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Motivating Application



Photonic crystals

I photonic crystal = lattice of mixed dielectric media (e.g., air and

silicon)

I control light by designing media that prohibits propagation of

electromagnetic waves in certain frequency range

I complete photonic band gap = frequency range with no

propagation of electromagnetic waves of any polarization

travelling in any direction.



2D periodic crystal

I material periodic along x- and y -direction; homogeneous along

z-direction

I consider only electromagnetic waves with propagation in

xy -plane



Mathematical model

Time-harmonic modes of electronicmagnetic wave (E ,H) (E electric

field, H magnetic field) decompose:

I transverse electric (TE) polarized modes (Ex ,Ey ,0,0,0,Hz)

I transverse magnetic (TM) polarized modes (0,0,Ez ,Hx ,Hy ,0)

Macroscopic Maxwell equations scalar equation for Ez of

TM-mode at frequency ω:

−∆Ez = ω2ε(r , ω)Ez ,

where r = (x , y) and ε denotes relative permittivity.
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By Bloch’s theorem, Ez takes the form

Ez(r) = eik·r u(r),

where k is a wave vector ∈ Brillouin zone, u(r) periodic on lattice 

−(∇+ ik) · (∇+ ik)u(r) = ω2ε(r , ω)u(r)
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Finding band gaps

The goal is to find frequency ranges [ωlow, ωhigh] for which

−(∇+ ik) · (∇+ ik)u(r) = ω2ε(r , ω)u(r) (1)

has no solution.

Two approaches:

1. Fix frequency ω and wave vector direction k̂  quadratic

eigenvalue problem in wave vector length λ = ‖k‖.
FE discretization of (1) 

(A0 + λA1 + λ2A2)x = 0, x 6= 0.

with A0,A2 real symmetric and
√
−1A1 real skew-symmetric.

2. Fix wave vector k  nonlinear eigenvalue problem in ω.

FE discretization of (1) (
− ω2ε1(ω)A1 − ω2ε2(ω)A2 + A3

)
x = 0, x 6= 0.

with A1,A2 Hermitian pos semidef, A3 Hermitian pos def.



Quadratic Eigenvalue

Problems



Setting

(A0 + λA1 + λ2A2)x = 0, x 6= 0.

with A0,A2 real symmetric and√
−1A1 real skew-symmetric.
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Spectrum of quadratic polynomial

Only nonnegative real eigenvalues of interest!
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√
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Standard approach to solving QEPs

1. Linearization. Introducing “velocity” y = λx the equation

(A0 + λA1 + λ2A2)x = 0

becomes a linear eigenvalue problem:(
λ

[
0 A2

I 0

]
+

[
A0 A1

−I 0

])[
x

λx

]
= 0. (2)

2. Solution. Apply standard eigenvalue solver (e.g., a Krylov

subspace method) to (2).



Krylov subspace method applied to linearization

Arnoldi
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I No preservation of spectral symmetries difficult to detect

purely imaginary eigenvalues reliably.

I Fundamental problem: Linearization(
λ

[
0 A2

I 0

]
+

[
A0 A1

−I 0

])[
x

λx

]
= 0.

does not reflect matrix symmetries.

I Way out: Use more suitable linearization.

Rich class of linearizations described in

I D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of

linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl.,

28(4):971–1004, 2006.

I D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured

polynomial eigenvalue problems: good vibrations from good

linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029–1051, 2006.
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Structured linearization

Use the following linearization:

λ

[
A1 A0

−A0 0

]
+

[
A2 0

0 A0

]
(3)

This is a skew-symmetric/symmetric matrix pencil preserves

spectral symmetries.

By congruence transformations: (4)⇔

λ

[
0 I

−I 0

]
+

[
Ã2 Ã1

ÃT
1 I

]
, Ã2 = ÃT

2
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Structured linearization

Use the following linearization:

λ

[
A1 A0

−A0 0

]
+

[
A2 0

0 A0

]
(4)

This is a skew-symmetric/symmetric matrix pencil preserves

spectral symmetries.

By congruence transformations: (4)⇔

λ

[
I 0

0 I

]
+

[
−ÃT

1 −I

Ã2 Ã1

]
, Ã2 = ÃT

2

This is a Hamiltonian eigenvalue problem preserves spectral

symmetries.

To exploit structure, apply Hamiltonian Arnoldi [DK’05] (Variant of

SHIRA [Mehrmann/Watkins’01]).



Hamiltonian Arnoldi

Basic Ideas:

W =

[
−ÃT

1 −I

Ã2 Ã1

]2

=

[
(AT

1 )2 + A2 A1 − AT
1

A1A2 − A2AT
1 A2

1 + A2

]
is skew-Hamiltonian.

I Krylov subspace

Kk (W ,b) = span{b,Wb, . . . ,W k−1b}

is isotropic: Kk (W ,b)T

[
0 I

−I 0

]
Kk (W ,b) = 0.

I Compression of W to an isotropic subspace (UT WU where cols

of U span subspace) is again skew-Hamiltonian structure

preservation.

SHIRA works explicitly with W ; Hamiltonian Arnoldi works with

original Hamiltonian matrix.



