outstanding method for stiff equations – it is stable when they are and it is unstable when they are not.

It also is a good method in another sense, as was shown in another important early paper by
Dahlquist (sometimes called Dahlquist’s second stability barrier). The theorem states that the
maximum order of a multi-step method that is A-Stable is 2, and that among all order-2 multi-step
methods, the one with the smallest local error is the trapezoidal rule.

So, why look for anything else? For some problems, order 2 is inadequate, and for some problems
the trapezoidal rule has an unfortunate property – it does not damp errors in extremely stiff
components. We see that my looking at its amplification factor for the usual test equation y’ = λy.
It is

We can see that as this goes to -1 so that corresponding errors are not damped but
oscillate. This is shown on the next slide with a simple code which shows the superiority of the
Backward Euler for the problem y’ = -1010(y – sin(t)) + cos(t)

1 10
 q

n n i n ii
y y h hyβ+ + −=

′= + ∑

1 / 2
1 / 2

h
h
λ
λ

+
−

hλ→−∞

Copyright 2006, C. W. Gear
L2-19

% Ex8 Trapezoidal rule example for y' = -1E10*(y - sin(t)) + cos(t)
% compared with Backward Euler
lambda = -1E10;
t = 0;
yt = 0.2; %Initial value in error by 0.2
ye = 0.2;
h = 0.01*2*pi; %This is a small enough step for the sin(t) solution.
T = [t];
YE = [ye]; % Backward Euler Solution
YT = [yt]; % Trapezoidal solution
for i = 1:100 % integrate to 2*pi

t = h*i;
ye =(ye + h*(-lambda*sin(t) + cos(t)))/(1 - lambda*h);
yt = (yt*(1+h*lambda/2) +h*(-lambda*(sin(t-h)+sin(t))...

+ cos(t-h)+cos(t))/2)/(1 - lambda*h/2);
T = [T; t];
YT = [YT; yt];
YE = [YE; ye];

end
figure(8)
subplot(2,1,2); plot(T, YE, '-b');
title('Backward Euler')
subplot(2,1,1); plot(T, YT, '-b');
title('Trapezoidal')
print -dpsc Ex8

Note that the damping of the Backward Euler method removes the initial error in one step, while the error
in the trapezoidal rule oscillates and does not noticeably reduce over the interval.

NOTE: The earlier version of this code was in error!

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1
Backward Euler

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5
Trapezoidal

Copyright 2006, C. W. Gear
L2-20

Dalhquist’s 2nd stability barrier says that there are no multi-step methods of order greater than 2 that
are A-Stable.

There are two ways around this impasse:
(1) consider other classes of methods, and
(2) relax the condition of A-stability.
We will look at both of these options briefly.

(1) The general RK method we discussed earlier is an explicit method and takes the form

There is also an implicit RK method that has the form

2

0 1 1 0 0 1
0

1

1
0

1

0
1

1
0

() ; () ; () ;

() ; (1)

q

n n q n q i i
i

q

n n i i
i

q

j n j i i
i

q

n n i i
i

k h f y k h f y k k h f y k

y y h k

k h f y k

y y h k

β β

γ

β

γ

−

−
=

−

+
=

−

=

−

+
=

= = + = +

= +

= +

= +

∑

∑

∑

∑
The q(q+1) coefficients βji and γj of these methods can be chosen to get 2q-th order and these
methods can be made A-Stable. (In fact, for q = 1, this is the trapezoidal method we just discussed.)
If the order is 2q then the method does not damp the very fast components – as we just saw for the
trapezoidal methods, but by lowering the order we can get more desirable properties. The problem
with implicit RK methods is that equation (1) is a set of implicit equations in the q different kj. If the
ODE is a system of s equations, then this is a simultaneous (nonlinear) equation in qs unknowns
which may be expensive to solve since the cost may be proportional to (qs)2 .or (qs)3.

