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GOVERNING EQUATION 
 
Consider the Parabolic PDE in 1-D 
 
 
 
 

 
 

 
 
 
 
 
 

� If υ ≡ viscosity → Diffusion Equation
� If υ ≡ thermal conductivity → Heat Conduction Equation
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STABILITY ANALYSIS 
Discretization 
 
Keeping time continuous, we carry out a spatial 
discretization of the RHS of 
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STABILITY ANALYSIS 
Discretization 
 

 
 
 

 
 
 
 

 
which is second-order accurate. 
 
• Schemes of other orders of accuracy may be constructed. 
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Construction of Spatial Difference Scheme of Any Order p 
 
The idea of constructing a spatial difference operator is to represent the spatial 
differential operator at a location by the neighboring nodal points, each with its own 
weightage. 
 

The order of accuracy, p of a spatial difference scheme is represented as ( )pO x∆ .  

Generally, to represent the spatial operator to a higher order of accuracy, more nodal 
points must be used. 
 
 
 
 
 
 
 

Consider the following procedure of determining the spatial operator 
j

du

dx

� �
� �
� �  up to the 

order of accuracy ( )2O x∆ : 

 
 

There is a total of 1 grid points such that ,

0,1,2,....,
jN x j x

j N

+ = ∆
=

2

2
Use the Central Difference Scheme for 

u

x

∂
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x x
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1. Let 
j

du

dx

� �� �� �  be represented by u at the nodes j−1, j, and j+1 with 1α− , 0α  and 

1α  being the coefficients to be determined, i.e. 
 

( )1 1 0 1 1
p

j j j
j

du
u u u O x

dx
α α α− − +

� �
+ + + = ∆� 	
 �  

 
2. Seek Taylor Expansions for 1ju − , ju  and 1ju +  about ju  and present them in a 

table as shown below. 
 
 (Note that p is not known a priori but is determined at the end of the analysis 

when the α’ s are made known.) 
 
 
 
 
 

 uj uj′′′′ uj′′′′′′′′ uj′′′′′′′′′′′′ 

ju ′  0 1 0 0 

1 1juα− −  
1α−  1x α−−∆ ⋅  2

1

1

2
x α−∆ ⋅  3

1

1

6
x α−− ∆ ⋅  

0 juα  0α  0 0 0 

1 1juα +  
1α  1x α∆ ⋅  2

1

1

2
x α∆ ⋅  3

1

1

6
x α∆ ⋅  

     

     

1

1

k

j k j k
k

u uα
=

+
=−

′ + �  1S  2S  3S  4S  

 
 
 
 
 

( 1 )

This column consists of all the terms on the 
LHS of (1). 

Each cell in this row comprises the sum 
of its corresponding column. 
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 where  
 
 
 
 
 
 
 
 

 ∴ 
1

1 2 3 4
1

....
k

j k j k
k

u u S S S Sα
=

+
=−

′ + = + + + +
�

 

 
3. Make as many iS ’ s as possible vanish by choosing appropriate kα ’ s. 

 
 In this instance, since we have three unknowns 1α− , 0α  and 1α , we can 

therefore set: 
 

  
1

2

3

0

0

0

S

S

S

=
=
=

 

 
 (Note that in the Taylor Series expansion, one starts off with the lower-order 

terms and progressively obtain the higher-order terms.  We have deliberately 
set the iS  pertaining to the lower-order terms to zero, thereafter followed by 

increasingly higher-order terms.) 
 
 Hence, 
 

  
1

0

1

0
1 1 1

1
1 0 1

1 0 1
0

x

α
α
α

−

� �� ��� � � �� � � � � �
− = −
� � � �

∆
� �� � � �� ��� � � �
� �

 

 
 Solving the system of equations, we obtain 
 

  

1

0

1

1

2
0

1

2

x

x

α

α

α

− =
∆

=

= −
∆

 

 
 
 

( )
( )

1 1 0 1

2 1 1

2 2
3 1 1

3 3
4 1 1

1

1 1

2 2

1 1

6 6

j

j

j

j

S u

S x x u

S x x u

S x x u

α α α

α α

α α

α α

−

−

−

−

= + +

′= − ∆ ⋅ + ∆ ⋅
� 	

′′= ∆ ⋅ + ∆ ⋅

 �� 
� 	

′′′= − ∆ ⋅ + ∆ ⋅

 �� 
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4. Substituting the kα ’ s into 
1

1 2 3 4
1

....
k

j k j k
k

u u S S S Sα
=

+
=−

′ + = + + + +
�

 yields 

 

  ( ) 2
1 1

1 1

2 6j j j ju u u x u
x + −

′ ′′′− − = ∆ ⋅ +
∆

 higher-order terms 

 
 In other words, 
 

  ( )1 1 2 ....
2

j j
j

j

u udu
u O x

dx x
+ −−

� �
′ = = + ∆ +

� �
∆

� �  

 
 
 

 i.e. the above representation is accurate up to ( )2O x∆ . 

