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A B S T R A C T

Curves and surfaces are manifolds that can be represented using
implicit and parametric methods. With a representation in hand,
one can define a partial differential equation on the manifold us-
ing differential tangential calculus. The solution of these PDEs is
quite interesting because they have many applications in a vari-
ety of areas including fluid dynamics, solid mechanics, biology
and image processing.

In this thesis, we examine two numerical methods for the solu-
tion of PDEs on manifolds: a so called cut finite element method
and isogeometric analysis. We review the theoretical framework
of the two methods and implement them to solve example prob-
lems in two and three dimensions: the Laplace-Beltrami problem,
the Laplace-Beltrami eigenvalue problem, the biharmonic prob-
lem and the time-dependent advection diffusion problem. We
compare the methods and we confirm that the numerical results
agree with the exact solutions and that they obey the theoretical
a priori error estimates.
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1
I N T R O D U C T I O N

Partial differential equations (PDEs) on curves and surfaces ap-
pear in a variety of problems and applications in fluid dynamics,
materials science, solid mechanics, biology and image process-
ing. Examples are the modeling of interfaces in multiphase fluid
flows and the modeling of surface active agents (surfactants)
[JL04]. In this case, the equation on the interface is often cou-
pled to the equation on the fixed bulk domain. Another example
is in biology, where bio-membranes are treated as fluid surfaces
[ES10]. In general, when the geometry of the physical problem
can be considered “thin” in some direction, we can simplify the
model using a formulation that involves PDEs on a lower dimen-
sional geometry, i. e. on a curve or a surface. For example, this
is a useful approximation when we want to model thin shells.
PDEs on surfaces can also be used in image processing for shape
recognition (shape DNA) [RWP06, RWSN09].

There are different ways to define and represent curves and
surfaces [WRP07]. In the language of differential geometry [Bro08,
Pre10, Ber03] they are manifolds (see A.1.1). Taking the extrinsic
view, we can consider the curve or the surface as a lower dimen-
sional manifold embedded in the physical space, namely as a
hypersurface. In the parametric method, the manifold can be rep-
resented using a geometrical mapping from a parameter domain
to the physical space. Another representation method is through
an implicit function [OF03]. This method defines the interface as
an isocontour or level set of some function. The interface is thus
defined in one dimension lower than the implicit function. In
contrast, in an explicit interface representation one defines ex-
plicitly the points which belong to the interface. Finally, curves
and surfaces can also be represented using generative or pro-
cedural descriptions where points are generated through some
process. Typical examples are subdivision schemes and fractals.
Each representation method has advantages and disadvantages
and is used according to the particular problem. In this thesis,
we will only be concerned with the parametric representation
through the use of B-splines and NURBS, and the implicit repre-
sentation through the use of level set and signed distance func-
tions. We will refer to curves and surfaces as hypersurfaces or
manifolds in general, irrespective of the representation.

A very successful computational method for the solution of
partial differential equations is the Finite Element Method (FEM)
[LB12, BS08]. It has been studied extensively and has been ap-
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2 introduction

plied to PDEs on manifolds using a variety of approaches. A
review of finite element methods for the solution of partial dif-
ferential equations on surfaces can be found in Dziuk and Elliott
[DE13]. A first attempt for the solution of the Laplace-Beltrami
problem on a curved surface was made by Dziuk [Dzi88] us-
ing triangulated surfaces and surface finite elements. Another
approach has been the use of implicit level set functions to rep-
resent the hypersurface and solve the differential equation in a
narrow band around it [DDEH09]. The method that we will fol-
low is the one proposed by Olshanskii et al. [ORG09] which we
will call a cut finite element method. The idea is that the hy-
persurface is embedded in a background domain and the finite
element space defined on this domain induces a restricted finite
element space on the manifold. A nice advantage of this method
is that the same background grid can be used for both the im-
plicit hypersurface representation and for the equation defined
on it. Similarly, the same finite element space can be used for
both the bulk domain and its interface.

In recent years, another computational method called Isogeo-
metric Analysis (IGA) has been developed [HCB05, HCB09]. Its
main goal has been to combine Computer Aided Design (CAD)
and Finite Element Analysis (FEA) so as to integrate all tools in
the design process. It uses computational geometry tools such as
Non-Uniform Rational B-splines [PT97, Rog01] and it is based on
the isoparametric paradigm which utilizes the same basis func-
tions for both the parametric representation of the geometry and
the approximation space used for the solution of the partial dif-
ferential equation. In a sense, IGA is a superset of classical FEM.
Advantages over FEM include the exact geometry representation
and the arbitrary degree of continuity for the basis functions,
while a disadvantage is the tensor product structure of NURBS
which causes refinement to be a global operation. IGA provides
a natural framework for the modeling and solution of partial
differential equations on manifolds since the parametric nature
of the basis functions and the isogeometric approach are well
suited to these problems. In this thesis, we will follow the IGA
approach for the solution of manifold PDEs as described in Dedè
and Quarterioni [DQ13].

1.1 objective

The objective of this thesis is to review and examine finite ele-
ment and isogeometric analysis methods for the solution of par-
tial differential equations defined on curves and surfaces. This
is achieved through the study of the theoretical frameworks and
through the solution of example problems using an implementa-
tion of the two methods in Matlab.
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1.2 outline

The outline of this work is as follows:

Chapter 2 We introduce and review the parametric and im-
plicit methods for the representation of curves and sur-
faces. We also introduce the basic concepts needed from
differential geometry. Finally, we formulate example PDE
problems on manifolds and obtain their weak form.

Chapter 3 We recall the basics of the Galerkin finite element
method and we introduce the cut finite element method.
We also provide implementation details.

Chapter 4 We introduce the basics of isogeometric analysis
and we explain how it can be applied to solve partial dif-
ferential equations on manifolds. We also describe imple-
mentation details.

Chapter 5 We report the numerical results for the different
methods and example problems. We compare our results
with the theoretical solutions and we plot the convergence
rates as compared with the theoretical optimal error esti-
mates. We also compare the performances of the finite el-
ement method and the isogeometric analysis method for
the Laplace-Beltrami problem on a curve.

Chapter 6 We conclude our work and suggest areas of im-
provement.

Appendix A We provide some additional definitions and the-
orems for our theoretical framework.

Appendix B We list example programs from our implementa-
tion in Matlab. This is not intended to provide an exten-
sive listing of our code but it is rather intended to showcase
the structure of our implementation and the most impor-
tant code segments.

The implementation of the methods and the example prob-
lems was performed in Matlab [MAT13]. In particular the im-
plementation of the cut finite element method in 2D was devel-
oped entirely for the purposes of this thesis. For the implemen-
tation of the isogeometric analysis method, we extended the ex-
cellent GeoPDEs library [DFRV11] so as to facilitate the solution
of PDEs on manifolds and to support the solution of additional
problems.





2
C U RV E S A N D S U R FA C E S

We will consider curves and surfaces as manifolds embedded in
the physical space, namely as hypersurfaces with codimension
one. The basic definitions can be found in Appendix A and more
details can be found in any Differential Geometry book. In this
section, we will describe the implicit and parametric representa-
tion methods.

2.1 implicit representation

The implicit representation of curves and surfaces has proved to
be versatile and efficient in a variety of applications in computer
graphics. Complicated and evolving hypersurfaces can be han-
dled with simple algorithms within the implicit approach. The
method might at first be seen as wasteful since the implicit func-
tion is defined in a space that is one dimension higher than the
interface. However, it turns out that this has advantages when,
for example, one wants to model an evolving interface.

Definition 2.1.1. An implicit representation of a n-dimensional hy-
persurface Σ takes the form

Σ = {x ∈ Rn+1 |φ(x) = 0}, (2.1.1)

where x is a point on the hypersurface implicitly defined by the function
φ : Rn+1 → R.

The representation embeds the interface in a domain of one
dimension higher and defines it as the zero level or isocontour
of the implicit function. For example, a unit sphere (a 2D surface
embedded in R3) can be written as

φ(x) = ‖x‖2 − 1 = 0 , where ||x||2 = x2 + y2 + z2. (2.1.2)

The implicit function has the property

φ(x) > 0 , if x is “outside” the hypersurface

φ(x) < 0 , if x is “inside” the hypersurface

φ(x) = 0 , if x is exactly on the hypersurface (2.1.3)

This property allows one to easily test whether one point lies
inside or outside the interface.

The gradient of the implicit function is perpendicular to the
isocontours and it points in the direction of increasing φ. In gen-
eral, we desire that the implicit function is smooth and hence
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6 curves and surfaces

Figure 1: Example of the implicit representation. Circles of different
radius defined as level sets of an implicit function.

its gradient is well defined everywhere. We define the normal
vector field by

n(x) :=
∇φ(x)
‖∇φ(x)‖

, x ∈ Rn+1. (2.1.4)

The normal vector field is equal to the outward unit normal nΣ
for points on the hypersurface. Note that it can be undefined at
specific points where the denominator is zero but this problem
can be solved by arbitrarily assigning a value at these points.

2.1.1 Signed distance functions

Definition 2.1.2. A distance function d(x) is defined as

d(x) = min(‖x− xI‖) , for all xI ∈ Σ, (2.1.5)

which means that d(x) = 0 on Σ.

A distance function obeys the property

‖∇d‖ = 1. (2.1.6)

Remark 2.1.1. Property (2.1.6) is satisfied only in a general sense,
since it is not true for points that are equidistant from at least two
points on the interface. However, equations that are true in a general
sense can still be used in numerical calculations as long as they do not
destroy the numerical method entirely when they fail.

Definition 2.1.3. A signed or oriented distance function is an implicit
function φd such that |φd(x)| = d(x) for all x.
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An example of a signed distance function representation of
the unit sphere is

φd(x) = ‖x‖− 1 = 0. (2.1.7)

Note that property (2.1.6) is true for signed distance functions
too.

The signed distance function enables us to find the closest
point η(x) on Σ to a point x ∈ Rn+1 by taking

η(x) = x−φd(x)n(x). (2.1.8)

To make the closest point mapping unique, we define a volumet-
ric neighborhood U (e.g. a tubular region) around Σ

U = {x ∈ Rn+1 |d(x) < δ}, (2.1.9)

where δ is small enough to guarantee uniqueness of the mapping
η : U → Σ. The closest point mapping allows us to introduce a
global coordinate system around Σ as for every point x ∈ U

we can assign the Fermi coordinates φd(x) and η(x). Note that
n(x) = n(η(x)) for every point x ∈ U. Also, any function f

defined on Σ can be extended to U as fe(x) = f(η(x)).

2.2 parametric representation

In a parametric representation the coordinates of a point on the
hypersurface are represented separately as functions of indepen-
dent parameters1 through the use of geometrical mappings.

Definition 2.2.1. In the parametric representation we assume that the
hypersurface Σ ⊂ Rn is a Riemannian manifold2 embedded in the
physical space Rn and obtained through a geometrical mapping

x : Σ̂→ Σ, (2.2.1)

where Σ̂ ⊂ Rκ is the parameter space such that n > κ > 1.