Copyright 2006, C. W. Gear
L2-21

Implicit Runge-Kutta (and a few other methods) allow us to get higher-order A-Stable methods, but
all at the price of increased matrix arithmetic. An alternative approach to using higher order
methods is to relax the requirement of A-Stability. A number less restrictive requirements have
been proposed, of which we will mention one – stiff stability. Recall that the solution of the test
equation y’ = λy when λ = μ + iν is

y(t) = A.exp(μ t) [cos(νt) + i sin(νt)]
In one step νt changes by νh. If the component of the solution corresponding to this is not small,
we must limit the size of νh to something less than about 0.1 in order to accurately track the
oscillating solution. If μ is of a modest size the exponential component will not decay.
Consequently we are not particularly interested in regions of the complex hλ -plane where the real
part is not very negative and the complex part is not small since we typically cannot be using a
step size that would put us in that region. In a region near the origin we are interested in an
accurate solution (since it is not decaying rapidly) while we want absolute stability in that part of the
negative half plane where the real part is less than some negative value, as shown in the Figure
below.

Complex
hλ -plane

Region of accuracy

Region of
absolute
stability

Stiff stability definition

0

Copyright 2006, C. W. Gear
L2-22

There are multi-step methods that are stiffly stable for orders greater than 2. The most
important of these are what are known as the Backward Differentiation Methods. (Backward
Euler is the first order one of this set.)

We introduced Adams methods by approximating the derivative y’(t) with an interpolating
polynomial and integrating it to get y. In the backward differentiation methods, we
approximate y(t) with an interpolating polynomial and differentiate it to get y’(t). We then
equate this to the derivative at the most recent point (tn+1). Suppose that we have q+1 values
of y, say yn+1, yn, yn-1, … , yn+1-q.
Let the q-th degree polynomial that passes through these points be

p(t) = L0(t) yn+1 + L1(t)yn + L2(t)yn-11 + … + Lq(t)yn+1-q

(This is the Lagrange interpolation formula.) Now let’s differentiate this, substitute t = tn+1,
and equate the result to f(yn+1) to get the formula

1 1
0

()
q

i n i n
i

y hf yα + − +
=

=∑
In this formula, we have αi = hL’i(tn+1). This method is of order q. For q < 7 the methods
are stiffly stable. Plots of the boundaries of the regions of absolute stability for BDF
methods are shown on the next slide.

Copyright 2006, C. W. Gear
L2-23

Absolute stability regions for BDF Methods

(a) Order 1 to 3 (b) orders 4 – 6

The regions of stability are the interiors of the regions that are primarily in the right-half plane although
we have not shown the whole of the boundary (except for the first order method) so as to concentrate
on the important region near the origin. Note that as the order increases, the left most point moves
further into the left half plane and the boundary begins to “squeeze” around the negative real axis. If
we went to order 7, the boundary crosses the negative real axis and the method is no longer stiffly
stable, in fact it is not even stable as a method for non-stiff equations.

Copyright 2006, C. W. Gear
L2-24

BDF methods have been used in numerous codes for stiff equations in the same way that Adams
methods have been used for non-stiff equations (except, of course, that for stiff equations a Newton-
like iteration must be used to solve the corrector equation). Any suitable predictor can be used to get
a first guess (and this is really a function of the way the codes are implemented.) The difference
between the predictor and the corrector provides an estimate of the error and is used to determine the
next step size and order.

Some codes may even make estimates of the largest eigenvalue of the Jacobian during the corrector
iteration so as to decide whether to use a stiff or a non-stiff method.

When we used Adams Moulton as a corrector formula we naturally used Adams Bashforth as a
predictor. The reason for doing that is that it uses the past derivatives, y’n-i, that we have already
saved in order to implement the Adams Moulton corrector. When we use BDF as the corrector for stiff
equations, the past values we have saved are the solutions, yn-i, and so it is natural to use these as the
basis for the predictor formula. In this case, the predictor is simply an extrapolation through past
values of y so is not really an integration formula, but this does not change the analysis.

In fact, a linear combination of the predictor and corrector can be used as the answer, in which case
we get properties somewhere between the two. In the MATLAB program ODE15s, which is a variable
order multi-step method for stiff equations, such a combination is the default option (BDF is an
alternative option). The combination was chosen to decrease the size of the error coefficient with a
slight loss in the region of absolute stability. This is described in “The MATLAB ODE Suite, by L. F.
Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18-1, 1997” which is a good
source for some general information on ODE codes.

The point to remember is that countless combinations of methods are possible, and in the end one
should pick those that are embedded in high-quality codes.

