NUMERICAL METHODS

VI SEMESTER

CORE COURSE

B Sc MATHEMATICS

(2011 Admission)

UNIVERSITY OF CALICUT
 SCHOOL OF DISTANCE EDUCATION

Calicut university P.0, Malappuram Kerala, India 673635.

UNIVERSITY OF CALICUT

SCHOOL OF DISTANCE EDUCATION

STUDY MATERIAL

Core Course

B Sc Mathematics

VI Semester

NUMERICAL METHODS

Prepared by:	Sri.Nandakumar M., Assistant Professor Dept. of Mathematics, N.A.M. College, Kallikkandy. Kannur.
Scrutinized by:	Dr. V. Anil Kumar, Reader, Dept. of Mathematics, University of Calicut.

Layout: Computer Section, SDE
©
Reserved

Contents			Page No.
MODULE I	1	Fixed Point Iteration Method	6
	2	Bisection and Regula False Methods	18
	3	Newton Raphson Method etc.	32
	4	Finite Differences Operators	51
MODULE II	5	Numerical Interpolation	71
	6	Newton's and Lagrangian Formulae - Part I	87
	7	Newton's and Lagrangian Formulae - Part II	100
	8	Interpolation by Iteration	114
	9	Numerical Differentiaton	119
	10	Numerical Integration	128
MODULE III	11	Solution of System of Linear Equations	140
	12	Solution by Iterations	161
	13	Eigen Values	169
MODULE IV	14	Taylor Series Method	179
	15	Picard's Iteration Method	187
	16	Euler Methods	195
	17	Runge - Kutta Methods	203
	18	Predictor and Corrector Methods	214

SYLLABUS

B.Sc. DEGREE PROGRAMME MATHEMATICS

MM6B11: NUMERICAL METHODS

4 credits $\quad 30$ weightage

Text :

S.S. Sastry : Introductory Methods of Numerical Analysis, Fourth Edition, PHI.

Module I : Solution of Algebraic and Transcendental Equation

2.1 Introduction

2.2 Bisection Method
2.3 Method of false position
2.4 Iteration method
2.5 Newton-Raphson Method
2.6 Ramanujan's method
2.7 The Secant Method

Finite Differences

3.1 Introduction

3.3.1 Forward differences
3.3.2 Backward differences
3.3.3 Central differences
3.3.4 Symbolic relations and separation of symbols
3.5 Differences of a polynomial

Module II : Interpolation
3.6 Newton's formulae for intrapolation
3.7 Central difference interpolation formulae
3.7.1 Gauss' Central Difference Formulae
3.9 Interpolation with unevenly spaced points
3.9.1 Langrange's interpolation formula
3.10 Divided differences and their properties
3.10.1 Newton's General interpolation formula

3.11 Inverse interpolation
 Numerical Differentiation and Integration

5.1 Introduction
5.2 Numerical differentiation (using Newton's forward and backward formulae)
5.4 Numerical Integration
5.4.1 Trapizaoidal Rule
5.4.2 Simpson's 1/3-Rule
5.4.3 Simpson's 3/8-Rule

Module III : Matrices and Linear Systems of equations

6.3 Solution of Linear Systems - Direct Methods
6.3.2 Gauss elimination
6.3.3 Gauss-Jordan Method
6.3.4 Modification of Gauss method to compute the inverse
6.3.6 LU Decomposition
6.3.7 LU Decomposition from Gauss elimination
6.4 Solution of Linear Systems - Iterative methods
6.5 The eigen value problem
6.5.1 Eigen values of Symmetric Tridiazonal matrix

Module IV : Numerical Solutions of Ordinary Differential Equations
7.1 Introduction
7.2 Solution by Taylor's series
7.3 Picard's method of successive approximations
7.4 Euler's method
7.4.2 Modified Euler's Method
7.5 Runge-Kutta method
7.6 Predictor-Corrector Methods
7.6.1 Adams-Moulton Method
7.6.2 Milne's method

References

1. S. Sankara Rao : Numerical Methods of Scientists and Engineer, $3^{\text {rd }}$ ed., PHI.
2. F.B. Hidebrand : Introduction to Numerical Analysis, TMH.
3. J.B. Scarborough : Numerical Mathematical Analysis, Oxford and IBH.

1

FIXED POINT ITERATION METHOD

Nature of numerical problems

Computer based solutions

 _WME

Errors

 é aVd` VWcc` cd§ YV RcVZ_YVcV_eVcc` col\$ecf _TRę_ Vcc` cdR_UVcc` cdUf Vè c` f_UZZX\&

 Wd ^ ^ VRaf cV^V_ed\&
 dMbf V_TV ` WT ^ af eRę_R] deVad _VIVdoRcj è ac` Uf TV R_V VTecVdf]eZl reef_TReWs

 UVIZ R]d`_\&

Error in Numerical Computation

 Raac`i Z゙ ReV gRIf V`WerV d` ^Vę Vd f__`h_! V RTe CVdf le\$V TVae Wc erV cRcV TRdV

8 aac` i Z ReVgRff V5 J of VgRff V \# <cc` c\&

$$
\left|\varepsilon_{\mathrm{r}}\right|=\frac{|\varepsilon|}{|a|}=\frac{\mid \text { Error } \mid}{\mid \text { Truevalue } \mid}
$$

$$
\sqrt{2}=1.4142+\text { Error } \&
$$

$$
|<c c ` c| 5 \mid) \&), *-) \&), *) \mid 5 \&((() \$
$$

$$
\varepsilon_{\mathrm{r}}=\frac{0.00001}{1.4142} \&
$$

$M V_{-}$'EVERe

 \# $\gamma \$$ \$

J of VgRIf V5 8 aac`i \(\mathbb{C}\) ReVgRff V \#:`ccVTę_\&
Error bound Wc $\tilde{a} Z \mathrm{ZXR}_{-} \mathrm{f}{ }^{\wedge} \operatorname{SVc} \beta$ of TY eYRe $|\tilde{a}->|\leq \beta \quad \mathbb{Z} / \$| \varepsilon| \leq \beta \&$

Number representations

Integer representation

Floating point representation

 UVIZ R] a]RTVdV\&\& *\& O\$(\&) +\$) \& ((\&
 dZX_XXR_eUZXZen\$Wc V R^a]V

$$
(\& *+0 \times)(+\quad(\& /), \times)\left(^{-}\right)+-(\&(((\times)()
$$

RJd h ceev_Rd ($\&^{*}+0 \triangleleft+$
$(\$ /),<-)+-(\$(()<()$

Significant digits

 (\&) + (YRd, dZX_XXR_eUZXZed\&

Round off rule to discard the $\mathbf{k}+1$ th and all subsequent decimals
(a) Rounding down © ©lerV_f ^ SVc Re H\#) !er UVIC R] è SV UZITRCUN Zd JVdl eYR YR]WR
 è) UVIZ R] XZgVd0\& R_Uc‘f_UZX` W \&0) è * UVIZ R] a]RTVdXZgVd. \&0\& UVIZ R] XZgVdO\& R_Uc` f_UZ_X`W \$// è * UVIZ R]dXZgVd. \&0\& `WO\&- R_U O\&- è) UVIZ R] XZgVd O\& R_U O\& CVdaVTegVlj \&H`f_UZXX 'WI \&. - R_U . \&/ - è * UVIて R]dXZgVd. \&. R_U . \&0 cVdaVTegVlj \&
 TRIIf JRę_\&
ب Ư - , U\#*5 (R_U ?! U゙-, (U\#*5 (\&

9பRQZK

ค. $\quad x_{1}=\frac{1}{2 a}\left(-b+\sqrt{b^{2}-4 a c}\right) \quad$ R U $\quad x_{2}=\frac{1}{2 a}\left(-b-\sqrt{b^{2}-4 a c}\right)$ \&

円: $\quad x_{1}=\frac{1}{2 a}\left(-b+\sqrt{b^{2}-4 a c}\right) \$$ R_U $\quad x_{2}=\frac{c}{a x_{1}}$

U $5 * \# \sqrt{2} 5 * \#) \&(), 5+$ \& $), \$$
U:5*- $\left.\left.\sqrt{2} 5^{*}-\right) \&\right), 5(\& 0$.
R_UWc^f]R $\mp T \mathrm{XZ} V \mathrm{~V} \$$
U $5 * \# \sqrt{2} 5 * \#) \&(), 5+(x), \$$
U5 5 * (($\left.{ }^{\prime}+\&\right), 5(\& 0-0 \&$
=’ cerVVbf Rę_Z ?!\$Wc^f]R R XZgVd\$
U 5 * (\# $\sqrt{398} 5 *(\#) 1 \&-5+1 \&-\$$
U:5 ${ }^{*}(-\sqrt{398} 5 *(-) 1 \&-5(\$-$

U 5 * (\# $\sqrt{398} 5 *(\#) 1 \&-5+18-\$$

Example : `_gVceerVUVIZ R]_f ^SVc hYZY ZIZ ervSRdV)(! 0) \& è ZedSZ Rg Wc^`W SRdN*!\&

9பRQRK E` $\operatorname{EVARe} 0) \&!(50 \cdot)() \#) \cdot)((\# \cdot)(\%$

 9பRQLK

$$
\begin{array}{r}
)()(\&()!* 5) \cdot *+\#) \cdot *) \#) \cdot * \% \#) \cdot * \% \\
50 \# * \#\left(\& \#\left(\& k^{*}-5\right)\left(\&^{*}-!\right)(\right.
\end{array}
$$

Numerical Iteration Method

8 numerical iteration method ` \(c d \mathbb{C} a] j\) iteration method \(Z d r\) ^ \(R e r V \wedge R e \triangle R]\) ac` TVF cV eYRe XV_VcReVd R dMbf V_TV `WZ ac` gZ X Raac` i Z ReV d` ff ę_d Wc R T]Rdd `W

I Z

Solution of Algebraic and Transcendental Equations

Rd erV roots `WerV Vbf Rę_ W! 5 (\$`c erV zeroes `WerV VN_Tę_ Wi!\& J YV c` `ed `W Vbf Rë_d^Rj SVcVR]`cT^a]M \&

Algebraic and Transcendental Equations

 Vbf Rë_dRcVoZ i oi $5\left(\$ \tan x-x=0 \quad\right.$ R_U $7 x^{3}+\log (3 x-6)+3 e^{x} \cos x+\tan x=0$.
 ecR_dTV_UV_eR] Vbf Rę_d` VerVWc^ Wi! 5 (\& deVadSM VRddf ^ VYVcVeYReerVcVRcV_` c` f _U` WVCcc cd\& ZVTe^ Ver` UdUVEVc^ Z VRI] erV \(c^{\prime}{ }^{\prime}\) edReerVdR^\({ }^{\wedge} \bar{Z}^{\wedge} V \&\) ^ Ver` Udh Z্Y Z]f deeRegVVM R^a]VoL
) $\&=$ Z W G' Z_e@VREZ_ D Ver' U

* $89 Z \mathrm{ZNTE}$ _ D Ver` U , SE Vhè _\% \% RaYd _ D Ver` U E V è _q^ ${ }^{\prime}$ Ver` U!

Fixed Point Iteration Method

: ` d ZVC

$$
f(x)=0 \quad \mathrm{t})!
$$

JcR_dVc^)!è erVWc^\$

$$
x=\phi(x) . \quad \mathrm{t} *!
$$

 CVJREZ - 'VEYVWc^

$$
x_{n+1}=\phi\left(x_{n}\right) \quad(n=0,1, \ldots) \quad \mathrm{t} \quad+
$$

 T' ccVoda_U dVgVcR] Vbf Rę_d *! R_U erV SVYRgZ f c\$ VdaVIRI]jj \$ Rd cVXRcUd daWU `W

Example I` \(\lg \mathrm{V} f(x)=x^{2}-3 x+1=0, \mathrm{Sj}\) WWa`ZeZZVRZ_${ }^{\wedge}$ Ver` U\&
9URQLK
Mçerv XZgV_ Vbf Rę_ Rd

$$
x^{2}=3 x-1 \quad \text { `C } \quad x=3-1 / x \&
$$

$: \mathrm{Y}^{\prime}{ }^{\prime} \mathrm{dV} \phi(x)=3-\frac{1}{x} \$ \mathrm{~J} \mathrm{Y}_{-} \phi^{\prime}(x)=\frac{1}{x^{2}}$ and $\left.\left|\phi^{\prime}(x)\right|<1{ }_{-} \quad \mathrm{erV} \underline{\underline{Z}} \mathrm{EVcgR}\right](1,2)$.
? V_TVerVZAVCRZ彐_ _ Ver` UTR_SVRaa]ZN è eYV $\langle b \&+!\&$
J YV Z

$$
x_{n+1}=3-\frac{1}{x_{n}} \quad \mathrm{~K}-(\$) \$^{*} \$ \delta \delta \&
$$

I RCE \underline{Z} Xh Zer $\$ x_{0}=1$ \$h V`SAR \(\underline{Z}\) erVdMbf V_TV T _gVCXV_TV ` VRVCREZ _ ac TVdd

Theorem CVe $x=\xi \operatorname{SVRc}{ }^{`} \mathrm{e}^{`} \mathrm{~W} f(x)=0$ R_U JVe2SVR_ZEVcgR]T_eRZZXXVa`Ze $x=\xi$.

 $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ UW픈 WS

$$
x_{n+1}=\phi\left(x_{n}\right) \quad(n=0,1, \ldots)
$$

 RTIf CRTJ ' $\mathrm{M} 0^{-4}$.

$$
x=\frac{1}{\sqrt{x+1}}
$$

J R V V

$$
\begin{aligned}
& \phi(x)=\frac{1}{\sqrt{x+1}} . J Y_{-} \phi(x)=-\frac{1}{2} \frac{1}{(x+1)^{\frac{3}{2}}} \\
& \max _{[0,1]}\left|\phi^{\prime}(x)\right|=\left|\frac{1}{2 \sqrt{8}}\right|=k=0.17678<0.2 .
\end{aligned}
$$

? V_TVEYVZACRę_ ^ Ver` U XZgVCR

n	x_{n}	$\sqrt{x_{n}+1}$	$x_{n+1}=1 / \sqrt{x_{n}+1}$
0	0.75	1.3228756	0.7559289
1	0.7559289	1.3251146	0.7546517
2	0.7546617	1.3246326	0.7549263

8 eerZddaRXV\$

$$
\left|x_{n+1}-x_{n}\right|=0.7549263-0.7546517=0.0002746,
$$

h YZY Z cVbf ZWU RIIf CRTj Zid (\&-, 1\&
 Vbf Rë_ $\quad x e^{x}=1$.
Mçaz XerVVof Rè_ Z erVWc^

$$
x=e^{-x}
$$

 $x_{n+1}=\phi\left(x_{n}\right)$ h Z] SVT _gVCXV_e\$h YV_ $x<1$.

J YVZZVCREgVWc^f JRZI

$$
x_{n+1}=\frac{1}{e^{x_{n}}} \quad(n=0,1, \ldots)
$$

$$
\begin{array}{ll}
x_{1}=1 / e=0.3678794, & x_{2}=\frac{1}{e x_{1}}=0.6922006, \\
x_{3}=0.5004735, & x_{4}=0.6062435, \\
x_{5}=0.5453957, & x_{6}=0.5796123,
\end{array}
$$

M VRTIVae. \& , - +1-/ RdR_Raac` i Z ReVc`e\&
Example $=Z \mathrm{ZUEYVc}$ `e` VerVVbf Rę_ $2 x=\cos x+3$ T ccVTeè eYcWUVIZ R]a]RTVd\&

$$
x=\frac{1}{2}(\cos x+3)
$$

d e e Re

$$
\phi=\frac{1}{2}(\cos x+3),
$$

R_U

$$
\left|\phi^{\prime}(x)\right|=\left|\frac{\sin x}{2}\right|<1 .
$$

? V_TV erv of TTVdoZgVZECREVdRcV

$$
\begin{array}{lll}
x_{1}=1.5, & x_{2}=1.535, & x_{3}=1.518 \\
x_{4}=1.526, & x_{5}=1.522, & x_{6}=1.524, \\
x_{7}=1.523, & x_{8}=1.524 . &
\end{array}
$$

M VRITVaeerVd` $] f \underset{\underset{\mathcal{Z}}{\sim}}{ }$ Rd) \mathcal{E}^{*}, T covTeè eYcWUVIZ R] a]RIVd\&

U+\#Uo) 5 (TR_SVhcer_Rd $x\left(x^{2}+1\right)=1 \$^{\prime} \mathrm{C} x=\frac{1}{x^{2}+1} \&$
E `EVERR

$$
\left|\phi^{\prime}(x)\right|=\frac{2|x|}{\left(1+x^{2}\right)^{2}}<1 \text { WcR_j cVR] U\$ }
$$

$$
x_{n+1}=\phi\left(x_{n}\right)=\frac{1}{1+x_{n}^{2}} \quad \mathrm{~K} 5(\$) \$ \delta \delta \& \$ \quad \mathrm{t},!
$$

h VXVeerVanbf V_TV

 ' Vervor ff $\overrightarrow{2}$ _\&
 dNgVCR]
 gRJf V ${ }^{\text {W }}$
` _ ervKer ZalcRę _ \&
8_dh VC2
$M Y V_{-} \phi(x)=\sqrt[3]{\sin x}, \mathrm{~h} V \mathrm{YRg} \mathrm{V} 2$
$x_{1}=\left(\mathbb{E},,\left(01^{*},\right)^{*}, \mathcal{H} .3 \quad x_{2}=0.93215560685805\right.$
$x_{3}=0.92944074461587 \quad 3 \quad x_{4}=0.92881472066057$
$M Y_{-} \phi(x)=\frac{\sin x}{x^{2}}, \mathrm{~h} V Y R g V 2$
$x_{1}=(\otimes),, /\left(10,0 / / 1\left(3 \quad x_{2}=1.05303224555943\right.\right.$
$x_{3}=0.783610863509743 \quad x_{4}=1.14949345383611$

HWNccZ $M Y V_{-} \phi(x)=x+\sin x-x^{3}, h V Y R g V 2$
$x_{1}=0.841470984807903 \quad x_{2}=0.99127188988250$
$x_{3}=0.853951520696473 \quad x_{4}=0.98510419085185$
$M Y_{-} \phi(x)=x-\frac{\sin x-x^{3}}{\cos x-3 x^{2}}, \mathrm{~h} V Y \operatorname{RgV} 2$
$x_{1}=\left(\mathbb{Q}+-, 1+1\left(.-, . / 3 \quad x_{2}=0.92989141894368\right.\right.$
$x_{3}=0.928866791031703 \quad x_{4}=0.92867234089417$

$x=\phi_{1}(x)=x-x^{3}-4 x^{2}+10$,
$x=\phi_{2}(x)=\sqrt{\frac{10}{x}-4 x}$,
$x=\phi_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}$
$x=\phi_{4}(x)=\sqrt{\frac{10}{4+x}}$
$x=\phi_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$
$=$ ' $\left.\mathrm{c} x=\phi_{1}(x)=x-x^{3}-4 x^{2}+10, \mathrm{f}^{\wedge} \mathrm{V} \subset \triangle \mathrm{R}\right] \mathrm{c} V \mathrm{~d}$] $\mathrm{ed} \mathrm{Rc} / 2$
$x_{0}=1.5 ; \quad x_{2}=-0.875$
$x_{3}=6.732 ; \quad x_{4}=-469.7^{3}$
? V_TVU Vd_థT _gVCXV\&

$x_{0}=1.5 ; \quad x_{2}=0.8165$
$x_{3}=2.9969 ; \quad x_{4}=(-8.65)^{1 / 2} 3$

ㄷ $\left.\mathrm{C} x=\phi_{3}(x)=\frac{1}{2} \sqrt{10-x^{3}}, \quad \mathrm{f}{ }^{\wedge} \mathrm{Vc} \backslash \mathrm{R}\right] \mathrm{CVAf}$]ed RcV2

$$
\begin{array}{ll}
x_{0}=1.5 ; & x_{2}=1.2869 \\
x_{3}=1.4025 ; & x_{4}=1.3454
\end{array} 3
$$

Exercises

- $\sin x=\frac{x+1}{x-1}$
- $3 x-\cos x-2=0$
- $x^{3}+x+1=0$
- $3 x=6+\log _{10} x$
- $2 x-\log _{10} x=7$
- $2 \sin x=x$
- $x^{3}+x^{2}=100$
- U5U! (\$-
- $x^{3}-5 x+3=0$,
- $x=\frac{1}{6}\left(x^{3}+3\right)$
- $x=\frac{1}{5}\left(x^{3}+3\right)$
- $x^{3}=2 x^{2}+10 x=20$
- $\cos x=3 x-1$
- $\quad 3 x+\sin x=e^{x}$

2

BISECTION AND REGULA FALSI METHODS

Bisection Method

 VN_Te _d\&

Intermediate value theorem for continuous functions: © $\quad f$ Z \mathbb{R}
 YRgV` aa` dZV dZ_d\$erV_ Re]MRde`_Vc`e]Z/d Z SVeh W_ a R_U b. © © VerV Z ZVcgR]
 RoZ X]Vc` `e\&

 ${ }^{\wedge}$ VR_d erRe $Z V f(a) f(b)<0, \quad$ erV_ eYV If cgV f YRdè Tc dd erv UPRi ZXRed ${ }^{\wedge}$ Va`ZeZ
 SVah W_ >R_U?\&

Algorithm : Bisection Method

$$
: ` \text { af } \mathrm{EV} \quad x_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right) \&
$$

$$
\text { I Ve } a_{n+1}=a_{n}, b_{n+1}=x_{n} \&
$$

I Ve $a_{n+1}=x_{n}, b_{n+1}=b_{n}$ \&
$\mathrm{J} \mathrm{Y}_{\mathbf{-}} f(x)=0 \mathrm{Wc} \mathrm{d}^{\wedge}$ ^VUZ $\left[a_{n+1}, b_{n+1}\right] \&$
J VdeWcelc^Z ${ }_{-}$Rę_\&

Criterion for termination

A convenient criterion is to compute the percentage error ε_{r} defined by

$$
\varepsilon_{r}=\left|\frac{x_{r}^{\prime}-x_{r}}{x_{r}^{\prime}}\right| \times 100 \% .
$$

 ^Rj RJd SVdaVIX\& UZ RUgR TV\&

- J Vc^ZREZ_RNAVC6 dAVad 6 XZgV_\$VZW!

- J Vc^ZReZ_ZNCU! $\mid \leq \alpha \alpha 6$ (XZgV_!\&
 d^{\wedge} ^V Z Z

 SVAh W_ *R_U , \&

I Ve> 5 *R_U? $5, ~ \& ~ \& ~ Y V-~$

$$
x_{0}=\frac{\left(a_{0}+b_{0}\right)}{2}=\frac{2+4}{2}=3 \quad \text { R_U } \quad f\left(x_{0}\right)=f(3)=1 \&
$$

$$
x_{1}=\frac{\left(a_{1}+b_{1}\right)}{2}=\frac{2+3}{2}=2.5 \text { R_U } f\left(x_{1}\right)=f(2.5)=-5.875
$$

 $\mathrm{J} \mathrm{Y}_{-} x_{2}=\frac{\left(a_{2}+b_{2}\right)}{2}=\frac{2.5+3}{2}=2.75 \mathrm{RR}^{\mathrm{U}} f\left(x_{2}\right)=f(2.75)=-2.9531$.

K	x_{n}	$f\left(x_{n}\right)$
$($	+	$) \&((($
$)$	$* \&$	$--\& /-$
$*$	$* \&-$	- $* \&-+)$
+	$* \& /-$	$\left.\begin{array}{l}- \\) \& \\ \hline\end{array}\right)+$
,	$* \&+-$	- $(\& 1()$

 $x_{0}=3 / 2=1.5$. J YV_
 R_U) \& R_UhV SeRZ

$$
x_{1}=\frac{1+1.5}{2}=1.25
$$

) \&-R_U) \&\&8]d \$

$$
x_{2}=\frac{1.25+1.5}{2}=1.375
$$

$$
x_{3}=1.3125, x_{4}=1.34375, \quad x_{5}=1.328125, \text { VeT\& }
$$

 J Yf ${ }^{\$} \$$

$$
x_{0}=\frac{0+1}{2}=0.5 \&
$$

 ($\$-\$$ \$ $/ \$$

$$
x_{1}=\frac{.5+1}{2}=0.75 \text {. }
$$

$$
x_{2}=\frac{.5+.75}{2}=0.625
$$

$$
x_{3}=\frac{.5+.625}{2}=0.5625 .
$$

MVRITVae(\&.*- RdR_Rač i Z ReVC" `\&

Merits of bisection method

S! 8dZAVRę_ _dRCVT _Uf TeNW\$erV N_Xer ` WervZ

Demerits of bisection method

R! J YV T _gVCXV_TV `WerV SZZNTE _ _ Ver` U Zd d] h Rd Z Zd dZ alj SROM ` . YR]gZ \(X\) er \(V \underline{Z}\) EVcgR]\& UZIT_E R]h Rj dgRIf Vd` VerVdR^VoZX_\&

Exercises

$) \& B x=\sqrt{1+\sin x}$	$* \& x^{3}+1.2 x^{2}-=4 x+48$
$+\& e^{x}=3 x$,$\& x^{3}-4 x-9=0$
$-\& x^{3}+3 x-1=0$	$. \& 3 x=\cos x+1$
$/ \& x^{3}+x^{2}-1=0$	$0 \& 2 x=3+\cos x$
$1 \& x^{4}=3$	$)(\& U+--U 5$.

