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1

FIXED POINT ITERATION METHOD

Nature of numerical problems

Solving mathematical equations is an important requirement for various branches of
science. The field of numerical analysis explores the techniques that give approximate
solutions to such problems with the desired accuracy.

Computer based solutions

The major steps involved to solve a given problem using a computer are:

1. Modeling: Setting up a mathematical model, i.e., formulating the problem in
mathematical terms, taking into account the type of computer one wants to use.

2. Choosing an appropriate numerical method (algorithm) together with a preliminary
error analysis (estimation of error, determination of steps, size etc.)

3. Programming, usually starting with a flowchart showing a block diagram of the
procedures to be performed by the computer and then writing, say, a C++  program.

4. Operation or computer execution.

5. Interpretation of results, which may include decisions to rerun if further data are
needed.

Errors

Numerically computed solutions are subject to certain errors.  Mainly there are three
types of errors. They are inherent errors, truncation errors and errors due to rounding.

1. Inherent errors or experimental errors arise due to the assumptions made in the
mathematical modeling of problem.  It can also arise when the data is obtained from
certain physical measurements of the parameters of the problem. i.e., errors arising
from measurements.

2. Truncation errors are those errors corresponding to the fact that a finite (or infinite)
sequence of computational steps necessary to produce an exact result is “truncated”
prematurely after a certain number of steps.

3. Round of errors are errors arising from the process of rounding off during
computation.  These are also called chopping, i.e. discarding all decimals from some
decimals on.
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Truevalue

Errorε
rε 

a

Error in Numerical Computation

Due to errors that we have just discussed, it can be seen that our numerical result is an
approximate value of the (sometimes unknown) exact result, except for the rare case
where the exact answer is sufficiently simple rational number.

If a~ is an approximate value of a quantity whose exact value is a, then the difference  =
a~  a is called the absolute error of a~ or, briefly, the error of a~ . Hence, a~ = a + , i.e.

Approximate value = True value + Error.

For example, if a~ = 10.52 is an approximation to a = 10.5, then the error is  = 0.02.  The
relative error, r, of a~ is defined by

For example, consider the value of ...)414213.1(2  up to four decimal places, then

Error4142.12  .

Error = 1.4142  1.41421 = .00001,

taking 1.41421 as true or exact value.  Hence,  the  relative error is

4142.1

00001.0
rε  .

We note that

a~
εε r  if  is much less than a~ .

We may also introduce the quantity  = a  a~ =  and call it the correction, thus, a = a~

+ , i.e.

True value = Approximate value + Correction.

Error bound for a~ is a number  such that  a~  a    i.e.,   .

Number representations

Integer representation
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Floating point representation

Most digital computers have two ways of representing numbers, called fixed point and
floating point.  In a fixed point system the numbers are represented by a fixed number of
decimal places e.g. 62.358, 0.013, 1.000.

In a floating point system the numbers are represented with a fixed number of
significant digits, for example

0.6238  103 0.1714  10 13 0.2000  101

also written as   0.6238 E03 0.1714 E 13 0.2000 E01

or more simply  0.6238 +03 0.1714 13 0.2000 +01

Significant digits

Significant digit of a number c is any given digit of c, except possibly for zeros to the
left of the first nonzero digit that serve only to fix the position of the decimal point.  (Thus,
any other zero is a significant digit of c).  For example, each of the number 1360, 1.360,
0.01360 has 4 significant digits.

Round off rule to discard the k + 1th and all subsequent decimals

(a) Rounding down If the number at (k + 1)th decimal to be discarded is less than half a
unit in the k th place, leave the k th decimal unchanged. For example, rounding of 8.43
to 1 decimal gives 8.4 and rounding of 6.281 to 2 decimal places gives 6.28.

(b) Rounding up If the number at (k + 1)th decimal to be discarded is greater than half a
unit in the k th place, add 1 to the k th decimal.  For example, rounding of 8.48 to 1
decimal gives 8.5 and rounding of 6.277 to 2 decimals gives 6.28.

(c) If it is exactly half a unit, round off to the nearest even decimal.  For example, rounding
off 8.45 and 8.55 to 1 decimal gives 8.4 and 8.6 respectively.  Rounding off 6.265 and
6.275 to 2 decimals gives 6.26 and 6.28 respectively.

Example Find the roots of the following equations using 4 significant figures in the
calculation.

(a) x2  4x + 2 = 0           and        (b) x2  40x + 2 = 0.
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Solution

A formula for the roots x1, x2 of a quadratic equation ax2 + bx + c = 0 is

(i) 2
1

1
( 4 )

2
x b b ac

a
    and 2

2

1
( 4 )

2
x b b ac

a
    .

Furthermore, since x1x2 = c/a, another formula for these roots is

(ii) 2
1

1
( 4 )

2
x b b ac

a
    ,  and 2

1

c
x

ax


For the equation in (a), formula (i) gives,

x1 = 2 + 2 = 2 + 1.414 = 3.414,

x2= 2  2 = 2  1.414 = 0.586

and formula (ii) gives,

x1 = 2 + 2 = 2 + 1.414 = 3.414,

x2= 2.000/3.414 = 0.5858.

For the equation in (b), formula (i) gives,

x1 = 20 + 398 = 20 + 19.95 = 39.95,

x2= 20  398 = 20  19.95 = 0.05

and formula (ii) gives,

x1 = 20 + 398 = 20 + 19.95 = 39.95,

x2= 20.000/39.95 = 0.05006.

Example Convert the decimal number (which is in the base 10) 81.5 to its binary form (of
base 2).

Solution Note that (81.5)10=8 101+1  100+5 10-1

Now 81.5 = 64+16+1+0.5=26 +24 +20 + 2-1=(1010001.1)2.
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Remainder Product Integer
part

2 81



0.5 × 2 1.0 1


2 40 1

2 20 0

2 10 0

2 5 0

2 2 1

2 1 0

0 1

Example Convert the binary number 1010.101 to its decimal form.

Solution

(1010.101)2 = 1  23 + 1  21 + 1  2-1 + 1  2-3

= 8 + 2 + 0.5 + 0.125=(10.625)10

Numerical Iteration Method

A numerical iteration method or simply iteration method is a mathematical
procedure that generates a sequence of improving approximate solutions for a class of
problems. A specific way of implementation of an iteration method, including the
termination criteria, is called an algorithm of the iteration method. In the problems of
finding the solution of an equation an iteration method uses an initial guess to generate
successive approximations to the solution.

Since the iteration methods involve repetition of the same process many times,
computers can act well for finding solutions of equation numerically. Some of the iteration
methods for finding solution of equations involves (1) Bisection method, (2) Method of
false position (Regula-falsi Method), (3) Newton-Raphson  method.

A numerical method to solve equations may be a long process in some cases.  If the
method leads to value close to the exact solution, then we say that the method is
convergent. Otherwise, the method is said to be divergent.

Solution of Algebraic and Transcendental Equations

One of the most common problem encountered in engineering analysis is that given a
function f (x), find the values of x for which f(x) = 0. The solution (values of x) are known
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as the roots of the equation f(x) = 0, or the zeroes of the function f (x).  The roots of
equations may be real or complex.

In general, an equation may have any number of (real) roots, or no roots at all. For
example, sin x – x = 0 has a single root, namely, x = 0, whereas tan x – x = 0 has infinite
number of roots (x = 0, ± 4.493, ± 7.725, …).

Algebraic and Transcendental Equations

f(x) = 0 is called an algebraic equation if the corresponding ( )f x is a polynomial.  An
example is 7x2 + x - 8 = 0. ( ) 0f x is called transcendental equation if the ( )f x contains
trigonometric, or exponential or logarithmic functions.  Examples of transcendental
equations are sin x – x = 0, tan 0 x x and 37 log(3 6) 3 cos tan 0.xx x e x x    

There are two types of methods available to find the roots of algebraic and
transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of
steps. We assume here that there are no round off errors. Direct methods determine all the
roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of
successive approximations. The general procedure is to start with one or more initial
approximation to the root and obtain a sequence of iterates kx which in the limit
converges to the actual or true solution to the root.  Indirect or iterative methods
determine one or two roots at a time.  The indirect or iterative methods are further
divided into two categories: bracketing and open methods.  The bracketing methods
require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False position methods are two known
examples of the bracketing methods. Among the open methods, the Newton-Raphson is
most commonly used. The most popular method for solving a non-linear equation is the

Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter and in the coming chapters, we present the following indirect or iterative
methods with illustrative examples:

1. Fixed Point Iteration Method

2. Bisection Method

3. Method of False Position (Regula Falsi Method)

4. Newton-Raphson Method (Newton’s method)
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Fixed Point Iteration Method

Consider

( ) 0f x  … (1)

Transform (1) to the form,

( ).x x …(2)

Take an arbitrary x0 and then compute a sequence x1, x2, x3, . . . recursively from a
relation of the form

1 ( )n nx x   ( 0, 1, )n   … (3)

A solution of (2) is called fixed point of .  To a given equation (1) there may
correspond several equations (2) and the behaviour, especially, as regards speed of
convergence of iterative sequences x0, x1, x2, x3, . . . may differ accordingly.

Example Solve 2( ) 3 1 0,f x x x    by fixed point iteration method.

Solution

Write the given equation as

2 3 1x x  or 3 1/x x  .

Choose 1( ) 3x
x

   . Then
2

1
( ) andx

x
   ( ) 1 x on the interval (1, 2).

Hence the iteration method can be applied to the Eq. (3).

The  iterative formula is given by

1
13n

n

x
x   (n = 0, 1, 2, . . . )

Starting with, 0 1x  , we obtain the sequence

x0=1.000, x1 =2.000, x2 =2.500, x3 = 2.600, x4 =2.615, . . .

Question : Under what assumptions on  and 0 ,x does Algorithm 1 converge ? When
does the  sequence ( )nx obtained from the iterative process (3) converge ?

We answer this in the  following theorem, that is a sufficient condition for
convergence of iteration process
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Theorem Let x  be a root of ( ) 0f x and let I be an interval containing the point .x 

Let ( )x be continuous in I, where ( )x is defined by the equation ( )x x which is
equivalent to ( ) 0.f x Then if ( ) 1 x for all x in I, the sequence of approximations

0 1 2, , ,x x x , nx defined by

1 ( )n nx x  ( 0, 1, )n  

converges to the root , provided that the initial approximation 0x is chosen in I.

Example Find a real root of the equation 3 2 1 0  x x on the interval [0, 1] with an
accuracy of 410 .

To find this root, we rewrite the given equation in the form

1
1




x
x

Take

 


1( ) .
1

x
x

Then
3
2

1 1( )
2

( 1)
 


x

x


     
[0, 1]

1max| ( ) | 0.17678 0.2.
2 8

x k

Choose 1( ) 3x
x

   . Then
2

1
( ) andx

x
   ( ) 1x   on the interval (1, 2).

Hence the iteration method gives:

11 1/ 1

0 0.75 1.3228756 0.7559289

1 0.7559289 1.3251146 0.7546517

2 0.7546617 1.3246326 0.7549263

  n n n nn x x x x

At this stage,
1| | 0.7549263 0.7546517 0.0002746,    n nx x

which is  less than 0.0004. The iteration is therefore terminated and the root to the
required accuracy is 0.7549.

Example Use the method of iteration to find a positive root, between 0 and 1, of the
equation 1.xxe

Writing the equation in the form

 xx e
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We find that ( )  xx e and so ( )    xx e .

Hence | ( ) | 1 x for 1,x which assures that the iterative process defined by the equation

1 ( ) n nx x will be convergent, when 1.x 

The iterative formula is

1

1
n

n x
x

e  ( 0, 1, )n  

Starting with 0 1,x we find that the successive iterates are given by

1 1/ 0.3678794, x e  2
1

1 0.6922006,x
ex

3 0.5004735,x 4 0.6062435,x

5 0.5453957,x 6 0.5796123,x

We accept 6.5453957 as an approximate root.

Example Find the root of the equation 2 cos 3 x x correct to three decimal places.

We rewrite the equation in the form

1 (cos 3)
2
 x x

so that

  1 (cos 3),
2

x

and

sin
| ( ) | 1.

2
  x

x

Hence the iteration method can be applied to the eq. (3) and we start with 0 / 2.x  The
successive iterates are

1 2 3

4 5 6

7 8

1.5, 1.535, 1.518,

1.526, 1.522, 1.524,

1.523, 1.524.

  
  
 

x x x

x x x

x x

We accept the solution as 1.524 correct to three decimal places.

Example Find a solution of 3( ) 1 0,f x x x    by fixed point iteration.
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x3 + x – 1 = 0 can be written as  2 1 1xx   , or
2

1

1
x

x



.

Note that

 22

2 | |
( ) 1

1

x
x

x
   


for any real x,

so by the Theorem we can expect a solution for any real number x0 as the starting point.

Choosing x0 = 1, and undergoing calculations in the iterative formula

1 ( )n nx x  
2

1

1
n

x
(n = 0, 1, . . .),              …(4)

we get the sequence

x0=1.000 , x1=0.500, x2=0.800, x3 =0.610 ,

x4= 0.729, x5=0.653, x6=0.701, ...

and we choose 0.701 as an (approximate) solution to  the given equation.

Example Solve the equation 3 sin .x x Considering various ( ),x discuss the convergence
of the solution.

How do the functions we considered for ( )x compare? Table  shows the results of
several

iterations using initial value 0 1x  and four different functions for ( )x . Here nx is the
value of x

on the nth iteration .

Answer:

When 3( ) sin ,x x  we have:

1x  0.94408924124306; 2 0.93215560685805x 

3 0.92944074461587x  ; 4 0.92881472066057x 

When
2

sin
( ) ,

x
x

x
  we have:

1x  0.84147098480790; 2 1.05303224555943x 

3 0.78361086350974x  ; 4 1.14949345383611x 
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Referring to Theorem, we can say that for
2

sin
( ) ,

x
x

x
  the iteration doesn’t  converge.

When 3( ) sin ,x x x x    we have:

1x  0.84147098480790; 2 0.99127188988250x 

3 0.85395152069647x  ; 4 0.98510419085185x 

When
3

2

sin
( ) ,

cos 3

x x
x x

x x



 


we have:

1x  0.93554939065467; 2 0.92989141894368x 

3 0.92886679103170x  ; 4 0.92867234089417x 

Example Give all possible transpositions to ( ),x x and solve 3 2( ) 4 10 0.f x x x   

Possible Transpositions to ( ),x x are

3 2
1

2

3
3

4

3 2

5 2

( ) 4 10,

10
( ) 4 ,

1
( ) 10

2

10
( )

4

4 10
( )

3 8

x x x x x

x x x
x

x x x

x x
x

x x
x x x

x x











    

  

  

 


 
  



For 3 2
1( ) 4 10,x x x x x     numerical results are:

0 2

3 4

1.5;   0.875

6.732; 469.7

x x

x x

  

  
;

Hence doesn’t converge.

For 2
10

( ) 4 ,x x x
x

   numerical results are:

0 2

1/ 2
3 4

1.5;   0.8165

2.9969; ( 8.65)

x x

x x

 

  
;
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For 3
3

1
( ) 10 ,

2
x x x   numerical results are:

0 2

3 4

1.5;   1.2869

1.4025; 1.3454

x x

x x

 

 
;

Exercises

Solve the following equations by iteration method:

 1
sin

1

x
x

x





 x4 = x + 0.15

 3 cos 2 0x x    ,0353  xx

 3 1 0x x     31 3
6

x x 

 103 6 logx x    31 3
5

x x 

 102 log 7x x   3 22 10 20x x x  

 2sin x x  cos 3 1x x 

 3 2 100x x   3 sin xx x e 
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2

BISECTION AND REGULA FALSI METHODS

Bisection Method

The bisection method is one of the bracketing methods for finding roots of an equation.
For a given a function f(x), guess an interval which might contain a root and perform a
number of iterations, where, in each iteration the interval containing the root is get halved.

The bisection method is based on the intermediate value theorem for continuous
functions.

Intermediate value theorem for
continuous functions: If f is a
continuous function and ( )f a and ( )f b

have opposite signs, then  at least one root
lies in between a and .b If the interval
( , )a b is small enough, it is likely to contain
a single root.

i.e., an interval [a, b] must contain a
zero of a continuous function f if the
product ( ) ( ) 0.f a f b  Geometrically, this
means that if ( ) ( ) 0,f a f b  then the curve
f has to cross the x-axis at some point in

between a and b.

Algorithm : Bisection Method

Suppose we want to find the solution to the equation ( ) 0f x , where f is continuous.

Given a function ( )f x continuous on an interval [a0 , b0] and satisfying 0 0( ) ( ) 0.f a f b 

For n = 0, 1, 2, … until termination do:

Compute 1
( )

2
 n n nx a b .

If ( ) 0nf x , accept xn as a solution and stop.
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Else continue.

If ( ) ( ) 0n nf a f x , a root lies in the interval ( , )n na x .

Set 1 1,  n n n na a b x .

If ( ) ( ) 0,n nf a f x a root lies in the interval ( , )n nx b .

Set 1 1,  n n n na x b b .

Then ( ) 0f x  for some x in 1 1[ , ]n na b  .

Test for termination.

Criterion for termination

A convenient criterion is to compute the percentage error r defined by

100%.
 

 
r r

r
r

x x
x



where rx is the new value of rx . The computations can be terminated when r becomes
less than a prescribed tolerance, say .p In addition, the maximum number of iterations

may also be specified in advance.

Some other termination criteria are as follows:

 Termination after N steps (N given, fixed)

 Termination  if  xn+1  xn    ( > 0 given)

 Termination   if f(xn)  ( >0 given).

In this chapter our criterion for termination is terminate the iteration process after
some finite steps.  However, we note that this is generally not advisable, as the steps may
not be sufficient to get an approximate solution.

Example Solve x3 – 9x+1 = 0 for the root between x = 2 and x = 4, by bisection method.

Given 3( ) 9 1f x x x   . Now (2) 9, (4) 29f f   so that (2) (4) 0f f  and hence a root lies
between 2 and 4.

Set a0 = 2 and b0 = 4.  Then
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0 0

0

( ) 2 4 3
2 2

a b
x

    and 0( ) (3) 1f x f  .

Since (2) (3) 0f f  , a root lies between 2 and 3, hence we set a1 = a0 = 2 and 1 0 3b x  .  Then

1 1
1

( ) 2 3
2.5

2 2

a b
x

 
   and 1( ) (2.5) 5.875f x f  

Since (2) (2.5) 0,f f  a root lies between 2.5 and 3, hence we set 2 1 2.5a x  and 2 1 3b b  .

Then 2 2

2

( ) 2.5 3 2.75
2 2

a b
x

    and 2( ) (2.75) 2.9531.f x f  

The steps are illustrated in the following table.

n nx ( )nf x

0 3 1.0000

1 2.5 5.875

2 2.75 
2.9531

3 2.875 
1.1113

4 2.9375 
0.0901

Example Find a real root of the equation 3( ) 1 0.   f x x x

Since (1)f is negative and (2)f positive, a root lies between 1 and 2 and therefore we take
 0 3/ 2 1.5.x Then

  0
27 3 15( )
8 2 8

f x is positive and  hence (1) (1.5) 0f f  and Hence the root lies between 1

and 1.5 and we obtain

1
1 1.5 1.25

2
 x

1( ) 19 / 64, f x which is negative and hence (1) (1.25) 0f f  and hence a root lies between
1.25 and 1.5. Also,
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2
1.25 1.5 1.375

2
 x

The procedure is repeated and the successive approximations are

3 1.3125,x 4 1.34375,x 5 1.328125,x etc.

Example Find a positive root of the equation 1,xxe which lies between 0 and 1.

Let ( ) 1. xf x xe Since (0) 1 f and (1) 1.718,f it follows that a root lies between 0 and 1.
Thus,

 0
0 1 0.5

2
x .

Since (0.5)f is negative, it follows that a root lies between 0.5 and 1. Hence the new root is
0.75, i.e.,

 1
.5 1 0.75.

2
x

Since 1( )f x is positive, a root lies between 0.5  and 0.75 .  Hence

2

.5 .75
0.625

2
x


 

Since 2( )f x is positive, a root lies between 0.5 and 0.625. Hence

3

.5 .625
0.5625.

2
x


 

We accept 0.5625 as an approximate root.

Merits of bisection method

a) The iteration using bisection method always produces a root, since the method
brackets the root between two values.

b) As iterations are conducted, the length of the interval gets halved.   So one can
guarantee the convergence in case of the solution of the equation.

c) the Bisection Method is simple to program in a computer.
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Demerits of bisection method

a) The convergence of the bisection method is slow as it is simply based on
halving the interval.

b) Bisection method cannot be applied over an interval where there is a
discontinuity.

c) Bisection method cannot be applied over an interval where the function takes
always values of the same sign.

d) The method fails to determine complex roots.

e) If one of the initial guesses 0a or 0b is closer to the exact solution, it will take
larger number of iterations to reach the root.

Exercises

Find a real root of the following equations by bisection method.

1. 3 1 sinx x  2. 3 21.2 4 48x x x   

3. 3xe x 4. 3 4 9 0x x  

5. 3 3 1 0x x   6. 3 cos 1x x 

7. 3 2 1 0x x   8. 2 3 cosx x 

9. 4 3x  10. x3  5x = 6

11. cos x x 12. ,0323  xxx

13. x4 = x + 0.15 near x = 0.

Regula Falsi method   or   Method of False Position

This method is also based on the intermediate value theorem.  In this method also, as
in bisection method, we choose two points an and bn such that ( )nf a and ( )nf b are of
opposite signs (i.e., ( ) ( ) 0)n nf a f b  .   Then, intermediate value theorem suggests that a zero
of f lies in between an and bn, if f is a continuous function.
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Algorithm: Given a function ( )f x continuous on an interval [a0 , b0] and satisfying

0 0( ) ( ) 0.f a f b 

For n = 0, 1, 2, … until termination do:

Compute

( ) ( )

( ) ( )

n n

n n
n

n n

a b

f a f b
x

f b f a



.

If ( ) 0nf x  , accept nx as a solution and stop.

Else continue.

If ( ) ( ) 0,n nf a f x  set 1 1,n n n na a b x   . Else set 1 1,n n n na x b b   .

Then ( ) 0f x  for some x in 1 1[ , ]n na b  .

Example Using regula-falsi method, find a real root of the equation,

3( ) 1 0,f x x x    near x = 1.
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Here note that f(0) = -1 and (0) 1f   .   Hence (0) (1) 0f f  , so by intermediate value
theorem a root lies in between 0 and 1.  We search for that root by regula falsi method and
we will get an approximate root.

Set a0 = 0 and b0 = 1.  Then

   
     

0 0

0 0

0

0 0

0 1
1 1

0.5
1 1

a b

f a f b
x

f b f a


  

 

and 0( ) (0.5) 0.375f x f   .

Since (0) (0.5) 0f f  , a root lies between 0.5 and 1. Set 1 0 0.5a x  and 1 0 1b b  .

Then

   
     

1 1

1 1

1

1 1

0.5 1
0.375 1

0.6364
1 0.375


  

 

a b

f a f b
x

f b f a

and 1( ) (0.6364) 0.1058.f x f  

Since 1(0.6364) ( ) 0f f x  , a root lies between 1x and 1 and hence we  set 2 1 0.6364a x  and

2 1 1.b b  Then

   
     

2 2

2 2

2

2 2

0.6364 1
0.1058 1

0.6712
1 0.1058

a b

f a f b
x

f b f a


  

 

and 2( ) (0.6712) 0.0264f x f  

Since (0.6712) (0.6364) 0,f f  a root lies between 2x and 1, and hence we set 3 2 0.6364a x 

and 3 1 1b b  .

Then
   
     

3 3

3 3

3

3 3

0.6712 1
0.0264 1

0.6796
1 0.0264

a b

f a f b
x

f b f a


  

 

and 3( ) (0.6796) 0.0063 0f x f    .
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Since (0.6796) 0.0000f  we accept 0.6796   as  an (approximate) solution of 013  xx .

Example Given that the equation 2.2 69x  has a root between 5 and 8. Use the method of
regula-falsi to determine it.

Let 2.2( ) 69.f x x  We find

(5) 3450675846 f and (8) 28.00586026. f

  
 1

5 8

(5) (8) 5(28.00586026) 8( 34.50675846)
(8) (5) 28.00586026 34.50675846)

f f
x

f f
 6.655990062 .

Now, 1( ) 4.275625415 f x and therefore, 1(5) ( ) 0f f x  and hence the root lies between
6.655990062 and 8.0. Proceeding similarly,

2 6.83400179,x 3 6.850669653,x

The correct root is 3 6.8523651 , x so that 3x is correct to these significant figures. We
accept 6.850669653 as an approximate root.

Theoretical Exercises with Answers:

1. What is the difference between algebraic and transcendental equations?

Ans: An equation ( ) 0f x  is called an algebraic equation if the corresponding ( )f x

is a polynomial, while, ( ) 0f x is called transcendental equation if the ( )f x

contains trigonometric, or exponential or logarithmic functions.

2. Why we are using numerical iterative methods for solving equations?

Ans: As analytic solutions are often either too tiresome or simply do not exist, we
need to find an approximate method of solution. This is where numerical analysis
comes into the picture.

3. Based on which principle, the bisection and regula-falsi method is developed?

Ans: These methods are based on the intermediate value theorem for continuous
functions: stated as , “If f is a continuous function and ( )f a and ( )f b have
opposite signs, then  at least one root  lies in between a and .b If the interval ( , )a b

is small enough, it is likely to contain a single root. ”

4. What are the advantages and disadvantages of the bracketing methods like bisection
and regula-falsi?
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Ans:  (i) The bisection and regula-falsi method is always convergent.  Since the
method brackets the root, the method is guaranteed to converge. The main
disadvantage is, if it is not possible to bracket the roots, the methods cannot
applicable.  For example, if ( )f x is such that it always takes the values with same
sign, say, always positive or always negative, then we cannot work with bisection
method.   Some examples of such functions are

 2( )f x x which take only non-negative values and

 2( )f x x  , which take only non-positive values.

Exercises

Find a real root of the following equations by false position method:

1. 3 5 6x x  2. 4 xx e

3. 10log 1.2x x  4. tan tanh 0x x 

5. sinxe x  6. 3 5 7 0x x  

7. 3 22 10 20 0x x x    8. 102 log 7x x 

9. cosxxe x 10. 3 5 1 0x x  

11. 3xe x 12. 2 log 12ex x 

13. 3 cos 1x x  14. 2 3sin 5x x 

15. 2 cos 3x x  16. 3xxe 

17. cos x x 18. 3 5 3 0x x  

Ramanujan’s Method

We need the following Theorem:

Binomial Theorem: If n is any rational number and 1x  , then

  2 ( 1) . . . ( ( 1))( 1)
1 1 . . . . . .

1 1 2 1 2 . . .
n rn n n rn nnx x x x

r
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In particular,

   1 2 31 1 . . . 1 . . .
n nx x x x x

        

and   1 2 31 1 . . . . . .nx x x x x
       

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation

( ) 0,f x 

where ( )f x is of the form

2 2 4
1 2 3 4( ) 1 ( ).f x a x a x a x a x     

For smaller values of x, we can write

         2 3 4 1 2
1 2 3 4 1 2 3[1 ( )]a x a x a x a x b b x b x

Expanding the left-hand side using binomial theorem , we obtain

2 3 2 3 2
1 2 3 1 2 31 ( ) ( )a x a x a x a x a x a x          

2
1 2 3b b x b x   

Comparing the coefficients of like powers of x on both sides of we obtain

1

2 1 1 1

2
3 1 2 1 2 2 1

1 1 2 2 1 1

1,

,

,

2,3,n n n n

b

b a a b

b a a a b a b

b a b a b a b n  

 
  

    


     



 

Then 1/n nb b approach a root of the equation ( ) 0f x  .

Example Find the smallest root of the equation

3 2( ) 6 11 6 0.f x x x x    

Solution

The given equation can be written as ( )f x

   2 31( ) 1 (11 6 )
6

f x x x x



School of Distance Education

Numerical Methods Page 28

Comparing,

1
11,
6

a  2 1,a   3
1 ,
6

a  4 5 0a a  

To apply Ramanujan’s method we write

12 3
2

1 2 3
11 61

6
x x x b b x b x


       
 



Hence,

1 1;b 

2 1
11;
6

b a 

3 1 2 2 1
121 851 ;
36 36

b a b a b    

4 1 3 2 2 3 1
575;
216

b a b a b a b   

5 1 4 2 3 3 2 4 1
3661;
1296

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
22631;
7776

b a b a b a b a b a b     

Therefore,

1

2

6 0.54545
11

b
b
  ; 2

3

66 0.7764705
85

b
b
 

3

4

102 0.8869565
115

b
b
  ; 4

5

3450 0.9423654
3661

b
b
 

5

6

3138 0.9706155
3233

b
b
 

By inspection, a root of the given equation is unity and it can be seen that the successive

convergents
1

n

n

b

b 
approach this root.

Example Find a root of the equation 1.xxe 

Let 1xxe 
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Recall
2 3

1
2! 3!

x x x
e x    

Hence,

3 4 5
2( ) 1 0

2 6 24
x x xf x x x

         
 



1 1,a  2 1,a  3
1 ,
2

a  4
1 ,
6

a  5
1 ,
24

a  

We then have

1 1;b 

2 2 1;b a 

3 1 2 2 1 1 1 2;b a b a b    

4 1 3 2 2 3 1
1 72 1 ;
2 2

b a b a b a b      

5 1 4 2 3 3 2 4 1
7 1 1 372 ;
2 2 6 6

b a b a b a b a b        

6 1 5 2 4 3 3 4 2 5 1
37 7 1 1 261; 1 ;
6 2 6 24 24

b a b a b a b a b a b          

Therefore,

2

3

1 0.5
2

b
b
  ; 3

4

4 0.5714
7

b
b
  ;

4

5

21 0.56756756
37

b
b
  ; 5

6

148 0.56704980
261

b
b
  .

Example Using Ramanujan’s method, find a real root of the equation

2 3 4

2 2 2
1 0.

(2!) (3!) (4!)
x x xx     

Solution

Let
2 3 4

2 2 2
( ) 1 0.

(2!) (3!) (4!)
x x xf x x

 
       

 


Here

1 1,a  2 2
1 ,

(2!)
a   3 2

1 ,
(3!)

a  4 2
1 ,

(4!)
a  
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5 2
1 ,

(5!)
a  6 2

1 ,
(6!)

a   

Writing

1
2 3 4

2
1 2 32 2

1
(2!) (3!) (4!)
x x xx b b x b x


             
   

  ,

we obtain

1 1,b 

2 1 1,b a 

3 1 2 2 1 2
1 31 ;

4(2!)
b a b a b    

4 1 3 2 2 3 1 2 2
3 1 1 3 1 1
4 4 4 36(2!) (3!)

b a b a b a b         19 ,
36


5 1 4 2 3 3 2 4 1b a b a b a b a b   

19 1 3 1 1 2111 .
36 4 4 36 576 576
      

It follows

1

2

1;
b
b
 2

3

4 1.333 ;
3

b
b
  

3

4

3 36 27 1.4210 ,
4 19 19

b
b
     4

5

19 576 1.4408 ,
36 211

b
b
   

where the last result is correct to three significant figures.

Example Find a root of the equation sin 1 .x x 

Using the expansion of sin ,x the given equation may be written as

3 5 7

( ) 1 0.
3! 5! 7!
x x xf x x x

         
 



Here
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1 2,a  2 0,a  3
1 ,
6

a  4 0,a 

5
1 ,

120
a  6 0,a  7

1 ,
5040

a   

we write

1
3 5 7

2
1 2 31 2

6 120 5040
x x xx b b x b x


            
  

 

We then obtain

1 1;b 

2 1 2;b a 

3 1 2 2 1 4;b a b a b  

4 1 3 2 2 3 1
1 478 ;
6 6

b a b a b a b     

5 1 4 2 3 3 2 4 1
46 ;
3

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
3601;
120

b a b a b a b a b a b     

Therefore,

1

2

1 ;
2

b
b
 2

3

1 ;
2

b
b


3

4

24 0.5106382
27

b
b
  4

5

47 0.5108695
92

b
b
 

5

6

1840 0.5109691
3601

b
b
  .

The root, correct to four decimal places is 0.5110

Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
2 3 4

2 2 2
1 0

(2!) (3!) (4!)

x x x
x     

2. Using Ramanujan’s method, find the real root of the equation 3 1.x x 
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3

NEWTON RAPHSON ETC..

The Newton-Raphson method, or Newton Method, is a powerful technique for solving
equations numerically. Like so much of the differential calculus, it is based on the simple
idea of linear approximation.

Newton – Raphson Method

Consider ( ) 0f x  , where f has  continuous
derivative f  .  From the figure we can say that at

, ( ) 0x a y f a   ; which means that a is a
solution to the equation ( ) 0f x  . In order to find
the value of a, we start with any arbitrary point
x0 .  From figure we can see that, the tangent to
the curve f at 0 0( , ( ))x f x (with slope 0( )f x )
touches the x-axis at x1.

Now,
10

10
0

)()(
)(tan

xx

xfxf
xf




 ,

As 1( ) 0,f x  the above simplifies to

)(

)(

0

0
01 xf

xf
xx




In the second step, we compute

)(

)(

1

1
12 xf

xf
xx


 ,

in the third step we compute

)(

)(

2

2
23 xf

xf
xx




and so on.    More generally, we write 1nx  in terms of , ( )n nx f x and ( )nf x for 1, 2,n  

by means of the Newton-Raphson formula

1

( )

( )
  

n

n n
n

f x
x x

f x
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1

( )

( )
  

n

n n
n
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The refinement on the value of the root
n

x is terminated by any of the following conditions.

(i) Termination after a pre-fixed number of steps

(ii) After n iterations where,  
1

0
nn

x x for a given

    , or

(iii) After n iterations, where  ( ) 0
n

f x for a given    .

Termination after a fixed number of steps is not advisable, because a fine approximation cannot be
ensured by a fixed number of steps.

Algorithm: The steps of the Newton-Raphson method to find the root of an equation   0xf are

1. Evaluate  xf 

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as

 
 i

i
ii xf

xf
 = xx


1

3. Find the absolute relative approximate error a as

010
1

1 







i

ii
a x

 xx
 =

4. Compare the absolute relative approximate error with the pre-specified relative error

tolerance, s .  If a > s then go to Step 2, else stop the algorithm.  Also, check if the

number of iterations has exceeded the maximum number of iterations allowed.  If so, one
needs to terminate the algorithm and notify the user.

The method can be used for both algebraic and transcendental equations, and it also works
when coefficients or roots are complex.  It should be noted, however, that in the case of an
algebraic equation with real coefficients, a complex root cannot be reached with a real starting
value.

Example Set up a Newton iteration for computing the square root of a given positive
number.  Using the same find the square root of 2 exact to six decimal places.

Let c be a given positive number and let x be its positive square root, so that cx  .  Then
cx 2 or



School of Distance Education

Numerical Methods Page 34

2
( ) 0f x x c  

xxf 2)( 

Using the Newton’s iteration formula we have

2

1 2
n

n n
n

x c
x x

x


 

or
1 2 2

n

n
n

x cx
x

 

or
1

1 , 0.1, 2,
2n n

n

cx x n
x

 
    
 

 ,

Now to find the square root of 2, let c = 2, so that

1

1 2 , 0, 1, 2,
2n n

n

x x n
x

 
    
 



Choose 0 1x  . Then

x1 = 1.500000, x2 = 1.416667, x3 = 1.414216, x4 = 1.414214, …

and accept 1.414214 as the square root of 2 exact to 6D.

Historical Note: Heron of Alexandria (60 CE?) used a pre-algebra version of the above

recurrence. It is still at the heart of computer algorithms for finding square roots.

Example. Let us find an approximation to 5 to ten decimal places.

Note that 5 is an irrational number. Therefore the sequence of decimals which defines
5 will not stop. Clearly 5 is the only zero of f(x) = x2 - 5 on the interval [1, 3]. See the

Picture.
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Let ( )nx be the successive approximations obtained through Newton's method. We have

Let us start this process by taking x1 = 2.

Example. Let us approximate the only solution to the equation cosx x

In fact, looking at the graphs we can see that this equation has one solution.
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This solution is also the only zero of the function ( ) cosf x x x  . So now we see how
Newton's method may be used to approximate r. Since r is between 0 and / 2 , we
set x1 = 1. The rest of the sequence is generated through the formula

We have

Example Apply Newton’s method to solve the algebraic equation 013)(  xxxf

correct to 6 decimal places. (Start with x0=1)

3
( ) 1f x x x   ,

2
( ) 3 1f x x  

and substituting these in Newton’s iterative formula, we have

3

21

1

3 1
n n

n n

n

x x
x x

x

 
 


or

3

21

2 1

3 1
n

n

n

x
x

x





, n= 0,1,2,….