Copyright 2006, C. W. Gear
L2-25

As we noted earlier, small systems of ODEs do not pose many difficulties because the amount of
computer time is not excessive. Large problems are the one for which we must look for fast
methods, and this is particularly true for stiff equations if we use implicit methods.

Where do large problems come from? There are moderately large problems from, for example,
chemical kinetics for systems that involve a very large number species. (These are almost always
stiff because some reactions take place very rapidly and others – the ones we usually are interested
in following - are slow.

However, these problems are usually small compared to problems that represent spatially
distributed systems. These are described by Partial Differential Equations (PDEs) but a common
way of handling time-dependent PDEs is the Method of Lines. Consider a very simple time-
dependent PDE – the heat equation. It is:

2

2

u u
t t

μ∂ ∂
=

∂ ∂
where μ is the local heat conductivity. (To keep things simple, we will take μ = 1 below.
Problems like this usually have initial values at, say, t = 0, and boundary conditions at the ends
of the region under consideration. Thus, u may be specified on the three lines shown below:

u(x,0) given0 1 x

t

u(0,t)
given

u(1,t)
given

Copyright 2006, C. W. Gear
L2-26

In the method of lines, we replace the spatial derivatives by finite-dimensional approximations. This can
be done by finite differences, finite elements, spectral methods, or any other spatial approximation. Let us
consider using a finite difference approximation for the spatial partial derivative. To do this, we represent
the solution u(x,t) by its values on a set of lines at various fixed x values, say xi = i/N for i = 0, … , N.
Thus we have N+1 functions ui(t) = u(xi,t). In terms of these we can approximate the spatial partial
derivative by

2
1 1[2]i

i i i
du N u u u
dt − += − +

where δx is the spacing between the “lines” in x and here is 1/N. Note that u0(t) and uN(t) are known
from the boundary conditions at x = 0 and x = 1. Hence we have N-1 unknowns ui that are the
solutions of the ODEs

1 1
2

() 2 () ()(,)
()

i i i
i

u t u t u tu x t
t xδ

− +− +∂
=

∂

This can be written as an initial value problem for the vector equation in the variable u:
u u ()d A g t

dt
= +

where g(t) accounts for the boundary conditions and A is the matrix

2

2 1 0
1 2 1
0 1 2

2 1 0
1 2 1
0 1 2

A N

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

Copyright 2006, C. W. Gear
L2-27

2 1 0
1 2 1
0 1 2

2 1 0
1 2 1
0 1 2

T

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

Matrices like the N-1 by N-1 tri-diagonal matrix on the right
appear frequently when we consider real world simulations
problems because it is intimately linked with diffusion, a
process that occurs in many models. It has such a simple
form that we can write down its eigenvalues and
eigenvectors. The easiest way to see what these are is to
use some simple trigonometry. We look for an eigenvector,
x, whose i-th component is sin(iπ/N) for i = 1, … N-1.
Since we want Tx = λx the i-th row yields the relation

(1) (1)sin 2 sin sin sini k ik i k ik
N N N N

π π π πλ− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Using the relation we immediately find that

Since this is true for any integer k we get the N-1 different eigenvalues

with k = 1, 2, …, N-1.

() () s in s in 2 s in co s
2 2

2[1 co s]

A B A BA B

k
N
πλ

+ −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

Note, therefore, that the eigenvalues of the matrix A on the previous slide range from

2 2 2

2

2
2 2

(1)2 [1 co s] 2 [1 co s] 2 [1 co s]

1 co s 1
2

1 4 [1]
4

to

S in ce th e e ig en va lu es ran g e fro m ap p ro x im a te ly

to

NN N N
N N N

N N

N
N

π π π

π π

ππ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− − − ⎜ ⎟
⎝ ⎠

Copyright 2006, C. W. Gear
L2-28

Hence, the ODE u’ = Au + g(t) has exponential components with these rates. The eigenvectors of the differential
operator on the interval [0,1] are sin(kxπ) (which is why we guessed the eigenvector for the discrete case). The
corresponding solutions to the PDE have the form u(x,t) = exp(λt) sin(kxπ) where we can easily compute the
corresponding eigenvalue as -(kπ)2. Thus we see that the least negative eigenvalue is represented very closely,
but as they get more negative the approximation becomes worse.
However, the faster components die out more rapidly so we are less concerned with good approximations to
them.

