Numerical methods for nonlinear eigenvalue problems

Daniel Kressner Seminar for applied mathematics ETH Zürich
kressner@math.ethz.ch
http://www.math.ethz.ch/~kressner

29.06.09, Karlsruhe

Outline

- Motivating application
- Photonic band gap structure calculation
- Structured quadratic eigenvalue problems
- Linearizations and structured linearizations
- Structure-preserving Krylov subspace methods
- Genuinely nonlinear eigenvalue problems
- Dealing with several eigenvalues
- A block Newton method
- Continuation of eigenvalues
- Future work

Motivating Application

Photonic crystals

- photonic crystal = lattice of mixed dielectric media (e.g., air and silicon)
- control light by designing media that prohibits propagation of electromagnetic waves in certain frequency range
- complete photonic band gap = frequency range with no propagation of electromagnetic waves of any polarization travelling in any direction.

2D periodic crystal

- material periodic along x - and y-direction; homogeneous along z-direction
- consider only electromagnetic waves with propagation in $x y$-plane

Mathematical model

Time-harmonic modes of electronicmagnetic wave (E, H) (E electric field, H magnetic field) decompose:

- transverse electric (TE) polarized modes ($E_{x}, E_{y}, 0,0,0, H_{z}$)
- transverse magnetic (TM) polarized modes ($0,0, E_{z}, H_{x}, H_{y}, 0$)

Macroscopic Maxwell equations \rightsquigarrow scalar equation for E_{z} of TM-mode at frequency

$$
-\Delta E_{z}=\omega^{2} \varepsilon(r, \omega) E_{z},
$$

where $r=(x, y)$ and ε denotes relative permittivity.

Mathematical model

Time-harmonic modes of electronicmagnetic wave (E, H) (E electric field, H magnetic field) decompose:

- transverse electric (TE) polarized modes ($E_{x}, E_{y}, 0,0,0, H_{z}$)
- transverse magnetic (TM) polarized modes ($0,0, E_{z}, H_{x}, H_{y}, 0$)

Macroscopic Maxwell equations \rightsquigarrow scalar equation for E_{z} of TM-mode at frequency ω :

$$
-\Delta E_{z}=\omega^{2} \varepsilon(r, \omega) E_{z}
$$

where $r=(x, y)$ and ε denotes relative permittivity.

Bloch solutions

By Bloch's theorem, E_{z} takes the form

$$
E_{z}(r)=e^{\mathrm{i} k \cdot r} u(r),
$$

where k is a wave vector \in Brillouin zone, $u(r)$ periodic on lattice

Bloch solutions

By Bloch's theorem, E_{z} takes the form

$$
E_{z}(r)=e^{i k \cdot r} u(r),
$$

where k is a wave vector \in Brillouin zone, $u(r)$ periodic on lattice \rightsquigarrow

$$
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \varepsilon(r, \omega) u(r)
$$

Finding band gaps

The goal is to find frequency ranges [$\omega_{\text {low }}, \omega_{\text {high }}$] for which

$$
\begin{equation*}
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \varepsilon(r, \omega) u(r) \tag{1}
\end{equation*}
$$

has no solution.
Two approaches:

1. Fix frequency ω and wave vector direction $\hat{k} \rightsquigarrow$ quadratic eigenvalue problem in wave vector length $\lambda=\|k\|$. FE discretization of (1) \rightsquigarrow

$$
\left(A_{0}+\lambda A_{1}+\lambda^{2} A_{2}\right) x=0, \quad x \neq 0
$$

with A_{0}, A_{2} real symmetric and $\sqrt{-1} A_{1}$ real skew-symmetric.
2. Fix wave vector $k \rightsquigarrow$ nonlinear eigenvalue problem in ω.

FE discretization of (1) \rightsquigarrow

$$
\left(-\omega^{2} \varepsilon_{1}(\omega) A_{1}-\omega^{2} \varepsilon_{2}(\omega) A_{2}+A_{3}\right) x=0, \quad x \neq 0
$$

with A_{1}, A_{2} Hermitian pos semidef, A_{3} Hermitian pos def.