 
Some useful points to note: 
 
1. These 4 steps are the general procedure used to obtain the representation of the 

spatial operator up to the order of accuracy ( )pO x∆ . 

 

2. For other spatial operators, say 
2

2

j

d u

dx

� �
	 

� � , we simply replace 

j

du

dx

 �
� �� �  in (1) with 

the said spatial operator. 
 
3. For one-sided representations, one can choose nodal points , 0j ku k+ ≥ .  This 

may be important especially for representations on a boundary.  For example 
 

  ( )0 1 1 2 2 .... p
j j j

j

du
u u u O x

dx
α α α+ +

� �
+ + + + = ∆� �� �  

 
 One possibility is 
 

  ( )1 2 23 4

2
j j j

j

u u udu
O x

dx x
+ +− +

� �
+ = ∆� �

∆
� �  

 
 which is also second-order accurate. 
 
 (We can also use a similar procedure to construct the finite difference scheme 

of Hermitian type for a spatial operator.  This is not covered here). 
 

 
 

( ) , 2pO x p∆ =
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STABILITY ANALYSIS 
Discretization 
 

We obtain at 1
1 1 22
: ( 2 )o

du
x u u u

dt x

υ= − +
∆

 

 2
2 1 2 32

: ( 2 )
du

x u u u
dt x

υ= − +
∆

 

 
 

 1 12
: ( 2 )j

j j j j

du
x u u u

dt x

υ
− += − +

∆
 

 
 

 1
1 2 12
: ( 2 )N

N N N N

du
x u u u

dt x

υ−
− − −= − +

∆
 

 

0

0

Note that we need not evaluate  at  and 
since  and  are given as boundary conditions.

N

N

u x x x x
u u

= =
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STABILITY ANALYSIS 
Matrix Formulation 
 
Assembling the system of equations, we obtain 
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1

1 2

2

2

2

1 1 2

2 1

01 2 1

0

1 2 1

1 0

1 2

o
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N N

du u
u
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du

udt

udu x

dt
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xdt

υ

υ

υ
− −

� � � �
−

� �� �� � � �
∆

� �� �� � � �� �� �� � � �� �� �� �
− � �� �� �� � � �� �� �� � � �� �� �� � � �

= +
� �� �� � � �

−∆
� �� �� � � �� �� �� � � �� �� �� � � �� �� �� � � �� �� �� � �� �� �� � �� �� �

−
� � � ��� � ��

∆
� �� �� �

�
�
��

0 

0 
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STABILITY ANALYSIS 
PDE to Coupled ODEs 
 
Or in compact form 
 
 
 
 
 
 
 
 
 
 
We have reduced the 1-D PDE to a set of Coupled ODEs! 
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STABILITY ANALYSIS 
Eigenvalue and Eigenvector of Matrix A 
 
If A is a nonsingular matrix, as in this case, it is then 
possible to find a set of eigenvalues 
 
 { }1 2 1, ,...., ,....,j Nλ λ λ λ λ −=  

 
( )from det 0.A Iλ− =  

 
For each eigenvalue , we can evaluate the eigenvector 

consisting of a set of mesh point values , i.e.

j
j

j
i

V

v

λ
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STABILITY ANALYSIS 
Eigenvalue and Eigenvector of Matrix A 
 
The ( 1) ( 1) matrix  formed by the ( 1) columns

 diagonalizes the matrix  byj

N N E N
V A

− × − −
 

 
   1E AE− = Λ  
 
 

[ ]1 2 1where  
T

Nu u u u −=
�

2 2
0 0 0

T

o Nu u
b

x x

υ υ
� �

= � �
∆ ∆
� �

�

du
Au b

dt
= +
� �	�

1 2 1 
Tj j j j

NV v v v −


 �
= � 
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STABILITY ANALYSIS 
Coupled ODEs to Uncoupled ODEs 
 

Starting from 
du

Au b
dt

= +
� �	�

 

 
1Premultiplication by  yieldsE−  

 

 1 1 1du
E E Au E b

dt
− − −= +

�
� �
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STABILITY ANALYSIS 
Coupled ODEs to Uncoupled ODEs 
 