Starting from x0=1.000 000,

1 20.750000, 0.686047,x x  3 40.682340, 0.682328,x x   and we accept 0.682328 as an

approximate solution of 3( ) 1 0f x x x    correct to 6 decimal places.

Example Set up Newton-Raphson iterative formula for the equation

10
log 1.2 0. x x

Solution

Take
10

( ) log 1.2. f x x x
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21

1

3 1
n n

n n

n

x x
x x

x

 
 


or

3
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2 1

3 1
n

n

n

x
x

x
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approximate solution of 3( ) 1 0f x x x    correct to 6 decimal places.

Example Set up Newton-Raphson iterative formula for the equation

10
log 1.2 0. x x

Solution

Take
10

( ) log 1.2. f x x x
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Noting that
10 10

log log log log0.4343 ,
e e

x x e x  

we obtain ( ) log0.4343 1.2.
e

f x x x 

10
( ) log log10.4343 0.4343 0.4343

e
f x x x x

x
     

and hence the Newton’s iterative formula for the given equation is

1
10

log

log

( ) 0.4343 1.2

( ) 0.4343
n e n

n n n
n

f x x x
x x x

f x x


    

.

Example Find the positive solution of the transcendental equation

xx sin2 .

Here xxxf sin2)(  ,

so that xxf cos21)( 

Substituting in Newton’s iterative formula, we have

1

2sin

1 2cos
n n

n n
n

x x
x x

x


 

 , 0.1, 2,n   or

1

2(sin cos )

1 2cos
n n n n

n
n n

x x x N
x

x D


 

 , 0.1, 2,n  

where we take 2(sin cos )
n n n n

N x x x  and 1 2cos
n n

D x  , to easy our calculation.  Values

calculated at each step are indicated in the following table  (Starting with 0 2x  ).

n xn Nn Dn xn+1

0 2.000 3.483 1.832 1.901

1 1.901 3.125 1.648 1.896

2 1.896 3.107 1.639 1.896

1.896 is an approximate solution to xx sin2 .

Example Use Newton-Raphson method to find a root of the equation 3 2 5 0.  x x

Here 3( ) 2 5  f x x x and 2( ) 3 2.  f x x Hence Newton’s iterative formula becomes
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3`

1 2

2 5

3 2
 

 


n n
n n

n

x x
x x

x

Choosing 0 2,x we obtain 0( ) 1 f x and 0( ) 10. f x

 1
12 2.1

10
   x

3
1( ) (2.1) 2(2.1) 5 0.06,f x    

and 2
1( ) 3(2.1) 2 11.23.f x   

2
0.0612.1 2.094568.
11.23

x   

2.094568 is an approximate root.

Example Find a root of the equation sin cos 0.x x x 

We have

( ) sin cosf x x x x  and ( ) cos .f x x x 

Hence the iteration formula is

1

sin cos
cos

n n n
n n

n n

x x x
x x

x x


 

With 0 ,x  the successive iterates are given below:

1( )

0 3.1416 1.0 2.8233

1 2.8233 0.0662 2.7986

2 2.7986 0.0006 2.7984

3 2.7984 0.0 2.7984

n n nn x f x x 




Example Find a real root of the equation ,xx e using the Newton – Raphson method.

( ) 1 0xf x xe  

Let 0 1.x  Then

 1
1 1 11 1 0.6839397

2 2
ex

e e
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Now 1( ) 0.3553424,f x  and 1( ) 3.337012,f x 

2
0.35534240.6839397 0.5774545.
3.337012

x   

3 0.5672297x  and 4 0.5671433.x 

Example f(x) = x−2+lnx has a root near x = 1.5. Use the Newton-Raphson formula to
obtain a better estimate.

Here x0 = 1.5, f(1.5)= −0.5 + ln(1.5)= −0.0945

1

( 0.0945)1 5( ) 1 ; (1.5) ; 1.5 1.5567
3 1.6667

f x f x
x

      

The Newton-Raphson formula can be used again: this time beginning with 1.5567 as our
initial

2

( 0.0007)
1.5567 1.5571

1.6424
x

  

This is in fact the correct value of the root to 4 d.p.

Generalized Newton’s Method

If  is a root of ( ) 0f x  with multiplicity p, then the generalized Newton’s formula is

1

( )
,

( )
n

n n
n

f x
x x p

f x   

Since  is a root of ( ) 0f x  with multiplicity p, it follows that  is a root of ( ) 0f x 

with multiplicity ( 1),p  of ( ) 0f x  with multiplicity ( 2),p  and so on. Hence the
expressions

0 0 0
0 0 0

0 0 0

( ) ( ) ( )
, ( 1) , ( 2)

( ) ( ) ( )
f x f x f x

x p x p x p
f x f x f x

 
      

must  have the same value if there is a root with multiplicity p, provided that the initial
approximation 0x is chosen sufficiently close to the root.

Example Find a double root of the equation

3 2( ) 1 0.f x x x x    

Here 2( ) 3 2 1,f x x x    and ( ) 6 2.f x x   With 0 0.8,x  we obtain
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0
0

0

( ) 0.0722 0.8 2 1.012,
( ) (0.68)

f x
x

f x
    

and

0
0

0

( ) (0.68)0.8 1.043,
( ) 2.8

f x
x

f x
    

The closeness of these values indicates that there is a doublel root near to unity. For the
next approximation, we choose 1 1.01x  and obtain

1
1

1

( )
2 1.01 0.0099 1.0001,

( )
f x

x
f x

   

and 1
1

1

( )
1.01 0.0099 1.0001,

( )
f x

x
f x


   

Hence we conclude that there is a double root at 1.0001x  which is sufficiently close to the
actual root unity.

On the other hand, if we apply Newton-Raphson method with 0 0.8,x  we obtain

1 0.8 0.106 0.91,x    and 2 0.91 0.046 0.96.x   

Exercises

1. Approximate the real root to two four decimal places of 3 5 3 0x x  

2. Approximate to four decimal places 3 3

3. Find a positive root of the equation 4 2 1 0x x   correct to 4 places of decimals.
(Choose x0 = 1.3)

4. Explain how to determine the square root of a real number by N R method and
using it determine 3 correct to three decimal places.

5. Find the value of 2 correct to four decimals places using Newton Raphson method.

6. Use the Newton-Raphson method, with 3 as starting point, to find a fraction that is
within 810 of 10 .

7. Design Newton iteration for the cube root.  Calculate 3 7 , starting from x0 = 2 and
performing 3 steps.

8. Calculate 7 by Newton’s iteration, starting from x0 = 2 and calculating x1, x2, x3.
Compare the results with the value 645751.27 
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9. Design a Newton’s iteration for computing kth root of a positive number c.

10. Find all real solutions of the following equations by Newton’s iteration method.

(a) sin x = .
2

x (b) ln x = 1 – 2x (c) cos x x

11. Using Newton-Raphson method, find the root of the equation ,0323  xxx

correct to three decimal places

12. Apply Newton’s method to the equation

3
5 3 0x x  

starting from the given
0

2x  and performing 3 steps.

13. Apply Newton’s method to the equation

4 3
2 34 0x x x   

starting from the given
0

3x  and performing 3 steps.

14. Apply Newton’s method to the equation

3 2
3.9 4.79 1.881 0x x x   

starting from the given
0

1x  and performing 3 steps.

Ramanujan’s Method

We need the following Theorem:

Binomial Theorem: If n is any rational number and 1x  , then

  2 ( 1) . . . ( ( 1))( 1)
1 1 . . . . . .

1 1 2 1 2 . . .
n rn n n rn nnx x x x

r
  

      
   

In particular,

   1 2 31 1 . . . 1 . . .
n nx x x x x

        

and   1 2 31 1 . . . . . .nx x x x x
       

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation
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( ) 0,f x 

where ( )f x is of the form

2 2 4
1 2 3 4( ) 1 ( ).f x a x a x a x a x     

For smaller values of x, we can write

         2 3 4 1 2
1 2 3 4 1 2 3[1 ( )]a x a x a x a x b b x b x

Expanding the left-hand side using binomial theorem , we obtain

2 3 2 3 2
1 2 3 1 2 31 ( ) ( )a x a x a x a x a x a x          

2
1 2 3b b x b x   

Comparing the coefficients of like powers of x on both sides of we obtain

1

2 1 1 1

2
3 1 2 1 2 2 1

1 1 2 2 1 1

1,

,

,

2,3,n n n n

b

b a a b

b a a a b a b

b a b a b a b n  

 
  

    


     



 

Then 1/n nb b approach a root of the equation ( ) 0f x  .

Example Find the smallest root of the equation

3 2( ) 6 11 6 0.f x x x x    

Solution

The given equation can be written as ( )f x

   2 31( ) 1 (11 6 )
6

f x x x x

Comparing,

1
11,
6

a  2 1,a   3
1 ,
6

a  4 5 0a a  

To apply Ramanujan’s method we write

12 3
2

1 2 3
11 61

6
x x x b b x b x
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Hence,

1 1;b 

2 1
11;
6

b a 

3 1 2 2 1
121 851 ;
36 36

b a b a b    

4 1 3 2 2 3 1
575;
216

b a b a b a b   

5 1 4 2 3 3 2 4 1
3661;
1296

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
22631;
7776

b a b a b a b a b a b     

Therefore,

1

2

6 0.54545
11

b
b
  ; 2

3

66 0.7764705
85

b
b
 

3

4

102 0.8869565
115

b
b
  ; 4

5

3450 0.9423654
3661

b
b
 

5

6

3138 0.9706155
3233

b
b
 

By inspection, a root of the given equation is unity and it can be seen that the successive

convergents
1

n

n

b

b 
approach this root.

Example Find a root of the equation 1.xxe 

Let 1xxe 

Recall
2 3

1
2! 3!

x x x
e x    

Hence,

3 4 5
2( ) 1 0

2 6 24
x x xf x x x

         
 



1 1,a  2 1,a  3
1 ,
2

a  4
1 ,
6

a  5
1 ,
24

a  
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We then have

1 1;b 

2 2 1;b a 

3 1 2 2 1 1 1 2;b a b a b    

4 1 3 2 2 3 1
1 72 1 ;
2 2

b a b a b a b      

5 1 4 2 3 3 2 4 1
7 1 1 372 ;
2 2 6 6

b a b a b a b a b        

6 1 5 2 4 3 3 4 2 5 1
37 7 1 1 261; 1 ;
6 2 6 24 24

b a b a b a b a b a b          

Therefore,

2

3

1 0.5
2

b
b
  ; 3

4

4 0.5714
7

b
b
  ;

4

5

21 0.56756756
37

b
b
  ; 5

6

148 0.56704980
261

b
b
  .

Example Using Ramanujan’s method, find a real root of the equation

2 3 4

2 2 2
1 0.

(2!) (3!) (4!)
x x xx     

Solution

Let
2 3 4

2 2 2
( ) 1 0.

(2!) (3!) (4!)
x x xf x x

 
       
 



Here

1 1,a  2 2
1 ,

(2!)
a   3 2

1 ,
(3!)

a  4 2
1 ,

(4!)
a  

5 2
1 ,

(5!)
a  6 2

1 ,
(6!)

a  

Writing
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1
2 3 4

2
1 2 32 2

1
(2!) (3!) (4!)
x x xx b b x b x


             
   

 ,

we obtain

1 1,b 

2 1 1,b a 

3 1 2 2 1 2
1 31 ;

4(2!)
b a b a b    

4 1 3 2 2 3 1 2 2
3 1 1 3 1 1
4 4 4 36(2!) (3!)

b a b a b a b         19 ,
36


5 1 4 2 3 3 2 4 1b ab a b a b a b   

19 1 3 1 1 2111 .
36 4 4 36 576 576
      

It follows

1

2

1;
b
b
 2

3

4 1.333 ;
3

b
b
  

3

4

3 36 27 1.4210 ,
4 19 19

b
b
     4

5

19 576 1.4408 ,
36 211

b
b
   

where the last result is correct to three significant figures.

Example Find a root of the equation sin 1 .x x 

Using the expansion of sin ,x the given equation may be written as

3 5 7

( ) 1 0.
3! 5! 7!
x x xf x x x

         
 



Here

1 2,a  2 0,a  3
1 ,
6

a  4 0,a 

5
1 ,

120
a  6 0,a  7

1 ,
5040

a   

we write
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1
3 5 7

2
1 2 31 2

6 120 5040
x x xx b b x b x


            
  

 

We then obtain

1 1;b 

2 1 2;b a 

3 1 2 2 1 4;b a b a b  

4 1 3 2 2 3 1
1 478 ;
6 6

b a b a b a b     

5 1 4 2 3 3 2 4 1
46 ;
3

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
3601;
120

b a b a b a b a b a b     

Therefore,

1

2

1 ;
2

b
b
 2

3

1 ;
2

b
b


3

4

24 0.5106382
27

b
b
  4

5

47 0.5108695
92

b
b
 

5

6

1840 0.5109691
3601

b
b
  .

The root, correct to four decimal places is 0.5110

Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
2 3 4

2 2 2
1 0

(2!) (3!) (4!)

x x x
x     

2. Using Ramanujan’s method, find the real root of the equation 3 1.x x 

The Secant Method

We have seen that the Newton-Raphson method requires the evaluation of derivatives of
the function and this is not always possible, particularly in the case of functions arising in
practical problems. In the secant method, the derivative at nx is approximated by the
formula
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1

1

( ) ( )
( ) ,n n

n
n n

f x f x
f x

x x

which can  be written as

1

1

,



 


n n
n

n n

f f
f

x x

where  ( ).n nf f x Hence, the Newton-Raphson formula becomes

  


 

 
  

 
1 1 1

1
1 1

(
.n n n n n n n

n n
n n n n

f x x x f x f
x x

f f f f

It should be noted that this formula requires two initial approximations to the root.

Example Find a real root of the equation 3 2 5 0x x   using secant method.

Let the two initial approximations be given by  1 2x and 0 3.x

We have

1 1( ) 8 9 1,f x f      and 0 0( ) 27 11 16.f x f   

1
2(16) 3( 1) 35 2.058823529.

17 17
x    

Also,

1 1( ) 0.390799923.f x f  

0 1 1 0
2

1 0

3( 0.390799923) 2.058823529(16) 2.08126366.
16.390799923

x f x f
x

f f
    
 

Again

2 2( ) 0.147204057.f x f  

3 2.094824145.x 

Example: Find a real root of the equation 0xx e  using secant method.

Solution

The graph of ( ) xf x x e  is as shown here.
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Let us assume the initial approximation to the roots as 1 and 2.  That is consider 1 1x 

and 0 2x 

1
1 1( ) 1 1 0.367879441=0.632120559f x f e      and

2
0 0( ) 2 2 0.135335283=1.864664717.f x f e    

Step 1: Putting  0n , we obtain 1 0 0 1
1

0 1

x f x f
x

f f
 








Here, 1
1(1.864664717) 2(0.632120559) 0.600423599 0.487142.

1.864664717 0.632120559 1.232544158
x

  


Also,

0.487142
1 1( ) 0.487142 -0.12724.f x f e   

Step 2:  Putting 1n , we obtain

0 1 1 0
2

1 0

2(-0.12724) 0.487142(1.864664717) -1.16284 0.58378
-0.12724 1.864664717 -1.99190

x f x f
x

f f
    
 

Again

0.58378
2 2( ) 0.58378 0.02599.f x f e   

Step 3: Setting  2n ,

 
1 2 2 1

3
2 1

0.487142(0.02599) 0.58378(-0.12724) 0.08694 0.56738
0.153230.02599 -0.12724

x f x f
x

f f
    
 

0.56738
3 3( ) 0.56738 0.00037.f x f e   

Step 4: Setting 3n  in (*),
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2 3 3 2
4

3 2

0.58378(0.00037) 0.56738(0.02599) -0.01453 0.5671
0.00037 0.02599 -0.02562

x f x f
x

f f
    
 

Approximating to three digits, the root can be considered as 0.567.

Exercises

1. Determine the real root of the equation 1xxe  using the secant method. Compare
your result with the true value of 0.567143x   .

2. Use the secant method to determine the root, lying between 5 and 8, of the equation
2.2 69.x 

Objective Type Questions

(a) The Newton-Raphson method formula for finding the square root of a real
number C from the equation 2 0x C  is,

(i) 1 2
n

n

x
x   (ii) 1

3

2
n

n

x
x   (iii) 1

1

2n n
n

C
x x

x

 
  
 

(iv)  None of these

(b) The next iterative value of the root of 22 3 0x   using the Newton-Raphson
method, if the initial guess is 2, is

(i) 1.275      (ii)   1.375     (iii)    1.475 (iv) None of these

(c) The next iterative value of the root of 22 3 0x   using the secant method, if the
initial guesses are 2 and 3, is

(i) 1    (ii)   1.25     (iii)    1.5 (iv)  None of these

(d) In secant method,

(i) 1 1
1

1

n n n n
n

n n

x f x f
x

f f
 








(ii) 1 1

1
1

n n n n
n

n n

x f x f
x

f f
 








(iii) 1 1

1
1

n n n n
n

n n

x f x f
x

f f
 









(iv)  None of these

Answers

(a) (iii) 1

1

2n n
n

C
x x

x

 
  
 

(b)  (ii)   1.375

(c)  (iii)   1.5
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(d)  (i) 1 1
1

1

n n n n
n

n n

x f x f
x

f f
 









Theoretical Questions with Answers:

1. What is the difference between bracketing and open method?

Ans: For finding roots of a nonlinear equation 0)( xf , bracketing method requires
two guesses which contain the exact root. But in open method initial guess of the
root is needed without any condition of bracketing for starting the iterative process
to find the solution of an equation.

2. When the Generalized Newton’s methods for solving equations is helpful?

Ans: To solve the  find the oot of ( ) 0f x  with multiplicity p, the generalized
Newton’s formula is required.

3. What is the importance of Secant method over Newton-Raphson method?

Ans: Newton-Raphson method requires the evaluation of derivatives of the
function and this is not always possible, particularly in the case of functions arising
in practical problems. In such situations Secant method helps to solve the equation
with an approximation to the derivative.

************
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4

FINITE DIFFERENCES OPERATORS

For a function y=f(x), it is given that 0 1, ,..., ny y y are the values of the variable y
corresponding to the equidistant arguments, 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        .  In this case, even though Lagrange and
divided difference interpolation polynomials can be used for interpolation, some simpler
interpolation formulas can be derived.  For this, we have to be familiar with some finite
difference operators and finite differences, which were introduced by Sir Isaac Newton.
Finite differences deal with the changes that take place in the value of a function f(x) due
to finite changes in x. Finite difference operators include, forward difference operator,
backward difference operator, shift operator, central difference operator and mean
operator.

 Forward difference operator ( ) :

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1 2, , ,..., nx x x x ,
where 1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the forward difference operator  is
defined on the function f(x) as,

         1i i i i if x f x h f x f x f x     

That is,

1i i iy y y  

Then,  in particular

         0 0 0 1 0

0 1 0

f x f x h f x f x f x

y y y

     

   

         1 1 1 2 1

1 2 1

f x f x h f x f x f x

y y y

     

   

etc.,

0 1, ,..., ,...iy y y   are known as the first forward differences.

The second forward differences are defined as,
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2

2 1

2

2 2

2

i i i i

i i

i i i i

i i i

i i i

f x f x f x h f x

f x h f x

f x h f x h f x h f x

f x h f x h f x

y y y 

             
    

         
    

  

In particular,

 2 2
0 2 1 0 0 2 1 02 2f x y y y or y y y y       

The third forward differences are,

3 2

2 2

3 33 2 1

f x f xi i

f x h f x h f xi i i

y y y yii i i

              

      
       
      

   

    

     

In particular,

 3 3
0 3 2 1 0 0 3 2 1 03 3 3 3f x y y y y or y y y y y         

In general the nth forward difference,

     1 1n n n
i i if x f x h f x      

The differences 2 3
0 0 0, , ....y y y   are called the leading differences.

Forward differences can be written in a tabular form as follows:

x y y 2 y 3 y

0x

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

0 1 0y y y  

1 2 1y y y  

2 3 2y y y  

2
0 1 0y y y   

2
1 2 1y y y   

3 2 2
0 1 0y y y   
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Example Construct the forward difference table for the following x values and its
corresponding f values.

x 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f 0.003 0.067 0.148 0.248 0.370 0.518 0.697

x f f 2f 3f 4f 5f

0.1 0.003
0.064

0.081

0.100

0.122

0.148

0.179

0.3 0.067 0.017
0.002

0.003

0.004

0.005

0.5 0.148 0.019 0.001
0.000

0.000
0.7 0.248 0.022 0.001

0.9 0.370 0.026 0.001

1.1 0.518 0.031

1.3 0.697

Example Construct the forward difference table, where
x

xf
1

)(  , x = 1(0.2)2, 4D.

x x
xf

1
)( 

f

first
differe

nce

2f

second
differe

nce

3f 4f 5f

1.0 1.000
-0.1667

-0.1190

-0.0893

-0.0694

-0.0556

1.2 0.8333 0.0477
-0.0180

-0.0098

-0.0061

1.4 0.7143 0.0297 0.0082 -0.0045

1.6 0.6250 0.0199 0.0037

1.8 0.5556 0.0138

2.0 0.5000
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Example Construct the forward difference table for the data

: 2 0 2 4

( ) : 4 9 17 22

x

y f x




The forward difference table is as follows:

x y=f(x) y 2 y 3 y

-2

0

2

4

4

9

17

22

0y =5

1y =8

2y =5

2
0y =3

2
1y =-3

3
0y =-6

Properties of Forward difference operator ( ):

(i) Forward difference of a constant function is zero.

Proof:     Consider the constant function ( )f x k

Then, ( ) ( ) ( ) 0f x f x h f x k k      

(ii) For the functions ( ) ( )f x and g x ;  ( ) ( ) ( ) ( )f x g x f x g x     

Proof:   By definition,

   

 

( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

f x g x f g x

f g x h f g x

f x h g x h f x g x

f x h f x g x h g x

f x g x

    

    

     

     
   

(iii)Proceeding as in (ii), for the constants a and b,

 ( ) ( ) ( ) ( )af x bg x a f x b g x      .

(iv)Forward difference of the product of two functions is given by,

 ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x g x f x     
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Proof:

   ( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

f x g x fg x

fg x h fg x

f x h g x h f x g x

  

  
   

Adding and subtracting ( ) ( )f x h g x , the above gives

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x h f x h g x f x h g x f x g x        

   ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x h g x h g x g x f x h f x

f x h g x g x f x

      

    

Note : Adding and subtracting ( ) ( )g x h f x instead of ( ) ( )f x h g x , it can also be
proved that

 ( ) ( ) ( ) ( ) ( ) ( )f x g x g x h f x f x g x     

(v) Forward difference of the quotient of two functions is given by

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

f x g x f x f x g x
g x g x h g x

       

Proof:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

f x f x h f x
g x g x h g x

f x h g x f x g x h
g x h g x

f x h g x f x g x f x g x f x g x h
g x h g x

      
  


    



   ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

g x f x h f x f x g x h g x

g x h g x

    




( ) ( ) ( ) ( )
( ) ( )

g x f x f x g x
g x h g x
  


Following are some results on forward differences:

Result 1:  The nth forward difference of a polynomial of degree n is constant when the
values of the independent variable are at equal intervals.



School of Distance Education

Numerical Methods Page 56

Result 2: If n is an integer,
2

1 2( ) ( ) ( ) ( ) ( )n n nf a nh f a C f a C f a f a        

for the polynomial f(x) in x.

Forward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f0

f1

f2

f3

f4

f5

x1 f1 2f0
3f0

3f1

3f2

3f3

x2 f2 2f2 4f0
5f0

5f1
x3 f3 2f2 4f1 6f0

x4 f4 2f3 4f2

x5 f5 2f4

x6 f6

Example Express 0
2 f and 0

3 f in terms of the values of the function f.

  01220112010
2 ffffffffff 

 01120
2

1
2

0
3 fffffff 

       3 2 2 1 2 1 1 0f f f f f f f f       

3 33 2 1 0f f f f   

In general,

0
)1(...

3322110
fn

n
fCn

n
fCn

n
fCn

n
ffn 








 .

If we write yn to denote fn the above results takes the following forms:

01220
2 yyyy 

0132330
3 yyyyy 

0)1(...3322110 yn
nyCn

nyCn
nyCn

nyyn 
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Example Show that the value of yn can be expressed in terms of the leading value y0

and the leading differences .,...,, 00
2

0 yyy n

Solution

(For notational convenience, we treat yn as fn and so on.)

From the forward difference table we have

0 1 0 1 0 0

1 2 1 2 1 1

2 3 2 3 2 2

or

or

or

f f f f f f

f f f f f f

f f f f f f

     


      
      

and so on.  Similarly,
2 2

0 1 0 1 0 0

2 2
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Similarly, we can write
3 2 2 2 2 3

0 1 0 1 0 0

3 2 2 2 2 3
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Also, we can write 2f as

   2
2 0 0 0 0

2
0 0 0

2
0

2

(1 )

f f f f f

f f f

f

      

    

  

Hence

3 2 2f f f  

  2 3
1 1 0 0 02f f f f f        

0
3

0
2

00 33 ffff 

 3 01 f  

That is, we can symbolically write

      .1,1,1 0
3

30
2

201 ffffff 

Continuing this procedure, we can show, in general

  .1 0ff n
n 

Using binomial expansion, the above is



School of Distance Education

Numerical Methods Page 58

00
2

2010 ... ffCfCff nnn
n 

Thus

0
0

.
n

n i
n i

i

f C f


 

Backward Difference Operator

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the backward difference operator  is defined
on the function f(x) as,

    1) (i i i i if x f x f x h y y       ,

which is the first backward difference.

In particular, we have the first backward differences,

   1 1 0 2 2 1;f x y y f x y y etc     

The second backward difference is given by

          
   

   

2

1 1 2

1 2

) (

) ( ) ( 2

2

i i i i i i

i i i i

i i i i

i i i

f x f x f x f x h f x f x h

f x f x h f x h f x h

y y y y

y y y
  

 

           
             
   

  

Similarly, the third backward difference,  3
1 2 33 3i i i i if x y y y y       and so on.

Backward differences can be written in a tabular form as follows:

x

Y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0y y y  

2 2 1y y y  

3 3 2y y y  

2
2 2 1y y y  

2
3 3 2y y y  

3 2 2
3 3 2y y y  

Relation between backward difference and other differences:

1. 0 1 0 1y y y y     ; 2 2
0 2 1 0 22y y y y y     etc.
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2.   

Proof:  Consider the function f(x).

( ) ( ) ( )

( ) ( ) ( )

f x f x h f x

f x f x f x h

   
   

 
   

 
 

( ( )) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

f x f x f x

f x h f x f x f x h

f x f x h

f x f x h

f x

    

     

    

   

  

    

3. 1E  

Proof:  Consider the function f(x).

1( ) ( ) ( ) ( ) ( )f x f x f x h f x h E f x         1E   

4. 11 E  

Proof:  Consider the function f(x).

 1 1( ) ( ) ( ) ( ) ( ) 1 ( )f x f x f x h f x E f x E f x         11 E   

Problem: Construct the backward difference table for the data

: 2 0 2 4

( ) : 8 3 1 12

x

y f x


 

Solution: The backward difference table is as follows:

x Y=f(x) y 2 y 3 y

-2

0

2

4

-8

3

1

12

1y =3-(-8)=11

2y =1-3=-2

3y =12-1=11

2
2y =-2-11= -13

2
3y =11-(2)=13

3
3y =13-(-13)=26
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Backward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f1

f2

f3

f4

f5

f6

x1 f1 2f2

3f3

3f4

3f5

3f6

x2 f2 2f3 4f4 5f
5

5f
6

x3 f3 2f4 4f5 6f6

x4 f4 2f5 4f6

x5 f5 2f6

x6 f6

Example Show that any value of f (or y)  can be expressed in terms of fn (or yn ) and its
backward differences.

Solution

1 nnn fff implies 1n n nf f f  

and 1 1 2n n nf f f     implies 2 1 1n n nf f f   

1
2

 nnn fff implies 2
1n n nf f f   

From equations (1) to (3), we obtain

nnnn ffff 2
2 2  .

Similarly, we can show that

nnnnn fffff 32
3 33  .

Symbolically, these results can be rewritten as follows:

      .1,1,1 3
3

2
21 nnnnnn ffffff  

Thus, in general, we can write

  n
r

rn ff  1 .

i.e., 2
1 2 . . . ( 1)r r r r

n r n n n nf f C f C f f         

If we write yn to denote fn the above result is:
2

1 2 . . . ( 1)r r r r
n r n n n ny y C y C y y         
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Central Differences

Central difference operator  for a function f(x) at ix is defined as,

( )
2 2i i i
h hf x f x f x          

   
, where h being the interval of differencing.

Let 1 0
2 2

hy f x   
 

.  Then,

       

1 0 0 0
2

0 0 1 0 1 0

1 0
2

2 2 2 2 2
h h h h hy f x f x f x

f x h f x f x f x y y

y y

 



                 
     

      

  

Central differences can be written in a tabular form as follows:

x y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0
2

y y y  

3 2 1
2

y y y  

5 3 2
2

y y y  

2
1 3 1

2 2

y y y   

2
2 5 3

2 2

y y y   

3 2 2
3 2 1
2

y y y   

Central Difference Table

x f f 2f 3f 4f

x0 f0

f1/2

f3/2

f5/2

f7/2

x1 f1 2f1
3f3/2

3f5/2

x2 f2 2f2 4f2

x3 f3 2f3

x4 f4
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Example Show that

(a)
1

2
1

2



m

fmfm
fmf

(b)
1

3
1

3
2

2

1
3




 m
f

m
f

m
f

m
f

m
f

(a) 2 ( ) ( )1 11/2 1/2f f f f f f fm m mm mm m        

21 1
f f fmm m
   

(b)  3 2 2 211/2 2 1
f f f f f fmmm m m m
        

 2
1 1

f f f
m m m
   1

3
1

3
2 


m

f
m

f
m

f
m

f

Shift operator, E

Let y = f (x) be a function of x, and let x takes the consecutive values x, x + h, x + 2h, etc.
We then define an operator E, called the shift operator having the property

E f(x) = f (x + h) …(1)

Thus, when E operates on f (x), the result is the next value of the function. If we apply the
operator twice on f (x), we get

E2 f (x) = E [E f (x)] = f (x+ 2h).

Thus, in general, if we apply the shift operator n times on f (x), we arrive at

E n f (x) = f (x+ nh)                            …(2)

for all real values of n.

If f0 (= y0), f1 (= y1)… are the consecutive values of the function

y = f (x), then we can also write

E f0 = f1 (or E y0 = y1), E f1 = f2 (or E y1 = y2)…

E2f0 = f2 (or E 2y0 = y2), E 2 f1 = f3 (or E y1 = y3)…

E3f0 = f3 (or E 2y0 = y3), E 3 f1 = f4 (or E y1 = y4)…

and so on.  The inverse operator E1 is defined as:
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E1 f(x) = f (x  h) …(3)

and similarly

En f(x) = f (x  nh) …(4)

Average Operator 

The average operator  is defined as

  2 2
1 ( ) ( )
2

h hf x f x f x      

Differential operator D

The differential operator D has the property

( ) ( ) ( )dDf x f x f x
dx

 

2
2

2
( ) ( ) ( )dD f x f x f x

dx
 

Relations between the operators:

Operators,,, and D in terms of E

From the definition of operators  and E, we have

 f (x)  = f (x + h)  f (x) = E f (x)  f (x)  =  (E  1) f (x).

Therefore,

 = E  1

From the definition of operators  and E  1, we have

 f (x)  = f (x)  f (x  h) = f (x)  E  1f (x)  =  (1  E  1) f (x).

Therefore,

1 11 .EE
E

    

The definition of the operators  and E gives

f (x)  = f (x + h/2)  f (x  h/2) = E 1/2f (x)  E  1/2f (x)

= (E 1/2  E  1/2) f (x).
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Therefore,

 = E 1/2  E  1/2

The definition of the operators  and E yields

   1/ 2 1/ 21 1 .
2 2 2 2

h hf x f x f x E E f x                      

Therefore,

 1/ 2 1/ 21 .
2

E E  

It is known that

E f (x) = f (x + h).

Using the Taylor series expansion, we have

       
2

. . .
2!
hEf x f x h f x f x    

     
2

2 . . .
2!
hf x h Df x D x   

   
2 2

1 . . .
1! 2!

hDh D h D f x e f x
      
 

.

Thus hDeE  .  Or,

hD = log E.

Example If , ,  denote forward, backward and central difference operators, E and 
respectively the shift operator and average operators, in the analysis of data with equal
spacing h, prove the following:

 

   

22
2 2 1/ 2

2
2

( ) 1 1
2 2

1 / 4
2

i ii E

iii

 
     

 

   

 
  


 

   
1

.
2 2 2
Eiv v
       

Solution

(i)  From the definition of operators, we have
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    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E        .

Therefore

   22 2 2 2 11 11 1 2
4 4

E E E E         

Also,

   
2 21/ 2 1/ 2 11 11 1

2 2 2
E E E E      

From equations (1) and (2), we get
22

2 21 1 .
2

      
 

(ii)  1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 .
2 2

E E E E E       

(iii)  We can write

   21/ 2 1/ 22
21 / 4

2 2

E E         21/ 2 1/ 2 1/ 2 1/ 211
4

E E E E    

  
1

1/ 2 1/ 2 1/ 2 1/ 22 1
2 2

E E E E E E


     

1 12
2 2

E E E E    

= E  1

= 

(iv) We write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 11 1 1 11 1 .
2 2 2 2 2 2 2

EE E
E E

                 
 

(v)  We can write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

    1 11 1 .
2 2
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Example Prove that

     1log 1 log 1 sinh .hD        

Using the standard relations given in boxes in the last section, we have

   1log log 1 log log log 1hD E E E         

Also,

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 sin
2

hD hDe e hD  

Therefore

 .sinh 1  hD

Example Show that the operations  and E commute.

Solution

From the definition of operators  and E , we have

 0 1 3/ 2 1/ 2
1
2

Ef f f f    

and also

   0 1/ 2 1/ 2 3/ 2 1/ 2
1 1
2 2

E f E f f f f    

Hence

.E E  

Therefore, the operators  and E commute.

Example Show that
2 2

2
0 0 0 0 1 2... ...

2! 2!
          
 

x x xe u x u u u u x u

2 2 2
2

0 0 0 0... 1 ...
2! 2!

              
   

x xx xe u x u u e x u

(1 )
0 0

  x x xe e u e u

0 xEe u
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2 2

01 ...
2!

     
 

x ExE u

2

0 1 2 ...,
2!

   xu xu u

as desired.

Example Using the method of separation of symbols, show that

1 2

( 1)
( 1) .

2   
      n n

x n x x x x n

n n
u u nu u u

To prove this result, we start with the right-hand side. Thus,

R.H.S 1 2

( 1)
( 1) .

2  
      n

x x x x n

n n
u nu u u

1 2( 1)
( 1)

2
        n n

x x x x

n n
u nE u E u E u

1 2( 1)
1 ( 1)

2
          

 n n
x

n n
nE E E u

 11  
n

xE u

11   
 

n

xu
E

1   
 

n

x
E u

E


n

xn u
E

 n n
xE u

, n
x nu

= L.H.S

Differences of a Polynomial

Let us consider the polynomial of degree n in the form
1 2

0 1 2 1( ) . . . ,n n n
n nf x a x a x a x a x a 
     

where 0 0a  and 0 1 2 1, , , . . . , ,n na a a a a are constants.  Let h be the interval of differencing.
Then
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1 2
0 1 2( ) ( ) ( ) ( ) ...n n nf x h a x h a x h a x h         1( )n na x h a  

Now the difference of the polynomials is:

1 1
0 1( ) ( ) ( ) ( ) ( ) ...n n n nf x f x h f x a x h x a x h x                  1( )na x h x  

Binomial expansion yields

   nnnnnnn xhhxChxCxaxf   ...22
2

1
10

   1 11 2 3 2
1 1 2[ n nn n na x C x h C x h     

1 1
1. . . ] . . .n n

nh x a h 
    

   .... 1
2

1
1

1
2

20
1

0 haxhCahCanhxa n
nnnn


 

Therefore,

  ,...321
0 lxkxcxbnhxaxf nnn  

where b, c,    . . . , k, l are constants involving h but not x.  Thus, the first difference of
a polynomial of degree n is another polynomial of degree (n  1).  Similarly,

        xfhxfxfxf 2

   1 21 2
0

n nn na nh x h x b x h x
             

 . . . k x h x   

On simplification, it reduces to the form

    qxcxbxhnnaxf nnn   ...1 4322
0

2 .