)) $\& \cos x=\sqrt{x} \quad) * \& x^{3}-x^{2}-x-3=0$,
) +\& U 5 U! (\&- _VRcU5 (\&

Regula Falsi method or Method of False Position

 $f\left(a_{0}\right) f\left(b_{0}\right)<0$.

: `^af EV

$$
x_{n}=\frac{\left|\begin{array}{cc}
a_{n} & b_{n} \\
f\left(a_{n}\right) & f\left(b_{n}\right)
\end{array}\right|}{f\left(b_{n}\right)-f\left(a_{n}\right)} \&
$$

<ddTT _e_f V\&
© $\left.\mathbb{N} f\left(a_{n}\right) f\left(x_{n}\right)<0, \mathrm{dVe} a_{n+1}=a_{n}, b_{n+1}=x_{n} \&<\right] \mathrm{dVdNe} a_{n+1}=x_{n}, b_{n+1}=b_{n} \&$
$\mathrm{J} Y \mathrm{~V}_{-} f(x)=0 \mathrm{Wc} \mathrm{O}^{\wedge} \mathrm{VUZ}\left[a_{n+1}, b_{n+1}\right] \&$

$f(x)=x^{3}+x-1=0, \quad$ VRcU5) \&

I Ve> 5 (R_U? (5) \& J YV_

$$
x_{0}=\frac{\left|\begin{array}{cc}
a_{0} & b_{0} \\
f\left(\begin{array}{ll}
a_{0}
\end{array}\right) & f\left(b_{0}\right)
\end{array}\right|}{f\left(b_{0}\right)-f\left(a_{0}\right)}=\frac{\left|\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right|}{1-(-1)}=0.5
$$

R_U $f\left(x_{0}\right)=f(0.5)=-0.375$ \&
 J YV_

$$
x_{1}=\frac{\left|\begin{array}{cc}
a_{1} & b_{1} \\
f\left(a_{1}\right) & f\left(b_{1}\right)
\end{array}\right|}{f\left(b_{1}\right)-f\left(a_{1}\right)}=\frac{\left|\begin{array}{cc}
0.5 & 1 \\
-0.375 & 1
\end{array}\right|}{1-(-0.375)}=0.6364
$$

R_U $f\left(x_{1}\right)=f(0.6364)=-0.1058$.
 $b_{2}=b_{1}=1$. J YV_

$$
x_{2}=\frac{\left|\begin{array}{cc}
a_{2} & b_{2} \\
f\left(a_{2}\right) & f\left(b_{2}\right)
\end{array}\right|}{f\left(b_{2}\right)-f\left(a_{2}\right)}=\frac{\left|\begin{array}{cc}
0.6364 & 1 \\
-0.1058 & 1
\end{array}\right|}{1-(-0.1058)}=0.6712
$$

R_U $\quad f\left(x_{2}\right)=f(0.6712)=-0.0264$
 R_U $b_{3}=b_{1}=1 \&$
$\mathrm{JYV}_{-} \quad x_{3}=\frac{\left|\begin{array}{cc}a_{3} & b_{3} \\ f\left(\begin{array}{l}a_{3}\end{array}\right) & f\left(b_{3}\right.\end{array}\right|}{f\left(b_{3}\right)-f\left(a_{3}\right)}=\frac{\left|\begin{array}{cc}0.6712 & 1 \\ -0.0264 & 1\end{array}\right|}{1-(-0.0264)}=0.6796$
R_U $f\left(x_{3}\right)=f(0.6796)=-0.0063 \approx 0 \&$

CVe $f(x)=x^{2.2}-69 . \mathrm{MVVZ} \mathrm{U}$

$$
f(5)=-3450675846 \mathrm{R} \cup \cup f(8)=-28.00586026 \text {. }
$$

$$
x_{1}=\frac{\left|\begin{array}{cc}
5 & 8 \\
f(5) & f(8)
\end{array}\right|}{f(8)-f(5)}=\frac{5(28.00586026)-8(-34.50675846)}{28.00586026+34.50675846)} \quad=6.655990062 \&
$$

E `h \$ \(f\left(x_{1}\right)=-4.275625415\) R_U eYVcWVch \(\$ f(5) f\left(x_{1}\right)>0\) R_U YV_TV erV c `e]Zdd SVAh W_ 6.655990062 R_U 0\&\&GC` TMUZ X व 【 ZRc]j \$

$$
x_{2}=6.83400179, \quad x_{3}=6.850669653
$$

 RTTVae6.850669653 RdR_Raac` i Z ReVc` e\&

Theoretical Exercises with Answers:
) \&M YReZderVUZWNCV_TVSVeh W_ R]XVScRדR_U edR_dTV_UV_eR] Vaf Rę_d7
8_dR8_ Vbf Rę_ $f(x)=0$ ZdTR]JM R_R]XVScRZ Vbf Rę_ ZlerVT ccVda`_UZX \(f(x)\) RK@ , \&M YRe RcV erv RUgR_eRXVd R_U UZZRUgR_eRXVd ` WEYV ScRTI Vę_X ^ Ver`Ud]Z V SZANTe _ R_UCVXf JRXXR] \(\mathrm{C} Z\) UZRUGR_ARXV Z \(\mathbf{\$} \mathbf{Z N Z E}\) Z ^ Ver' U\& I` ^VV R^a]Vd` W\&f TY Vf_Tę_dRcV

Exercises

$) \& x^{3}-5 x=6$	$* \& 4 x=e^{x}$
$+\& x \log _{10} x=1.2$,$\& \in \tan x+\tanh x=0$
$-\& e^{-x}=\sin x$	$. \& x^{3}-5 x-7=0$
$/ \& x^{3}+2 x^{2}+10 x-20=0$	$0 \& 2 x-\log _{10} x=7$
$1 \& x e^{x}=\cos x$	$)\left(\& x^{3}-5 x+1=0\right.$
$)\left(\& e^{x}=3 x\right.$	$) * \& x^{2}-\log _{e} x=12$
$)+\&(3 x-\cos x=1$	$), \& 2 x-3 \sin x=5$
$)-\& 2 x=\cos x+3$	$) . \& x e^{x}=3$
$) / \& \cos x=\sqrt{x}$	$) O \& x^{3}-5 x+3=0$

Ramanujan's Method

$$
(1+x)^{n}=1+\frac{n}{1} x+\frac{n(n-1)}{1 \cdot 2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-(r-1))}{1 \cdot 2 \cdot \ldots \cdot r} x^{r}+\ldots
$$

@ aRceZf]Rc\$

$$
(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{n} x^{n}+\ldots
$$

R_U $\quad(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots$
 h YZY TR_ SVf dWee UVEVc^ZVerVd^ R]JVdec `e` VerVVbf Rę _

$$
f(x)=0,
$$

h YVcV

$$
f(x) \text { Zđ` WerVWc^a }
$$

$$
f(x)=1-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{2}+a_{4} x^{4}+\cdots\right) .
$$

$\left[1-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)\right]^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots$

$1+\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)+\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)^{2}+\cdots$

$$
=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

: `^aRcZ XeYVT' WM

$$
\left.\begin{array}{l}
b_{1}=1, \\
b_{2}=a_{1}=a_{1} b_{1}, \\
b_{3}=a_{1}^{2}+a_{2}=a_{1} b_{2}+a_{2} b_{1}, \\
\vdots \\
b_{n}=a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n-1} b_{1} \quad n=2,3, \cdots
\end{array}\right\}
$$

J YV_ b_{n} / b_{n+1} Raac` RTY Rc` `e` VerVVbf Re $\quad f(x)=0$ \&
Example $\left.=\underline{Z} U \mathrm{EVVd}^{\wedge} R\right]$ Vdec ${ }^{\prime} \mathrm{e}^{\prime}$ VerVVbf Rę

$$
f(x)=x^{3}-6 x^{2}+11 x-6=0 .
$$

9URQLK
J YVXZgV_ Vbf Rę_ TR_SVh crev_ Rd $f(x)$

$$
f(x)=1-\frac{1}{6}\left(11 x-6 x^{2}+x^{3}\right)
$$

: `^aRcZ X

$$
a_{1}=\frac{11}{6}, \quad a_{2}=-1, \quad a_{3}=\frac{1}{6}, \quad a_{4}=a_{5}=\cdots=0
$$

$$
1-\left(\frac{11 x-6 x^{2}+x^{3}}{6}\right)^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

? V_TV\$

$$
\begin{aligned}
& b_{1}=1 \\
& b_{2}=a_{1}=\frac{11}{6} \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=\frac{121}{36}-1=\frac{85}{36} \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=\frac{575}{216} \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{3661}{1296} \\
& b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{22631}{7776}
\end{aligned}
$$

J YVcWNcV\$

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=\frac{6}{11}=0.545453 & \frac{b_{2}}{b_{3}}=\frac{66}{85}=0.7764705 \\
\frac{b_{3}}{b_{4}}=\frac{102}{115}=0.88695653 & \frac{b_{4}}{b_{5}}=\frac{3450}{3661}=0.9423654 \\
\frac{b_{5}}{b_{6}}=\frac{3138}{3233}=0.9706155 &
\end{array}
$$

 T__gVCXV_ed $\frac{b_{n}}{b_{n+1}}$ Raac` RTY erZdc` `e\&

CVe $x e^{x}=1$

HVIR]]

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

? V_TV\$

$$
\begin{aligned}
& f(x)=1-\left(x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\cdots\right)=0 \\
& a_{1}=1, \quad a_{2}=1, \quad a_{3}=\frac{1}{2}, \quad a_{4}=\frac{1}{6}, \quad a_{5}=\frac{1}{24}, \cdots
\end{aligned}
$$

MVETV_ YRgV

$$
b_{1}=1
$$

$$
b_{2}=a_{2}=1 ;
$$

$$
b_{3}=a_{1} b_{2}+a_{2} b_{1}=1+1=2
$$

$$
b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=2+1+\frac{1}{2}=\frac{7}{2}
$$

$$
b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{7}{2}+2+\frac{1}{2}+\frac{1}{6}=\frac{37}{6} ;
$$

$$
b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{37}{6} ;+\frac{7}{2}+1+\frac{1}{6}+\frac{1}{24}=\frac{261}{24} ;
$$

J YVCWVCV

$$
\begin{array}{ll}
\frac{b_{2}}{b_{3}}=\frac{1}{2}=0.53 & \frac{b_{3}}{b_{4}}=\frac{4}{7}=0.57143 \\
\frac{b_{4}}{b_{5}}=\frac{21}{37}=0.567567563 & \frac{b_{5}}{b_{6}}=\frac{148}{261}=0.56704980 \&
\end{array}
$$

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0
$$

9URQUK
CVe

$$
f(x)=1-\left[x-\frac{x^{2}}{(2!)^{2}}+\frac{x^{3}}{(3!)^{2}}-\frac{x^{4}}{(4!)^{2}}+\cdots\right]=0 .
$$

? VcV

$$
a_{1}=1, \quad a_{2}=-\frac{1}{(2!)^{2}}, \quad a_{3}=\frac{1}{(3!)^{2}}, \quad a_{4}=-\frac{1}{(4!)^{2}},
$$

$$
a_{5}=\frac{1}{(5!)^{2}}, \quad a_{6}=-\frac{1}{(6!)^{2}}, \cdots
$$

Mc登 X

$\left\{1-\left[x-\frac{x^{2}}{(2!)}+\frac{x^{3}}{(3!)^{2}}-\frac{x^{4}}{(4!)^{2}}+\cdots\right]\right\}^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots \$$

h V` SARZ

$$
\begin{aligned}
& b_{1}=1, \\
& b_{2}=a_{1}=1, \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=1-\frac{1}{(2!)^{2}}=\frac{3}{4}, \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=\frac{3}{4}-\frac{1}{(2!)^{2}}+\frac{1}{(3!)^{2}}=\frac{3}{4}-\frac{1}{4}+\frac{1}{36}=\frac{19}{36}, \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1} \\
& =\frac{19}{36}-\frac{1}{4} \times \frac{3}{4}+\frac{1}{36} \times 1-\frac{1}{576}=\frac{211}{576} .
\end{aligned}
$$

$@$ @] $]$ h d

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=1 ; & \frac{b_{2}}{b_{3}}=\frac{4}{3}=1.333 \cdots ; \\
\frac{b_{3}}{b_{4}}=\frac{3}{4} \times \frac{36}{19}=\frac{27}{19}=1.4210 \cdots, & \frac{b_{4}}{b_{5}}=\frac{19}{36} \times \frac{576}{211}=1.4408 \cdots,
\end{array}
$$

h YVcVerV]RdecVof]eZdT' ccVTeè eYcWdZX_XXR_elZXf dVd\&

KoZ XeYVV aR_dZ_ `Win x, eYVXZgV_ Vbf Rę_ ^Rj SVh crev_ Rd

$$
f(x)=1-\left(x+x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)=0 .
$$

? VcV

$$
\begin{aligned}
& a_{1}=2, \quad a_{2}=0, \quad a_{3}=\frac{1}{6}, \quad a_{4}=0, \\
& a_{5}=\frac{1}{120}, \quad a_{6}=0, \quad a_{7}=-\frac{1}{5040}, \cdots
\end{aligned}
$$

h Vh car

$$
\left[1-\left(2 x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}+\cdots\right)\right]^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

M Verv_ `SeRZ

$$
\begin{aligned}
& b_{1}=1 ; \\
& b_{2}=a_{1}=2 ; \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=4 ; \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=8-\frac{1}{6}=\frac{47}{6} ; \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{46}{3} ; \\
& b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{3601}{120} ;
\end{aligned}
$$

J YVcWVcV\$

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=\frac{1}{2} ; & \frac{b_{2}}{b_{3}}=\frac{1}{2} ; \\
\frac{b_{3}}{b_{4}}=\frac{24}{27}=0.5106382 & \frac{b_{4}}{b_{5}}=\frac{47}{92}=0.5108695 \\
\frac{b_{5}}{b_{6}}=\frac{1840}{3601}=0.5109691 \&
\end{array}
$$

J YVc``e\$T’ ccVTeè Wf cuVIZ R] a]RTVdZd(\&))(

Exercises

 $1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0$

[^0]
3

NEWTON RAPHSON ETC..

 ZVR` VIZ VRc Raac` i Z R R \vec{Z} _\&

Newton - Raphson Method

 UVCZRegV $f^{\prime} \&=c^{`}$ ^ erVVzkf cVh VTR_ oRj eYReRe $x=a, y=f(a)=03 \mathrm{~h}$ YZY \wedge VR_d $\mathrm{eYRe}>Z \mathrm{Z} \mathrm{R}$

 elV Tf cgV CRe $\left(x_{0}, f\left(x_{0}\right)\right)$ h Z è f TYVderVU思i ZXReU\&

$$
\mathrm{E}^{`} \mathrm{~h} \$ \tan \beta=f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}} \$
$$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

@ erVdVT _UdEVa\$h VT ^ af EV

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \$
$$

Z erverzudaka h VT ${ }^{\text {^ }}$ af EV

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

 Sj ^VR_d` VerVNewton-Raphson Wc^f JR

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The refinement on the value of the $\operatorname{root} x_{n}$ is terminated by any of the following conditions.
(i) Termination after a pre-fixed number of steps
(ii) After n iterations where, $\left|x_{n+1}-x_{n}\right| \leq \varepsilon($ for a given $\varepsilon>0)$, or
(iii) After n iterations, where $f\left(x_{n}\right) \leq \alpha($ for a given $\alpha>0)$.

Termination after a fixed number of steps is not advisable, because a fine approximation cannot be ensured by a fixed number of steps.

Algorithm: The steps of the Newton-Raphson method to find the root of an equation $f(x)=0$ are

1. Evaluate $f^{\prime}(x)$
2. Use an initial guess of the root, x_{i}, to estimate the new value of the root, x_{i+1}, as

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

3. Find the absolute relative approximate error $\left|\epsilon_{a}\right|$ as

$$
\left|\epsilon_{a}\right|=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \times 100
$$

4. Compare the absolute relative approximate error with the pre-specified relative error tolerance, ϵ_{s}. If $\left|\epsilon_{a}\right|>\epsilon_{s}$ then go to Step 2, else stop the algorithm. Also, check if the number of iterations has exceeded the maximum number of iterations allowed. If so, one needs to terminate the algorithm and notify the user.

The method can be used for both algebraic and transcendental equations, and it also works when coefficients or roots are complex. It should be noted, however, that in the case of an algebraic equation with real coefficients, a complex root cannot be reached with a real starting value.

 $x^{2}=c$ `

$$
\begin{aligned}
f(x)=x^{2}-c & =0 \\
f^{\prime}(x) & =2 x
\end{aligned}
$$

KdZ XeYVE Vh è _qdZVCRę_ Wc^f JRh VYRgV

$$
\begin{gathered}
x_{n+1}=x_{n}-\frac{x_{n}^{2}-c}{2 x_{n}} \\
\text { `c } \quad x_{n+1}=\frac{x_{n}}{2}+\frac{c}{2 x_{n}} \\
\text { `. } \quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{c}{x_{n}}\right), n=0.1,2, \cdots \$
\end{gathered}
$$

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right), n=0,1,2, \cdots
$$

: $\mathrm{Y}^{\prime}{ }^{\prime} \mathrm{dV} x_{0}=1 \& \mathrm{YV}$

R_U RTIVae) \&) , *), RderVdbf RdVc` `e` V* V RTeè . ; \&

 Gオf CV \&

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-5}{2 x_{n}}
$$

CVef dd\&RceêZIac TVddSj eRI ZXU 5 *\&

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=2.25 \\
& x_{3}=2.2361111111111111111111111111111111 \\
& x_{4}=2.236067977915804002760524499654934 \\
& x_{5}=2.236067977499789696447872828327110 \\
& x_{6}=2.236067977499789696409173668731276
\end{aligned}
$$

 dVeU 5) \& YVcVde` VerV dMbf V_TVZZXV_VcReW eYc` f XY eYVWc^f JR

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}-\cos \left(x_{n}\right)}{1+\sin \left(x_{n}\right)}
$$

MVYRgV

$$
\begin{aligned}
& x_{1}=1 . \\
& x_{2}=0.750363867840243893034942306682177 \\
& x_{3}=0.739112890911361670360585290904890 \\
& x_{4}=0.739085133385283969760125120856804 \\
& x_{5}=0.739085133215160641661702625685026 \\
& x_{6}=0.739085133215160641655312087673873 \\
& x_{7}=0.739085133215160641655312087673873 \\
& x_{8}=0.739085133215160641655312087673873
\end{aligned}
$$

 T coVTeè . UVIZ R] a]RTVd\&l eRceh ZeY U5) !

$$
\begin{gathered}
f(x)=x^{3}+x-1 \$ \\
f^{\prime}(x)=3 x^{2}+1
\end{gathered}
$$

R_U df SdeZf e_Z XerVaVZ E Vh è _qdZVCRegVWc^f]R\$h VYRgV

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}+x_{n}-1}{3 x_{n}^{2}+1} \quad \text { ᄃ } x_{n+1}=\frac{2 x_{n}^{3}+1}{3 x_{n}^{2}+1} \$ \mathrm{~K}-(\$ \$ \$ \&
$$

$x_{1}+0.750000, x_{2}=0.686047, \quad x_{3}=0.682340, x_{4}=0.682328, \cdots$ R U h V RTTVae $\left(\& 0^{*}+^{*} 0\right.$ Rd R

$$
x \log _{10} x-1.2=0
$$

9பRQLK
J R V

$$
f(x)=x \log _{10} x-1.2
$$

E` \(\underset{\underline{Z}}{Z} X \operatorname{YRR} \quad \log _{10} x=\log _{e} x \cdot \log _{10} e \approx 0.4343 \log _{e} x\), h V`S\&Z $\quad f(x)=0.4343 x \log _{e} x-1.2$.

$$
f^{\prime}(x)=0.4343 \log _{e} x+0.4343 x \times \frac{1}{x}=\log _{10} x+0.4343
$$

R_UYV_TVEYVE Vh è _qdZVCRẻVVWc^f]RWcerVXZgV_ Vbf Rę _ Z

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{0.4343 x \log _{e} x_{n}-1.2}{\log _{10} x+0.4343} \&
$$

$$
2 \sin x=x \&
$$

? VcV

$$
f(x)=x-2 \sin x \$
$$

$d^{\circ} \mathrm{e} \mathrm{PR}$

$$
f^{\prime}(x)=1-2 \cos x
$$

$$
\begin{gathered}
x_{n+1}=x_{n}-\frac{x_{n}-2 \sin x_{n}}{1-2 \cos x_{n}} \$ n=0.1,2, \cdots \quad \text { ` } \mathrm{C} \\
x_{n+1}=\frac{2\left(\sin x_{n}-x_{n} \cos x_{n}\right)}{1-2 \cos x_{n}}=\frac{N_{n}}{D_{n}} \$ n=0.1,2, \cdots
\end{gathered}
$$

$\mathrm{h} Y \mathrm{YCV} \mathrm{h} V \mathbb{R} \mathbb{V} N_{n}=2\left(\sin x_{n}-x_{n} \cos x_{n}\right) \underline{R} \mathrm{U} D_{n}=1-2 \cos x_{n}$ \$è VRd `fc TRJIf]Rę_\& LRJf Vd

K	U_{k}	$6 k$	$/ k$	$U_{k!}$
$($	$* \&(($	$+\& 0+$	$) \otimes+^{*}$	$) \&()$
()	$) \&()$	$+\&_{k_{-}}$	$) \&, 0$	$) \otimes 1$.
$*$	$) \otimes 1$.	$+\&(/$	$) \&+1$	$) \otimes 1$.

Example KdVE Vhè _\%RaYd" _ ^VeY' Uè WURc `e` VerVVbf Rę_ $x^{3}-2 x-5=0$.