Continuing from 
 

 1 1 1du
E E u E b

dt
− − −= Λ +

�
� �

 

 
1 1Let  and , we haveU E u F E b− −= =

�� ��
 

 
 

1

2

1

where 

N

λ
λ

λ −

� �
� �
� �
� �

Λ = � �
� �
� �� �

0 
0 

( )1 1 1 1du
E E A EE u E b

dt
− − − −= +

�
� �

I 

Λ

( )1 1 1 1du
E E AE E u E b

dt
− − − −= +
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d

U U F
dt

= Λ +
� � � �

�

 

 
which is a set of Uncoupled ODEs! 
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STABILITY ANALYSIS 
Coupled ODEs to Uncoupled ODEs 
 
Expanding yields 
 

 1
1 1 1

dU
U F

dt
λ= +  

 

 2
2 2 2

dU
U F

dt
λ= +  

 
 

 j
j j j

dU
U F

dt
λ= +  

 
 

 1
1 1 1

N
N N N

dU
U F

dt
λ−

− − −= +  

 
Since the equations are independent of one another, they 
can be solved separately. 
 

The idea then is to solve for  and determine U u EU=
� �

�
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STABILITY ANALYSIS 
Coupled ODEs to Uncoupled ODEs 
 
Considering the case of  independent of time, for the
general  equation,th

b
j

�

 

 

 
1jt

j j j
j

U c e Fλ

λ
= −  

 
is the solution for j = 1,2,….,N−1. 
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Evaluating, ( ) 1 1tu EU E ce E E bλ − −= = − Λ
����� � �� ��

 

 
 
 

( ) 11 2
1 2 1where       j N

Tt tt tt
j Nce c e c e c e c e

λ λλ λλ −
−

� �
= � �

������� 	
 

 
The stability analysis of the space discretization, keeping 
time continuous, is based on the eigenvalue structure of A. 
The exact solution of the system of equations is determined 
by the eigenvalues and eigenvectors of A. 
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STABILITY ANALYSIS 
Coupled ODEs to Uncoupled ODEs 
 
We can think of the solution to the semi-discretized problem 
 
 
 
as a superposition of eigenmodes of the matrix operator A. 
 
Each mode  contributes a (transient) time behaviour of the form

 to the time-dependent part of the solution.jt

j

eλ  

 
Since the transient solution must decay with time, 
 
  ( )Real 0jλ ≤   for all j 

 
This is the criterion for stability of the space discretization (of a 
parabolic PDE) keeping time continuous. 
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Complementary 
(transient) solution 

Particular (steady-state) 
solution 

( ) 1 1tu E ce E E bλ − −= − Λ

�
�
�
 �� �
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STABILITY ANALYSIS 
Use of Modal (Scalar) Equation 
 
It may be noted that since the solution  is expressed as a
contribution from all the modes of the initial solution,
which have propagated or (and) diffused with the eigenvalue

, and a contribution frj

u

λ

�

om the source term , all the
properties of the time integration (and their stability
properties) can be analysed separately for each mode with
the scalar equation

jb  
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STABILITY ANALYSIS 
Use of Modal (Scalar) Equation 
 
The spatial operator A is replaced by an eigenvalue λ, and 
the above modal equation will serve as the basic equation 
for analysis of the stability of a time-integration scheme 
(yet to be introduced) as a function of the eigenvalues λ 
of the space-discretization operators. 
 
This analysis provides a general technique for the 
determination of time integration methods which lead to 
stable algorithms for a given space discretization. 
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EXAMPLE 1 
Continuous Time Operator 
 
Consider a set of coupled ODEs (2 equations only): 
 

 

1
11 1 12 2

2
21 1 22 2

du
a u a u

dt
du

a u a u
dt

= +

= +
 

 

1 11 12

2 21 22

Let  ,         
u a a du

u A Au
u a a dt

��� � �

= = � =� � � �
��� � �

	
	 	

 

 
Slide 18 

j

dU
U F

dt
λ


 �

= +� 
� �
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EXAMPLE 1 
Continuous Time Operator 
 
Proceeding as before, or otherwise (solving the ODEs directly), 
we can obtain the solution 
 

 
1 2

1 2

1 1 11 2 12

2 1 21 2 22

t t

t t

u c e c e

u c e c e

λ λ

λ λ

ξ ξ
ξ ξ

= +

= +
 

 

11 21
1 2

21 22

1 2

where  and  are eigenvalues of  and  and  are 

eigenvectors pertaining to  and  respectively.