Therefore,  xf2 is a polynomial of degree (n  2) in x.  Similarly, we can form the
higher order differences, and every time we observe that the degree of the polynomial is
reduced by 1.  After differencing n times, we are left with only the first term in form

        0 1 2 3 . . . 2 1n nf x a n n n n h    

 0 ! constant.na n h 

This constant is independent of x.  Since  xfn is a constant   .01   xfn Hence the (n
+ 1)th and higher order differences of a polynomial of degree n are 0.
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Conversely, if the n th differences of a tabulated function are constant and the ( 1)thn ,
( 2)th,...,n differences all vanish, then the tabulated function represents a polynomial of
degree n. It should be noted that these results hold good only if the values of x are equally
spaced. The converse is important in numerical analysis since it enables us to approximate
a function by a polynomial if its differences of some order become nearly constant.

Theorem (Differences of a polynomial)The nth differences of a polynomial of degree n is a
constant, when the values of the independent variable are given at equal intervals.

Exercises

1. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a) 2 decimal places, (b) 3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

2. Express 2y1 (i.e. 2f1 )  and 4y0 (i.e. 4f0 )  in terms of the values of the function y =
f(x).

3. Set up a difference table of 2( )f x x for 0(1)10x  .  Do the same with the calculated
value 25 of (5)f replaced by 26.  Observe the spread of the error.

4. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a)2 decimal places, (b)3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

5. Set up a forward difference table of f(x) = x2 for x = 0(1)10.  Do the same with the
calculated value 25 of f(5)  replaced by 26.  Observe the spread of the error.

6. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cosx 1.000 00 0.995 00 0.980 07 0.955 34 0.921 06 0.877 58

7. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sinx 0.000 00 0.099
83

0.198
67

0.295
52

0.389
42

0.479

8. Construct the backward difference table, where

( ) sinf x x , x = 1.0(0.1)1.5, 4D.
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9. Show that .2/1EE 

10. Prove that

11.        .2/cosh2and2/sinh2 hDiihDi 

12. Show that the operators ,  , E,  and  commute with each other.

13.Construct the backward difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cos x 1.000
00

0.995
00

0.980
07

0.955
34

0.921
06

0.877
58

Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sin
x

0.000
00

0.099
83

0.198
67

0.295
52

0.389
42

0.479
43

6. Construct the backward difference table, where

f(x) = sin x, x = 1.0(0.1)1.5, 4D.

7. Evaluate   (2 + 3)(E + 2)(3x2 + 2),  interval of differencing being unity.

8. Compute the missing values of ny and ny in the following table:

ny ny 2
ny

-

-

-

5

-

-

-

1

4

13

18

24

-

-

6

-

-

-
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5

NUMERICAL INTERPOLATION

Consider a single valued continuous function ( )y f x defined over [a,b] where
( )f x is  known explicitly.  It is easy to find the values of ‘y’ for a given set of values of ‘x’ in

[a,b].  i.e., it is possible to get information of all the points ( , )x y where .a x b 

But the converse is not so easy.  That is, using only the points 0 0( , )x y , 1 1( , )x y ,…,
( , )n nx y where , 0,1,2,...,ia x b i n   ,  it is not so easy to find the relation between x and y in
the form ( )y f x explicitly.  That is one of the problem we face in numerical
differentiation or integration.

Now we have first to find a simpler function, say ( )g x , such that ( )f x and ( )g x agree
at the given set of points and accept the value of ( )g x as the required value of ( )f x at some
point x in between a and b. Such a process is called interpolation. If ( )g x is a
polynomial, then the process is called polynomial interpolation.

When a function f(x) is not given explicitly and only values of ( )f x are given at a
set of distinct points called nodes or tabular points, using the interpolated function ( )g x to
the function f(x), the required operations intended for ( )f x , like determination of roots,
differentiation and integration etc. can be carried out. The approximating polynomial ( )g x

can be used to predict the value of ( )f x at a non- tabular point. The deviation of ( )g x from
( )f x , that is ( ) ( )f x g x is called the error of approximation.

Consider a continuous single valued function ( )f x defined on an interval [a, b].
Given the values of the function for n + 1 distinct tabular points 0 1, ,..., nx x x such that

0 1 ... na x x x b     .   The problem of polynomial interpolation is to find a polynomial g(x)
or ( )np x , of degree n, which fits the given data. The interpolation polynomial fitted to a
given data is unique.

If we are given two points satisfying the function such as    0 0 1 1, ; ,x y x y , where

 0 0y f x and  1 1y f x it is possible to fit a unique polynomial of degree 1. If three
distinct points are given, a polynomial of degree not greater than two can be fitted
uniquely.  In general, if n+ 1 distinct points are given, a polynomial of degree not greater
than n can be fitted uniquely.

Interpolation fits a real function to discrete data.   Given the set of tabular values

0 0 1 1( , ), ( , ) ( , ) n nx y x y x y satisfying the relation ( )y f x , where the explicit nature of
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( )f x is not known,  and it is required to find the values of ( )f x corresponding to certain
given values of x in between x0 and xn .  To do this we have first to find a simpler function,
say ( )g x , such that ( )f x and ( )g x agree at the set of tabulated points and accept the value
of ( )g x as the required value of ( )f x at some point x in between x0 and xn .   Such a process
is called interpolation.  If ( )g x is a polynomial, then the process is called polynomial
interpolation.

In interpolation, we have to determine the function ( )g x , in the case that ( )f x is
difficult to be obtained, using the pivotal values 0 0( ),f f x 1 1( )f f x ,. . . , ( )n nf f x .

Linear interpolation

In linear interpolation, we are given with two pivotal values 0 0( )f f x and 1 1( ),f f x

and we approximate the curve of f by a chord (straight line) P1 passing through the points
0 0( , )x f and 1 1( , )x f . Hence the approximate value of f at the intermediate point 0x x rh 

is given by the linear interpolation formula

1 0 1 0 0 0
( ) ( ) ( )f x P x f r f f f r f      

where 0
x x

r
h


 and 10  r .

Example Evaluate ln 9.2 , given that ln 9.0 2.197 and ln 9.5 2.251.

Here x0 = 9.0 , x1 = 9.5, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln 9.0 2.197 and
1 1( ) ln 9.5 2.251.  f f x Now to calculate ln9.2 (9.2), f take 9.2,x so that

0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and hence

1 0 1 0
ln 9.2 (9.2) (9.2) ( ) 2.197 0.4 (2.251 2.197) 2.219f P f r f f        

Example Evaluate f (15), given that f(10) = 46, f(20) = 66.

Here x0 = 10 , x1 = 20, h = x1  x0 =20  10 = 10,

f0 = f(x0)  = 46 and f1 = f(x1) = 66.

Now to calculate f(15), take x = 15, so that

0 15 10 5 0.5
10 10

x x
r

h

    

and hence
1 0 1 0

(15) (15) ( ) 46 0.5 (66 46) 56f P f r f f       

Example Evaluate 1.24
e , given that 1.1

3.0042e  and 1.4
4.0552e  .
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Here x0 = 1.1 , x1 = 1.4, h = x1  x0 =1.41.1 = 0.3, f0 = f(x0) =1.1 and f1 = f(x1) = 1.24.

Now to calculate 1.24
e =f(1.24), take x =1.24, so that 0 1.24 1.1 0.14 0.4667

0.3 0.3

x x
r

h

     and

hence

1.24

1 0 1 0
(1.24) ( ) 3.0042 0.4667(4.0552 3.0042) 3.4933,e P f r f f        while the exact value of 1.24

e is

3.4947.

Quadratic Interpolation

In quadratic interpolation we are given with three pivotal values 0 0 1 1( ), ( ) f f x f f x

and 2 2( )f f x and we approximate the curve of the function f between x0 and x2 = x0 +2h
by the quadratic parabola P2 , which passes through the points 0 0 1 1 2 2( , ), ( , ), ( , )x f x f x f and
obtain the quadratic interpolation formula

2

2 0 0 0

( 1)
( ) ( )

2
r r

f x P x f r f f
     

where 0
x x

r
h


 and 20  r .

ExampleEvaluate ln 9.2, using quadratic interpolation, given that

ln 9.0 = 2.197,    ln 9.5 = 2.251  and   ln10.0 = 2.3026.

Here x0 = 9.0 , x1 = 9.5, x1 = 10.0, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln9.0 = 2.197,
f1 = f(x1) = ln9.5 = 2.251 and f2 = f(x2) = ln10.0 = 2.3026. Now to calculate ln9.2=f(9.2), take

x = 9.2, so that 0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and

2

2 0 0 0

( 1)
ln 9.2 (9.2) ( )

2
r r

f P x f r f f
      

To proceed further, we have to construct the following forward difference table.

x f f 2f

9.0 2.1972

0.0541

0.0513
9.5 2.2513

-
0.0028

10.0 2.3026

Hence,
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2

0.4(0.4 1)
ln 9.2 (9.2) (9.2) 2.1972 0.4(0.0541) ( 0.0028)

2
f P

      = 2.2192, which exact to

4D to the exact value of ln 9.2 2.2192.

Example Using the values given in the following table, find cos0.28 by linear interpolation
and by quadratic interpolation and compare the results with the value 0.96106 (exact to
5D)

x ( ) cosf x x
First
difference

Second
difference

0.0 1.00000
-0.01993

-0.05901
0.2 0.98007 -0.03908

0.4 0.92106

Here ( )f x , where 0 0.28x is to determined. In linear interpolation, we need two
consecutive x values and their corresponding f values and first difference.  Here, since
x=0.28 lies in between 0.2 and 0.4, we take x0 = 0.2, x1 = 0.4.  (Attention! Choosing 0 0.2,x

1 0.4x  is very important; taking 0 0.0x would give wrong answer). Then h = x1  x0

=0.40.2 = 0.2, f0 = f(x0) =0.98007 and f1 = f(x1) =0.92106.

Also 0 0.28 0.2 0.08 0.4
0.2 0.2

x x
r

h

     and

1 0 1 0
cos0.28 (0.28) (0.28) ( )    f P f r f f

0.98007 0.4(0.92106 0.98007)  

=  0.95647, correct to 5 D.

In quadratic interpolation, we need three consecutive (equally spaced) x values and
their corresponding f values, first differences and second difference.  Here x0 = 0.0 , x1 =
0.2, x1 = 0.4, h = x1  x0 =0.2  0.0 = 02, f0 =  1.00000, f1 = 0.98007 and f2 = 0.92106,

f0=-0.01993, 2f0=-0.03908 0 0.28 0.00 1.4
0.2

x x
r

h

    and

2

2 0 0 0

( 1)
cos0.28 (0.28)

2
r r

P f r f f
     

  96116.003908.0
2

)14.1(4.1
)1993.0(4.100.1 


 to 5D.
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From the above, it can be seen that quadratic interpolation gives more accurate value.

Newton’s  Forward  Difference  Interpolation  Formula

Using Newton’s forward difference interpolation formula we find the n degree
polynomial Pn which approximates the function f(x) in such a way that Pn and f agrees at
n+1 equally spaced x values, so that 0 0 1 1( ) , ( ) , , ( ) ,  n n n n nP x f P x f P x f where 0 0( ),f f x

1 1( ), , ( )  n nf f x f f x are the values of f in the table.

Newton’s forward difference interpolation formula is

( ) ( )nf x P x 

2

0 0 0 0

( 1). . .( 1)( 1)
. . .

2! !
nr r r nr r

f r f f f
n

         

where 0

0
, , 0

x x
x x rh r r n

h


     .

Derivation of Newton’s forward Formulae for Interpolation

Given the set of ( 1)n values, viz., 0 0 1 1 2 2( , ), ( , ), ( , ),..., ( , )n nx f x f x f x f

of x and f, it is required to find ( )np x , a polynomial of the nth degree such that ( )f x and
( )np x agree at the tabulated points. Let the values of x be equidistant, i.e., let

0 , 0,1,2,...,ix x rh r n  

Since ( )np x is a polynomial of the nth degree, it may be written as

0 1 0 2 0 1

3 0 1 2

0 1 2 1

( ) ( ) ( )( )

( )( )( ) ...

( )( )( )...( )

n

n n

p x a a x x a x x x x

a x x x x x x

a x x x x x x x x 

      
     
     

Imposing now the condition that ( )f x and ( )np x should agree at the set of tabulated
points, we obtain

2 3
1 0 0 0 0 0

0 0 1 2 32 3
1 0

; ; ; ;...; ;
2! 3! !

n

n n

f f f f f f
a f a a a a

x x h h h h n

    
     



Setting 0x x rh  and substituting for 0 1, ,..., ,na a a we obtain the expression.

Remark 1:

Newton’s forward difference formula has the permanence property.  If we add a new set
of value  1 1,n nx y  , to the given set of values, then the forward difference table gets a new
column of (n+1)th forward difference.  Then the Newton’s Forward difference
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Interpolation Formula with the already given values will be added with a new term at the

end,       
1

0 1 01

1.....
1 !

n
n n

x x x x x x y
n h



     

to get the new interpolation formula with the

newly added value.

Remark 2:

Newton’s forward difference interpolation formula is useful for interpolation near the
beginning of a set of tabular values and for extrapolating values of y a short distance
backward, that is left  from 0y .The process of finding the value of y for some value of x
outside the given range is called extrapolation.

Example Using Newton’s forward difference interpolation formula and the following
table evaluate f(15) .

x f(x) f 2f 3f 4f

10 46
20

15

12

8

20 66 -5

-3

-4

2

30 81 -1 -3

40 93

50 101

Here x = 15, x0 = 10, x1 = 20, h = x1  x0 = 20  10 = 10, r = (x  x0)/h = (15–10)/10 = 0.5, f0 =
46, f0 = 20, 2f0 = 5, 3f0 = 2, 4f0 = 3.

Substituting these values in the Newton’s forward difference interpolation formula for
n = 4, we obtain

2 4

4 0 0 0 0

( 1) . . . ( 4 1)( 1)
( ) ( ) . . .

2! 4!
r r rr r

f x P x f r f f f
           ,

so that

(0.5)(0.5 1) (0.5)(0.5 1)(0.5 2)
(15) 46 (0.5)(20) ( 5) (2)

2! 3!
f

  
    

(0.5(0.5 1)(0.5 2)(0.5 3)
( 3)

4!
  

 

= 56.8672, correct to 4 decimal places.
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Example Find a cubic polynomial in x which takes on the values -3, 3, 11, 27, 57 and
107, when x=0, 1, 2, 3, 4 and 5 respectively.

x f(x)  2 3

0 -3
6

8

16

30

50

1 3 2

8

14

20

6

6

6

2 11

3 27

4 57

5 107

Now the required cubic polynomial (polynomial of degree 3) is obtained from Newton’s
forward difference interpolation formula

2 3

3 0 0 0 0

( 1) ( 1)( 3 1)
( ) ( )

2! 3!
r r r r r

f x P x f r f f f
           ,

where r=(x – x0)/h = (x – 0)/1 = x, so that

3

( 1) ( 1)( 3 1)
( ) ( ) 3 (6) (2) (6)

2! 3!
x x x x x

f x P x x
        

or 3 2
( ) 2 7 3f x x x x   

Example Using the Newton’s forward difference interpolation formula evaluate f(2.05)
where xxf )( , using the values:

x 2.0 2.1 2.2 2.3 2.4

x 1.414 214 1.449 138 1.483 240 1.516 575 1.549 193
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The forward difference table is

x x  2 3 4

2.0 1.414 214
0.034 924

0.034 102

0.033 335

0.032 618

2.1 1.449 138 -0.000 822

-0.000 767

-0.000 717

0.000055

0.000050
2.2 1.483 240 0.000 005

2.3 1.516 575

2.4 1.549 193

Here
h

xx
r 0 =(2.05–2.00)/0.1=0.5, so by substituting the values in Newton’s formula (for

4 degree polynomial), we get

4
(2.05) (2.05) 1.414214 (0.5)(0.034924)f P  

(0.5)(0.5 1)
( 0.000822)

2!
 

(0.5)(0.5 1)(0.5 2)
(0.000055)

3!

 


(0.5(0.5 1)(0.5 2)(0.5 3)
(0.000005)

4!

  
 = 1.431783.

Example Find the cubic polynomial which takes the following values;
(1) 24, (3) 120, (5) 336, and (7) 720   f f f f . Hence, or otherwise, obtain the value of (8)f .

We form the difference table:
2 3

1 24

96

3 120 120

216 48

5 336 168

384

7 720

  x y

Here 2h with 0 1,x we have 1 2 x p or ( 1) / 2r x  . Substituting this value of r, we
obtain

1 1 1
2 21( ) 24 (96) (120)

2 2

x x
xf x
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1 1 11 2
2 2 2

(48)
6

x x x         
    3 26 11 6.   x x x

To determine (9)f , we put 9x  in the above and obtain (9) 1320.f 

With 0 1,x  9,rx  and 2,h  we have 0 9 1
4

2
rx x

r
h

 
   . Hence

2
0 0 0

( 1)
(9) (9)

2!

r r
f p f r f f


       3

0

( 1) ( 2)

3!

r r r
f

 


4 3 4 3 2
24 4 96 120 48 1320

2 3 2

  
       



Example Using Newton’s forward difference formula, find the sum
3 3 3 31 2 3 ... .    nS n

Solution
3 3 3 3 3

1 1 2 3 ... ( 1)       nS n n

and hence
3

1 ( 1) ,   n nS S n

or
3( 1)  nS n .

it follows that
2 3 3 2

1 ( 2) ( 1) 3 9 7           n n nS S S n n n n

3 23( 1) 9 7 (3 9 7) 6 12         nS n n n n n

4 6( 1) 12 (6 12) 6      nS n n

Since 5 6 ... 0,    n n nS S S is a fourth-degree polynomial in the variable n.

Also,
3 2

1 1 11, (1 1) 8, 3 9 7 19,S S S         

3 4
1 16 12 18, 8.S S     

formula (3) gives (with 0 1f S and 1)r n 

( 1)( 2) ( 1)( 2)( 3)
1 ( 1)(8) (19) (18)

2 6
        n

n n n n n
S n
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( 1)( 2)( 3)( 4)
(6)

24
    n n n n

4 3 21 1 1
4 2 4
  n n n

2
( 1)

2
    

n n

Problem: The population of a country for various years in millions is provided.  Estimate the
population for the year 1898.

Year x: 1891 1901 1911 1921 1931

Population y: 46 66 81 93         101

Solution: Here the interval of difference among the arguments h=10. Since 1898 is at the
beginning of the table values, we use Newton’s forward difference interpolation formula for finding
the population of the year 1898.

The forward differences for the given values are as shown here.

Let x=1898.  Newton’s forward difference interpolation formula is,

      

   

    

2
0 0 0 0 1 02

3
0 1 2 03

0 1 1 0

1 1( )
2!

1 ....
3!

1.....
!

n
n n

f x y x x y x x x x y
h h

x x x x x x y
h

x x x x x x y
n h

         

        

     

x y y 2 y 3 y 4 y

1891

1901

1911

1921

1931

46

66

81

93

101

0 20y 

1 15y 

2 12y 

3 8y 

2
0 5y  

2
1 3y  

2
2 4y  

3
0 2y 

3
1 1y  

4
0 3y  
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Now, substituting the values, we get,

        

     

      

2

3

4

1 1(1898) 46 1898 1891 20 1898 1891 1898 1901 5
10 2!10

11898 1891 1898 1901 1898 1911 2
3!10

11898 1891 1898 1901 1898 1911 1898 1921 3
4!10

f       

    

    

21 91 18837(1898) 46 14 61.178
40 500 40000

f      

Example Values of x (in degrees) and sin x are given in the following table:

(in degrees) sin

15 0.2588190

20 0.3420201

25 0.4226183

30 0.5

35 0.5735764

40 0.6427876

x x

Determine the value of 0sin38 .

Solution

The difference table is
2 3 4 5sin

15 0.2588190

0.0832011

20 0.3420201 0.0026029

0.0805982 0.0006136

25 0.4226183 0.0032165 0.0000248

0.0773817 0.0005888 0.0000041

30 0.5 0.0038053 0.0000289

0.0735764 0.00

35 0.5735764
0.0043652

0.0692112

x x     












05599

40 0.6427876

As 38 is closer to 40nx  than 0 15,x  we use Newton’s backward difference formula with
40nx  and 38x  . This gives



School of Distance Education

Numerical Methods Page 82

38 40 2 0.4
5 5

nx x
r

h
      

Hence, using formula, we obtain

0.4( 0.4 1)
(38) 0.6427876 0.4(0.0692112) ( 0.0043652)

2
f

     

( 0.4)( 0.4 1)( 0.4 2)
( 0.0005599)

6
    

 

( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)
(0.0000289)

24
      



( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4)
(0.0000041)

120
        



0.6427876 0.02768448 0.00052382 0.00003583   

0.00000120

0.6156614

Example Find the missing term in the following table:

( )

0 1

1 3

2 9

3

4 81

x y f x



Explain why the result differs from 33 27?

Since four points are given, the given data can be approximated by a third degree
polynomial in x . Hence 4

0 0f  . Substituting 1E   we get, 4
0( 1) 0,E f  which on

simplification yields
4 3 2

0 0 0 0 04 6 4 0    E f E f E f Ef f .

Since 0
r

rE f f the above equation becomes

4 3 2 1 04 6 4 0f f f f f    

Substituting for 0 1 2, ,f f f and 4f in the above, we obtain

3 31f 
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By inspection it can be seen that the tabulated function is 3x and the exact value of (3)f is
27. The error is due to the fact that the exponential function 3x is approximated by means
of a polynomial in x of degree 3.

ExampleThe table below gives the values of tan x for 0.10 0.30x 

t a n

0 . 1 0 0 . 1 0 0 3

0 . 1 5 0 . 1 5 1 1

0 . 2 0 0 . 2 0 2 7

0 . 2 5 0 . 2 5 5 3

0 . 3 0 0 . 3 0 9 3

x y x

Find: (a) tan 0.12 (b) tan 0.26 . (c) tan 0.40 (d) tan 0.50

The table difference is

2 3 4( )

0 .1 0 0 .1 0 0 3

0 .0 5 0 8

0 .1 5 0 .1 5 1 1 0 .0 0 0 8

0 .0 5 1 6 0 .0 0 0 2

0 .2 0 0 .2 0 2 7 0 .0 0 1 0 0 .0 0 0 2

0 .0 5 2 6 0 .0 0 0 4

0 .2 5 0 .2 5 5 3 0 .0 0 1 4

0 .0 5 4 0

0 .3 0 0 .3 0 9 3

x y f x    

a)  To find tan (0.12), we have 0.4r  Hence Newton’s forward difference interpolation
formula gives

0.4(0.4 1)
tan (0.12) 0.1003 0.4(0.0508) (0.0008)

2
  

0.4(0.4 1)(0.4 2)
(0.0002)

6
 

0.4(0.4 1)(0.4 2)(0.4 3)
(0.0002)

24
  

0.1205

b) To find tan (0.26), we use Newton’s backward difference interpolation formula
with
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nx x
r

n




0.26 03

0.05




0.8 

which gives

0.8( 0.8 1)
tan (0.26) 0.3093 0.8(0.0540) (0.0014)

2
    

0.8( 0.8 1)( 0.8 2)
(0.0004)

6
    

0.8( 0.8 1)( 0.8 2)( 0.8 3
(0.0002)

24
       0.2662

Proceeding as in the case (i) above, we obtain

(c) tan 0.40 0.4241, and

(d) tan 0.50 0.5543

The actual values, correct to four decimal places, of tan (0.12), tan(0.26) are respectively
0.1206 and 0.2660. Comparison of the computed and actual values shows that in the first
two cases (i.e., of interpolation) the results obtained are fairly accurate whereas in the last-
two cases (i.e., of extrapolation) the errors are quite considerable. The example therefore
demonstrates the important results that if a tabulated function is other than a polynomial,
then extrapolation very far from the table limits would be dangerous-although
interpolation can be carried out very accurately.

Exercises

1. Using the difference table in exercise 1, compute cos0.75 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value 0.731 69.

2. Using the difference table in exercise 1, compute cos0.28 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value

3. Using the values given in the table, find cos0.28 (in radian measure) by linear interpolation and
by quadratic interpolation and compare the results with the value 0.961 06 (exact to 5D).
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x f(x)=cosx
First
difference

Second
difference

0.0 1.000 00
-0.019 93

-0.059 01

-0.095 72

-0.128 63

-0.156 41

-0.03908

-0.03671

-0.03291

-0.02778

0.2 0.980 07

0.4 0.921 06

0.6 0.825 34

0.8 0.696 71

1.0 0.540 30

4. Find Lagrangian interpolation polynomial for the   function f having
(4) 1, (6) 3, (8) 8, (10) 16f f f f    . Also calculate (7)f .

5. The sales in a particular shop for the last ten years is given in the table:

Year 1996 1998 2000 2002 2004

Sales (in
lakhs)

40
43 48 52 57

Estimate the sales for the year 2001 using Newton’s backward difference interpolating formula.

6. Find (3)f , using Lagrangian interpolation formula  for the function f having

(1) 2, (2) 11, (4) 77f f f   .

7. Find the cubic polynomial which takes the following values:

x 0 1 2 3

( )f x 1 2 1 10

8. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx 2

0.
2

0.198 67 -0.007 92

0.
4

0.389 42 -0.015 53

.6 0.564 64 -0.022 50
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9.  The following table gives the distances in nautical miles of the visible horizon for the given
heights in feet above the earth’s surface:

x =height     : 100 150 200 250 300 350 400

y = distance : 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same data as in exercise 9, find the value of y when x = 410ft.
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6

NEWTON’ S AND LAGRANGIAN FORMULAE - PART I

Newton’s Backward Difference Interpolation Formula

Newton’s backward difference interpolation formula is

2 ( 1). . .( 1)( 1)
( ) ( ) . . .

2! !
n

n n n n n

r r r nr r
f x P x f r f f f

n
          

where , , 0n

n

x x
x x rh r n r

h


      .

Derivation of Newton’s Backward Formulae for Interpolation

Given the set of ( 1)n values, viz., 0 0 1 1 2 2( , ), ( , ), ( , ),..., ( , )n nx f x f x f x f

of x and f, it is required to find ( )np x , a polynomial of the nth degree such that ( )f x and
( )np x agree at the tabulated points. Let the values of x be equidistant, i.e., let

0 , 0,1,2,...,ix x rh r n  

Since ( )np x is a polynomial of the nth degree, it may be written as

0 1 2 1

3 1 2

1 1

( ) ( ) ( )( )

( )( )( ) ...

( )( )...( )

n n n n

n n n

n n n

p x a a x x a x x x x

a x x x x x x

a x x x x x x



 



     

    

   

Imposing the condition that ( )f x and ( )np x should agree at the set of  tabulated points
we obtain (after some simplification) the above formula.

Remark 1:

If the values of the kth forward/backward differences are same, then (k+1)th or higher differences
are zero.  Hence the given data represents a kth degree polynomial.

Remark 2:

The Backward difference Interpolation Formula is commonly used for interpolation near the end of
a set of tabular values and for extrapolating values of y a short distance forward that is right from ny

.

Problem: For the following table of values, estimate f(7.5), using Newton’s backward difference
interpolation formula.
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x f f 2f 3f 4f

1 1
7

19

37

61

91

127

169

2 8 12

18

24

30

36

42

6

6

6

6

6

3 27 0

4 64 0

5 125 0

6 216 0

7 343

8 512

Solution:

Since the fourth and higher order differences are 0, the Newton’s backward interpolation
formula is

   

     

2

3

1
( )

2!
1 2 1 2 ....( 1)

....
3! !

n n n n

n
n n

u u
f x uh y u y y

u u u u u u u n
y y

n


       

     
          

,

Where, 7.5 8.0 0.5
1

n
x x

u
h

     and

169ny  , 2 42ny  , 3 6ny  and 4 0ny  .

Hence,

( 0.5)( 0.5 1) ( 0.5)( 0.5 1)( 0.5 2)
(7.5) 512 ( 0.5)(169) (42) 6

2! 3!
f

       
    

= 421.875.

Example For the following table of values, estimate f(7.5), using Newton’s backward
difference interpolation formula.
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x f f 2f 3f 4f

1 1
7

19

37

61

91

127

169

2 8 12

18

24

30

36

42

6

6

6

6

6

3 27 0

4 64 0

5 125 0

6 216 0

7 343

8 512

Since the fourth and higher order differences are 0, the Newton’s backward
interpolation formula is

2 3( 1) ( 1)( 2)
( ) ( )

2! 3!n n n n n

r r r r r
f x P x f r f f f

          , where

7.5 8.0 0.5
1

n
x x

r
h

     and fn = 169, 2fn = 42, 3fn = 6.  Hence

6
!3

)25.0)(15.0)(5.0(
)42(

!2

)15.0)(5.0(
)169)(5.0(512)5.7(





f

= 421.875

Gauss’ Central Difference Formulae

We consider two central difference formulae.

(i) Gauss’s forward formula

We consider the following table in which the central coordinate is taken for convenience
as 0y corresponding to 0x x

Gauss’s Forward formula is
2 3 4

0 1 0 2 1 3 1 4 2 ...,pf f G f G f G f G f           

where 1 2, ,...G G are given by
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1G p

2

( 1)
2!

p p
G



3

( 1) ( 1)
,

3!
p p p

G
 

4

( 1) ( 1)( 2)
,

4!
p p p p

G
  

Table: Gauss’ Forward Formula
2 3 4 5 6

3 3

3

2
2 2 3

3
2 3

2 4
1 1 2 3

53
31 2

2 4 6
0 0 1 2 3

3 5
0 1 2

2 4
1 1 0 1

3
01

2
2 2 1

2

3 3

x y

x y

y

x y y

y y

x y y y

yy y

x y y y y

y y y

x y y y

yy

x y y

y

x y

 



  

 

   

 

  

 



     




 

 

 
  

  
 






Derivation of Gauss’s forward interpolation formula:

We have Newton’s forward interpolation formula as,

   

     

2
0 0 0 0

3
0 0

1
( )

2!
1 2 1 2 ....( 1)

....
3! !

n

u u
f x uh y u y y

u u u u u u u n
y y

n


       

     
          

where,  0x x
u

h




we have,

 2 2 2 2 3
0 1 1 1 11y Ey y y y             

 3 3 3 3 4
0 1 1 1 11y Ey y y y              ,
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In similar way, 4 4 5 4 4 5
0 1 1 1 2 2;y y y y y y              and so on.

Substituting these values in Newton’s forward interpolation formula, we get,

   

     

2 3
0 0 0 1 1

3 4 4 5
1 1 1 1

1
( )

2!
1 2 1 2 ( 3)

. ...
3! 4!

u u
f x uh y u y y y

u u u u u u u
y y y y

 

   


         

    
              

Solving the above expression, we get,

  2 1 3 1 4 2 5
0 0 0 2 1 3 1 4 2 5 2( ) ....u u u uf x uh y u y C y C y C y C y  

                             

This formula is known as Gauss’s forward interpolation formula.

(ii) Gauss Backward Formula

Gauss backward formula is

4
0 1 1 2 1 3 2 4 2 ...pf f G f G f G f G f   

            

where 1 2, ,...G G  are given by

1 ,G p 

2

( 1)
,

2!
p p

G
 

3

( 1) ( 1)
,

3!
p p p

G
  

4

( 2)( 1) ( 1)
,

4!
p p p p

G
   

Example From the following table, find the value of 1.17e using Gauss’ forward formula.

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

xe 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693

Solution

Here we take 0 1.15, 0.05x h  .

Also, 0px x ph 

1.17 1.15 (0.05),p 
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which gives

0.02 1
0.05 4

p  

The difference table is given below:
2 3 4

1 .0 0 2 .7 1 8 3

0 .1 3 9 4

1 .0 5 2 .8 5 7 7 0 .0 0 7 1

0 .1 4 6 5 0 .0 0 0 4

1 .1 0 3 .0 0 4 2 0 .0 0 7 5 0

0 .1 5 4 0 0 .0 0 0 4

1 .1 5 3 .1 5 8 2 0 .0 0 7 9 0

0 .1 6 1 9 0 .0 0 0 4

1 .2 0 3 .3 2 0 1 0 .0 0 8 3 0 .0 0 0 1

0 .1 7 0 2 0 .0 0 0 5

1 .2 5 3 .4 9 0 3 0 .0 0 8 8

0 .1 7 9 0

1 .3 0 3 .6 6 9 3

xx e    

Using  Gauss’s forward difference formula we obtain

1.17 (2 / 5)(2 / 5 1)23.1582 (0.1619) (0.0079)
5 2

e
  

(2 / 5 1)(2 / 5)(2 / 5 1)
(0.0004)

6
 

3.1582 0.0648 0.0009   3.2221 .

Derivation of Gauss’s backward interpolation formula:

Starting the substitution in Newton’s forward interpolation formula with
  2

0 1 1 1 11y Ey y y y              and the substitutions done in the case of Gauss’s
forward interpolation formula 2 2 3

0 1 1y y y      ; 3 3 4
0 1 1y y y      etc., we obtain

 

     

2 2 3
0 0 1 1 1 1

3 4 4 5
1 1 1 1

1
( )

2!
1 2 1 2 ( 3)

. ...
3! 4!

u u
f x uh y u y y y y

u u u u u u u
y y y y

   

   


               

    
              

Solving the expression, we get,

  1 2 1 3 2 4 2 5
0 0 1 2 1 3 2 4 2 5 3( ) ....u u u uf x uh y u y C y C y C y C y   

                               .
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This is known as Gauss’s backward interpolation formula.

Central difference interpolation formulas:

Newton’s forward and backward interpolation formula are applicable for
interpolation near the beginning and near the end of the tabulated arguments,
respectively. Now in this session we discuss interpolation near the centre of the tabulated
arguments.   For this purpose we use central difference interpolation formula.  Gauss’s
forward interpolation formula, Gauss’s backward interpolation formula, Sterling’s
formula, Bessel’s formula, Laplace-Everett’s formula are some of the various central
difference interpolation formulas.

Let us consider some equidistant arguments with interval of difference, say; h and
corresponding function values are given.  Let 0x , be the central point among the
arguments.

For interpolation at the point x near the central value, let 0 0( )f x y , 0 1( )f x h y  ,

0 1( )f x h y  , 0 2( 2 )f x h y  , 0 2( 2 )f x h y  , 0 3( 3 )f x h y  , 0 3( 3 )f x h y  and so on.

For the values 3 2 1 0 1 2 3, , , , , ,y y y y y y y   the forward difference table is as follows:

x y y 2 y 3 y 4 y 5 y 6 y

0 3x h

0 2x h

0x h

0x

0x h

0 2x h

0 3x h

3y

2y

1y

0y

1y

2y

3y

3y

2y

1y

0y

1y

2y

2
3y

2
2y

2
1y

2
0y

2
1y

3
3y

3
2y

3
1y

3
0y

4
3y

4
2y

4
1y

5
3y

5
2y

6
3y
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The above table can also be written in terms of central differences using the operator  as
follows:

x y y 2 y 3 y 4 y 5 y 6 y

0 3x h

0 2x h

0x h

0x

0x h

0 2x h

0 3x h

3y

2y

1y

0y

1y

2y

3y

5
2

y 

3
2

y 

1
2

y 

1
2

y

3
2

y

5
2

y

2
2y 

2
1y 

2
0y

2
1y

2
2y

3
3

2

y 

3
1

2

y 

3
1
2

y

3
3
2

y

4
1y 

4
0y

4
1y

5
1

2

y 

5
1
2

y

6
0y

The difference given in both the tables are same can be established as follows:

We have
1
2E


  .  Then,
1
2

5 5 5 1 3
2 2 2 2

y E y y y


   

           
   

;

   
21

2 2 22
2 2 2 1 3y E y y y



    
       
 

;

31
3 32

3 3 3 3
2 2 2

y E y y


  

       
   

and so on.

We use the central differences as found in the first table for interpolation near the central
value.  Among the various formulae for Central Difference Interpolation, first we consider Gauss’s
forward interpolation formula.

