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Motivating Application



Photonic crystals

» photonic crystal = lattice of mixed dielectric media (e.g., air and
silicon)

» control light by designing media that prohibits propagation of
electromagnetic waves in certain frequency range

» complete photonic band gap = frequency range with no
propagation of electromagnetic waves of any polarization
travelling in any direction.



2D periodic crystal
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» material periodic along x- and y-direction; homogeneous along
z-direction

» consider only electromagnetic waves with propagation in
xy-plane



Mathematical model

Time-harmonic modes of electronicmagnetic wave (E,H) (E electric
field, H magnetic field) decompose:

» transverse electric (TE) polarized modes (Ex, E,,0,0,0,H;)
» transverse magnetic (TM) polarized modes (0,0, E;, Hy, Hy, 0)



Mathematical model

Time-harmonic modes of electronicmagnetic wave (E,H) (E electric
field, H magnetic field) decompose:

» transverse electric (TE) polarized modes (Ex, E,,0,0,0,H;)
» transverse magnetic (TM) polarized modes (0,0, E;, Hy, Hy, 0)

Macroscopic Maxwell equations ~ scalar equation for E, of
TM-mode at frequency w:

—AE; = w?e(r,w)E,,

where r = (x,y) and ¢ denotes relative permittivity.



Bloch solutions

Square Lattice Reciprocal Lattice Brillouin Zone
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By Bloch’s theorem, E, takes the form
E.(r) = e*Tu(r),

where k is a wave vector € Brillouin zone, u(r) periodic on lattice
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By Bloch’s theorem, E, takes the form
E.(r) = e*Tu(r),

where k is a wave vector € Brillouin zone, u(r) periodic on lattice ~
—(V +1ik) - (V +ik)u(r) = w?e(r,w)u(r)



Finding band gaps
The goal is to find frequency ranges [wiow, whigh] for which
—(V +ik) - (V +ik)u(r) = w?e(r,w)u(r) (1)

has no solution.

Two approaches:

1. Fix frequency w and wave vector direction k ~ quadratic
eigenvalue problem in wave vector length A = ||K]||.
FE discretization of (1) ~

(Ao + MA1 + M2A)x =0, x #0.
with Ag, A, real symmetric and /—1A; real skew-symmetric.

2. Fix wave vector k ~~ nonlinear eigenvalue problem in w.
FE discretization of (1) ~

(- wer(W)Ar — w?er(w)Ar + Az)x =0, X #0.

with A;, A, Hermitian pos semidef, Az Hermitian pos def.



Quadratic Eigenvalue
Problems



Setting

Spectrum of quadratic polynomial
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Setting

(Ao + ML + MA)x =0, x #0.

with Ag, A, real symmetric and
v/ —1A; real skew-symmetric.

Substituting A — v/ —1\ yields

(Ao + MA; + \2A2)x =0, x #0.

with Ag, A, real symmetric and
A; real skew-symmetric.

Spectrum of quadratic polynomial
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Standard approach to solving QEPs
1. Linearization. Introducing “velocity” y = Ax the equation
(Ao + MAL + M?A)x =0
becomes a linear eigenvalue problem:
0 A Ao A X o
e Sl [5 SN ]

2. Solution. Apply standard eigenvalue solver (e.g., a Krylov
subspace method) to (2).

@)



Krylov subspace method applied to linearization
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Krylov subspace method applied to linearization

Arnoldi
200 ‘
%
e X
X
X
of o F o euhn afos Sefoe § 0 X1
X
100} :oX
X L]
e X
%
_2 L L L L L
Q%O -20 -10 0 10 20 30



Krylov subspace method applied to linearization
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Krylov subspace method applied to linearization
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» No preservation of spectral symmetries ~ difficult to detect
purely imaginary eigenvalues reliably.

» Fundamental problem: Linearization

CLY T8 S D[] -

does not reflect matrix symmetries.
» Way out: Use more suitable linearization.



» No preservation of spectral symmetries ~ difficult to detect
purely imaginary eigenvalues reliably.

» Fundamental problem: Linearization

CLY T8 S D[] -

does not reflect matrix symmetries.
» Way out: Use more suitable linearization.

Rich class of linearizations described in

» D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of
linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl.,
28(4):971-1004, 2006.