The mapping is assumed to be smooth with piecewise smooth
inverse. An example is a surface in R3 with n = 3 and κ = 2. The
parameter space is defined through independent parameters ξ =

(ξ1, · · · , ξκ) ∈ Rκ while for the natural space we use Cartesian
coordinates x = (x1, . . . , xn) ∈ Rn so that the mapping (2.2.1)
is equivalently expressed as ξ → x(ξ). From now on we will
denote quantities that are defined in the parameter space using
a hat. For example, we can define the Jacobian of the mapping
Ĵ : Σ̂→ Rn×κ as:

Ĵij(ξ) :=
∂xi
∂ξj

(ξ) , i = 1, . . . ,n j = 1, . . . , κ. (2.2.2)

1 The parameters are often chosen to lie in the unit interval.
2 We assume that the manifold is smooth, compact, connected, and oriented.
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Figure 2: Examples of parametric representation: a parametric curve in
2D, a parametric curve in 3D and a parametric surface in 3D.

We can then define the first fundamental form (the induced met-
ric on the manifold) Ĝ : Σ̂→ Rκ×κ as:

Ĝ(ξ) := Ĵ T Ĵ, (2.2.3)

and the square root of the determinant ĝ : Σ̂→ R as:

ĝ(ξ) :=

√
det(Ĝ). (2.2.4)

A function φ(x) defined on the hypersurface Σ can be pulled
back to the parameter domain using the geometrical mapping
so that

φ̂(ξ) = φ(x(ξ)). (2.2.5)

We can then also define the push-forward

φ(x) = φ̂(ξ) ◦ x−1(ξ), (2.2.6)

and drop the distinction between the function definition on the
parameter domain and the definition on the physical space.

2.3 comparison of implicit and parametric methods

A basic comparison between the implicit and parametric repre-
sentations reveals some of the differences:

• The parametric representation allows for a natural direc-
tion of traversal while the implicit form does not.

• It is easier to generate points in the parametric form. This
is an advantage for example in rendering.
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• Given a point it is difficult to determine whether it is on
the hypersurface when using the parametric form. It is nat-
urally easy in the implicit form.

• The parametric representation can produce singularities
which are not present in the actual geometry such as the
poles.

• The implicit representation allows for the efficient applica-
tion of Boolean operations, topology changes and surface
intersection.

2.4 differential tangential calculus

We can define the hypersurface gradient as the projection of the
physical space gradient of an extension of the function onto the
tangent space of the hypersurface. More precisely:

Definition 2.4.1. Let φ : Σ→ R be a function on the hypersurface Σ.
We denote by φ̃ the smooth extension of φ to a neighborhood U of Σ,
so that φ̃|Σ = φ.

An extension can be achieved using the closest point mapping
(2.1.8) together with the uniqueness requirement of (2.1.9). In
this case we can define φ̃(x) = φ ◦η(x) for a point x ∈ Rn+1.

Definition 2.4.2. For each x ∈ U, the tangential projector operator
P(x) ∈ R(n+1)×(n+1) is

P(x) := I−n(x)⊗n(x), (2.4.1)

where I is the identity tensor and n(x) is the unit normal field.

Definition 2.4.3. The tangential gradient of a C1(Σ) function φ at
x ∈ Σ is defined by

∇Σφ(x) := P(x)∇φ̃(x), (2.4.2)

where ∇ represents the usual gradient operator in Rn+1.

The tangential gradient depends only on the values of φ̃ re-
stricted to the hypersurface and we also have that∇Σφ(x) ·nΣ =

0 so that the tangential gradient “lives” on the tangent space TxΣ
at each point x ∈ Σ. For a vector valued function v(x), the tan-
gential divergence is defined as

∇Σ · v(x) = tr(∇Σv(x)). (2.4.3)

Finally, the mean curvature3 of Σ with respect to the outward
pointing unit normal nΣ is defined as

H = −∇Σ ·nΣ. (2.4.4)
3 We define the mean curvature as the sum of the principal curvatures rather

than the arithmetic mean.
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Definition 2.4.4. The Laplace-Beltrami operator for a function φ ∈
C2(Σ) is defined as

∆Σφ(x) := ∇Σ · ∇Σφ(x), (2.4.5)

so it is a generalization of the Laplace operator for curved
geometries and it takes the usual form in flat Euclidean space.

2.4.1 Differential operators in parameter space

Using the geometrical mapping of the parametric representation
we can rewrite differential operators using quantities in the pa-
rameter space. We start by writing the gradient in the physical
space as

∇φ̃(x) =
[̂
J(ξ) Ĝ−1(ξ)∇̂φ̂(ξ)

]
◦ x−1(ξ), (2.4.6)

where ∇̂φ̂(ξ) denotes the gradient in the parameter space. The
tangential gradient becomes

∇Σφ(x) = ∇φ̃(x) −(((((((
(n⊗n)∇φ̃(x)

=
[̂
J(ξ) Ĝ−1(ξ)∇̂φ̂(ξ)

]
◦ x−1(ξ). (2.4.7)

The fact that the second term is zero can easily be seen in the
case of a curve in 2D space, where x = (x,y) and ξ = ξ. We have

t =
∂x

∂ξ
, Ĵ =

(
∂x
∂ξ
∂y
∂ξ

)
= t, (2.4.8)

with t being the tangent vector and n ⊥ t. So

(n⊗n)∇φ̃(x) =
[
(nnT t) Ĝ−1(ξ)∇̂φ̂(ξ)

]
◦ x−1(ξ) (2.4.9)

= 0. (2.4.10)

Similarly the Laplace-Beltrami operator can be written in terms
of parameter space quantities as [Ber03]

∆Σφ(x) =

[
1

ĝ(ξ)
∇̂ ·
(
ĝ(ξ)Ĝ−1(ξ)∇̂φ̂(ξ)

)]
◦ x−1(ξ). (2.4.11)

Also the differentials used in integrals are transformed as

dx = ĝ dξ. (2.4.12)

and any field f defined on Σ can be transformed to the parameter
space as

f̂(ξ) = f(x(ξ)). (2.4.13)
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2.5 pdes on curves and surfaces

Having defined tangential differential operators we can now for-
mulate example PDEs on the manifold. If the manifold has a
boundary Γ = ∂Σ we can split it into two non-overlapping do-
mains such that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. We can then apply
Dirichlet boundary conditions on ΓD and Neumann boundary
conditions on ΓN. For simplicity we will only consider homoge-
neous boundary conditions. Some basic definitions from func-
tional analysis can be found in Appendix A.

2.5.1 The Laplace-Beltrami problem

The Laplace-Beltrami problem is similar to the Poisson problem
and takes the strong form: Given a source function f ∈ L2(Σ),
find u : Σ→ R such that

−∆Σu = f on Σ, (2.5.1a)

u = 0 on ΓD, (2.5.1b)

nΓ · ∇Σu = 0 on ΓN, (2.5.1c)

where nΓ is the unit normal on the boundary. For manifolds
without boundary we need an additional condition for the prob-
lem to be well-posed. The reason is that we can choose u = const.
which makes the left hand side of (2.5.1a) to vanish. Since the
null space of the Laplace-Beltrami operator on a closed mani-
fold is the space of constant functions, we need to add an addi-
tional constraint to only allow the zero function. This zero mean
constraint is∫

Σ

udx = 0. (2.5.2)

2.5.1.1 Variational form

In variational or weak form we multiply the strong form with a
test function v ∈ V where V is a suitable function space. Then
we integrate over the domain and use an appropriate form of
Green’s formula to rewrite the equation. For the tangential oper-
ators, Green’s formula becomes:

(∇Σ ·w, v)Σ = (nΓ ·w, v)Γ −(w,∇Σv)Σ+(w,HnΣv)Σ, (2.5.3)

where H is the mean curvature and n the outward pointing unit
normal to the hypersurface.



12 curves and surfaces

In the case of the Laplace-Beltrami problem we apply Green’s
formula with w = ∇Σu and we get:

−(∆Σu, v)Σ = (∇Σu,∇Σv)Σ − (nΓ · ∇Σu, v)ΓN

− (nΓ · ∇Σu, v)ΓD −
(((((((((((((
(∇Σu, (−∇Σ ·nΣ)nΣ v)Σ

= (f, v)Σ. (2.5.4)

The curvature term is zero because ∇Σv ·nΣ = 0. The boundary
terms are zero for manifolds without boundary. For manifolds
with boundary, the boundary term for ΓN is zero due to homo-
geneous Neumann conditions and the boundary term for ΓD is
zero due to the choice of the test function space. In particular,
the weak form of the Laplace-Beltrami problem is: find u ∈ V
such that

α(u, v) = f(v) , ∀v ∈ V0, (2.5.5)

where α(u, v) = (∇Σu,∇Σv)Σ is the symmetric bilinear form and
f(v) = (f, v)Σ is the linear functional form associated with the
problem. For manifolds with boundary the trial and test function
spaces are equal so V = V0 = {v ∈ H1(Σ) : v|ΓD = 0}. For
manifolds without boundary, the trial function space is instead
V = {v ∈ H1(Σ) :

∫
Σ v dx = 0}.

2.5.2 The Laplace-Beltrami eigenvalue problem

The Laplace-Beltrami eigenvalue problem takes the form: Find
u and λ such that

−∆Σu = λu on Σ. (2.5.6)

Similarly to the Laplace-Beltrami problem, we can consider ho-
mogeneous Dirichlet, homogeneous Neumann or no-boundary
conditions. The Laplace-Beltrami eigenvalue problem becomes
in weak form: find u ∈ V and λ ∈ R such that

α(u, v) = λm(u, v) , ∀v ∈ V0, (2.5.7)

where m(u, v) = (u, v)Σ is a symmetric bilinear form. The choice
of spaces V ,V0 is similar as in the Laplace-Beltrami problem but
there is no need for the constraint (2.5.2) when the manifold is
closed since the first eigenvalue is zero in this case. Since the
problem is symmetric, the eigenvalues λ are real and form a
diverging sequence 0 6 λ1 6 λ2 6 · · · ↑ +∞ with each eigen-
value repeated according to its multiplicity. The spectrum of the
Laplace-Beltrami operator has been the subject of analysis and
the base of a method to compare and analyze different shapes
(shape DNA) [RWP06, RWSN09].
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2.5.3 The biharmonic problem

The biharmonic problem is a higher-order (fourth order) PDE
problem and with Dirichlet boundary conditions it is defined as:
given f ∈ L2(Σ) find u : Σ→ R such that

∆2Σu = f on Σ, (2.5.8a)

u = 0 on Γ , (2.5.8b)

nΓ · ∇Σu = 0 on Γ , (2.5.8c)

where ∆2Σu = ∆Σ(∆Σu). If the manifold has no boundary, we
again need to impose the constraint (2.5.2). In weak form we
apply Green’s formula (2.5.3) twice and the problem becomes:

(∆2Σu, v)Σ = (nΓ · ∇Σ(∆Σu), v)Γ − (∇Σ(∆Σu),∇Σv)Σ
+
((((((((((
(∇Σ(∆Σu),HnΣv)Σ

= (nΓ · ∇Σ(∆Σu), v)Γ − (∆Σu,nΓ · ∇Σv)Γ
+ (∆Σu,∆Σv)Σ −(((((((((

(HnΣ∆Σu,∇Σv)Σ. (2.5.9)

The boundary terms vanish by choosing the test space as V0 =

{v ∈ H2(Σ) : v|Γ = 0 , (nΓ · ∇Σu)|Γ = 0}. So the weak problem is:
find u ∈ V such that

α(u, v) = f(v) , ∀v ∈ V0, (2.5.10)

where α(u, v) = (∆Σu,∆Σv)Σ and f(v) = (f, v)Σ. The trial space
is V = V0 for manifolds with boundary and V = {v ∈ H2(Σ) :∫
Σ v dx = 0} for closed manifolds.