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-2 x_{n}-5}{3 x_{n}^{2}-2}
$$

$: Y^{\prime}{ }^{\prime} \mathrm{O} \underline{Z} \mathrm{X} x_{0}=2, \mathrm{~h} V$ SeR$\underline{\underline{Z}} f\left(x_{0}\right)=-1 \mathrm{R} \mathbf{U} f^{\prime}\left(x_{0}\right)=10$.

$$
\begin{aligned}
& x_{1}=2-\left(-\frac{1}{10}\right)=2.1 \\
& f\left(x_{1}\right)=(2.1)^{3}-2(2.1)-5=0.06,
\end{aligned}
$$

R_U $\quad f^{\prime}\left(x_{1}\right)=3(2.1)^{2}-2=11.23$.

$$
x_{2}=2.1-\frac{0.061}{11.23}=2.094568
$$

M VYRgV

$$
f(x)=x \sin x+\cos x \quad \text { R U } f^{\prime}(x)=x \cos x .
$$

? V_TVEYVZAVCREZ_Wc^f JRZI

$$
x_{n+1}=x_{n}-\frac{x_{n} \sin x_{n}+\cos x_{n}}{x_{n} \cos x_{n}}
$$

MZEY $x_{0}=\pi$, eYVof TTVdoZgVZAVCRE/dRcVXZgV_SV`h 2

n	x_{n}	$f\left(x_{n}\right)$	x_{n+1}
0	3.1416	-1.0	2.8233
1	2.8233	-0.0662	2.7986
2	2.7986	-0.0006	2.7984
3	2.7984	0.0	2.7984

$$
f(x)=x e^{x}-1=0
$$

CVe $x_{0}=1$. J YV_

$$
x_{1}=1-\frac{e-1}{2 e}=\frac{1}{2}\left(1+\frac{1}{e}\right)=0.6839397
$$

E `h $\quad f\left(x_{1}\right)=0.3553424, R \underline{U} f^{\prime}\left(x_{1}\right)=3.337012$,

$$
\begin{gathered}
x_{2}=0.6839397-\frac{0.3553424}{3.337012}=0.5774545 . \\
x_{3}=0.5672297 \text { R_U } x_{4}=0.5671433 .
\end{gathered}
$$

 `SeRZ RSVeeVc VdeZ Rev\&
? $\operatorname{VcVi}(5) \& \$ W) \&!5 u(\& \#]) \&!5 u(\& 1,-$
$f^{\prime}(x)=1+\frac{1}{x} ; f^{\prime}(1.5)=\frac{5}{3} ; x_{1}=1.5-\frac{(-0.0945)}{1.6667}=1.5567$
 ZZR]

$$
x_{2}=1.5567-\frac{(-0.0007)}{1.6424}=1.5571
$$

J YZIZIZ VRTeerVT' ccVTegRIf V` VerVc``eè, U\&\&

Generalized Newton's Method

$$
x_{n+1}=x_{n}-p \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

 V acVdoZ_d

$$
x_{0}-p \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}, x_{0}-(p-1) \frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}, x_{0}-(p-2) \frac{f^{\prime \prime \prime}\left(x_{0}\right)}{f^{\prime \prime \prime \prime}\left(x_{0}\right)}
$$

$$
f(x)=x^{3}-x^{2}-x+1=0
$$

? $\operatorname{VcV} f^{\prime}(x)=3 x^{2}-2 x-1, \operatorname{R} \cup \cup f^{\prime \prime}(x)=6 x-2$. $\mathrm{M} \mathbb{Z} x_{0}=0.8$, h V $\mathrm{SeR} \underline{Z}$

$$
x_{0}-2 \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0.8-2 \frac{0.072}{-(0.68)}=1.012
$$

R_U

$$
x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}=0.8-\frac{-(0.68)}{2.8}=1.043,
$$

$$
\begin{array}{ll}
x_{1}-2 \frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.01-0.0099=1.0001, \\
\text { R-U } & x_{1}-\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime \prime}\left(x_{1}\right)}=1.01-0.0099=1.0001,
\end{array}
$$

 RTf R] C' ef_百 \&
 $x_{1}=0.8+0.106 \approx 0.91$, R_U $x_{2}=0.91+0.046 \approx 0.96$.

Exercises

1. 8 aac` i Z ReVerVcVR] c` eee dn `Wf c UVIZ R] a]RTVd` W ' $x^{3}+5 x-3=0$
2. 8 aac` i \(\mathbb{Z}\) ReVè Wf c UVIZ R] a]RIVd \(\sqrt[3]{3}\) : Y'`dVU 5) \&
3. < a

 h Z్YZ 10^{-8} 'W $\sqrt{10}$ \&
 $a V_{c N c}{ }^{\wedge}$ Z X +dAVad\&
 : `^aRcVerVcVof Jedh Zer erVgRff $\vee \sqrt{7}=2.645751$

$\geqslant \mathrm{CZ}$ U5 $\frac{x}{2}$.
?!]_ U5) o*U
(d) $\cos x=\sqrt{x}$
 T' coVTeè eYcWUVIZ R] a]RIVd
4. 8 aalj E Vh è _q ${ }^{\wedge}$ ^ Ver` Uè erVVbf Rë_

$$
x^{3}-5 x+3=0
$$

$$
x^{4}-x^{3}-2 x-34=0
$$

14. 8 aalj E Vhè _q ${ }^{\wedge}$ Ver` Uè erVVbf Rę _

$$
x^{3}-3.9 x^{2}+4.79 x-1.881=0
$$

Ramanujan's Method

MV_WerVW]J`hZXJ YV cV~2

$$
(1+x)^{n}=1+\frac{n}{1} x+\frac{n(n-1)}{1 \cdot 2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-(r-1))}{1 \cdot 2 \cdot \ldots \cdot r} x^{r}+\ldots
$$

@ aRceZf]Rc\$

$$
(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{n} x^{n}+\ldots
$$

R_U $\quad(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots$
 h YZY TR_SVf dM è UVeVc^ZVerVd^R]JVdec ` e` VerVVbf Rę_

$$
f(x)=0,
$$

$$
f(x)=1-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{2}+a_{4} x^{4}+\cdots\right)
$$

$\left.\left.={ }^{\prime} c d^{\wedge} R\right] J V c g R\right] f$ Vd ${ }^{\prime} W U^{\prime} h$ VTR_h çav
$\left[1-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots\right)\right]^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots$

$1+\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)+\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)^{2}+\cdots$

$$
=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

: `^aRcZ_XeYVT' WMX_ed` WZ Va`h Vcd` WU`_S`eY dZVd` Wh V` SeRZ

$$
\left.\begin{array}{l}
b_{1}=1, \\
b_{2}=a_{1}=a_{1} b_{1}, \\
b_{3}=a_{1}^{2}+a_{2}=a_{1} b_{2}+a_{2} b_{1}, \\
\vdots \\
b_{n}=a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n-1} b_{1} \quad n=2,3, \cdots
\end{array}\right\}
$$

J YV_ b_{n} / b_{n+1} Raac` RTY Rc` e` herVVbf Rę_ $f(x)=0$ \&

$$
f(x)=x^{3}-6 x^{2}+11 x-6=0
$$

9பRQZK

J YVXZgV_ Vbf Rę _ TR_SVh crev_ Rd $f(x)$

$$
f(x)=1-\frac{1}{6}\left(11 x-6 x^{2}+x^{3}\right)
$$

: `^aRcZ X \$

$$
a_{1}=\frac{11}{6}, \quad a_{2}=-1, \quad a_{3}=\frac{1}{6}, \quad a_{4}=a_{5}=\cdots=0
$$

$$
1-\left(\frac{11 x-6 x^{2}+x^{3}}{6}\right)^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

? V_TV\$

$$
\begin{aligned}
& b_{1}=1 ; \\
& b_{2}=a_{1}=\frac{11}{6} ; \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=\frac{121}{36}-1=\frac{85}{36} ; \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=\frac{575}{216} ; \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{3661}{1296} ; \\
& b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{22631}{7776} ;
\end{aligned}
$$

J YVCWNCV

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=\frac{6}{11}=0.545453 & \frac{b_{2}}{b_{3}}=\frac{66}{85}=0.7764705 \\
\frac{b_{3}}{b_{4}}=\frac{102}{115}=0.88695653 & \frac{b_{4}}{b_{5}}=\frac{3450}{3661}=0.9423654 \\
\frac{b_{5}}{b_{6}}=\frac{3138}{3233}=0.9706155 &
\end{array}
$$

9j Z T'_gVCXV_ed $\frac{b_{n}}{b_{n+1}}$ Raac` RTY erZdc` `e\&

CVe $x e^{x}=1$

HVIR]]

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

? V_TV\$

$$
\begin{aligned}
& f(x)=1-\left(x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\cdots\right)=0 \\
& a_{1}=1, \quad a_{2}=1, \quad a_{3}=\frac{1}{2}, \quad a_{4}=\frac{1}{6}, \quad a_{5}=\frac{1}{24}, \cdots
\end{aligned}
$$

M VerV_ YRgV

$$
\begin{aligned}
& b_{1}=1 \\
& b_{2}=a_{2}=1 \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=1+1=2
\end{aligned}
$$

$$
b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=2+1+\frac{1}{2}=\frac{7}{2}
$$

$$
b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{7}{2}+2+\frac{1}{2}+\frac{1}{6}=\frac{37}{6} ;
$$

$$
b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{37}{6} ;+\frac{7}{2}+1+\frac{1}{6}+\frac{1}{24}=\frac{261}{24} ;
$$

J YVCWNCV

$$
\begin{array}{ll}
\frac{b_{2}}{b_{3}}=\frac{1}{2}=0.53 & \frac{b_{3}}{b_{4}}=\frac{4}{7}=0.57143 \\
\frac{b_{4}}{b_{5}}=\frac{21}{37}=0.567567563 & \frac{b_{5}}{b_{6}}=\frac{148}{261}=0.56704980 \&
\end{array}
$$

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0
$$

9பRQZK

CVe

$$
f(x)=1-\left[x-\frac{x^{2}}{(2!)^{2}}+\frac{x^{3}}{(3!)^{2}}-\frac{x^{4}}{(4!)^{2}}+\cdots\right]=0 .
$$

? VcV

$$
\begin{aligned}
& a_{1}=1, \quad a_{2}=-\frac{1}{(2!)^{2}}, \quad a_{3}=\frac{1}{(3!)^{2}}, \quad a_{4}=-\frac{1}{(4!)^{2}}, \\
& a_{5}=\frac{1}{(5!)^{2}}, \quad a_{6}=-\frac{1}{(6!)^{2}}, \cdots
\end{aligned}
$$

MçZ X

$\left\{1-\left[x-\frac{x^{2}}{(2!)}+\frac{x^{3}}{(3!)^{2}}-\frac{x^{4}}{(4!)^{2}}+\cdots\right]\right\}^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots \$$
h V SeRZ

$$
\begin{aligned}
& b_{1}=1, \\
& b_{2}=a_{1}=1, \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=1-\frac{1}{(2!)^{2}}=\frac{3}{4}, \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=\frac{3}{4}-\frac{1}{(2!)^{2}}+\frac{1}{(3!)^{2}}=\frac{3}{4}-\frac{1}{4}+\frac{1}{36}=\frac{19}{36}, \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1} \\
& =\frac{19}{36}-\frac{1}{4} \times \frac{3}{4}+\frac{1}{36} \times 1-\frac{1}{576}=\frac{211}{576} .
\end{aligned}
$$

$@ \mathrm{C}]$] h d

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=1 ; & \frac{b_{2}}{b_{3}}=\frac{4}{3}=1.333 \cdots \\
\frac{b_{3}}{b_{4}}=\frac{3}{4} \times \frac{36}{19}=\frac{27}{19}=1.4210 \cdots, & \frac{b_{4}}{b_{5}}=\frac{19}{36} \times \frac{576}{211}=1.4408 \cdots,
\end{array}
$$

h YVcVerV]RdecVof leZđT' ccVTeè ercWdZX_XXR_elzkf cVd\&

Example $=\underline{Z} U R C^{\prime}{ }^{`} \mathrm{e}^{`}$ VerVVbf ReZ_ $\sin x=1-x$.

$$
f(x)=1-\left(x+x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)=0 .
$$

? VcV

$$
\begin{aligned}
& a_{1}=2, \quad a_{2}=0, \quad a_{3}=\frac{1}{6}, \quad a_{4}=0, \\
& a_{5}=\frac{1}{120}, \quad a_{6}=0, \quad a_{7}=-\frac{1}{5040}, \cdots
\end{aligned}
$$

h Vh çal

$$
\left[1-\left(2 x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}+\cdots\right)\right]^{-1}=b_{1}+b_{2} x+b_{3} x^{2}+\cdots
$$

M VerV_ `SeRZ

$$
\begin{aligned}
& b_{1}=1 ; \\
& b_{2}=a_{1}=2 ; \\
& b_{3}=a_{1} b_{2}+a_{2} b_{1}=4 ; \\
& b_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}=8-\frac{1}{6}=\frac{47}{6} ; \\
& b_{5}=a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}=\frac{46}{3} ; \\
& b_{6}=a_{1} b_{5}+a_{2} b_{4}+a_{3} b_{3}+a_{4} b_{2}+a_{5} b_{1}=\frac{3601}{120} ;
\end{aligned}
$$

J YVcWVcV\$

$$
\begin{array}{ll}
\frac{b_{1}}{b_{2}}=\frac{1}{2} ; & \frac{b_{2}}{b_{3}}=\frac{1}{2} ; \\
\frac{b_{3}}{b_{4}}=\frac{24}{27}=0.5106382 & \frac{b_{4}}{b_{5}}=\frac{47}{92}=0.5108695 \\
\frac{b_{5}}{b_{6}}=\frac{1840}{3601}=0.5109691 \&
\end{array}
$$

J YVc`e\$T’ ccVTeè Wf cuVIZ R] a]RTVdZd(\&))(

Exercises

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0
$$

The Secant Method

 $\left.W c^{\wedge} f\right] R$

$$
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}},
$$

h Y $Z Y$ TR_ SVh ced

$$
f_{n}^{\prime}=\frac{f_{n}-f_{n-1}}{x_{n}-x_{n-1}},
$$

$$
x_{n+1}=x_{n}-\frac{f_{n}\left(x_{n}-x_{n-1}\right.}{f_{n}=f_{n-1}}=\frac{x_{n+1} f_{n}-x_{n} f_{n-1}}{f_{n}=f_{n-1}} .
$$

MVYRgV

$$
\begin{gathered}
f\left(x_{-1}\right)=f_{1}=8-9=-1, \text { R_U } f\left(x_{0}\right)=f_{0}=27-11=16 . \\
x_{1}=\frac{2(16)-3(-1)}{17}=\frac{35}{17}=2.058823529 .
\end{gathered}
$$

8 dd \$

$$
\begin{aligned}
& f\left(x_{1}\right)=f_{1}=-0.390799923 . \\
& x_{2}=\frac{x_{0} f_{1}-x_{1} f_{0}}{f_{1}-f_{0}}=\frac{3(-0.390799923)-2.058823529(16)}{-16.390799923}=2.08126366 .
\end{aligned}
$$

8 XRZ

$$
\begin{array}{r}
f\left(x_{2}\right)=f_{2}=-0.147204057 . \\
x_{3}=2.094824145 .
\end{array}
$$

Solution

J YVXCRaY ` W $f(x)=x-e^{-x}$ ZdRddY ${ }^{\text {h }}$ _ YVCV\&

 R_U $x_{0}=2$

$$
\begin{gathered}
f\left(x_{-1}\right)=f_{-1}=1-e^{-1}=1-0.367879441=0.632120559 \text { R-U } \\
f\left(x_{0}\right)=f_{0}=2-e^{-2}=2-0.135335283=1.864664717 .
\end{gathered}
$$

I EVa) 2Gf $\notin \underline{Z} \mathrm{X} n=0$ \$h V $\operatorname{SeR} \underline{\underline{Z}} x_{1}=\frac{x_{-1} f_{0}-x_{0} f_{-1}}{f_{0}-f_{-1}}$

$$
? \operatorname{VCV} \$ x_{1}=\frac{1(1.864664717)-2(0.632120559)}{1.864664717-0.632120559}=\frac{0.600423599}{1.232544158}=0.487142
$$

8]d \$

$$
f\left(x_{1}\right)=f_{1}=0.487142-e^{-0.487142}=-0.12724 .
$$

$$
x_{2}=\frac{x_{0} f_{1}-x_{1} f_{0}}{f_{1}-f_{0}}=\frac{2(-0.12724)-0.487142(1.864664717)}{-0.12724-1.864664717}=\frac{-1.16284}{-1.99190}=0.58378
$$

8 XRZ

$$
f\left(x_{2}\right)=f_{2}=0.58378-e^{-0.58378}=0.02599 .
$$

I EVa $+2 \mid$ Veq X $n=2$ \$

$$
\begin{gathered}
x_{3}=\frac{x_{1} f_{2}-x_{2} f_{1}}{f_{2}-f_{1}}=\frac{0.487142(0.02599)-0.58378(-0.12724)}{0.02599-(-0.12724)}=\frac{0.08694}{0.15323}=0.56738 \\
f\left(x_{3}\right)=f_{3}=0.56738-e^{-0.56738}=0.00037 .
\end{gathered}
$$

$$
x_{4}=\frac{x_{2} f_{3}-x_{3} f_{2}}{f_{3}-f_{2}}=\frac{0.58378(0.00037)-0.56738(0.02599)}{0.00037-0.02599}=\frac{-0.01453}{-0.02562}=0.5671
$$

8 aac` i Z Re_Z Xè eYcWUZZZed\$erVc" eTR_SVT _dZVcW Rd (\&. / \&

Exercises

 j `f codof leh Z्Y elvef VgRjf V` W $x=0.567143 \cdots \&$
 $x^{2.2}=69$.

Objective Type Questions

$$
\text { Z } x_{n+1}=\frac{x_{n}}{2} \quad \mathbb{Z} \quad x_{n+1}=\frac{3 x_{n}}{2} \quad \mathbb{Z Z} \quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{C}{x_{n}}\right) \text { Zg! E`_V VerVaN }
$$

S! J YV _V e ZAVCRegV gRff V `WerV c'`e `W $2 x^{2}-3=0$ fog X erV E Vh è _ \%dRaYd" _ ^VE「 U\$ZlerVZZZR] Xf VddZ才*\$Zd

 Z Z
Z) ZZ) \&- ZZ) \& Z! E E _V VervaN

U! @ dNIR_ e^{\wedge} Ver ${ }^{\wedge}$ U\$
Z $\quad x_{n+1}=\frac{x_{n-1} f_{n}-x_{n} f_{n-1}}{f_{n}-f_{n-1}} \quad \mathbb{Z} \quad x_{n+1}=\frac{x_{n} f_{n}-x_{n-1} f_{n-1}}{f_{n}-f_{n-1}} \quad \mathbb{Z} \quad x_{n+1}=\frac{x_{n-1} f_{n-1}-x_{n} f_{n}}{f_{n-1}-f_{n}}$
Z! E` _V VerVaV

Answers

(a) $\mathbb{Z} x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{C}{x_{n}}\right)$

S! Z) \& $\|-$
T! $\mathbb{Z 1}$) \&

U! Z $x_{n+1}=\frac{x_{n-1} f_{n}-x_{n} f_{n-1}}{f_{n}-f_{n-1}}$
Theoretical Questions with Answers:
) \&M YReZIerVUZWNCV_TVSVeh W_ ScRTI Ve_Z XR_U aV_ ^ Ver` U7

4

FINITE DIFFERENCES OPERATORS

 UZWCV_TV`aVCRè cd R_U VZZZV UZWCV_TVO\$h YZY h VCVZZec Uf TW Sj IZ @RRT E Vh è_\& SRTI h RcU UZWCV_TV `aVcRè c\$ dYZ\#` `aVCRè c\$ TV_eR] UZWCV_TV `aVcRè c R_U ^VR. `aVcRè c\&

- Forward difference operator (Δ):
 h YVcV $x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, x_{3}=x_{0}+3 h, \ldots, x_{n}=x_{0}+n h \$$ erV Wch RdU UZWNCV_TV `aVCRè c Δ Z UWZ W. _ervin_Tę_W!Ro

$$
\Delta f\left(x_{i}\right)=f\left(x_{i}+h\right)-f\left(x_{i}\right)=f\left(x_{i+1}\right)-f\left(x_{i}\right)
$$

J YReZ $\$$

$$
\Delta y_{i}=y_{i+1}-y_{i}
$$

J YV_\$Z aRceat JRc

$$
\begin{aligned}
& \Delta f\left(x_{0}\right)=f\left(x_{0}+h\right)-f\left(x_{0}\right)=f\left(x_{1}\right)-f\left(x_{0}\right) \\
& \Rightarrow \quad \Delta y_{0}=y_{1}-y_{0} \\
& \Delta f\left(x_{1}\right)=f\left(x_{1}+h\right)-f\left(x_{1}\right)=f\left(x_{2}\right)-f\left(x_{1}\right) \\
& \Rightarrow \quad \Delta y_{1}=y_{2}-y_{1}
\end{aligned}
$$

VeI $\$$
$\Delta y_{0}, \Delta y_{1}, \ldots, \Delta y_{i}, \ldots$ RCV $_{-}{ }^{\text {h }}$ _ RderVfirst forward differences.
J YVdVT _UWch RCU UZWCV_TVd RcVUWZ W Rd\$

$$
\begin{aligned}
\Delta^{2} f\left(x_{i}\right) & =\Delta\left[\Delta f\left(x_{i}\right)\right]=\Delta\left[f\left(x_{i}+h\right)-f\left(x_{i}\right)\right] \\
& =\Delta f\left(x_{i}+h\right)-\Delta f\left(x_{i}\right) \\
& =f\left(x_{i}+2 h\right)-f\left(x_{i}+h\right)-\left[f\left(x_{i}+h\right)-f\left(x_{i}\right)\right] \\
& =f\left(x_{i}+2 h\right)-2 f\left(x_{i}+h\right)+f\left(x_{i}\right) \\
& =y_{i+2}-2 y_{i+1}+y_{i}
\end{aligned}
$$

@ aRceचf]Rc\$

$$
\Delta^{2} f\left(x_{0}\right)=y_{2}-2 y_{1}+y_{0} \text { or } \Delta^{2} y_{0}=y_{2}-2 y_{1}+y_{0}
$$

J YVeYZUU Wd RdU UZWNCV_TVdRcV\$

$$
\begin{aligned}
\Delta^{3} f\left(x_{i}\right) & =\Delta\left[\Delta^{2} f\left(x_{i}\right)\right] \\
& =\Delta\left[f\left(x_{i}+2 h\right)-2 f\left(x_{i}+h\right)+f\left(x_{i}\right)\right] \\
& =y_{i+3}-3 y_{i+2}+3 y_{i+1}-y_{i}
\end{aligned}
$$

@ aRceचf]Rc\$

$$
\Delta^{3} f\left(x_{0}\right)=y_{3}-3 y_{2}+3 y_{1}-y_{0} \quad \text { or } \quad \Delta^{3} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0}
$$

@ XV_VdR] erV_er Wch RcU UZWCV_TV\$

$$
\Delta^{n} f\left(x_{i}\right)=\Delta^{n-1} f\left(x_{i}+h\right)-\Delta^{n-1} f\left(x_{i}\right)
$$

J YVUZWVCV_TVd $\Delta y_{0}, \Delta^{2} y_{0}, \Delta^{3} y_{0} \ldots$. RCVTR]]M erVleading differences.
= ' dh RdU UZWVCV_TVdTR_SVh ceev_Z ReRSf JRc Wc^ RdW]J’h dZ

i	j	Δy	$\Delta^{2} y$	$\Delta^{3} y$
x_{0}	$y_{0}=f\left(x_{o}\right)$			
x_{1}	$y_{1}=f\left(x_{1}\right)$	$\Delta y_{0}=y_{1}-y_{0}$		
		$\Delta y_{1}=y_{2}-y_{1}$		$\Delta^{2} y_{0}=\Delta y_{1}-\Delta y_{0}$
x_{2}	$y_{2}=f\left(x_{2}\right)$		$\Delta \Delta^{2} y_{1}=\Delta y_{2}-\Delta y_{1}$	
x_{3}	$y_{3}=f\left(x_{3}\right)$			

Example : `_def Te eYV Wch RcU UZWNV_TV eRSIV Wc eYV W]j’h ZXX U gRIf Vd R_U Zed T'ccVoda`_UZZXCgR]f Vd\&

Example : ` _deef TeerVWh RdU UZWNC_TVeRSIN\$h YVcV $\quad f(x)=\frac{1}{x}$ "U-) (\&!*\$, ; \& $\Delta \mathrm{C} \quad \Delta^{*} \mathrm{C}$

$$
\begin{aligned}
& \text { U } \quad f(x)=\frac{1}{x} \quad \text { vede } \quad \mathrm{ONT}_{1}^{-} \mathrm{U} \quad \Delta+\mathrm{C} \quad \Delta, \mathrm{C} \quad \Delta-\mathrm{C} \\
& \text { UZWVCV UZWNCV }
\end{aligned}
$$

$) \& \quad) \&(($
\% \% . . /
$) \$ \quad(\otimes++$
(\$,//
\%

$) \& \quad\left(\&^{*}-(\right.$
(\&) 11
(\&
\% 8
(\&)
\% 0 (.)
) $\otimes \quad(\&--$
(\&) 10
\%

* $\& \quad$ (

Example : ` _def TeerVWch RdU UZWNCV_TVeRSJVWcerVUReR

$$
\begin{array}{crrrr}
x:-2 & 0 & 2 & 4 \\
y=f(x): & 4 & 9 & 17 & 22
\end{array}
$$

J YVWch RdU UZWNCV_TVeRS]VZXRdW]]` h dZ

i	j 5W!	Δy	$\Delta^{2} y$	$\Delta^{3} y$
\%	,			$\Delta^{3} y_{0} 5 \%$
		$\Delta y_{0} 5-$		
1	1		$\Delta^{2} y_{0} 5+$	
		$\Delta y_{1} 50$		
*)/		$\Delta^{2} y_{1} 5 \%$	
,	**	$\Delta y_{2} 5-$		