Quadratic Eigenvalue Problems

Setting

$\left(A_{0}+\lambda A_{1}+\lambda^{2} A_{2}\right) x=0, \quad x \neq 0$. with A_{0}, A_{2} real symmetric and $\sqrt{-1} A_{1}$ real skew-symmetric.

Only nonnegative real eigenvalues of interest!

Setting

$$
\left(A_{0}+\lambda A_{1}+\lambda^{2} A_{2}\right) x=0, \quad x \neq 0
$$

with A_{0}, A_{2} real symmetric and $\sqrt{-1} A_{1}$ real skew-symmetric.

Substituting $\lambda \rightarrow \sqrt{-1} \lambda$ yields
$\left(\tilde{A}_{0}+\lambda \tilde{A}_{1}+\lambda^{2} \tilde{A}_{2}\right) x=0, \quad x \neq 0$.
with A_{0}, A_{2} real symmetric and A_{1} real skew-symmetric.

Standard approach to solving QEPs

1. Linearization. Introducing "velocity" $y=\lambda x$ the equation

$$
\left(A_{0}+\lambda A_{1}+\lambda^{2} A_{2}\right) x=0
$$

becomes a linear eigenvalue problem:

$$
\left(\lambda\left[\begin{array}{cc}
0 & A_{2} \tag{2}\\
I & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{0} & A_{1} \\
-I & 0
\end{array}\right]\right)\left[\begin{array}{c}
x \\
\lambda x
\end{array}\right]=0
$$

2. Solution. Apply standard eigenvalue solver (e.g., a Krylov subspace method) to (2).

Krylov subspace method applied to linearization

- No preservation of spectral symmetries \rightsquigarrow difficult to detect purely imaginary eigenvalues reliably.
- Fundamental problem: Linearization

$$
\left(\lambda\left[\begin{array}{cc}
0 & A_{2} \\
l & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{0} & A_{1} \\
-I & 0
\end{array}\right]\right)\left[\begin{array}{c}
x \\
\lambda x
\end{array}\right]=0
$$

does not reflect matrix symmetries.

- Way out: Use more suitable linearization.

Rich class of linearizations described in

- D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.
- D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029-1051, 2006.
- No preservation of spectral symmetries \rightsquigarrow difficult to detect purely imaginary eigenvalues reliably.
- Fundamental problem: Linearization

$$
\left(\lambda\left[\begin{array}{cc}
0 & A_{2} \\
l & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{0} & A_{1} \\
-l & 0
\end{array}\right]\right)\left[\begin{array}{c}
x \\
\lambda x
\end{array}\right]=0
$$

does not reflect matrix symmetries.

- Way out: Use more suitable linearization.

Rich class of linearizations described in

- D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):971-1004, 2006.
- D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029-1051, 2006.

Structured linearization

Use the following linearization:

$$
\lambda\left[\begin{array}{cc}
A_{1} & A_{0} \tag{3}\\
-A_{0} & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{2} & 0 \\
0 & A_{0}
\end{array}\right]
$$

This is a skew-symmetric/symmetric matrix pencil \rightsquigarrow preserves spectral symmetries.
By congruence transformations: $(4) \Leftrightarrow$

Structured linearization

Use the following linearization:

$$
\lambda\left[\begin{array}{cc}
A_{1} & A_{0} \tag{3}\\
-A_{0} & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{2} & 0 \\
0 & A_{0}
\end{array}\right]
$$

This is a skew-symmetric/symmetric matrix pencil \rightsquigarrow preserves spectral symmetries.
By congruence transformations: $(4) \Leftrightarrow$

$$
\lambda\left[\begin{array}{cc}
0 & l \\
-l & 0
\end{array}\right]+\left[\begin{array}{cc}
\tilde{A}_{2} & \tilde{A}_{1} \\
\tilde{A}_{1}^{T} & l
\end{array}\right], \quad \tilde{A}_{2}=\tilde{A}_{2}^{T}
$$

Structured linearization

Use the following linearization:

$$
\lambda\left[\begin{array}{cc}
A_{1} & A_{0} \tag{4}\\
-A_{0} & 0
\end{array}\right]+\left[\begin{array}{cc}
A_{2} & 0 \\
0 & A_{0}
\end{array}\right]
$$