2.5.4 The time-dependent advection-diffusion problem

The time-dependent advection-diffusion problem takes the form:
given f ∈ L2(Σ) find u(t) : Σ× (0, T)→ R such that

∂u

∂t
(t) − µ∆Σu(t) +b · ∇Σu(t) = f on Σ× (0, T),

(2.5.11a)

u(t) = 0 on ΓD × (0, T),
(2.5.11b)

nΓ · µ∇Σu(t) = 0 on ΓN × (0, T),
(2.5.11c)

u(0) = u0 on Σ× {0},
(2.5.11d)

where µ ∈ (0, 1) is the diffusion parameter that controls the
strength of the diffusion term and b is the advection field such
that b ·nΣ = 0, ∇Σ ·b = 0. The weak form becomes: find u ∈ V
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with u(0) = u0 such that

m(∂tu, v) +β(u, v) +α(u, v) = f(v) , ∀t ∈ (0, T) , ∀v ∈ V0,

(2.5.12)

where α(u, v) = (µ∇Σu,∇Σv)Σ , β(u, v) = (b · ∇u, v)Σ and
m(u, v) = (u, v)Σ are the bilinear forms. The trial and test func-
tion spaces are V = V0 = {v ∈ H1(Σ) : v|Γ = 0}.

When the advection-diffusion problem is advection dominated
i.e. when µ is small, the solution exhibits regions where it changes
rapidly. These so called layers may trigger oscillations through-
out the computational domain and “destroy” the approximation.
The onset of these oscillations is a mesh resolution problem and
it happens when the diffusion parameter µ is smaller than the
mesh size h. A stabilization method is needed in these cases to
counteract this behavior. There are some possible choices here,
for example the Galerkin Least Squares (GLS) stabilization and
the Streamline Upwind Petrov Galerkin (SUPG) stabilization. The
idea is to augment the weak form (2.5.12) with a stabilization
term on the left hand side. We will use SUPG stabilization when
solving the time-dependent advection-diffusion problem with
isogeometric analysis.

2.5.5 Existence and uniqueness of solutions

For all the problems we described, existence and uniqueness
of solutions are guaranteed by the Lax-Milgram lemma which
states that:

Lax-Milgram lemma. Let V be a Hilbert space with inner product
(·, ·), a coercive continuous bilinear form α(·, ·) on V and a continuous
linear form l(·) on V . Then, there exists a unique solution u ∈ V to
the variational problem: find u ∈ V such that

α(u, v) = l(v) , ∀v ∈ V , (2.5.13)

where coercivity of the bilinear form is defined as: there is a constant
m such that

m‖v‖2V 6 α(u, v) , ∀v ∈ V , (2.5.14)

and continuity of the bilinear form is defined as: there is a constant Cα
such that

α(u, v) 6 Cα‖u‖V‖v‖V , ∀u, v ∈ V . (2.5.15)

Finally, continuity of the linear form is defined as: there is a constant
Cl such that

l(v) 6 Cl‖v‖V , ∀v ∈ V . (2.5.16)
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More details can be found in any Finite Element Method text-
book [BS08, LB12]. Here we will use the Lax-Milgram lemma
to prove the uniqueness and existence of the solution for the
Laplace-Beltrami problem. We start by noting that for this prob-
lem the norm on the vector space V is

‖u‖2V = ‖∇Σu‖2L2(Σ) = (∇Σu,∇Σu)L2(Σ). (2.5.17)

Then we prove the coercivity of α(·, ·)

α(u,u) = (∇Σu,∇Σu)Σ > m‖u‖2V , (2.5.18)

with m = 1. Next we prove the continuity of α(·, ·) using the
Cauchy-Schwarz inequality

α(u, v) = (∇Σu,∇Σv)Σ 6 ‖∇Σu‖L2(Σ)‖∇Σv‖L2(Σ)
6 ‖u‖V‖v‖V . (2.5.19)

To prove the continuity of l(·) we need the Poincaré inequality
which states that

‖u‖L2(Σ) 6 C‖∇Σu‖L2(Σ). (2.5.20)

Then we can prove the continuity of l(·) using the Cauchy-Schwarz
inequality and the Poincaré inequality

l(v) = (f, v)L2(Σ) 6 ‖f‖L2(Σ)‖v‖L2(Σ)
6 C‖f‖L2(Σ)‖∇Σv‖L2(Σ)
6 C‖f‖L2(Σ)‖v‖V = C‖v‖V . (2.5.21)

The requirements of the Lax-Milgram lemma are satisfied, hence
the solution to the Laplace-Beltrami problem exists and is unique.





3
F I N I T E E L E M E N T S F O R P D E S O N M A N I F O L D S

As we described in the introduction, there is a variety of meth-
ods for the solution of PDEs on manifolds using the finite ele-
ment method. We will focus on the cut finite element method for
hypersurface PDEs as introduced by Olshanskii et al. [ORG09].
The matrix properties of this method have been examined in
detail [OR10] and the method was further explored in subse-
quent papers [ORX12, ORX13c]. Moreover, it was applied to
advection-diffusion problems [ORX13a], the biharmonic prob-
lem [LL13] and to diffusion problems for evolving hypersurfaces
[HLZ13, ORX13b]. The method uses the implicit representation
of the hypersurface and the finite element method to obtain an
approximate solution. We begin by recalling the Galerkin finite
element method.

3.1 galerkin finite element method

After obtaining the variational form of the PDE problem, the
Galerkin finite element method substitutes the function space V
with a finite dimensional subspace Vh ⊂ V which in the case of
the classical finite element method consists of continuous piece-
wise polynomials on a mesh K. Therefore the finite element so-
lution becomes: find uh ∈ Vh such that

α(uh, v) = l(v) , ∀v ∈ Vh. (3.1.1)

Using a basis {φi}
n
i=1 for Vh the finite element solution can be

written as

uh =

n∑
i=1

ξiφi, (3.1.2)

where ξi are coefficients (the problem unknowns). The finite el-
ement method gives a linear system

Aξ = b, (3.1.3)

where A is the stiffness matrix with entries Aij = α(φi,φj) and
b is the load vector with entries bi = l(φi).

3.1.1 A priori error estimates

The finite element approximation satisfies a priori estimates which
express the error in terms of the exact solution. For example, the

17
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best approximation result states that the error e = u− uh satis-
fies

‖e‖V 6
Cα

m
‖u− v‖V , ∀v ∈ Vh. (3.1.4)

This can be further quantified using interpolation estimates to
produce optimal error bounds.

3.2 the cut finite element method

The cut finite element method for hypersurface PDEs consists
of a finite element (A.3.2) discretization using an approximation
Σh of the hypersurface1 Σ and a restriction of the outer finite
element spaces. We first consider a fixed domain ΩI ⊂ Rn that
completely contains Σ with n being the dimension of the embed-
ding physical space. We then assume there is a partition Th = {S}
of the domain ΩI which consists of regular polygons e.g. regu-
lar quadrilaterals for n = 2 or regular tetrahedra for n = 3. We
assume a discretization Σh of Σ that is consistent with the back-
ground domain partitioning and we define the set of elements
Kh than intersect Σh by

Kh = {S ∈ Th : S∩ Σh 6= ∅}. (3.2.1)

The union of all elements in Kh forms the domainΩh = ∪S∈Kh
S.

For each element S ∈ Ωh we denote by T the intersection of the
element with Σh so that T = S∩ Σh.

Remark 3.2.1. In general T can coincide with the face of an element
in Th and thus the corresponding S is not unique. In this case one can
choose one arbitrary but fixed element S that has T as a face.

So Σh can be written as the union of all such intersections

Σh = ∪T∈FhT, (3.2.2)

where Fh denotes the set of all intersections which can be line
segments in 2D, and planar segments in 3D. We also denote with
FI the set of all internal faces in Kh. Finally, we take as the local
mesh size hS the length of the longest edge in S and as the global
mesh size we take h = maxS∈Th hS.

Remark 3.2.2. While we assumed that Th consists of elements that
are regular, the same is not true for the set Fh which are not regular
in general. The reason is that the elements in Fh can have very small
angles and neighboring elements can have very different lengths or
areas. However, this does not influence the optimal error bounds so
that regularity in Fh is not a requirement of the method.

1 We assume that Σ is a hypersurface without boundary.



3.2 the cut finite element method 19

Figure 3: The background mesh ΩI which consists of squares and con-
tains the circle Σ entirely. The approximated circle Σh is ob-
tained using the linear interpolant πhφ of the implicit func-
tion φ. The domain Ωh (shaded squares) contains all inter-
sected elements. The approximated curve Σh can be parti-
tioned into line segments T ∈ Fh.

3.2.1 Discretization of hypersurface

An approximation Σh of Σ can be obtained by utilizing the im-
plicit representation of the hypersurface. In particular we can
represent Σ as the zero level of an implicit function φ or a signed
distance function φd as in Section 2.1. The implicit function can
then be discretized using piecewise continuous finite elements
on the background mesh Th so that we obtain φh. For exam-
ple we can obtain the discretized implicit function as φh = πhφ

i.e. as the continuous piecewise linear interpolant (A.3.1) of φ.
Then the discretized curve Σh can be obtained as the zero level
of φh. An example discretization of a circle in 2D, using regular
quadrilaterals for the partitioning of the background domain, is
depicted in Figure 3. For Σh we define discretized quantities: the
discrete unit normal field (which is the equal to the exact normal
on Σh)

nh(x) =
∇φh(x)
‖∇φh(x)‖

, (3.2.3)

and the discrete closest point mapping

ηh(x) = x−φd,h(x)nh(x), (3.2.4)

where φd,h is the discretized signed distance function. We can
also define approximate differential operators such as the tan-
gential gradient

∇Σhφ(x) = Ph∇φ(x) = (I−nh ⊗nh)∇φ(x). (3.2.5)
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3.2.2 Finite element formulation

The main idea of the cut finite element method is to use the
finite element space which is induced by the finite elements on
Th. This surface finite element space is the space of traces on Σh
of all piecewise linear continuous functions with respect to the
background mesh Th. We introduce the finite element space

Vh = {vh ∈ C(Ωh) : vh|S ∈ P ∀ S ∈ Ωh}, (3.2.6)

where P is the space of polynomials. The space Vh induces the
surface space on Σh

VΣh = {ψh ∈ H1(Σh) : ∃ vh ∈ Vh s.t. ψh = vh|Σh}. (3.2.7)

If we denote by φi , i = 1, . . . ,N the nodal finite element basis
functions that correspond to the vertices of the elements in Ωh,
then the space VΣh is spanned by the traces of the basis functions
φi|Σh . We apply the method to the weak form of the Laplace-
Beltrami problem as stated in Section 2.5.1.1 and we obtain the
formulation: find uh ∈ VΣh such that

αh(uh, vh) = lh(vh) , ∀vh ∈ VΣh , (3.2.8)

where the symmetric bilinear form is

αh(u, v) = (∇Σhu,∇Σhv)Σh , (3.2.9)

and the linear form is

lh(v) = (fe, v)Σh , (3.2.10)

with fe being an appropriate extension of f using the closest
point mapping (2.1.8), so that fe(x) = f ◦ η(x) = f(η(x)).
Remark 3.2.3. The extension of functions to a neighborhood U of Σ
can be achieved by taking constant values along the normal direction
n to Σ. Note however, that the tangential differential operators are
independent of the choice of U so we can extend all functions by taking
constant values along the approximate normal nh instead.