Properties of Forward difference operator (Δ):

J YV_\$ $\quad \Delta f(x)=f(x+h)-f(x)=k-k=0$

$$
\begin{aligned}
\Delta(f(x)+g(x)) & =\Delta((f+g)(x)) \\
& =(f+g)(x+h)-(f+g)(x) \\
& =f(x+h)+g(x+h)-(f(x)+g(x)) \\
& =f(x+h)-f(x)+g(x+h)-g(x) \\
& =\Delta f(x)+\Delta g(x)
\end{aligned}
$$

(iii) Gc` TMUZ_XRdZ $\mathbb{Z} \$ W c e r V T$ _d\&R_ed>R_U?\$

$$
\Delta(a f(x)+b g(x))=a \Delta f(x)+b \Delta g(x) \&
$$

$$
\Delta(f(x) g(x))=f(x+h) \Delta g(x)+g(x) \Delta f(x)
$$

$G C^{\prime}$ V

$$
\begin{aligned}
\Delta(f(x) g(x)) & =\Delta((f g)(x)) \\
& =(f g)(x+h)-(f g)(x) \\
& =f(x+h) g(x+h)-f(x) g(x)
\end{aligned}
$$

$$
\begin{aligned}
\Delta(f(x) g(x) & =f(x+h) g(x+h)-f(x+h) g(x)+f(x+h) g(x)-f(x) g(x) \\
= & f(x+h)[g(x+h)-g(x)]+g(x)[f(x+h)-f(x)] \\
= & f(x+h) \Delta g(x)+g(x) \Delta f(x)
\end{aligned}
$$

 ac` gWeyRe

$$
\Delta(f(x) g(x))=g(x+h) \Delta f(x)+f(x) \Delta g(x)
$$

$$
\Delta\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \Delta f(x)-f(x) \Delta g(x)}{g(x+h) g(x)}
$$

Gc' $\sqrt{ }$ V

$$
\begin{aligned}
\Delta\left(\frac{f(x)}{g(x)}\right) & =\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)} \\
= & \frac{f(x+h) g(x)-f(x) g(x+h)}{g(x+h) g(x)} \\
= & \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{g(x+h) g(x)} \\
& =\frac{g(x)[f(x+h)-f(x)]-f(x)[g(x+h)-g(x)]}{g(x+h) g(x)} \\
& =\frac{g(x) \Delta f(x)-f(x) \Delta g(x)}{g(x+h) g(x)}
\end{aligned}
$$

Following are some results on forward differences:

HVdf le*2@ K ZIR_Z

$$
f(a+n h)=f(a)+{ }^{n} C_{1} \Delta f(a)+{ }^{n} C_{2} \Delta^{2} f(a)+\cdots+\Delta^{n} f(a)
$$

WcerVa`]j _`^R]W! \underline{Z} i \&
Forward Difference Table

U	C	$\Delta \mathrm{C}$	$\Delta^{*} \mathrm{C}$	$\Delta+C$	$\Delta \cdot \mathrm{C}$	Δ - C	$\Delta \cdot \mathrm{C}$
4	4						
U	6	$\Delta ¢$	$\Delta^{*} G$				$\Delta \cdot ¢$
U	区	ΔC	Δ^{*} ©	$\Delta+4$	$\Delta \cdot ¢$		
U_{+}	G	Δ ©	Δ^{*} ©	$\Delta+C$	$\Delta \cdot C$		
				$\Delta+$ +		Δ-6	
U,	C	$\Delta \mathrm{C}$	$\Delta^{*} G$		$\Delta \cdot ๔$		
U	C	ΔC	$\Delta^{*} \mathrm{C}$	$\Delta+G$			
		$\Delta \mathrm{C}$					
U	C						

$$
\begin{aligned}
\Delta^{2} f_{0} & =\Delta f_{1}-\Delta f_{0}=f_{2}-f_{1}-\left(f_{1}-f_{0}\right)=f_{2}-2 f_{1}+f_{0} \\
\Delta^{3} f_{0} & =\Delta^{2} f_{1}-\Delta^{2} f_{0}=\Delta f_{2}-\Delta f_{1}-\left(\Delta f_{1}-\Delta f_{0}\right) \\
& =\left(f_{3}-f_{2}\right)-\left(f_{2}-f_{1}\right)-\left(f_{2}-f_{1}\right)+\left(f_{1}-f_{0}\right) \\
& =f_{3}-3 f_{2}+3 f_{1}-f_{0}
\end{aligned}
$$

@ XV_VCR]\$

$$
\Delta^{n} f_{0}=f_{n}-{ }^{n} C_{1} f_{n-1}+{ }^{n} C_{2} f_{n-2}-{ }^{n} C_{3} f_{n-3}+\ldots+(-1)^{n} f_{0} \&
$$

$$
\begin{aligned}
& \Delta^{2} y_{0}=y_{2}-2 y_{1}+y_{0} \\
& \Delta^{3} y_{0}=y_{3}-3 y_{2}+3 y_{1}-y_{0} \\
& \Delta^{n} y_{0}=y_{n}-{ }^{n} C_{1} \quad y_{n-1}+{ }^{n} C_{2} \quad y_{n-2}-{ }^{n} C_{3} y_{n-3}+\ldots+(-1)^{n} y_{0}
\end{aligned}
$$

 R_UerV]MRUZ X UZUWCV_TVd $\Delta y_{0}, \Delta^{2} y_{0}, \ldots, \Delta^{n} y_{0}$.

9பRQLK

$=c^{`}$ ^ eYVWch RcU UZWNCV_TV ${ }^{\prime}$ SSJVh VYRgV

$$
\begin{array}{lll}
\Delta f_{0}=f_{1}-f_{0} & \text { or } & f_{1}=f_{0}+\Delta f_{0} \\
\Delta f_{1}=f_{2}-f_{1} & \text { or } & f_{2}=f_{1}+\Delta f_{1} \\
\Delta f_{2}=f_{3}-f_{2} & \text { or } & f_{3}=f_{2}+\Delta f_{2}
\end{array}
$$

R_Ud" `_\&IてZRC]j \$

$$
\left.\begin{array}{l}
\Delta^{2} f_{0}=\Delta f_{1}-\Delta f_{0} \text { or } \Delta f_{1}=\Delta f_{0}+\Delta^{2} f_{0} \\
\Delta^{2} f_{1}=\Delta f_{2}-\Delta f_{1} \text { or } \Delta f_{2}=\Delta f_{1}+\Delta^{2} f_{1}
\end{array}\right\}
$$

R_Ud" `_\&I Z ZRclj \$h VTR_h cav

$$
\left.\begin{array}{l}
\Delta^{3} f_{0}=\Delta^{2} f_{1}-\Delta^{2} f_{0} \text { or } \Delta^{2} f_{1}=\Delta^{2} f_{0}+\Delta^{3} f_{0} \\
\Delta^{3} f_{1}=\Delta^{2} f_{2}-\Delta^{2} f_{1} \text { or } \Delta^{2} f_{2}=\Delta^{2} f_{1}+\Delta^{3} f_{1}
\end{array}\right\}
$$

R_Ud" `_\&8]d \$h VTR_h çav f_{2} Rd

$$
\begin{aligned}
f_{2} & =\left(f_{0}+\Delta f_{0}\right)+\left(\Delta f_{0}+\Delta^{2} f_{0}\right) \\
& =f_{0}+2 \Delta f_{0}+\Delta^{2} f_{0} \\
& =(1+\Delta)^{2} f_{0}
\end{aligned}
$$

? V_TV

$$
\begin{aligned}
f_{3} & =f_{2}+\Delta f_{2} \\
& =\left(f_{1}+\Delta f_{1}\right)+\Delta f_{0}+2 \Delta^{2} f_{0}+\Delta^{3} f_{0} \\
& =f_{0}+3 \Delta f_{0}+3 \Delta^{2} f_{0}+\Delta^{3} f_{0} \\
& =(1+\Delta)^{3} f_{0}
\end{aligned}
$$

$$
f_{1}=(1+\Delta) f_{0}, f_{2}=(1+\Delta)^{2} f_{0}, f_{3}=(1+\Delta)^{3} f_{0}
$$

$$
f_{n}=(1+\Delta)^{n} f_{0} .
$$

$$
f_{n}=f_{0}+{ }^{n} C_{1} \Delta f_{0}+{ }^{n} C_{2} \Delta^{2} f_{0}+\ldots+\Delta^{n} f_{0}
$$

J Yf d

$$
f_{n}=\sum_{i=0}^{n}{ }^{n} C_{i} \Delta^{i} f_{0} .
$$

Backward Difference Operator

For the values $y_{0}, y_{1}, \ldots, y_{n}$ of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, for the equidistant values $x_{0}, x_{1}, \ldots, x_{n}$, where $x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, x_{3}=x_{0}+3 h, \ldots, x_{n}=x_{0}+n h$, the backward difference operator ∇ is defined on the function $\mathrm{f}(\mathrm{x})$ as,

$$
\nabla f\left(x_{i}\right)=f\left(x_{i}\right)-f\left(x_{i}-h\right)=y_{i}-y_{i-1},
$$

which is the first backward difference.
In particular, we have the first backward differences,

$$
\nabla f\left(x_{1}\right)=y_{1}-y_{0} ; \nabla f\left(x_{2}\right)=y_{2}-y_{1} \text { etc }
$$

The second backward difference is given by

$$
\begin{aligned}
\nabla^{2} f\left(x_{i}\right) & =\nabla\left(\nabla f\left(x_{i}\right)\right)=\nabla\left[f\left(x_{i}\right)-f\left(x_{i}-h\right)\right]=\nabla f\left(x_{i}\right)-\nabla f\left(x_{i}-h\right) \\
& =\left[f\left(x_{i}\right)-f\left(x_{i}-h\right)\right]-\left[f\left(x_{i}-h\right)-f\left(x_{i}-2 h\right)\right] \\
& =\left(y_{i}-y_{i-1}\right)-\left(y_{i-1}-y_{i-2}\right) \\
& =y_{i}-2 y_{i-1}+y_{i-2}
\end{aligned}
$$

Similarly, the third backward difference, $\nabla^{3} f\left(x_{i}\right)=y_{i}-3 y_{i-1}+3 y_{i-2}-y_{i-3}$ and so on.
Backward differences can be written in a tabular form as follows:

x	Y	∇y	$\nabla^{2} y$	$\nabla^{3} y$
x_{o}	$y_{0}=f\left(x_{o}\right)$			
x_{1}	$y_{1}=f\left(x_{1}\right)$	$\nabla y_{1}=y_{1}-y_{0}$		
$x_{2} y_{2}=\nabla y_{2}-\nabla y_{1}$				
x_{2}	$y_{2}=f\left(x_{2}\right)$	$\nabla y_{2}=y_{2}-y_{1}$		$\nabla^{3} y_{3}=\nabla^{2} y_{3}-\nabla^{2} y_{2}$
x_{3}	$y_{3}=f\left(x_{3}\right)$	$\nabla y_{3}=y_{3}-y_{2}$		

Relation between backward difference and other differences:

1. $\Delta y_{0}=y_{1}-y_{0}=\nabla y_{1} ; \quad \Delta^{2} y_{0}=y_{2}-2 y_{1}+y_{0}=\nabla^{2} y_{2}$ etc.
2. $\Delta-\nabla=\Delta \nabla$

Proof: Consider the function $\mathrm{f}(\mathrm{x})$.

$$
\begin{aligned}
\Delta f(x) & =f(x+h)-f(x) \\
\nabla f(x) & =f(x)-f(x-h) \\
(\Delta-\nabla)(f(x)) & =\Delta f(x)-\nabla f(x) \\
& =[f(x+h)-f(x)]-[f(x)-f(x-h)] \\
& =\Delta f(x)-\Delta f(x-h) \\
& =\Delta[f(x)-f(x-h)] \\
& =\Delta[\nabla f(x)] \\
\Rightarrow \quad \Delta-\nabla & =\Delta \nabla
\end{aligned}
$$

3. $\nabla=\Delta E^{-1}$

Proof: Consider the function $f(x)$.

$$
\nabla f(x)=f(x)-f(x-h)=\Delta f(x-h)=\Delta E^{-1} f(x) \Rightarrow \nabla=\Delta E^{-1}
$$

4. $\nabla=1-E^{-1}$

Proof: Consider the function $f(x)$.

$$
\nabla f(x)=f(x)-f(x-h)=f(x)-E^{-1} f(x)=\left(1-E^{-1}\right) f(x) \Rightarrow \nabla=1-E^{-1}
$$

Problem: Construct the backward difference table for the data

$$
\begin{array}{rlll}
x:-2 & 0 & 2 & 4 \\
y=f(x):-8 & 3 & 1 & 12
\end{array}
$$

Solution: The backward difference table is as follows:

x	$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	∇y	$\nabla^{2} y$	$\nabla^{3} y$
-2	-8			
0	3	$\nabla y_{1}=3-(-8)=11$		
2	1	$\nabla y_{2}=1-3=-2$		
		$\nabla y_{3}=12-1=11$		
4	12			

Backward Difference Table

U	C	$\nabla \mathrm{C}$	$\nabla^{*} \mathrm{C}$	$\nabla+C$	$\nabla \cdot \mathrm{C}$	$\nabla-\mathrm{C}$	$\nabla \cdot C$
4	4						
U	6	$\nabla ¢$	$\nabla{ }^{*}$ ®				
U	๔	－®	$\nabla^{*} G$	$\nabla+G$	$\nabla \cdot \mathrm{C}$	$\nabla-\mathrm{C}$	
U_{+}	G	$\nabla \mathrm{G}$	$\nabla^{*} \mathrm{C}$	$\nabla+C$	$\nabla \cdot \mathrm{C}$		$\nabla \cdot \mathrm{C}$
U	C	∇C	$\nabla^{*} C$	$\nabla+C$	$\nabla \cdot \mathrm{C}$	$\nabla-\mathrm{C}$	
		$\nabla \mathrm{C}$		$\nabla+C$			
U	C	$\nabla \mathrm{C}$	$\nabla^{*} \mathrm{C}$				
U	C						

 SRTI h RdU UZWNC＿TVd\＆

9பRQ\＆K

$$
\begin{aligned}
& \left.\nabla f_{n}=f_{n}-f_{n-1} \text { 乙 } \mathfrak{a}\right] \nabla / d f_{n-1}=f_{n}-\nabla f_{n} \\
& \text { R_U } \nabla f_{n-1}=f_{n-1}-f_{n-2} \text { 乙 a] } \bar{Z} / \mathrm{d} f_{n-2}=f_{n-1}-\nabla f_{n-1} \\
& \nabla^{2} f_{n}=\nabla f_{n}-\nabla f_{n-1} \quad \text { Z a] } \bar{Z} / \mathrm{d} \quad \nabla f_{n-1}=\nabla f_{n}-\nabla^{2} f_{n}
\end{aligned}
$$

$$
f_{n-2}=f_{n}-2 \nabla f_{n}+\nabla^{2} f_{n} \&
$$

I Z ZRclj \＄h VTR＿of｀h eYRe

$$
f_{n-3}=f_{n}-3 \nabla f_{n}+3 \nabla^{2} f_{n}-\nabla^{3} f_{n} \&
$$

$$
f_{n-1}=(1-\nabla) f_{n}, f_{n-2}=(1-\nabla)^{2} f_{n}, f_{n-3}=(1-\nabla)^{3} f_{n} .
$$

J Yf d\＄Z XV＿VCR］\＄h VTR＿h çav

$$
f_{n-r}=(1-\nabla)^{r} f_{n} \&
$$

$\mathbf{Z} \mathbf{\$} \boldsymbol{\$} f_{n-r}=f_{n}-{ }^{r} C_{1} \nabla f_{n}+{ }^{r} C_{2} \nabla^{2} f_{n}-\ldots+(-1)^{r} \nabla^{r} f_{n}$

$$
y_{n-r}=y_{n}-{ }^{r} C_{1} \nabla y_{n}+{ }^{r} C_{2} \nabla^{2} y_{n}-\ldots+(-1)^{r} \nabla^{r} y_{n}
$$

Central Differences

Central difference operator δ for a function $\mathrm{f}(\mathrm{x})$ at x_{i} is defined as,

$$
\delta f\left(x_{i}\right)=f\left(x_{i}+\frac{h}{2}\right)-f\left(x_{i}-\frac{h}{2}\right), \text { where } h \text { being the interval of differencing. }
$$

Let $y_{\frac{1}{2}}=f\left(x_{0}+\frac{h}{2}\right)$. Then,

$$
\begin{aligned}
\delta y_{\frac{1}{2}}=\delta f\left(x_{0}+\frac{h}{2}\right) & =f\left(x_{0}+\frac{h}{2}+\frac{h}{2}\right)-f\left(x_{0}+\frac{h}{2}-\frac{h}{2}\right) \\
& =f\left(x_{0}+h\right)-f\left(x_{0}\right)=f\left(x_{1}\right)-f\left(x_{0}\right)=y_{1}-y_{0} \\
\Rightarrow \delta y_{\frac{1}{2}} & =\Delta y_{0}
\end{aligned}
$$

Central differences can be written in a tabular form as follows:

x	y	δy	$\delta^{2} y$	$\delta^{3} y$
x_{o}	$y_{0}=f\left(x_{o}\right)$			
x_{1}	$y_{1}=f\left(x_{1}\right)$			
$x_{\frac{1}{2}}=y_{1}-y_{0}$		$\delta^{2} y_{1}=\delta y_{\frac{3}{2}}-\delta y_{\frac{1}{2}}$		
x_{2}	$y_{2}=f\left(x_{2}\right)$	$\delta y_{\frac{3}{2}}=y_{2}-y_{1}$		$\delta^{3} y_{\frac{3}{2}}=\delta^{2} y_{2}-\delta^{2} y_{1}$
x_{3}	$y_{3}=f\left(x_{3}\right)$	$\delta y_{\frac{5}{2}}=y_{3}-y_{2}$		$\delta^{2} y_{2}=\delta y_{\frac{5}{2}}-\delta y_{\frac{3}{2}}$

Central Difference Table

U	C	¢C	$\delta^{*} \mathrm{C}$	$\delta+C$	S. C
4	4				
U	6	δq^{\prime} *	$\delta^{*} ¢$		
U	©	δG^{*}	δ^{*} ®		¢®
U_{+}	G	δC^{*}	$\delta^{*} G$		
U	C	$\delta \Psi^{\prime}$ *			

Example IY`h eYRe
$\mathrm{R}!\delta^{2} f_{m}=f_{m+1}-2 f_{m}+f_{m-1}$
$\mathrm{S}!\delta^{3} f_{m+\frac{1}{2}}=f_{m+2}-3 f_{m+1}+3 f_{m}-f_{m-1}$
$\mathrm{R}!\delta^{2} f_{m}=\delta_{m+1 / 2}-\delta f_{m-1 / 2}=\left(f_{m+1}-f_{m}\right)-\left(f_{m}-f_{m H}\right)$

$$
=f_{m+1}-2 f_{m}+f_{m-1}
$$

$\mathrm{S}!\delta^{3} f_{m+1 / 2}=\delta^{2} f_{m+1}-\delta^{2} f_{m}=\left(f_{m+2}-2 f_{m+1}+f_{m}\right)-$

$$
\left(f_{m+1}-2 f_{m}+f_{m-1}\right)=f_{m+2}-3 f_{m+1}+3 f_{m}-f_{m-1}
$$

Shift operator, 0
 M VerV_ UMZXZR_ `aVcRè c0"TR]JM the shift operator YRgZ XeYVac` aVce
0 CU! 5 CU! E!
t)!
 ‘aVcRè cen $\overline{\mathrm{V}}$ ` _ CU!\$h VXVe

$$
\text { O* CU! } 50 \text { PO CU!Q5 CU! *E!\& }
$$

$$
0 \text { KCU! } 5 \text { CU! KE! } \quad \text { t } *!
$$

Wc R]] CVR$] \mathrm{gR}] f \mathrm{Vd}{ }^{`} \mathrm{~W}$ K

V5 C U!\$eYV_h VTR_R]d'h çav

$$
\left.0^{-}\right) \mathrm{CU} 5 \mathrm{CU}-\mathrm{E}!\quad \mathrm{t}+
$$

R_UdZ ZRclj

$$
0^{-K} \mathrm{CU} 5 \mathrm{CU}-\mathrm{KE}!\quad \mathrm{t},!
$$

Average Operator μ

J YVaverage operator μ Z Z UMIX W Rd

$$
\mu f(x)=\frac{1}{2}\left[f\left(x+\frac{h}{2}\right)+f\left(x-\frac{h}{2}\right)\right]
$$

Differential operator /
J YVdifferential operator / YRdeYVac`aVcé

$$
\begin{gathered}
D f(x)=\frac{d}{d x} f(x)=f^{\prime}(x) \\
D^{2} f(x)=\frac{d^{2}}{d x^{2}} f(x)=f^{\prime \prime}(x)
\end{gathered}
$$

Relations between the operators:
Operators $\Delta \$ \$ \$ 1$ and / in terms of 0
$=C^{`}$ ^ eYVUWZZZZ
Δ CU! $5 C U!E!-C U!50 C U!-C U!50-1)$ CU!\&
J YVCWVCV

$$
\Delta 50-)
$$

∇ CU! $5 C U!-C U-E!5 C U-0^{-)} C U!5$)-0-1! CU!\&
J YVCWNCV

$$
\nabla=1-E^{-1}=\frac{E-1}{E} .
$$

J YVUWZZZZ _ `WerV` aVcRè cd δ R_U 0 XZgVd
סCU!5CU! E\% / CU- E\% 50$)^{\prime *} \mathrm{CU}$ - $0^{-)^{\prime *} C U!}$

$$
50)^{\prime *}-0^{-)^{\prime *}!C U!\& ~}
$$

J YVCWNCV\$

$$
\delta 50)^{\prime *}-0^{-1}{ }^{\prime *}
$$

$$
\mu f(x)=\frac{1}{2}\left[f\left(x+\frac{h}{2}\right)+f\left(x-\frac{h}{2}\right)\right]=\frac{1}{2}\left[E^{1 / 2}+E^{-1 / 2}\right] f(x) .
$$

J YVCWCV\$

$$
\mu=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right) .
$$

@ZU_`h_erRe
OCUISCU! E!\&
KoZXerVJ Ri J’caVcZdV aR_oZ_\$h VYRgV

$$
E f(x)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots
$$

$$
\begin{array}{r}
=f(x)+h D f(x)+\frac{h^{2}}{2!} D^{2}(x)+\ldots \\
=\left(1+\frac{h D}{1!}+\frac{h^{2} D^{2}}{2!}+\ldots\right) f(x)=e^{h D} f(x) \&
\end{array}
$$

J Yf d $E=e^{h D} \& F \propto$
E/ -]’X O\&

 daRTZ XE\$ac` gVerVW]J’ h ZX2
(i) $1+\delta^{2} \mu^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}$
(ii) $E^{1 / 2}=\mu+\frac{\delta}{2}$
(iii) $\Delta=\frac{\delta^{2}}{2}+\delta \sqrt{1+\left(\delta^{2} / 4\right)}$
(iv) $\mu \delta=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2}$
(v) $\mu \delta=\frac{\Delta+\nabla}{2}$.