A
ξ ξ

λ λ
ξ ξ

λ λ

��� � �
� � � ���� � �  

 

( )j

As the transient solution must decay with time, it is imperative that
Real 0 for 1, 2.jλ ≤ =  
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EXAMPLE 1 
Discrete Time Operator 
 
Suppose we have somehow discretized the time operator on the 
LHS to obtain 
 

 
1 1

1 11 1 12 2

1 1
2 21 1 22 2

n n n

n n n

u a u a u

u a u a u

− −

− −

= +

= +
 

 
where the subscript n stands for the nth time level, then 
 

 
1 11 12

1 2
21 22

     where  and  
Tn n n n n a a

u Au u u u A
a a

− � �� �= = = 	 
� � � �
  

 

 
Since A is independent of time, 
 

  
1 2 0

....
n n n nu Au AAu A u

− −
= = = =
� � � �

 
 
In later examples, we shall apply specific time discretization schemes 
such as the “ leapfrog”  and Euler-forward time discretization schemes. 
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EXAMPLE 1 
Discrete Time Operator 
 
As 
 
 
 
 

 1 0 1

2

0
   where =

0

n
n n n

n
u E E u

λ
λ

−

� �
= Λ Λ � �� �

��� ��
 

 

 
' '

1 1 11 1 2 12 2

' '
2 1 21 1 2 22 2

n n n

n n n

u c c

u c c

λ ξ λ ξ
λ ξ λ ξ

= +

= +
 1 1 0

2

'
where  are constants.

'

c
E u

c
−

	�

=

� ��� ��� �  
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Alternative View 
 
Alternatively, one can view the solution as: 
 

 
0

1 1
1 2 0

2 2

n
n n

n

U U

U U
λ λ

� � � �� �
=

� � � �� �� � � �  

 
 0 1where n nU U U E u−= Λ =

� � � �
 

 
 

 
EXAMPLE 1 
Comparison 
 
Comparing the solution of the semi-discretized problem where 
time is kept continuous 
 

 [ ]
1

2

1 11 12
1 2

2 21 22

t

t

u e
c c

u e

λ

λ

ξ ξ
ξ ξ

� ���� � �
= � �� � � ���� � � � �  

 
to the solution where time is discretized 
 

 [ ]1 11 12 1
1 2

2 21 22 2

' '
n n

n

u
c c

u

ξ ξ λ
ξ ξ λ

 ! �!  !
= " #" # " #$�% $ % " #$ %  

 
 
 

1

1 1 1 0

,

....
n

A E E

u E E E E E E u

−

− − −

= Λ

= Λ ⋅ Λ ⋅ ⋅ Λ ⋅ &'& ((
A A A 
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difference equation where time is continuous has exponential
solution 
The 

.teλ  

 
The difference equation where time is discretized has power
solution .nλ
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EXAMPLE 1 
Comparison 
 
In equivalence, the transient solution of the difference 
equation must decay with time, i.e. 
 
 1nλ <  

 
for this particular form of time discretization. 
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EXAMPLE 2 
Leapfrog Time Discretization 
 
Consider a typical modal equation of the form 
 

 t

j

du
u ae

dt
µλ

� �

= +� �
� �  

 
where  is the eigenvalue of the associated matrix .j Aλ  

 
(For simplicity, we shall henceforth drop the subscript j). 

We shall apply the “ leapfrog”  time discretization scheme given as 
 

 
1 1

     where  
2

n ndu u u
h t

dt h

+ −−= = ∆  

 
Substituting into the modal equation yields
 

 
1 1

2

n nu u

h

+ −−
 ( )t

t nh
u aeµλ

=
= +  

 n hnu aeµλ= +  
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Reminder 
 
Recall that we are considering a typical modal equation which had been obtained 
from the original equation 
 

du
Au b

dt
= +
�
���

 

 
 

 
EXAMPLE 2 
Leapfrog Time Discretization:  Time Shift Operator 
 

( )
1 1

1 1        2 2
2

n n
n hn n n n hnu u

u ae u h u u ha e
h

µ µλ λ
+ −

+ −− = + � − − =  

 
Solution of u consists of the complementary solution nc , and the
particular solution np , i.e. 
 
 n n nu c p= +  
 
There are several ways of solving for the complementary and
particular solutions.  One way is through use of the shift operator 
S and characteristic polynomial. 
 