Since we assumed that the hypersurface is closed we also add
the additional constraint that∫

Σh

uh dxh = 0. (3.2.11)

The solution of (3.2.8) can be expressed as the linear combination
of the traces of the outer basis functions on Σh

uh =

N∑
i=1

ξiφi|Σh . (3.2.12)

Then we can obtain the linear system Aξ = b with

Aij = αh(φi,φj), (3.2.13)

and

bi = lh(φi). (3.2.14)
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3.2.3 Optimal error bounds

The finite element solution uh in (3.2.8) obeys the following error
bounds2 [ORG09]:

‖ue − uh‖L2(Σh) 6 Ch
2‖f‖L2(Σ), (3.2.15)

‖∇Σh(u
e − uh)‖L2(Σh) 6 Ch‖f‖L2(Σ). (3.2.16)

3.2.4 Stabilization

The stiffness matrix A can become ill-conditioned depending on
the position of the hypersurface relative to the background do-
main due to the strong shape irregularity of the hypersurface
discretization. One solution for this problem is to use a scaled
matrix [OR10]. Another solution, which we will follow, is to add
a stabilization term. We define this term as

j(u, v) =
∑

F∈FI

([nF · ∇u], [nF · ∇v])F, (3.2.17)

where nF is the outward unit normal to the face F and [nF · ∇u]
denotes the jump of the gradient along the normal direction3

when passing an internal face of an element in Kh. If we con-
sider two adjacent elements S+ and S− that share a face F, then
n+
F is the outward unit normal for S+ and n−

F is the outward
unit normal for S−. We have that n+

F = −n−
F and the jump of a

quantity w is expressed as

[nF ·w] = n+
F · (w

+ −w−) = n+
F · [w]. (3.2.18)

We add the term j(uh, v) to obtain the stabilized problem: find
uh ∈ VΣh such that

αh(uh, vh) + j(uh, vh) = lh(vh) , ∀vh ∈ VΣh . (3.2.19)

Note that the condition number (A.2.5) of the augmented stiff-
ness matrix κ(A) obeys the following bound

κ(A) 6 Ch−2. (3.2.20)

3.2.5 Implementation details

We describe our implementation of the cut finite element method
for the Laplace-Beltrami problem defined on a closed curve which
is embedded in 2D space.

2 Given conditions that assure that Σh is sufficiently close to Σ.
3 Note that the gradient is continuous along the tangential direction.
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curve representation For the representation of the curve
Σ we use the implicit representation method. In particular
we represent the curve as the zero level of a signed distance
function φd as in (2.1.3).

background mesh and approximate curve For the back-
ground domain ΩI we use a rectangular domain that com-
pletely contains Σ. We then partition this domain into regu-
lar rectangles or squares. The approximate curve Σh is ob-
tained as the zero level of the approximate signed distance
function which is chosen as φd,h = πhφd. An example
construction is depicted in Figure 3.

construction of Ωh We first obtain the intersection points
of the curve Σh with the background elements using the
computation of the zero isocontour. We then construct the
set Ωh , which is the set of all intersected elements, by test-
ing in which element every midpoint of the line segments
of Σh lies. In our implementation we make the assump-
tion that each T does not coincide with a face in Th for
simplicity reasons.

bilinear finite elements We choose to use bilinear quadri-
lateral finite elements. The space of bilinear functions on
each element S is

P(S) = {v : v = c0 + c1x + c2y + c3xy ,

(x , y) ∈ S , c0 , c1 , c2 , c3 ∈ R} ,
(3.2.21)

and each v ∈ P(S) is uniquely determined by its nodal
values on the four vertices Ni of S. Using the definition of
the nodal basis φj(Ni) = δij we obtain the expression for
the basis functions of the bilinear quadrilateral element

φ1 = (x(N2)y(N3) − y(N3)x − x(N2)y + xy)/E ,
(3.2.22a)

φ2 = (−x(N1)y(N3) + y(N3)x + x(N1)y − xy)/E ,
(3.2.22b)

φ3 = (x(N1)y(N1) − y(N1)x − x(N1)y + xy)/E ,
(3.2.22c)

φ4 = (−x(N2)y(N1) + y(N1)x + x(N2)y − xy)/E ,
(3.2.22d)

where E is the area of the element and (x(Ni) , y(Ni)) are
the (x , y) coordinates of the node Ni in element S.

quadrature For the numerical integration we use Gauss-Legendre
n-point quadrature. Since Gaussian quadrature is constructed
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to give exact results for polynomials of degree 2n − 1, we
choose n accordingly. For example, when we need to cal-
culate the term (3.2.9) which involves gradients, the degree
of the polynomial is two, so we choose n = 2.

enforcement of constraint Since we are dealing with a
closed curve, we need to take into account the zero mean
constraint (3.2.11). We choose to enforce this using the La-
grange multiplier method. In this method we first consider
the constraint as a matrix C acting on the solution

∫
Σh

uh dxh =

N∑
i=1

ξi

∫
Σh

φi dxh = Cξ = 0. (3.2.23)

We then assemble an augmented linear system as follows(
A CT

C 0

)(
ξ

µ

)
=

(
b

0

)
, (3.2.24)

where A is the stiffness matrix, µ is the Lagrange multi-
plier, b is the load vector. Therefore we seek a solution
[ξ,µ] of the augmented linear system. Note that the La-
grange multiplier µ should be zero or very small because
the constraint does not alter the solution to the initial prob-
lem.

eigenvalues and condition number We calculate the ef-
fective condition number of the stiffness matrix using the
ratio of the largest and first positive eigenvalues

κeff(A) =
λmax(A)

λmin>0(A)
. (3.2.25)

The first eigenvalue is negative as it corresponds to the La-
grange multiplier. The first non-zero eigenvalue is the sec-
ond one in the stabilized method and the third one in the
unstabilized method. The second eigenvalue in the unstabi-
lized method is zero because we use the same background
mesh to define the approximate curve and to perform the
computations. This can be avoided if we instead use a finer
mesh to define the approximate curve.

implementation structure The implementation structure
follows the classic finite element method structure i.e. we
exploit the limited support of the basis functions and as-
semble the global matrices by adding local contributions
from each element. To this purpose we use connectivity ar-
rays which map local to global degrees of freedom. The
steps of our implementation are the following
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1. Find the intersection points and the intersected ele-
ments.

2. Find the tangent and normal vectors to each line seg-
ment of Σh.

3. Assemble the stiffness matrix, the load vector, the con-
straint term matrix and the stabilization term matrix.

4. Solve the augmented Lagrange multiplier linear sys-
tem, visualize the solution and calculate the error norms.

performance Vectorization [TLNC10] is used wherever pos-
sible to improve performance. However, parts of the code
are not optimal in the sense that the algorithms used are
not the most efficient. This is for example the case for the
intersection routine which calculates which elements are
intersected by the curve. A more efficient implementation
of this should involve the use of quadtree or octree data
representations. More information on this subject can be
found in Massing, Larson and Logg [MLL12].

Example listings of the Matlab code can be found in Appendix B.
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I S O G E O M E T R I C A N A LY S I S F O R P D E S O N
M A N I F O L D S

4.1 introduction to isogeometric analysis

Isogeometric analysis is a computational method that is based
on the isoparametric paradigm so that it uses the same basis
functions for the geometric representation of an object and the
solution space in the numerical analysis. The initial aim was to
use CAD models directly without the need to generate approxi-
mate geometrical descriptions. Due to the wide-spread use and
the effectiveness of splines in CAD analysis, isogeometric anal-
ysis is mainly based on B-splines and non-uniform rational B-
splines (NURBS). Using NURBS many geometric shapes such as
conics can be parametrically represented exactly and thus the
difficulty and the error produced from the need to generate an
approximate description are removed.

Isogeometric analysis has additional advantages over classical
finite element methods with one of the most important being
the availability of arbitrary degrees of inter-element continuity,
in contrast with the usual C0 continuity in FEM. Another advan-
tage is that the geometrical description is fixed at coarsest level
of the discretization i.e. it stays the same throughout refinement.
The idea is pictured in Figure 4. Isogeometric analysis can be
thought of as a superset of classical FEM as it provides addi-
tional tools and improved accuracy and efficiency. For example,
in addition to h-refinement (knot insertion) and p-refinement (or-
der elevation) which have an analogue in FEM, there is also an
additional refinement process called k-refinement. K- refinement

......

......

h

Isogeometric analysis

Finite Element Method

0

Figure 4: In FEM the geometrical description of an object approaches
the desired form as h→ 0. In isogeometric analysis it is exact
and fixed at the coarsest level of discretization.
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is based on the fact that the two aforementioned refinement pro-
cesses do not commute and it doesn’t have an analogue in FEM.

While the isoparametric concept is also used in classical finite
element analysis, there is an important difference. In FEM the
basis chosen for the solution space is also chosen to represent
the geometry. In IGA the basis chosen to represent the geometry
is also chosen to represent the solution. Additionally, in FEM
each element in the physical space has its own mapping from
the reference element. This is in contrast to IGA, where a single
mapping takes an entire patch1 from the parameter space to the
physical space.

There are many excellent references on the subject of NURBS
[Rog01, PT97] and IGA [HCB09, NSBR12, VHS10]. Here we will
cover the basic definitions that are essential to our purpose.

4.1.1 Basic isogeometric analysis concepts

Definition 4.1.1. A knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} in one
dimension is a non-decreasing set of coordinates in the parameter space,
where ξi ∈ R is the ith knot, p is the polynomial degree2 and n is the
number of basis functions used to construct the B-spline curve.

We usually assume that ξ1 = 0 and ξn+p+1 = 1. The knot vec-
tor partitions the parameter space into “elements” called knot
spans written as [ξi, ξi+1). A knot ξi can be repeated mi times,
in which case we refer to the multiplicity mi of this knot. A knot
vector is said to be open if the first and last knots have multiplic-
ity equal to (p + 1). A knot vector is called uniform when the
knots are evenly distributed, otherwise it is called non-uniform.

Definition 4.1.2. Given a knot vector Ξ, the B-spline basis functions
are defined recursively starting with piecewise constants

Ni,0(ξ) =

1 if ξi 6 ξ < ξi+1,

0 otherwise.
(4.1.1)

and for polynomial order p > 1

Ni,p(ξ) =
ξ− ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

(4.1.2)

This is the Cox-de Boor recursion formula. Note that by convention we
take that ratios of 0/0 are equal to zero.

1 The patch can be thought as a sub-domain which in the parameter space takes
the form of a rectangle in 2D or a cuboid in 3D. In most cases, a single patch
is sufficient to model the geometry and is comprised of elements called knot
spans.

2 We adhere to the convention that order equals degree.
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Figure 5: Example univariate B-spline basis functions for the open knot
vector Ξ = {0, 0, 0, 1/7, 4/7, 4/7, 5/7, 1, 1, 1}. The order is p = 2

and there are n = 7 basis functions. We can see that the
basis functions are interpolatory at the ends and at the knot
ξ = 4/7where the multiplicity ism = 2, so that the continuity
there is Cp−m = C2−2 = C0.

B-splines have many important properties

• The B-spline basis constitutes a partition of unity i.e.∑n
i=1Ni,p(ξ) = 1.

• They are non-negative over the entire domain.

• Basis functions of order p have p−mi continuous deriva-
tives across the knot ξi, where mi is the multiplicity of the
knot ξi.

• Basis functions are generally non-interpolatory. Only when
mi = p, the knot ξi is interpolatory. This is always true
(for an open knot vector) at the endpoints where the basis
becomes discontinuous and it creates the patch boundary.