This is a skew-symmetric/symmetric matrix pencil \rightsquigarrow preserves spectral symmetries.
By congruence transformations: $(4) \Leftrightarrow$

$$
\lambda\left[\begin{array}{ll}
l & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
-\tilde{A}_{1}^{T} & -I \\
\tilde{A}_{2} & \tilde{A}_{1}
\end{array}\right], \quad \tilde{A}_{2}=\tilde{A}_{2}^{T}
$$

This is a Hamiltonian eigenvalue problem \rightsquigarrow preserves spectral symmetries.
To exploit structure, apply Hamiltonian Arnoldi [DK'05] (Variant of SHIRA [Mehrmann/Watkins'01]).

Hamiltonian Arnoldi

Basic Ideas:

$$
W=\left[\begin{array}{cc}
-\tilde{A}_{1}^{T} & -I \\
\tilde{A}_{2} & \tilde{A}_{1}
\end{array}\right]^{2}=\left[\begin{array}{cc}
\left(A_{1}^{T}\right)^{2}+A_{2} & A_{1}-A_{1}^{T} \\
A_{1} A_{2}-A_{2} A_{1}^{T} & A_{1}^{2}+A_{2}
\end{array}\right]
$$

is skew-Hamiltonian.

- Krylov subspace

$$
\mathcal{K}_{k}(W, b)=\operatorname{span}\left\{b, W b, \ldots, W^{k-1} b\right\}
$$

is isotropic: $\mathcal{K}_{k}(W, b)^{T}\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right] \mathcal{K}_{k}(W, b)=0$.

- Compression of W to an isotropic subspace ($U^{\top} W U$ where cols of U span subspace) is again skew-Hamiltonian \rightsquigarrow structure preservation.
SHIRA works explicitly with W; Hamiltonian Arnoldi works with original Hamiltonian matrix.

Hamiltonian Arnoldi

Basic Ideas:

$$
W=\left[\begin{array}{cc}
-\tilde{A}_{1}^{T} & -I \\
\tilde{A}_{2} & \tilde{A}_{1}
\end{array}\right]^{2}=\left[\begin{array}{cc}
\left(A_{1}^{T}\right)^{2}+A_{2} & A_{1}-A_{1}^{T} \\
A_{1} A_{2}-A_{2} A_{1}^{T} & A_{1}^{2}+A_{2}
\end{array}\right]
$$

is skew-Hamiltonian.

- Krylov subspace

$$
\mathcal{K}_{k}(W, b)=\operatorname{span}\left\{b, W b, \ldots, W^{k-1} b\right\}
$$

is isotropic: $\mathcal{K}_{k}(W, b)^{T}\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right] \mathcal{K}_{k}(W, b)=0$.

- Compression of W to an isotropic subspace ($U^{\top} W U$ where cols of U span subspace) is again skew-Hamiltonian \rightsquigarrow structure preservation.
SHIRA works explicitly with W; Hamiltonian Arnoldi works with original Hamiltonian matrix.

Hamiltonian Arnoldi applied to structured linearization

Hamiltonian Arnoldi

Structure-preserving Krylov subspace method preserves spectral symmetries.

Hamiltonian Arnoldi applied to structured linearization

Hamiltonian Arnoldi

Structure-preserving Krylov subspace method preserves spectral symmetries.

Hamiltonian Arnoldi applied to structured linearization

Hamiltonian Arnoldi

Structure-preserving Krylov subspace method preserves spectral symmetries.

Hamiltonian Arnoldi applied to structured linearization

Hamiltonian Arnoldi

Structure-preserving Krylov subspace method preserves spectral symmetries.

Summary

Use of quadratic eigenvalue problems in electronic band structure calculation fairly new and suggested in [Leminger'02;
Engström/Richter'08]:

- Fix frequency ω and direction \hat{k} of $k=\lambda \hat{k}$.
- For each ($\omega, k_{\text {dir }}$), need to check \nexists purely imaginary eigenvalues of quadratic EVP

$$
\left(\tilde{A}_{0}+\lambda \tilde{A}_{1}+\lambda^{2} \tilde{A}_{2}\right) x=0, \quad x \neq 0 .
$$

with $\tilde{A}_{0}, \tilde{A}_{2}$ real symmetric, and \tilde{A}_{1} real skew-symmetric.