The time shift operator S operates on nc  such that
 
 1n nSc c +=  
 

 ( )2 1 2n n n nS c S Sc Sc c+ += = =  
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EXAMPLE 2 
Leapfrog Time Discretization:  Time Shift Operator 
 
The complementary solution nc  satisfies the homogenous equation
 

 

1 12 0

2 0

n n n

n
n n

c h c c

c
Sc h c

S

λ

λ

+ −− − =

− − =
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2

2

1
( 2 ) 0

( 2 1) 0

n n n

n

S c h Sc c
S

c
S h S

S

λ

λ

− − =

− − =
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EXAMPLE 2 
Leapfrog Time Discretization:  Time Shift Operator 
 
The solution to the characteristic polynomial is 
 

2 2( ) 1h S h hσ λ λ λ= = ± +  
 
The complementary solution to the modal equation would then be 
 
 1 1 2 2

n nnc β σ β σ= +  
 

The particular solution to the modal equation is 
2

2

2 1

hn h
n

h h

ahe e
p

e h e

µ µ

µ µλ
=

− −
. 

 
Combining the two components of the solution together, 
 
 nu  ( ) ( )n nc p= +  

 ( ) ( )2 2 2 2
1 2 2

2
1 1

2 1

hn hn n

h h

ahe e
h h h h

e h e

µ µ

µ µβ λ λ β λ λ
λ

� �� �
= + + + − + + � �� �

− −
� � � �  
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EXAMPLE 2 
Leapfrog Time Discretization:  Stability Criterion 
 
For the solution to be stable, the transient 
(complementary) solution must not be allowed to grow 
indefinitely with time, thus implying that
 

 
( )
( )

2 2
1

2 2
2

1 1

1 1

h h

h h

σ λ λ

σ λ λ

= + + <

= − + <
 

 

characteristic polynomial 
2( ) ( 2 1) 0p S S h Sλ= − − =

σ1 and σ2 are the two roots 
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is the stability criterion for the leapfrog time 
discretization scheme used above. 
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EXAMPLE 2 
Leapfrog Time Discretization:  Stability Diagram 
 
The stability diagram for the leapfrog (or any general) 
time discretization scheme in the σ-plane is 
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Stability Diagram in the λλλλh-plane 
 
Alternatively, we can express the stability criterion for the leapfrog time discretization 
scheme as 
 

 
1 1

s.t. 1
2

hλ σ σ
σ

� �

= − <� �
� �  

 
Since 1 and exp( )iσ σ θ< = , 

 
 sinh iλ θ=  for stability. 
 
The stability diagram for the leapfrog time 
discretization scheme in the λh-plane would 
therefore be as shown: 
 
 
 
 
 

 

Im(σ ) 

Re(σ ) -1 1 

Region of Stability 

Re(λh) 

Im(λh) 

-1 

1 Region of Stability 
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EXAMPLE 2 
Leapfrog Time Discretization 
 
In particular, by applying to the 1-D Parabolic PDE
 

 
2

2

u u

t x
υ∂ ∂=

∂ ∂
 

 
the central difference scheme for spatial discretization, we obtain
 
 
 
 
 
 
 
 
 
 
which is the tridiagonal matrix 
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EXAMPLE 2 
Leapfrog Time Discretization 
 
According to analysis of a general triadiagonal matrix B(a,b,c), the 
eigenvalues of B are
 

 

2

2 cos ,      1,..., 1

2 2cos

j

j

j
b ac j N

N

j

N x

πλ

π υλ

� �

= + = −
� �
� �

� �� �

= − + � �� 	

∆
� �
 �

 

 
The most “dangerous”  mode is that associated with the eigenvalue 
of largest magnitude
 

 max 2

4

x

υλ = −
∆

 

 

i.e. 
( )
( )

2 2
max1 max max

2 2
max2 max max

1

1

h h h

h h h

σ λ λ λ

σ λ λ λ

= + +

= − +
 

 
which can be plotted in the absolute stability diagram.

2

2 1

1 2 1

1

1 2

A
x

υ

−
� 
� �

−� �
� �

=
� �

∆ � �
� �
� �

−
� �� �

0 

0 
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One may note that jλ  is always real and negative, thereby satisfying 

the criterion for stability of the space discretization of a parabolic 
PDE, keeping time continuous. 
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EXAMPLE 2 
Leapfrog Time Discretization:  Absolute Stability Diagram for σ 
 
As applied to the 1-D Parabolic PDE, the absolute stability diagram for σ is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, 1σ  and 2σ  start out being on the unit circle (h = ∆t = 0).  However, the 
spurious root (refer to following slide) leaves the unit circle as h starts increasing.  
Therefore, the spurious root causes the leapfrog time discretization scheme to be 
unstable, irrespective of how small h = ∆t is, although it does not affect the accuracy.  
The leapfrog time discretization for the 1-D Diffusion Equation is unstable. 
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Im(σ ) 