• The support of the basis functions of order p is always
(p+ 1) knot spans. At any given knot span [ξi, ξi+1), the
non-zero functions are Ni−p,p, . . . ,Ni,p.

Definition 4.1.3. Given n B-splines basis functions Ni,p and control
points Bi ∈ Rn, a piecewise-polynomial B-spline curve is given by

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi. (4.1.3)

Having defined univariate B-spline basis functions and B-splines
curves, we can now use the tensor product to construct multi-
variate B-spline basis and B-spline surfaces.
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Figure 6: Example multivariate B-spline basis functions for the tensor
product Ξ× Ξ with Ξ = {0, 0, 0, 1/7, 4/7, 4/7, 5/7, 1, 1, 1}. The
order is p = 2 and there are n = 49 basis functions.

Definition 4.1.4. Given two knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}
and H = {η1,η2, . . . ,ηm+q+1} and a control net Bi,j ∈ Rn, a tensor-
product B-spline surface is defined as

S(ξ,η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j, (4.1.4)

whereNi,p(ξ) andMj,q(η) are the univariate B-spline basis functions
of order p and q corresponding to knot vectors Ξ and H, respectively.

We now define NURBS, which are a generalization of B-splines
and are able to exactly represent simple shapes such as conics.

Definition 4.1.5. NURBS basis functions are defined by

Ri,p(ξ) =
Ni,p(ξ)wi
W(ξ)

=
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

, (4.1.5)

where wi is referred to as the ith weight and is always positive.

NURBS curves and surfaces are piecewise rational functions
and are defined similarly as B-spline curves and surfaces.

Remark 4.1.1. NURBS entities in Rn are obtained by projective trans-
formations of B-spline entities in Rn+1.

As we mentioned, there are three types of refinement in isoge-
ometric analysis:
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h-refinement This is also referred to as knot insertion as new
knots are inserted without changing the geometry. The re-
sult is a richer basis (more elements, basis functions and
control points) for the solution space.

p-refinement This is achieved by order elevation of the basis
functions. To maintain discontinuities, the multiplicity of
each knot is also increased by one. Again this does not
change the geometry but only the solution space.

k-refinement This is achieved by first elevating the order of
the basis functions and then inserting new knots. The re-
sult is increased continuity and polynomial order of the
basis functions. This process has no direct analogue in clas-
sical FEM.

A disadvantage of IGA is that due to tensor product nature of
the basis functions, refinement is a global procedure. This leads
to superfluous control points. Possible solutions are the use of
T-splines [BCC+

10] and hierarchical refinement [VGJS11].

4.2 isogeometric analysis for pdes on manifolds

4.2.1 Hypersurface representation in isogeometric analysis

As we described above, IGA uses B-splines or NURBS to para-
metrically represent the geometry as in (2.2.1). The parameter
space Σ̂ is defined by the knot vector Ξ for a curve or by the ten-
sor product of two knot vectors Ξ×H for a surface. The knot vec-
tors define the elements (unique knots spans) Σ̂e , e = 1, . . . ,nel
in the parameter space and through the geometrical mapping,
the elements Σe in the physical space. We will also define the
mesh size he as the maximal diameter of element Σe and the
global mesh size as h = max(he , e = 1, . . . ,nel). We can write
the geometrical mapping as

x(z) =

n∑
i=1

R̂i(z)Bi, (4.2.1)

where R̂i(ξ) are the NURBS basis functions defined in the param-
eter space Σ̂ and Bi ∈ Rn are the control points. Here z in gen-
eral denotes a multivariate knot vector z = (z1, . . . , zκ) where κ
is the dimension of the parameter space. Similarly, R̂i(z) are in
general multivariate basis functions. The geometrical mapping
is depicted in Figure 7.



30 isogeometric analysis for pdes on manifolds

ξ

η Σ̂

Σ̂e

x(ξ,η)

x−1(x,y, z)
y

z

x

Σ

Σe

Figure 7: Geometrical mapping in Isogeometric Analysis: The surface
in 3D space is constructed using a mapping x from the pa-
rameter space. An element Σ̂e in parameter space is mapped
to an element Σe in physical space.

4.2.2 Galerkin method for isogeometric analysis

IGA also uses the same basis functions for the solution space. So
we can write the approximate solution uh as

uh(x) = ûh(x) ◦ x−1(ξ) =
n∑
i=1

R̂i(z)di, (4.2.2)

where di ∈ R are the unknown coefficients which are called
control variables. The Galerkin method take the same form as
in Section 3.1 but using NURBS basis functions for the solution
space. The finite element space V̂h, defined on the parametric
domain, is spanned by the NURBS basis functions

V̂h = span{R̂i}ni=1. (4.2.3)

The finite element space Vh, defined on the physical domain, can
be deduced by V̂h as

Vh = span{R̂i ◦ x−1}ni=1. (4.2.4)

4.2.3 A priori error estimates

A priori estimates for isogeometric analysis have been derived
[BBdVC+

06, dVBRS11] and the results state that the solution uh
satisfies the same optimal rate of convergence as the classical
finite element method of degree p. In general, we assume that
these optimal convergence rates are also obeyed for the isogeo-
metric analysis of PDEs on manifolds, as long as the geometrical
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mapping x is sufficiently smooth. Specific error estimates for the
Laplace-Beltrami problem were derived in Dedè and Quarterioni
[DQ13]:

‖u− uh‖L2(Σ) 6 Chp+1, (4.2.5)

‖u− uh‖H1(Σ) 6 Chp, (4.2.6)

where p is the polynomial order of the NURBS basis functions.
For the Laplace-Beltrami eigenvalue problem, an error estimate
for the nth eigenvalue is

λn,h − λn ∼ C(λn)
p+1h2p. (4.2.7)

For higher order problems such as the biharmonic problem, we
assume the error estimates follow the ones provided in Tagli-
abue et al. [TDQ13]. These state that the following error esti-
mates hold:

‖u− uh‖L2(Σ) 6 Chmin{p+1,2p−2}, (4.2.8)

‖u− uh‖H1(Σ) 6 Chmin{p,2p−2}, (4.2.9)

‖u− uh‖H2(Σ) 6 Chmin{p−1,2p−2}. (4.2.10)

Finally, the condition number of the stiffness matrix in IGA obeys
the error bound [GT12]

κ(A) 6 Ch−2. (4.2.11)

4.2.4 Implementation details

As mentioned, the implementation of the isogeometric analysis
method was done in Matlab by extending the package GeoPDEs.
The main additional feature that was needed for the implemen-
tation, was the support for cases where the dimension κ of the
parameter space and the dimension n of the physical space in
the mapping (2.2.1) are not equal. This has consequences for the
numerical calculation of all quantities as the determinant of the
Jacobian has to be replaced with the square root determinant of
the first fundamental form. When κ = n these two quantities are
equal, so we can say that the case κ 6= n is a generalization.

The implementation of IGA is similar as in isoparametric FEM.
The main difference lies in the construction of the connectivity
arrays and in the evaluation of the shape functions. An alterna-
tive approach is to use Bézier extraction, which produces Bézier
elements [SBV+

11]. These can be used in the same way as in
standard finite element method implementations.
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quadrature The numerical calculation of integrals in IGA is
performed by pulling back quantities onto the parameter
space and then using a quadrature rule defined on a refer-
ence element. For example in the assembly of the stiffness
matrix, we need to be able to calculate integrals of the form

α(u, v) =
∫
Σ

∇Σu · ∇Σv dx. (4.2.12)

We first pull-back the integral onto the parameter domain
using the equations in Section 2.4.1 so it becomes

α̂(û, v̂) =
∫
Σ̂

∇̂û · (Ĝ−1∇̂v̂)ĝ dξ. (4.2.13)

Similarly we convert l(v) to

l̂(v̂) =

∫
Σ̂

f̂ v̂ dξ. (4.2.14)

The integrals are then calculated using Gauss-Legendre n-
point quadrature which is initially defined on a reference
element and then transformed to the parameter space. We
choose n = (p+ 1)κ abscissas where p is the polynomial
order of the NURBS basis functions and κ is the dimension
of the parameter space.

Remark 4.2.1. Although the choice of n = (p+ 1)κ quadrature
points guarantees exact integration, it is not optimal complexity-
wise as the increased continuity between elements in IGA can
be exploited to produce a quadrature rule which spans more than
one element, so that it requires less evaluation points per degree
of freedom [HRS10].

boundary conditions and constraint For the enforce-
ment of the zero mean constraint for closed manifolds,
we use the same Lagrange multiplier method as in FEM,
namely (3.2.24). The imposition of homogeneous Dirichlet
boundary conditions in open manifolds is similar as in clas-
sical FEM. We find the degrees of freedom associated to
the boundary and set them identically equal to zero. Then
we solve the linear system for the internal degrees of free-
dom. For the biharmonic problem the situation is more
complex as we need to enforce the two conditions (2.5.8b)
and (2.5.8c). Since the NURBS basis functions are interpola-
tory at their ends, we can enforce the condition (2.5.8c) by
setting identical values for the boundary and boundary-
adjacent degrees of freedom. In particular, we set these to
zero and solve for the remaining internal degrees of free-
dom.
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Remark 4.2.2. For closed manifolds there are coinciding control
points. For example, the first and last control points in the circle
coincide. This is due to the use of open aperiodic knot vectors.
Therefore we need to enforce that the degrees of freedom corre-
sponding to coinciding control points, coincide as well. This can
be achieved by identifying such points and manipulating the con-
nectivity array. Moreover, in the solution of the linear system, we
identify such “duplicated” degrees of freedom and ignore them.

time discretization For the time-dependent advection dif-
fusion problem we discretize time by dividing into time
steps ti , i = 0, . . . ,n with t0 = 0 and tn = T so that the
time step ∆t is constant. We then use the Crank-Nicholson
method for the time stepping of the solution. The linear
system for the unstabilized problem becomes

M
ξi − ξi−1
∆t

+A
ξi + ξi+1

2
+C

ξi + ξi+1
2

=
bi + bi+1

2
,

(4.2.15)

for each time step i, where M is the mass matrix corre-
sponding to the term m(u, v), A is the stiffness matrix cor-
responding to the term α(u, v), C is the matrix correspond-
ing to the advection term β(u, v) and b is the load vector
corresponding to the term l(v). Note that in the first time
step we choose that u0 is the zero vector.

supg stabilization For the time-dependent advection-diffusion
problem (2.5.12) we implement SUPG stabilization by adding
the following term on the left hand side of (3.1.1)

Lh(uh, vh) =
nel∑
e=1

τe(−∇Σ · (µ∇Σuh)+b ·∇Σuh− f,b ·∇Σvh)L2(Σe)

(4.2.16)

where the stabilization parameter τe is chosen as

τe = c

(
1

∆t2
+

(
Ve

he

)2(
1+

(
cp

Pee

)2))−1/2

, (4.2.17)

with c being a constant, ∆t being the time step, he the
element mesh size, Ve = ‖b‖L∞(Σe) and cp a constant
that depends3 on the order p of the basis functions. Also
Pee = Vehe

2µ is the local Péclet number which measures
the relative strength of the diffusion and advection terms.
When advection dominates we have that Pee � 1.

3 We choose cp = p2.
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implementation structure GeoPDEs is based on object ori-
ented programming and as such there are three important
classes

• The geometry class. This defines the geometry of the
physical domain by taking as input a NURBS struc-
ture and by defining methods to compute the geomet-
rical mapping and its derivatives.

• The mesh class. This defines the parameter space par-
titioning into elements and calculates the quadrature
points and weights on each element using a quadra-
ture rule.