9URQEK

$$
Z=c^{`} \wedge \text { elVUWZZZZ _ `W aVcRè col\$h VYRgV }
$$

$$
\mu \delta=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left(E-E^{-1}\right) \&
$$

J YVcWVcV

$$
1+\mu^{2} \delta^{2}=1+\frac{1}{4}\left(E^{2}-2+E^{-2}\right)=\frac{1}{4}\left(E+E^{-1}\right)^{2}
$$

8]d \$

$$
1+\frac{\delta^{2}}{2}=1+\frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}=\frac{1}{2}\left(E+E^{-1}\right)
$$

$=c^{`} \wedge$ Vbf Rë_d)! R_U *!\$h VXVe

$$
1+\delta^{2} \mu^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}
$$

田 $\mu+\frac{\delta}{2}=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}+E^{1 / 2}-E^{-1 / 2}\right)=E^{1 / 2}$.
田 MVTR_hce

$$
\begin{aligned}
\frac{\delta^{2}}{2} & +\delta \sqrt{1+\left(\delta^{2} / 4\right)}=\frac{\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}}{2}+\left(E^{1 / 2}-E^{-1 / 2}\right) \sqrt{1+\frac{1}{4}\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}} \\
& =\frac{E-2+E^{-1}}{2}+\frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)\left(E^{1 / 2}+E^{-1 / 2}\right) \\
& =\frac{E-2+E^{-1}}{2}+\frac{E-E^{-1}}{2}
\end{aligned}
$$

$$
50-1
$$

5Δ
B! M Vh çaV

$$
\begin{aligned}
\mu \delta & =\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left(E-E^{-1}\right) \\
& =\frac{1}{2}\left(1+\Delta-E^{-1}\right)=\frac{\Delta}{2}+\frac{1}{2}\left(1-E^{-1}\right)=\frac{\Delta}{2}+\frac{1}{2}\left(\frac{E-1}{E}\right)=\frac{\Delta}{2}+\frac{\Delta}{2 E} .
\end{aligned}
$$

S! MVTR_hce

$$
\begin{aligned}
\mu \delta & =\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left(E-E^{-1}\right) \\
& =\frac{1}{2}(1+\Delta-(1-\nabla))=\frac{1}{2}(\Delta+\nabla) .
\end{aligned}
$$

Example $\mathrm{Gc}^{\prime} \mathrm{gVE} \mathrm{YR}$

$$
h D=\log (1+\Delta)=-\log (1-\nabla)=\sinh ^{-1}(\mu \delta) .
$$

$$
h D=\log E=\log (1+\Delta)=\log E=-\log E^{-1}=-\log (1+\nabla)
$$

8 dd \$

$$
\begin{aligned}
\mu \delta=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right) & =\frac{1}{2}\left(E+E^{-1}\right) \\
& =\frac{1}{2}\left(e^{h D}-e^{-h D}\right)=\sin (h D)
\end{aligned}
$$

J YVcWVcV

$$
h D=\sinh ^{-1}(\mu \delta) .
$$

Example IY`h ełReerV`aVcRė_d μ R_U $0 T^{\wedge} \wedge$ fel $\&$
9பRQUK

$$
\begin{aligned}
& \mu E f_{0}=\mu f_{1}=\frac{1}{2}\left(f_{3 / 2}+f_{1 / 2}\right)
\end{aligned}
$$

R_UR]d'

$$
E \mu f_{0}=\frac{1}{2} E\left(f_{1 / 2}+f_{-1 / 2}\right)=\frac{1}{2}\left(f_{3 / 2}+f_{1 / 2}\right)
$$

? V_TV

$$
\mu E=E \mu .
$$

Example IY`h eYRe

$$
\begin{aligned}
e^{x}\left(u_{0}+x \Delta u_{0}+\frac{x^{2}}{2!} \Delta^{2} u_{0}+\ldots\right) & =u_{0}+u_{1} x+u_{2} \frac{x^{2}}{2!}+\ldots \\
e^{x}\left(u_{0}+x \Delta u_{0}+\frac{x^{2}}{2!} \Delta^{2} u_{0}+\ldots\right) & =e^{x}\left(1+x \Delta+\frac{x^{2} \Delta^{2}}{2!}+\ldots\right) u_{0} \\
& =e^{x} e^{x \Delta} u_{0}=e^{x(1+\Delta)} u_{0} \\
& =e^{x E} u_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1+x E+\frac{x^{2} E^{2}}{2!}+\ldots\right) u_{0} \\
& =u_{0}+x u_{1}+\frac{x^{2}}{2!} u_{2}+\ldots,
\end{aligned}
$$

RdUVOZCW\&

$$
\Delta^{n} u_{x-n}=u_{x}-n u_{x-1}+\frac{n(n-1)}{2} u_{x-2}+\cdots+(-1)^{n} u_{x-n}
$$

$\mathrm{H} \& \&=u_{x}-n u_{x-1}+\frac{n(n-1)}{2} u_{x-2}+\cdots+(-1)^{n} u_{x-n}$.

$$
\begin{aligned}
& =u_{x}-n E^{-1} u_{x}+\frac{n(n-1)}{2} E^{-2} u_{x}+\cdots+(-1)^{n} E^{-n} u_{x} \\
& =\left[1-n E^{-1}+\frac{n(n-1)}{2} E^{-2}+\cdots+(-1)^{n} E^{-n}\right] u_{x} \\
& =\left(1-E^{-1}\right)^{n} u_{x} \\
& =\left(1-\frac{1}{E}\right)^{n} u_{x} \\
& =\left(\frac{E-1}{E}\right)^{n} u_{x} \\
& =\frac{\Delta^{n}}{E^{n}} u_{x} \\
& =\Delta^{n} E^{-n} u_{x} \\
& =\Delta^{n} u_{x-n},
\end{aligned}
$$

5 C\& \&

Differences of a Polynomial

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n},
$$

 J YV_

$$
f(x+h)=a_{0}(x+h)^{n}+a_{1}(x+h)^{n-1}+a_{2}(x+h)^{n-2}+\ldots \quad+a_{n-1}(x+h)+a_{n}
$$

$$
\Delta f(x)=f(x+h)-f(x)=a_{0}\left[(x+h)^{n}-x^{n}\right]+a_{1}\left[(x+h)^{n-1}-x^{n-1}\right]+\ldots \quad \quad+a_{n-1}(x+h-x)
$$

$$
\begin{aligned}
& \Delta f(x)= a_{0}\left\lfloor x^{n}+{ }^{n} C_{1} x^{n-1} h+{ }^{n} C_{2} x^{n-2} h^{2}+\ldots+h^{n}-x^{n}\right\rfloor \\
&+a_{1}\left[x^{n-1}+\right. \\
&+{ }^{(n-1)} C_{1} x^{n-2} h+{ }^{(n-1)} C_{2} x^{n-3} h^{2} \\
&\left.+\ldots+h^{n-1}-x^{n-1}\right]+\ldots+a_{n-1} h \\
&= a_{0} n h x^{n-1}+\left\lfloor a_{0}{ }^{n} C_{2} h^{2}+a_{1}{ }^{(n-1)} C_{1} h\right\rfloor x^{n-2}+\ldots+a_{n-1} h .
\end{aligned}
$$

J YVcWVcV\$

$$
\Delta f(x)=a_{0} n h x^{n-1}+b^{\prime} x^{n-2}+c^{\prime} x^{n-3}+\ldots+k^{\prime} x+l^{\prime},
$$

$$
\begin{aligned}
& \Delta^{2} f(x)=\Delta(\Delta f(x))=\Delta f(x+h)-\Delta f(x) \\
& =a_{0} n h\left[(x+h)^{n-1}-x^{n-1}\right]+b^{\prime}\left[(x+h)^{n-2}-x^{n-2}\right] \\
& \quad+\ldots+k^{\prime}(x+h-x)
\end{aligned}
$$

$$
\Delta^{2} f(x)=a_{0} n(n-1) h^{2} x^{n-2}+b^{\prime \prime} x^{n-3}+c^{\prime \prime} x^{n-4}+\ldots+q^{\prime \prime} \&
$$

$$
\begin{gathered}
\Delta^{n} f(x)=a_{0} n(n-1)(n-2)(n-3) \ldots(2)(1) h^{n} \\
=a_{0}(n!) h^{n}=\text { constant } .
\end{gathered}
$$

 T _d dR_esh YV_ eYVgR]f Vd` VerVZ UVaV_UV_egRcRS]VRcVXZgV_ReVbf R] Z eVcgR]d\&

Exercises

1. : RIIf]ReV $f(x)=\frac{1}{x+1}, x=0(0.2) 1$ è $\geqslant *$ UVIZ R] a]RTVd\$?! + UVIZ R] a]RTVd R_U ©,
 UZWNCV_TVeRSJVd\&
 CU!\&
 gRIf V*- `W \(f(5) \mathrm{cVa}] R T W \mathrm{Sj}{ }^{*} . \& F\) SoNcgVerV dacVRU` VerVVcc c\&
2. : RIIf]ReV $f(x)=\frac{1}{x+1}, x=0(0.2) 1$ è $\geq \underset{*}{*}$ UVIZ R] a]RTVd\$?!+UVIZ R] a]RTVd R_U @, UVIZ R] a]RTVd\& J YV_ T ^aRdV eYV WWTe `Wc` f_UZXX Vcc` cd Z eYV T cdVda`_UZX UZWNCV_TVERSJVd\&
3. I Vef a R Wch RcU UZZNCV_TV eRS]N `WCU - U' Wc U 5 ()!) (\& ; `erV dR^Vh Zer eYV TRJIf JReW gRIf V*- `WC-! cVa]RTW \(S j\) *. \&F SovcgVerVdacVRU ` VerVVcc c\&

U	$(\&$	$(\&)$	$(\&$	$(\&+$	$(\&)$	$(\&)$
$T d U$	$) \&((()$	$(\& 1-(($	$(\& 0(/ /$	$(\&--+$,	$\left(\&^{*}\right)($.	$(\& / /-0$

U	$(\&$	$(\&$	$(\&$	$(\&+$	$(\&$	$(\&$
ZZ U	$(\&((()$	$(\& 11$ $0+$	$(\& 10$.$/$	$(\& 1-$ $-*$	$(\& 01$,$*$	$(\& / 1$

$$
f(x)=\sin x \text { "U } 5) \&(\&!) \& \$, ; \&
$$

9. IY'h elRe $E \nabla=\Delta=\delta E^{1 / 2}$.
10. Gc gVerRe
11. (i) $\delta=2 \sinh (h D / 2)$ and (ii) $\mu=2 \cosh (h D / 2)$.
12. IY`h eYReerV`aVcRè cd $\delta \$ \mu \$ 0 \$ \Delta R U \nabla T \wedge \wedge f e V h$ Zer VRTY `erVc\&
13. : „_deff TeerVSRTI h RCU UZWCV_TVeRSIVSRdM` _ erVW]J` h ZXXeRSIV\&

U	(\&	($\%$	(\$	(\&	(\&	
T dU) \& ((\&1-	(\& O	(\&--	(\mathcal{L}^{*})	($\varnothing /$ /
	(1	(${ }^{\text {l }}$	(/	+,	(.	-0

U	(\&	(\%	(\&	(\&	(\%	(\&)
dZ	(\& \% ((\& 11	(\& 10	(\$1-	(\&01	(\&/1
U	(1	0+	./	-*	,*	, +

6. : ` _def TeerVSRTI h RcU UZWCV_TVeRSJN\$h YVCV

CU! 5 dZ U $\mathbf{~ U ~} 5$) \& (\& !) \& $\$$; \&

y_{n}	Δy_{n}	$\Delta^{2} y_{n}$
$\%$		
$\%$	$\%$	
$\%$	$\%$	$)$
\cdot	-	$1+$
$\%$	$\%$	10
$\%$	$\%$	$*$,

5

NUMERICAL INTERPOLATION

 R\$\$\&

 UZWCV_eRez_ `cZ్EXXCREZ_\& UZWCV_ \(\mathbb{R} \overrightarrow{Z_{2}}\) _ R_UZ XZV_ URAZdf_Zf V\& dRj \(g(x)\) \$df TY eYRe \(f(x)\) R_U \(g(x)\) RXCW ReerV dVe` WerSf JReW a` Z ed R_U RTIVaeerV gRff V interpolation\& UZNXF Jeè SV` SeRZ W\$f dZXerVpivotal values $f_{0}=f\left(x_{0}\right), f_{1}=f\left(x_{1}\right) \$ \& \& \$ f_{n}=f\left(x_{n}\right) \&$

Linear interpolation

 $Z \mathrm{XIX} \mathrm{V}_{\mathrm{S}} \mathrm{Sj}$ erVlinear interpolation formula

$$
f(x) \approx P_{1}(x)=f_{0}+r\left(f_{1}-f_{0}\right)=f_{0}+r \Delta f_{0}
$$

$\mathrm{h} \operatorname{YVCV} r=\frac{x-x_{0}}{h}$ R_U $0 \leq r \leq 1 \&$
Example <gRIf ReV $\ln 9.2$ \$XZgV_ eYReln $9.0=2.197$ R_U $\ln 9.5=2.251$.
? VCV U $51 \& \$ \mathrm{U} 51 \& \$ \mathrm{E}-\mathrm{U}-\mathrm{U} 51 \&-1 \& 5(\& \$$ \& $5 \mathrm{CU}!5 \ln 9.0=2.197$ R_U

$$
r=\frac{x-x_{0}}{h}=\frac{9.2-9.0}{0.5}=\frac{0.2}{0.5}=0.4 \text { R_UYV_TV }
$$

$\ln 9.2=f(9.2) \approx P_{1}(9.2)=f_{0}+r\left(f_{1}-f_{0}\right)=2.197+0.4(2.251-2.197)=2.219$
Example <gR]f ReVC)-!\$XZgV_erReC)(!5,.\$C*(!5..\&
? VCVU 5) (\$U 5 * (\$ E-U - U $5^{*}(-)(5)(\$$
\& 5 CU! 5,. R_UG5CU!5..\&
E `h è TRITf JReVC) - \$eR(VU5) - \$d` eYRe

$$
r=\frac{x-x_{0}}{h}=\frac{15-10}{10}=\frac{5}{10}=0.5
$$

R_UYV_TV $f(15) \approx P_{1}(15)=f_{0}+r\left(f_{1}-f_{0}\right)=46+0.5(66-46)=56$
Example <gRIf REV $e^{1.24} \$ \mathrm{XZ} \mathrm{K}_{\mathrm{Z}} \mathrm{EYRe} e^{1.1}=3.0042 \mathrm{R} \mathbf{U} e^{1.4}=4.0552$ \&

 YV_TV
$e^{1.24} \approx P_{1}(1.24)=f_{0}+r\left(f_{1}-f_{0}\right)=3.0042+0.4667(4.0552-3.0042)=3.4933, \mathrm{~h}$ YZV erV Vi RTe gRIf V ` We ${ }^{1.24}$ Zd $+\& 1, / \&$

Quadratic Interpolation

 R_U $f_{2}=f\left(x_{2}\right)$ R_U hVRacc i Z ReVerVIf cgV WerVVf_Tę_ CSVeh W_ U R_U U 5 U \#*E

$$
f(x) \approx P_{2}(x)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2} \Delta^{2} f_{0}
$$

h YVCV $r=\frac{x-x_{0}}{h}$ R_U $0 \leq r \leq 2$ \&

$$
\text { _1\& } \left.5 * \& 1 / \$] 1 \& 5 * \&-) \text { R_U }] _\right)(\& 5 * \& t * . \&
$$

? VcVU $51 \& \$ \mathrm{U} 51 \& \$ \mathrm{U} 5)(\& \$ \mathrm{E}-\mathrm{U}-\mathrm{U} 51 \&-1 \& 5(\& \$ 45 \mathrm{CU} 5 \mathrm{f}$ 1_1\&5*\$1/\$
 U5 1\&\$d" eYRe $r=\frac{x-x_{0}}{h}=\frac{9.2-9.0}{0.5}=\frac{0.2}{0.5}=0.4$ R_U

$$
\ln 9.2=f(9.2) \approx P_{2}(x)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2} \Delta^{2} f_{0}
$$

U	C	$\Delta \mathrm{C}$	$\Delta^{*} \mathrm{C}$
$1 \&$	$* \& 1 / *$		
$1 \&$	$* \&-)+$	$(\&-)$,	$\%$
		$(\&-)+$	$(\&(* 0$

? V_TV\$
$\ln 9.2=f(9.2) \approx P_{2}(9.2)=2.1972+0.4(0.0541)+\frac{0.4(0.4-1)}{2}(-0.0028)$
$5 * \&) 1^{*} \$ \mathrm{~h}$ YZY V RTeè , ; è elVV RTegR]f V` $W \ln 9.2=2.2192$.

 -; !

U	$f(x)=\cos x$	$=$ Zode UZWNCV_TV	IVT_U UZWNCV_TV
$\begin{aligned} & 1 \& \\ & (\& \\ & (\& \end{aligned}$	$\begin{aligned} &) \&(()(\\ & (\mathbb{Q} O(/ / \\ & \left(\mathbb{Q}^{*}\right)(. \end{aligned}$	$\begin{aligned} & \text { \%\&\&) 11+ } \\ & \text { \%o\&-1() } \end{aligned}$	\% 0 \& +1 (0

 T _dVIf egV U gRIf Vd R_U erVZ T ccVod _ UZ X CgRjf Vd R_U VZde UZWNC_TV\& ? VCV\$ dZ TV

$8 \mathrm{Jd} \quad r=\frac{x-x_{0}}{h}=\frac{0.28-0.2}{0.2}=\frac{0.08}{0.2}=0.4 \mathrm{R} \underline{U}$

$$
\begin{aligned}
\cos 0.28 & =f(0.28) \approx P_{1}(0.28)=f_{0}+r\left(f_{1}-f_{0}\right) \\
& =0.98007+0.4(0.92106-0.98007)
\end{aligned}
$$

$$
5 \text { (\&-. , / \$T colVeè - ; \& }
$$

@ bf RUcReオ Z

 $\Delta 母 5 \% \&) 11+\$ \Delta^{*} \Psi 5 \% \&+1\left(0 \quad r=\frac{x-x_{0}}{h}=\frac{0.28-0.00}{0.2}=1.4 \mathrm{R} \mathrm{U}\right.$

$$
\begin{aligned}
& \cos 0.28 \approx P_{2}(0.28)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2} \Delta^{2} f_{0} \\
& \quad=1.00+1.4(-0 .-1993)+\frac{1.4(1.4-1)}{2}(-0.03908)=0.96116 \text { è }-; \&
\end{aligned}
$$

Newton's Forward Difference Interpolation Formula

Newton's forward difference interpolation formula \mathbb{Z}

$$
\begin{aligned}
f(x) & \approx P_{n}(x)= \\
& =f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\ldots+\frac{r(r-1) \ldots(r-n+1)}{n!} \Delta^{n} f_{0}
\end{aligned}
$$

$\mathrm{h} \mathrm{YVCV} x=x_{0}+r h, r=\frac{x-x_{0}}{h}, 0 \leq r \leq n \&$
Derivation of Newton's forward Formulae for Interpolation

$$
x_{i}=x_{0}+r h, \quad r=0,1,2, \ldots, n
$$

$$
\left.\begin{array}{rl}
p_{n}(x)= & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +a_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\ldots \\
& +a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)
\end{array}\right\}
$$

 a`Zel\$h V`SeRZ

$$
a_{0}=f_{0} ; a_{1}=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}=\frac{\Delta f_{0}}{h} ; a_{2}=\frac{\Delta^{2} f_{0}}{h^{2} 2!} ; a_{3}=\frac{\Delta^{3} f_{0}}{h^{3} 3!} ; \ldots ; a_{n}=\frac{\Delta^{n} f_{0}}{h^{n} n!} ;
$$

Remark 1:
 $`$ VgRjf $V\left(x_{n+1}, y_{n+1}\right)$ \$e` erV XZgV_ aVe` VgRIf Va\$erV_ eYVWch RdU UZWCV_TV eRSJV XVedR_M

 _ Vh]j RUUW $g R] f$ V\&

Remark 2:

 SVXZ_ZX `WR dVe `WeRSf JRc gRff Vd R_U Wc V eera`]Re_Z gRff Vd`W R dY`ce UZder TV `f eaZVVerV
 eRS]VVgRIf ReVC)-! \&

U	$\mathrm{CU}!$	$\Delta \mathrm{C}$	$\Delta^{*} \mathrm{C}$	$\Delta+\mathrm{C}$	Δ, C
$)($,.	$*$			
$*($	\cdots	$)-$	$\%$	$*$	
$+($	$0)$	$) *$	$\%$	$\%$	$\%$
,$($	$1+$	0	$\%$		
$-($	$)()$				

? VcVU5)- \$U 5) (\$U 5 *(\$E- U-U 5 * (-) (5) (\$O- U- U!' E 5)-o) (!') (5 (\& \$ ¢ 5 $-, . \$ \Delta 45^{*}\left(\$ \Delta^{*} 45--\$ \Delta^{+} 45 * \$ \Delta .45-+\&\right.$
 K5, \$h V` SeRZ
$f(x) \approx P_{4}(x)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\ldots+\frac{r(r-1) \ldots(r-4+1)}{4!} \Delta^{4} f_{0} \$$
d^{\prime} eYRe

$$
\begin{aligned}
f(15) & \approx 46+(0.5)(20)+\frac{(0.5)(0.5-1)}{2!}(-5)+\frac{(0.5)(0.5-1)(0.5-2)}{3!}(2) \\
& +\frac{(0.5(0.5-1)(0.5-2)(0.5-3)}{4!}(-3)
\end{aligned}
$$

5 -. ©. / *\$T ccVTeè , UVIZ R] a]RTVd\&

U	CU	Δ	Δ^{*}	Δ^{+}
$($	\%			
$)$	+	\cdot	$*$	
$*$))	0	0	\cdot
+	$* /$	$)$.	$)$,	
,	$-/$	$+($	$*($	\cdot
-	$)(/$	$-($		

 Wch RcU UZWCV_TVZ EVca` JReß _ Wc^f JR \(f(x) \approx P_{3}(x)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\frac{r(r-1)(r-3+1)}{3!} \Delta^{3} f_{0} \$\) h YVCVO UY U!' E5 UY(!') 5 U\$d el erne \(f(x) \approx P_{3}(x)=-3+x(6)+\frac{x(x-1)}{2!}(2)+\frac{x(x-1)(x-3+1)}{3!}(6)\) \({ }^{`} \mathrm{C} f(x)=x^{3}-2 x^{2}+7 x-3\)
 $\mathrm{h} \operatorname{YVCV} f(x)=\sqrt{x} \$ \mathrm{~d} \underline{Z} \mathbf{X e r V g R f f} \operatorname{VoL}$

U	$* \&$	$* \&$	$* \&$	$* \&$	$* \&$
\sqrt{x}	$) \&(), *)$,	$) \&, 1)+0$	$) \& 0+*,($	$) \&) .-/-$	$) \&, 1) 1+$

J YVWch RcU UZWNC_TVERS]VZI

U	\sqrt{x}	Δ	Δ^{*}	Δ^{+}	Δ,
* ${ }^{\text {\% }}$) (\%), *)				
* ${ }^{\text {d }}$) $(\mathbb{1}, 1)+0$	$\left(\&+1^{*},\right.$	\%		
\&) \&0+, ($\begin{aligned} & (\&+,)(* \\ & (\&+++ \end{aligned}$	\%\% ((/ . $/$		
\&)\&). -/-	$\left(\&++^{}\right) 0$	\% \% ($^{\text {(/) / }}$		
${ }^{*}$ \&) $\&, 1$ 1 $1+$				

 , UNXCWa`]j _`^R]!\$h VXVe

$$
\begin{array}{ll}
f(2.05) \approx P_{4}(2.05)=1.414214+(0.5)(0.034924) & +\frac{(0.5)(0.5-1)}{2!}(-0.000822) \\
+\frac{(0.5)(0.5-1)(0.5-2)}{3!}(0.000055) & \\
\left.+\frac{(0.5(0.5-1)(0.5-2)(0.5-3)}{4!}(0.000005) 5\right) \&+1 / 0+\&
\end{array}
$$

 MVWc^ erVUZWNCV_TVeRSJM2

x	y	Δ	Δ^{2}	Δ^{3}
1	24			
		96		
3	120		120	
		216		48
5	336		168	
		384		
7	720			

 `SARZ

$$
f(x)=24+\frac{x-1}{2}(96)+\frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)}{2}(120)
$$

$$
+\frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)\left(\frac{x-1}{2}-2\right)}{6}(48)=x^{3}+6 x^{2}+11 x+6 .
$$

MZ्Y $x_{0}=1, x_{r}=9$, R_U $h=2, \mathrm{~h} \operatorname{VYRgV} r=\frac{x_{r}-x_{0}}{h}=\frac{9-1}{2}=4 \& \mathbb{Z} \mathbf{V}$ TV

$$
\begin{aligned}
f(9) & \approx p(9)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\frac{r(r-1)(r-2)}{3!} \Delta^{3} f_{0} \\
& =24+4 \times 96+\frac{4 \times 3}{2} \times 120+\frac{4 \times 3 \times 2}{3 \times 2} \times 48=1320
\end{aligned}
$$

$$
S_{n}=1^{3}+2^{3}+3^{3}+\ldots+n^{3} .
$$

9பRQUK

$$
S_{n+1}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}+(n+1)^{3}
$$

R_UYV_TV

$$
S_{n+1}-S_{n}=(n+1)^{3},
$$

` C

$$
\Delta S_{n}=(n+1)^{3} \&
$$

ZeW]J h deYRe

$$
\begin{aligned}
& \Delta^{2} S_{n}=\Delta S_{n+1}-\Delta S_{n}=(n+2)^{3}-(n+1)^{3}=3 n^{2}+9 n+7 \\
& \Delta^{3} S_{n}=3(n+1)+9 n+7-\left(3 n^{2}+9 n+7\right)=6 n+12 \\
& \Delta^{4} S_{n}=6(n+1)+12-(6 n+12)=6
\end{aligned}
$$

IZTV $\Delta^{5} S_{n}=\Delta^{6} S_{n}=\ldots=0, S_{n}$ ZIRWf ceY\%NXCWa` $]$

8 dd \$

$S_{1}=1, \quad \Delta S_{1}=(1+1)^{3}=8, \quad \Delta^{2} S_{1}=3+9+7=19$,
$\Delta^{3} S_{1}=6+12=18, \quad \Delta^{4} S_{1}=8$.
Wc^f]R+XZgVdh Z्Y $f_{0}=S_{1}$ R_U $\left.r-n-1\right)$

$$
S_{n}=1+(n-1)(8)+\frac{(n-1)(n-2)}{2}(19)+\frac{(n-1)(n-2)(n-3)}{6}(18)
$$

$$
\begin{aligned}
& \quad+\frac{(n-1)(n-2)(n-3)(n-4)}{24}(6) \\
& = \\
& =\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} \\
& =\left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

Problem: The population of a country for various years in millions is provided. Estimate the population for the year 1898.
$\begin{array}{llllll}\text { Year x: } & 1891 & 1901 & 1911 & 1921 & 1931\end{array}$
$\begin{array}{llllll}\text { Population y: } & 46 & 66 & 81 & 93 & 101\end{array}$
Solution: Here the interval of difference among the arguments $h=10$. Since 1898 is at the beginning of the table values, we use Newton's forward difference interpolation formula for finding the population of the year 1898 .