+ always quadratic EVP independent of nature of permittivity
+ T-even polynomial, nice spectral structures
- large sample space
- finding all eigenvalues on imaginary axis is expensive
- unclear how to use continuation, eigenvalues might creep from anywhere into the imaginary axis

Nonlinear Eigenvalue Problems

Setting

- Fix wave vector k.
- For each k, need to solve nonlinear EVP

$$
T(\lambda) x:=\left(-\omega^{2} \varepsilon_{1}(\omega) A_{1}-\omega^{2} \varepsilon_{2}(\omega) A_{2}+A_{3}\right) x=0, \quad x \neq 0
$$

- A_{1}, A_{2} Hermitian pos semidef, A_{3} Hermitian pos def.
- $\varepsilon_{j}(\omega)$ chosen by engineering intuition
- Lossless material $\rightsquigarrow \omega \in \mathbb{R}$.
- Usually only lowest frequencies of interest

Nonlinear eigenvalue problems

Consider nonlinear eigenvalue problems (NLEVPs)

$$
T(\lambda) x:=\left(f_{1}(\lambda) A_{1}+f_{2}(\lambda) A_{2}+\cdots+f_{m}(\lambda) A_{m}\right) x=0, \quad x \neq 0
$$

with $A_{1}, \ldots, A_{m} \in \mathbb{C}^{n \times n}$, analytic functions $f_{1}, \ldots, f_{m}: \Omega \rightarrow \mathbb{C}$.

Simple examples:

- Linear eigenvalue problems:

$$
f_{1}(\lambda)=1, f_{2}(\lambda)=-\lambda .
$$

- Polynomial eigenvalue problems:

$$
f_{1}(\lambda)=1, f_{2}(\lambda)=\lambda, \ldots, f_{m}(\lambda)=\lambda^{m-1} .
$$

Nonlinear eigenvalue problems

Consider nonlinear eigenvalue problems (NLEVPs)

$$
T(\lambda) x:=\left(f_{1}(\lambda) A_{1}+f_{2}(\lambda) A_{2}+\cdots+f_{m}(\lambda) A_{m}\right) x=0, \quad x \neq 0
$$

with $A_{1}, \ldots, A_{m} \in \mathbb{C}^{n \times n}$, analytic functions $f_{1}, \ldots, f_{m}: \Omega \rightarrow \mathbb{C}$.

Simple examples:

- Linear eigenvalue problems:

$$
f_{1}(\lambda)=1, f_{2}(\lambda)=-\lambda .
$$

- Polynomial eigenvalue problems:

$$
f_{1}(\lambda)=1, f_{2}(\lambda)=\lambda, \ldots, f_{m}(\lambda)=\lambda^{m-1}
$$

Numerical methods for one eigenvalue

- Most obvious: Apply Newton to

$$
T(\lambda) x=0, \quad w^{H} x=1
$$

for some normalization vector $w \in \mathbb{C}^{n}$. Requires solution of linear system with varying system matrix in each iteration $\left(T(\lambda)^{-1} T^{\prime}(\lambda) v\right)$.

- Variant: Neumaier's (1985) residual inverse iteration chooses fixed shift σ and requires solution of linear system with fixed system matrix $\left(T(\sigma)^{-1} T^{\prime}(\lambda) v\right)$
- Subspace acceleration by Ruhe (1973), Hager and Wiberg (2000), Voss (2003).
- See [Mehrmann and Voss (2004), Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods, GAMM Mitteilungen] for an overview of methods aimed at computing individual eigenvalues.