For N of any size at all, this equation is stiff because it has large negative eigenvalues compared to the typical
time scales of interest in the solution. It is interesting to solve this by a stiff and a non-stiff automatic method. In
the graph below we show the step sizes used by the codes ode15s (stiff) and ode113 (non stiff – Adams) in
Matlab. Note that the step size used by Adams are multiplied by 100 to be visible. The stiff method used 136
steps with no failures, whereas Adams used 6325 steps and rejected an additional 818 others. The stiff method
increases the step size slowly, Adams “is noisy.” What we see here is typical of an automatic non-stiff code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time

S
te

p
si

ze
 (*

10
0

A
da

m
s)

Stiff
Adams

when it is given a stiff problem to solve.
The code starts the integration with a
small step, finds that the solution is very
slowly changing and starts to increases
the step size. Once the step size gets
so large that hλ is no longer in the
region of absolute stability, small errors
in the solution get amplified by the
instability and increase rapidly in size –
oscillating as we saw in an earlier slide.
This causes the code to think there are
now large derivatives and it reduces the
step size sharply. Once the step size is
small, the method is stable and the
errors damp. this process keeps
repeating. The final errors in the two
solutions are comparable – Adams is a
little larger and oscillates. That and the
code are shown on the next slide.

Copyright 2006, C. W. Gear
L2-29

% Ex9 The heat equation using the Method of Lines
% and a non-stiff and a stiff solver.
clear
reltol = 1E-4; abstol = 1E-6;
N = 50;
y0 = zeros(N-1,1); %Initial value
options = odeset('RelTol',reltol,'AbsTol',abstol,'Stats','on');
% Stiff solution by modified BDF (NDF)
% Note that the ode solvers in Matlab ouput the time values
% at all integration points unless one specifies otherwise.
[T,Y] = ode15s(@fun9,[0 1],y0,options);
figure(9)
hold off
Td = T(2:end) - T(1:end-1); %Step sizes are time differences
plot(T(1:end-1),Td,'-b','LineWidth',2)
hold on
% Non stiff solution by Adams
[T,Y] = ode113(@fun9,[0 1],y0,options);
Td = T(2:end) - T(1:end-1);
plot(T(1:end-1),1E2*Td,'-r')
legend('Stiff','Adams',0)
xlabel('Time')
ylabel('Step size (*100 Adams)')
print -dpsc Ex9

function deriv = fun9(t,y)
%Derivative for the heat equation with
% constant boundary conditions u0 and u1;
u0 = 0.5; u1 = -0.5;
N = size(y,1)+1;
ye = [u0; y; u1]; %y defined on N+1 points
deriv = N^2*(ye(1:end-2) - 2*ye(2:end-1) + ye(3:end));
end

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

X

F
in

a
l
E

rr
o

r

Stiff
Adams

Copyright 2006, C. W. Gear
L2-30

ERROR CONTROL

There are two types of error control that are commonly used in automatic codes (although the
code documentation typically does not tell you which is used. They are called

• Error per unit step
• Error per step
In error per unit step, the estimated local error is controlled to be approximately the error tolerance
provided by the user scaled by the current step size. The idea behind this is that if errors are
neither amplified nor damped by the differential equation in future steps, the global error at the end
will be proportional to the length of the integration interval times the tolerance since the global
error in this case is just the sum of the local errors so we have:

_ _ . . _n nn n
global error local errror Tol h Tol Interval Length= ≤ =∑ ∑

Error per step simply attempts to control each local error to be approximately the tolerance
requested. This technique is perhaps best for stiff problems because the differential equation
tends to damp early errors strongly. Error per unit step is perhaps the most suitable for non-stiff
codes, and often occurs by default because of the mechanism used. A typical code estimates
the local error using some scheme (such as predictor-corrector difference). It then controls the
error to be proportional to the requested tolerance – apparently an error per step approach.
However, the code then uses the estimated error to get a hopefully more accurate answer. The
error is now one order of h higher, and involves derivatives of one order higher. If one assumes
that the size of the higher-order derivatives are approximately a constant multiple of the
derivatives estimated, we now have the actual error proportional to the step size used because of
the extra power of h.

The thought to take away from this discussion is that there can be no guarantee of controlling
the error in an automatic code, so that it will be necessary to make multiple runs if it is important
to understand the accuracy in your solution.