Re(σ ) 

Unit circle 

σ1 with h 
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σ2 with h 
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Instability 
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Stability σ2 at h = ∆t = 0 

σ1 at h = ∆t = 0 
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STABILITY ANALYSIS 
Some Important Characteristics Deduced 
 
A few features worth considering:

1. Stability analysis of time discretization scheme can be carried out for
all the different modes .

2. If the stability criterion for the time discretization scheme is 

jλ

valid for
all modes, then the overall solution is stable (since it is a linear
combination of all the modes).

3. When there is more than one root , then one of them is the principal
root which represents 

σ

( )
0

an approximation to the physical behaviour. 
The principal root is recognized by the fact that it tends towards one
as 0, i.e. lim 1.  (The other roots are spurious, which

affect the stability 
h

h h
λ

λ σ λ
→

→ =
but not the accuracy of the scheme.)
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STABILITY ANALYSIS 
Some Important Characteristics Deduced 
 

1

4. By comparing the power series solution of the principal root to ,
one can determine the order of accuracy of the time discretization
scheme.  In this example of leapfrog time discretization,

1

he

h

λ

σ λ= + ( ) ( )
1

2 2 2 2 4 42

2 2

1

2 2

1 1
.1 2 21 .

2 2!

1 ...
2

and compared to

1 ...
2!

is identical up to the second order of .  Hence, the above scheme
is said to be second-order accurate.

h

h h h h

h
h

h
e h

h

λ

λ λ λ λ

λσ λ

λλ

λ

−
+ = + + +

= + + +

= + + +
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EXAMPLE 3 
Euler-Forward Time Discretization:  Stability Analysis 
 
Analyze the stability of the explicit Euler-forward time discretization 
 

 
1n ndu u u

dt t

+ −=
∆

 

 
as applied to the modal equation 
 

 
du

u
dt

λ=  

 
1

1

Substituting  where 

into the modal equation, we obtain (1 ) 0

n n

n n

du
u u h h t

dt

u h uλ

+

+

= + = ∆

− + =
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EXAMPLE 3 
Euler-Forward Time Discretization:  Stability Analysis 
 
Making use of the shift operator S 
 

1 (1 ) (1 ) [ (1 )] 0n n n n nc h c Sc h c S h cλ λ λ+ − + = − + = − + =  
 
 
 
Therefore ( ) 1

and n n

h h

c

σ λ λ
βσ

= +
=

 

 
The Euler-forward time discretization scheme is stable if 
 
 1 1hσ λ≡ + <  

 
or bounded by  1 s.t. 1 in the -plane.h hλ σ σ λ= − <  
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characteristic polynomial 
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EXAMPLE 3 
Euler-Forward Time Discretization:  Stability Diagram 
 
The stability diagram for the Euler-forward time 
discretization in the λh-plane is 
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EXAMPLE 3 
Euler-Forward Time Discretization:  Absolute Stability Diagram 
 

As applied to the 1-D Parabolic PDE, max 2

4

x

υλ λ −= =
∆

 

 
 
 
 
 
 
 
 
 
 
 
 

 
max

2
The stability limit for largest h t

λ
−≡ ∆ =  

 
σ leaves the unit circle at σ = −1, i.e. σ = 1+ λh = −1 
 

 
max

2
h 2 hλ

λ
−= − � =  since it is the extreme. 
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Im(λh) 

Re(λh) -2 0 

Region of Stability 

-1 

Unit Circle 

Im(σ ) 

-1 1 Re(σ ) 

σ at h = ∆t = 0 

σ leaves the unit circle at λh = −2 

σ with h increasing 
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Predictor-Corrector Time Discretization 
 
Consider the numerical stability of the following predictor-corrector time 
discretization scheme 
 

 

1

1
1 1

1

ˆ

ˆ1
ˆ

2

n
n n

n

n
n n n

n

du
u u h

dt

du
u u u h

dt

+

+
+ +

+

= +
� �

= + +
� �� �

 

 
as applied to the typical modal equation 
 

 taeu
dt

du µλ +=  

 

of the parabolic PDE.  Substituting 
dt

du
 and 

dt

ud ˆ
 into the predictor-corrector scheme 

yields 
 

 
( )

( )

1

1 1 1 ( 1)