The forward differences for the given values are as shown here.

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1891	46				
1901	66	$\Delta y_{0}=20$			
1911	81	$\Delta y_{1}=15$	$\Delta^{2} y_{0}=-5$		
1921	93	$\Delta y_{2}=12$	$\Delta^{2} y_{1}=-3$		$\Delta^{3} y_{0}=2$
1931	101	$\Delta y_{3}=8$	$\Delta^{2} y_{2}=-4$		$\Delta^{4} y_{0}=-3$

Let $x=1898$. Newton's forward difference interpolation formula is,

$$
\begin{aligned}
& f(x)=y_{0}+\left(x-x_{0}\right) \frac{1}{h}\left[\Delta y_{0}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{1}{2!h^{2}}\left[\Delta^{2} y_{0}\right] \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \frac{1}{3!h^{3}}\left[\Delta^{3} y_{0}\right]+\ldots .+ \\
& \quad\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots . .\left(x-x_{n-1}\right) \frac{1}{n!h^{n}}\left[\Delta^{n} y_{0}\right]
\end{aligned}
$$

Now, substituting the values, we get,

$$
\begin{aligned}
& f(1898)=46+(1898-1891) \frac{1}{10}[20]+(1898-1891)(1898-1901) \frac{1}{2!10^{2}}[-5] \\
&+(1898-1891)(1898-1901)(1898-1911) \frac{1}{3!10^{3}}[2]+ \\
&(1898-1891)(1898-1901)(1898-1911)(1898-1921) \frac{1}{4!10^{4}}[-3] \\
& \Rightarrow f(1898)=46+14+\frac{21}{40}+\frac{91}{500}+\frac{18837}{40000}=61.178
\end{aligned}
$$

x (in degrees)	$\sin x$
15	0.2588190
20	0.3420201
25	0.4226183
30	0.5
35	0.5735764
40	0.6427876

; VeVC^Z VerVgRIf V Win 38° \&

9பRQUK

J YVUZWNV_TVERS]VZ

$40 \quad 0.6427876$
 $x_{n}=40$ R_U $x=38$ \& YZXXZVVd

$$
r=\frac{x-x_{n}}{h}=\frac{38-40}{5}=-\frac{2}{5}=-0.4
$$

? V_TV\$f dZXWc^f JR\$h V` SeRZ

$$
\begin{aligned}
& f(38)=0.6427876-0.4(0.0692112)+\frac{-0.4(-0.4-1)}{2}(-0.0043652) \\
&+\frac{(-0.4)(-0.4+1)(-0.4+2)}{6}(-0.0005599) \\
& \quad+\frac{(-0.4)(-0.4+1)(-0.4+2)(-0.4+3)}{24}(0.0000289) \\
&+\frac{(-0.4)(-0.4+1)(-0.4+2)(-0.4+3)(-0.4+4)}{120}(0.0000041) \\
&= 0.6427876-0.02768448+0.00052382+0.00003583
\end{aligned}
$$

-0.00000120

$$
=0.6156614
$$

x	$y=f(x)$
0	1
1	3
2	9
3	-
4	81

< a]RZ h Yj erVcVdf]eUZWNcdV へ $3^{3}=27$?

$$
E^{4} f_{0}-4 E^{3} f_{0}+6 E^{2} f_{0}-4 E f_{0}+f_{0}=0 \&
$$

$$
f_{4}-4 f_{3}+6 f_{2}-4 f_{1}+f_{0}=0
$$

$$
f_{3}=31
$$

9j Z */ \& YVVcc` c ZUUf Vè erVVRTee 'WRa` jj _ `^R]Z U` WVXCW + \&

Example YV (RSJVSV] h XZgVderVgRJf Vd` Wan x Wc $0.10 \leq x \leq 0.30$

x	$y=\tan x$
0.10	0.1003
0.15	0.1511
0.20	0.2027
0.25	0.2553
0.30	0.3093

$=$ Z U2 R! $\tan 0.12 \mathrm{~S}!\tan 0.26 \& T!\tan 0.40 \quad \mathrm{U}!\tan 0.50$
J YVERS]VUZWCV_TVZI

x	$y=f(x)$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
0.10	0.1003				
0.15	0.1511	0.0508		0.0008	
		0.0516		0.0002	
0.20	0.2027		0.0010		0.0002
		0.0526		0.0004	
0.25	0.2553		0.0014		
0.30	0.3093				

 $\left.W_{c}{ }^{\wedge} \mathrm{f}\right] R \times Z \mathrm{~V}$ d

$$
\begin{aligned}
\tan (0.12)= & 0.1003+0.4(0.0508)+\frac{0.4(0.4-1)}{2}(0.0008) \\
& +\frac{0.4(0.4-1)(0.4-2)}{6}(0.0002) \\
& +\frac{0.4(0.4-1)(0.4-2)(0.4-3)}{24}(0.0002) \\
= & 0.1205
\end{aligned}
$$

S! J` W h Z

$$
\begin{aligned}
& r=\frac{x-x_{n}}{n} \\
& =\frac{0.26-03}{0.05} \\
& =-0.8
\end{aligned}
$$

h YZY XZgVd

$$
\begin{aligned}
& \tan (0.26)=0.3093-0.8(0.0540)+\frac{-0.8(-0.8+1)}{2}(0.0014) \\
& \quad+\frac{-0.8(-0.8+1)(-0.8+2)}{6}(0.0004) \\
& \quad+\frac{-0.8(-0.8+1)(-0.8+2)(-0.8+3}{24}(0.0002)=0.2662
\end{aligned}
$$

Gc` TMUZ X RdZ

T! $\tan 0.40=0.4241$, R_U
$\mathrm{U}!\tan 0.50=0.5543$

 Z EVCa`\(^{\prime}\) Rė_ TR_SVTRccZU` f egVg RIIf cReVlj \&

Exercises

1. Using the difference table in exercise 1 , compute cos 0.75 by Newton's forward difference interpolating formula with $n=1,2,3,4$ and compare with the 5D-value 0.73169 .
2. Using the difference table in exercise 1 , compute $\cos 0.28$ by Newton's forward difference interpolating formula with $n=1,2,3,4$ and compare with the 5D-value
3. Using the values given in the table, find $\cos 0.28$ (in radian measure) by linear interpolation and by quadratic interpolation and compare the results with the value 0.96106 (exact to 5D).

x	$f(x)=\cos x$	First difference	Second difference
0.0	1.00000	-0.01993	
0.2	0.98007	-0.05901	-0.03908
0.4	0.92106	-0.09572	-0.03671
0.6	0.82534	-0.12863	-0.03291
0.8	0.69671	-0.15641	-0.02778
1.0	0.54030		

4. Find Lagrangian interpolation polynomial for the function f having $f(4)=1, f(6)=3, f(8)=8, f(10)=16$. Also calculate $f(7)$.
5. The sales in a particular shop for the last ten years is given in the table:

Year	1996	1998	2000	2002	2004
Sales (in lakhs)	40	43	48	52	57

Estimate the sales for the year 2001 using Newton's backward difference interpolating formula.
6. Find $f(3)$, using Lagrangian interpolation formula for the function f having $f(1)=2, f(2)=11, f(4)=77$.
7. Find the cubic polynomial which takes the following values:

x	0	1	2	3	
$f(x)$		1	2	1	10

8. Compute $\sin 0.3$ and $\sin 0.5$ by Everett formula and the following table.

	$\sin x$	δ^{2}
0. 2	0.19867	-0.00792
0. 4	0.38942	-0.01553
.6	0.56464	-0.02250

9. The following table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface:

$x=$ height $:$	100	150	200	250	300	350	400
$y=$ distance :	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the value of y when $x=218 \mathrm{ft}$ (Ans: 15.699)
10. Using the same data as in exercise 9 , find the value of y when $x=410 \mathrm{ft}$.

6

NEWTON' S AND LAGRANGIAN FORMULAE - PART I

Newton's Backward Difference Interpolation Formula

E Vh è _థSRTI h RcU UZWCV_TVZ_ EVca` JRę _ Wc^f JRZd
$f(x) \approx P_{n}(x)=f_{n}+r \nabla f_{n}+\frac{r(r+1)}{2!} \nabla^{2} f_{n}+\ldots+\frac{r(r+1) \ldots(r+n-1)}{n!} \nabla^{n} f_{n}$
$\mathrm{h} \mathrm{YVCV} x=x_{n}+r h, r=\frac{x-x_{n}}{h},-n \leq r \leq 0 \&$

Derivation of Newton's Backward Formulae for Interpolation

$$
x_{i}=x_{0}+r h, \quad r=0,1,2, \ldots, n
$$

$$
\begin{aligned}
p_{n}(x)= & a_{0}+a_{1}\left(x-x_{n}\right)+a_{2}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +a_{3}\left(x-x_{n}\right)\left(x-x_{n-1}\right)\left(x-x_{n-2}\right)+\ldots \\
& +a_{n}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \ldots\left(x-x_{1}\right)
\end{aligned}
$$

Remark 1:

If the values of the $\mathrm{k}^{\text {th }}$ forward/backward differences are same, then $(\mathrm{k}+1)^{\text {th }}$ or higher differences are zero. Hence the given data represents a ${ }^{\text {kth }}$ degree polynomial.

Remark 2:

The Backward difference Interpolation Formula is commonly used for interpolation near the end of a set of tabular values and for extrapolating values of y a short distance forward that is right from y_{n}

Problem: For the following table of values, estimate $f(7.5)$, using Newton's backward difference interpolation formula.

x	f	∇f	$\nabla^{2} f$	$\nabla^{3} f$	$\nabla^{4} f$
1	1	7			
2	8	19	12		
3	27	37	18	6	0
4	64	61	24	6	0
5	125	91	30	6	0
6	216	127	36	6	0
7	343	169	42		
8	512				

Solution:

Since the fourth and higher order differences are 0 , the Newton's backward interpolation formula is

$$
\begin{aligned}
f\left(x_{n}+u h\right)= & y_{n}+u\left[\nabla y_{n}\right]+\frac{u(u+1)}{2!}\left[\nabla^{2} y_{n}\right] \\
& +\frac{u(u+1)(u+2)}{3!}\left[\nabla^{3} y_{n}\right]+\ldots .+\frac{u(u+1)(u+2) \ldots(u+n-1)}{n!}\left[\nabla^{n} y_{n}\right]
\end{aligned}
$$

Where, $u=\frac{x-x_{n}}{h}=\frac{7.5-8.0}{1}=-0.5 \quad$ and

$$
\nabla y_{n}=169, \nabla^{2} y_{n}=42, \nabla^{3} y_{n}=6 \text { and } \nabla^{4} y_{n}=0
$$

Hence,

$$
\begin{aligned}
f(7.5) & =512+(-0.5)(169)+\frac{(-0.5)(-0.5+1)}{2!}(42)+\frac{(-0.5)(-0.5+1)(-0.5+2)}{3!} 6 \\
& =421.875 .
\end{aligned}
$$

 UZWCV_TVZ $\left.\operatorname{EVCa}{ }^{`}\right] R \vec{Z}$ _ $\left.W c^{\wedge} f\right] R \&$

U	C	$\nabla \mathrm{C}$	$\nabla^{*} \mathrm{C}$	$\nabla+C$	$\nabla \cdot \mathrm{C}$
))				
*	0	/	*		
)1)	.	
+	*/)0		(
		H			
,	.,		*,		$($
-)*-		H		$($
		1)		.	
.	*).		+		$($
1	+ +)*/	*	.	
). 1			
0	-)*				

IZTV erV Wf cer R_U YZZYVc `dUc UZWcV_TVd RcV (\$ erV EVhè_q SRTh RdU

$$
\begin{aligned}
& f(x) \approx P_{n}(x)=f_{n}+r \nabla f_{n}+\frac{r(r+1)}{2!} \nabla^{2} f_{n}+\frac{r(r+1)(r+2)}{3!} \nabla^{3} f_{n} \$ \mathrm{hYVV} \\
& \left.r=\frac{x-x_{n}}{h}=\frac{7.5-8.0}{1}=-0.5 \mathrm{R} \cup \cup \nabla \mathbb{K}_{4}\right) .1 \$ \nabla^{*}(45, * \$ \nabla+\mathbb{k} 5 . \& ? \mathrm{~V}-\mathrm{TV} \\
& f(7.5) \approx 512+(-0.5)(169)+\frac{(-0.5)(-0.5+1)}{2!}(42)+\frac{(-0.5)(-0.5+1)(-0.5+2)}{3!} 6
\end{aligned}
$$

$$
5, *) \not(-
$$

Gauss' Central Difference Formulae

(i) Gauss's forward formula

 Rd y_{0} T cclda`_UZXè $x=x_{0}$
$>$ Rf dobpl $=$ ' ch RCU Wc^f $]$ RZd

$$
f_{p}=f_{0}+G_{1} \Delta f_{0}+G_{2} \Delta^{2} f_{-1}+G_{3} \Delta^{3} f_{-1}+G_{4} \Delta^{4} f_{-2}+\ldots,
$$

h $\operatorname{YVCV} G_{1}, G_{2}, \ldots$ RCV XZGV_Sj

$$
\begin{aligned}
& G_{1}=p \\
& G_{2}=\frac{p(p-1)}{2!} \\
& G_{3}=\frac{(p+1) p(p-1)}{3!}, \\
& G_{4}=\frac{(p+1) p(p-1)(p-2)}{4!},
\end{aligned}
$$

$J R S J V>R f d q=$ ch $\left.R c U=c^{\wedge} f\right] R$

x	y	Δ	Δ^{2}	Δ^{3}	Δ^{4}	Δ^{5}	Δ^{6}
x_{-3}	y_{-3}						
x_{-2}	y_{-2}		$\Delta^{2} y_{-3}$				
		Δy_{-2}		$\Delta^{3} y_{-3}$			
x_{-1}	y_{-1}		$\Delta^{2} y_{-2}$		$\Delta^{4} y_{-3}$		
		Δy_{-1}		$\Delta^{3} y_{-2}$		$\Delta^{5} y_{-3}$	
x_{0}	y_{0}		$\Delta^{2} y_{-1}$		$\Delta^{4} y_{-2}$		$\Delta^{6} y_{-3}$
	y_{1}		$\Delta^{2} y_{0}$	$\Delta^{3} y_{-1}$		$\Delta^{4} y_{-1}$	
x_{1}	$y^{3} y_{-2}$						
x_{2}	y_{2}	Δy_{1}	$\Delta^{2} y_{1}$				
		Δy^{2}					

\qquad

Derivation of Gauss's forward interpolation formula:
M VYRgVE Vh è _qdWch RcU Z Z EVca` JRę _ Wc^f JRRd\$

$$
\begin{aligned}
f\left(x_{0}+u h\right)= & y_{0}+u\left[\Delta y_{0}\right]+\frac{u(u-1)}{2!}\left[\Delta^{2} y_{0}\right] \\
& +\frac{u(u-1)(u-2)}{3!}\left[\Delta^{3} y_{0}\right]+\ldots .+\frac{u(u-1)(u-2) \ldots(u-n+1)}{n!}\left[\Delta^{n} y_{0}\right]
\end{aligned}
$$

$h \operatorname{YVCV} \$ u=\frac{\left(x-x_{0}\right)}{h}$
h VYRgV\$

$$
\begin{aligned}
& \Delta^{2} y_{0}=\Delta^{2} E y_{-1}=\Delta^{2}(1+\Delta) y_{-1}=\Delta^{2} y_{-1}+\Delta^{3} y_{-1} \\
& \quad \Delta^{3} y_{0}=\Delta^{3} E y_{-1}=\Delta^{3}(1+\Delta) y_{-1}=\Delta^{3} y_{-1}+\Delta^{4} y_{-1} \$
\end{aligned}
$$

@ dZ ZRch Rj $\$ \Delta^{4} y_{0}=\Delta^{4} y_{-1}+\Delta^{5} y_{-1} ; \quad \Delta^{4} y_{-1}=\Delta^{4} y_{-2}+\Delta^{5} y_{-2}$ R_Ud ${ }^{\prime}$ _ \&

$$
\begin{aligned}
f\left(x_{0}+u h\right)= & y_{0}+u\left[\Delta y_{0}\right]+\frac{u(u-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{3} y_{-1}\right] \\
& +\frac{u(u-1)(u-2)}{3!}\left[\Delta^{3} y_{-1}+\Delta^{4} y_{-1}\right]+\frac{u(u-1)(u-2)(u-3)}{4!}\left[\Delta^{4} y_{-1}+\Delta^{5} y_{-1}\right]+\ldots
\end{aligned}
$$

I ` lgZ XeYVRS` gVV acVdoZ_\$h VXVe\$

$$
f\left(x_{0}+u h\right)=y_{0}+u\left[\Delta y_{0}\right]+{ }^{u} C_{2}\left[\Delta^{2} y_{-1}\right]+{ }^{u+1} C_{3}\left[\Delta^{3} y_{-1}\right]+{ }^{u+1} C_{4}\left[\Delta^{4} y_{-2}\right]+{ }^{u+2} C_{5}\left[\Delta^{5} y_{-2}\right]+\ldots
$$

(ii) Gauss Backward Formula

$>$ Rf ddSRTT h RdU Wc^f]RZd

$$
f_{p}=f_{0}+G_{1}^{\prime} \Delta f_{-1}+G_{2}{ }^{\prime} \Delta f_{-1}+G_{3}^{\prime} \Delta f_{-2}+G_{4}{ }^{\prime} \Delta^{4} f_{-2}+\ldots
$$

h $\operatorname{YVCV} G_{1}{ }^{\prime}, G_{2}{ }^{\prime}, \ldots$ RcVXZgV_Sj

$$
\begin{aligned}
& G_{1}^{\prime}=p, \\
& G_{2}^{\prime}=\frac{p(p+1)}{2!}, \\
& G_{3}^{\prime}=\frac{(p+1) p(p-1)}{3!}, \\
& G_{4}^{\prime}=\frac{(p+2)(p+1) p(p-1)}{4!},
\end{aligned}
$$

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e^{x}	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

9பRQLK
? VcVh VeR V $x_{0}=1.15, h=0.05 \&$
8]d $\$ x_{p}=x_{0}+p h$

$$
1.17=1.15+p(0.05)
$$

h YZY XZgVd

$$
p=\frac{0.02}{0.05}=\frac{1}{4}
$$

J YVUZWVCV_TVERSJVZXZgV_SV`h 2

x	e^{x}	Δ	Δ^{2}	Δ^{3}	Δ^{4}
1.00	2.7183				
1.05	2.8577	0.1394		0.0071	
1.10	3.0042	0.1465		0.0075	0.0004
		0.1540		0.0004	0
1.15	3.1582		0.0079		0
1.20	3.3201	0.1619		0.0083	0.0004
		0.1702		0.0005	0.0001
1.25	3.4903		0.0088		
1.30	3.6693	0.1790			

$$
\begin{aligned}
e^{1.17}= & 3.1582+\frac{2}{5}(0.1619)+\frac{(2 / 5)(2 / 5-1)}{2}(0.0079) \\
& +\frac{(2 / 5+1)(2 / 5)(2 / 5-1)}{6}(0.0004) \\
= & 3.1582+0.0648-0.0009=3.2221 \&
\end{aligned}
$$

Derivation of Gauss's backward interpolation formula:
 $\Delta y_{0}=\Delta E y_{-1}=\Delta(1+\Delta) y_{-1}=\Delta y_{-1}+\Delta^{2} y_{-1} \quad$ R_U erV df Sdezf $\overrightarrow{\mathcal{Z}_{-}}$d U'_V Z erV TRoV 'W $>$Rf ddkd Wch RcU Z Z EVca`]ReZ_ Wc^f \(] R \Delta^{2} y_{0}=\Delta^{2} y_{-1}+\Delta^{3} y_{-1} 3 \Delta^{3} y_{0}=\Delta^{3} y_{-1}+\Delta^{4} y_{-1}\) Ver\$h V`SeRZ

$$
\begin{aligned}
f\left(x_{0}+u h\right)= & y_{0}+u\left[\Delta y_{-1}+\Delta^{2} y_{-1}\right]+\frac{u(u-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{3} y_{-1}\right] \\
& +\frac{u(u-1)(u-2)}{3!}\left[\Delta^{3} y_{-1}+\Delta^{4} y_{-1}\right]+\frac{u(u-1)(u-2)(u-3)}{4!}\left[\Delta^{4} y_{-1}+\Delta^{5} y_{-1}\right] .+\ldots
\end{aligned}
$$

I` lgZXerVV acVdoZ_\$h VXVe\$

$$
f\left(x_{0}+u h\right)=y_{0}+u\left[\Delta y_{-1}\right]+{ }^{u+1} C_{2}\left[\Delta^{2} y_{-1}\right]+{ }^{u+1} C_{3}\left[\Delta^{3} y_{-2}\right]+{ }^{u+2} C_{4}\left[\Delta^{4} y_{-2}\right]+{ }^{u+2} C_{5}\left[\Delta^{5} y_{-3}\right]+\ldots . \&
$$

J YZZZオ_`h_Rd>Rf ddødSRTI h RdUZ EVca` JRę_ Wc^f JR\&

Central difference interpolation formulas:

 Z VVca`\(^{\prime}\) Rę _ _ VRc eYV SVXZ_ZX R_U _VRc erV V_U`WeYV eRSf JReV RcXf ^V_ed\$ cVdaVTeßgVj \&E `h Z Wc^f JR\$ 9VdoVlod Wc^f JR\$ CRa]RTV/\&gVCVeed Wc^f JR RcV d" ^V `WerV gRcZ f d TV_ecR] UZWNC_TVZ EVca` \(^{\prime}\) ReZ _ Wc^f JRd\& T' coVda`_UZX VN_Te RCXf ^V_ed\&
=` c Z $f\left(x_{0}+h\right)=y_{1} \$ f\left(x_{0}-2 h\right)=y_{-2} \$ f\left(x_{0}+2 h\right)=y_{2} \$ f\left(x_{0}-3 h\right)=y_{-3} \$ f\left(x_{0}+3 h\right)=y_{3}$ R_U d ${ }^{\text {- }}$ _\&
=' cerVgRIf Vd $y_{-3}, y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, y_{3}$ erVWch RcU UZWCV_TVeRS]VZIRdW]J' h oL

\mathbf{x}	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$	$\Delta^{6} y$
$x_{0}-3 h$	y_{-3}						
		Δy_{-3}					
	y_{-2}		$\Delta^{2} y_{-3}$				
$x_{0}-2 h$		Δy_{-2}		$\Delta^{3} y_{-3}$			
	y_{-1}		$\Delta^{2} y_{-2}$		$\Delta^{4} y_{-3}$		
$x_{0}-h$		Δy_{-1}		$\Delta^{3} y_{-2}$		$\Delta^{5} y_{-3}$	
	y_{0}		$\Delta^{2} y_{-1}$		$\Delta^{4} y_{-2}$		$\Delta^{6} y_{-3}$
x_{0}		Δy_{0}		$\Delta^{3} y_{-1}$		$\Delta^{5} y_{-2}$	
	y_{1}		$\Delta^{2} y_{0}$		$\Delta^{4} y_{-1}$		
$x_{0}+h$		Δy_{1}		$\Delta^{3} y_{0}$			
	y_{2}		$\Delta^{2} y_{1}$				
$x_{0}+2 h$		Δy_{2}					
$x_{0}+3 h$	y_{3}						

The above table can also be written in terms of central differences using the operator δ as follows:

\mathbf{x}	\mathbf{y}	δy	$\delta^{2} y$	$\delta^{3} y$	$\delta^{4} y$	$\delta^{5} y$	$\delta^{6} y$
$x_{0}-3 h$	y_{-3}	δy_{-5}					
$x_{0}-2 h$	y_{-2}	$\delta y_{\frac{-3}{2}}$	$\delta^{2} y_{-2}$		$\delta^{3} y_{\frac{-3}{2}}$	$\delta^{4} y_{-1}$	
$x_{0}-h$	y_{-1}	$\delta y_{\frac{-1}{2}}$	$\delta^{2} y_{-1}$	δ^{2}	$\delta^{3} y_{\frac{-1}{2}}$	$\delta^{4} y_{0}$	$\delta^{5} y_{\frac{-1}{2}}$
x_{0}	y_{0}	δ_{1}	$\delta y_{\frac{1}{2}}$	$\delta^{2} y_{1}$	$\delta^{3} y_{\frac{1}{2}}$	$\delta^{4} y_{1}$	$\delta^{6} y_{0}$
$x_{0}+h$	y_{2}	$\delta y_{\frac{3}{2}}$	$\delta^{2} y_{2}$	$\delta^{3} y_{\frac{3}{2}}$			
$x_{0}+2 h$	$\delta y_{\frac{5}{2}}$						
$x_{0}+3 h$	y_{3}						

The difference given in both the tables are same can be established as follows:

$$
\begin{aligned}
& \text { We have } \delta=\Delta E^{-\frac{1}{2}} . \text { Then, } \delta y_{-\frac{5}{2}}=\Delta E^{-\frac{1}{2}}\left(y_{-\frac{5}{2}}\right)=\Delta\left(y_{-\frac{5}{2}-\frac{1}{2}}\right)=\Delta y_{-3} ; \\
& \qquad \begin{array}{r}
\delta^{2} y_{-2}=\left(\Delta E^{-\frac{1}{2}}\right)^{2}\left(y_{-2}\right)=\Delta^{2}\left(y_{-2-1}\right)=\Delta^{2} y_{-3} ; \\
\delta^{3} y_{-\frac{3}{2}}=\left(\Delta E^{-\frac{1}{2}}\right)^{3}\left(y_{-\frac{3}{2}-\frac{3}{2}}\right)=\Delta^{3} y_{-3} \text { and so on. }
\end{array}
\end{aligned}
$$

We use the central differences as found in the first table for interpolation near the central value. Among the various formulae for Central Difference Interpolation, first we consider Gauss's forward interpolation formula.