» D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured
polynomial eigenvalue problems: good vibrations from good
linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029-1051, 2006.



Structured linearization

Use the following linearization:

AL A A, 0O
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This is a skew-symmetric/symmetric matrix pencil ~» preserves
spectral symmetries.
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Structured linearization

Use the following linearization:

AL A A, 0O
)‘{—Al\o oo]+[02 Ao} (4)

This is a skew-symmetric/symmetric matrix pencil ~» preserves
spectral symmetries.
By congruence transformations: (4) <
I 0 —AT I <
A 1 A, =A)
{O']+[A2 Al]’ 2

This is a Hamiltonian eigenvalue problem ~~ preserves spectral
symmetries.

To exploit structure, apply Hamiltonian Arnoldi [DK'05] (Variant of
SHIRA [Mehrmann/Watkins'01]).



Hamiltonian Arnoldi

Basic Ideas:
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Hamiltonian Arnoldi

Basic Ideas:

~AT —|]2_[ (AT +A, Ay —Al

A AlA; — AAT A2 LA,

W = ~
[Az A

is skew-Hamiltonian.
» Krylov subspace

Ky (W, b) = span{b, Wb, ...,Wk~1b}

0
-1
» Compression of W to an isotropic subspace (UT WU where cols
of U span subspace) is again skew-Hamiltonian ~- structure
preservation.
SHIRA works explicitly with W; Hamiltonian Arnoldi works with
original Hamiltonian matrix.

is isotropic: Kk (W, b)T [ (I) ] Kk (W, b) = 0.



Hamiltonian Arnoldi applied to structured linearization
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Hamiltonian Arnoldi applied to structured linearization

Arnoldi Hamiltonian Arnoldi
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Structure-preserving Krylov subspace method preserves spectral
symmetries.



Hamiltonian Arnoldi applied to structured linearization

Arnoldi Hamiltonian Arnoldi
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Structure-preserving Krylov subspace method preserves spectral
symmetries.



Hamiltonian Arnoldi applied to structured linearization

Arnoldi Hamiltonian Arnoldi
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Structure-preserving Krylov subspace method preserves spectral
symmetries.



Summary

Use of quadratic eigenvalue problems in electronic band structure
calculation fairly new and suggested in [Leminger'02;
Engstrom/Richter'08]:

» Fix frequency w and direction k of k = XK.

» For each (w, kqgir), need to check A purely imaginary eigenvalues
of quadratic EVP

(Ao + MAp + N2Ay)x =0, X #0.
with Ag, A, real symmetric, and A; real skew-symmetric.

+ always quadratic EVP independent of nature of permittivity
+ T-even polynomial, nice spectral structures

- large sample space

- finding all eigenvalues on imaginary axis is expensive

- unclear how to use continuation, eigenvalues might creep from
anywhere into the imaginary axis



Nonlinear Eigenvalue
Problems



Setting

» Fix wave vector k.
» For each k, need to solve nonlinear EVP
T = (- w1 (w)ArL — wer(w)As + Az)x =0, X #0.

A1, A, Hermitian pos semidef, Az Hermitian pos def.
¢j(w) chosen by engineering intuition

Lossless material ~ w € R.

Usually only lowest frequencies of interest

vV v v v



Nonlinear eigenvalue problems




Nonlinear eigenvalue problems

Simple examples:

» Linear eigenvalue problems:

fi(A) =1, fa(A) = =X
» Polynomial eigenvalue problems:

fi(A) =1, LA =X, ..., fo(A) = AT 2



Numerical methods for one eigenvalue

» Most obvious: Apply Newton to
T\)x =0, w'x=1

for some normalization vector w € C". Requires solution of linear
system with varying system matrix in each iteration
T ().

» Variant: Neumaier’s (1985) residual inverse iteration chooses
fixed shift o and requires solution of linear system with fixed
system matrix (T (¢)~T'(\)v)

» Subspace acceleration by Ruhe (1973), Hager and Wiberg
(2000), Voss (2003).

» See [Mehrmann and Voss (2004), Nonlinear eigenvalue
problems: A challenge for modern eigenvalue methods, GAMM
Mitteilungen] for an overview of methods aimed at computing
individual eigenvalues.