ˆ where 

1
ˆ ˆ

2

n n n hn

n n n n h n

u u h u ae t n t nh

u u u h u ae

µ

µ

λ

λ

+

+ + + +

= + + = ∆ =
� �

= + + +� 	  

 
Utilizing the shift operator 
 

 
1

1ˆ ˆ

n n

n n

Su u

Su u

+

+

=
=

 

 
and rearranging the equations into matrix form, we obtain 
 

 
( )

( )

1 ˆ
11 1

1
22 2

n
hn

n

hS h
u

ae
hSuh S S

µ
λ

λ


 �
− +


 �
�� �  �
=

 � �  �
− + − ���  � � � �� �

 

 
To determine the characteristic polynomial, set 
 

 ( ) ( )
( )

( )

1
01 1

1
2 2

S h
S

h S S

λ
σ

λ

− +
Ρ = Ρ = =

− + −
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( ) ( ) 2 2

2 2

1
1 0

2

0 (trivial root)

1
1

2

S S S h h

h h

σ λ λ

σ

σ λ λ

� �
Ρ = Ρ = − − − =

� �� �
� =

= + +

 

 
i.e. the scheme is a one-root method.  Compared to 
 

 2 21
1 ....

2
he h hλ λ λ= + + +  

 
the scheme is second-order accurate. 
 
To obtain the particular solution, one can perform a matrix inversion and obtain 
 

 
( )

22

2
1

1

1
2
1

hhe

heahe
p

h

hhn

n

λλ

λ

µ

µµ

−−−

++
=  

 
with the complementary solution being 
 

 
n

nn hhc ��
	
��

++== 22

2

1
1 λλββσ  

 

The absolute stability diagram (showing 
2

4

x∆
−= υλ ) for the 1-D Parabolic PDE is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Im(σ ) 

Re(σ ) -1 1 0.5 

Region of 
Stabil ity 

Region of 
Instability 

h increasing from 0 

h increasing further 
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When h increases from zero, σ decreases from 1.0.  As h continues to increase, σ 
reaches a minimum of 0.5 with λh = −1 and then increases.  As h increases further, σ 
returns to 1.0 with λh = −2.  Prior to this point, the scheme is stable.  Increasing h and 
thus σ beyond this point renders the scheme unstable. 
 
Hence, this predictor-corrector scheme is stable for small h’ s and unstable for large 
h’ s; the limit for stability is λh = −2 (from above). 
 
In general, we can analyze the absolute stability diagram for the predictor-corrector 
time discretization method in terms of 
 

 
2( )

: ( ) 1
2

h
h h

λσ σ λ λ= + +  

 
or 
 

 : 1 2 1h hλ λ σ= − ± −  
 
λ, the eigenvalue(s) of the A matrix can take on complex forms depending on the 
governing equation (as opposed to negative real values for the 1-D parabolic PDE 
with central differencing for the spatial derivative). 
 

 
 
RELATIONSHIP BETWEEN σσσσ AND λλλλh 
σσσσ = σσσσ(λλλλh) 
 
Thus far, we have obtained the stability criterion of the time 
discretization scheme using a typical modal equation.  We can 
generalize the relationship between σ and λh as follows: 
 
• Starting from the set of coupled ODEs 
 

 
du

Au b
dt

= +
�

���

 

 
• Apply a specific time discretization scheme like the 

leapfrog time discretization as in Example 2 
 

 
1 1

2

n ndu u u

dt h

+ −−=  
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RELATIONSHIP BETWEEN σσσσ AND λλλλh 
σσσσ = σσσσ(λλλλh) 
 
• The above set of ODEs becomes 
 

  
1 1

2

n n
nnu u

Au b
h

+ −− = +
� � ��

 

 
• Introducing the time shift operator S 
 

  
1

2 2

2

n
nn n

nn

u
Su hAu hb

S

S S
A I u b

h

−

= + +
� �

−− = −� �
� �

� �� �

��
 

 
•  
 
 

  
1

1 1 1 1

2
nS S

E AE E E E u E b
h

−
− − − −

� 	
−− = −
 �

�  ��  
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RELATIONSHIP BETWEEN σσσσ AND λλλλh 
σσσσ = σσσσ(λλλλh) 
 

• Putting 1 1,
nn n nU E u F E b− −= = �� ��  

 

  we obtain 
1

1

2
n nS S

E E U F
h

−
−

� �
−Λ − = −

� �
� � � �  

 
 
 

  i.e. 
1

2
n nS S

U F
h

−
� �

−Λ − = −
� �
� � � �  

 
  which is a set of uncoupled equations. 
 