INTERPOLATION - Arbitrarily Spaced x values

 eYVi $\neq g R] f$ VdRCV_`eVbf R]lj daRTW\&

Newton's Divided Difference Interpolation Formula

© 1
 $\mathrm{h} \mathrm{YVCV} f_{j}=f\left(x_{j}\right), Z \mathrm{ZXZ} \mathrm{V}_{-} \mathrm{Sj}$ eYVNewton's divided difference interpolation formula R]d _`h_RdE Vh è_ødXV_VCR]Z EVca`]ReZ_ Wc^f JR! XZgV_ Sj

$$
f(x) \approx f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+\ldots
$$

$$
+\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right) f\left[x_{0}, \ldots, x_{n}\right] \$
$$

$$
\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) f\left[x, x_{0}, x_{1} \cdots, x_{n}\right]
$$

$\mathrm{h} \operatorname{YVcV} f\left[x_{0}, x_{1}\right] \$ f\left[x_{0}, x_{1}, x_{2}\right] \$ \ldots$ RcVerVdivided differences $\mathbf{X Z g} _\mathbf{S j}$

$$
\begin{aligned}
& f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \$ \\
& f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}} \$ \ldots \\
& f\left[x_{0}, \ldots, x_{k}\right]=\frac{f\left[x_{1}, \ldots, x_{k}\right]-f\left[x_{0}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}}
\end{aligned}
$$

$8] d^{\top} \$ f\left[x, x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{f\left[x_{p} x_{1}, \cdots, x_{n}\right]-f\left(x, x_{0},\right] x_{n}}{x_{0}-x}$

 Wch RcU UZWCV_TVZ EVca` JRė_ Wc^f]R\&

Derivation of the formula:
 $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$. J YV gRff Vd $x_{1}, x_{2}, \ldots, x_{n}$ `WerV Z ZUVaV_UV_e gRcRSJN U RCV TRJ]M erV RcXf ^V_ed R_U eYV Tccolda`_UZXX gRff Vd

$$
f\left(x_{i}, x_{i+1}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}} \text { for } i=0,1, \ldots, n-1
$$

J YV dVT _U UBZZW UZWNC_TV SVAh W_ eYcW T _dVIf egV RcXf ^V_ed x_{i}, x_{i+1} and x_{i+2} Zd XZV_Sj \$

$$
f\left(x_{i}, x_{i+1}, x_{i+2}\right)=\frac{f\left(x_{i+1}, x_{i+2}\right)-f\left(x_{i}, x_{i+1}\right)}{x_{i+2}-x_{i}} \text { for } i=0,1, \ldots, n-2
$$

@ XV_VCR] eYV _e UZgZM UZWCV_TV `c UZgZM UZNCV_TV `W dVC _! SVAh W_ $x_{1}, x_{2}, \ldots, x_{n}$ Z $\$$

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}{x_{n}-x_{0}}
$$

? V_TV\$Z

$$
f\left(x_{0}, x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

J YVANT _U UZgZWU UZWCV_TVSVAh W_ EYcWT _dVIf eghVRCXf ^V_ed x_{0}, x_{1} and x_{2} Zd

$$
\begin{aligned}
f\left(x_{0}, x_{1}, x_{2}\right) & =\frac{f\left(x_{1}, x_{2}\right)-f\left(x_{0}, x_{1}\right)}{x_{2}-x_{0}} \\
& =\frac{1}{x_{2}-x_{0}}\left[\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\right] \\
& =\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left(x_{1}\right)}{\left(x_{2}-x_{0}\right)}\left[\frac{1}{\left(x_{2}-x_{1}\right)}+\frac{1}{\left(x_{1}-x_{0}\right)}\right]+\frac{f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}+\frac{f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)} \\
\Rightarrow f\left(x_{0}, x_{1}, x_{2}\right) & =\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{2}\right)\left(x_{0}-x_{1}\right)}+\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

 Rd

$$
\begin{aligned}
f\left(x_{0}, x_{1}, \ldots, x_{n}\right)= & \frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)}+\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}+\ldots \\
& +\frac{f\left(x_{n}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)}
\end{aligned}
$$

Properties of divided difference:

1. The divided differences are symmetrical about their arguments.

We have, $f\left(x_{0}, x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$

$$
=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}}=f\left(x_{1}, x_{0}\right)
$$

$\Rightarrow f\left(x_{0}, x_{1}\right)=f\left(x_{1}, x_{0}\right)$. Hence, the order of the arguments has no importance.
When we are considering the $\mathrm{n}^{\text {th }}$ divided difference also, we can write, $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ as
$f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)}+\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)}+\ldots+\frac{f\left(x_{n}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)}$
From this expression it is clear that, whatever be the order of the arguments, the expression is same.

Hence the divided differences are symmetrical about their arguments.
2. Divided difference operator is linear.

For example, consider two polynomials $f(x)$ and $g(x)$. Let

$$
h(x)=a f(x)+b g(x),
$$

where ' a ' and ' b ' are any two real constants. The first divided difference of $h(x)$ corresponding to the arguments x_{0} and x_{1} is,

$$
\begin{aligned}
h\left(x_{0}, x_{1}\right)=\frac{h\left(x_{1}\right)-h\left(x_{0}\right)}{x_{1}-x_{0}}= & \frac{a f\left(x_{1}\right)+b g\left(x_{1}\right)-a f\left(x_{0}\right)+b g\left(x_{0}\right)}{x_{1}-x_{0}} \\
= & \frac{a\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right]+b\left[g\left(x_{1}\right)-g\left(x_{0}\right)\right]}{x_{1}-x_{0}} \\
& =a \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}+b \frac{g\left(x_{1}\right)-g\left(x_{0}\right)}{x_{1}-x_{0}} \\
& =a f\left(x_{0}, x_{1}\right)+b g\left(x_{0}, x_{1}\right)
\end{aligned}
$$

3. The $n^{\text {th }}$ divided difference of a polynomial of degree n is its leading coefficient.

Consider $f(x)=x^{n}$, where n is a positive number
Now, $f\left(x_{0}, x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{x_{1}{ }^{n}-x_{0}{ }^{n}}{x_{1}-x_{0}}$

$$
=x_{1}^{n-1}+x_{1}^{n-2} x_{0}+x_{1}^{n-3} x_{0}^{2}+\ldots+x_{0}^{n-1}
$$

This is a polynomial of degree ($\mathrm{n}-1$) and symmetric in arguments x_{o} and x_{1} with leading coefficient 1.

The second divided difference,

$$
\begin{aligned}
& f\left(x_{0}, x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)-f\left(x_{0}, x_{1}\right)}{x_{2}-x_{0}} \\
&=\frac{\left(x_{2}^{n-1}+x_{2}{ }^{n-2} x_{1}+\ldots+x_{1}^{n-1}\right)-\left(x_{0}{ }^{n-1}+x_{0}^{n-2} x_{1}+\ldots+x_{1}^{n-1}\right)}{x_{2}-x_{0}}, \text { which }
\end{aligned}
$$

can be expressed as a polynomial of degree $\mathrm{n}-2$, is symmetric about x_{0}, x_{1} and x_{2} with leading coefficient 1.

Proceeding like this, we get the $\mathrm{n}^{\text {th }}$ divided difference of $f(x)=x^{n}$ is 1 .
Now we consider a general polynomial of degree n as,

$$
g(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}
$$

Since the divided difference operator is linear, we get $\mathrm{n}^{\text {th }}$ divided difference of $g(x)$ as a_{0}, which is the leading coefficient of $g(x)$.

x	$f(x)$
-1	3
0	-6
3	39
6	822
7	1611

J YVUZgZM UZWCV_TVeRSJVZd

? V_TV

$$
\begin{array}{r}
f(x)=3+(x+1)(-9)+x(x+1)(6)+x(x+1)(x-3)(5) \\
+x(x+1)(x-3)(x-6)
\end{array}
$$

$$
=x^{4}-3 x^{3}+5 x^{2}-6 .
$$

 erVW]j’ h Z X ARSJVR_UerV_TRIf JReVC*\&!\&

U	$($	$)$	$*$,
CU	$)$	$)$	$*$	-

\$

U	CU	$=$ ZZde UZgZW UZWCV_TV स्UH\%	IVT_U UZZZW UZWCV_TV $\left.\mathbb{E U H}_{1 \%} \$ \mathrm{UH}_{\mathrm{W}} \mathrm{H}_{1}\right) \mathrm{Q}$	J YZUUZgZN UZXNCV_TV ©
$($)			
)) *	$\begin{aligned} & f\left(x_{1}, x_{2}\right)=1 \\ & f\left(x_{2}, x_{3}\right)=3 / 2 \end{aligned}$	$\begin{aligned} & -1 / 2 \\ & -1 / 6 \end{aligned}$	$-\frac{1}{2}$
	-			

 $f(x) \approx 1+(x-0)(0)+(x-0)(x-1)\left(\frac{1}{2}\right)+(x-0)(x-1)(x-2)\left(-\frac{1}{12}\right)$

$$
=-\frac{1}{12} x^{3}+\frac{3}{4} x^{2}-\frac{2}{3} x+1
$$

7

NEWTON' S AND LAGRANGIAN FORMULAE - PART II

 $(-4,1245),(-1,33),(0,5),(2,9)$ and $(5,1335) \&$

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\ldots .+ \\
& \quad\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots . .\left(x-x_{n-1}\right) f\left(x_{0}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

? VcV i gRlf Vd RcV XZgVd Ra\$ \% $\%$ \% $\$(\$ *$ R_U 1\& : `cdVda`_UZXX W! gRIf Vd RcV)*, - \$ +1 \$ R U U) + \&

N	$=$ Z Cd UZgZU UZWCV_TVd	IVT_UUZZZN UZWCV_TVd	JYZU UGZN UZWCV_TVd	$=\text { f cer }$ UZZZW UZWCV_TVd
-4				
	-404			
\%		94		
	\% 0		-14	
1)(3
*		00		
	, , *			
-				

$$
\begin{aligned}
& f\left(x_{0}, x_{1}\right)=-404 ; \quad f\left(x_{0}, x_{1}, x_{2}\right)=94 ; \\
& f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=-14 \text { and } f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=3
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=1245+(x-(-4)) \times(-404)+(x-(-4))(x-(-1)) \times 94 \\
&+(x-(-4))(x-(-1))(x-0) \times 14+(x-(-4))(x-(-1))(x-0)(x-2) \times 3 \\
& \Rightarrow f(x)=1245-404(x+4)+94(x+4)(x+1) \\
&+14(x+4)(x+1)(x-0)+3(x+4)(x+1)(x-0)(x-2)
\end{aligned}
$$

$$
f(x)=3 x^{4}-5 x^{3}+6 x^{2}-14 x+5 \&
$$

Newton's Interpolation formula with divided differences

$$
\begin{aligned}
& f\left(x, x_{0}\right)=\frac{f\left(x_{0}\right)-f(x)}{x_{0}-x}=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
\Rightarrow & \left.f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x, x_{0}\right) \text { og8880 }\right)!
\end{aligned}
$$

$:{ }^{-} \quad \mathrm{d} \mathbb{V} \mathrm{C} x, x_{0}$ and $x_{1} \& \mathrm{~J} \mathrm{YV}$-\$

$$
\begin{aligned}
& f\left(x, x_{0}, x_{1}\right)=\frac{f\left(x_{0}, x_{1}\right)-f\left(x, x_{0}\right)}{x_{1}-x}=\frac{f\left(x, x_{0}\right)-f\left(x_{0}, x_{1}\right)}{x-x_{1}} \\
& \quad \Rightarrow f\left(x, x_{0}\right)=f\left(x_{0}, x_{1}\right)+\left(x-x_{1}\right) f\left(x, x_{0}, x_{1}\right)
\end{aligned}
$$

Gf eZZZ

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right)\left[f\left(x_{0}, x_{1}\right)+\left(x-x_{1}\right) f\left(x, x_{0}, x_{1}\right)\right]
$$

J YReZ ${ }^{2} \$$

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x, x_{0}, x_{1}\right) \quad \text { о\%ด6 } *!
$$

8 XRZ $\$$ Wc x, x_{0}, x_{1} and x_{2}

$$
\begin{aligned}
& \Rightarrow f\left(x, x_{0}, x_{1}, x_{2}\right)=\frac{f\left(x, x_{0}, x_{1}\right)-f\left(x_{0}, x_{1}, x_{2}\right)}{x_{2}-x}=\frac{f\left(x_{0}, x_{1}, x_{2}\right)-f\left(x, x_{0}, x_{1}\right)}{x-x_{2}} \\
& \quad \Rightarrow f\left(x, x_{0}, x_{1}\right)=\left(x_{2}-x\right) f\left(x, x_{0}, x_{1}, x_{2}\right)+f\left(x_{0}, x_{1}, x_{2}\right)
\end{aligned}
$$

? V_TV *! Z a

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left[\left(x-x_{2}\right) f\left(x, x_{0}, x_{1}, x_{2}\right)+f\left(x_{0}, x_{1}, x_{2}\right)\right] \\
& =f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x, x_{0}, x_{1}, x_{2}\right)
\end{aligned}
$$

Gc` TVMZ X]Z VeY \(3 \$ h\) V` SeRZ Wc $f(x)$ Ro\$

$$
\begin{aligned}
f(x)=f\left(x_{0}\right) & +\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\ldots .+ \\
& \left(x-x_{0}\right)\left(x-x_{1}\right) \ldots . .\left(x-x_{n}\right) f\left(x, x_{0}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

 UZWCV_TV\&
? V_TVh VXVe\$

$$
\begin{aligned}
f(x)=f\left(x_{0}\right) & +\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
+ & \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\ldots .+ \\
& \left(x-x_{0}\right)\left(x-x_{1}\right) \ldots . .\left(x-x_{n-1}\right) f\left(x_{0}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

J YZIZI _h_RdNewton's interpolation formula with divided difference\&

Note:

$$
\begin{array}{llllll}
\mathrm{JV} \mathrm{a} \& 2 & \left.+)^{\prime}\right)(& +/(& +0 & +0 /(& +11(\\
\text { GCVdff } \mathrm{CV} 2 &)-, \mathbb{Q} & \text {)./\& } & \text {) } 1) & *) * \& & *,, \&
\end{array}
$$

Solution:

J` WU U dT' ccVoa`_UZ X W' ! gRjf Vd\&
 RcV) - , \&\$) . (\&\$) 1) \$) ${ }^{(\& R Z U *, ~, ~ \& \& ~}$

$$
\begin{aligned}
f(x)=f\left(x_{0}\right) & +\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)+\ldots .+ \\
& \left(x-x_{0}\right)\left(x-x_{1}\right) \ldots . .\left(x-x_{n}\right) f\left(x, x_{0}, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

$>$ ZgV_ $f\left(x_{0}\right)=f\left(361^{0}\right)=154.9$ \& J YV UZgZWU UZWCV_TVd Wc erV XZgV_ a`Z ed RcV Rd dY` h_ Z erversja\&

N	$\begin{aligned} & =Z \mathbb{Z d E U Z G Z N U} \\ & \text { UZNCV_TVd } \end{aligned}$	IVT_UUZすZN UZWCV_TVd	J YZU UZGZW UZWCV_TVd	=’ f cer UZgZM UZWVCV_TVd
361	2.01666			
+. $/$		0.00971		
+0	*\&0) 0)	$(\&)(+$	0.0000246	(.00000074
+0/	$\text { *\& } \$ 0000$	$(\&) *(,$	(\& (($-* 0$	
+11	*,)			

$=c^{`} \wedge$ erVersjN\$h VTR_ 'SoNcgVerRe

$$
\begin{aligned}
& f\left(x_{0}, x_{1}\right)=2.01666 ; \quad f\left(x_{0}, x_{1}, x_{2}\right)=0.00971 ; \\
& f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0.0000246 \text { and } f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=0.00000074
\end{aligned}
$$

? V_TV\$

$$
\begin{aligned}
& f(x)=154.9+(x-361) \times 2.01666+(x-361)(x-367) \times 0.00971+ \\
& \quad(x-361)(x-367)(x-378) \times 0.0000246+(x-361)(x-367)(x-378)(x-387) \times 0.0000074
\end{aligned}
$$

If SdeZf $\underset{\sim}{\underset{Z}{Z} X i} 5+-$ Z
 W]j’hZXgRff VoZ i2) $+\quad, \quad-\quad / \quad)($

$$
W!2 \quad+\quad+\quad .1 \quad)+\quad+) \quad \text { ()) }
$$

Solution:

 ervußgZM UZWCV_TVf dZ XervXZgV_ gRjf Vd\&

N	$=$ Z Cd UZ UZNCV_TVd	IVT_UUZZUN UZWCV_TVd	JYZU UGZN UZWCV_TVd	$=-\mathrm{f}$ cer UZgZM UZNCV_TVd
1	14			
+	+0	8	1	
,	*)*)	
-		$)$.		$($
/))(**)	
1	**(

I Z TVEYVWf cel UZgZWU UZWCV_TVdRcVkVc` Vd\$W! Zd` WWXCW +R_UZZZ` SeRZ W Rd\$

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left(x_{0}, x_{1}, x_{2}\right) \\
&+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
& f\left(x_{0}\right)=f(1)=3 ; f\left(x_{0}, x_{1}\right)=14 ; f\left(x_{0}, x_{1}, x_{2}\right)=8 \quad \text { and } f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1 \\
& \Rightarrow f(x)=3+(x-1) \times 14+(x-1)(x-3) \times 8+(x-1)(x-3)(x-4) \times 1
\end{aligned}
$$

J YReZ $\$$

$$
f(x)=x^{3}+x+1
$$

? V_TV\$ $f(4.5)=(4.5)^{3}+4.5+1=96.625 \quad$ R_U $f(8)=(8)^{3}+8+1=521$

Lagrangian Interpolation

$$
f(x) \approx L_{n}(x)=\sum_{k=0}^{n} \frac{l_{k}(x)}{l_{k}\left(x_{k}\right)} f_{k} \$
$$

h YVCV

$$
\begin{aligned}
& l_{0}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \$ \\
& l_{k}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right) \$ \quad(4 \mathrm{H} 4 \mathrm{~K} \& \\
& l_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

 Wc^f JR cVf TVd è erV dZXXV Elc^ f_{k} \$h YZY Z ZUZRevd erRe CR_U L_{k} RXCWd Re K\#) eRSf JReVa`Zed

Derivation of the formula:

Given the set of ($n+1$) points, $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$ of x and $f(x)$, it is required to fit the unique polynomial $p_{n}(x)$ of maximum degree n, such that $f(x)$ and $p_{n}(x)$ agree at the given set of points. The values $x_{0}, x_{1}, \ldots, x_{n}$ may not be equidistant.

Since the interpolating polynomial must use all the ordinates $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$, it can be written as a linear combination of these ordinates. That is, we can write the polynomial as

$$
p_{n}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)+\cdots+l_{n}(x) f\left(x_{n}\right) .
$$

where $f\left(x_{i}\right)$ and $l_{i}(x)$, for $i=0,1,2, \ldots, n$ are polynomials of degree n.
This polynomial fits the given data exactly.
At $x=x_{0}$, as $p_{n}(x)$ and $f(x)$ coincide, we get,

$$
f\left(x_{0}\right)=p_{n}\left(x_{0}\right)=l_{0}\left(x_{0}\right) f\left(x_{0}\right)+l_{1}\left(x_{0}\right) f\left(x_{1}\right)+\ldots+l_{n}\left(x_{0}\right) f\left(x_{n}\right)
$$

This equation is satisfied only when $l_{0}\left(x_{0}\right)=1$ and $l_{i}\left(x_{0}\right)=0, i \neq 0$

At a general point $x=x_{i}$, we get,

$$
f\left(x_{i}\right)=p_{n}\left(x_{i}\right)=l_{0}\left(x_{i}\right) f\left(x_{0}\right)+l_{1}\left(x_{i}\right) f\left(x_{1}\right)+\ldots+l_{n}\left(x_{i}\right) f\left(x_{n}\right)
$$

This equation is satisfied only when $l_{i}\left(x_{i}\right)=1$ and $l_{j}\left(x_{i}\right)=0, i \neq j$
Therefore, $l_{i}(x)$, which are polynomials of degree n, satisfy the conditions

$$
l_{i}\left(x_{j}\right)=\left\{\begin{array}{l}
1, i=j \\
0, i \neq j
\end{array}\right.
$$

Since, $l_{i}(x)=0$ at $x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$, we know that $\left(x-x_{0}\right),\left(x-x_{1}\right), \ldots,\left(x-x_{i-1}\right),\left(x-x_{i+1}\right), \ldots,\left(x-x_{n}\right)$ are factors of $l_{i}(x)$. The product of these factors is a polynomial of degree n. Therefore, we can write

$$
l_{i}(x)=C\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right), \text { where } C \text { is a constant. }
$$

Now, since $l_{i}\left(x_{i}\right)=1$, we get

$$
l_{i}\left(x_{i}\right)=1=C\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)
$$

$$
\text { Hence, } C=\frac{1}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}
$$

Therefore,

$$
l_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}
$$

Now the polynomial

$$
p_{n}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)+\ldots+l_{n}(x) f\left(x_{n}\right),
$$

with $\quad l_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)} \quad$ is called \quad Lagrange \quad interpolating polynomial and $l_{i}(x)$ are called Lagrange fundamental polynomials.