Dealing with several eigenvalues

For simplicity, assume m = 2.
Let A1, A, be eigenvalues with eigenvectors Xy, X»:

(FOAL+f(A)A)xa = 0
(F(A2)AL +f(A2)A2)x2 = O

Rearranging terms...

Alxlf(>\1) + A2X1f()\1) =
A1X2f()\2) + A2X2f(/\2) =

...and merging both equations...

Ar[X1, X2 { f(él) f(gz) } + Az [xa, X] [ f g



Dealing with several eigenvalues

For simplicity, assume m = 2.
Let A1, A, be eigenvalues with eigenvectors Xy, X»:

(FOAL+f(A)A)xa = 0
(F(A2)AL +f(A2)A2)x2 = O

Rearranging terms...

Alxlf(>\1) + A2X1f()\1) =
A1X2f()\2) + A2X2f(/\2) =

...and merging both equations...

A1 X1, X2 [ f(él) f(gz) } + A X1, X2] [ f g f(\2) } =0

Set X = [X]_7 Xz], S = |: 01 >E)2 :| ~ A X fl(S) + Ao X fg(S) =0.



Invariant pairs

(X,S) € C"*k x Ck*k is called an invariant pair if

Remarks:
» For linear eigenvalue problems: A;X — XS =0 ~ span(X) is
invariant subspace belonging to A(S).
» Theory in [Gohberg/Lancaster/Rodman’82] for k = n and
polynomial eigenvalue problems.
» For arbitrary k introduced and analyzed in [Beyn/Thimmler'08]
for quadratric EVPs with invertible A;.

» Extended to general polynomial EVPs in [Betcke/K.09] and to
nonlinear EVPs in [K.09].



Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate
situations, such as X = 0.

Is rank(X) = k a reasonable condition?

Example [Dennis/Traub/Weber'76]:
0 12 -1 -6 > 1 0
{—2 14}”{2 —9}”{0 1}

The eigenvalues 3 and 4 share the same eigenvector H]



Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate
situations, such as X = 0.

Is rank(X) = k a reasonable condition?

Example [Dennis/Traub/Weber'76]:
0 12 -1 -6 [ 1 0
{—2 14}”{ 2 —9]+A {o 1}
The eigenvalues 3 and 4 share the same eigenvector H]

No!



Minimal invariant pairs

For previous example:

11
X{l 1
Then

V>(X, S) has full column rank ~~
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Minimal invariant pairs

For previous example:

Then

Vi(X,S) = { i 1 ] , Va(X,8) =

WwWwWkr

V3(X,S) has full column rank ~ (X,S) is minimal.

[m]

FNONGUENIN



Minimal invariant pairs

Fundamental properties (polynomial: [Beyn/Thiimmler’08],
[Betcke/K.09]; nonlinear [K.09]):

» For pairwise distinct eigenvalues Ay, .. ., \x with eigenvectors
X1, .. Xk,

(X,S) = ([xl, ey xm],diag()\l,...,)\k))

is minimal invariant.
» (X,S) minimal invariant ~ (XP,P~1SP) minimal invariant.

» (X,S) minimal invariant ~ eigenvalues of S are eigenvalues of
NLEVP.

» Itis always possible to choose ¢ < k.

> Nonminimal pairs (X, S) can be reduced: 3 minimal invariant pair
(X S)st span(X) = span(X) and /\( ) =A(S).



Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator
equations of which (X, S) is a regular value.



Newton method for invariant pairs
To develop Newton method for computing/continuing, need operator
equations of which (X, S) is a regular value.
T(X,S)=0 ©)
with

T - (Cn><k % (ngk _ (Cnxk’
(X,8) — XAifi(S)+ -+ + XAnfm(S),

(5) not sufficient to characterize (X, S).



Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator
equations of which (X, S) is a regular value.

T(X,S)=0 ©)
with

T - (Cn><k % (ngk _ (Cnxk’
(X,8) — XAifi(S)+ -+ + XAnfm(S),

(5) not sufficient to characterize (X, S).