INTERPOLATION - Arbitrarily Spaced x values

In the previous sections we have discussed interpolations when the x-values are
equally spaced.  These interpolation formulae cannot be used when the x-values are not
equally spaced.  In the following sections, we consider formulae that can be used even if
the x-values are not equally spaced.
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Newton’s Divided Difference Interpolation Formula

If x0, x1, . . . , xn are arbitrarily spaced (i.e. if the difference between x0 and x1, x1 and x2

etc. may not be equal), then the polynomial of degree n through 0 0 1 1( , ), ( , ), ,x f x f  ( , ),n nx f

where ( ),j jf f x is given by the Newton’s divided difference interpolation formula (also
known as Newton’s general interpolation formula) given by

           ...,,, 210101000  xxxfxxxxxxfxxfxf

     nn xxfxxxx ,...,... 010  ,

with  the remainder term after ( 1)n  terms is given by

0 1 0 1( ) ( ) ( ) [ , , , ]n nx x x x x x f x x x x   

where  10 , xxf ,  210 ,, xxxf , are the divided differences given by

     
01

01
10 ,

xx

xfxf
xxf




 ,

     
02

1021
210

,,
,,

xx

xxfxxf
xxxf




 ,

     
0

101
0

,...,,...,
,...,

xx

xxfxxf
xxf

k

kk
k 


 

Also, 0 1[ , , , , ]nf x x x x 
1 0

0

[ , , ] ( , , ]p n nf x x x f x x x

x x







Note If x0, x1, . . . , xn are equally spaced, i.e. when 0 ,kx x kh  then  
k

k

k
hk

f
xxf

!
,..., 0

0



and Newton’s divided difference interpolation formula takes the form of Newton’s
forward difference interpolation formula.

Derivation of the formula:

For a function  y f x , let us given the set of ( 1)n points,

           0 0 1 1 2 2, , , , , ,..., ,n nx f x x f x x f x x f x . The values 1 2, ,..., nx x x of the independent
variable x are called the arguments and the corresponding values

1 1 2 2( ), ( ),..., ( )n ny f x y f x y f x   of the depending variable y are called entries. We define
the first divided difference of  f x between two consecutive arguments 1i ix and x  as,

     1
1

1

, 0,1,..., 1i i
i i

i i

f x f x
f x x for i n

x x
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The second divided difference between three consecutive arguments 1 2,i i ix x and x  is
given by,

     1 2 1
1 2

2

, ,
, , 0,1,..., 2i i i i

i i i
i i

f x x f x x
f x x x for i n

x x
  

 



  



In general the nth divided difference (or divided difference of order n) between
1 2, ,..., nx x x is,

     1 2 0 1 1
0 1

0

, ,..., , ,...,
, ,..., n n

n
n

f x x x f x x x
f x x x

x x





Hence, in particular, the first divided difference between 0 1x and x is,

     1 0
0 1

1 0

,
f x f x

f x x
x x





The second divided difference between three consecutive arguments 0 1 2,x x and x is

     1 2 0 1
0 1 2

2 0

, ,
, ,

f x x f x x
f x x x

x x





       2 1 1 0

2 0 2 1 1 0

1 f x f x f x f x
x x x x x x

   
     

 
  

 
     

 
  

2 1 0

2 0 2 1 2 0 2 1 1 0 2 0 1 0

1 1f x f x f x

x x x x x x x x x x x x x x

 
           

 
  

 
  

 
  

2 1 0

2 0 2 1 2 1 1 0 2 0 1 0

f x f x f x

x x x x x x x x x x x x
  

     

   
  

 
  

 
  

0 1 2
0 1 2

0 2 0 1 1 0 1 2 2 0 2 1

, ,
f x f x f x

f x x x
x x x x x x x x x x x x

   
     

As above, the nth divided difference between 1 2, ,..., nx x x ,  0 1, ,..., nf x x x is expressed
as

   
    

 
    

 
    

0 1
0 1

0 1 0 2 0 1 0 1 2 1

0 1 1

, ,..., ...
... ...

...

n
n n

n

n n n n

f x f x
f x x x

x x x x x x x x x x x x

f x

x x x x x x 
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Properties of divided difference:

1. The divided differences are symmetrical about their arguments.

We have,      1 0
0 1

1 0

,
f x f x

f x x
x x





     0 1
1 0

0 1

,
f x f x

f x x
x x


 


   0 1 1 0, ,f x x f x x  . Hence, the order of the arguments has no importance.

When we are considering the nth divided difference also, we can write,  0 1, ,..., nf x x x as

   
    

 
    

 
    

0 1
0 1

0 1 0 2 0 1 0 1 2 1 0 1 1

, ,..., ...
... ... ...

n
n

n n n n n n

f x f x f x
f x x x

x x x x x x x x x x x x x x x x x x 
   

        

From this expression it is clear that, whatever be the order of the arguments, the expression is
same.

Hence the divided differences are symmetrical about their arguments.

2. Divided difference operator is linear.

For example, consider two polynomials   ( )f x and g x .  Let

 ( ) ( )h x af x b g x  ,

where ‘a’ and ‘b’ are any two real constants. The first divided difference of ( )h x corresponding to
the arguments 0 1x and x is,

         1 0 1 1 0 0
0 1

1 0 1 0

( ) ( )
,

h x h x af x b g x af x b g x
h x x

x x x x
   

 
 

     1 0 1 0

1 0

( ) ( )a f x f x b g x g x

x x

     


   1 0 1 0

1 0 1 0

( ) ( )f x f x g x g x
a b

x x x x
 

 
 

   0 1 0 1, ,a f x x bg x x 

3. The nth divided difference of a polynomial of degree n is its leading coefficient.

Consider   nf x x , where n is a positive number

Now,      1 0 1 0
0 1

1 0 1 0

,
n nf x f x x x

f x x
x x x x
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1 2 3 2 1
1 1 0 1 0 0...n n n nx x x x x x       

This is a polynomial of degree (n-1) and symmetric in arguments 1ox and x with
leading coefficient 1.

The second divided difference,

     1 2 0 1
0 1 2

2 0

, ,
, ,

f x x f x x
f x x x

x x





   1 2 1 1 2 1
2 2 1 1 0 0 1 1

2 0

... ...n n n n n nx x x x x x x x

x x

           



, which

can be expressed as a polynomial of degree n-2, is symmetric about 0 1 2,x x and x with
leading coefficient 1.

Proceeding like this, we get the nth divided difference of   nf x x is 1.

Now we consider a general polynomial of degree n as,

  1 2
0 1 2 ...n n n

ng x a x a x a x a     

Since the divided difference operator is linear, we get nth divided difference of  g x as 0a , which is

the leading coefficient of  g x .

Example Using the following table find ( )f x as a polynomial in x




( )

1 3

0 6

3 39

6 822

7 1611

x f x

The divided difference table is

x ( )f x 1[ , ]k kf x x 

1

0

3

6

7

3

6

39

822

1611

9

15

261

789

6

41

132

5

13
1
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Hence

( ) 3 ( 1) ( 9) ( 1) (6) ( 1) ( 3)(5)f x x x x x x x        

( 1) ( 3)( 6)x x x x   

4 3 23 5 6.x x x   

Example Find the interpolating polynomial by Newton’s divided difference formula for
the following table and then calculate f(2.1).

x 0 1 2 4

f(x) 1 1 2 5

.

x f(x)

First
divided

difference

f[xk -1, xk]

Second
divided

difference

f[xk -1, xk, xk+1]

Third divided

difference

f[xk -1, xk, xk+1, xk+2]

0

1

2

4

1

1

2

5

0 1( , ) 0f x x 

1 2( , ) 1f x x 

2 3( , ) 3/ 2f x x 

1/ 2

1/ 6

1

2


Now substituting the values in the formula, we get
















12

1
)2)(1)(0(

2

1
)1)(0()0)(0(1)( xxxxxxxf

3 21 3 2 1
12 4 3

x x x    

Substituting x = 2.1 in the above polynomial, we get f(2.1)=2.135,



School of Distance Education

Numerical Methods Page 100

7

NEWTON’ S AND LAGRANGIAN FORMULAE - PART II

Problem: Obtain Newton’s divided difference interpolating polynomial satisfied by
         4,1245 , 1,33 , 0,5 , 2,9 5,1335and  .

Solution: Newton’s divided difference interpolating polynomial is given by,

          
     

      

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

0 1 1 0 1

( ) , , ,

, , , ....

..... , ,...,n n

f x f x x x f x x x x x x f x x x

x x x x x x f x x x x

x x x x x x f x x x

     

     

  

Here x values are gives as, -4, -1, 0, 2 and 9.  Corresponding f(x) values are
1245,33,5,9 and 1335.

Hence the divided difference as shown in the following table:

X First divided
differences

Second divided
differences

Third
divided
differences

Fourth
divided
differences

-4

-404

-1 94

-28 -14

0 10 3

2                                                            13

2                                                            88

442

5

Given  0 1245f x  .   From the table, we can observe that

   
   

0 1 0 1 2

0 1 2 3 0 1 2 3 4

, 404; , , 94;

, , , 14 , , , , 3

f x x f x x x

f x x x x and f x x x x x
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Hence the interpolating polynomial is,

    
        

( ) 1245 ( 4) ( 404) ( 4) ( 1) 94

( 4) ( 1) 0 14 ( 4) ( 1) 0 2 3

f x x x x

x x x x x x x

           

              

    
        

( ) 1245 404 4 94 4 1

14 4 1 0 3 4 1 0 2

f x x x x

x x x x x x x

      

        

On simplification, we get,

4 3 2( ) 3 5 6 14 5f x x x x x     .

Newton’s Interpolation formula with divided differences

Consider two arguments 0x and x .  The first divided difference between 0x and x is,

         0 0
0

0 0

,
f x f x f x f x

f x x
x x x x
 

 
 

       0 0 0,f x f x x x f x x    ---- (1)

Consider 0 1,x x and x . Then,

         0 1 0 0 0 1
0 1

1 1

, , , ,
, ,

f x x f x x f x x f x x
f x x x

x x x x
 

 
 

       0 0 1 1 0 1, , , ,f x x f x x x x f x x x   

Put it in (1), we get,

           0 0 0 1 1 0 1, , ,f x f x x x f x x x x f x x x       

That is,

            0 0 0 1 0 1 0 1, , ,f x f x x x f x x x x x x f x x x      --- (2)

Again, for 0 1 2, ,x x x and x

         0 1 0 1 2 0 1 2 0 1
0 1 2

2 2

, , , , , , , ,
, , ,

f x x x f x x x f x x x f x x x
f x x x x

x x x x
 

  
 

       0 1 2 0 1 2 0 1 2, , , , , , ,f x x x x x f x x x x f x x x   
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Hence (2) implies,

                0 0 0 1 0 1 2 0 1 2 0 1 2, , , , , ,f x f x x x f x x x x x x x x f x x x x f x x x          

                0 0 0 1 0 1 0 1 2 0 1 2 0 1 2, , , , , ,f x x x f x x x x x x f x x x x x x x x x f x x x x         

Proceeding like this, we obtain for  f x as,

          
     

      

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

0 1 0 1

( ) , , ,

, , , ....

..... , , ,...,n n

f x f x x x f x x x x x x f x x x

x x x x x x f x x x x

x x x x x x f x x x x

     

     

  

If f(x) is a polynomial of degree n, then  0 1, , ,..., 0nf x x x x  , because it is the (n+1)th
difference.

Hence we get,

          
     

      

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

0 1 1 0 1

( ) , , ,

, , , ....

..... , ,...,n n

f x f x x x f x x x x x x f x x x

x x x x x x f x x x x

x x x x x x f x x x

     

     

  

This is known as Newton’s interpolation formula with divided difference.

Note:

1.  For the given arguments 1 2, ,..., nx x x , if all the kth ,  (k<n) divided differences are equal,
the k+1th divided differences are zeroes.    Then Newton’s interpolation formula gives a
polynomial of degree k for the given data.

2.  Newton’s divided difference interpolation formula possesses the permanence property.
Apart from the given arguments 1 2, ,..., nx x x along with the corresponding function values,
suppose that on a later time a new argument 1nx  with corresponding entry 1( )nf x  are
given.  The new set of data values can be represented by a polynomial of degree (n+1).  To
obtain the required polynomial we add the term       0 1 0 1 1..... , ,..., ,n n nx x x x x x f x x x x    to
the previously obtained nth degree polynomial.

Problem 2: The following table gives the relation between steam pressure and
temperature.  Find the pressure at temperature 3750.

Temp. :      3610 3670 3780 3870 3990

Pressure:    154.9    167.9      191         212.5      244.2
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Solution:

To find the pressure at temperature 3750, it is to establish the relation giving
pressure in terms of temperature.  Let  us consider temperature as x values and pressure a
s corresponding f(x) values.

The given x values are 3610, 3670, 3780, 3870 and 3990.  Corresponding f(x) values
are 154.9, 167.9, 191,212.5 and 244.2.

f(x)  is obtained by Newton’s divided difference interpolating polynomial as,

          
     

      

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

0 1 0 1

( ) , , ,

, , , ....

..... , , ,...,n n

f x f x x x f x x x x x x f x x x

x x x x x x f x x x x

x x x x x x f x x x x

     

     

  

Given   0
0 (361 ) 154.9f x f  .   The divided differences for the given points are as

shown in the table.

X First divided
differences

Second divided
differences

Third
divided
differences

Fourth
divided
differences

361
2.01666

367 0.00971
2.18181 0.0000246

378 0.01035                                      0.00000074
2.38888                                              0.0000528

387                                                  0.01204
2.64166

399

From the table, we can observe that

   
   

0 1 0 1 2

0 1 2 3 0 1 2 3 4

, 2.01666; , , 0.00971;

, , , 0.0000246 , , , , 0.00000074

f x x f x x x

f x x x x and f x x x x x

 

 

Hence,

    
        

( ) 154.9 361 2.01666 361 367 0.00971

361 367 378 0.0000246 361 367 378 387 0.0000074

f x x x x

x x x x x x x

        

         

Substituting x=375 in the above expression gives,  f(375)= 184.21548.



School of Distance Education

Numerical Methods Page 104

Problem 3: Obtain Newton’s divided difference interpolating polynomial satisfying the
following values:         x: 1 3 4 5 7 10

f(x): 3 31 69 131 351 1011

Also find f(4.5), f(8)  and the second derivative of f(x) at x=3.2.

Solution:

To obtain the Newton’s divided difference interpolating polynomial f(x), we need
the divided difference using the given values.

It is calculated and listed in the following table

X First divided
differences

Second divided
differences

Third
divided
differences

Fourth
divided
differences

1
14

3 8
38 1

4 12                                                   0
62                                                             1

5                                                          16                                                   0
110                                                            1

7                                                           22
220

9

Since the fourth divided differences are zeroes, f(x) is of degree 3 and it is obtained as,

          
     

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

( ) , , ,

, , ,

f x f x x x f x x x x x x f x x x

x x x x x x f x x x x

     

   

       0 0 1 0 1 2 0 1 2 3(1) 3; , 14; , , 8 , , , 1f x f f x x f x x x and f x x x x    

        ( ) 3 1 14 1 3 8 1 3 4 1f x x x x x x x             

That is,
3( ) 1f x x x  

Hence,  3(4.5) 4.5 4.5 1 96.625f     and  3(8) 8 8 1 521f    

Second derivative of ( ) 6f x is x .  Now second derivative of f(x) at x=3.2 is 6 3.2 19.2 
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Lagrangian Interpolation

Another method of interpolation in the case of arbitrarily spaced pivotal values x0, x1, . . .
, xn is Lagrangian interpolation.  This method is based on Lagrange’s n+1 point
interpolation formula given by

     
 




n

k
k

kk

k
n f

xl

xl
xLxf

0
,

where

0 1 2
( ) ( )( ) . . . . ( )

n
l x x x x x x x    ,

0 1 1( ) ( ) ( )( ) ( )k k k nl x x x x x x x x x       ,        0 < k < n.

0 1 1
( ) ( )( ) . . ..( )

n n
l x x x x x x x


   

Remark: ( ) .
k k k

L x f For, ( ) 0, ,
k j

l x when j k  so that for
k

x x , the sum on the RHS of the

formula reduces to the single term
k

f , which indicates that f and
k

L agrees at n+1

tabulated points.

Derivation of the formula:

Given the set of ( 1)n points,            0 0 1 1 2 2, , , , , ,..., ,n nx f x x f x x f x x f x of x and f(x), it is

required to fit the unique polynomial ( )np x of maximum degree n, such that ( )f x and ( )np x agree

at the given set of points. The values 0 1, ,..., nx x x may not be equidistant.

Since the interpolating polynomial must use all the ordinates      0 1, ,..., nf x f x f x , it can be

written as a linear combination of these ordinates. That is, we can write the polynomial as

     0 0 1 1( ) ( ) ( ) ( ) .n n np x l x f x l x f x l x f x   

where   ( ), 0,1,2,...,i if x and l x for i n are polynomials of degree n.

This polynomial fits the given data exactly.

At 0x x , as ( )np x and ( )f x coincide, we get,

     0 0 0 0 0 1 0 1 0( ) ( ) ( ) ( ) ... ( )n n nf x p x l x f x l x f x l x f x    

This equation is satisfied only when 0 0( ) 1l x  and 0( ) 0, 0il x i 
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At a general point ix x , we get,

     0 0 1 1( ) ( ) ( ) ( ) ... ( )i n i i i n i nf x p x l x f x l x f x l x f x    

This equation is satisfied only when ( ) 1i il x  and ( ) 0,j il x i j 

Therefore, ( )il x , which are polynomials of degree n, satisfy the conditions

Since, ( ) 0il x  at 0 1 1 1, ,..., , ,...,i i nx x x x x x  , we know that

         0 1 1 1, ,..., , ,...,i i nx x x x x x x x x x      are factors of ( )il x .  The product of these factors is a

polynomial of degree n. Therefore, we can write

       0 1 1 1( ) ... ...i i i nl x C x x x x x x x x x x       , where C is a constant.

Now, since ( ) 1i il x  , we get

       0 1 1 1( ) 1 ... ...i i i i i i i i i nl x C x x x x x x x x x x       

Hence,
       0 1 1 1

1
... ...i i i i i i i n

C
x x x x x x x x x x 


    

Therefore,

       
       

0 1 1 1

0 1 1 1

... ...
( )

... ...
i i n

i
i i i i i i i n

x x x x x x x x x x
l x

x x x x x x x x x x
 

 

    


    

Now the polynomial

     0 0 1 1( ) ( ) ( ) ... ( )n n np x l x f x l x f x l x f x    ,

with
       
       

0 1 1 1

0 1 1 1

... ...
( )

... ...
i i n

i
i i i i i i i n

x x x x x x x x x x
l x

x x x x x x x x x x
 

 

    


    
is called Lagrange interpolating

polynomial and ( )il x are called Lagrange fundamental polynomials.

To fit a polynomial of degree 1, we require at least two points.  Let      0 0 1 1, , ,x f x x f x

are the points.  Then the Lagrange polynomial of degree one or a straight line for the given data is,

   1 0 0 1 1( ) ( ) ( )p x l x f x l x f x  , where,
 
 

1
0

0 1

( )
x x

l x
x x





and

 
 

0
1

1 0

( )
x x

l x
x x





.

Let         0 0 1 1 2 2, , , , ,x f x x f x x f x are the given three points.  Then the Lagrange

polynomial of degree two for the data is given by

1,
( )

0,i j

i j
l x

i j
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     2 0 0 1 1 2 2( ) ( ) ( ) ( )p x l x f x l x f x l x f x   , where,

  
  

1 2
0

0 1 0 2

( )
x x x x

l x
x x x x

 


 
,

  
  

0 2
1

1 0 1 2

( )
x x x x

l x
x x x x

 


 
and

  
  

0 1
2

2 0 2 1

( )
x x x x

l x
x x x x

 


 
.

For the four points            0 0 1 1 2 2 3 3, , , , , , ,x f x x f x x f x x f x , the Lagrange polynomial of

degree three is given by,

       3 0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )p x l x f x l x f x l x f x l x f x    , where,
   
   

1 2 3
0

0 1 0 2 0 3

( )
x x x x x x

l x
x x x x x x

  


  

   
   

0 2 3
1

1 0 1 2 1 3

( )
x x x x x x

l x
x x x x x x

  


  
,

   
   

0 1 3
2

2 0 2 1 2 3

( )
x x x x x x

l x
x x x x x x

  


  
and

   
   

0 1 2
3

3 0 3 1 3 2

( )
x x x x x x

l x
x x x x x x

  


  
and so on.

Problem : Given f(2) = 9, and f(6) = 17.  Find an approximate value for f(5) by the method of
Lagrange’s interpolation.

Solution:

For the given two points (2,9) and (6,17), the Lagrangian polynomial of degree 1  is

   1 0 0 1 1( ) ( ) ( )p x l x f x l x f x  , where,
 
 

1
0

0 1

( )
x x

l x
x x





and

 
 

0
1

1 0

( )
x x

l x
x x





.  That is,

 
   

 
   

1 0
1 0 1

0 1 1 0

( )
x x x x

p x f x f x
x x x x

 
 

 

 
 

 
 1

6 2
( ) 9 17

2 6 6 2

x x
p x

 
    

 

Hence,

 
 

 
 1

5 6 5 2
(5) (5) 9 17

2 6 6 2

1 39 17
4 4

15

f P
 

    
 

   



Problem: Use Lagrange’s formula, to find the quadratic polynomial that takes the values

: 0 1 3

( ) : 0 1 0

x

f x
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For the given three points (0,0) , (1,1) and (3,0), the quadratic  polynomial by Lagrange’s

interpolation is
  
    

  
    

  
    

1 2 0 2 0 1
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )
x x x x x x x x x x x x

p x f x f x f x
x x x x x x x x x x x x

     
  

     

We are considering the given x values 0,1, and 3 as 0 1 2,x x and x .  Given,  0 2( )f x and f x

are zeroes.  Hence the polynomial is,

  
    

0 2
2 1

1 0 1 2

( )
x x x x

p x f x
x x x x

 


 

Then,

  
  2

0 3
( ) 1

1 0 1 3

x x
p x

 
 
 

   2
2

3 1( ) 1 3
2 2

x x
p x x x


    


.

Example Find Lagrange’s interpolation polynomial fitting the points f(1) = 3, f(3) = 0,
f(4) = 30, f(6) = 132. Hence find f(5).

Here 4  tabulated points are given.  Hence we need Lagrange’s polynomial for (n + = 3
+ 1 = 4 points) and is given by

3

3
0

( )
( ) ( )

( )
k

k
k k k

l x
f x L x f

l x

  .

Now substituting the values, we obtain

  )0(
)63)(43)(13(

)6)(4)(1(
)3(

)61)(41)(31(

)6)(4)(3(
3 








xxxxxx

xL

)132(
)46)(46)(16(

)4)(3)(1(
)30(

)64)(34)(14(

)6)(3)(1(









xxxxxx

3 21 ( 27 92 60),
2

x x x     on simplification.

Now  3 2

3

1(5) (5) (5) 27(5) 92(5) 60 75.
2

f L      

Example Find ln 9.2 with 3n  , using Lagrange’s interpolation formula with the given
table:

x 9.0 9.5 10.0 11.0

ln x 2.197 2.251 2.302 2.397
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22 29 59 90

 
3

3
0

(9.2)
ln(9.2) (9.2) 9.2

( )
k

k
k k k

l
f L f

l x

   .

(9.2 9.5)(9.2 10.0)(9.2 11.0)
(2.19722)

(9.0 9.5)(9.0 10.0)(9.0 11.0)
  


  

(9.2 9.0)(9.2 10.0)(9.2 11.0)
(2.25129)

(9.5 9.0)(9.5 10.0)(9.5 11.0)
  


  

(9.2 9.0)(9.2 9.5)(9.2 11.0)
(2.30259)

(10.0 9.0)(10.0 9.5)(10.0 11.0)
  


  

(9.2 9.0)(9.2 9.5)(9.2 10.0)
(2.39790)

(11.0 9.0)(11.0 9.5)(11.0 10.0)
  


  

= 2.219 20, which is exact to 5D.

Example Certain corresponding values of x and 10log x are
(300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find 10log 301.

10
( 3) ( 4) ( 6) (1) ( 4) ( 6)

log 301 (2.4771) (2.4829)
( 4) ( 5) ( 7) (4) ( 1) ( 3)
     
    

(1) ( 3) ( 6) (1) ( 3) ( 4)
(2.4843) (2.4871)

(5) (1) ( 2) (7) (3) (2)
    


1.2739 4.9658 4.4717 0.7106   

2.4786.

Inverse Lagrangian Interpolation Formula

Interchanging x and y in the Lagrangian Interpolation Formula, we obtain the inverse
Lagrangian interpolation formula given by

0

( )
( ) .

( )

n
k

n k
k k k

l y
x L y x

l y

 

Example If 1 3 44, 12, 19y y y   and 7,xy  find x. Compare with the actual value.

Using the inverse interpolation formula,
2

0

(7)
(7)

( )
k

n k
k k k

l
x L x

l y

 

where 0 01, ,x y k  13, 12yx y  2 24, 19x y  and 7y 
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i.e., 0 21 2
0

0 1 0 2 1 0 1 2

(7 ) (7 )(7 ) (7 )

( ) ( ) ( ) ( )

y yy y
x x

y y y y y y y y

  
 

   

0 1
1 2

2 0 2 1

(7 ) (7 )

( ) ( )

y y
x x

y y y y

 


 

i.e.,      
  

( 5) ( 12) (3) ( 12) (3) ( 5)
(1) (3) (4)

( 8) ( 15) (8) ( 7) (15) (7)
x

1 27 4
2 14 7
  

= 1.86

The actual value is 2.0 since the above values were obtained from the polynomial
2( ) 3.y x x 

Example Find the Lagrange interpolating polynomial of degree 2 approximating the
function lny x defined by the following table of values. Hence determine the value of ln
2.7.

 ln

2 0.69315

2.5 0.91629

3.0 1.09861

x y x

Similarly,

2
1( ) (4 20 24)l x x x    and 2

2 ( ) 2 9 10.l x x x  

Hence

  0 1 2
2 0 1 2

0 1 0

( ) ( ) ( )
( )

( ) ( ) ( )k k k

l x l x l x
L x f f f

l x l x l x

 
 

( 2.5) ( 3.0)
( 0.5) ( 1.0)

x x
0 1 2

( 2) ( 3) ( 2) ( 2.5)

(2.5 2) (3.0 2.5) (3 2) (3 2.5)

x x x x
f f f

   
  

   

2 2(2 11 15) (0.69315) (4 20 24) (0.91629)x x x x     

2(2 9 10) (1.09861)x x  

20.08164 0.81366 0.60761.x x   

which  is the required quadratic polynomial.
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Putting x = 2.7, in the above polynomial, we obtain

2
2ln 2.7 (2.7) 0.08164(2.7) 0.81366(2.7) 0.60761 0.9941164.L      Actual value of

ln2.7 0.9932518, so that

| Error | 0.0008646.

ExampleThe function siny x is tabulated below

sin

0 0

/ 4 0.70711

/ 2 1.0

x y x






Using Lagrange’s interpolation formula, find the value of sin( / 6).

Solution We have

( / 6 0) ( / 6 / 2) ( / 6 0) ( / 6 / 4)
sin (0.70711) (1)

6 ( / 4 0) ( / 4 / 2) ( / 2 0) ( / 2 / 4)
     
     
    
   

8 1(0.70711)
9 9
 

4.65688 0.51743.
9

 

Example Using Lagranges’ interpolation formula, find the form of the function ( )y x from
the following table.

0 12

1 0

3 12

4 24

x y



Since 0y  when 1,x  it follows that 1x is a factor. Let ( ) ( 1) ( ).y x x R x  Then

( ) /( 1).R x y x  We now tabulate the values  of x and ( )R x : For 0,x 
12

(0) 12,
0 1

R

 


and

so on.

( )

0 12

3 6

4 8

x R x

Applying Lagrange’s formula to the above table, we find

( 3)( 4) ( 0)( 4) ( 0)( 3)
( ) (12) (6) (8)

( 3) ( 4) (3 0) (3 4) (4 0) (4 3)
x x x x x x

R x
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( 3)( 4) 2 ( 4) 2 ( 3)x x x x x x      

= 2 5 12.x x 

Hence the required polynomial approximation to ( )y x is given by

2( ) ( 1)( 5 12).y x x x x   

Example With the use of Newton’s divided difference formula, find 301log 10 . Given the
following  divided difference table

x  10( ) logf x x 1[ , ]k kf x x  2 1[ , , ]k k kf x x x

300

304

305

307

2.47714

2.4829

2.4843

2.4871

0.00145

0.00140

0.00140

0.00001

0

10log 301 2.4771 0.00145 ( 3) ( 0.00001) 2.4786,      as before.

It is clear that the arithmetic in this method is much simpler when compare to that in
Lagrange’s method.

Exercises

9. Using the difference table in exercise 1, compute cos0.75 by Newton’s forward
difference interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value 0.731
69.

10. Using the difference table in exercise 1, compute cos0.28 by Newton’s forward
difference interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value

11. Using the values given in the table, find cos0.28 (in radian measure) by linear
interpolation and by quadratic interpolation and compare the results with the value
0.961 06 (exact to 5D).

x f(x)=cosx
First
difference

Second
difference

0.0 1.000 00 -0.019 93

-0.059 01

-0.095 72

-0.03908

-0.03671

-0.03291

0.2 0.980 07

0.4 0.921 06
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0.6 0.825 34 -0.128 63

-0.156 41

-0.02778

0.8 0.696 71

1.0 0.540 30

12. Find Lagrangian interpolation polynomial for the   function f having
(4) 1, (6) 3, (8) 8, (10) 16f f f f    . Also calculate (7)f .

13. The sales in a particular shop for the last ten years is given in the table:

Year 1996 1998 2000 2002 2004

Sales (in
lakhs)

40
43 48 52 57

Estimate the sales for the year 2001 using Newton’s backward difference interpolating
formula.

14. Find (3)f , using Lagrangian interpolation formula  for the function f having
(1) 2, (2) 11, (4) 77f f f   .

15. Find the cubic polynomial which takes the following values:

x 0 1 2 3

( )f x 1 2 1 10

16. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx 2

0.2 0.198 67 -0.007 92

0.4 0.389 42 -0.015 53

.6 0.564 64 -0.022 50

9.  The following table gives the distances in nautical miles of the visible horizon for the
given heights in feet above the earth’s surface:

x =height     : 100 150 200 250 300 350 400

y = distance : 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same data as in exercise 9, find the value of y when x = 410ft.
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8

INTERPOLATION BY ITERATION

Interpolation by Iteration

Given the ( 1)n  points 0 0 1 1( , ), ( , ), , ( , ),n nx f x f x f where the values of x need not

necessarily be equally spaced, then to find the value of f corresponding to any given value
of x we proceed iteratively as follows: obtain a first approximation to f by considering the
first-two points only; then obtain its second approximation by considering the first-three
points, and so on. We  denote the different interpolation polynomials by ( ),x with
suitable subscripts, so that at the first stage of approximation, we have

    
01 0 0 0 1

1 0

1( ) ( ) [ , ]x f x x f x x
x x




0 0

1 1

f x x

f x x
.

Similarly, we can form 02 03( ), ( ),x x  

Next we form 012 by considering the first-three points:

 
 

  
01 1

012
2 1 02 2

( )1( )
( )

x x x
x

x x x x x
.

Similarly we obtain 013 014( ), ( ),x x  etc. At the nth stage of approximation, we obtain



 

 
 

  






1012 1
012

1 012 2

( )1( )
( )

nn
n

n n nn n

x x x
x

x x x x x .

The computations is arranged as in the following Table

Table 1 Aitken’s Scheme

x f

0x

1x

2x

3x

4x

0f

1f

2f

3f

4f

01( )x

02 ( )x

03( )x

04 ( )x

012 ( )x

013( )x

014 ( )x

0123( )x

0124 ( )x
01234 ( )x



School of Distance Education

Numerical Methods Page 115

A modification of this scheme, due to Neville, is given in the following Table. Neville’s
scheme is particularly suited for iterated inverse interpolation.

Table 2 Neville’s Scheme

x f

0x

1x

2x

3x

4x

0f

1f

2f

3f

4f

01( )x

12( )x

23( )x

34( )x

012( )x

123( )x

234( )x

0123( )x

1234( )x
01234( )x

Example 26 Using Aitken’s scheme and the following values evaluate 10log 301.

x 10log x

300

304

305

307

2.4771

2.4829

2.4843

2.4871

2.47855

2.47854

2.47853

2.47858

2.47857
2.47860

Solution

10log 301 2.4786.

Inverse Interpolation

Given a set of values of x and y, the process of finding the value of x for a certain value of y
is called inverse interpolation. When the values of x are at unequal intervals, the most
obvious way of performing this process is by interchanging x and y in Lagrange’s or
Aitken’s methods.

Example If 1 3 44, 12, 19y y y   and 7,xy  find x. Compare with the actual value.

Solution

Aitken’s scheme (see Table 1) is
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y x

4

12

19

1

3

4

1.750

1.600
1.857

whereas  Neville’s scheme (see Table 2) gives

y x

4

12

19

1

3

4

1.750

2.286
1.857

In this examples both the schemes give the same result.

Method of Successive Approximations

We start with Newton’s forward difference formula which is written as

2 3
0 0 0 0

( 1)( 2)( 1)
2 6u

u u uu uy y u y y y
        

From this we obtain

2 3
0 0 0

0

( 1)( 2)( 1)1 .
2 6u

u u uu uu y y y y
y

           


Neglecting the second and higher differences, we obtain the first approximation to u as
follows

1 0
0

1 ( ).uu y y
y

 


Next, we obtain the second approximation to u by including the term containing the
second differences. Thus,

       
21 1

2 0 0
0

( 1)1
2u

u u
u y y y

y

where we have used the value of 1u for u in the coefficient of 2
0y . Similarly, we obtain

           
2 32 2 2 2 2

3 0 0 0
0

( 1) ( 1)( 2)1
2 6u

u u u u u
u y y y y

y
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and so on. This process should be continued till two successive approximations to u agree
with each other to the required accuracy. The method is illustrated in the following
example.

ExampleTabulate 3y x for 2, 3, 4x  and 5, and calculate the cube root of 10 correct to
three decimal places.

Solution

x 3y x  2 3

2

3

4

5

8

27

64

125

19

37

61

18

24
6

Here 2
0 0 010, 8, 19, 18uy y y y      and 3

0 6.y  The successive approximations to u are

therefore

1
1 (2) 0.1
19

u  

2
0.1(0.1 1)1 2 (18) 0.15

19 2
u      

3
0.15(0.15 1) (0.15 2)0.15(0.15 1)1 2 (18) (6) 0.1532

19 2 6
u

       

4
0.1541(0.1541 1) (0.1541 2)0.1541(0.1541 1)1 2 (18) (6)

19 2 6
u

      

0.1542.

We take 0.154u  correct to three decimal places. Hence the value of x (which corresponds
to 10),y  i.e., the cube root of 10 is given by    0 2 (0.154)1 2.154.x uh

Exercises

1.  The values of x and xu are given in the following Table.

x 2 3 5

xu 113 286 613

Find the value of x for which 1001.xu
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2. Using Lagrange inverse formula, find the value of x corresponding to 100y from the
following Table.

x 3 5 7 9 11

y 6 24 58 108 174

3.  The values of x and ( )f x are given in the following Table.

x 5 6 9 11

( )f x 12 13 14 16

Find the value of x for which ( ) 15.f x

4.  The values of x and xu are given in the following Table.

x 0 5 10 15

xu 16.35 14.88 13.59 12.46

Find correct to one decimal place the value of x for which 14.xu
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9

NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation

The problem of numerical differentiation is the determination of approximate value
of the derivative of a function  at a given point.

Differentiation using Difference Operators

We assume that the function y = f(x) is given for the equally spaced x values xn =
x0 + nh, for n = 0, 1, 2, To find the derivatives of such a tabular function, we proceed as
follows:

 Using Forward Difference Operator

Since EhDE logand1  , where D is a differential operator, E a shift operator, we
have seen earlier that

  1loglog EhD

Hence

  



















 ...

5432

1
1log

1 5432

hh
D

Also,
22 3 4 5

2
2

1
. . .

2 3 4 5

    
       
 

D
h

2 3 4 5
2

1 11 5
. . .

12 6
          
 h

Therefore,
2 3 4 51 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) . . .
2 3 4 5

              
 

d f x f x f x f x
f x f x Df x f x

dx h

2 2 3 4 5
2

1 11 5
( ) ( ) ( ) ( ) ( ) ( ) . . .

12 6
            
 

f x D f x f x f x f x f x
h

 Using Backward Difference Operator .