Copyright 2006, C. W. Gear
L2-31

In the previous example we used the method of lines on a simple one-dimensional PDE. While
we may get to fairly large problems when we move to two or three dimensions, we do not get to
the really large problems until we have a system of PDEs with many variables in three space
dimensions. (Often these are so large that we have to look for symmetries so we can solve
them in one or two dimensions as an approximation.

For example, we could be tracking a chemical reaction – such as the burning of fuel – as it
moves through space. There will be as many variables as there are species in the reaction,
plus variables representing the flow of material. The equations have the form

_ _ _iS flow terms diffusion terms reaction terms
t

∂
= + +

∂

with one equation for each species (plus additional equations if we also track pressure,
temperature, and velocity). If we use the equivalent of the method of lines we use a large
number of cells in space. Within each cell we assume that conditions are uniform and the
variables are the various species concentrations. Then we have to follow the chemical
reactions in each cell as well as the transport of material from cell to cell. While the
chemistry in each cell may only involve a modest number of components, say, 100, if we
were solving the problem in three dimensions and used 100 cells in each direction, we would
have 100,000,000 variables – a problem size that is becoming challenging!

When problems reach this size, off-the-shelf software becomes problematic because it has
to be adapted to the particular problem and to the computer environment in use (problems of
this size require large-scale parallelism). Whatever software we use, we have to be aware of
the eigenvalues that may be present in the system because they will play a large role in
deciding on the best method.

Copyright 2006, C. W. Gear
L2-32

Let us illustrate the issues with a simple problem. Suppose that our “chemistry” involves two
species, s1 and s2 and let the column vector u = [s1, s2]T. Suppose that the system is linear so
that the chemistry is represented by

u’ = Ru
(This is too simple for any chemistry problem, but will illustrate the issues.) Let us suppose that
this is taking place in an unstirred liquid where the only other activity is diffusion and that both
species diffuse at the same rate, so we have the PDE (which we will restrict to one dimension to
simplify the discussion) 2

2

u u Ru
t x

∂ ∂
= +

∂ ∂
Let us suppose that we want to model the interval [0,1] – and this time we will use cyclic boundary
conditions (the ends meet each other). If we apply the method of lines to this using N cells we get
the matrix system

2

2

2

2

2

/ 2
/ 2

0

0
/ 2

/ 2

R N I I
I R N I

I
dv N v Av
dt

I
R N I I

I R N

I

II

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

where v = [uT
1, uT

2, … , uT
N]T is a column vector of all of the unknowns, and I is the 2 by 2 identity

matrix. In this case we look at eigenvectors of the form
w = [xT sin(β +2kπ/N), xT sin(β +4kπ/N), …, xT sin(β +2Nkπ/N)]T

where x is an eigenvector of R with corresponding eigenvalue ν.

Copyright 2006, C. W. Gear
L2-33

If we form Aw we get for the j-th pair of rows:
2 2sin(2 /) / 2 2cos(2 /)xN jk N N k Nβ π λ π⎡ ⎤+ − +⎣ ⎦

We get all of the eigenvalues by letting k range from 1 to N. Note that we get 2N
eigenvalues, namely: where λ is either of the two
eigenvalues of R and k ranges from 1 to N.

22 [1 cos(2 /)]N k Nλ π− −

Thus we see that the eigenvalues of the compound system are all of the pair-wise sums of
the eigenvalues of R and of the diffusion operator (this time with cyclic boundary conditions
which changes them slightly).

When we have a more complex system (for example, the chemistry is realistic so the
Jacobian of the reaction system varies from cell to cell) we no longer can find the
eigenvalues explicitly as we did here, but the behavior is similar – there typically will be
eigenvalues close to those found by summing the eigenvalues from the two sources.

In situations like this, the stiffness of the system may primarily be determined by the
chemistry (since reaction kinetics usually include fast components). However, one needs to
understand whether this is true or not. If the eigenvalues of the diffusion operator area
prime cause of stiffness, the best method for solution may be different.

Copyright 2006, C. W. Gear
L2-34

If the eigenvalues due to the chemistry are the dominant ones, the technique of operator
splitting can often be used to save computation.