• The space class. This contains the information regard-
ing the basis functions of the finite element space Vh.
Since we base our analysis on the isoparametric para-
digm, the information for Vh is already available from
the geometry class. Moreover, a connectivity array is
utilized to map locally supported basis functions on
each element to the global numbering.

Using these classes, we can assemble the required matri-
ces through the use of the corresponding operators. These
operators exploit the tensor product nature of the domain
partitioning by traversing through columns in one para-
metric direction and assembling the corresponding matri-
ces . GeoPDEs also includes functions for refinement, cal-
culation of error norms and visualization of solutions.

The work in this thesis includes the following contributions
to the extension of the library:

1. Extension of all structures and functions so that the
case of κ 6= n is supported. This includes support
for 1D parametric spaces which were not available in
GeoPDEs. It also includes the calculation of the first
fundamental form, its inverse and its square root de-
terminant.

2. Generalization of the calculation of the pull-backs onto
the parameter space.

3. Implementation of new operators for the solution of
the biharmonic problem, the advection-diffusion prob-
lem and for SUPG stabilization.

4. Implementation of a function for the calculation of the
error in the H2 norm.

performance The Matlab code in GeoPDEs and in the im-
plemented extensions is vectorized when possible to im-
prove performance. Additionally, the tensor product na-
ture of the parameter space is exploited and quantities are
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calculated only when needed, resulting in significant mem-
ory savings. Finally, demanding operations that are used
many times are implemented in C using Matlab MEX-files.
The result is optimized code which performs reasonably
well for simple problems.

Example listings can be found in Appendix B.





5
N U M E R I C A L E X A M P L E S

5.1 laplace-beltrami problem for a curve in 2d

We consider the Laplace-Beltrami problem as in Equation 2.4.5,
defined on a circle which is embedded in 2D space. We choose
that the circle is centered at (x0,y0) = (0, 0) and has radius r = 1.
The exact analytical solution u is chosen to be

u(r,φ) = 12 sin(3φ), (5.1.1)

in polar coordinates (r,φ). Plugging this in (2.5.1a), we obtain
the source function f

f(r,φ) = 108 sin(3φ). (5.1.2)

We solve the problem using both the cut finite element method
and isogeometric analysis.

5.1.1 Solution with the cut finite element method

We follow the solution method as described in Section 3.2. We
represent the circle with the signed distance function

φd(x,y) =
√

(x− x0)2 + (y− y0)2 − r, (5.1.3)

and embed it in a background rectangular domain [−2,−2] ×
[2, 2] which we partition into squares of equal size h as in Fig-
ure 8. An example solution is shown in Figure 9. We then move
diagonally the position of the circle relative to the background
mesh in small increments and calculate the condition numbers
for the unstabilized and stabilized numerical solutions. The re-
sults, as depicted in Figure 10, clearly show a large variation of
the condition number for the unstabilized version depending on
the position of the curve relative to background mesh. We also
plot the mesh dependence of the condition number in the sta-
bilized version and we confirm the estimate (3.2.20). Finally we
perform convergence analysis in the L2 norm and compare the
theoretical order of convergence O(h2) derived from the a priori
error estimate in (3.2.15). The results are shown in Figure 12 and
confirm the optimal order of convergence for both the stabilized
method and unstabilized methods (with the stabilized method
performing slightly worse than the unstabilized one).

37
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Figure 8: Background mesh of mesh size h = 0.05 and approximated
unit circle Σh. The set Ωh has nel = 156 elements and there
are ndof = 312 degrees of freedom.
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Figure 9: Exact, unstabilized numerical solution and stabilized numer-
ical solution of the Laplace-Beltrami problem for a unit circle
in 2D, using the cut finite element method. Note the irregu-
larities in the unstabilized solution.
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Figure 10: Condition numbers for the stabilized and unstabilized meth-
ods as the center of the circle (x0,y0) changes position rela-
tive to the background mesh. Note the high variation in the
unstabilized method.
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Figure 11: Plot of the condition number κ(A) vs. the mesh size h in
the stabilized method. The result confirms the theoretical
estimate (3.2.20).
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Figure 12: Plot of the L2 error norm vs. the mesh size h for the Laplace-
Beltrami problem using the cut finite element method and
comparison with the theoretical convergence rate. Optimal
order of convergence O(h2) is confirmed for both the stabi-
lized and unstabilized methods.

5.1.2 Solution with isogeometric analysis

We solve the same Laplace-Beltrami problem on a curve in 2D
using isogeometric analysis with NURBS basis functions of poly-
nomial order p = 2 and global C0 continuity. The geometry, the
control points and the elements in the unrefined mesh are shown
in Figure 13. An example solution is shown in Figure 14. We
then perform convergence analysis in the L2 and H1 norms us-
ing h-refinement for basis functions of polynomial order p = 2.
The results shown in Figure 15 confirm the optimal error esti-
mates O(h2) for the H1 norm and O(h3) for the L2 norm as in
(4.2.5) and (4.2.6). Finally, we check the mesh dependence of the
condition number of the stiffness matrix. The result, depicted in
Figure 16, confirms the estimate in (4.2.11).
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Figure 13: NURBS circle in 2D: exact representation of the unit circle,
control points, control polygon and mesh element bound-
aries in the coarsest level of discretization. There are four
elements and nine control points. The first and last control
points coincide.
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Figure 14: Exact and numerical solution of the Laplace-Beltrami prob-
lem for a unit circle in 2D, using isogeometric analysis with
NURBS basis functions of order p = 2. The number of el-
ements in the refined mesh is nel = 16 with number of
degrees of freedom ndof = 312.
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Figure 15: Plot of the L2 and H1 error norms for different mesh sizes
h, for the Laplace-Beltrami problem in 2D using IGA. The
optimal rates of convergence are confirmed.
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Figure 16: Plot of the condition number κ(A) vs. the mesh size h for
the Laplace-Beltrami problem in 2D with IGA. The result
confirms the theoretical estimate (4.2.11).
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5.1.3 Comparison of IGA and FEM for the Laplace-Beltrami problem
in 2D

We now compare the stabilized cut finite element method and
the IGA method with NURBS basis functions of order p = 2 for
the solution of the Laplace-Beltrami problem on the unit circle
in 2D. We report in Table 1 the number of elements, the number
of degrees of freedom and the L2 error for different mesh sizes.
We see that the cut finite element method needs a much larger
number of degrees of freedom to achieve the same L2 errors as
IGA. The exact geometrical representation and the smoothness
of the basis functions in IGA are important advantages in this
comparison, as better accuracy is achieved with a smaller num-
ber of degrees of freedom.

IGA FEM

nel ndof L2 err nel ndof L2 err

4 9 10.0192 - - -

8 17 1.0664 12 24 10.4922

24 49 0.0443 28 56 4.1608

96 193 7.0311·10−4 92 184 0.5502

480 961 5.6306·10−6 380 776 0.0054

2880 5761 2.6069·10−8 - - -

Table 1: Comparison of the cut FEM and IGA for the Laplace-Beltrami
problem on a circle in 2D. The number of elements, number of
degrees of freedom and the L2 error norm are reported. IGA
performs better than the cut finite element method for this
type of problem.

5.2 laplace-beltrami eigenvalue problem for a curve

in 2d

We solve the Laplace-Beltrami eigenvalue problem as in (2.5.2)
for the unit circle in 2D with NURBS basis functions of order
p = 2. The exact eigenvalues for this problem are λ = n2 ,n =

1, . . . ,∞ each with multiplicity equal to two [Shu01]. The first
eigenvalue is zero because the manifold we consider is closed.
The exact eigenfunctions can generally be expressed as un =

A cos(nφ) +B sin(nφ) where A,B are constants and φ is the po-
lar coordinate. We plot the 6th eigenfunction and the ratios of
the numerical to exact eigenvalues. The results are shown in Fig-
ure 17. The numerical eigenvalues agree very well with the exact
eigenvalues for small values of n as one expects from the error
estimate in (4.2.7). We also plot in Figure 18 the dependence of
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the error on the mesh size h for the fifth eigenvalue and confirm
that it follows the estimate for p = 2 i.e. that λ5,h − λ5 ∼ (λ5)

3h4.

−1

0

1

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

6th eigenfunction
(exact solution)

−1

0

1

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

6th eigenfunction
(numerical solution)

0 0.5 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ratio of numerical 
to exact eigenvalues

Figure 17: Plot of the 6th eigenfunction and the ratios of the numeri-
cal to exact eigenvalues for the Laplace-Beltrami eigenvalue
problem on a circle in 2D. For small eigenvalues the numer-
ical results agree with the theoretical values.
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Figure 19: NURBS geometry of quarter cylinder: exact representation,
control points and control net in the coarsest level of dis-
cretization. There is one element and six control points.

5.3 laplace-beltrami problem for a surface in 3d

We now solve the Laplace-Beltrami problem for a quarter of a
cylinder of height L = 4 and radius r = 1. The geometry is
shown in Figure 19. We define the functions gφ,1(φ) = (1 −

cosφ)(1− sinφ), gφ,2 = (cosφ+ sinφ−4 sinφ cosφ) and gz(z) =
sin(απzL ) in cylindrical coordinates (r,φ, z). We choose the exact
solution

u(φ, z) = βgφ,1(φ)gz(z), (5.3.1)

which yields the source function

f(φ, z) = βgz(z)
(
α2π2gφ,1(φ)

L2
− gφ,2(φ)

)
, (5.3.2)

with α = 3 and β = 1

(3/2−
√
2)

. We use NURBS basis functions of
order p = 2 in both parametric directions and we impose homo-
geneous Dirichlet boundary conditions. The exact and numerical
solutions are shown in Figure 20. We also perform convergence
analysis which is reported in Figure 21. The optimal rates of
convergence are confirmed in this case too.
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Figure 20: Exact and numerical solution of the Laplace-Beltrami prob-
lem for a quarter cylinder in 3D, using isogeometric analysis
with NURBS basis functions of order p = 2. The number of
elements in the refined mesh is nel = 144 with number of
degrees of freedom ndof = 625.
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Figure 21: Plot of the L2 and H1 error norms for different mesh sizes
h, for the Laplace-Beltrami problem in 3D using IGA. The
optimal rates of convergence are confirmed.
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5.4 biharmonic problem for a surface in 3d

We solve the Dirichlet biharmonic problem 2.5.3 for the quarter
cylinder with almost the same geometry (Figure 19) as in the
Laplace-Beltrami problem. The only difference is that we choose
the height of the cylinder L = 8. We use the same exact solution
which yields the source function

f(φ, z) =
βgz(z)

(
2π4α4+(π2α2+4L2)

2
sin(2φ)−2(π2α2+L2)

2
(sin(φ)+cos(φ))

)
2L4

.

We use NURBS basis functions of order p = 3 with C1 inter-
element continuity. The exact and numerical solutions are shown
in Figure 22. We also check the convergence rates of the L2,H1

and H2 error norms and we report the results in Figure 23.