Recall that

  1loghD .



School of Distance Education

Numerical Methods Page 120

On expansion, we have


















 ...

432

1 432

h
D

Also,
22 3 4

2
2

1
. . .

2 3 4

   
      
 

D
h

2 3 4 5
2

1 11 5
. . .

12 6
         
 h

Hence,

( ) ( ) ( )
d

f x f x Df x
dx

  

2 3 41 ( ) ( ) ( )
( ) . . .

2 3 4

f x f x f x
f x

h

   
      
 

2 2 3 4 5
2

1 11 5
( ) ( ) ( ) ( ) ( ) ( ) . . .

12 6
f x D f x f x f x f x f x

h

           
 

Example Compute f (0.2) and f (0) from the following tabular data.

x 0.0 0.2 0.4 0.6 0.8 1.0

f (x) 1.00 1.16 3.56 13.96 41.96 101.00

Since x = 0 and 0.2 appear at and near beginning of the table, it is appropriate to use
formulae based on forward differences to find the derivatives.  The forward difference
table for the given data is:

x f(x)  f(x) 2 f(x) 3 f(x) 4 f(x) 5 f(x)

0.0 1.00
0.16

2.40

10.40

28.00

59.04

2.24

8.00

17.60

31.04

5.76

9.60

13.44

3.84

3.84
0.00

0.2 1.16

0.4 3.56

0.6 13.96

0.8 41.96

1.0 101.00
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Using            

















 ...

432

1 432 xfxfxf
xf

h
xDfxf

we obtain

  2.3
4

84.3

3

60.9

2

00.8
40.2

2.0

1
2.0 



 f

Using

          





  ...

12

111 432
2

2 xfxfxf
h

xfDxf

we obtain

 
 

    0.00
6

5
84.3

12

11
76.524.2

2.0

1
0

2




 f

Example Compute f (2.2) and f (2.2) from the following tabular data.

x 1.4 1.6 1.8 2.0 2.2

f (x) 4.0552 4.9530 6.0496 7.3981 9.0250

Since x = 2.2 appears at the end of the table, it is appropriate to use formulae based on
backward differences to find the derivatives.  The backward difference table for the given
data is:

x f(x)  f(x) 2 f(x) 3 f(x) 4 f(x)

1.4 4.0552
0.8978

1.0966

1.3395

1.6359

0.1988

0.2429

0.2964

0.0441

0.0535
0.0094

1.6 4.9530

1.8 6.0496

2.0 7.3891

2.2 9.0250

Using the backward difference formula

           

















 ...

432

1 432 xfxfxf
xf

h
xDfxf

we obtain

  0215.9
4

0094.0

3

0535.0

2

2964.0
6359.1

2.0

1
2.2 



 f
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Also, using backward difference formula for D2 f(x), i.e.

          





  ...

12

111 432
2

2 xfxfxf
h

xfDxf

we obtain

 
 

  9629.80094.0
12

11
0535.02964.0

2.0

1
2.2

2




 f

Example From the following table of values of x and y, obtain dy
dx

and
2

2

d y

dx
for 1.2 :x 

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2

y 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250

The difference table is

x y  2 3 4 5 6

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.7183

3.3201

4.0552

4.9530

6.0496

7.3891

9.0250

0.6018

0.7351

0.8978

1.0966

1.3395

1.6359

0.133

0.1627

0.1988

0.2429

0.2964

0.0294

0.0361

0.0441

0.0535

0.0067

0.0080

0.0094

0.0013

0.0014

0.001

Here 1.2,x ( ) 3.3201f x and 0.2.h  Hence

1.2

(1, 2)
x

dy
f

dx 

    

1 1 1 1 10.7351 (0.1627) (0.0361) (0.0080) (0.0014)
0.2 2 3 4 5
       

3.3205 .

Similarly,
2

2
1.2

1 11 50.1627 0.0361 (0.0080) (0.0014) 3.318.
0.04 12 6

x

d y

dx 

            

ExampleCalculate the first and second derivatives of the function tabulated in the

preceding example at the point 2.2x  and also dy
dx

at 2.0x  .
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We use the table of differences of Example 1. Here 2.2,nx  9.0250ny  and 0.2.h 

Hence backward difference for derivative  gives

2.2

1(2.2)
0.2

x

dy
f

dx 

     

1 1 1 11.6359 (0.2964) (0.0535) (0.0094) (0.0014)
2 3 4 5

      

= 9.0228.

2

2
2.2

1(2.2)
0.04



    
 x

d y
f

dx

11 50.2964 0.0535 (0.0094) (0.0014) 8.992.
12 6

      

Also,

2.0

1(2.2)
0.2

      x

dy
f

dx

1 1 1 1 11.3395 (0.2429) (0.0441) (0.0080) (0.0013) (0.0001)
2 3 4 5 6

      

= 7.3896.

 Derivative using Newton’s Forward difference Formula

For finding the derivative at a point near to the beginning of the tabular values,
Newton’s Forward difference Formula is used. For the values 0 1, ,..., ny y y of a function
y=f(x), corresponding to the equidistant values 0 1 2, , ,..., nx x x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , Newton’s Forward difference Formula is,

   

     

2
0 0 0 0

3
0 0

1
( ) ( )

2!
1 2 1 2 ....( 1)

....
3! !

n

u u
f x f x uh y u y y

u u u u u u u n
y y

n


        

     
          

where, 0x x
u

h


 .

The derivative of ( )f x with respect to x, where x is any point in the interval 0[ , ]nx x

is obtained as follows:

 0

( ) ( ) , by chain rule

1( ) ( )

d d duf x f x
dx du dx

x xd d df x f x
du dx h du h
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2 3 2
2 3 4

0 0 0 0
1 2 1 3 6 2 4 18 22 6( ) .....

2! 3! 24
d u u u u u uf x y y y y
dx h

                           

When 0x x , we get u=0. Thus,

2 3 4
0 0 0 0

1 1 2 6( ) .....
2 6 24

d f x y y y y
dx h

           

The second derivative of ( )f x is

 

2

2

2 3 2
2 3 4

0 0 0 0

2
2 3 4

0 0 02

2 3
0 02

( ) ( )

1 2 1 3 6 2 4 18 22 6 1.....
2! 3! 24

1 2 6 6 12 36 22 .....
2! 3! 24

1 1

d d d duf x f x
du dx dxdx

d u u u u u uy y y y
du h h

u u uy y y
h

y u y
h

   
 
                              
                     

    
2

4
0

6 18 11 .....
12

u u y
            

In similar way,
3 2

3 4
0 03 2 3

1 12 18( ) ( ) .....
12

d d d du uf x f x y y
du dxdx dx h
                

When 0 , and 0,x x u  we have
2

2 3 4
0 0 02 2

1 11( ) .....
12

d f x y y y
dx h

         
and

3
3 4

0 03 3

1 3( ) .....
2

d f x y y
dx h

       

 Derivative using Newton’s Backward difference Formula

To find the derivative at a point near to the end of the tabular values, Newton’s
backward difference Formula is used.  For the equidistant arguments, Newton’s backward
difference Formula is,

   

     

2

3

1
( ) ( )

2!
1 2 1 2 ....( 1)

....
3! !

n n n n

n
n n

u u
f x f x uh y u y y

u u u u u u u n
y y

n


        

     
          

where nx x
u

h
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( ) ( )

1( ) ( )n

d d duf x f x
dx du dx

x xd d df x f x
du dx h du h

 

  
    

 

2 3 2
2 3 41 2 1 3 6 2 4 18 22 6( ) ...

2! 3! 24n n n n
d u u u u u uf x y y y y
dx h

                           

 
2 2

2 3 4
2 2

1 6 18 11( ) ( ) 1 ...
12n n n

d d d du u uf x f x y u y y
du dx dxdx h

                        
, and

3 2
3 4

3 2 3

1 12 18( ) ( ) ...
12n n

d d d du uf x f x y y
du dxdx dx h
              

At , 0.nx x u  The above gives,

2 3 41 1 1 1( ) ...
2 3 4n n n n

d f x y y y y
dx h

           
2

2 3 4
2 2

1 11( ) ...
12n n n

d f x y y y
dx h

        
and

3
3 4

3 3

1 3( ) ...
2n n

d f x y y
dx h

       
.

Problem: Compute f (0) and f (0.2) from the following tabular data.

x 0.0 0.2 0.4 0.6 0.8 1.0

f (x) 1.00 1.16 3.56 13.96 41.96 101.00

Solution:

Since x = 0.0 and 0.2 appear at and near beginning of the table, it is appropriate to
use formulae based on forward differences to find the derivatives.  The forward difference
table for the given data is:

x y=f(x)  y 2 y 3 y 4 y 5 y

0.0 1.00
0.16

2.40

10.40

28.00

59.04

2.24

8.00

17.60

31.04

5.76

9.60

13.44

3.84

3.84
0.00

0.2 1.16

0.4 3.56

0.6 13.96

0.8 41.96

1.0 101.00
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Here 0 0x  , and h=0.2.   At  00, 0
x x

x u
h


   ,

The second derivative at 0x  is given by Newton’s forward formula:
2

2 3 4
0 0 02 2

1 11( ) .....
12

d f x y y y
dx h

         

 2
1 11 5"(0) 2.24 5.76 (3.84) (0) 0

24 60.2
f        

.

For x=0.2,  0.2 0.0
1

0.2
u


  .

By Newton’s forward formula, we have the derivative of f(x) at a point x is,
2 3 2

2 3 4
0 0 0 0

1 2 1 3 6 2 4 18 22 6( ) .....
2! 3! 24

d u u u u u uf x y y y y
dx h

                          

Hence,

     
2 3 2

0.2

1 2 1 1 3 1 6 1 2 4 1 18 1 22 1 6( ) 0.16 2.24 5.76 3.84
0.2 2! 3! 24x

d f x
dx 

                 

= 3.2, on simplification.

If the arguments are not equidistant, the approximating polynomial for the given
tabular points is found by Newton’s divided difference formula or Lagrange’s
interpolation formula.  Then the derivative of the function can get at any x in the range.

For example: We find the first derivative of a function at 0, using the points
         4,1245 , 1,33 , 0,5 , 2,9 5,1335and  where x values are not equidistant.  We can get the
approximating polynomial by Newton’s divided difference formula.

The table of divided differences is,

x y First divided
differences

Second divided
differences

Third divided
differences

Fourth divided
differences

-4

-1

0

2

5

1245

33

5

9

1335

-404

-28

2

442

94

10

88

-14

13

3
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Given  0 1245f x  .   From the table, we can observe that

   
   

0 1 0 1 2

0 1 2 3 0 1 2 3 4

, 404; , , 94;

, , , 14 , , , , 3

f x x f x x x

f x x x x and f x x x x x

 

 

Hence the interpolating polynomial is

    
          

( ) 1245 ( 4) ( 404) ( 4) ( 1) 94

( 4) ( 1) 0 14 ( 4) ( 1) 0 2 3

f x x x x

x x x x x x x

           

               

On simplification, we get
4 3 2( ) 3 5 6 14 5f x x x x x     .

Then,
3 2'( ) 12 15 12 14f x x x x   

Hence, '(0) 14f   .

Exercises

1. From the following table of values, estimate f  (1.10) and (1.10) :f

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

( )f x 1.0000 1.0247 1.0488 1.0724 1.0954 1.1180 1.1402

2. Find the first derivative of f(x) at x = 0.4 from the following table:

x 0.1 0.2 0.3 0.4

f (x) 1.10517 1.22140 1.34986 1.49182

3. A slider in a machine moves along a fixed straight rod.  Its distance x cm along the
rod is given below for various values of time t (seconds).  Find the velocity of the
slider and its acceleration at time t = 0.3 sec.

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6

x 3.013 3.162 3.287 3.364 3.395 3.381 3.324

Use both the forward difference formula and the central difference formula to find
the velocity and compare the results.

4. Using the values in the table, estimate y (1.3) :

x 1.3 1.5 1.7 1.9 2.1 2.3

y 2.9648 2.6599 2.3333 1.9922 1.6442 1.2969
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10

NUMERICAL INTEGRATION

THE TRAPEZOIDAL RULE

In this method to evaluate ( )
b

a
f x dx , we partition the interval of integration [ , ]a b

and replace f by a straight line segment on each subinterval.  The vertical lines from the
ends of the segments to the partition points create a collection of trapezoids that
approximate the region between the curve and the x-axis.  We add the areas of the
trapezoids counting area above the x-axis as positive and area below the axis as negative
and denote the sum by .T Then

0 1 1 2 2 1 1
1 1 1 1(
2 2 2 2

) ( ) ( ) ( )n n n nT y y h y y h y y h y y h          

0 1 2 1
1 1...
2 2

n nh y y y y y       
 

0 1 2 1
2

( 2 2 ... 2 )n n
h y y y y y     

where

( ), ( ), ... , ( ), ( )0 1 1 1 1    n n ny f a y f x y f x y f b .

The Trapezoidal Rule

To approximate ( )
b

a
f x dx ,

(for n subintervals of length  
h

b a

n
and ( )).j jy f x

use

0 1 2 1
2

( 2 2 ... 2 )     n n
hT y y y y y

or 0 1 2 1
2

[ 2( ... )]     n n
hT y y y y y

Example Use the trapezoidal rule with 4n  to estimate
2 2

1
x dx .

Compare the estimate with the exact value of the integral.
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To find the trapezoidal approximation, we divide the interval of integration into four
subintervals of equal length and list the values of 2y x at the endpoints and partition
points.

j xj
2j jy x

0 1.0 1.0000

1 1.25 1.5625

2 1.50 2.2500

3 1.75 3.0625

4 2.00 4.0000

Sum 5.0000 6.8750

With 4n  and 2 1 1
4 4

b ah
n
    :

0 4 1 2 3
2

[ 2( )]    hT y y y y y

 1 1.4 2 6.875
8
   

= 2.34375

The exact value of the integral is
232 2

1
1

8 1 7 2.33334
3 3 3 3
xx dx     

The approximation is a slight overestimate. Each trapezoid contains slightly more than the
corresponding strip under the curve.

Problem: Using Trapezoidal rule solve the integral,
1

2
0

1

6 10
dx

x x  with four

subintervals.

Solution:

For n subintervals, the trapezoidal rule for the integral of a function in the range [a,b]
is,

 0 1 2 1( ) 2 2 ... 2
2 n n

b

a

h
f x dx y y y y y     

Here to consider n=4.
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Now,  0 1 2 3 4( ) 2 2 2
2

b

a

h
f x dx y y y y y    

In our integral,
1

2
0

1

6 10
dx

x x  , the range of integral [0,1] is divided into four equal

subinterval of width h=0.25, by the  points, 0.0,0.25,0.50,0.75 and 1 .

Considering them as the x values, corresponding values of the integrand
2

1

6 10x x 
denoted by 0 1 2 3 4, , , ,y y y y y are 0.10, 0.08649, 0.07547, 0.06639 and 0.05882 respectively.

Hence,

 
1

2
0

1 0.25
0.10 2 0.08649 2 0.07547 2 0.06639 0.05882

6 10 2
dx

x x
       

 

= 0.07694.

Example Use the trapezoidal rule with 4n  to estimate
2

1

1 dx
x

.

Compare the estimate with the exact value of the integral.

To find the trapezoidal approximation, we divide the interval of integration into four
subintervals of equal length and list the values (correct to five decimal places) of 1y

x
at

the endpoints and partition points.

j xj
1j

j

y
x

0 1.0 1.00000

1 1.25 0.80000

2 1.50 0.66667

3 1.75 0.57143

4 2.00 0.50000

Sum 1.50000 2.0381

With 2 1 14 and 0.25
4 4

     b an h
n

:
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0 4 1 2 3
2

[ 2( )]    hT y y y y y

 1 1.5 2 2.0381
8
    = 0.69702.

The exact value of the integral is


22

1 1

1 ln ln2 ln1 0.69315dx x
x
   

The approximation is a slight overestimate.

Example Evaluate  
1

0

2
dxxe by means of Trapezoidal rule with n=10.

Here 1.0
1

01








n

ab
h and

 0 10 1 2 9

21 0.1 2( )
20

        xe dx T y y y y y

j xj xj2
2

)(
j

x
e

j
xf




0 0.0 0.00 1.000 000 0.990 050

1 0.1 0.01 0.960 789

2 0.2 0.04 0.913 931

3 0.3 0.09 0.852 144

4 0.4 0.16 0.778 801

5 0.5 0.25 0697 676

6 0.6 0.36 0.612 626

7 0.7 0.49 0.612 626

8 0.8 0.64 0.527 292

9 0.9 0.81 0.444 858

1
0

1.0 1.00 0.367 879

Sums 1.367 879 6.778 167

Hence  
21 0.1 1.367879 2 ( 6.778167 ) 0.746211

20

     xe dx T
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SIMPSON’S 1/3 RULE

Simpson’s rule for approximating ( )
b

a
f x dx is based on approximating f with

quadratic polynomials instead of linear polynomials. We approximate the graph with
parabolic arcs instead of line segments .

The integral of the quadratic polynomial 2y Ax Bx C   in Fig.3 from tox h x h   is

2
0 1 2( ) ( 4 )

3

h

h

hAx Bx C dx y y y


    

Simpson’s rule follows from partitioning [ , ]a b into an even number of subintervals of
equal length ,h applying Eq. to successive interval pairs, and adding the results.

Algorithm: Simpson’s 1/3 Rule

To approximate ( )
b

a
f x dx , use

0 1 2 3 2 1( 4 2 4 ... 2 4 ).
3

n n n
hS y y y y y y y        

The y’s are the values of f at this partition points

0 1 2 1, , 2 ,..., ( 1) ,n nx a x a h x a h x a n h x b        

The number n is even, and ( )).j jh yb a f x
n

  

Simpson’s 1/3 Rule given by (5) can be simplified as below:

0 1 2( 4 2 ),
3
hS s s s   …(5A)

where 0 0 1 1 3 1 2 2 4 2, ... , ... .n n ns y y s y y y s y y y          

Example Find an approximate value of loge5 by calculating
0

5

4 5
dx

x 
, by Simpson’s 1/3

rule of integration.

We note that

   
55 251 1 1 1log 4 5 log25 log5 log log5.

4 5 4 4 4 5 400

dx x
x

          

Now to calculate the value of 


5

0 54x

dx , by Simpson’s rule of integration, divide the interval

[0, 5] into n = 10 equal subintervals, each of length 5 0 0.5.
10

b ah
n
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j xj
4 xj+5

1( )
4 5

j j
j

f f x
x

 


0 0.0 5 0.20

1 0.5 7 0.1429

2 1.0 9 0.1111

3 1.5 11 0.0909

4 2.0 13 0.0769

5 2.5 15 0.6666

6 3.0 17 0.0588

7 3.5 19 0.0526

8 4.0 21 0.0476

9 4.5 23 0.0434

10 5.0 25 0.04

Sums s0=0.24 s1=0.3963 s2=0.2944

Hence,

  .4023.0)2944.0(2)3963.0(424.0
3

5.05

0 54



S

x

dx

and loge 5 = 4(0.4023) = 1.6092.

Problem: Find
10

2
0

1

1
dx

x using Simpson’s one third rule.

Solution:

By Simpson’s one third rule,    0 1 3 2 4( ) 4 ... 2 ....
3

b

n

a

h
f x dx y y y y y y         

In our integral,
10

2
0

1

1
dx

x , let the range [0,10] is subdivided into 10 equal interval of

width h=1, by the x values 0,1,2,3,4,5,6,7,8,9 and 10.  Corresponding y values of the

function
2

1

1 x
are listed below:

Thus,

x 0 1 2 3 4 5 6 7 8 9 10

y 1 0.5 0.2 0.1 0.0588 0.0385 0.0270 0.02 0.0154 0.0122 0.0099
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10

2
0

1 1
1 4 0.5 0.1 0.0385 0.02 0.0122 2 0.2 0.0588 0.027 0.0154 0.0099

1 3
dx

x
            

   1
1.0099 4 0.6707 2 0.3012

3
    

 1
4.2951 1.4317

3
  .

Problem: Evaluate
6

2
0

1

3
dx

x using Simpson’s three eight rule.

Solution:

By Simpson’s three eight rule,

   0 1 2 4 1 3 6 9

3
( ) 3 .... 2 ...

8 n n

b

a

h
f x dx y y y y y y y y y            

Let the limit of integral [0,6] be divided into six equal parts with interval h=1, using the

x values 0,1,2,3,4,5 and 6.  Corresponding y values of the given integrand function
2

1

3 x
are,

Thus,

   
6

0 1 2 4 1 3 6 92
0

1 3 1
3 .... 2 ...

3 8 n ndx y y y y y y y y y
x 


            

For n=6,

 
6

0 1 2 4 5 3 62
0

1 3 1
3 2

3 8
dx y y y y y y y

x


        

   
6

2
0

1 3 1
0.333 3 0.25 0.1429 0.0526 0.0357 2 0.1 0.0256

3 8
dx

x


        

   3 3
0.333 1.4436 0.2 0.0256 2.0022

8 8
    

6

2
0

1
0.7508

3
dx

x
 

 .

Example Find an approximation value of 2
1

0
x dx by Simpson’s 1/3 rule with n = 10.

x 0 1 2 3 4 5 6

y 0.333 0.25 0.1429 0.1 0.0526 0.0357 0.0256
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Here 1 0 0.1
10

b ah
n
   

j xj
2( )y f x x jj j

 

0 0.0 0.00

1 0.1 0.01

2 0.2 0.04

3 0.3 0.09

4 0.4 0.16

5 0.5 0.25

6 0.6 0.36

7 0.7 0.49

8 0.8 0.64

9 0.9 0.81

10 1.0 1.00

Sums s0=1.00 1s =1.65 s2=1.20

Hence ,

 2
1

0

0.1 1.00 4(1.65) 2(1.20) 0.3333.
3

x dx S    

Also, the exact value is given by

3333.0
3

01
1

0
3

31

0

2 
















x
dxx .

Example 11 A town wants to drain and fill a small-polluted swamp (See the adjacent
figure). The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to
fill the area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multiply
by 5. To estimate the area, we use Simpson’s rule with 20h  ft and the y’s equal to the
distances measured across the swamp, as shown in the adjacent figure.
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0 1 2 3 4 5 6( 4 2 4 2 4 )
3
hS y y y y y y y      

20 (146 488 152 216 80 120 13) 8100
3

       

The volume is about ft or yd 3 3(8100)(5) 40,500 1500 .

Example Compute the integral  




1

0

2/22
dxeI x using

Simpson’s 1/3 rule, taking h = 0.125.

j xj
2/22

)( jx
e

j
xf

j
f






0 0.000 0.7979

1 0.125 0.7917

2 0.250 0.7733

3 0.375 0.7437

4 0.500 0.7041

5 0.625 0.6563

6 0.750 0.6023

7 0.875 0.5441

8 1.000 0.4839

Sums s0=1.2818 s1=2.7358 s2=2.0797

Hence  21
/ 2

0

2 0.125
1.2818 4(2.7358) 2(2.0797)

3
     xI e dx S



0.6827

Derivation of Trapezoidal and Simpson’s 1/3 rules of integration from Lagrangian
Interpolation

Integrating the formula in Lagrangian interpolation, we obtain

0

( ) ( ) ( )
( )

b nb b
k

n k
a ak kka

f
f x dx L x dx l x dx

l x
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0

( ) ( ) ( )
( )

b nb b
k

n k
a ak kka

f
f x dx L x dx l x dx

l x
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For n = 1, we have only one interval [x0, x1] such that a = x0 and b = x1 and then the
above integration formula gives trapezoidal rule.

For n = 2 , we have two subintervals [x0, x1] and [x1, x2] of equal width h such that a
= x0 and b = x2 and then the above integration formula becomes

 2

0
0 1 2( ) ( ) 4

3

b
x

x
a

hf x dx f x dx f f f     ,

and is the Simpson’s 1/3 rule of integration.

For n = 3 the above integration formula (4) becomes

 3

0
0 1 2 3

3( ) ( ) 3 3
8

b
x

x
a

f x dx f x dx h f f f f      ,

and is known as Simpson’s 3/8 rule of integration.

Simpson’s three eight (3/8) rule

When n=3, all the differences of order four or higher becomes zero.

Hence,

 
2 3 2 4

2 3 2 3
0 0 0 0

33 0

0

3 1 3 3 1 3
( ) 3 3 3 0

2 2 3 2 6 4

x x h

x

f x dx h y y y y
      

               
    



     0 1 0 2 1 0 3 2 1 0

9 1 27 9 1 81
3 2 27 9 3 3

2 2 3 2 6 4
h y y y y y y y y y y
                        

     

 

0 1 0 2 1 0 3 2 1 0

0 1 2 3

72 108 54 2 9 3 3
24

9 27 27 9
24

h
y y y y y y y y y y

h
y y y y

           

   

 0 1 2 3

33 0

0

3
( ) 3 3

8

x x h

x

h
f x dx y y y y

 

    

Similarly,  3 4 5 6

66 0

3

3
( ) 3 3

8

x x h

x

h
f x dx y y y y

 

   

Finally, under the assumption that n is a multiple of three,
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 3 2 1

0

3

3
( ) 3 3

8 n n n n

x x nhn

xn

h
f x dx y y y y  

 



   

Adding these integrals, we get,

     0 1 2 3 3 4 5 6 3 2 1

0

3
( ) 3 3 3 3 ... 3 3

8

x

n n n n

n

x

h
f x dx y y y y y y y y y y y y                

That is,

     0 1 2 3 3 4 5 6 3 2 1

3
( ) 3 3 3 3 ... 3 3

8 n n n n

b

a

h
f x dx y y y y y y y y y y y y                

 0 1 2 3 4 5 6 7 1

3
( ) 3 3 2 3 3 2 3 ... 3

8 n n

b

a

h
f x dx y y y y y y y y y y          

   0 1 2 4 1 3 6 9

3
( ) 3 .... 2 ...

8 n n

b

a

h
f x dx y y y y y y y y y             

Exercises

Estimate the integral using

(a) trapezoidal rule and    (b) Simpson’s 1/3 rule.

1. 
2

21

1
S

ds 2.
0

sin t dt


 3.
2 3

0
x dx

4.
2

1
x dx 5.

1 2

1
( 1)x dx


 6.

2 3

0
( )t t dt




7. 
1

0

sin
dx

x

x 8.  
1

0 1

1
dx

x
9.  

6

0
21

1
dx

x

10.
1

0

ln 2
dx
x

  11. dx
x

7

1

1 12.
3

1
(2 1)x dx
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15.
0 2

2
( 1)x dx


 16.

1 3

1
( 1)t dt


 17.

4

22

1
( 1)

ds
S 

18.
1

0
sin t dt

19. The following table gives values of x and ( )f x .  Find the area bounded by the curve
( ),y f x the x -axis and the ordinates x = 7.47 and 7.52.

x 7.47 7.48 7.49 7.50 7.51 7.52

( )F x 1.93 1.95 1.98 2.01 2.03 2.06

20.  Find the approximate value of  
6.1

2.1

2
dxe x from the following table:

x 1.2 1.3 1.4 1.5 1.6

  2xexf  0.237 0.185 0.141 0.106 0.077

21.  Estimate the errors in the results obtained by evaluating the integral  
1

0
1 x

dx by

trapezoidal and Simpson’s rule.

14.
2

2

2

3cos
(2 sin )

d





 






2

3cos
(2 sin )




1.57080 0.0

1.17810 0.99138

0.78540 1.26906

0.39270 1.05961

0 0.75

0.39270 0.48821

0.78540 0.28946

1.17810 0.13429

1.57080 0

13.
1

2

0

1x x dx

x 21x x

0 0.0

0.125 0.12402

0.25 0.24206

0.375 0.34763

0.5 0.43301

0.625 0.48789

0.75 0.49608

0.875 0.42361

1.0 0
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11

SOLUTION OF  SYSTEMS OF LINEAR EQUATIONS

Solution of system of linear equations

A system of m linear equations in n unknowns x1, x2, .  .  .  , xn is a set of equations of
the form

a1 1 x1 + a1 2 x2 +    .   .   .    + a1 n x n = b1

a2 1 x1 + a2 2 x2 +    .   .   .    + a2 n x n = b2

.  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .

a m 1 x1 + a m 2 x2 +   .   .   .     + a m n x n = b m

where the coefficients a j k and the b j are given numbers.  The system is said to be
homogeneous if all the b j are zero; otherwise, it is said to be non-homogeneous.

The system of linear equations is equivalent to the matrix equation (or the single vector
equation)

Ax b

where the coefficient matrix [ ]i jA a is the m  n matrix and x and b are the column
matrices (vectors) given by:

11 12 1

21 22 2

1 2

...

...
. . ... .

...

n

n

m m mn

a a a
a a aA

a a a

 
 
  
 
 

,
1
2
.
.

x
x

xn

x

 
 
 
 
  

and
1
2
.
.

b
b

bm

b

 
 
 
 
  

A solution of the system is a set of numbers x1, x2, .  .  .  , xn which satisfy all the m
equations, and a solution vector of (1) is a column matrix  whose components constitute a
solution of system.  The method of solving such a system using methods like Cramer’s
rule is impracticable for large systems.  Hence, we use other methods like Gauss
elimination.

Gauss Elimination Method

In the Gauss elimination method, the solution to the system of equations  is obtained
in two stages.  In the first stage, the given system of equations is reduced to an equivalent
upper triangular form using elementary transformations.  In the second stage, the upper
triangular system is solved using back substitution procedure by which we obtain the
solution in the order 1 2 2 1, , , , , .    n n nx x x x x
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Example Solve the system

1 2 3 42 2 6x x x x    …(1)

1 2 3 46 6 6 12 36x x x x    …(2)

1 2 3 44 3 3 3 1x x x x    …(3)

1 2 3 42 2 10x x x x    …(4)

To eliminate x1 from equations (2), (3) and (4), we subtract suitable multiples of equation
(1) and we get the following system of equations:

(2)  3  (1)  9x2 + 0x3 + 9x4 =  18 …(5)

(3)  2  (1)  x2  x3 5x4 = 13 …(6)

(4)  1  (1)  x2  3x3 +0x4 =    4 …(7)

To eliminate x2 from equations  (6) and (7), subtract suitable multiples of equation (5) and
get the following system of equations:

(6)  (-1/9)(5)  x3 4x4 = 11 …(8)

(7)  (-1/9)(5)   3x3 + x4 = 6 …(9)

To eliminate x2 from equation  (9), subtract 3(8) and get the following equation:

13 x4 = 39 …(10)

From equation (10), x4 = 39/13 = 3; using this value of x4, (9) gives x3 = -1; using these
values of x4 and x3, (7) gives x2 = 1; using all these values (1) gives x1 = 2.  Hence the
solution to the system is x1 = 2, x2 = 1, x3 = 1, x4 = 3.

Note: The above method can be simplified using the matrix notation. The given system of
equations can be written as

xA b

and the augmented matrix is

2 1 2 1 6

6 6 6 12 36

4 3 3 3 1

2 2 1 1 10

 
  
  
  

which  on successive row transformations give
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2 1 2 1 6

0 9 0 9 18

0 0 1 4 11

0 0 0 13 39

 
  
   
 
 

.

Hence

1

2

3

4

2 1 2 1 6

0 9 0 9 18

0 0 1 4 11

0 0 0 13 39

    
         
      
    

    

x

x

x

x

Back substitution gives

1 2x , 2 1x , 3 1 x , 4 3x

In the example, we had a11  0.  Otherwise we would not have been able to eliminate x1 by
using the equations in the given order.  Hence if a11  0 in the system of equations we
have to reorder the equations (and perhaps even the unknowns in each equation) in a
suitable fashion;  similarly, in the further steps.  Such a situation can be seen in the
following Example.

Example Using Gauss elimination solve:
3 9

2 2 8

5 8

y z

x y z

x z

 

  

  

Here the leading coefficient (i.e., coefficient of x) is 0.  Hence to proceed further we have to
interchange rows 1 and 2, so that

2x  + 2 y  z  = 8                                          …(1)

y    + 3 z   = 9                                          …(2)

 x   + 5 z                = 8                                         …(3)

Elimination of x from last two equations:

2x  + 2 y  z     = 8

y    + 3 z      = 9

(3) +
2

1 (1) y   +
2

9 z     = 12                                         …(4)

Elimination of y from last equation:

2x  + 2 y  z     = 8

y    + 3 z      = 9
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(4)  (2)
2

3 z     = 3                                           …(5)

Hence z  = 2,   y = 9 – 6 = 3,    x = 2.

Hence

2

3 .

2

x

y

z

   
      
      

Partial and Full Pivoting

In each step in the Gauss elimination method, the coefficient of the first unknown
in the first equation is called pivotal coefficient. By the above Example, the Gauss
elimination method fails if any one of the pivotal coefficients becomes zero.  In such a
situation, we rewrite the equations in a different order to avoid zero pivotal coefficient.
Changing the order of equations is called pivoting.

In partial pivoting, if the pivotal coefficient iia happens to be zero or near to zero,
the ith column elements are searched for the numerically largest element.  Let the jth row
(j>i) contains this element, then we interchange the ith equation with the jth equation and
proceed for elimination.  This process is continued whenever pivotal coefficients become
zero during elimination.

In total pivoting, we look for an absolutely largest coefficient in the entire system
and start the elimination with the corresponding variable, using this coefficient as the
pivotal coefficient (for this we have to interchange rows and columns, if necessary);
similarly in the further steps.  Total pivoting, in fact, is more complicated than the partial
pivoting.  Partial pivoting is preferred for hand calculation.

Example Solve the system

1 20.0004 1.402 1.406 x x …(1)

1 20.4003 1.502 2.501 x x …(2)

by Gauss elimination (a) without pivoting (b) with partial pivoting.

(a) without pivoting (choosing the first equation as the pivotal equation)

1 20.0004 1.402 1.406 x x …(1a)

0.40031
(2) (1 )

0.0001
  a 21405 1404  x …(2a)

and so 2
1404

0.9993
1405
 x

and hence from (1a),
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 1
1 0.005

1.406 1.402 0.9993 12.5.
0.0004 0.0004
    x

(b) (with partial pivoting )

Since 11a is small and is nearer to zero as compared with 21a , we accept 21a as the
pivotal coefficient (i.e. second equation becomes the pivotal equation).  To start with we
rearrange the given system as follows:

1 20.4003 1.502 2.501 x x …(3)

1 20.0004 1.402 1.406 x x …(4)

Now by Gauss elimination  the system becomes,

1 20.4003 1.502 2.501 x x …(3a)

0004
(4) (3)

4003



 21.404 1.404x …(4a)

and so 2
1.404

1
1.404
 x

and from (3a) 1
1

(2.501 1.502 1) 10.
0.4003
   x

Example Solve the following system (i) without pivoting (ii) with pivoting

0.0002 0.3003 0.1002x y  . . . (1)

2.0000 3.0000 2.0000.x y  . . . (2)

(i) without pivoting
0.0002 0.3003 0.1002x y 

2
(2) (1)

0002
 


0.3003 2 0.1002 23.000 2.0000
0.0002 0.0002

     
 

y

i.e., 1498.5 499.y 

Now by back substitution, the solution to the system is given by 0.3330y  and 0.5005x  ;

(ii) With pivoting:

Since 11a is small and is nearer to zero as compared with 21a , we accept 21a as the
pivotal coefficient (i.e. second equation becomes the pivotal equation).  To start with we
rearrange the given system as follows:

2.0000 3.0000 2.0000x y  . . . (3)

0.0002 0.3003 0.1002x y  . . . (4)
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0002
(4) (3)

2


  3.0000 0.0002 2 0.00020.3003 0.1002

2 2
     

 
y

which simplifies to
0.3000 0.1000.y 

Hence by bank substitution, the solution is

1
3

y  and 1 .
2

x 

Cholesky Method (Modification of the Gauss method)

Cholesky method, which is a modification of the Gauss method, is based on the result
that any positive definite square matrix A can be represented in the form A = LU, where L
and U are the unique lower and upper triangular matrices.  The method is illustrated
through the following examples.

Example Using Cholesky’s method, solve the system:

x1 + 2x2 +  3x3 =  14

2x1 + 3x2 + 4x3 =  20

3x1 +  4x2 + x3 =  14

(LU decomposition of the coefficient matrix A)

A
1 2 3

2 3 4

3 4 1

 
 
 
  


2 2 1 21

3 3 1 31

( 2) 2

( 3) 3

    
    

R R R m

R R R m

2

1 2 3

~ 0 1

0 0 4

 
  
  




3 3 2 32( 2) 3    R R R m

We take
1 2 3
0 1 2
0 0 4

U
 
   
  

as the upper triangular matrix.