Normalization condition: Choose WH = V,(X,S) ~
V(X,S) =0 )

V:(Cnxkx(clgzxk N Ckxk
(X,S) — WHV,(X,S)— I



Linearizing T and V

Fréchet derivatives of T and V at (X, S):

m
DT : (AX,AS) — T(AX,S)+ Y AX[D(S)|(AS),
j=1
-1 . .
DV : (AX,AS) +— WFAX +> WH(AXS + X DSI(AS)).
j=1

Note that the Fréchet derivative of fj at S can be computed
using [Mathias’96, Higham’08]

(3 2 D-['9 P



Linearizing T and V

Fréchet derivatives of T and V at (X, S):

m
DT : (AX,AS) — T(AX,S)+ Y AX[D(S)|(AS),
j=1
-1 . .
DV : (AX,AS) +— WFAX +> WH(AXS + X DSI(AS)).
j=1

Note that the Fréchet derivative of fj at S can be computed
using [Mathias’96, Higham’08]

(3 2 D-['9 P

IsL = (DT, DV) invertible at a minimal invariant pair (X, S)?



Theorem (K.09)

Let (X, S) be minimal invariant. The “Jacobian” L of (T, V) at (X, S)
is invertible if and only if (X, S) is simple.

Remarks:

1. (X,S) is called simple if the algebraic multiplicities of S match
those of the NLEVP.

2. Theorem implies local quadratic convergence of Newton iteration
applied to (T(X,S), V(X,S)) = (0,0).



Newton method for computing invariant pairs

Input: Initial pair (Xo, So).
Output: Approximate solution (Xp11, Sp41)-
1: p <« 0, W «— V(Xo,So)
2: repeat
4:  Solve linear matrix equation L,(AX, AS) = (Res, 0).
5. Xpp1 — Xp — AX, Spi1 Sy —AS
6:  Compute compact QR decomposition V;(Xp, Sp) = WR.
7. Xpp1 — XpR™L, Sp1 — RS, R™1
8: until convergence



Newton method for computing invariant pairs

Input: Initial pair (Xo, So).
Output: Approximate solution (Xp11, Sp41)-
1 p«— 0, W «— V|(Xo,So)
2: repeat
3:  Res «— T(Xp,Sp)
4:  Solve linear matrix equation L,(AX, AS) = (Res, 0).
5 Xpi1— Xp—AX, Spi1—Sp—AS
6:  Compute compact QR decomposition V;(Xp, Sp) = WR.
70 Xpy1 < XpR™Y, Spi1 — RSp 1R
8: until convergence
Remarks:
» If no good initial guess available, use variant of inverse iteration
to create one.
» Add simple line search to enhance global convergence
properties.
» Step 4 is very expensive, O(k3(n + k)?®) flops to solve linear
system! After a Schur decomposition of S, block lower triangular
structure of L (AX, AS) ~ O(k(n + k)?) flops.



Electronic band structure calculcation

Example setup:
» Photonic crystals with cylindrical holes of diameter 0.6 a.
> o(w)=1+4 15;%12,82 =1
» FE discretization of

—(V +1ik) - (V +ik)u(r) = w?e(r,w)u(r)

on a conforming quadrilateral mesh with curvilinear quadrilateral
cells. Polynomial basis functions of degree 7 using C++ library
Concepts.!

Apply Newton method to solve resulting 980 x
980 NLEVP

—w?e1(w)AL — WA (w) + Az

for wave vectors on boundary of Brillouin
zone. r

1Thanks to Holger Brandsmeier.



Electronic band structure calculcation

Trace 10 smallest frequencies for 75 equally distributed points on
boundary of the Brillouin zone:

0.7F ‘ — R




# Newton iterations

The computed invariant pair for one wave vector is used to initialize
the Newton method for the next wave vector.
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Future work on NLEVP

Current implementation of block Newton method is
» rather expensive: requires solution of k linear systems in each
iteration.
» not very robust: little control on location of converged
eigenvalues (unless good initial guess available).
Aim: Development of less expensive and more methods.

» Lossless case: There usually exists a Rayleigh functional, i.e.,
there is a function p : R" — R

xTT (p(x))x

L =0, WxeR"
X'X

~+ Algorithms by Voss et al. can be applied.
Under development: preconditioned inverse subspace iteration
using a preconditioner for T (0).

» Lossy case: Combination of invariant pairs with subspace
expansion methods (e.g., honlinear Jacobi-Davidson).
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