Dealing with several eigenvalues

For simplicity, assume $m=2$.
Let λ_{1}, λ_{2} be eigenvalues with eigenvectors x_{1}, x_{2} :

$$
\begin{aligned}
& \left(f\left(\lambda_{1}\right) A_{1}+f\left(\lambda_{1}\right) A_{2}\right) x_{1}=0 \\
& \left(f\left(\lambda_{2}\right) A_{1}+f\left(\lambda_{2}\right) A_{2}\right) x_{2}=0
\end{aligned}
$$

Rearranging terms...

$$
\begin{aligned}
& A_{1} x_{1} f\left(\lambda_{1}\right)+A_{2} x_{1} f\left(\lambda_{1}\right)=0 \\
& A_{1} x_{2} f\left(\lambda_{2}\right)+A_{2} x_{2} f\left(\lambda_{2}\right)=0
\end{aligned}
$$

...and merging both equations...

$$
A_{1}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f\left(\lambda_{1}\right) & 0 \\
0 & f\left(\lambda_{2}\right)
\end{array}\right]+A_{2}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f\left(\lambda_{1}\right) & 0 \\
0 & f\left(\lambda_{2}\right)
\end{array}\right]=0
$$

Dealing with several eigenvalues

For simplicity, assume $m=2$.
Let λ_{1}, λ_{2} be eigenvalues with eigenvectors x_{1}, x_{2} :

$$
\begin{aligned}
& \left(f\left(\lambda_{1}\right) A_{1}+f\left(\lambda_{1}\right) A_{2}\right) x_{1}=0 \\
& \left(f\left(\lambda_{2}\right) A_{1}+f\left(\lambda_{2}\right) A_{2}\right) x_{2}=0
\end{aligned}
$$

Rearranging terms...

$$
\begin{aligned}
& A_{1} x_{1} f\left(\lambda_{1}\right)+A_{2} x_{1} f\left(\lambda_{1}\right)=0 \\
& A_{1} x_{2} f\left(\lambda_{2}\right)+A_{2} x_{2} f\left(\lambda_{2}\right)=0
\end{aligned}
$$

...and merging both equations...

$$
A_{1}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f\left(\lambda_{1}\right) & 0 \\
0 & f\left(\lambda_{2}\right)
\end{array}\right]+A_{2}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f\left(\lambda_{1}\right) & 0 \\
0 & f\left(\lambda_{2}\right)
\end{array}\right]=0
$$

Set $X=\left[x_{1}, x_{2}\right], S=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] \rightsquigarrow A_{1} X f_{1}(S)+A_{2} X f_{2}(S)=0$.

Invariant pairs

$(X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ is called an invariant pair if

$$
A_{1} X f_{1}(S)+A_{2} X f_{2}(S)+\cdots+A_{m} X f_{m}(S)=0
$$

Remarks:

- For linear eigenvalue problems: $A_{1} X-X S=0 \rightsquigarrow \operatorname{span}(X)$ is invariant subspace belonging to $\Lambda(S)$.
- Theory in [Gohberg/Lancaster/Rodman'82] for $k=n$ and polynomial eigenvalue problems.
- For arbitrary k introduced and analyzed in [Beyn/Thümmler'08] for quadratric EVPs with invertible A_{1}.
- Extended to general polynomial EVPs in [Betcke/K.'09] and to nonlinear EVPs in [K.'09].

Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate situations, such as $X=0$.

$$
\text { Is rank }(X)=k \text { a reasonable condition? }
$$

Example [Dennis/Traub/Weber'76]:

$$
\left[\begin{array}{cc}
0 & 12 \\
-2 & 14
\end{array}\right]+\lambda\left[\begin{array}{cc}
-1 & -6 \\
2 & -9
\end{array}\right]+\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The eigenvalues 3 and 4 share the same eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate situations, such as $X=0$.

$$
\text { Is rank }(X)=k \text { a reasonable condition? }
$$

Example [Dennis/Traub/Weber'76]:

$$
\left[\begin{array}{cc}
0 & 12 \\
-2 & 14
\end{array}\right]+\lambda\left[\begin{array}{cc}
-1 & -6 \\
2 & -9
\end{array}\right]+\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The eigenvalues 3 and 4 share the same eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
No!