Using the multipliers 21 31 322, 3, 2     m m m , we get the lower triangular matrix as
follows:

21

31 32

1 0 0 1 0 0
1 0 2 1 0

3 2 11
L m

m m

                

.

(Solution of the system)

2

1 2 3

~ 0 1

0 2 8
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The given system of equations can be written as

1 0 0

2 1 0

3 2 1

 
 
 
  

1 2 3

0 1 2

0 0 4

 
   
  

1

2

3

 
 
 
  

x

x

x

=
14

20

14

 
 
 
  

. . . (1)

The above can be written as

1 0 0

2 1 0

3 2 1

 
 
 
  

1

2

3

 
 
 
  

y

y

y

=
14

20

14

 
 
 
  

. . . (2)

where

1 2 3

0 1 2

0 0 4

 
   
  

1

2

3

 
 
 
  

x

x

x

=
1

2

3

 
 
 
  

y

y

y

. . . (3)

Solving the system in (2) by forward substitution, we get

1

2

3

 
 
 
  

y

y

y

=
14

8

12

 
  
  

With these values of 1y , 2y , 3y , Eq. (3) can now be solved by back substitution and we
obtain

1

2

3

 
 
 
  

x

x

x

=
1

2

3

 
 
 
  

Example Solve the equations
2 3 9x y z  

2 3 6x y z  

3 2 8x y z  

by LU decomposition.

(LU decomposition of the coefficient matrix A)

Proceeding as in the above example,

2 3 1

1 50
2 2

0 0 18

U

 
 
 
 
  

and

1 0 0

1 1 0
2
3 7 1
2

L
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(Solution of the system)

The given system of equations can be written as

1 0 0 2 3 1 9

1/ 2 1 0 0 1/ 2 5/ 2 6

3/ 2 7 1 0 0 18 8

x

y

z

       
              
              

… (iv)

or, as
1

2

3

1 0 0 9

1/ 2 1 0 6 ,

3/ 2 7 1 8

y

y

y

     
          
          

… (v)

where
1

2

3

2 3 1

0 1/ 2 5/ 2 .

0 0 18

x y

y y

z y

     
          
          

… (vi)

Solving the system in (v) by forward substitution, we get

1 9,y  2
3 ,
2

y  3 5y  .

With these values of 1 2 3, , ,y y y eq. (vi) can now be solved by the back substitution process
and we obtain

35 ,
18

x  29 ,
18

y  5 .
18

z 

Gauss Jordan Method

The method is based on the idea of reducing the given system of equations Ax = b,
to a diagonal system of equations Ix = d, where I is the identity matrix, using elementary
row operations. We know that the solutions of both the systems are identical. This
reduced system gives the solution vector x. This reduction is equivalent to finding the
solution as 1x A b .

In this case, a system of 3 equations in 3 unknowns

11 1 12 2 13 3 1

21 2 22 2 23 3 2

31 2 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

is written as

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

(*)

a a a x b

a a a x b

a a a x b

     
             
          

After some linear transformations, we obtain the 3 × 3 system as
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1 1

2 2

3 3

1 0 0

0 1 0 (**)

0 0 1

x d

x d

x d

    
            
         

To obtain the system as given in (**), first we augment the matrices given is (*) as,

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

 
 
 
  

and after some elementary operations, it

is written as,

1

2

3

1 0 0

0 1 0 (***)

0 0 1

d

d

d

 
     
  

, this helps us to write the given

system as given in (**).  Then it is easy to get the solution of the system as
1 1 2 2 3 3,x d x d and x d   .

Elimination procedure: The first step is same as in Gauss elimination method, which is, we
make the elements below the first pivot in the augmented matrix as zeros, using the
elementary row transformations. From the second step onwards, we make the elements
below and above the pivots as zeros using the elementary row transformations. Lastly, we
divide each row by its pivot so that the final matrix is of the form (***).  Partial pivoting
can also be used in the solution. We may also make the pivots as 1 before performing the
elimination.

Problem: Solve the following system of equations

1 2 3

1 2 3

1 2 3

1

4 3 6

3 5 3 4

x x x

x x x

x x x

  

  

  

using the Gauss-Jordan method without partial pivoting

Solution:

We have the matrix form as

1

2

3

1 1 1 1

4 3 1 6

3 5 3 4

x

x

x

    
         
        

.  Then the augmented matrix is,

1 1 1 1

4 3 1 6

3 5 3 4

 
  
  

(i) To do the eliminations follow the operations,
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R2= R2 – 4R1, and R3= R3 – 3R1.  This gives,

1 1 1 1

0 1 5 2

0 2 0 1

 
   
  

Then,  R1=R1 + R2 and R3 =R3+ 2R2 gives,

1 0 4 3

0 1 5 2

0 0 10 5

 
   
  

R1=R1 – (4/10) R3, R2=R2 – (5/10) R3 gives,

1
1 0 0

1
0 1 0

2
0 0 10 5

 
 
  
 

 
 

Now, making the pivots as 1, R2= ((– R2) and R3= (R3/(– 10))),  we get

1
2
1
2

1 0 0 1

0 1 0

0 0 1

 
 
 
  

Hence,
1

1
2 2

1
3 2

1 0 0 1

0 1 0

0 0 1

x

x

x

   
        
         

Therefore, the solution of the system is,

1 2 3
1 1

1, ,
2 2

x x x    .

Note: The Gauss-Jordan method looks very elegant as the solution is obtained directly.
However, it is computationally more expensive than Gauss elimination. For large n, the
total number of divisions and multiplications for Gauss-Jordan method is almost 1.5 times
the total number of divisions and multiplications required for Gauss elimination. Hence,
we do not normally use this method for the solution of the system of equations.

The most important application of this method is to find the inverse of a non-
singular matrix.  To obtain inverse of a matrix, we start with the augmented matrix of A
with the identity matrix I of the same order.

When the Gauss-Jordan procedure is completed, we obtain, the matrix A
augmented with I, A I   in the form 1I A   , since 1AA I  .
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Example Using Gauss Jordan method solve the system of equations:

x + 2y + z =   8                                              … (1)

2x + 3y + 4z = 20                                            … (2)

4x +  3y + 2z = 16                                             … (3)

[Elimination of  x from Eqs. (2) and (3), using (1)]

x + 2y + z =     8 … (1a)

 y + 2z =    4                                            … (2a)

5y  2z = 16                                        … (3a)

[Elimination of  y  from (1a) and (3a), using (2a)]

x + 5z =  16                                        … (1b)

 y + 2z =    4 … (2b)

 12z = 36                                 … (3b)

[Elimination of  z  from (1b) and (2b), using (3b)]

x =  1                                          … (1c)

 y = 2                                     … (2c)

 12z = 36                                  … (3c)

Hence, x = 1, y = 2, z = 3.

Assignments

1. Apply Gauss elimination method to solve the equations:

2 3 5

4 4 3 3

2 3 1

x y z

x y z

x y z

  

  

   

2. Apply Gauss elimination method to solve the equations:

1 2 3

1 2 3

1 2 3

3 6 16

2 4 3 13

3 2 9

x x x

x x x

x x x

  

  

  

3. Apply Gauss elimination method to solve the equations:
10 2 9

2 20 2 44

2 3 10 22

x y z

x y z

x y z
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4. Apply Gauss elimination method to solve the equations:
10

2 2 17

3 2 17

x y z

x y z

x y z

  

  

  

5. Solve the system, using Gauss elimination method:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 4

7 12

6 5

4 6

x x x x

x x x x

x x x x

x x x x

   

   

    

    

6. Apply Gauss elimination method to solve the equations:
4 5

6 12

3 4

x y z

x y z

x y z

   

   

  

7. Solve the following system, using Cholesky method
10 12

2 10 13

2 2 10 14

x y z

x y z

x y z

  

  

  

8. Solve the following system, using Cholesky method

2 3 5

4 4 3 3

2 3 1

x y z

x y z

x y z

  

  

   

9. Solve the following system, using Cholesky method

2 3 9

2 3 6

3 2 8

x y z

x y z

x y z

  

  

  

10. Solve the following using Cholesky method:

3 1 1 4
1 2 2 3 .
2 1 3 4

x
y
z
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11. Find the inverse of the following matrix using Cholesky method:

1 1 1

1 2 4 .

1 2 2

 
  
  

12. Solve the following system using Gauss Jordan method:
2 3 1

4 5 25

3 4 2

x y z

x y z

x y z

   

  

  

13. Solve the following system using Gauss Jordan method:
2 3 4 7

5 2 2 7

6 3 10 23

x y z

x y z

x y z

  

  

  

MATRIX INVERSION USING GAUSS ELIMINATION

We know that X will be the inverse of an n-square non-singular matrix A if

,AX I …(1)

where I is the n n identity matrix.

Every square non-singular matrix will have an inverse.  Gauss elimination and Gauss-
Jordan methods are popular among many methods available for finding the inverse of a
non-singular matrix.

For the third order matrices, (1) may be written as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

0 1 0 .

0 0 1

     
          
          

a a a x x x

a a a x x x

a a a x x x

Clearly the above equation is equivalent to the three equations

11 12 13 11

21 22 23 21

31 32 33 31

1

0

0

     
          
          

a a a x

a a a x

a a a x

11 12 13 12

21 22 23 22

31 32 33 32

0

1

0

     
          
          

a a a x

a a a x

a a a x
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11 12 13 13

21 22 23 23

31 32 33 33

0

0

1

     
          
          

a a a x

a a a x

a a a x

We can therefore solve each of these systems using Gaussian elimination method and the
result in each case will be the corresponding column of 1.X A We solve all the three
equations simultaneously as illustrated in the following examples.

Example Using Gaussian elimination, find the inverse of the matrix
2 1 1

3 2 3 .

1 4 9

 
   
  

A

In this method, we place an identity matrix, whose order is same as that of A, adjacent to
A which we call augmented matrix.  Then the inverse of A is computed in two stages.  In the
first stage, A is converted into an upper triangular form, using Gaussian elimination
method.

We write the augmented system first and then apply low transformations:

2 1 1 1 0 0

3 2 3 0 1 0

1 4 9 0 0 1

 
 
 
  


3 31

2 2 2

7 17 1
2 2 2

2 1 1 1 0 0

0 1 0

0 0 1

 
  
  

3
2 2 12

1
3 3 12

by

by

R R R

R R R

 
 

 3 31
2 2 2

2 1 1 1 0 0

0 1 0

0 0 2 10 7 1

 
  
   

3 3 21by 7R R R 

The above is equivalent to the following three systems:

3 31
2 2 2

2 1 1 1

0

0 0 2 10

 
  
  

… (1)

31
2 2

2 1 1 0

0 1

0 0 2 7

 
 
 
   

… (2)

31
2 2

2 1 1 0

0 1

0 0 2 1

 
 
 
  

… (3)

Now the matrix equation of the system of equations corresponding to (1) is

11

3 31
212 2 2

31

2 1 1 1

0

0 0 2 10

     
           
          

x

x

x
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which on back substitution gives 31 21 115, 12, 3.    x x x

Similarly using the other two systems other x values are determined and hence the inverse
is given by

5 1
11 12 13 2 2

1 17 3
21 22 23 2 2

7 1
31 32 33 2 2

3

12 .

5



   
      
       

x x x

A x x x

x x x

All these operations are also performed on the adjacently placed identity matrix.

Example Use the Gaussian elimination method to find the inverse of the matrix

1 1 1

4 3 1

3 5 3

 
   
  

A .

At first, we place an identity matrix of the same order adjacent to the given matrix. Thus,
the augmented matrix can be written as

1 1 1 1 0 0

4 3 1 0 1 0

3 5 3 0 0 1

 
  
  

. . . (1)

In order to increase the accuracy of the result, it is essential to employ partial pivoting.
We look for an absolutely largest coefficient in the first column and we use this coefficient
as the pivotal coefficient (for this we have to interchange rows if necessary)

In first column of matrix (1), 4 is the largest element, and hence is the pivotal element.
In order to bring 4 in the first row we interchange the first and second rows and obtain the
augmented matrix in the form

4 3 1 0 1 0

1 1 1 1 0 0

3 5 3 0 0 1

 
 
 
  

. . . (2)

3 1 1
4 4 41 0 0

1 1 1 1 0 0

3 5 3 0 0 1

 
 
 
  


1 1

1
by

4
R R

3 1 1
4 4 4

51 1
4 4 4

15 311
4 4 4

1 0 0

~ 0 1 0

0 0 1

 
  
  

2 2 1

3 3 1

by

by 3

R R R

R R R

 
 

We now search for an absolutely largest coefficient in the second column (and not in
the first row) and we use this coefficient as the pivotal coefficient.  The pivot element is
the max (1/4, 11/4) and is 11/4.  Therefore, we interchange  second and third rows of the
above.
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3 1 1
4 4 4

15 311
4 4 4

51 1
4 4 4

1 0 0

0 0 1

0 1 0

 
  
  

Now, divide R2 by  the pivot element a22 = 11/4, and obtain
3 1 1
4 4 4

15 3 4
11 11 11
51 1

4 4 4

1 0 0

0 1 0

0 1 0

 
  
  

In order to make the entries below 1 in the second column we perform

R3  R3  (1/4)R1 in  the above matrix and obtain
3 1 1
4 4 4

15 3 4
11 11 11
10 2 1
11 11 11

1 0 0

0 1 0

0 0 1

 
  
   

This is equivalent to the following three matrices
3 1
4 4

15
11
10
11

1 0

0 1 0

0 0 1

 
 
 
  

;

3 1 1
4 4 4

15 3
10 11
10 2
11 11

1

0 1

0 0

 
  
  

;

3 1
4 4

15 4
11 11
10 1
11 11

1 0

0 1

0 0

 
 
 
  

Thus we have

11 12 13
1

21 22 23

31 32 33

7 1 2
5 5 5
3 1

0
2 2

11 1 1
10 5 10

x x x

A x x x

x x x



  
   
        
    

  
 

Matrix Inversion using Gauss-Jordan method

This method is similar to Gaussian elimination method for matrix inversion, starting with
the augmented matrix [ ]AI and reducing A to the identity matrix using elementary row
transformations.  The method is illustrated in the following example.

Example Find the inverse of the following matrix A by Gauss-Jordan method.

1 1 1

4 3 1 .

3 5 3

A

 
   
  

The augmented matrix is given by
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1 1 1 1 0 0

4 3 1 0 1 0

3 5 3 0 0 1

 
  
  

1 1 1 1 0 0

~ 0 1 5 4 1 0

0 2 0 3 0 1

 
    
  

2 2 1

3 3 1

by 4

by 3

R R R

R R R

 
 

1 1 1 1 0 0

~ 0 1 5 4 1 0

0 2 0 3 0 1

 
  
  

2 2by R R

1 0 4 3 1 0

~ 0 1 5 4 1 0

0 0 10 11 2 1

  
  
   

1 1 2

3 3 2

by

by 2

R R R

R R R

 
 

1 0 4 3 1 0

~ 0 1 5 4 1 0

0 0 1 11/10 1/ 5 1/10

  
  
   

3 3

1
by

10
R R

1 0 0 7 / 5 1/ 5 2 / 5

~ 0 1 0 3/ 2 0 1/ 2

0 0 1 11/10 1/ 5 1/10

 
  
   

1 1 3

2 2 1

by 4

by 5

R R R

R R R

 
 

Thus we have

1

7 1 2
5 5 5
3 1

0 .
2 2

11 1 1
10 5 10

A

  
 
  
 
 

  
 

 Triangulation Method (LU Decomposition Method):

In linear algebra, LU decomposition (also called LU factorization) factorizes a
matrix as the product of a lower triangular matrix and an upper triangular matrix

Let A be a non-singular square matrix. LU decomposition is a decomposition of the
form

A=LU

where L is a lower triangular matrix and U is an upper triangular matrix. This means that
L has only zeros above the diagonal and U has only zeros below the diagonal. For
example, for a 3-by-3 matrix A, its LU decomposition looks like this:
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11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

    
        
        

Consider a system of linear equations,

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

This can be written in the form,

Ax=b,

where
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
   
  

,
1
2
.
.

x
x

xn

x

 
 
 
 
  

and
1
2
.
.

b
b

bm

b

 
 
 
 
  

To solve the system of equations by LU decomposition, first we decompose A as LU,
where,

11 12 13

21 22 23

31 32 33

1 0 0

1 0 0

1 0 0

u u u

L l and U u u

l l u

   
       
      

This gives,

LUx = b.

Let Ux=y.   This implies,   Ly=b.

That is,

1 1

21 2 2

31 32 3 3

1 0 0

1 0

1

y b

l y b

l l y b

     
          
          

Thus,

1 1

21 1 2 2

31 1 32 2 3 3

y b

l y y b

l y l y y b
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This gives the y values by forward substitution, which means, substitute the value
of 1y given by the first equation in the second and solve 2y , then use these values of

1 2y and y in the third and solve 3y .

Then the system of equations

11 12 13 1 1

22 23 2 2

33 3 3

; 0

0 0

u u u x y

Ux y that is u u x y

u x y

    
         
        

gives the required values of 1 2 3,x x and x as the solution of the original system of linear
equations by backward substitution.

To decompose a matrix
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
   
  

, in the form

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

    
        
        

, we proceed as follows.

On multiplying
11 12 13

21 22 23

31 32 33

1 0 0

1 0 0

1 0 0

u u u

l and u u

l l u

   
   
   
      

, we get,

11 12 13

21 11 21 12 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

u u u

l u l u u l u u

l u l u l u l u l u u

 
   
    

Equating it with the corresponding terms of A, we get,

11 11 12 12 13 13

3121
21 11 21 21 31 11 31 31

11 11

21 12 22 22 22 22 21 12

21 13 23 23 23 23 21 13

31 12 32 22 32 31 13 32 23 33 33 32 33

; ;

;

;

;

,

,

u a u a u a

aa
l u a l l u a l

u u

l u u a u a l u

l u u a u a l u

simililarly

l u l u a l u l u u a gives l and u

  

     

    
    

    

.
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Example: Solve the following system of equations by LU decomposition.

2x+3y+z=9

x+2y+3z=6

3x+y+2z=8.

Solution:

The above system of equations is written as,

2 3 1 9

1 2 3 6

3 1 2 8

x

y

z

     
          
          

To decompose the matrix
2 3 1

1 2 3

3 1 2

 
 
 
  

in the form of LU, we equate the corresponding

terms of A and LU as already illustrated, and obtain

11 12 13

3121
21 31

11 11

22 22 21 12

23 23 21 13

2; 3; 1

1 3
;

2 2

1 1
2 3 ;

2 2
1 5

3 1 ;
2 2

u u u

aa
l l

u u

u a l u

u a l u

  

   

     

     

   

32 31 12
32

22

33 33 33 31 13 32 23

3
1 3

2 7
1
2

3 5 3 35
2 1 7 2 18

2 2 2 2

a l u
l and

u

u u a l u l u

 
   

                   
   

Hence,

51 1
2 2 2
3
2

2 3 1 1 0 0 2 3 1

1 2 3 1 0 0

3 1 2 7 1 0 0 18

    
         
        

This implies,

51 1
2 2 2
3
2

1 0 0 2 3 1 9

1 0 0 6

7 1 0 0 18 8

x

y

z

       
              
              

Consider
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1
51

22 2

3

2 3 1

0

0 0 18

x y

y y

z y

    
          
         

,  then
1

1
22

3
32

1 0 0 9

1 0 6

7 1 8

y

y

y

     
          
         

,

Solving these, we get,
1

3
2 2

3

9

5

y

y

y

   
      
     

That is,

5 31
2 2 2

2 3 1 9

0

0 0 18 5

x

y

z

     
          
          

Now, solving the above expression we obtain the values of x, y and z as a solution
of the given system of equations as,

35
18
29
18
5

18

x

y

z

  
      
     

.

Assignments

1. Using Gauss-Jordan method, find the inverse of the following matrices:

(i)
1 1 3

1 3 3

2 4 4

A

 
   
    

(ii)
1 1 2

1 2 4

2 4 7

B

 
   
  

2. Using Gaussian elimination method, find the inverse of the following matrices:

(i)
0 1 2

1 2 3

3 1 1

A

 
   
  

(ii)
2 0 1

3 2 5

1 1 0

B
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12

SOLUTION BY ITERATIONS

SOLUTION BY ITERATION: Jacobi’s iteration method and Gauss Seidel iteration method

The methods discussed in the previous section belong to the direct methods for
solving systems of linear equations; these are methods that yield solutions after an
amount of computations that can be specified in advance.

In this section, we discuss indirect or iterative methods in which we start from an
initial value and obtain better and better approximations from a computational cycle
repeated as often as may be necessary, for achieving a required accuracy, so that the
amount of arithmetic depends upon the accuracy required.

Jacobi’s iteration method and Gauss Seidel iteration method

Consider a linear system of n linear equations in n unknowns 1 2, , , nx x x of the form

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

     
          



     











n n

n n

n n

n n n nn n n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

. . . (1)

in which the diagonal elements iia do not vanish.

Now the system (1) can be written as

13 11 12
1 2 3

11 11 11 11

23 22 21
2 1 3

22 22 22 22

3 31 32 2
3 1 2

33 33 33 33

, 11 2
1 2 1




     

     

     



     













n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a

…  (2)

Suppose we start with (0) (0) (0)
1 2, , , nx x x as initial values to the variables 1 2, , , nx x x .  Then

we can find better approximations to 1 2, , , nx x x using the following two iterative
methods:

(i) Jacobi’s iteration method

Jacobi’s iteration method, also called the method of simultaneous displacements, is as follows:
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Step 1:  Determination of first approximation (1) (1) (1)
1 2, , , nx x x using (0) (0) (0)

1 2, , , nx x x .

(1) (0) (0) (0)13 11 12
1 2 3

11 11 11 11

(1) (0) (0) (0)23 22 21
2 1 3

22 22 22 22

(1) (0) (0) (0)3 31 32 2
3 1 2

33 33 33 33

, 1(1) (0) (0) (1 2
1 2 1




    

    

    

    











n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a
0)

















…  (3)

Step 2:  Similarly, (2) (2) (2)
1 2, , , nx x x are evaluated by just replacing (0)

rx in the right hand
sides equations in (3) by (1)

rx .

Step 1:n In general, if ( ) ( ) ( )
1 2, , ,n n n

nx x x are a system of n th approximations, then the next
approximation is given by the formula

( 1) ( ) ( ) ( )13 11 12
1 2 3

11 11 11 11

( 1) ( ) ( ) ( )23 22 21
2 1 3

22 22 22 22

( 1) ( ) ( ) ( )3 31 32 2
3 1 2

33 33 33 22

, 1( 1) ( ) ( )1 2
1 2









    

    

    

    











n n n nn
n

n n n nn
n

n n n nn
n

n nn n nn n n
n

nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x

a a a
( )

1

















n
n

nn

x
a

…  (4)

The system in (4) can also be briefly described as follows:

 ( 1) ( )

1

0,1,2, , 1, 2, ,




     
n

ijr ri
i j

ii iij
j i

ab
x x r i n

a a

A sufficient condition for obtaining a solution by Jacobi’s iteration method is the diagonal
dominance,

i.e.,
1

, 1, 2, , .



  
n

ij
j
j i

a a i nii

i.e., in each row of A the modulus of the diagonal element exceeds the sum of the off
diagonal elements and also the diagonal elements 0iia . If any diagonal element is 0, the
equations can always be re-arranged to satisfy this condition.
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(ii) Gauss Seidel iteration method

A simple modification to Jacobi’s iteration method is given by Gauss-Seidel method.

Step 1 (Gauss-Seidel method):  Determination of first approximation (1) (1) (1)
1 2, , , nx x x using

(0) (0) (0)
1 2, , , nx x x .

(1) (0) (0) (0)13 11 12
1 2 3

11 11 11 11

(1) (1) (0) (0)23 22 21
2 1 3

22 22 22 22

(1) (1) (1) (0)3 31 32 2
3 1 2

33 33 33 33

, 1(1) (1) (1) (1 2
1 2 1




    

    

    

    











n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a
1)

















…  (5)

Step 1:n In general, if ( ) ( ) ( )
1 2, , ,n n n

nx x x are a system of n th approximations, then the next
approximation is given by the formula

( 1) ( ) ( ) ( )13 11 12
1 2 3

11 11 11 11

( 1) ( 1) ( ) ( )23 22 21
2 1 3

22 22 22 22

( 1) ( 1) ( 1) ( )3 31 32 2
3 1 2

33 33 33 33

( 1) ( 1) ( 11 2
1 2



 

  

  

    

    

    

  









n n n nn
n

n n n nn
n

n n n nn
n

n n nn n n
n

nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

b a a
x x x

a a a
, 1) ( 1)

1
 














  




n n n

n
nn

a
x

a

…  (6)

(6) can be briefly described as follows:

1
( 1) ( 1) ( )

1 1

( 0,1,2, , 1, 2, , ).


 

  

       
i n

ij ijr r ri
i j j

ii ii iij j i

a ab
x x x r i n

a a a

Remark We note the difference between Jacobi’s method and Gauss-Seidel method.

(Attention! In the following the bold face letters must be carefully noted):

Jacobi’s method: In the first equation of (3), we substitute the initial approximations
(0) (0) (0)
2 3, , , nx x x into the right-hand side and denote the result as (1)

1 .x In the second
equation, we substitute ( ) ( ) (0), , , nx0 0

1 3x x and denote the result as (1)
2 .x In third, we

substitute (0)
nx(0) (0)

1 2, , … ,x x and call the result as (1)
3 .x The process is repeated in this

manner.
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Gauss-Seidel method: In the first equation of (3), we substitute the initial approximation
(0) (0)
2 , , nx x into the right-hand side and denote the result as (1)

1 .x In the second equation,
we substitute ( ) (0) (0)

3, , , nx x1
1x and denote the result as (1)

2 .x In third, we substitute
( ) ( ) (0), , , nx1 1
1 2x x and call the result as (1)

3 .x The process is repeated in this manner and
illustrated below:

Example 11 Solve the following system of equations using (a) Jacobi’s iteration method
and (b) Gauss-Seidel iteration method.

1 2 3 410 2 3x x x x   

1 2 3 42 10 15x x x x    

1 2 3 410 2 27x x x x    

1 2 3 42 10 9x x x x      .

Solution

To solve these equations by the iterative methods, we re-write them as follows:

1 2 3 40.3 0.2 0.1 0.1x x x x   

2 1 3 41.5 0.2 0.1 0.1x x x x   

3 1 2 42.7 0.1 0.1 0.2x x x x   

4 1 2 30.9 0.1 0.1 0.2x x x x    

It can be verified that these equations satisfy the diagonal dominance condition. The
process and given in the following Tables.

Table 1. Jacobi’s Method

31 2 4

1 0.3 1.56 2.886 0.1368

2 0.8869 1.9523 2.9566 0.0248

3 0.9836 1.9899 2.9924 0.0042

4 0.9968 1.9982 2.9987 0.0008

5 0.9994 1.9997 2.9998 0.0001

6 0.9999 1.9999 3.0 0.0
7 1.0 2.0 3.0 0.0

xx x xn
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Table 2. Gauss-Seidel method

From Tables 1 and 2, it is clear that twelve iterations are required by Jacobi’s method to
achieve the same accuracy as seven Gauss-Seidel iterations.

Example 12 Solve by Jacobi’s iteration method, the system of equations

1 2 3

1 2 3

1 2 3

20 7 17

3 20 18

2 3 20 25

x x x

x x x

x x x

  

   

  

Solution The given system of equations can be written as

1 2 3

17 1 7
20 20 20

x x x  

2 1 3

18 3 1
20 20 20

x x x   (3)

3 1 2

25 2 3
20 20 20

x x x  

31 2 4

0 . 3 1 . 5 2 . 7 0 . 91

0 . 7 8 1 . 7 4 2 . 7 0 . 1 82

3 0 . 9 1 . 9 0 8 2 . 9 1 6 0 . 1 0 8

0 . 9 6 2 4 1 . 9 6 0 8 2 . 9 5 9 2 0 . 0 3 64

5 0 . 9 8 4 5 1 . 9 8 4 8 2 . 9 8 5 1 0 . 0 1 5 8

6 0 . 9 9 3 9 1 . 9 9 3 8 2 . 9 9 3 8 0 . 0 0 6

7 0 . 9 9 7 5 1 . 9 9 7 5 2 . 9 9 7 6 0 . 0 0 2 5

8 0 . 9 9 9 0 1 . 9 9 9 0 2 . 9 9 9 0 0 . 0 0 1 0

9 0 . 9 9 9 6 1 . 9 9 9

xx x xn

















6 2 . 9 9 9 6 0 . 0 0 0 4

1 0 0 . 9 9 9 8 1 . 9 9 9 8 2 . 9 9 9 8 0 . 0 0 0 2

0 . 9 9 9 9 1 . 9 9 9 9 2 . 9 9 9 9 0 . 0 0 0 11 1
1 2 1 . 0 2 . 0 3 . 0 0 . 0
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We start from an approximation (0) (0) (0)

1 2 3
0  x x x to 1 2 3, ,x x x respectively.  Substituting

these values on the right sides of equations in (3), we get the first approximation values
(1)

1

17 0.85
20

x   , (1)

2

18 0.90
20

x     and (1)

3

25 1.25
20

x  

Putting these values on the right side of the equations in (2), we obtain the second
approximation values, (2)

1
1.02x  , (2)

2
0.965x   and (2)

3
1.03x  .  Similarly, third approximation

values are (3)

1
1.00125x  , (3)

2
1.0015x   and (3)

3
1.004x  and fourth approximation values are

(4)

1
1.000475x  , (4)

2
0.9999875x   and (4)

3
0.99965x  . It can be seen that the values approach the

exact solution 1 1x  , 2 1x   , 3 1x  .

Example 13 Solve, using Gauss-Seidel iteration method, the system:

x1 - 0.25x2 - 0.25x3 =   50

-0.25x1 + x2 - 0.25x4 =  50

-0.25x1 + x3 - 0.25x4 =  25

-0.25x2 - 0.25x3 + x4 =    25

Solution

The given system of equations can be written as

1 2 3
50 0.25 0.25x x x  

2 1 4
50 0.25 0.25x x x   …(2)

3 1 4
25 0.25 0.25x x x  

4 2 3
25 0.25 0.25x x x  

We start from an approximation (0) (0) (0)

1 2 3
100x x x   to 1 2 3, ,x x x respectively.  Then we get

approximation values as follows:
(1) (0) (0)

1 2 3
50 0.25 0.25 100.00x x x   

(1) (1) (0)

2 1 4
50 0.25 0.25 100.00x x x    (1) (1) (0)

3 1 4
50 0.25 0.25 75.00x x x   

(1) (1) (1)

4 2 3
25 0.25 0.25 68.75x x x   

Now second approximation values are given by:
(2) (1) (1)

1 2 3
50 0.25 0.25 93.75x x x   

(2) (2) (1)

2 1 4
50 0.25 0.25 90.62x x x    (2) (2) (1)

3 1 4
50 0.25 0.25 65.62x x x   

(2) (2) (2)

4 2 3
25 0.25 0.25 64.06x x x    .
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Note that the exact solution to the system is

1 2 3 487.5, 62.5x x x x   

Example 14 Using Gauss Siedel iteration solve the following system of equations, in three
steps starting from 1, 1, 1.

10 6x y z  

10 6x y z  

10 6x y z  

Solution 0.6 0.1 0.1x y z  

0.6 0.1 0.1

0.6 0.1 0.1

y x z

z x y

  

  

Step 1 Using x(0) = y(0) = z(0) = 1, we have

x(1) = 0.6  0.1 y(0)  0.1 z(0) = 0.6  0.1  0.1 = 0.4

y(1) = 0.6  0.1 x(1)  0.1 z(0) = 0.6  0.10.4  0.1 = 0.46

z(1) = 0.6  0.1 x(1)  0.1 y(1) = 0.6  0.10.4  0.10.46  = 0.514

Step 2 Using x(1) = 0.4, y(1)= 0.46, z(1) = 0.514, we have

x(2) = 0.6  0.1 y(1)  0.1 z(1) = 0.6  0.1  0.46  0.10.514 = 0.5026

y(2) = 0.6  0.1 x(2)  0.1 z(1) = 0.6  0.10.5026  0.10.514 = 0.49834

z(2) = 0.6  0.1 x(2)  0.1 y(2)

= 0.6  0.10.5026 0.10.49834  = 0.499906

Step 3 Using x(2) = 0.5026, y(2)= 0.49834, z(2) = 0.499906, we have

x(3) = 0.6  0.1 y(2)  0.1 z(2) = 0.6  0.1  0.49834 0.10.499906= 0.5001754

y(3) = 0.6  0.1 x(3)  0.1 z(2)

= 0.6  0.10.5001754 0.10.499906= 0.49999186

z(3) = 0.6  0.1 x(3)  0.1 y(3)

= 0.6  0.10.5001754 0.10.5001754= 0.49996492

We take x  5, y  5, z  5 as the solution of the given system of equations.
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Exercises

1. Apply Gauss Seidel iteration method to solve:
10 2 9x y z  

2 20 2 44x y z   

2 3 10 22x y z   

2. Apply Gauss Seidel iteration method to solve:
1.2 2.1 4.2 9.9x y z  

5.3 6.1 4.7 21.6x y z  

9.2 8.3 15.2x y z  

3. Apply Jacobi’s iteration method to solve:
5 10x y z  

2 10x y z  

5 1x y z   

4. Apply Jacobi’s iteration method to solve:
5 2 12x y z  

4 2 15x y z  

2 5 20x y z  

Answers

1. 1.013, 1.996, 3.001x y z   

2. 2, 3, 4x y z   (Approximately)

3. 13.223, 16.766, 2.306x y z    

4. 2.556, 1.722, 1.005x y z  

5. 1.08, 1.95, 3.16x y z  
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13

EIGEN VALUES

Eigen Values

Definitions Suppose λ be an indeterminate.  Consider the n × n matrix

nnji

nnnn

n

n

a

aaa

aaa

aaa

A 





















 ][

...

......

...

...

21

22221

11211

. . . (1)

Then the matrix A – λI , where I is the identity matrix of order n, is called the
characteristic matrix of A and is given by

.

...

...

...

...

21

2

1

2221

1211

































nnnn

n

n

aaa

a

a

aa

aa

IA . . . (2)

The determinant A  λI of the characteristic matrix of A given in (2) can be found out
to be

b0 + b1 λ  + b2 λ2 +  .  .  .  +  bn  1λn  1 + bn λn . . . (3)

where b i are scalars.  Now (3) is a non-zero polynomial of degree n in the
indeterminate λ.  This polynomial is called the characteristic polynomial of A.  That is
the characteristic polynomial of the matrix A is given by

A  λI . . . . (3)

The equation

A  λI  = 0 . . . (4)

i.e.,  the equation

11 12 1

21 22 2

1 2

. . .

. . .
0

. . .

. . .

n

n

n n nn

a a a

a a a

a a a













…(4)

is called the characteristic equation of the matrix A.
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The roots of the characteristic equation (4) are called the characteristic roots or latent
roots or eigen values of the matrix A. If  is an eigen value, then column vector X such
that AX X is called an eigen vector associated with the eigen value  .

Example Find the eigen values and the corresponding eigen vectors of the matrix

.

342

476

268





















A

Solution

The characteristic equation of A is A  λI  = 0.

i.e., 0

342

476

268












On simplification we get

- λ 3 + 18 λ2  45 λ =  0,

which gives the eigen values   λ = 0;    λ  = 3;    λ  = 15.

(Determination of eigen vector corresponding to the eigen value 0  )

Let
1

2

3

x

X x

x

 
   
  

be the eigen vector corresponding to 0  is obtained by solving 0AX X

i.e., by solving

1 1

2 2

3 3

8 6 2

6 7 4 0

2 4 3

x x

x x

x x

     
          
         

i.e., by solving

.

0

0

0

342

476

268

3

2

1






















































x

x

x

The corresponding system of linear equations is

1 2 3

1 2 3

1 2 3

8 6 2 0

6 7 4 0

2 4 3 0

x x x

x x x

x x x

  
   

  

 
 
 

1

2

3







Now (1) and (3) can be written as
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034 321  xxx

and .0342 321  xxx

Now by the method of cross multiplication

    234434214133
321








xxx

or
10105
321








xxx .

or
221
321 xxx

 .

Hence 31 2 ,
1 2 2
  

xx x
k

where k is arbitrary.