Conceptually this amounts to the following view of the computation: we first perform the
chemistry in each cell as if it were a stirred reactor with no flow in or out. Having computed
the change over one time step, we then perform the computations that handle the flow from
cell to cell (whether by diffusion, as in the last example, or by hydrodynamic flow). Since we
are handling each cell separately for the chemical kinetics, the size of the implicit system that
must be handled in each cell is only the number of species involved. Hence, any matrix
arithmetic involved is fairly fast. (In fact, this part can very effectively be handled on separate
processors in a parallel processor system.)

It will still be necessary to handle the flow between cells, and, if there is diffusion, it may be
necessary to use an implicit method. However, each component of the system can be
handled independently so the size of the matrices involved is not as large as the original
problem (and, again, they could be handled on separate processors).

Perform Chemistry
on each cell
over time Δt

Move material
between cells
over time Δt

Copyright 2006, C. W. Gear
L2-35

We have seen that implicit methods can be very efficient for stiff systems. However, it is
important to note that while the computation associated with the evaluations of the derivatives
and doing the step-by step integration is roughly proportional to the size of the system, s, the
work involved in solving implicit systems can increase much more rapidly with s.

For smaller problems, it is almost always best to use direct methods for the linear equations
that must be solved in each step of the Newton iteration. A direct method is usually based on
an LU decomposition using Gaussian elimination. If the Jacobian is dense (i.e., most of its
entries are non-zero) then the LU decomposition takes O(s3) operations. The subsequent
backsolve takes O(s2) operations and is faster.

Recall that the matrix system we are solving at each Newton step is

1 1 1[()]p p p
n n n n

fI h y y y hf y
y + + +

⎡ ⎤∂
− Δ = − − −⎢ ⎥∂⎣ ⎦

where Δy is the change in y in one step of the Newton iteration. Computing the Jacobian
also takes additional computer cycles. Codes typically let the user provide a subroutine that
evaluates the Jacobian, or will approximate it by numerical differencing. The latter takes O(s2)
operations also. Since typically does not change very rapidly, codes usually do not re-
evaluate it until they run into convergence problems with the Newton iteration. If the Jacobian
. does not change and h does not change, then the LU decomposition does not change, so it
also is re-used from step to step. (Codes also try to avoid frequent step size changes to avoid
another LU decomposition. In higher order methods, there is also another constant in front of the
h that depends on past step size ratios and the order of the method which complicates the issue
further.)

/f y∂ ∂

/f y∂ ∂

/f y∂ ∂

Copyright 2006, C. W. Gear
L2-36

Regardless of what we do, as the problem dimension gets very large, matrix arithmetic
dominates all of operations.

If the system has some structure (as happens when it arises from a PDE, for example) it is worth
considering iterative methods. These are often particularly valuable when the Jacobian
is relatively sparse, i.e., many of its elements are zero. (This is almost always true when the
systems arises from a partial differential equation handled by finite difference or finite element
methods or related discretizations in space because non zeros in the Jacobian represent
connections between neighboring grid points or elements. It is usually not so if spectral
methods are used.)

The reason iterative methods are useful here is that they typically involve only matrix-vector
products of the form for some small x which does not require much memory space,
whereas an LU decomposition is likely to fill in many of the zeros of the matrix and require a lot
of space (and time). The product can be approximated with the calculation f(y+x) – f(y)
that does not even require an explicit representation of the Jacobian matrix. (Methods based on
this are called Matrix-free methods and are an important tool in some problems.) Note that this
requires that we only want to multiply the Jacobian on the right by a vector, not on the left.
Methods such as conjugate gradient meet this requirement.

Whatever iterative method is used, convergence is much faster if the matrix can be pre-
conditioned. This means that we have another matrix, M, that, in some sense, is an
approximation to the inverse of the matrix in our linear system, and for which Mz
can be computed inexpensively. If, for example, we were using the conjugate gradient method,
we would like to have only a few distinct clusters of eigenvalues since the
number of iterations is roughly proportional to the number of clusters. For many standard PDEs
there are fairly good pre-conditioners in the literature.

/f y∂ ∂

/ .f y x∂ ∂

/ .f y x∂ ∂

[/]I h f y− ∂ ∂

[/]M I h f y− ∂ ∂

Copyright 2006, C. W. Gear
L2-37

In the earlier example of a PDE by the method of lines we used a parabolic equation – the heat
equation. We saw that it had eigenvalues spread along the negative real axis, leading to a stiff
ode problems.