Minimal invariant pairs

Invariant pair $(X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ is called minimal (of index ℓ) if

$$
V_{\ell}(X, S):=\left[\begin{array}{c}
X \\
X S \\
\vdots \\
X S^{\ell-1}
\end{array}\right]
$$

has full column rank.
For previous example:

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad S=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right]
$$

Then

Minimal invariant pairs

Invariant pair $(X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ is called minimal (of index ℓ) if

$$
V_{\ell}(X, S):=\left[\begin{array}{c}
X \\
X S \\
\vdots \\
X S^{\ell-1}
\end{array}\right]
$$

has full column rank.
For previous example:

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad S=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right]
$$

Then

$$
V_{1}(X, S)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad V_{2}(X, S)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
3 & 4 \\
3 & 4
\end{array}\right]
$$

$V_{2}(X, S)$ has full column rank $\rightsquigarrow(X, S)$ is minimal.

Minimal invariant pairs

Fundamental properties (polynomial: [Beyn/Thümmler’08], [Betcke/K.'09]; nonlinear [K.'09]):

- For pairwise distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ with eigenvectors x_{1}, \ldots, x_{k},

$$
(X, S)=\left(\left[x_{1}, \ldots, x_{m}\right], \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)
$$

is minimal invariant.

- (X, S) minimal invariant $\rightsquigarrow\left(X P, P^{-1} S P\right)$ minimal invariant.
- (X, S) minimal invariant \rightsquigarrow eigenvalues of S are eigenvalues of NLEVP.
- It is always possible to choose $\ell \leq k$.
- Nonminimal pairs (X, S) can be reduced: \exists minimal invariant pair $(\widetilde{X}, \widetilde{S})$ s.t. $\operatorname{span}(\widetilde{X})=\operatorname{span}(X)$ and $\Lambda(\widetilde{S})=\Lambda(S)$.

Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator equations of which (X, S) is a regular value.

$$
\mathbb{T}(X, S)=0
$$

with $X A_{1} f_{1}(S)+\cdots+X A_{m} f_{m}(S)$,
(5) not sufficient to characterize (X, S).

Normalization condition: Choose $W^{H}=V_{\ell}(X, S)^{\dagger} \rightsquigarrow$

$$
\mathbb{V}(X, S)=0
$$

Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator equations of which (X, S) is a regular value.

$$
\begin{equation*}
\mathbb{T}(X, S)=0 \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathbb{T}: \mathbb{C}^{n \times k} \times \mathbb{C}_{\Omega}^{k \times k} & \rightarrow \mathbb{C}^{n \times k}, \\
(X, S) & \mapsto X A_{1} f_{1}(S)+\cdots+X A_{m} f_{m}(S),
\end{aligned}
$$

(5) not sufficient to characterize (X, S).

Normalization condition: Choose $W^{H}=V_{\ell}(X, S)^{\dagger} \rightsquigarrow$

$$
\mathbb{V}(X, S)=0
$$

Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator equations of which (X, S) is a regular value.

$$
\begin{equation*}
\mathbb{T}(X, S)=0 \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathbb{T}: \mathbb{C}^{n \times k} \times \mathbb{C}_{\Omega}^{k \times k} & \rightarrow \mathbb{C}^{n \times k} \\
(X, S) & \mapsto X A_{1} f_{1}(S)+\cdots+X A_{m} f_{m}(S),
\end{aligned}
$$

(5) not sufficient to characterize (X, S).

Normalization condition: Choose $W^{H}=V_{\ell}(X, S)^{\dagger} \rightsquigarrow$

$$
\begin{align*}
& \mathbb{V}(X, S)=0 \tag{6}\\
& \mathbb{V}: \mathbb{C}^{n \times k} \times \mathbb{C}_{\Omega}^{k \times k} \rightarrow \mathbb{C}^{k \times k} \\
&(X, S) \mapsto W^{H} V_{\ell}(X, S)-I_{k} .
\end{align*}
$$

Linearizing \mathbb{T} and \mathbb{V}

Fréchet derivatives of \mathbb{T} and \mathbb{V} at (X, S) :

$$
\begin{array}{ll}
\mathbb{D T}:(\triangle X, \triangle S) & \mapsto \mathbb{T}(\triangle X, S)+\sum_{j=1}^{m} A_{j} X\left[\mathbb{D} f_{j}(S)\right](\triangle S) \\
\mathbb{D V}:(\triangle X, \triangle S) & \mapsto W_{0}^{H} \triangle X+\sum_{j=1}^{\ell-1} W_{j}^{H}\left(\triangle X S^{j}+X \mathbb{D}^{j}(\triangle S)\right)
\end{array}
$$