Remark 5.4.1. The biharmonic problem is a fourth order PDE and as
such the approximate solution uh must lie in the space H2(Σ). There-
fore at least C1 global continuity of basis functions is necessary. This
requires special methods in FEM but is easily obtained in IGA.
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Figure 22: Exact and numerical solution of the Dirichlet biharmonic
problem for a quarter cylinder in 3D, using isogeometric
analysis with NURBS basis functions of order p = 3. The
number of elements in the refined mesh is nel = 144 with
number of degrees of freedom ndof = 676.
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Figure 23: Plot of the L2, H1 and H2 error norms for different mesh
sizes h, for the Dirichlet biharmonic problem in 3D using
IGA. The optimal rates of convergence are confirmed.
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5.5 time-dependent advection-diffusion problem

We solve the time-dependent advection-diffusion problem (2.5.12)
for the cylinder with radius r = 1 and height L = 6. The geome-
try is depicted in Figure 24. For the advection field we choose

b(φ, z) =
V0√
1+α2

(φ̂+αẑ), (5.5.1)

with V0 = 1.5,α = 0.4. For the source function we choose

f(φ, z) = e−b((φ−φ0)
2+(z−z0)

2), (5.5.2)

with b = 100, φ0 = π, z0 = 1.5. We set Dirichlet boundary
conditions on ΓD and we use NURBS basis functions of order
p = 3 and C0 global continuity. We first refine the mesh so that
we have nel = 3600 and ndof = 32, 851 and then we use the
Crank-Nicholson method for the time stepping with ∆t = 0.01.

We first solve the problem when µ = 1, in which case diffu-
sion is dominant. The solution at times t = 0.2, t = 2, t = 4 is
shown in Figure 25. We see that the solution is smooth. We then
choose µ = 10−5 so that advection dominates and the local Pé-
clet numbers become of the order of Pee ∼ 103. The solution at
times t = 0.2, t = 2, t = 6 is shown in Figure 26. One can see
that instabilities have formed throughout the computational do-
main. Next, we use SUPG stabilization and we report the results
in Figure 27. We see that SUPG has improved the stability of the
solution throughout the domain.
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Figure 24: NURBS geometry of cylinder: exact representation, control
points and control net in the coarsest level of discretization.
There are four elements and eighteen control points. Note
that there are two pairs of coinciding control points.

Figure 25: Solution of diffusion dominated time-dependent advection-
diffusion problem at times t = 0.2, t = 2, t = 4. Diffusion is
dominant with a slight transport by the advective field.
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Figure 26: Solution of advection dominated time-dependent advection-
diffusion problem at times t = 0.2, t = 2, t = 6. The solution
is transported across the advective field. Instabilities form
due to the high Péclet numbers.

Figure 27: Solution of advection dominated time-dependent advection-
diffusion problem with SUPG stabilization at times t =

0.2, t = 2, t = 6. The solution is transported across the advec-
tive field. Instabilities are contained with the use of SUPG
stabilization.





6
C O N C L U S I O N S

6.1 conclusive remarks

We have reviewed, implemented and analyzed the cut finite ele-
ment method and isogeometric analysis for the solution of par-
tial differential equations on manifolds. The numerical solutions
have in all cases, except the unstabilized cut finite element method,
agreed with the theoretical solutions. Furthermore, the conver-
gence of the error norms has been in agreement with the theo-
retical a priori error estimates.

We have shown that the cut finite element method can be ill-
conditioned in general but it becomes a reliable method when
using stabilization. We can say that the cut FEM is well suited to
the implicit representation method. However, when compared
with IGA it falls behind in accuracy and efficiency for the exam-
ple problem we tested. The cut FEM needs a higher number of
degrees of freedom to produce the same order of error as IGA.
We believe that in general, isogeometric analysis is inherently
more suitable for the solution of PDEs on manifolds because it
can represent many geometries exactly. While this is true in gen-
eral, it is even more important for curved geometries because
the error in the approximate representation can become large
in these cases. Moreover, IGA is more suitable for the solution
of higher order PDEs because increased continuity of the basis
functions is readily available.

Nevertheless, there are issues with IGA too. As we mentioned,
refinement in IGA is a global procedure that results in a lot of su-
perfluous structure. Classic FEA has clearly the advantage here
with proven refinement properties. Additionally, IGA requires
that a parametrization of the physical object is available. This
might be true if for example the object has been modeled before-
hand using CAD, but it is not true in general. Also, the choice of
parametric representation itself can influence the numerical anal-
ysis when there are artificial singularities or when the Jacobian
of the parametrization is not sufficiently regular [SKBW10].

An area of application where the cut finite element method is
more powerful than IGA is when one needs to model an evolv-
ing hypersurface. In these cases, where the shape and the topol-
ogy might change in time, the implicit representation and the
cut finite element method are more suitable choices.

In general, we can conclude that the two methods are better
suited to different problems: the cut FEM is more suitable when
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the parametrization is not available and for evolving interfaces,
while IGA is more suitable when one has a CAD model readily
available.

6.2 suggestions and future work

There are many areas of possible improvement. Starting from the
cut finite element method, we can say that a more efficient imple-
mentation can be made using spatial data structures (quadtrees
and octrees) and computational geometry algorithms. A more
efficient code will allow the extension to the 3D case and the use
of smaller mesh sizes. Additionally, we could apply the method
to other problems and particularly to evolving hypersurfaces.
Another interesting problem would be to use the cut FEM with
NURBS basis functions which would result in some advantages
such as increased continuity of the basis functions.

For isogeometric analysis, one could explore the use of T-splines
and hierarchical refinement. Another topic that would be inter-
esting is the use of periodic (or unclamped) knot vectors to be
able to represent closed geometries more naturally. With regards
to the implementation, potential improvements would be the im-
plementation of optimal quadrature rules, the use of Bézier ex-
traction and the use of other time stepping methods (e.g. generali-
zed-α method). Finally, more complex problems could be exam-
ined that involve non-linear terms or more complicated geome-
tries.
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D E F I N I T I O N S A N D T H E O R E T I C A L D E TA I L S

a.1 differential geometry

Definition A.1.1. A space is said to be an n-dimensional topological
manifold if every point in it has a neighborhood homeomorphic to an
open subset of Rn. For every point x on the manifold there exists a map
α : Uα → Rn from an open neighborhood Uα of x such that Uα is
homeomorphic to α(Uα). The map α is called a chart and a collection
of charts that covers the entire domain is called an atlas. If two charts
α and β overlap in a region of the domain, then we can define the
transition function β ◦α−1 : α(Uα ∩Uβ)→ Rn. If all the transition
functions are r-times continuously differentiable, the manifold is said
to be a Cr differentiable manifold.

Definition A.1.2. A Riemannian manifold M is a manifold equipped
with a metric g. The metric smoothly defines the scalar product of tan-
gent vectors on the tangent space TpM for every point p ∈M.

Definition A.1.3. An immersion f : M → N is a differentiable map
between differentiable manifolds whose derivative is everywhere injec-
tive.

Definition A.1.4. If M and N are differentiable manifolds and dimN−

dimM = 1 and if an immersion f : M → N has been defined, then
f(M) is a hypersurface in N.

Definition A.1.5. An embedding is defined to be an injective immer-
sion which is homeomorphic onto its image.

a.2 functional analysis

Definition A.2.1. A Hilbert space is a complete inner product space,
that is an inner space equipped with an inner product and having the
property that every Cauchy sequence is convergent.

Definition A.2.2. The L2(Σ) function space is a Hilbert space and is
defined as

L2(Σ) = {v : Σ→ R : ‖v‖L2(Σ) <∞}, (A.2.1)

where

‖v‖L2(Σ) =
(∫
Σ

|v|2 dx

)1/2
. (A.2.2)

We denote the L2 inner product as (u, v)Σ = (u, v)L2(Σ) =
∫
Σ uvdx.
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56 definitions and theoretical details

Definition A.2.3. The H1(Σ) Hilbert space is defined as

H1(Σ) = {v ∈ L2(Σ) : ∇v ∈ L2(Σ)}, (A.2.3)

with norm

‖v‖2H1(Σ) = ‖v‖
2
L2(Σ) + ‖∇v‖

2
L2(Σ). (A.2.4)

Definition A.2.4. The condition number of a regular matrix A satis-
fies κ(A) > 1 and is defined as

κ(A) = ‖A‖‖A−1‖, (A.2.5)

where the operator norm is defined as

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

. (A.2.6)

For a normal matrix the condition number is κ(A) = λmax(A)
λmin(A) where

λ(A) is an eigenvalue of A.

a.3 finite element method

Definition A.3.1. Given a continuous function f, we define its con-
tinuous piecewise linear interpolant πf ∈ Vh on a mesh K as

πf =

n∑
i=1

f(Ni)φi, (A.3.1)

where Ni are the nodes of the mesh and φi are the nodal basis func-
tions.

Definition A.3.2. A finite element consists of a triplet:

• A polygon K ⊂ Rn.

• A polynomial function space P on K.

• A set of n = dim P linear functionals Li(·), i = 1, . . . ,n defining
the degrees of freedom.



B
C O D E L I S T I N G S

b.1 matlab code for the cut finite element method

b.1.1 Main program

1 %% Definitions

[p,t] = rectmesh(-2,-2,2,2,0.1); % Define regular rectangular

mesh

xc=0;

yc=0;

radius=1;

6 s = @(x) sqrt((x(1,:)-xc).^2+(x(2,:)-yc).^2)-radius; % Define

signed distance function

grads = @(x) [x(1)-xc;x(2)-yc]./(sqrt((x(1)-xc).^2+(x(2)-yc)

.^2));% Gradient of signed distance function

fp = @(r,phi) 108*sin(3*phi); % Source function in polar

coordinates

f = @(x) fp(radius,atan2(x(2),x(1))); % Source function in

cartesian coordinates

u = @(x) 12*(3*x(1,:).^2.*x(2,:)-x(2,:).^3); % Exact solution

11 gradu = @(x) [72*x(1,:).*x(2,:),12*(3*x(1,:).^2-3*x(2,:).^2)

]; % Gradient of exact solution

%% Preliminary calculations

[pin, ti, ip] = findIntersect(p, t, s, true); % Get sub-mesh

and interection points

[r, rn, rl] = findVectors(ip); % Find tangent and normal

vectors

16

%% Finite element assembly

A = AssembleStiff(pin, ti, r, rn, rl, ip, false); % Assemble

stiffness matrix

lv = LoadVec(pin, ti, r, rl, ip, f, s, grads, 5); % Assemble

load vector

C = AssembleConstraint(pin, ti, r, rl, ip); % Assemble

constraint matrix

21 J = Stabilization(pin, ti); % Assemble stabilization term

%% Augmented system (Lagrange multiplier method)

AA = [A C’;C 0];

AAS = [A+J C’;C 0]; % Stabilized

26 bb = [lv;0];

%% Solution and analysis

eigv = eig(AA); % Eigenvalues of stiffness matrix

eigvs = eig(AAS); % Eigenvalues of stabilized stiffness

matrix
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31 condn = eigv(end)/eigv(3); % Effective condition number

condns = eigvs(end)/eigvs(2); % Stabilized eff. cond. number

uh = AAS\bb;

uh = uh(1:end-1);

l2e = L2Error(pin, ti, r, rl, ip, uh, u, s, grads); %

Calculate error in L^2 norm

36 h1e = H1Error(pi, ti, r, rl, ip, uh, u, gradu, s, grads, l2e)

; % Calculate error in H^1 norm

%% Visualization

% Get solutions at intersection points

[femsol, exsol] = EvalSol(pin, ti, ip(:,1:end-1), uh, u);

41 femsol = [femsol;femsol(1)];

figure(2)

subplot(1,2,1)

plot3(ip(1,:),ip(2,:),femsol, ’b ’)
grid on

46 subplot(1,2,2)

tt = linspace(0,2*pi,100);

plot3(xc+radius*cos(tt),yc+radius*sin(tt),12*(3*(cos(tt))