What happens if we start with a hyperbolic equation? Let us consider the one-dimensional wave
equation utt = uxx as an example. By defining v = ut and w = ux we get

v w
t x
w v
t x

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂

Again let us use the method of lines on the spatial interval [0,1] with cyclic boundary conditions
and set N lines at xi = (i – 0.5)/N for i = 1, 2, … ,N. Clearly, Δx = 1/N. We can now approximate the
spatial derivatives to get the system

1 1

1 1

2

2

i i i

i i i

dv w w
dt x
dw v v
dt x

+ −

+ −

−
=

Δ
−

=
Δ

where vN+1 = v1, wN+1 = w1, v0 = vN, and w0 = wN. (to handle the boundary conditions).
If we now create a column vector z = [v1, w1, v2, … , vN, wN]T containing all the variables
we get the system on the next slide

Copyright 2006, C. W. Gear
L2-38

0 0 0
0 0

0 0
1

2
0 0

0 0
0 0 0

0 1
 wh

1 0
ere

B B
B B

B
dz z Az
dt x

B
B B

B B

B

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥Δ ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

We can find the eigenvalues of the matrix A by guessing the eigenvectors (they always
involve sines and cosines in these sort of problems. In this case we set

vi = sin(θ + 2ikπ/N), wi = jcos(θ + 2ikπ/N) where j = √(-1)
for arbitrary θ and integer k. If we look at the i-th pair of rows of Az we get

cos[2(1) /] cos[2(1) /]1
sin[2(1) /] sin[2(1) /]2
2 sin(2 /) sin(2 /) sin(2 /)1 sin(2 /)

2 cos(2 /) sin(2 /) cos(2 /)2

i k N i k N
i k N i k Nx

k N k N ik N
k N

ik N k N ik Nx x

θ π θ π
θ π θ π

θ π π θ π
π

θ π π θ π

− + − + + +⎡ ⎤
⎢ ⎥− + − + + +Δ ⎣ ⎦

− + +⎡ ⎤ ⎡ ⎤−
= =⎢ ⎥ ⎢ ⎥+ +Δ Δ⎣ ⎦ ⎣ ⎦

j j

j j
j

Eigenvalue!

Copyright 2006, C. W. Gear
L2-39

Thus we see that the eigenvalues are all pure imaginary, spread along the imaginary axis out to
1/Δx = N.

Some people have called problems with large imaginary eigenvalues “stiff” but I think it is not
useful since they present very different difficulties. Imaginary eigenvalues correspond to
undamped, high frequency components in the system. If one is certain that the high-frequency
components are absent, it could make sense to look for methods that keep them damped, but a lot
of time these components may be important and should not be neglected. If the components are
present in the system, it is probably necessary to use small steps sizes to resolve them at some
point in the calculation. Higher-order methods often do a better job in approximating some of these
eigenvalues (look back, for example, to the stability region for the 4-th order RK method on slide
L2-10. Note that the boundary follows the imaginary axis quite closely for a while. We will see a
reason why this may be true in the discussion that follows.

CONVERGENCE OF METHODS FOR PDEs.
When we use the method of lines for a PDE we effectively fix the spatial discretization and only
consider the set of ODEs that results. We have discussed convergence of methods for ODEs, and
so we know that we can select methods that will converge to the solution of the ODEs if we take
increasingly small time step sizes. (Of course, we don’t do that in practice.) However, this process
does not converge to the solution of the PDE unless we also reduce the spatial discretization. This
leads to a whole new set of issues concerning stability (that are addressed in numerous texts on
numerical methods for PDEs). Here we will just look at how the issues are different from those in
ODEs and what to look out for when using the method of lines.

Copyright 2006, C. W. Gear
L2-40

The standard “prescription” for testing to see if a numerical solution is sufficiently accurate is to
reduce the mesh size and compare the results. In the case of partial differential equations handled
by the method of lines, this means that one should both check that reducing the time step doesn’t
change the solution by more than an acceptable amount, and also that reducing the space mesh
also does not reduce the solution by more than an acceptable amount, However, it is probably
advisable to integrate both spatial discretizations with two different time steps (or requested error
tolerances) for a total of four integrations.

We see why when we look at the error propogation in methods for partial differential equations.