Note that the Fréchet derivative of f_{j} at S can be computed using [Mathias'96, Higham'08]

$$
f_{j}\left(\left[\begin{array}{cc}
S & \triangle S \\
0 & S
\end{array}\right]\right)=\left[\begin{array}{cc}
f_{j}(S) & {\left[\mathbb{D} f_{j}(S)\right](\triangle S)} \\
0 & f_{j}(S)
\end{array}\right]
$$

Linearizing \mathbb{T} and \mathbb{V}

Fréchet derivatives of \mathbb{T} and \mathbb{V} at (X, S) :

$$
\begin{array}{ll}
\mathbb{D T}:(\triangle X, \triangle S) & \mapsto \mathbb{T}(\triangle X, S)+\sum_{j=1}^{m} A_{j} X\left[\mathbb{D} f_{j}(S)\right](\triangle S) \\
\mathbb{D V}:(\triangle X, \triangle S) & \mapsto W_{0}^{H} \triangle X+\sum_{j=1}^{\ell-1} W_{j}^{H}\left(\triangle X S^{j}+X \mathbb{D} S^{j}(\triangle S)\right) .
\end{array}
$$

Note that the Fréchet derivative of f_{j} at S can be computed using [Mathias'96, Higham'08]

$$
f_{j}\left(\left[\begin{array}{cc}
S & \triangle S \\
0 & S
\end{array}\right]\right)=\left[\begin{array}{cc}
f_{j}(S) & {\left[\mathbb{D} f_{j}(S)\right](\triangle S)} \\
0 & f_{j}(S)
\end{array}\right] .
$$

Is $\mathbb{L}=(\mathbb{D T}, \mathbb{D V})$ invertible at a minimal invariant pair (X, S) ?

Theorem (K.'09)

Let (X, S) be minimal invariant. The "Jacobian" \mathbb{L} of (\mathbb{T}, \mathbb{V}) at (X, S) is invertible if and only if (X, S) is simple.

Remarks:

1. (X, S) is called simple if the algebraic multiplicities of S match those of the NLEVP.
2. Theorem implies local quadratic convergence of Newton iteration applied to $(\mathbb{T}(X, S), \mathbb{V}(X, S))=(0,0)$.

Newton method for computing invariant pairs

Input: Initial pair $\left(X_{0}, S_{0}\right)$.
Output: Approximate solution $\left(X_{p+1}, S_{p+1}\right)$.
1: $p \leftarrow 0, W \leftarrow V_{l}\left(X_{0}, S_{0}\right)$
2: repeat
3: \quad Res $\leftarrow \mathbb{T}\left(X_{p}, S_{p}\right)$
4: \quad Solve linear matrix equation $\mathbb{L}_{p}(\triangle X, \triangle S)=($ Res, 0$)$.
5: $\quad \widetilde{X}_{p+1} \leftarrow X_{p}-\triangle X, \quad \widetilde{S}_{p+1} \leftarrow S_{p}-\triangle S$
6: \quad Compute compact QR decomposition $V_{l}\left(X_{p}, S_{p}\right)=W R$.
7: $\quad X_{p+1} \leftarrow \widetilde{X}_{p} R^{-1}, \quad S_{p+1} \leftarrow R \widetilde{S}_{p+1} R^{-1}$
8: until convergence

Remarks:

- If no good initial guess available, use variant of inverse iteration to create one.
- Add simple line search to enhance global convergence properties.
- Step 4 is very expensive, $\mathcal{O}\left(k^{3}(n+k)^{3}\right)$ flops to solve linear system! After a Schur decomposition of S_{p}, block lower triangular structure of $\mathbb{L}_{p}(\triangle X, \triangle S) \rightsquigarrow \mathcal{O}\left(k(n+k)^{3}\right)$ flops.