Hamiltonian Arnoldi

Basic Ideas:

W =

[
−ÃT
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Hamiltonian Arnoldi applied to structured linearization

Arnoldi Hamiltonian Arnoldi
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Structure-preserving Krylov subspace method preserves spectral

symmetries.
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Summary

Use of quadratic eigenvalue problems in electronic band structure

calculation fairly new and suggested in [Leminger’02;

Engström/Richter’08]:

I Fix frequency ω and direction k̂ of k = λk̂ .

I For each (ω, kdir), need to check 6 ∃ purely imaginary eigenvalues

of quadratic EVP (
Ã0 + λÃ1 + λ2Ã2

)
x = 0, x 6= 0.

with Ã0, Ã2 real symmetric, and Ã1 real skew-symmetric.

+ always quadratic EVP independent of nature of permittivity

+ T -even polynomial, nice spectral structures

- large sample space

- finding all eigenvalues on imaginary axis is expensive

- unclear how to use continuation, eigenvalues might creep from

anywhere into the imaginary axis



Nonlinear Eigenvalue

Problems



Setting

I Fix wave vector k .

I For each k , need to solve nonlinear EVP

T (λ)x :=
(
− ω2ε1(ω)A1 − ω2ε2(ω)A2 + A3

)
x = 0, x 6= 0.

I A1,A2 Hermitian pos semidef, A3 Hermitian pos def.

I εj (ω) chosen by engineering intuition

I Lossless material ω ∈ R.

I Usually only lowest frequencies of interest



Nonlinear eigenvalue problems

Consider nonlinear eigenvalue problems (NLEVPs)

T (λ)x :=
(
f1(λ)A1 + f2(λ)A2 + · · ·+ fm(λ)Am

)
x = 0, x 6= 0

with A1, . . . ,Am ∈ Cn×n, analytic functions f1, . . . , fm : Ω→ C.

Simple examples:

I Linear eigenvalue problems:

f1(λ) = 1, f2(λ) = −λ.

I Polynomial eigenvalue problems:

f1(λ) = 1, f2(λ) = λ, . . . , fm(λ) = λm−1.
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Numerical methods for one eigenvalue

I Most obvious: Apply Newton to

T (λ)x = 0, wHx = 1

for some normalization vector w ∈ Cn. Requires solution of linear

system with varying system matrix in each iteration

(T (λ)−1T ′(λ)v ).

I Variant: Neumaier’s (1985) residual inverse iteration chooses

fixed shift σ and requires solution of linear system with fixed

system matrix (T (σ)−1T ′(λ)v )

I Subspace acceleration by Ruhe (1973), Hager and Wiberg

(2000), Voss (2003).

I See [Mehrmann and Voss (2004), Nonlinear eigenvalue

problems: A challenge for modern eigenvalue methods, GAMM

Mitteilungen] for an overview of methods aimed at computing

individual eigenvalues.



Dealing with several eigenvalues

For simplicity, assume m = 2.

Let λ1, λ2 be eigenvalues with eigenvectors x1, x2:(
f (λ1)A1 + f (λ1)A2

)
x1 = 0(

f (λ2)A1 + f (λ2)A2

)
x2 = 0

Rearranging terms...

A1x1f (λ1) + A2x1f (λ1) = 0

A1x2f (λ2) + A2x2f (λ2) = 0

...and merging both equations...

A1

[
x1, x2

] [ f (λ1) 0

0 f (λ2)

]
+ A2

[
x1, x2

] [ f (λ1) 0

0 f (λ2)

]
= 0

Set X =
[
x1, x2

]
, S =

[
λ1 0

0 λ2

]
 A1X f1(S) + A2X f2(S) = 0.
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Invariant pairs

(X ,S) ∈ Cn×k × Ck×k is called an invariant pair if

A1X f1(S) + A2X f2(S) + · · ·+ AmX fm(S) = 0

Remarks:

I For linear eigenvalue problems: A1X − XS = 0  span(X ) is

invariant subspace belonging to Λ(S).

I Theory in [Gohberg/Lancaster/Rodman’82] for k = n and

polynomial eigenvalue problems.

I For arbitrary k introduced and analyzed in [Beyn/Thümmler’08]

for quadratric EVPs with invertible A1.

I Extended to general polynomial EVPs in [Betcke/K.’09] and to

nonlinear EVPs in [K.’09].



Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate

situations, such as X = 0.

Is rank(X ) = k a reasonable condition?

Example [Dennis/Traub/Weber’76]:[
0 12

−2 14

]
+ λ

[
−1 −6

2 −9

]
+ λ2

[
1 0

0 1

]
The eigenvalues 3 and 4 share the same eigenvector

[
1
1

]
.

No!
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Minimal invariant pairs

Invariant pair (X ,S) ∈ Cn×k × Ck×k is called minimal (of index `) if

V`(X ,S) :=


X

XS
...

XS`−1


has full column rank.