The general form of the error propagation equation for numerical methods for evolutionary
differential equations always takes the form

εn+1 = An εn + dn (1)

where An is the error amplification matrix, dn is the local error and εn is the global error. An
determines whether the error grows or decreases from step to step. The matrix involves
information from both the method and the equation, and for general methods can be quite complex.
In the simple case of Forward Euler for a linear problem, the matrix is the scalar (1 + hλ) – the λ
coming from the problem and the linear polynomial from the Forward Euler method.

For a linear, constant coefficient differential equation and with constant step sizes, An is
independent of n so it is clear that we are concerned with the size of An as n increases since we
can write the solution of (1) as

1 1
0

n n i
n ii

A dε − − −
=

= ∑

Copyright 2006, C. W. Gear
L2-41

1 1
0

n n i
n ii

A dε − − −
=

= ∑
If we want to bound the size of the solution of

we want to bound An. If A had eigenvalues all less than one, the problem would be trivial
because then we know that A is power bounded (that is, there is an upper bound on An no
matter how large n). However, A necessarily has one eigenvalue that is an approximation
to exp(hλ) so the minor challenge in a convergence proof has to do with showing that An

is power bounded over the interval of integration. (That task is usually a little messy but
not difficult.)
However, when we have a partial differential equation, the dimension of the matrix A is
dependent on the spatial discretization which is increasing as we decrease the space
mesh size. Since with a smaller space mesh size, we have to solve a larger system of
ODEs, integrating with the same time step size, or the same error tolerance may not
necessarily yield answers of comparable accuracy. We can see shy when we look at an
important concept in PDEs, particularly in hyperbolic equations (although a related issue
arises in parabolic equations). The solution of a hyperbolic equation has characteristics
which are lines in space along which information is propagated. In the wave equation we
discuss earlier, these are the lines x+t = c and x-t = c for any values of the constant c. (For
general non-linear PDEs they are much more complex and depend on the solution.) The
value of the solution at a given point in space and time, (x,t), influences only those future
points that can be reached by the characteristics as shown below:

x

t

Characteristic
Region of
influence

Copyright 2006, C. W. Gear
L2-42

For example, sound propagates at a given speed in a medium, its line of propagation is a
characteristic. If you are some distance away from the place lightning strikes, you do not hear
the thunder until the sound has had time to travel to you. Until that time you are unaware of
the noise.

The region of influence leads to another extremely important concept – what places in the
past can influence what is happening to me now. If I am at time T and position x I might ask
what positions at time t < T can affect my current state. The answer is the domain of
dependence. It is also determined by the characteristics as shown below

x

t

Characteristic

Domain of
dependence

The solution at the black dot may depend on the values from anywhere within the domain
of dependence. (For the simple wave equation it only depends on the values at the end
points of the domain of dependence, but this is a special case.) This means that if our
numerical method does not make use of information from the whole of the domain of
dependence, it cannot possibly converge to the true solution as we reduce the space and
time steps.

Copyright 2006, C. W. Gear
L2-43

x

t

Δ x

Δt

xi-1 xi xi+1

tn

tn+1

If, for example, we used a space and time mesh as shown below and used Forward
Euler on the simple wave equation discussed earlier, we would only be using
information from part of the domain of dependence. (This shows up as instability in the
method in this and most cases.) In other words, the time step size has to be limited
dependent on the spatial step size. If we use a higher order RK like method that uses
multiple function evaluations, it effectively reaches out further, which is why it has
better stability along the imaginary axis. If we use implicit methods, the solution of the
implicit equation propagates information from all spatial points. However, such
methods are often not the best for hyperbolic problems. However if there is fluid flow
along with fast reactions, the imaginary eigenvalues due to the flow are usually much
smaller than the eigenvalues due to any diffusion and any reaction kinetics, so the flow
can usually be handled explicitly.

Copyright 2006, C. W. Gear
L2-44

For an introductory look at stiff problems, look at the paper:

L. F. Shampine and C. W. Gear, A User's View of Solving Stiff Ordinary Differential
Equations, SIAM Journal on Numerical Analysis, Vol. 21, No. 1. (Jan., 1979), pp. 1-17, .
(This is not on my web page.)

For extensive mathematical material, reference the book:

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Equations, 2nd ed. 1996, Springer-Verlag