 1 2 3, 2 , 2 .  x k x k x k . . . (4)

The solution given in (4) also satisfies the equation (2).

 eigen vector corresponding to λ = 0 is  given by

















k

k

k

X

2

2 .

A particular eigen value is (with 1k  )  is
1

2 .

2

X

 
   
  

(Determination of eigen vector corresponding to the eigen value λ = 3 )

The eigen vector X corresponding to λ = 3 is obtained by solving 3AX X or by solving
(A – 3 I) X  =  0

i.e.,  by solving

.

0

0

0

042

446

265

3

2

1






















































x

x

x

By elementary row transformations, the above matrix equation is equivalent to the
matrix equation

.

0

0

0

000

10

101

3

2

1

2
1

















































x

x

x

Choosing 3 ,x k arbitrary, we have 1 3 0, x x 1
2 32 0 x x .
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Hence 1
2

k

X k

k

 
   
  

is an eigen vector corresponding to the eigen value λ = 3.

A particular eigen value is (with 2k  )  is
2

1 .

2

X

 
   
  

(Determination of eigen vector corresponding to the eigen value λ = 15 )

The eigen vector X corresponding to λ = 15 is obtained by solving 15AX X

i.e.,  by solving (A – 15 I) X  =  0

i.e.,  by solving

.

0

0

0

1242

486

267

3

2

1






















































x

x

x

Hence

















a

a

a

X 2

2

is an eigen vector corresponding to the eigen value λ = 15.

ExampleFind the eigen values and the eigen vector corresponding to the largest eigen
value of the matrix

.

312

132

226





















A

Solution

It can be seen that the eigen values are 2,  2  and  8.

Now we determine the eigen vector corresponding to the largest eigen value 8:

The eigen vector X corresponding to λ = 8 is obtained by solving 8AX X i.e.,  by
solving   [A – 8 I ] X  =  0

i.e.,  by solving

.

0

0

0

8312

1832

2286

3

2

1






















































x

x

x



School of Distance Education

Numerical Methods Page 173

i.e.,  by solving

.

0

0

0

512

142

222

3

2

1






















































x

x

x

The corresponding system of linear equations is

 
 
 3
2

1

052

052

0222

321

321

321











xxx

xxx

xxx

Now (1) and (3) can be written as

1 2 3 0  x x x

and .052 321  xxx

Now by the method of cross multiplication

             
31 2

1 5 1 1 1 2 1 5 1 1 1 2
 

               
xx x

or
336
321 xxx



 .

or
112
321 xxx



 .

Hence .
112
321 k

xxx





 .,,2 321 kxkxkx  . . . (4)

The solution given in (4) also satisfies the equation (2).

 the eigen vector corresponding to λ = 8 is

.

2

















k

k

k

X

A particular eigen value is (with 1k  )  is
2

1 .

1

X

 
   
  

Example Find the eigenvalues and eigenvectors of the matrix:

5 0 1

0 02

0 51

A
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The characteristic equation of the matrix is given by

5 0 1

0 2 0 0

0 51


  








which gives 1 22, 4    and 3 6 .

Determination of eigenvectors corresponding to 1 2  . Let the eigenvector be

1

1 2

3

 
   
  

x

X x

x

Then we have:

1 1

2 2

3 3

2

x x

A x x

x x

   
       
      

,

which gives the equations

1 37 0 x x

1 3and 7 0 x x

The solution is 1 3 0x x  with 2x arbitrary. In particular, we take 2 1x  and an eigenvector
is

1

0

1

0

X

 
   
  

Determination of eigenvectors corresponding to 2 4 . If

1

2 2

3

x

X x

x

 
   
  

is an eigenvector, the equations are

1 3 0x x 

and 26 0x 

from which we obtain

1 3x x  and 2 0.x
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We choose, in particular, 1 1/ 2x  and 3 1 2x   so that 2 2 2
1 2 3 1x x x   .  The

eigenvector chosen in this way is said be normalized. We therefore have
1
2

2 1
2

.
 
  
  

X

Determination of eigenvectors corresponding to 3 6 . If

1

3 2

3

x

X x

x

 
   
  

is the required eigenvector, then the equations are

1 3 0x x  

28 0x 

1 3 0x x 

which give 1 3x x and 2 0x  .

Choosing 1 3 1/ 2x x  , the normalized eigenvector is given by

3

1/ 2

0

1/ 2

X

 
 
  
 
 

Example Determine the largest eigen value and the corresponding eigenvector of the
matrix

61 1

01 2

0 0 3

A

 
 
  
 
 

Let the initial eigenvector be

(0)

1

0

0

X

 
   
  

.

Then we have

(0)

6 1 11 1

01 2 0 1

0 0 3 0 0

     
           
         

AX
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Let (1)

1

1 .

0

 
   
  

X Then we have (0) (1)AX X and we have an approximate eigen value is 1 and

an approximate eigenvector is (1)X . Hence we have

(1)

61 1 1 7 2.3

01 2 1 3 3 9

0 0 3 0 0 0

AX

       
       
         
       

      

from which we see that

(2)

2.3

1

0

X

 
 
  
 
 

and that an approximate eigen value is 3.

Repeating the above procedure, we successively obtain

2.1 2.2 2 2 2

4 1.1 ; 4 1.1 ; 4.4 1 ; 4 1 ; 4 1 .

0 0 00 0

        
        
        
        

         

It follows that the largest eigen value is 4 and the corresponding eigenvector is

2

1

0

 
 
 
  

.

Eigenvalues of a Symmetric Tridiagonal Matrix

Since symmetric matrices can be reduced to symmetric tridiagonal matrices, the
determination of eigen values of a symmetric tridiagonal matrix is of particular interest.
Consider the tridiagonal matrix

11 12

231 12 22

23 33

0

0

a a

aA a a

a a

 
   
  

.

To obtain the eigenvalues of 1A , we form the determinant equation

11 12

231 12 22

23 33

0

0.

0


   



a a

aA a a

a a


 



Suppose that the above equation is written in the form

3 ( ) 0  . . . (1)
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Expanding the determinants in terms of the third row, we obtain

11 12 11
3 33 23

2312 22 12

0( ) ( )
a a a

a a
aa a a

 
  


 

  


33 2 23 11 23( ) ( ) ( )a a a a       ,

where 11 12
2

12 22

( )





a a

a a


 



2
33 2 23 1( ) ( ) ( )a a       , where 1 11( ) ( ) a  

Hence (1) implies,
2

33 2 23 1( ) ( ) ( ) 0a a       .

We thus obtain the recursion formula

0 ( ) 1 

1 11( ) a   

11 0( ) ( )a    

11 12
2

12 22

( )
a a

a a







 


2
11 22 12( ) ( )a a a    

2
1 22 12 0( )( ) ( )a a      

2
3 2 33 23 1( ) ( )( ) ( )a a         .

In general, if

11 12

2312 22

1

0 ... 0

... 0( )
0 ... ... ... ...

,0 ... ...

k

k kk

a a

aa a

a k a











 



, (2 ),k n 

then the recursion formula is
2

1 1, 2( ) ( ) ( ) ( )k kk k k k ka a           , (2 )k n 

The equation ( ) 0k   is the characteristic equation and can be solved using the methods
discussed in Chapter 2. When the eigen values are known its eigen vectors can be
calculated.

Exercises

1. Find the eigen values and the corresponding eigen vectors of the following matrices:

(a) 3 0

5 1

 
  

(b) 










42

21
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(c)
















200

120

012

(d)

















753

432

5103

(e)
















163

045

003

(f)




















311

131

115

 
5 6 6

1 4 2

3 6 4

g

  
  
   

 
2 2 0

2 1 1

7 2 3

h

 
 
 
   

 
2 2 1

1 3 1

1 2 2

i

 
 
 
  

 
3 1 1

1 3 1

1 1 3

j

 
 
 
  

 
2 1 1

0 3 2

2 4 3

k

 
  
  

 
2 1 1

1 2 1

1 1 2

l

 
   
  

2. Find the eigen values and eigen vectors of 







12

21 Find the characteristic roots of


















102

120

201

A .

3. Find also the corresponding characteristic vectors.

4. Find the eigen values and the eigen vector corresponding to the largest eigen value of

the matrix .

342

416

268





















A

5. Obtain the eigen values and the corresponding eigen vector of matrix

.

312

132

226





















A

6. Use the iterative method to find the largest eigen value and the corresponding eigen
vector of the matrix

5 2 1 2

2 6 3 4
.

1 3 19 2

2 4 2 1

A
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14

TAYLOR SERIES METHOD

METHODS FOR NUMERCIAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

There are differential equations that cannot be solved using the standard methods
even though they possess solutions. In such situations, we apply numerical methods for
obtaining approximate solutions, where the accuracy is sufficient.  These methods yield
the solution in one of the following forms:

(i) Single-step method:  A series for y in terms of powers of ,x from which the value
of y at a particular value of x can be obtained by direct substitution.

(ii) Multi-step method: In multi step methods, the solution at any point x is obtained
using the solution at a number of previous points.

Taylor’s, Picard’s, Euler’s and Modified Euler’s methods are coming under single-
step method of solving an ordinary differential equation.

The need for finding the solution of the initial value problems occur frequently in
Engineering and Physics. There are some first order differential equations that cannot be
solved using the standard methods. In such situations we apply numerical methods.
These methods yield the solution in one of the two forms:

(iii)A series for y in terms of powers of ,x from which the value of y can be obtained
by direct substitution.

(iv)A set of tabulated values of x and .y

The methods of Taylor and Picard belong to class (i), whereas those of Euler, Runge-
Kutta, etc., belong to the class (ii).  In this chapter we consider Taylor series method.

Taylor Series
We recall the following (Ref. Fourth Semester Core Text):

The Taylor series generated by f at x a is

( )

0

( )
( )

!






k

k

k

f a
x a

k
=

2( )
( ) ( ) ( ) ( ) . . .

2!
     

x a
f a x a f a f a

1
( 1) ( )( ) ( )

( ) ( )
( 1)! !

n n
n nx a x a

f a f a
n n


 

  




In most of the cases, the Taylor’s series converges to ( )f x at every x and we often write

the Taylor’s series at x a as



School of Distance Education

Numerical Methods Page 180

2( )
( ) ( ) ( ) ( ) ( ) . . .

2!
     

x a
f x f a x a f a f a … (1)

Instead of ( )f x and a , we prefer ( )y x and 0x ,  and in that case (1) becomes
2

0
0 0 0 0

( )
( ) ( ) ( ) ( ) ( ) . . .

2!
x x

y x y x x x y x y x
      ... (2)

Solution of First Order IVP by Taylor Series Method

Now consider the initial value problem

0 0( , ), ( ) .y f x y y x y   …(3)

If ( )y x is the exact solution of (3), then using (2) with 0 0( )y x y , 0 0 0 0( ) , ( ) ,y x y y x y    

and so on, we obtain the Taylor’s series for ( )y x around 0x x as

2
0

0 0 0 0

( )
( ) ( ) . . .

2!
x x

y x y x x y y
      … (4)

If the values of 0 0, ,y y   are known, then (4) gives a power series for .y From (3) we

have ,y f  which on differentiation with respect to x (using chain rule) gives

df f f
y f y

dx x x
           

…(5)

Similarly, higher derivatives of y can be expressed in terms of f.

Example Using Taylor series, solve 2 , (0) 1.y x y y    Also   find (0.1)y correct to four decimal

places.

Here 0 00; (0) 1.x y y   Hence (4) takes the form
3 3 4 5

(4) (5)
0 0 0 0 0 0( )

1! 2! 3! 4! 5!
x x x x x

y x y y y y y y         …(6)

We have
2 ,y x y   2 2

0 0 0 0 0( , ) 0 1 1.y y x x y y x y         

1 2 ,y yy   0 0 0 0 0( , ) 1 2 1 2(1)( 1) 3.y y x x y y y y          

22 2( ) ,y yy y      20 0 0 0 0 0( , ) 2 2 8.y y x x y y y y y          

(4) 2 6 ,y yy y y    

(4) (4)
0 0 0 0 0 0 0( , ) 2 6 34.y y x x y y y y y y        

(5) (4) 22 8 6( ) ,y yy y y y     

(5) (5) (4) 2
0 0 0 0 0 0 0 0( , ) 2 8 6( ) 186.y y x x y y y y y y y          
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Substituting these values in (6), we obtain

3 4 17 312 3 4 5( ) 1 . . .
2 3 12 20

y x x x x x x       …(7)

To obtain (0.1)y correct to four decimal places, we consider the terms upto 4x and putting
0.1,x  we obtain

(0.1) 0.9138.y 

Remark to the Example (Truncation and range of  x) Suppose that we wish to find the
range of values of x for which the above series, truncated after the term containing 4 ,x

can be used to compute the values of y correct to four decimal places.  We need only to
write

31 5 0.00005,
20

x 

so that 0.126.x 

Example Solve using Taylor series method yx
dx

dy
 numerically starting with 1,x  0y  .

Also find y at 1.1.x 

Here 0 01; (1) 0.x y y   Hence (4) takes the form
2 3 4

(4)
0 0 0 0 0

( 1) ( 1) ( 1)
( ) ( 1) . . .

2! 3! 4!
x x x

y x y x y y y y
           …(7)

Here

y x y   ; 0 0 0 0 0( , ) 1 0 1y y x x y y x y         ( ) 1dy x y y
dx

     ;

0 0 0 0( , ) 1 1 1 2y y x x y y y         

y y  ; 0 0 0 0( , ) 2.y y x x y y y      

(4)y y ; (4)
0 0 0 0( , ) 2.y y x x y y y     

Substituting these values in (7), we obtain
3 4

2 ( 1) ( 1)
( ) ( 1) ( 1) . . .

3 12
x x

y x x x
 

      

Now to find (1.1),y we put 1.1x  in the above series  (considering terms upto  4th power of
x ) we get

3 4
2 (0.1) (0.1)

(1.1) 0.1 (0.1)
3 12

y     = 0.11.

Exact solution of the above initial value problem is
121  xexy
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and hence the exact value of y at 1.1x  is

y (1.1) = 0.11034.

Example Using Taylor series, solve

25 2 0, (4) 1.xy y y    

Also, find (4.1).y

Here 0 04; (4) 1.x y y   Hence (4) takes the form

2 3 4
(4)

0 0 0 0 0

( 4) ( 4) ( 4)
( ) ( 4) . . .

2! 3! 4!
x x x

y x y x y y y y
           …(8)

Here 0 0, ,y y   are evaluated as follows:

Consider the differential equation

25 2 0xy y    …(9)

Differentiating (9) with respect to x, we get

5 5 2 0xy y yy     . …(10)

Differentiating successively with respect to x, we obtain

5 xy + 10 y + 2 yy + 2 (y )2 = 0 …(11)

5 xy + 15 y + 2 yy + 6 y y = 0 …(12)

5 xy + 20 y + 2 yy + 8 y y + 6 (y )2 = 0…(13)

Using 0 04; 1,x y  (9) gives 2
0 0 05 2 0x y y    or 2

05 4 1 2 0y     which gives 0 0.05y 

.    (10) gives

0 0 0 0 05 5 2 0x y y y y     or 05 4 5 0.05 2 1 0.05 0y      

and gives 0 0.0175.y  

Similarly, 0y 0.01025, (4)
0y   0.00845, (5)

0y  0.008998125,

Hence (8) gives
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2 3

4 4
( ) 1 4 0.05 0.0175 0.01025

2! 3!
x x

y x x
 

     

       
4 5

4 4
0.00845 0.008998125

4! 5!
x x 

  

Putting x = 4.1, we get

            
2 3

0.1 0.1
4.1 1 0.1 0.05 0.0175 0.01025

2! 3!
y     

       
4 5

0.1 0.1
0.00845 0.008998125

4! 5!
  

= 1.0049

Solution of Second Order IVP by Taylor Series Method

Consider the second order initial value problem

0 0 0 0( , , ), ( ) , ( ) .y f x y y y x y y x l     …(14)

Setting ,y p  we get ,y p  and the differential equation in  (14) becomes

( , , )p f x y p  …(15)

with the initial conditions

0 0( )y x y …(16)

and 0 0 0( ) .p x p l  …(17)

Now Taylor series is given by
2

0
0 0 0 0

( )
( ) ( ) . . .

2!
x x

y x y x x y y
      .....(18)

where 0 0, ,y y   are determined using (16) and (17) and successive differentiation. The

method is illustrated in the following example.
Example Using Taylor series method, prove that the solution of

2

2
0

d y
xy

dx
 

with the initial conditions (0)y d and (0) 0y  is given by

3 6 91 4 28
( ) 1 . . .

3! 6! 9!
y x d x x x

       
.......(19)

Set .y p 

Then, ,y p 
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and the given differential equation becomes

0.p xy   …(20)

Now we have to determine the coefficients of the Taylor series:
2

0
0 0 0 0

( )
( ) ( ) . . .

2!
x x

y x y x x y y
      … (21)

Here 0 0 0 0 00, ( ) (0) , ( ) (0) 0.x y y x y d y y x y        

From (20), ,p xy  

so ,y p xy    0 0 0 0;y x y   

,y p y xy      0 0 0 0 ;y y x y d     

(4) 2 ,y y xy    (4)
0 0 0 02 0;y y x y    

(5) 3 ,y y xy    (5)
0 0 0 03 0;y y x y    

(6) (4)4 ,y y xy   (6) (4)
0 0 0 04 4 ;y y x y d    

(7) (4) (5)5 ,y y xy   (7) (4) (5)
0 0 05 0;y y x y   

(8) (5) (6)6 ,y y xy   (8) (5) (6)
0 0 0 06 0;y y x y   

(9) (6) (7)7 ,y y xy   (9) (6) (7)
0 0 0 07 7 4 28 .y y x y d d       

Putting these values in (21), we obtain (19).

Example 9 Evaluate (0.1)y , using Taylor series method,  given
2 2( ) 0, (0) 1, (0) 0y x y y y y      

Solution
Set .y p 

Then, ,y p 

and the given differential equation becomes
2 2 0.p xp y    …(22)

Now we have to determine the coefficients of the Taylor series:
2

0
0 0 0 0

( )
( ) ( ) . . .

2!
x x

y x y x x y y
      … (23)

Here 0 0 0 0 0 00, ( ) (0) 1, ( ) (0) 0.x y y x y p y y x y         

From (22), 2 2 ,p xp y  

so 2 2 ,y p xp y    2 2
0 0 0 0 0 1 1;y x p y      

2 2 2 ,y p p xpp yy       2
0 0 0 0 0 0 02 2 0;y p x p p y y     
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2 2 2 ,y p p xpp yy       2
0 0 0 0 0 0 02 2 0;y p x p p y y     

Putting these values in (23), we obtain
2

( ) 1 . . .
2!
x

y x    … (24)

Putting 0.1x  in (24), neglecting higher powers of ,x we obtain
2(0.1)

(0.1) 1 1 0.005 0.995.
2!

y     

Exercises

In Exercises 112 , solve the given initial value problem using Taylor series method.  Also
find the value of y for the given x .

1. 1 , (0) 1.
dy

xy y
dx
   Also find (0.1).y

2. 2 2 2, 1
dy

x y y
dx
    at 0.x  Also find (0.1).y

3. 2 1, (0) 0.
dy

y y
dx
   Also find (0.1)y and (0.2).y

4. 2yx
dx

dy
 , (0) 1.y  Obtain numerical values for 0.2(0.2)0.6.x 

5. 2 ,y x y   (0) 0.y  Obtain numerical values for

x = 0.0(0.2)0.4.

6. 2 2 ,y x y   (1) 0.y  Find y (1.3).

7. Solve , (1) 0.y x y y    Obtain numerical values for 1.0(0.1)1.2.x 

8. Solve
2

1
, (4) 4.

dy
y

dx x y
 


Also find (4.1)y and (4.2).y

9. Solve 1 2 , (0) 0.
dy

xy y
dx
   Also find (0.2)y and (0.4).y

10. Solve 1/ 3 , (1) 1.
dy

xy y
dx
  Also find (1.1)y and (1.2).y

11. Solve 2 , (0) 1.
dy

x y y
dx
   Also find y at 0.1(0.1)0.4.x 
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12. Solve 2 3 , (0) 0.xdy
y e y

dx
   Also find (0.1)y and (0.2).y

In Exercises 13 15, solve the given second order initial value problem using Taylor series
method.  Also find the value of y for the given x .

13.
2

2
, (0) 1, (0) 0.

d y dy
y x y y

dx dx
    Also find (0.1).y

14.
2

2
0, (0) 1, (0) 0.5.

d y
xy y y

dx
    Also find (0.1)y and (0.2).y

15.
2

2
2

, (0) 1, (0) 0.
d y

x xy y y
dx

    Also find (0.1)y and (0.2).y
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15
PICARDS ITERATION METHOD

Consider the initial value problem

( , )y f x y  , 0 0( ) .y x y …(1*)

Also, assume (1*) have a unique solution on some interval containing 0x .   By separating
variables, the differential equation in (1) becomes

( , ) .dy f x y dx ...(1**)

Integrating (1**) from x0 to x with respect to x, (at the same time y changes from 0y to
y ) we get

0 0

( , )
y x

y x

dy f x y dx 

or 0

0

( ) ( , )
x

y x y f x y dx
x

  

or 0

0

( ) ( , )
x

y x y f x y dx
x

   …(2)

It can be verified, by substituting 0x x and 0y y in (2), that (2) satisfies the initial
condition in (1).

To find the approximations to the solution ( )y x of (2) we proceed as follows:

We substitute the first approximation 0y y on the right side of (2), and obtain the better
approximation

(1)
0 0

0

( ) ( , )
x

y x y f x y dx
x

   …(3)

In the next step we substitute the function (1) ( )y x on the right side of (2) and obtain

(2) (1)
0

0

( ) ( , ( ))
x

y x y f x y x dx
x

   , …(4)

The nth step of this iteration gives an approximating function

( ) ( 1)
0

0

( ) ( , ( ))n n
x

y x y f x y x dx
x

   …(5)

In this way we obtain a sequence of approximations
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(1) (2) ( )( ), ( ), , ( ),ny x y x y x 

Working Rule

Consider the initial value problem

( , )y f x y  , 0 0( ) .y x y

Then Picard’s iterative formula is

( ) ( 1)
0

0

( , )n n
x

y y f x y dx
x

   ( 1, 2, 3, )n   ...(6)

with (0)
0.y y

Example Find approximate solutions by Picard’s iteration method to the initial value
problem 21y y   with the initial condition (0) 0.y  Hence find the approximate value
of y at 0.1x  and 0.2x  .

Picard’s iteration’s nth step is given by (6).

In this problem
2( , ) 1f x y y  ; (0)

0 0 00, ( ) (0) 0,x y y y x y    

and hence

 2( 1) ( 1)( , ) 1 .n nf x y y  

Substituting these values in (6),

 2( ) ( 1)

0

0 1n n
x

y y dx      
( 1, 2, 3, )n  

i.e.,  2( ) ( 1)

0

n n
x

y x y dx   ( 1, 2, 3, )n  

 2(1) (0)

0

x
y x y dx  

Putting (0) 0,y 

(1) 2

0

0 .
x

y x dx x  

 2(2) (1)

0

x
y x y dx  

Putting (1) ,y x

(2) 2 3

0

1
.

3

x
y x x dx x x   
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 2(3) (2)

0

x
y x y dx  

Putting (2) 31
,

3
y x x 

2
(3) 3

0

1
3

x
y x x x dx

     
 

3 5 71 2 1
.

3 15 63
x x x x   

We can continue the process.  But we take the above as an approximate solution to the
given initial value problem.  That is,

3 5 71 2 1
( ) .

3 15 63
y y x x x x x     …(7)

Substituting x = 0.1, and x = 0.2, in (7), we obtain

(0.1)y  0.100334

and (0.2)y  0.202709 .

The above are not exact values for y at the given x points, but the approximate values.

Example Given yx
dx

dy
 with the initial condition (0) 1.y  Find approximately the value

of y for 0.2x  and 1.x 

Here ( , )f x y x y  ; (0)
0 0 00, ( ) (0) 1,x y y y x y     and hence using (6)

 ( ) ( 1)

0

1n n
x

y x y dx  

i.e.,
2

( ) ( 1)

0

1
2

n n
xx

y y dx   

2
(1) (0)

0

1
2

xx
y y dx   

Putting (0)y = 1,  we obtain
2 2

(1)

0

1 1 .
2 2

xx x
y dx x     

2
(2) (1)

0

1
2

xx
y y dx   

Putting
2

(1) 1 ,
2
x

y x   we obtain
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2 2
(2)

0

1 1
2 2

xx x
y x dx

 
      

 

3
21

6
x

x x   

2
(3) (2)

0

1
2

xx
y y dx   

Putting
3

(2) 21 ,
6
x

y x x    we obtain

2 3
(3) 2

0

1 1
2 6

xx x
y x x dx

 
       

 

3 4
21

3 24
x x

x x    

We accept
3 4

21
3 24
x x

y x x    

as an approximate solution.

When x = 0.2, we have
3 4

2 (0.2) (0.2)
(0.2) 1 0.2 (0.2) 1.2427.

3 24
y      

When x = 1.0, we have

1 1
(0.2) 1 1 1 3.3751.

3 24
y      

Example Solve by Picard’s method

1,y xy   given 0y  , when 2.x 

Also find (2.05)y correct to four places of decimal.

Here 1 .y xy  

Hence ( , ) 1f x y xy  ; (0)
0 0 02, ( ) (2) 0,x y y y x y    

and hence
( 1) ( 1)( , ) 1 .n nf x y xy  

Substituting these values in (5), we obtain

 ( ) ( 1)

2

0 1n n
x

y xy dx   ( 1, 2, 3, )n  
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i.e., ( ) ( 1)

2

2n n
x

y x xy dx    ( 1, 2, 3, )n  

(1) (0)

2

2
x

y x xy dx   

Putting (0) 0,y  we obtain

(1)

2

2 0
x

y x x dx   

i.e., (1) 2.y x 

(2) (1)

2

2
x

y x xy dx   

Putting (1) 2,y x  we obtain

(2)

2

2 ( 2)
x

y x x x dx   

3
22

.
3 3

x
x x    

(3) (2)

2

2
x

y x xy dx   

Putting
3

(2) 22
,

3 3
x

y x x     we obtain

3
(3) 2

2

2
2

3 3

x x
y x x x x dx

 
        

 

2 3 4 522
.

15 3 3 4 15
x x x x

x      

We consider
2 3 4 522

15 3 3 4 15
x x x x

y x      

as an approximate solution.  Substituting x = 2.05, we get

y (2.05)  0.0526.

Example Solve the
xy

xy

dx

dy




 , y(0) =1 using Picard’s method.  Find the value of y at x =

0.1 approximately.

Here ( , )
y x

f x y
y x





; (0)
0 0 00, ( ) (0) 1,x y y y x y     and hence by (6),
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( 1)
( )

( 1)
0

1
n

n
n

x y x
y dx

y x






  



(0)
(1)

(0)
0

1
x y x

y dx
y x


  



Putting (0)y = 1,  we obtain

(1)

0

1
1

1

x x
y dx

x


   

By actual division,

1 2
1

1 1
x
x x

 

 

and hence the above can be written as

(1)

0

2
1 1

1

x
y dx

x
       

1 2ln(1 ).x x   

We take 1 2ln(1 )y x x    as an approximate solution and hence the value of y at x =
0.1  (with ln 1.1 = natural logarithm of 1.1 = 0.0953) is given by

*

(0.1) 1 0.1 2ln(1 0.1) 0.9 2ln1.1 1.0906.y       

Example Given the differential equation
2

2 1
dy x
dx y



with  the initial condition 0y  when 0,x  use Picard’s method to obtain y for 0.25, 0.5x 

and 1.0 correct to three decimal places.

Here
2

2
( , )

1

x
f x y

y



; (0)

0 0 00, ( ) (0) 0,x y y y x y     and hence by (6),

 
2

( )
2( 1)0 1

n

n

x x
y dx

y 
 



 
2

(1)
2(0)0 1

x x
y dx

y
 



Putting (0) 0,y  we obtain
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(1) 2 3

0

1
3

x

y x dx x 

 
2

(2)
2(1)0 1

x x
y dx

y
 



Putting (1) 31 ,
3

y x we obtain

312
(2) 3

6 3 21
0 0 3

( )

(1/ 9) 1 ( ) 1

x x d xxy dx dx
x x

 
  

 1 3 3 91 1 1tan
3 3 81

x x x   

so  that (1)y and (2)y agree to the first term, viz., 3(1/3) .x To find the range of values of x so
that the series with the term 3(1/3)x alone will give the result correct to three decimal
places, we put

91 0.0005
81

x 

which yields

0.7x 

Hence

31(0.25) (0.25) 0.005
3

y  

31(0.5) (0.5) 0.042
3

y  

When 1.0x  ( 0.7x  is not true) so we have to consider the second term 91
81

x also into

consideration and get

1 1(1.0) 0.321.
3 81

y   

Exercises

In Exercises 1-7, solve the initial value problem by Piacrd’s iteration method (Do three
steps).

1. , (0) 1.y y y   2. , (0) 1.y x y y    

3. 32 , (0) 0.y xy x x y     4. 2 1
, (0) .

2
y y y y   

5. 2 , (0) 1.y y y   6. 2 , (1) 0.y y y  
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7. 3
, (1) 1.

y
y y

x
  

In Exercises 8-16, solve the initial value problem by Piacrd’s iteration method (Do four
steps).  Also find the value of y at the given points of .x

8. 2 , (1) 3.y x y y    Also find (1.1).y

9. , (0) 1.y x y y    Also find (0.2).y

10. 2 , (1) 2.y x y y   Also find (1.2).y

11. 23 , (0) 1.y x y y    Also find (0.1).y

12. 2 3 , (0) 1.y x y y    Also find (0.25).y

13. 2 , (0) 2.
dy

x y y
dx
   Also find (0.1).y

14.
2

1
, (1) 1.

dy y
y

dx x x
   Also find (1.1).y

15. 1 , (0) 1.
dy

xy y
dx
   Also find (0.1).y

16. 3(1 ), (0) 3.
dy

x x y y
dx
   Also find (0.1)y and (0.2).y

17.  Obtain the approximate solution of

4 , (0) 3
dy

x x y y
dx
  

by Picard’s iteration method.  Tabulate the values of ,y for 0.1(0.1)0.5, 3 .x D
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16

EULER METHODS

Consider the initial value problem of first order

0 0( , ), ( ) .y f x y y x y  …(1)

Starting with given 0x and the value of h is chosen so small, we suppose 0 1 2, , ,x x x  be
equally spaced x values (called mesh points) with interval .h

i.e., 1 0 2 1, ,x x h x x h    

Also denote 0 0 1 1 2 2( ), ( ), ( ),y y x y y x y y x   

By separating variables, the differential equation in (1) becomes

( , ) .dy f x y dx ...(1A)

Integrating (1A) from 0x to 1x with respect to x, (at the same time y changes from 0y to

1y ) we get

1 1

0 0

( , )
y x

y x

dy f x y dx 

or
1

1 0

0

( , )
x

y y f x y dx
x

  

or
1

1 0

0

( , )
x

y y f x y dx
x

   …(2)

Assuming that 0 0( , ) ( , )f x y f x y in 0 1,x x x  (2) gives

1 0 0 0 1 0( , )( )y y f x y x x  

or 1 0 0 0( , ).y y h f x y 

Similarly, for the range 1 2 ,x x x  we have

2

2 1

1

( , )
x

y y f x y dx
x

   …(3)

Assuming that 1 1( , ) ( , )f x y f x y in 1 2 ,x x x  (3) gives

2 1 1 1( , ).y y h f x y 
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Proceeding in this way, we obtain the general formula

1 ( , )n n n ny y hf x y   ( 0, 1, )n   …(4)

The above is called the Euler method or Euler-Cauchy method.

Working Rule (Euler method)

Given the initial value problem (1).    Suppose 0 1 2, , ,x x x  be equally spaced x values
with interval .h i.e., 1 0 ,x x h  2 1 ,x x h   Also denote 0 0( ),y y x 1 1( ),y y x 2 2( ),y y x 

Then the iterative formula of Euler method is:

1 ( , )n n n ny y hf x y   ( 0, 1, )n   …(5)

Example Use Euler’s method with h = 0.1 to solve the initial value problem
22 yx

dx

dy
 with (0) 0y  in the range 0 0.5.x 

Here 2 2
0 0( , ) , 0, 0, 0.1.f x y x y x y h    

Hence

1 0 2 1 3 20.2, 0.2, 0.3,x x h x x h x x h         4 3 5 40.4, 0.5.x x h x x h     

We determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in

1 ( , )n n n ny y hf x y  

we obtain
2 2

1 0.1( )n n n ny y x y    ( 0, 1, )n  

2 2
1 0 0 00.1( ) 0 0.1(0 0) 0.y y x y      

2 2 2 2
2 1 1 10.1( ) 0 0.1 (0.1) 0 0.001.y y x y         

2 2 2 2
3 2 2 20.1( ) 0.001 0.1 (0.2) (0.001) 0.005.y y x y         

2 2 2 2
4 3 3 30.1( ) 0.005 0.1 (0.3) (0.005) 0.014.y y x y         

2 2 2 2
5 4 4 40.1( ) 0.014 0.1 (0.4) (0.014) 0.0300196.y y x y         

Hence

(0) 0y  (0.1) 0y  (0.2) 0.001y 

(0.3) 0.005y  (0.4) 0.014y  (0.5) 0.0300196.y 
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Example Using Euler method solve the equation 12  xyy with (0) 0, 0.02y h  for
0.1.x 

Here 0 0( , ) 2 1, 0, 0, 0.02.f x y xy x y h     Hence

1 0 2 1 3 20.02, 0.04, 0.06,x x h x x h x x h         4 3 5 40.08, 0.1.x x h x x h     

We  determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in

1 ( , )n n n ny y hf x y  

we obtain

1 0.02(2 1)n n n ny y x y    ( 0, 1, )n  

1 0 0 00.02(2 1) 0 0.02(0 1) 0.02.y y x y      

2 1 1 10.02(2 1) 0.02 0.02(2 0.02 0.02 1) 0.04y y x y         ,

approximate to 2 places of decimals

3 2 2 20.02(2 1) 0.04 0.02(2 0.04 0.04 1) 0.06y y x y        

4 3 3 30.02(2 1) 0.06 0.02(2 0.06 0.06 1) 0.08y y x y        

5 4 4 40.02(2 1) 0.08 0.02(2 0.08 0.08 1) 0.1y y x y        

Hence

(0) 0y  (0.02) 0.02y  (0.04) 0.04y 

(0.06) 0.06y  (0.08) 0.08y  (0.1) 0.1.y 

That is the approximate value of (0.1)y is 0.1.

Example Given the initial value problem , (0) 0.y x y y    Find the value of y

approximately for 1x  by Euler method in five steps.  Compare the result with the exact
value.

Here 0 0 0( , ) , 0, ( ) (0) 0.f x y x y x y y x y     As we have to calculate the value of y in

five steps, we have to take 0 1 0
0.2.

5
nx x

h
n
 

   Hence

1 0 2 1 3 20.2, 0.4, 0.6,x x h x x h x x h         4 3 5 40.8, 1.0.x x h x x h     

We determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in
(5), we obtain

1 0.2( )n n n ny y x y    ( 0, 1, )n  
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The steps are given in the following Table.

Also the exact solution to the linear differential equation y x y   with the initial
condition (0) 0y  can be found out to be

1.xy e x   …(6)

The exact values of y can be evaluated from (6) by substituting the corresponding x

values, in particular,
1 0.2

1 1 1( ) 1 0.2 1 0.000,xy y x e x e        approximately.

The other exact values are also shown in the following table.

n nx

approxi
mate

value of
ny

0.2( )n nx y
Exact
values

Absolute
value

of Error

0 0.0 0.000 0.000 0.000 0.000

1 0.2 0.000 0.040 0.021 0.021

2 0.4 0.040 0.088 0.092 0.052

3 0.6 0.128 0.146 0.222 0.094

4 0.8 0.274 0.215 0.426 0.152

5 1.0 0.489 0.718 0.229

The approximate value of (1.0)y by Euler’s method is 0.489, while exact value is 0.718.