For previous example:

X =

[
1 1

1 1

]
, S =

[
3 0

0 4

]
Then

V1(X ,S) =

[
1 1

1 1

]
, V2(X ,S) =


1 1

1 1

3 4

3 4

 ,
V2(X ,S) has full column rank  (X ,S) is minimal.
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Minimal invariant pairs

Fundamental properties (polynomial: [Beyn/Thümmler’08],

[Betcke/K.’09]; nonlinear [K.’09]):

I For pairwise distinct eigenvalues λ1, . . . , λk with eigenvectors

x1, . . . , xk ,

(X ,S) =
([

x1, . . . , xm

]
,diag

(
λ1, . . . , λk

))
is minimal invariant.

I (X ,S) minimal invariant  (XP,P−1SP) minimal invariant.

I (X ,S) minimal invariant  eigenvalues of S are eigenvalues of

NLEVP.

I It is always possible to choose ` ≤ k .

I Nonminimal pairs (X ,S) can be reduced: ∃ minimal invariant pair

(X̃ , S̃) s.t. span(X̃ ) = span(X ) and Λ(S̃) = Λ(S).



Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator

equations of which (X ,S) is a regular value.

T(X ,S) = 0 (5)

with

T : Cn×k × Ck×k
Ω → Cn×k ,

(X ,S) 7→ XA1f1(S) + · · ·+ XAmfm(S),

(5) not sufficient to characterize (X ,S).

Normalization condition: Choose W H = V`(X ,S)†  

V(X ,S) = 0 (6)

V : Cn×k × Ck×k
Ω → Ck×k ,

(X ,S) 7→ W HV`(X ,S)− Ik .
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Linearizing T and V

Fréchet derivatives of T and V at (X ,S):

DT : (4X ,4S) 7→ T(4X ,S) +
m∑

j=1

AjX [Dfj (S)](4S),

DV : (4X ,4S) 7→ W H
0 4X +

`−1∑
j=1

W H
j

(
4XSj + X DSj (4S)

)
.

Note that the Fréchet derivative of fj at S can be computed

using [Mathias’96, Higham’08]

fj

([
S 4S

0 S

])
=

[
fj (S) [Dfj (S)](4S)

0 fj (S)

]
.

Is L = (DT,DV) invertible at a minimal invariant pair (X ,S)?
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Theorem (K.’09)

Let (X ,S) be minimal invariant. The “Jacobian” L of (T,V) at (X ,S)
is invertible if and only if (X ,S) is simple.

Remarks:

1. (X ,S) is called simple if the algebraic multiplicities of S match

those of the NLEVP.

2. Theorem implies local quadratic convergence of Newton iteration

applied to
(
T(X ,S),V(X ,S)

)
= (0,0).



Newton method for computing invariant pairs

Input: Initial pair (X0,S0).
Output: Approximate solution (Xp+1,Sp+1).

1: p ← 0, W ← Vl (X0,S0)
2: repeat

3: Res← T(Xp,Sp)

4: Solve linear matrix equation Lp(4X ,4S) = (Res,0).

5: X̃p+1 ← Xp −4X , S̃p+1 ← Sp −4S

6: Compute compact QR decomposition Vl (Xp,Sp) = WR.

7: Xp+1 ← X̃pR−1, Sp+1 ← RS̃p+1R−1

8: until convergence

Remarks:

I If no good initial guess available, use variant of inverse iteration

to create one.

I Add simple line search to enhance global convergence

properties.

I Step 4 is very expensive, O(k3(n + k)3) flops to solve linear

system! After a Schur decomposition of Sp, block lower triangular

structure of Lp(4X ,4S) O(k(n + k)3) flops.
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Electronic band structure calculcation

Example setup:

I Photonic crystals with cylindrical holes of diameter 0.6 a.

I ε1(ω) = 1 + 5.34
1−ω2 , ε2 ≡ 1

I FE discretization of

−(∇+ ik) · (∇+ ik)u(r) = ω2ε(r , ω)u(r)

on a conforming quadrilateral mesh with curvilinear quadrilateral

cells. Polynomial basis functions of degree 7 using C++ library

Concepts.1

Apply Newton method to solve resulting 980×
980 NLEVP

−ω2ε1(ω)A1 − ω2A2(ω) + A3

for wave vectors on boundary of Brillouin

zone.

M

Γ

K

1Thanks to Holger Brandsmeier.



Electronic band structure calculcation

Trace 10 smallest frequencies for 75 equally distributed points on

boundary of the Brillouin zone:
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# Newton iterations

The computed invariant pair for one wave vector is used to initialize

the Newton method for the next wave vector.
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Future work on NLEVP

Current implementation of block Newton method is

I rather expensive: requires solution of k linear systems in each

iteration.

I not very robust: little control on location of converged

eigenvalues (unless good initial guess available).

Aim: Development of less expensive and more methods.

I Lossless case: There usually exists a Rayleigh functional, i.e.,

there is a function ρ : Rn → R

xT T (ρ(x))x

xT x
= 0, ∀x ∈ Rn.

 Algorithms by Voss et al. can be applied.

Under development: preconditioned inverse subspace iteration

using a preconditioner for T (0).

I Lossy case: Combination of invariant pairs with subspace

expansion methods (e.g., nonlinear Jacobi-Davidson).
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