 
 
 

1

1

Premultiplying  on the LHS and RHS and introducing
 operating on n

E
I EE u

−

−= �

Λ 

1

2

S S

h

−−
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Hence for each j, j = 1,2,….,N−1, 
 

 
1

2j j j

S S
U F

h
λ

−
� �

−− = −� �
� �  
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RELATIONSHIP BETWEEN σσσσ AND λλλλh 
σσσσ = σσσσ(λλλλh) 
 
Note that the analysis performed above is identical 
to the analysis carried out using the modal equation 
 

 
j

dU
U F

dt
λ

� �

= +� 	

 �  

 
All the analysis carried out earlier for a single modal 
equation is applicable to the matrix after the 
appropriate manipulation to obtain an uncoupled set 
of ODEs. 
 
Each  equation can be solved independently for

 and the 's can then be coupled through .

th

n n n n
j j

j
U U u EU= ��
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RELATIONSHIP BETWEEN σσσσ AND λλλλh 
σσσσ = σσσσ(λλλλh) 
 
Hence, applying any “consistent”  numerical technique 
to each equation in the set of coupled linear ODEs is 
mathematically equivalent to 
 
1. Uncoupling the set, 
 
2. Integrating each equation in the uncoupled set, 
 
3. Re-coupling the results to form the final solution. 
 
These 3 steps are commonly referred to as the 
 
 ISOLATION THEOREM 
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IMPLICIT TIME-MARCHING SCHEME 
 
Thus far, we have presented examples of explicit time-marching 
methods and these may be used to integrate weakly stiff equations. 
 
Implicit methods are usually employed to integrate very stiff 
ODEs efficiently.  However, use of implicit schemes requires 
solution of a set of simultaneous algebraic equations at each 
time-step (i.e. matrix inversion), whilst updating the variables at 
the same time. 
 
Implicit schemes applied to ODEs that are inherently stable will 
be unconditionally stable or A-stable. 
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IMPLICIT TIME-MARCHING SCHEME 
Euler-Backward 
 
Consider the Euler-backward scheme for time discretization 
 

 
1 1n n ndu u u

dt h

+ + −
� �

=
� �� �  

 
Applying the above to the modal equation for parabolic PDE 
 

 tdu
u ae

dt
µλ= +  

 
yields 
 

 
( )

( ) ( )

1
11

111

n n
n hn

n hn n

u u
u ae

h

h u u ahe

µ

µ

λ

λ

+
++

++

− � �= +� 	

− − =
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IMPLICIT TIME-MARCHING SCHEME 
Euler-Backward 
 
Applying the S operator, 
 

 ( ) ( )11 1 n hnh S u aheµλ +

 �

− − =� 
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the characteristic polynomial becomes 
 

 ( ) ( ) ( )1 1 0S h Sσ λ
� �

Ρ = Ρ = − − =� �
 

 
The principal root is therefore 
 

 2 21
1 ....

1
h h

h
σ λ λ

λ
= = + + +

−
 

 

  
2 21

which, upon comparison with 1 .... , is only
2

first-order accurate.

he h hλ λ λ= + + +  

 
The solution is 
 

 
( )

( )
11

1 1 1

n u h
n

h

ahe
U

h h e

µ

µβ
λ λ

+� �

= +� �

− − −
� 	  
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IMPLICIT TIME-MARCHING SCHEME 
Euler-Backward 
 
For the Parabolic PDE, λ is always real and < 0. 
Therefore, the transient component will always tend 
towards zero for large n irregardless of h (≡ ∆t). 
 
The time-marching scheme is always numerically stable. 
 
In this way, the implicit Euler/Euler-backward time 
discretization scheme will allow us to resolve different 
time-scaled events with the use of different time-step 
sizes.  A small time-step size is used for the short time- 
scaled events, and then a large time-step size used for 
the longer time-scaled events.  There is no constraint on 
hmax. 
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IMPLICIT TIME-MARCHING SCHEME 
Euler-Backward 
 
However, numerical solution of u requires the solution 
of a set of simultaneous algebraic equations or matrix 
inversion, which is computationally much more 
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intensive/expensive compared to the multiplication/ 
addition operations of explicit schemes. 
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SUMMARY 
 
• Stability Analysis of Parabolic PDE 
 

� Uncoupling the set. 
 

� Integrating each equation in the uncoupled set → 
modal equation. 

 
� Re-coupling the results to form final solution. 

 
• Use of modal equation to analyze the stability |σ(λh)| < 1. 
 
• Explicit time discretization versus Implicit time discretization. 
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