Exercises

In Exercises 1-11, solve the initial value problem using Euler’s method for value of y at
the given point of x with given ( h is given in brackets)

1. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  ( 0.1).h 

2. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  ( 0.02).h 

3. , (0) 1.5yy x y   at the point 0.2x  ( 0.1).h 

4. 1
3 , (0) 1

2
dy

x y y
dx
   at the point 0.2x  ( 0.05).h 

5. , (0) 1y x y xy y     at the point 0.1x  ( 0.02).h 
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6. 21 , (0) 0
dy

y y
dx
   at the point 0.4x  ( 0.2).h 

7. , (0) 1
dy

xy y
dx
  at the point 0.4x  ( 0.2).h 

8. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  ( 0.1).h 

9. 2 , (0) 1y x y y    at the point 0.1x  ( 0.05).h 

10. 2 , (0) 1y xy y   at the point 0.5x  ( 0.1).h 

11. , (0) 1y y y    at the point 0.04x  ( 0.01).h 

In Exercises 12-15, apply Euler’s method.  Do 10 steps.  Also solve the problem exactly.
Compute the errors to see that the method is too inaccurate for practical purposes.

12. 0.1 0, (0) 2, 0.1y y y h    

13. 21
1 , (0) 0, 0.1

2
y y y h    

14. 4 25 0, (0) 1, 0.2y x y y h    

15. 2( ) , (0) 1, 0.1y y x y h    

16. Solve using Euler’s method ( )y x y y x    with (0) 2y  for the range 0.00(0.02)0.06.

17. Solve using Euler’s method 2x
y y

y
   with 1y  at 0x  for 0.5h  on the interval

[0, 1].

18. Using Euler’s method find (0.2)y of the initial value problem 2 , (0) 1,y x y y   

taking 0.1.h 

19. Using Euler’s method find the value of y at the point 2x  in steps of 0.2 of the initial

value problem 2 , (1) 1
dy

xy y
dx
   .

Modified Euler  Method

Modified Euler method is given by the iteration formula

( 1) ( )
1 0 0 0 1 1[ ( , ) ( , )],

2
n nhy y f x y f x y    0, 1, 2,n  

where ( )
1

ny is the nth approximation to 1y . The iteration formula  can be started by
choosing (0)

1y from Euler’s formula

(0)
1 0 0 0( , ).y y hf x y 
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Example Using modified Euler’s method, determine the value of y when  0.1x given
that

   2 ; (0) 1.y x y y (Take  0.05)h

Here 2
0 0( , ) ; 0, 1.f x y x y x y   

(0)
1 0 0 0( , ) 1 0.05(1) 1.05y y hf x y    

  (1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y

  0.051 [ (0, 1) (0.05, 1.05)]
2

f f

   21 0.025[1 (0.05) 1.05]

 1.0513

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

  0.051 [ (0, 1) (0.05, 1.0513)]
2

f f

   21 0.025[1 (0.05) 1.0513]

 1.0513

Hence we take 1 1.0513,y which is correct to four decimal places.

Formula takes the form

   ( 1) ( )
2 1 1 1 2 2[ ( , ) ( , )]

2
n nhy y f x y f x y 0, 1, 2,n  

where we first evaluate (0)
2y using the Euler formula

 (0)
2 1 1 1( , ).y y hf x y

21.0513 0.05 (0.05) 1.0513 1.1040     

  (1) (0)
2 1 1 1 2 2[ ( , ) ( , )]

2
hy y f x y f x y

           
2 20.051 (0.05) 1.0513 (0.1) 1.1040

2

 1.1055
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  (2) (1)
2 1 1 1 2 2[ ( , ) ( , )]

2
hy y f x y f x y

           
2 20.051 (0.05) 1.0513 (0.1) 1.1055

2

 1.1055

Hence we take 2 1.1055y .

Hence  the value of y when  0.1x is 1.1055 correct to four decimal places.

Example Using modified Euler’s method, determine the value of y when 0.2x  given
that

; (0) 1.
dy

x y y
dx
   (Take 0.2)h 

Here 0 0( , ) ; 0, 1.f x y x y x y   

(0)
1 0 0 0( , ) 1 0.2(0 1) 1.2y y hf x y     

  (1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y

0.21 [1 (0.2 1.2] 1.2295.
2

    

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

0.21 [1 (0.2 1.2295] 1.2309.
2

    

(3) (2)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

0.21 [1 (0.2 1.2309] 1.2309.
2

    

Hence we take 1(0.2) 1.2309.y y  .

Exercises

In Exercises 1-11, solve the initial value problem using modified Euler’s method for value
of y at  the given point of x with given ( h is given in brackets)

1. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  ( 0.1).h 

2. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  ( 0.02).h 
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3. , (0) 1.5yy x y   at the point 0.2x  ( 0.1).h 

4. 1
3 , (0) 1

2
dy

x y y
dx
   at the point 0.2x  ( 0.05).h 

5. , (0) 1y x y xy y     at the point 0.1x  ( 0.02).h 

6. 21 , (0) 0
dy

y y
dx
   at the point 0.4x  ( 0.2).h 

7. , (0) 1
dy

xy y
dx
  at the point 0.4x  ( 0.2).h 

8. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  ( 0.1).h 

9. 2 , (0) 1y x y y    at the point 0.1x  ( 0.05).h 

10. 2 , (0) 1y xy y   at the point 0.5x  ( 0.1).h 

11. , (0) 1y y y    at the point 0.04x  ( 0.01).h 
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17

RUNGE KUTTA METHODS

The Taylor series method has desirable features, particularly in its ability to keep the
errors small, but that it also has the strong disadvantage of requiring the evaluation of
higher derivatives of the function f(x,y). In the Taylor series method, each of these higher
order derivatives is evaluated at the point ix at the beginning of the step, in order to
evaluate ( )iy x at the end of the step. We observed that the Euler method could be
improved by computing the function f(x,y) at a predicted point at the far end of the step in
x. The Runge-Kutta approach is to aim for the desirable features of the Taylor series
method, but with the replacement of the requirement for the evaluation of higher order
derivatives with the requirement to evaluate f(x,y) at some points within the step ix to 1ix 
. Since it is not initially known at which points in the interval these evaluations should be
done, it is possible to choose these points in such a way that the result is consistent with
the Taylor series solution to some particular, which we shall call the order of the Runge-
Kutta method.  The Runge-Kutta method of order N = 4 is most popular.   It is a good
choice for common purposes because it is quite accurate, stable, and easy to program.
Most authorities proclaim that it is not necessary to go to a higher-order method because
the increased accuracy is offset by additional computational effort. If more accuracy is
required, then either a smaller step size or an adaptive method should be used.

We use the fact that Runge-Kutta method of rth order agree with Taylor’s series solution
up to the terms of .rh

Second Order Runge-Kutta Method

Computationally, most efficient methods in terms of accuracy were developed by two
German mathematicians, Carl Runge and Wilhelm Kutta.  These methods are well known
as Runge-Kutta methods (R-K methods).  In this and the coming section we consider
second and fourth order R-K methods.

There are several second order Runge-Kutta formulas and we consider one among
them.

Working Method (Second Order Runge-Kutta Method)

Given the initial value problem (1).        Suppose 0 1 2, , ,x x x  be equally spaced x values
with interval .h i.e.,

1 0 2 1, ,x x h x x h    
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Also denote 0 0 1 1 2 2( ), ( ), ( ),y y x y y x y y x   

For 0, 1,n   until termination do:

1n nx x h  

( , )n n nk hf x y …(8)

1( , )n n n nl hf x y k  …(9)

1

1
( )

2n n n ny y k l    …(10)

Remark Modified Euler method is a special case of second order Runge-Kutta method
given by (10).

Example Use second order Runge-Kutta method with 0.1h  to find (0.2),y given
22 yx

dx

dy
 with (0) 0.y 

Here 2 2
0 0( , ) , 0, 0, 0.1.f x y x y x y h     Hence

1 0 2 10.1, 0.2.x x h x x h     

To determine 1 2,y y we use second order Runge-Kutta method and using (8) – (10),

2 2( , ) 0.1( )n n n n nk hf x y x y  

2 2
1 1( , ) 0.1[ ( ) ]n n n n n n nl hf x y k x y k     

and 1

1
( )

2n n n ny y k l   

2 2 2 2
0 0 00.2( ) 0.1(0 0 ) 0.k x y    

2 2 2 2
0 1 0 00.2( ( ) ) 0.1 (0.1) (0 0) ) 0.001l x y k         

and 1 0 0 0

1 1
( ) 0 (0 0.001) 0.0005.

2 2
y y k k      

2 2 2 2
1 1 10.2( ) 0.1 (0.1) (0.0005) 0.001,k x y        correct to three places of decimals.

2 2 2 2
1 2 1 10.2( ( ) ) 0.1 (0.2) (0.0015) ) 0.004l x y k        

and 2 1 1 1

1 1
( ) 0.0005 (0.001 0.004) 0.003.

2 2
y y k l      
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Hence (0.1) 0.0005,y  (0.2) 0.003.y 

Example Given the initial value problem , (0) 0.y x y y    Find the value of y

approximately for 1x  by second order Runge-Kutta method in five steps.  Compare the
result with the exact value.

Here 0 0( , ) , 0, 0.f x y x y x y    As we have to calculate the value of y when 1x  in five

steps, we have to take 0 1 0
0.2.

5
nx x

h
n
 

   Hence

1 0 2 1 3 20.2, 0.4, 0.6,x x h x x h x x h         4 3 5 40.8, 1.0.x x h x x h     

We  determine 1 2 3 4 5, , , ,y y y y y we use  second order Runge-Kutta formula:

( , ) 0.2( )n n n n nk hf x y x y  

1 1 1( , ) 0.2( ( ))n n n n n nl hf x y k x y k     

0.2 0.2 0.2( )n n n nx y x y       , as 1 2n n nx x h x a     and 1

1
( )

2n n n ny y k l   

 1
0.2( ) 0.2 0.2 0.2( )

2n n n n n n ny x y x y x y         

0.22( ) 0.02n n ny x y   

The successive steps and calculations are plotted in the following table.

n nx

approximate

value of ny n nx y 0.22( ) 0.02n nx y 

1ny

0 0.0 0.0000 0.0000 0.0200 0.0200

1 0.2 0.0200 0.2200 0.0684 0.0884

2 0.4 0.0884 0.4884 0.1274 0.2158

3 0.6 0.2158 0.8158 0.1995 0.4153

4 0.8 0.4153 1.2153 0.2874 0.7027

5 1.0 0.7027

Hence (1) 0.7027.y  In an earlier example we have noted that the exact value is 0.718.
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Exercises

In Exercises 1-10, solve the initial value problem using second order Runge-Kutta method
for value of y at the given point of x with given .h

1. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  (Take 0.1).h 

2. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  (Take 0.02).h 

3. , (0) 1.5yy x y   at the point 0.2x  (Take 0.1).h 

4. , (0) 1
dy

x y y
dx
   at the point 0.2x  (Take 0.1).h 

5. , (0) 1y x y xy y     at the point 0.1x  (Take 0.02).h 

6. 21 , (0) 0
dy

y y
dx
   at the point 0.4x  (Take 0.2).h 

7. , (0) 1
dy

xy y
dx
  at the point 0.4x  (Take 0.2).h 

8. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  (Take 0.1).h 

9. 2 , (0) 1y x y y    at the point 0.1x  (Take 0.05).h 

10. 2 , (0) 1y xy y   at the point 0.5x  (Take 0.1).h 

In Exercises 11-13, apply second order Runge-Kutta method.  Do 10 steps.

11. , (0) 1, 0.1y y y h   

12. 2 , (0) 0.5, 0.1y y y y h    

13. 22(1 ), (0) 0, 0.05y y y h    

14. 22 0, (0) 1, 0.2y xy y h    

15. Solve using second order Runge-Kutta method ( )y x y y x    with (0) 2y  for  the
range 0.00(0.02)0.06.

16. Solve using second order Runge-Kutta method 2x
y y

y
   with 1y  at 0x  for

0.5h  on the interval [0, 1].



School of Distance Education

Numerical Methods Page 207

17. Using second order Runge-Kutta method find (0.2)y of the initial value problem
2 , (0) 1,y x y y    taking 0.1.h 

18. Using second order Runge-Kutta method find the value of y at the point 2x  in

steps of 0.2 of the initial value problem 2 , (1) 1
dy

xy y
dx
   .

Fourth Order Runge-Kutta method

The Runge-Kutta method1 of fourth order (also known as classical Runge-Kutta
method) gives greater accuracy and is most widely used for finding the approximate
solution of first order ordinary differential equations. The method is well suited for
computers. The method is shown in the following algorithm.

Algorithm (The Runge-Kutta method)

Given the initial value problem (1). Suppose 0 1 2, , ,x x x  be equally spaced x values with
interval .h i.e.,

1 0 2 1, ,x x h x x h    

Also denote 0 0 1 1 2 2( ), ( ), ( ),y y x y y x y y x   

For 0, 1,n   , until termination do:

1n nx x h  

( , )n n nA hf x y …(11)

1 1
2 2( , )n n n nB hf x h y A   …(12)

1 1
2 2( , )n n n nC hf x h y B   …(13)

( , )n n n nD hf x h y C   …(14)

1

1
( 2 2 )

6n n n n n ny y A B C D      …(15)

Example Use Runge-Kutta method with 0.1h  to find (0.2)y given 22 yx
dx

dy
 with

(0) 0.y 

Here 2 2
0 0( , ) , 0, 0, 0.1.f x y x y x y h     Hence

1 0 2 10.1, 0.2.x x h x x h     

To determine 1 2,y y we use improved Euler formula. Using Eqs. (12) (15),

1 0.1n n nx x h x    
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2 2( , ) 0.1( )n n n n nA hf x y x y  

 221 1 1
2 2 2( , ) 0.1 ( 0.05)n n n n n n nB hf x h y A x y A        

 221 1 1
2 2 2( , ) 0.1 ( 0.05)n n n n n n nC hf x h y B x y B        

 22
1( , ) 0.1n n n n n n nD hf x h y C x y C

       

1

1
( 2 2 )

6n n n n n ny y A B C D     

1 0 0.1 0 0.1 0.1x x    

2 2 2 2
0 0 00.1( ) 0.1(0 0 ) 0A x y    

 22 1
0 0 0 020.1 ( 0.05)B x y A     

2 20.1 (0.05) 0 0.00025.    

 22 1
0 0 0 020.1 ( 0.05)C x y B     

2 20.1 (0.05) (0.000125) 0.00025.    

 22
0 1 0 00.1D x y C    

2 20.1 (0.1) (0.00025) 0.001.    

1 0 0 0 0 0

1
( 2 2 )

6
y y A B C D    

1
0 (0 2 0.00025 2 0.00025 0.001) 0.00033.

6
       

2 1 0.1 0.1 0.1 0.2x x    

2 2 2 2
1 1 10.1( ) 0.1 (0.1) (0.00033) 0.001A x y       

 22 1
1 1 1 120.1 ( 0.05)B x y A     

2 20.1 (0.15) (0.00083) 0.00225.    

 22 1
1 1 1 120.1 ( 0.05)C x y B     

2 20.1 (0.15) (0.001455) 0.00025.    
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 22
1 2 1 10.1D x y C    

2 20.1 (0.2) (0.0058) 0.004.    

2 1 1 1 1 1

1
( 2 2 )

6
y y A B C D    

1
0.00033 (0.014) 0.002663.

6
  

Example Use Runge-Kutta method with 0.2h  to find the value of y at 0.2,x  0.4,x 

and 0.6,x  given 21 , (0) 0.
dy

y y
dx
  

Here 2
0 0( , ) 1 , 0, 0, 0.2.f x y y x y h     Hence

1 0 2 10.2, 0.4.x x h x x h     

To determine 1 2,y y we use improved Euler formula:

1 0.2n n nx x h x    

2( , ) 0.2(1 )n n n nA hf x y y  

 21 1 1
2 2 2( , ) 0.2 1n n n n n nB hf x h y A y A       

 21 1 1
2 2 2( , ) 0.2 1n n n n n nC hf x h y B y B       

 2( , ) 0.2 1n n n n n nD hf x h y C y C       

1

1
( 2 2 )

6n n n n n ny y A B C D     

1 0 0.2 0 0.2 0.2x x    

2 2
0 00.2(1 ) 0.2(1 0 ) 0.2A y    

 21
0 0 020.2 1B y A    

20.2 1 (0.1) 0.202.    

 21
0 0 020.2 1C y B    

20.2 1 (0.101) 0.20204.    

 20 0 00.2 1D y C    

20.2 1 (0.20204) 0.20816.    
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1 0 0 0 0 0

1
( 2 2 )

6
y y A B C D    

1
0 (0.2 2 0.202 2 0.20204 0.20816) 0.2027.

6
       

i.e., (0.2) 0.2027.y 

2 1 0.1 0.2 0.2 0.4x x    

2 2
1 10.2(1 ) 0.2 1 (0.2027) 0.2082A y       

 21
1 1 120.2 1B y A    

20.2 1 (0.3068) 0.2188.    

 21
1 1 120.2 1C y B    

20.2 1 (0.3121) 0.2195.      21 1 10.2 1D y C    
20.2 1 (0.4222) 0.2356.    

2 1 1 1 1 1

1
( 2 2 )

6
y y A B C D    

1
0.00033 (0.2082 2 0.2195 2 0.2195 0.2356)

6
      

0.4228.

i.e., (0.4) 0.4228,y  correct to four decimal places.

3 2 0.1 0.4 0.2 0.6x x    

2
2 20.2(1 );A y   21

2 2 220.2 1 ;B y A    

 21
2 2 220.2 1 ;C y B      22 2 20.2 1 .D y C    

Substituting the values, and using

3 2 2 2 2 2

1
( 2 2 )

6
y y A B C D    

we obtain 3(0.6) 0.6841,y y  correct to four decimal places.

Example Given the initial value problem , (0) 0.y x y y    Find the value of y

approximately for 1x  by Runge-Kutta method in five steps.  Compare the result with the
exact value.

Here 0 0( , ) , 0, 0.f x y x y x y    As we have to calculate the value of y when 1x  in five

steps, we have to take 0 1 0
0.2.

5
nx x

h
n
 

   Hence
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1 0 2 1 3 20.2, 0.4, 0.6,x x h x x h x x h         4 3 5 40.8, 1.0.x x h x x h     

We  determine 1 2 3 4 5, , , ,y y y y y we use  Runge-Kutta formula:

1 0.2n n nx x h x    

( , ) 0.2( )n n n n nA hf x y x y  

 1 1
2 2( , ) 0.2 0.1 0.1( )n n n n n n n nB hf x h y A x y x y       

0.22( ) 0.02n nx y  

1 1
2 2( , )n n n nC hf x h y B  

 0.2 0.1 0.11( ) 0.01n n n nx y x y     

0.222( ) 0.022n nx y  

( , )n n n nD hf x h y C  

 0.2 0.2 0.222( ) 0.022n n n nx y x y     

0.2444( ) 0.0444n nx y  

1

1
( 2 2 )

6n n n n n ny y A B C D     

i.e., 1 0.2214( ) 0.0214.n n n ny y x y    

The successive steps and calculations are plotted in the following table.

n nx
approximate

value of ny
n nx y

0.2214( )n nx y
0.2214( ) 0.0214n nx y 

0 0.0 0.0000 0.0000 0.0000 0.021 400

1 0.2 0.021 400 0.221 400 0.049 018 0.070 418

2 0.4 0.091 818 0.491 818 0.108 889 0.130 289

3 0.6 0.222 107 0.822 107 0.182 014 0.203 414

4 0.8 0.425 521 1.225 521 0.271 330 0.292 730

5 1.0 0.718 251
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Table:

Comparison of the accuracy of three methods discussed in earlier sections in the case of
the initial value problem , (0) 0.y x y y   

nx

Exact
value

Approximate values to y
obtained by

Absolute value of Error

Euler
method

R-K
Second
Order

R-K
Fourth

Order

Euler
method

R-K
Second
Order

R-K
Fourth

Order

0.2 0.021403 0.000 0.0200 0.021400 0.021 0.0014 0.000003

0.4 0.091825 0.040 0.0884 0.091818 0.052 0.0034 0.000007

0.6 0.222119 0.128 0.2158 0.222107 0.094 0.0063 0.000011

0.8 0.425541 0.274 0.4153 0.425521 0.152 0.0102 0.000020

1.0 0.718282 0.489 0.7027 0.718251 0.229 0.0156 0.000031

Exercises

In Exercises 1-10, solve the initial value problem using fourth order Runge-Kutta method
for value of y at the given point of x (with .h given in brackets)

1. , (0) 1
dy

y y
dx
  at the point 1x  ( 0.5)h 

2. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  ( 0.1).h 

3. , (0) 2
dy

y x y
dx
   at the point 0.2x  ( 0.1).h 

4. , (0) 1.5yy x y   at the point 0.2x  ( 0.1).h 

5. , (1) 0.4
dy

x y y
dx
   at the point 1.6x  (e 0.6).h 

6. , (0) 1y x y xy y     at the point 0.1x  ( 0.02).h 

7. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  ( 0.02).h 

8. , (1) 2
dy

xy y
dx
  at the point 1.6x  ( 0.2).h 
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9. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  ( 0.1).h 

10. 2 , (0) 1y x y y    at the point 0.1x  ( 0.05).h 

11. 2 , (0) 1y xy y   at the point 0.5x  ( 0.1).h 

12. 1
3 , (0) 1

2
y x y    at the point 0.2x  ( 0.05).h 

13. Solve using Runge-Kutta method ( )y x y y x    with (0) 2y  for  the range
0.00(0.02)0.06.

14. Using Runge-Kutta method find (0.2)y of the initial value problem 2 2 , (0) 0,y x y y   

taking 0.2.h 

15. Using Runge-Kutta method find the value of y at the point 2x  in steps of 0.2 of the

initial value problem 2 , (1) 1
dy

xy y
dx
   .

16. Using Runge-Kutta method find (1.3),y given 2y x y  and (1) 2.y  Take 0.3h  .

17. Solve using Runge-Kutta method 2x
y y

y
   with 1y  at 0x  for 0.5h  on the

interval [0, 1].

18. Solve 1 12 ln , (1) 0y x y x x y      for 1 1.8x 

(a) by Euler method with 0.1.h 

(b) by improved Euler method with 0.2.h 

(c) by Runge-Kutta method with 0.4.h 

(d) Compare the above results with the exact value.  Determine the errors. Comment.
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18

PREDICTOR CORRECTOR METHODS

Introduction

Euler method and fourth order Runge-Kutta methods are called single-step methods,
where we have seen that the computation of 1ny  requires the knowledge of ny only.  But
modified Euler method is a multi-step method since for the computation of 1ny  the
knowledge of ny is not enough. It is a predictor-corrector method, in which a predictor
formula is used to predict the value 1ny  of y at 1nx  and then a corrector formula is used to
improve the value of 1ny  .

For example, consider the initial value problem

  0 0, , ( ) .
dy

f x y y x y
dx
 

Using simple Euler’s and modified Euler’s method, we can write down a simple
predictor-corrector pair (P-C) as

:P
(0)

1 ( , ).n n n ny y hf x y  

:C
(1) (0)

1 1 1( , ) ( , ) .
2n n n n n n
hy y f x y f x y      

Here, (1)
1ny  is the first corrected value of 1.ny  .  The corrector formula may be used

iteratively as defined below:

 ( ) ( 1)
1 1 1( , ) ( , ) 1, 2,

2
r r

n n n n n n
hy y f x y f x y r

        

The iteration terminate when two successive iterates agree to the desired accuracy.  We
have considered modified Euler method in the previous chapter.

In this chapter we consider two methods: Adams-Moulton and Milne’s Methods.
They require function values at 1 2, , ,n n nx x x   for the computation of the function value at

1.nx 

Adams-Moulton Method

Consider the initial value problem

0 0( , ), ( ) .y f x y y x y   …(1)
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Starting with given 0x and given the step size h , we have

1 0 1 0 2 0, , 2 ,x x h x x h x x h       and 3 0 3x x h   .  We denote

0 0 0 1 1 1 1 1 1 2 2 2( , ), ( , ), ( , ), ( , ),f f x y f f x y f f x y f f x y         and 3 3 3( , ).f f x y  

In Adams-Moulton Method, we predict by

1 0 0 1 2 3(55 59 37 9 )
24

P h
y y f f f f       …(1)

and correct by

1 0 1 0 1 2(9 19 5 ),
24

C ph
y y f f f f      …(2)

where 1 1 1( , ).p Pf f x y

The general forms for formulae (1) and (2) are given by

1 1 2 3(55 59 37 9 )
24

P
n n n n n n

h
y y f f f f        …(1)

with correction

1 1 1 2(9 19 5 ),
24

C p
n n n n n n

h
y y f f f f        …(2)

where 1 1 1( , ).p P
n n nf f x y  

The formulae given above are example of explicit predictor –corrector formulae as they are
expressed in ordinate form.

Example Given 21 ; (0) 0.
dy

y y
dx
   Compute (0.8)y using Adams-Moulton Method.

Here 1 0.8, 0.2.x h  Hence 0 1 0.8 0.2 0.6,x x h    

1 0 0.4,x x h    2 0 2 0.2,x x h    and 3 0 3 0.x x h   

The starter values are (0.6), (0.4)y y and (0.2)y .  Using fourth-order Runge-Kutta method
(Ref. Example 7 in the previous chapter), the values are found to be:

(0.6) 0.6841, (0.4) 0.4228, (0.2) 0.2027.y y y  

Hence 0 0 1 1( ) (0.6) 0.6841, ( ) (0.4) 0.4228,y y x y y y x y      

2 0.2027y  and 3 3( ) (0) 0.y y x y   

Also, 2 2
0 0 0 0( , ) 1 1 (0.6841)f f x y y     ;
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2 2
1 1 1 1( , ) 1 1 (0.4228)f f x y y        ;

and so on.  We tabulate them below:

x y 2( ) 1f x y 

3 0.0x 

2 0.2x 

1 0.4x 

0 0.6x 

3y  0.000

2y  0.2027

1y  0.4228

0y  0.6841

3f  1.0000

2f  1.0411

1f 1.1787

0f  1.4681

Substituting these values in (1), we obtain the predicted value of 1y at 1 0.8x  as

 2 2
1

0.2
0.6841 55[1 (0.6841) ] 59[1 (0.4228) ]

24
Py     

237[1 (0.4228) ] 9  

1.0233, on simplification.

Corrected value of 1y at 1 0.8x  is obtained using (2) as below:

 2 2
1

0.2
0.6841 9[1 (0.0233) ] 19[1 (0.6841) ]

24
Cy     

2 25[1 (0.4228) ] [1 (0.2027) ]   

1.0296, on simplification.

Exercises

1. Using Adams-Moulton predictor-corrector method, find the value of y at 4.4x  from
the differential equation

25 2,
dy

x y
dx
 

given that

4.0 4.1 4.2 4.3

1.0000 1.0049 1.0097 1.0143

x

y

2. Using Adams-Moulton predictor-corrector method, find the value of y at 0.8,x  and
1.0x  of the initial value problem

2 , (0) 1
dy

y x y
dx
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(Take 0.2.)h 

3. Using Adams-Moulton predictor-corrector method, find the value of y at 1.4x  of the
initial value problem

2 1, (1) 1.0x y xy y   

with starter values (1.1) 0.996, (1.2) 0.986, (1.3) 0.972.y y y  

4. Find the solution of the initial value problem
2 sin , (0) 1y y t y  

using Adams-Moulton predictor-corrector method, in the interval (0.2, 0.5) given that

(0.05) 1.00125, (0.1) 1.00502, (0.15) 1.01136.y y y  

Milne’s Method

Consider the initial value problem

0 0( , ), ( ) .y f x y y x y   …(1)

Starting with given 0x and given the step size h , we have

1 0 1 0 2 0, , 2 ,x x h x x h x x h       and 3 0 3x x h   .  We denote

0 0 0 1 1 1 1 1 1 2 2 2( , ), ( , ), ( , ), ( , ),f f x y f f x y f f x y f f x y         and 3 3 3( , ).f f x y  

In Milne’s Method, we predict by

1 3 2 1 0

4
(2 2 )

3
P h

y y f f f      …(1)

and correct by

1 1 1 0 1( 4 ),
3

C Ph
y y f f f     …(2)

where 1 1 1( , ).P Pf f x y

The general forms for formulae (1) and (2) are given by

1 3 2 1

4
(2 2 )

3
P
n n n n n

h
y y f f f       …(3)

and correct by

1 1 1 1( 4 ),
3

C P
n n n n n

h
y y f f f       …(4)
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where 1 1 1( , ).P P
n n nf f x y  

The formulae given above is also explicit predictor –corrector formulae as they are
expressed in ordinate form.

Example Given 21 ; (0) 0.
dy

y y
dx
   Compute (0.8)y and (1.0)y using Milne’s Method.

Solution

Determination of (0.8) :y

Here  take 1 0.8, 0.2.x h  Hence

0 1 0.8 0.2 0.6,x x h     1 0.4,x  2 0.2,x  3 0.x 

The starter values are (0.6), (0.4)y y and (0.2)y .  Using fourth-order Runge-Kutta method,
the valued are found to be:

(0.6) 0.6841, (0.4) 0.4228, (0.2) 0.2027.y y y  

Hence

0 1 20.6841, 0.4228, 0.2027y y y    and

3 3( ) (0) 0.y y x y   

Also, 2 2
0 0 0 0( , ) 1 1 (0.6841)f f x y y     ;

2 2
1 11 1 (0.4228)f y     ;

and so on.  We tabulate them below:

x y 2( ) 1f x y 

3 0.0x 

2 0.2x 

1 0.4x 

0 0.6x 

3y  0.000

2y  0.2027

1y  0.4228

0y  0.6841

3f  1.0000

2f  1.0411

1f 1.1787

0f  1.4681

Substituting these values in (1), we obtain the predicted value of 1y at 1 0.8x  as

 1

0.8
0 2(1.0411) 1.1787 2(1.4681) 1.0239

3
Py     

Hence  2 2
1 11 1 (1.0239) 2.0480Pf y    
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and hence the corrected value of 1y at 1 0.8x  is obtained using (2) as below:

 1

0.2
0.4228 1.1787 4(1.4681) 2.0480 1.0294.

3
Cy     

Hence (0.8) 1.0294,y  correct to four places of decimal.

Determination of (1.0) :y

Here  take 1 1.0, 0.2.x h  Hence

0 1 1.0 0.2 0.8,x x h     1 0.6,x  2 0.4,x  3 0.2.x 

The starter values are (0.8), (0.6),y y and (0.4)y .  We have the values

(0.8) 1.0294,y  (0.6) 0.6841, (0.4) 0.4228.y y 

Hence

0 1 21.0294, 0.6841, 0.4228y y y    and 3 0.y 

Also, 2 2
0 01 1 (1.0294)f y    ; 2 2

1 11 1 (0.6841)f y     ; and so on.

x y 2( ) 1f x y 

3 0.2x 

2 0.4x 

1 0.6x 

0 0.8x 

3y  0.2027

2y  0.4228

1y  0.6841

0y  1.0294

3f  1.0411

2f  1.1787

1f 1.4681

0f  2.0597

Substituting these values in (1), we obtain the predicted value of 1y at 1 1.0x  as

1 1.5384Py 

Hence  21 11 3.3667Pf y  

Corrected value of 1y at 1 0.8x  is obtained using (2) as below:

1 1.5557.Cy 

Example Find, using Milne’s predictor-corrector method, (2.0)y if ( )y x is the solution of

2

yx

dx

dy 
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assuming (0) 2. (0.5) 2.636, (1.0) 3.595y y y   and (1.5) 4.968.y 

Here  take 1 2.0, 0.5.x h  Hence

0 1 2.0 0.5 1.5,x x h     1 1,x  2 0.5,x  3 0.x 

Also, by the assumption,

0 1 24.968, 3.595, 2.636y y y    and 3 2.y 

As ( , ) ,
2

x y
f x y


 we have

0 0
0 0 0

1.5 4.968
( , ) 3.2340.

2 2

x y
f f x y

 
    ;

1 1
1 1 1

1.0 3.595
( , ) 2.2975.

2 2

x y
f f x y  
  

 
    ;

2 2
2 2 2

0.5 2.636
( , ) 1.5680.

2 2

x y
f f x y  
  

 
    ;

Now, using predictor formula we compute

 1 3 2 1 0

4
2 2

3
P h

y y f f f     

     4 0.5
2 2 1.5680 2.2975 2 3.2340 6.8710.

3
       

Using the predicted value, we shall compute the corrected value of 1y from the corrector
formula

1 1 1 0 1( 4 ),
3

C Ph
y y f f f     (2)

where 1 1 1( , ).P Pf f x y

Now using the available predicted value 1
Py ,

1 1
1 1 1

2 6.871
( , ) 4.4355.

2 2

P
P P x y

f f x y
 

   

Thus the  corrected value is given by

 1

0.5
3.595 2.2975 4 3.234 4.4355 6.8731667.

3
Cy        

Hence an approximate value of y at 2x  is taken as 1(2) 6.8731667.Cy y 
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Example Tabulate the solution of

  10;  yyx
dx

dy

in the interval 0  x  0.4, with h = 0.1, using Milne’s predictor-corrector method.

We take 1 0.4.x  We cannot immediately use Milne’s predictor-corrector method as it
need the value of y at the previous four points 0 1 0.4 0.1 0.3,x x h     1 0.2,x 

2 0.1,x  3 0.x  Clearly, 3 3( ) (0) 1.y y x y    For the calculation of the rest three y values
we use Runge-Kutta method of fourth order and then switch over to Milne’s P-C method.

By Runge-Kutta method of fourth order it can be seen that (work is left as an exercise)

0 0( ) (0.3) 1.3997,y y x y   1 1( ) (0.2) 1.2428,y y x y    2 2( ) (0.1) 1.1103.y y x y   

From the given differential equation ( , )f x y x y  , and we have

 0 0 0 0 0, 0.3 1.3997 1.6997.f f x y x y     

 1 1 1 1 1, 0.2 1.2428 1.4428.f f x y x y         

 2 2 2 2 2, 0.1 1.1103 1.2103.f f x y x y         

Now, using predictor formula we compute

 1 3 2 1 0

4
2 2

3
P h

y y f f f     

     4 0.5
1 2 1.2103 1.4428 2 1.6997 1.58363

3
       

Before using the corrector formula

1 1 1 0 1( 4 ),
3

C Ph
y y f f f     …(2)

we compute

1 1 1 1 1( , ) 0.4 1.5836 1.9836.P P Pf f x y x y     

Hence

 1

0.1
1.2428 1.4428 4 1.6997 1.9836 1.5836.

3
Cy        
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The required solution is tabulated below:

x 0 0.1 0.2 0.3 0.4

y 1.0000 1.1103 1.2428 1.3997 1.5836

Example Find, using Milne’s predictor-corrector method, (2.0)y if ( )y x is the solution of

2

yx

dx

dy 
 assuming (0) 2. (0.5) 2.636, (1.0) 3.595y y y   and (1.5) 4.968.y 

Here take 1 2.0, 0.5.x h  Hence

0 1 2.0 0.5 1.5,x x h     1 1,x  2 0.5,x  3 0.x 

Also, by the assumption,

0 1 24.968, 3.595, 2.636y y y    and 3 2.y 

As ( , ) ,
2

x y
f x y


 we have

0 0
0 0 0

1.5 4.968
( , ) 3.2340.

2 2

x y
f f x y

 
    ;

1 1
1 1 1

1.0 3.595
( , ) 2.2975.

2 2

x y
f f x y  
  

 
    ;

2 2
2 2 2

0.5 2.636
( , ) 1.5680.

2 2

x y
f f x y  
  

 
    ;

Now, using predictor formula we compute

 1 3 2 1 0

4
2 2

3
P h

y y f f f     

     4 0.5
2 2 1.5680 2.2975 2 3.2340 6.8710.

3
       

Using the predicted value, we shall compute the corrected value of 1y from the corrector
formula

1 1 1 0 1( 4 ),
3

C Ph
y y f f f    

where 1 1 1( , ).P Pf f x y

Now using the available predicted value 1
Py ,
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1 1
1 1 1

2 6.871
( , ) 4.4355.

2 2

P
P P x y

f f x y
 

   

Thus the corrected value is given by

 1

0.5
3.595 2.2975 4 3.234 4.4355 6.8731667.

3
Cy        

Hence an approximate value of y at 2x  is taken as 1(2) 6.8731667.Cy y 

Exercises

1. Find y (0.8) using Milne’s P-C method, if y(x) is the solution of the differential equation

  20;2  yxy
dx

dy

assuming y(0.2) = 1.92308, y(0.4) = 1.72414, y(0.6) = 1.47059.

2.  Find the solution of

 ( ), 0 1
dy

y x y y
dx
  

using Milne’s P-C method, at 0.4 given thatx 

 0.1 1.11689, (0.2) 1.27739 andy y  (0.3) 1.50412.y 

*********