.^2.*(sin(tt))-(sin(tt).^3)), ’ r ’);
fprintf( ’L2 error : %f\n’,l2e);
fprintf( ’L2 error : %f\n’,h1e);

51 fprintf( ’Nel : %f\n’,size(ti,2));
fprintf( ’Ndof: %f\n’,length(uh));

b.1.2 Intersection routine

function [pi, ti, ip] = findIntersect(p, t, foo, plb)

nel = size(t,2); % Number of elements

3 nnodes = size(p,2); % Number of nodes

l = sqrt(nnodes);

x = p(1,:); % Node coordinates

y = p(2,:);

pif = interpol(foo, p); % Interpolate level set function

8 XX = reshape(x,l,l);

YY = reshape(y,l,l);

ZZ = reshape(pif,l,l);

if plb

figure(1)

13 hold on

mesh(XX,YY,zeros(l,l));

contour(XX,YY,ZZ,[0 0], ’ r ’);
hold off

end

18 %% Find intersection points and which elements are

intersected

ip = contourc(XX(1,:),YY(:,1),ZZ,[0 0]); % Zero level

ip = ip(:,2:end);

ipm = (ip(:,1:end-1) + ip(:,2:end))/2; % Midpoints

xe = p(1,t); % Element node coordinates

23 ye = p(2,t);
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xe = reshape(xe,4,nel);

ye = reshape(ye,4,nel);

xe = xe(1:2,:);

ye = ye(2:3,:);

28 nti = length(ipm); % Number of intersected elements

intElem = zeros(nti,1);

idx=1:nel;

for i=1:nti

idxx = idx(sum(xe < ipm(1,i),1)==1);

33 idxy = idx(sum(ye < ipm(2,i),1)==1);

intElem(i) = idxx(ismember(idxx,idxy));

end

%% New mesh matrices

[nodesi,~,ti] = unique(t(:,intElem));

38 ti = reshape(ti,4,[]);

pin = p(:,nodesi);

b.1.3 Stiffness matrix assembly routine

1 function A = AssembleStiff(pin, ti, r, rn, rl, ip, symb)

%% Assemble stiffness matrix

nti = size(ti,2);

npi = size(pin,2);

A = sparse(npi,npi);

6 inner = @(x) x’*x;

if symb

syms xsym ysym tsym real

end

for K=1:nti

11 P = eye(2) - rn(:,K)*rn(:,K)’; % Projection operator

loc2glb = ti(:,K);

xe = pin(1,loc2glb);

ye = pin(2,loc2glb);

% Get basis functions

16 [~, ~, b, c, d] = Bilinear(xe,ye);

if symb

% Define symbolic variables

rts = ip(:,K) + r(:,K) * tsym;

basisGradS = [b+d*ysym,c+d*xsym]’;

21 integrandS = (P*basisGradS)’*(P*basisGradS);

integrandS = subs(integrandS,[xsym;ysym],rts)*rl(K);

AK = double(int(integrandS,0,1));

else

rt = @(tq) ip(:,K) + r(:,K) * tq; % Parametrization

26 term = @(tq) P*BilinearGrad(rt(tq),b,c,d);

integrand = @(tq) inner(term(tq));

AK = rl(K)*GaussLegendre(integrand,0,1,2);

end

A(loc2glb,loc2glb) = A(loc2glb,loc2glb) + AK;

31 end
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b.2 matlab code for isogeometric analysis

b.2.1 Main program for the Laplace-Beltrami problem in 2D

%%Definitions

xc=0;

yc=0;

4 ra=1;

fp = @(r,phi) 108*sin(3*phi); % Source function in polar

coordinates

f = @(x,y,z) fp(1,atan2(y,x)); % Source function in cartesian

coordinates

9 u = @(x,y,z) 12*(3*x.^2.*y-y.^3); % Exact solution

%Exact tangential gradient

gradu = @(x,y,z) cat(1,reshape(36*x.*y.*(4*y.^2-1),[1 size(x)

]),reshape(36*(1-5*y.^2+4*y.^4),[1 size(x)]),reshape(

zeros(size(x)),[1 size(x)]));

c_diff = @(x,y,z) ones(size(x)); % Coefficient

14

%% Geometry and problem set-up

geo = nrbcirc(ra,[xc,yc]);

geometry = geo_load(geo);

regularity =0;

19 nsub=3;

[rknots, zeta, nknots] = kntrefine (geometry.nurbs.knots,

nsub-1, geometry.nurbs.order-1, regularity);

h = max(diff(zeta));

nel = numel(zeta)-1;

nurbs = nrbkntins (geometry.nurbs, nknots);

24 geometry = geo_load (nurbs);

nquad = geometry.nurbs.order;

%% Plot geometry and control points

figure(1)

29 nrbplot(geometry.nurbs,20);

nrbctrlplot(geometry.nurbs);

%% Construct msh structure

rule = msh_gauss_nodes (nquad);

34 [qn, qw] = msh_set_quad_nodes ({zeta}, rule);

msh = msh_1d ({zeta}, qn, qw, geometry, ’boundary ’,
false);

%% Construct space structure

space = sp_nurbs_1d (geometry.nurbs, msh, ’ccp ’, true);

39

%% Assemble the matrices

stiffmat = op_gradu_gradv_tp (space, space, msh, c_diff);

stiffmat(end:end)=stiffmat(1,1);

rhs = op_f_v_tp (space, msh, f);
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44 rhs(end) = rhs(1);

condmat = op_f_v_tp(space, msh, c_diff);

condmat(end)=condmat(1);

%% Set up augmented system (lagrange multiplier method)

49 stiffmat = [stiffmat condmat;condmat’ 0];

rhs = [rhs;0];

%% Solution

sol = stiffmat\rhs;

54 assert(sol(end)<1e-9)

sol = sol(1:end-1);

pts = linspace(0,1,100);

vtk_pts = {pts};

59 [eu,F] = sp_eval(sol,space,geometry,vtk_pts);

[X, Y] = deal (squeeze(F(1,:,:)), squeeze(F(2,:,:)));

figure(2)

subplot (2,1,2)

plot3 (X, Y, eu, ’ r ’)
64 title ( ’Numerical solution ’), axis tight

subplot (2,1,1)

plot3 (X, Y, u (X,Y))

title ( ’Exact solution ’), axis tight

[h1e,l2e] = sp_h1_error(space, msh, sol, u, gradu);

b.2.2 Main program for the biharmonic problem in 3D

%% Parameters

2 xa=0;

ya=0;

za=0;

L=8;

radius=1;

7 angle=pi/2;

alpha = 3;

beta = 1/(1.5-sqrt(2));

%% Source function

12 gphi1 = @(phi) (1-cos(phi)).*(1-sin(phi));

gphi2 = @(phi) (cos(phi)+sin(phi)-4*sin(phi).*cos(phi));

gz = @(z) sin(alpha*pi*z/L);

fcyl = @(r,phi,z) (1/(2*L^4)).*beta.*gz(z).*(2*alpha^4*pi

^4-2*(L^2+alpha^2*pi^2)^2*(cos(phi)+sin(phi)) +...

(4*L^2+alpha^2*pi^2).^2*sin(2*phi));

17 f = @(x,y,z) fcyl(radius, atan2(y,x), z );

%% Exact solution

ucyl = @(r,phi,z) beta*gphi1(phi).*gz(z);

22 uex = @(x,y,z) ucyl( radius, atan2(y,x) ,z);
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%% Exact tangential gradient

gradx = @(x,y,z) beta.*y.*(x+(y-1).*(1+2*y)).*sin(alpha*pi*z/

L);

27 grady = @(x,y,z) beta.*(-1+y.^2+x.*(1+y-2*y.^2)).*sin(alpha*
pi*z/L);

gradz = @(x,y,z) alpha*beta*pi*(x-1).*(y-1).*cos(alpha*pi*z/L

)/L;

graduex = @(x,y,z) cat(1,reshape(gradx(x,y,z),[1 size(x)]),

reshape(grady(x,y,z),[1 size(x)]),reshape(gradz(x,y,z),[1

size(x)]));

%% Exact tangential Laplacian

32 laplcyl = @(r,phi,z) -gz(z).*((((alpha^2)*pi^2)/L^2).* gphi1(

phi) - gphi2(phi)).*beta;

lapluex = @(x,y,z) laplcyl(radius, atan2(y,x), z );

c_diff = @(x,y,z) ones(size(x));

37 %% Geometry and problem set-up

geo = nrbcylind(L,radius,[xa,ya,za],0,pi/2);

geometry = geo_load(geo);

degree = [3 3];

regularity = [1 1];

42 nsub=7;

degelev = max (degree - (geometry.nurbs.order-1), 0);

nurbs = nrbdegelev (geometry.nurbs, degelev);

[rknots, zeta, nknots] = kntrefine (nurbs.knots, [nsub-1 nsub

-1], nurbs.order-1, regularity);

part1 = diff(zeta{1}).^2;

47 part2 = diff(zeta{2}).^2;

h = sqrt(max(part1)+max(part2));

nurbs = nrbkntins (nurbs, nknots);

geometry = geo_load (nurbs);

nquad = geometry.nurbs.order+3;

52 figure(1)

nrbplot(geometry.nurbs,[20 20]);

nrbctrlplot(geometry.nurbs);

%% Construct msh structure

57 rule = msh_gauss_nodes (nquad);

[qn, qw] = msh_set_quad_nodes (zeta, rule);

msh = msh_2d (zeta, qn, qw, geometry, ’boundary ’, true,

’der2 ’, true);

nel = msh.nel

62 %% Construct space structure

space = sp_nurbs_2d (geometry.nurbs, msh, ’ccp ’, false);

% Assemble the matrices

stiffmat = op_laplaceu_laplacev_tp (space, space, msh, c_diff

);

67 rhs = op_f_v_tp (space, msh, f);



B.2 matlab code for isogeometric analysis 63

u = zeros (space.ndof, 1);

%% Enforce boundary conditions

72 drchlt_dofs_u = []; drchlt_dofs_r = [];

for iside = [1 2]

drchlt_dofs_u = union (drchlt_dofs_u, space.boundary(iside)

.dofs);

drchlt_dofs_r = union (drchlt_dofs_r, space.boundary(iside)

.adjacent_dofs);

end

77 for iside = [3 4]

drchlt_dofs_u = union (drchlt_dofs_u, space.boundary(iside)

.dofs);

end

drchlt_dofs = union (drchlt_dofs_u, drchlt_dofs_r);

82 int_dofs = setdiff (1:space.ndof, drchlt_dofs);

rhs(int_dofs) = rhs(int_dofs) - stiffmat(int_dofs,

drchlt_dofs)*u(drchlt_dofs);

%% Solve the linear system

u(int_dofs) = stiffmat(int_dofs, int_dofs) \ rhs(int_dofs);

87

pts = linspace(0,1,50);

vtk_pts = {pts,pts};

[eu,F] = sp_eval(u,space,geometry,vtk_pts);

[X, Y, Z] = deal (squeeze(F(1,:,:)), squeeze(F(2,:,:)),

squeeze(F(3,:,:)));

92 figure(2)

subplot (1,2,1)

surf (X, Y, Z, eu)

title ( ’Numerical solution ’), axis tight

subplot (1,2,2)

97 surf (X, Y, Z, uex (X,Y,Z))

title ( ’Exact solution ’), axis tight

[h2en(nn),h1en(nn),l2en(nn)] = sp_h2_error(space, msh, u, uex

, graduex, lapluex);
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