Newton method for computing invariant pairs

Input: Initial pair (X_{0}, S_{0}).
Output: Approximate solution (X_{p+1}, S_{p+1}).
1: $p \leftarrow 0, W \leftarrow V_{l}\left(X_{0}, S_{0}\right)$
2: repeat
3: $\quad \operatorname{Res} \leftarrow \mathbb{T}\left(X_{\rho}, S_{p}\right)$
4: \quad Solve linear matrix equation $\mathbb{I}_{p}(\triangle X, \triangle S)=($ Res, 0$)$.
5: $\quad \widetilde{X}_{p+1} \leftarrow X_{p}-\Delta X, \quad \widetilde{S}_{p+1} \leftarrow S_{p}-\Delta S$
6: Compute compact QR decomposition $V_{l}\left(X_{\rho}, S_{\rho}\right)=W R$.
7: $\quad X_{p+1} \leftarrow \widetilde{X}_{p} R^{-1}, \quad S_{p+1} \leftarrow R \widetilde{S}_{p+1} R^{-1}$
8: until convergence

Remarks:

- If no good initial guess available, use variant of inverse iteration to create one.
- Add simple line search to enhance global convergence properties.
- Step 4 is very expensive, $\mathcal{O}\left(k^{3}(n+k)^{3}\right)$ flops to solve linear system! After a Schur decomposition of S_{p}, block lower triangular structure of $\mathbb{L}_{p}(\triangle X, \triangle S) \rightsquigarrow \mathcal{O}\left(k(n+k)^{3}\right)$ flops.

Electronic band structure calculcation

Example setup:

- Photonic crystals with cylindrical holes of diameter 0.6 a.
- $\varepsilon_{1}(\omega)=1+\frac{5.34}{1-\omega^{2}}, \varepsilon_{2} \equiv 1$
- FE discretization of

$$
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \varepsilon(r, \omega) u(r)
$$

on a conforming quadrilateral mesh with curvilinear quadrilateral cells. Polynomial basis functions of degree 7 using C++ library Concepts. ${ }^{1}$
Apply Newton method to solve resulting $980 \times$ 980 NLEVP

$$
-\omega^{2} \varepsilon_{1}(\omega) A_{1}-\omega^{2} A_{2}(\omega)+A_{3}
$$

for wave vectors on boundary of Brillouin zone.

[^0]
Electronic band structure calculcation

Trace 10 smallest frequencies for 75 equally distributed points on boundary of the Brillouin zone:

\# Newton iterations

The computed invariant pair for one wave vector is used to initialize the Newton method for the next wave vector.

Future work on NLEVP

Current implementation of block Newton method is

- rather expensive: requires solution of k linear systems in each iteration.
- not very robust: little control on location of converged eigenvalues (unless good initial guess available).
Aim: Development of less expensive and more methods.
- Lossless case: There usually exists a Rayleigh functional, i.e., there is a function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\frac{x^{\top} T(\rho(x)) x}{x^{T} X}=0, \quad \forall x \in \mathbb{R}^{n} .
$$

\rightsquigarrow Algorithms by Voss et al. can be applied.
Under development: preconditioned inverse subspace iteration using a preconditioner for $T(0)$.

- Lossy case: Combination of invariant pairs with subspace expansion methods (e.g., nonlinear Jacobi-Davidson).

Selected References

Photonic crystals and QEPs:

- C. Engström and M. Richter. On the spectrum of an operator pencil with applications to wave propagation in periodic and frequency dependent materials. 2008, to appear (arXiv:0803.0456).

Polynomial/nonlinear EVPs:

- T. Betcke and D. Kressner. Perturbation, computation and refinment of invariant pairs for matrix polynomials. In preparation, 2009.
- W.-J. Beyn and V. Thümmler. Continuation of invariant subspaces for parameterized quadratic eigenvalue problems. Technical report, University of Bielefeld, Department of Mathematics, 2008.
- D. Kressner. A block Newton method for nonlinear eigenvalue problems. TR 2009-5, Seminar for applied mathematics, ETH Zurich, 2009.

[^0]: ${ }^{1}$ Thanks to Holger Brandsmeier.