To fit a polynomial of degree 1 , we require at least two points. Let $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$ are the points. Then the Lagrange polynomial of degree one or a straight line for the given data is,

$$
p_{1}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right) \text {, where, } l_{0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)} \text { and } l_{1}(x)=\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} \text {. }
$$

Let $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$ are the given three points. Then the Lagrange polynomial of degree two for the data is given by
$p_{2}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)+l_{2}(x) f\left(x_{2}\right)$, where,
$l_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}, l_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}$ and $l_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}$.
For the four points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right),\left(x_{3}, f\left(x_{3}\right)\right)$, the Lagrange polynomial of degree three is given by,
$p_{3}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)+l_{2}(x) f\left(x_{2}\right)+l_{3}(x) f\left(x_{3}\right), \quad$ where, $\quad l_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}$
$l_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}, \quad l_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}$ and
$l_{3}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}$ and so on.
Problem : Given $f(2)=9$, and $f(6)=17$. Find an approximate value for $f(5)$ by the method of Lagrange's interpolation.

Solution:

For the given two points $(2,9)$ and $(6,17)$, the Lagrangian polynomial of degree 1 is $p_{1}(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)$, where, $l_{0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)}$ and $l_{1}(x)=\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)}$. That is,

$$
\begin{aligned}
& p_{1}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} f\left(x_{1}\right) \\
\Rightarrow & p_{1}(x)=\frac{(x-6)}{(2-6)} \times 9+\frac{(x-2)}{(6-2)} \times 17
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f(5)=P_{1}(5) & =\frac{(5-6)}{(2-6)} \times 9+\frac{(5-2)}{(6-2)} \times 17 \\
& =\frac{1}{4} \times 9+\frac{3}{4} \times 17 \\
& =15
\end{aligned}
$$

Problem: Use Lagrange's formula, to find the quadratic polynomial that takes the values

x	$:$	0	1	3
$f(x)$	$:$	0	1	0

For the given three points $(0,0),(1,1)$ and $(3,0)$, the quadratic polynomial by Lagrange's interpolation is $p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$

We are considering the given x values 0,1 , and 3 as x_{0}, x_{1} and x_{2}. Given, $f\left(x_{0}\right)$ and $f\left(x_{2}\right)$ are zeroes. Hence the polynomial is,

$$
p_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)
$$

Then,

$$
\begin{aligned}
& p_{2}(x)=\frac{(x-0)(x-3)}{(1-0)(1-3)} \times 1 \\
\Rightarrow & p_{2}(x)=\frac{x(x-3)}{-2} \times 1=\frac{1}{2}\left(3 x-x^{2}\right) .
\end{aligned}
$$

 C, ! $5+(\$ C .!5)+{ }^{*} \& \mathbb{Z}$ V_TVZ U C-! $\&$
? VCV, eRSf JReW a`Z_edRcVXZgV_\&? V_TVh V_WUCRXCR_XVøpa` $] j$ _ ${ }^{\wedge}$ R] Wc K! $5+$ \#) 5, a`Z_el! R_UZ才XZgV_Sj

$$
f(x) \approx L_{3}(x)=\sum_{k=0}^{3} \frac{l_{k}(x)}{l_{k}\left(x_{k}\right)} f_{k} \&
$$

E `h of Sdezf e_ XerVgRIf Val\$h V` SeRZ

$$
\begin{aligned}
& L_{3}(x)=\frac{(x-3)(x-4)(x-6)}{(1-3)(1-4)(1-6)}(-3)+\frac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)}(0) \\
& +\frac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)}(30)+\frac{(x-1)(x-3)(x-4)}{(6-1)(6-4)(6-4)}(132)
\end{aligned}
$$

E `h $f(5) \approx L_{3}(5)=\frac{1}{2}\left(-(5)^{3}+27(5)^{2}-92(5)+60\right)=75$.
 ARSJ2

$$
\begin{array}{ccccc}
\mathrm{U} & 1 \& & 1 \& &)(\& &)) \& \\
] _\cup & * \& 1 / & * \&-) & * \&(* & * \& 1 /
\end{array}
$$

$$
\begin{aligned}
& \ln (9.2)= f(9.2) \approx L_{3}(9.2)=\sum_{k=0}^{3} \frac{l_{k}(9.2)}{l_{k}\left(x_{k}\right)} f_{k} \& \\
&=\frac{(9.2-9.5)(9.2-10.0)(9.2-11.0)}{(9.0-9.5)(9.0-10.0)(9.0-11.0)}(2.19722) \\
&+\frac{(9.2-9.0)(9.2-10.0)(9.2-11.0)}{(9.5-9.0)(9.5-10.0)(9.5-11.0)}(2.25129) \\
&+\frac{(9.2-9.0)(9.2-9.5)(9.2-11.0)}{(10.0-9.0)(10.0-9.5)(10.0-11.0)}(2.30259) \\
&+\frac{(9.2-9.0)(9.2-9.5)(9.2-10.0)}{(11.0-9.0)(11.0-9.5)(11.0-10.0)}(2.39790)
\end{aligned}
$$

Example : VceRZ T covda`_UZX gRlf Vd ${ }_{-}$W U U R_U $\log _{10} x \quad$ RCV (300, 2.4771), (304, 2.4829), (305, 2.4843) R_U (307, 2.4871). $=\underline{Z} U \log _{10} 301$.

$$
\begin{aligned}
& \log _{10} 301=\frac{(-3)(-4)(-6)}{(-4)(-5)(-7)}(2.4771)+\frac{(1)(-4)(-6)}{(4)(-1)(-3)}(2.4829) \\
& +\frac{(1)(-3)(-6)}{(5)(1)(-2)}(2.4843)+\frac{(1)(-3)(-4)}{(7)(3)(2)}(2.4871) \\
& =1.2739+4.9658-4.4717+0.7106 \\
& =2.4786 .
\end{aligned}
$$

Inverse Lagrangian Interpolation Formula

 Lagrangian interpolation formula $\mathrm{XZ} \mathrm{V}_{\mathbf{V}} \mathrm{Sj}$

$$
x \approx L_{n}(y)=\sum_{k=0}^{n} \frac{l_{k}(y)}{l_{k}\left(y_{k}\right)} x_{k} .
$$

Example © $\mathbb{C} y_{1}=4, y_{3}=12, y_{4}=19$ R_U $y_{x}=7$, VUU\& ` ${ }^{\text {Z }}$ aRcVh \mathbb{Z} erVRTe R] gR]f V\&

$x \approx L_{n}(7)=\sum_{k=0}^{2} \frac{l_{k}(7)}{l_{k}\left(y_{k}\right)} x_{k}$
$\mathrm{h} \mathrm{YVCV} x_{0}=1, y_{0}=k, \quad x_{y}=3, y_{1}=12 \quad x_{2}=4, y_{2}=19$ R_U $y=7$
$\mathbf{~} \mathbf{/} \mathbf{\$} \boldsymbol{\$} \approx \frac{\left(7-y_{1}\right)\left(7-y_{2}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)} x_{0}+\frac{\left(7-y_{0}\right)\left(7-y_{2}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)}$

$$
x_{1}+\frac{\left(7-y_{0}\right)\left(7-y_{1}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)} x_{2}
$$

《/\$

$$
\begin{aligned}
x & =\frac{(-5)(-12)}{(-8)(-15)}(1)+\frac{(3)(-12)}{(8)(-7)}(3)+\frac{(3)(-5)}{(15)(7)}(4) \\
& =\frac{1}{2}+\frac{27}{14}-\frac{4}{7}
\end{aligned}
$$

5) \varnothing.
 $y(x)=x^{2}+3$.

 *\&\&

x	$y=\ln x$
2	0.69315
2.5	0.91629
3.0	1.09861

I Z ZRclj \$

$$
l_{1}(x)=-\left(4 x^{2}-20 x+24\right) \mathrm{R} \cup \quad l_{2}(x)=2 x^{2}-9 x+10 \text {. }
$$

? V_TV

$$
\begin{aligned}
& \quad L_{2}(x)=\frac{l_{0}(x)}{l_{0}\left(x_{k}\right)} f_{0}+\frac{l_{1}(x)}{l_{1}\left(x_{k}\right)} f_{1}+\frac{l_{2}(x)}{l_{0}\left(x_{k}\right)} f_{2} \\
& =\frac{(x-2.5)(x-3.0)}{(-0.5)(-1.0)} \cdot f_{0}+\frac{(x-2)(x-3)}{(2.5-2)(3.0-2.5)} f_{1}+\frac{(x-2)(x-2.5)}{(3-2)(3-2.5)} f_{2} \\
& =\left(2 x^{2}-11 x+15\right)(0.69315)-\left(4 x^{2}-20 x+24\right)(0.91629) \\
& + \\
& +\left(2 x^{2}-9 x+10\right)(1.09861) \\
& =-0.08164 x^{2}+0.81366 x-0.60761 .
\end{aligned}
$$

$\ln 2.7 \approx L_{2}(2.7)=-0.08164(2.7)^{2}+0.81366(2.7)-0.60761=0.9941164 .8$ Tf R] gR]f V` W
$\ln 2.7=0.9932518$, d ${ }^{\prime}$ eYRe

$$
\text { | Error |= } 0.0008646 .
$$

Example YVVIN _TZ _ $y=\sin x$ ZleRSf]ReW SV` h

x	$y=\sin x$
0	0
$\pi / 4$	0.70711
$\pi / 2$	1.0

9URQLK M VYRgV

$$
\begin{aligned}
\sin \frac{\pi}{6} & \approx \frac{(\pi / 6-0)(\pi / 6-\pi / 2)}{(\pi / 4-0)(\pi / 4-\pi / 2)}(0.70711)+\frac{(\pi / 6-0)(\pi / 6-\pi / 4)}{(\pi / 2-0)(\pi / 2-\pi / 4)}(1)=\frac{8}{9}(0.70711)-\frac{1}{9} \\
& =\frac{4.65688}{9}=0.51743 .
\end{aligned}
$$

 eYVW]J'h Z X X RSJM\&

x	y
0	-12
1	0
3	12
4	24

 $R(x)=y /(x-1)$. MV_`h eRSf JReVerVgRIf Vd 'WUR_U \(R(x) 2=\) © \(x=0, \quad R(0)=\frac{-12}{0-1}=12, \quad\) R_U d" `_\&

x	$R(x)$
0	12
3	6
4	8

$R(x)=\frac{(x-3)(x-4)}{(-3)(-4)}(12)+\frac{(x-0)(x-4)}{(3-0)(3-4)}(6)+\frac{(x-0)(x-3)}{(4-0)(4-3)}(8)$
$=(x-3)(x-4)-2 x(x-4)+2 x(x-3)$
$5 x^{2}-5 x+12$.

$$
y(x)=(x-1)\left(x^{2}-5 x+12\right) .
$$

 W]j’ h Z X UZgZZW UZWCV_TVERSJV

x	$f(x)=\log _{10} x$	$f\left[x_{k-1}, x_{k}\right]$	$f\left[x_{k-2}, x_{k}, x_{k+1}\right]$
$H($	$* \& / /)$,	$(\&(),-$	
H H,	$* \& 0^{*} 1$	$(\&(),($	$(\&(()$
H-	$* \& 0,+$	$(\$(),($	1
H/	$* \& 0 /)$		

$\log _{10} 301=2.4771+0.00145+(-3)(-0.00001)=2.4786$, RdSWVCV\&
 CRXCR_XVap ^ VeY ${ }^{\text {U }}$

Exercises

 . 1\&

 (\&.) (. V RTeè -; !\&

U	CU-T dU	=ZZde UZWCV TV	IVT_U UZWNCV TV
(\&	$) \&(()$	\%\%\&) $11+$	\% $0+1$ (0
(\$	(\& O (/	\%\%-1 ()	\% $\%+$ /)
(\&)	$\left(\mathcal{L}^{*}\right)($.	\%<81- /*	$\%$ \% $\left.+^{*} 1\right)$

(\&	(0^{*} - +	\% 0 **0. +	\% $\%$ */ $/ 0$
(\otimes)	(\&1. /)	\%0¢- . ,)	
) \&	(\&) ${ }_{\text {l }}+$		

 $f(4)=1, f(6)=3, f(8)=8, f(10)=16$ \&8]d TRJIf $] \operatorname{ReV} f(7) \&$

OVRc) $11 . \quad) 110 *\left(\left(\left({ }^{*}\left({ }^{*} *((\right.\right.\right.\right.$,
$\underset{\substack{\text { I RIVd } \underset{~ Z ~ Y d!~}{Z}}}{ } \quad, \quad,+\quad, 0 \quad-* \quad-/$]RI Yd!
 Wc^f JR\&
 $f(1)=2, f(2)=11, f(4)=77 \&$

U	$($	$)$	$*$	+	
$f(x)$		$)$	$*$	$)$	$)($

	oZ U	δ^{*}
(\&	(\& 10. /	\% 0 (/ 1*
(\&)	(\&O1 , *	\%\&\%) - - +
\&	(\&. , . ,	\% 0 \&** - (

 XZgV_ YVZYYedZ Whers' gVeYVVRceYq of dMRTV2

U- YVZXYe 2)()-(*($($	*-(H(+ 1	, ($($
V5 UZKłR_TV2)(\&+) + + +	$)-$ \&,). ©))0\&*) 1 d	*) \$/

8

INTERPOLATION BY ITERATION

Interpolation by Iteration

$>$ ZुV_ elV $(n+1)$ a`Zed \(\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \cdots,\left(x_{n}, f_{n}\right)\), h YVcV eYV gRff Vd `WU _WU _`e off ZRSIV off SdTçael\$d er ReReerVvtrded\&RXV WRaac` i Z Rę_\$h VYRgV

$$
\Delta_{01}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]=\frac{1}{x_{1}-x_{0}}\left|\begin{array}{ccc}
f_{0} & x_{0} & -x \\
f_{1} & x_{1} & -x
\end{array}\right| \&
$$

I Z ZRclj \$h VTR_ Wc^ $\Delta_{02}(x), \Delta_{03}(x), \cdots$

$$
\Delta_{012}(x)=\frac{1}{x_{2}-x_{1}}\left|\begin{array}{lll}
\Delta_{01}(x) & x_{1} & -x \\
\Delta_{02}(x) & x_{2} & -x
\end{array}\right| \&
$$

I Z ZRclj h V`SeRZ \(\Delta_{013}(x), \Delta_{014}(x)\), VeT\&8 eerVKeY d\&RXV` WRaac` i Z ReZ_ \$h V`SARZ

$$
\left.\Delta_{012 \cdot n}(x)=\frac{1}{x_{n}-x_{n-1}}\left|\begin{array}{ccc}
\Delta_{012} \cdot \overline{n-1} & (x) & x_{n-1}
\end{array}-x\right| \begin{array}{ll}
\Delta_{012} \cdot \overline{n-2 n} & (x) \\
x_{n} & -x
\end{array} \right\rvert\, \&
$$

Table 18 有 V_ø I TYV ${ }^{\wedge}$ V

x	f				
x_{0}	f_{0}	$\Delta_{01}(x)$			
x_{1}	f_{1}	$\Delta_{02}(x)$	$\Delta_{012}(x)$		$\Delta_{0123}(x)$
x_{2}	f_{2}	$\Delta_{03}(x)$	$\Delta_{013}(x)$	$\Delta_{0124}(x)$	$\Delta_{01234}(x)$
x_{3}	f_{3}	$\Delta_{044}(x)$	Δ_{014}		
x_{4}	f_{4}				

Table 2 E VgZ]VqøI TYV ${ }^{\wedge}$ V

x	f				
x_{0}	f_{0}	$\Delta_{01}(x)$			
x_{1}	f_{1}	$\Delta_{12}(x)$	$\Delta_{012}(x)$		$\Delta_{0123}(x)$
x_{2}	f_{2}	$\Delta_{23}(x)$	$\Delta_{123}(x)$	$\Delta_{1234}(x)$	
x_{3}	f_{3}	$\Delta_{01234}(x)$			
x_{4}	f_{4}	$\Delta_{34}(x)$	$\Delta_{234}(x)$		

x	$\log _{10} x$			
H($* \& / /)$		$* / 0-$	
H,	$* \& 0 * 1$	$* \& / 0$	$* \& / 0-0$	$* \& / 0.1$
H-	$* \& 0,+$	$* \& / 0-$	$* \& / 0-1$	
H/	$* \& 0 /)$			

9பRQLK
$\log _{10} 301=2.4786$.

Inverse Interpolation

$>$ ZgV_ RdVe` WgRIf Vd` WUR_U V\$erVac` TVdd` WvZ UZ XerVgRIf V` WUWc RTVceRZ gR]f V` WW Zd TR]M `SgZ f dh Rj `WaVcWc^Z 8 ZA V_q^へ Ver ${ }^{\prime}$ Ud\&
 9URQLK

8 ZA V_ødTYV^ V dWJ RSJV)! Z

y	x	
,	$)$	
$)^{*}$	+	
$) 1$		

h YVcVRd E Vg7JVqpdTYV^V dWJ RSJN*! XZgVd

y	x		
,	$)$	$) \notin-($	$) \otimes-/$
$)^{*}$	+	$* \& 0$.	
$) 1$,		

@ eYZIV R^a]VdS` eY erVdTYV^ VdXZgVerVdR^ VcVdf]eß

Method of Successive Approximations

$y_{u}=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{6} \Delta^{3} y_{0}+\cdots$

$u=\frac{1}{\Delta y_{0}}\left[y_{u}-y_{0}-\frac{u(u-1)}{2} \Delta^{2} y_{0}-\frac{u(u-1)(u-2)}{6} \Delta^{3} y_{0}-\cdots\right]$.
 W]J’hd

$$
u_{1}=\frac{1}{\Delta y_{0}}\left(y_{u}-y_{0}\right) .
$$

 dNT _U UZWNCV_TVdS Yf d\$

$$
u_{2}=\frac{1}{\Delta y_{0}}\left[y_{u}-y_{0}-\frac{u_{1}\left(u_{1}-1\right)}{2} \Delta^{2} y_{0}\right]
$$

 $u_{3}=\frac{1}{\Delta y_{0}}\left[y_{u}-y_{0}-\frac{u_{2}\left(u_{2}-1\right)}{2} \Delta^{2} y_{0}-\frac{u_{2}\left(u_{2}-1\right)\left(u_{2}-2\right)}{6} \Delta^{3} y_{0}\right]$

 V R ${ }^{\wedge}$ a] \&

ExampleJ RSf JReV $y=x^{3}$ Wc $x=2,3,4$ R_U-\$R_U TRIff JREV eYV If SV c`e ` W) (T ccVTeè © F BUVIL R$]$ a]RTVd\&

9பRQ-K

x	$y=x^{3}$	Δ	Δ^{2}	Δ^{3}
$*$	0			
+	$* /$	1		
,	.,	H	$*$,	.
-	$)^{*}$.$)$		

? VcV $y_{u}=10, y_{0}=8, \Delta y_{0}=19, \Delta^{2} y_{0}=18$ R_U $\Delta^{3} y_{0}=6$. J YV of TTVdoZgV Raac` i Z Rę_dè R RCV ervchVaV

$$
\begin{aligned}
u_{1} & =\frac{1}{19}(2)-0.1 \\
u_{2} & =\frac{1}{19}\left[2-\frac{0.1(0.1-1)}{2}(18)\right]=0.15 \\
u_{3} & =\frac{1}{19}\left[2-\frac{0.15(0.15-1)}{2}(18)-\frac{0.15(0.15-1)(0.15-2)}{6}(6)\right]=0.1532 \\
u_{4} & =\frac{1}{19}\left[2-\frac{0.1541(0.1541-1)}{2}(18)-\frac{0.1541(0.1541-1)(0.1541-2)}{6}(6)\right] \\
& =0.1542 .
\end{aligned}
$$

M V ARI V $u=0.154$ T coVTeè eYcWUVIL R] a]RTVd\&? V_TVerVgRIf V` WU h YZY T' ccVda`_Ud

Exercises

x	$*$	+	-
u_{x}	$))+$	$* 0$.	.$)+$

$=Z \mathrm{U}$ eYVgRJf V` Wx Wch YZY $u_{x}=1001$.
 W]J’hZXJ RSJV\&

x	+	-	$/$	1	$))$
y	.	$*$	-0	$)(0$	$) /$,

x	-	\cdot	1	$)$)
$f(x)$	$)^{*}$	$)+$),).

$=Z \mathrm{U}$ erVgRIf $\mathrm{V}^{`} \mathrm{~W} x$ Wch YZY $f(x)=15$.

x	$($	-	$)($	$)-$
u_{x}	$) . \&$	$), \& 0$	$)+\& 1$	$) * \&$.

$=Z$ UT coVTee ` _VUVIZ R] a]RTVeYVgR]f V` W x Wch YZY $u_{x}=14$.

9

NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical differentiation

J YV ac`SJ^^`Whumerical differentiation ZlerV UVEVc^Z Rę_ `WRaac` i Z ReV gRff V

Differentiation using Difference Operators

 W]J' h oL

- Using Forward Difference Operator
 YRgVoN_ VRc]Z/C eYRe

$$
h D=\log E=\log (1+\Delta)
$$

? V_TV

$$
D=\frac{1}{h} \log (1+\Delta)=\frac{1}{h}\left(\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\frac{\Delta^{5}}{5}-\ldots\right)
$$

8 dd \$

$$
\begin{aligned}
D^{2}=\frac{1}{h^{2}}\left(\Delta-\frac{\Delta^{2}}{2}\right. & \left.+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\frac{\Delta^{5}}{5}-\ldots\right)^{2} \\
& =\frac{1}{h^{2}}\left(\Delta^{2}-\Delta^{3}+\frac{11}{12} \Delta^{4}-\frac{5}{6} \Delta^{5}+\ldots\right)
\end{aligned}
$$

J YVcWVcV\$

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x} f(x)=D f(x)=\frac{1}{h}\left(\Delta f(x)-\frac{\Delta^{2} f(x)}{2}+\frac{\Delta^{3} f(x)}{3}-\frac{\Delta^{4} f(x)}{4}+\frac{\Delta^{5} f(x)}{5}-\ldots\right) \\
f^{\prime \prime}(x)=D^{2} f(x)=\frac{1}{h^{2}}\left(\Delta^{2} f(x)-\Delta^{3} f(x)+\frac{11}{12} \Delta^{4} f(x)-\frac{5}{6} \Delta^{5} f(x)+\ldots\right)
\end{aligned}
$$

- Using Backward Difference Operator $\nabla \&$

HVIRI] eYRe

$$
h D=-\log (1-\nabla) \&
$$

F_VaR_cZ_\$ VYRgV

$$
D=\frac{1}{h}\left(\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}+\frac{\nabla^{4}}{4}+\ldots\right)
$$

8]d \$

$$
\begin{aligned}
D^{2}=\frac{1}{h^{2}}\left(\nabla+\frac{\nabla^{2}}{2}\right. & \left.+\frac{\nabla^{3}}{3}+\frac{\nabla^{4}}{4}+\ldots\right)^{2} \\
& =\frac{1}{h^{2}}\left(\nabla^{2}+\nabla^{3}+\frac{11}{12} \nabla^{4}+\frac{5}{6} \nabla^{5}+\ldots\right)
\end{aligned}
$$

? V_TV\$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} f(x)=D f(x) \\
& =\frac{1}{h}\left(\nabla f(x)+\frac{\nabla^{2} f(x)}{2}+\frac{\nabla^{3} f(x)}{3}+\frac{\nabla^{4} f(x)}{4}+\ldots\right) \\
f^{\prime \prime}(x) & =D^{2} f(x)=\frac{1}{h^{2}}\left(\nabla^{2} f(x)+\nabla^{3} f(x)+\frac{11}{12} \nabla^{4} f(x)+\frac{5}{6} \nabla^{5} f(x)+\ldots\right)
\end{aligned}
$$

U	$(\&$	$(\&$	$(\&$	$(\&$	$(\otimes$	$) \&$
$C U!$	$) \&($	$) \&$.	$+\&$.	$)+\&$.	,$) \&$.	$)() \&($

 Wc^f JRV SRdW ` _ Wch RcU UZWNCV_TVd è $\underline{X} U$ erV UVçreggVd\& J YV Wch RdU UZWNCV_TV ARSJVWcerVXZgV_ URERZZ

U	$\mathrm{CU}!$	$\Delta \mathrm{CU}!$	$\Delta^{*} \mathrm{CU}!$	$\Delta^{+} \mathrm{CU}!$	$\Delta, \mathrm{CU}!$	$\Delta^{-} \mathrm{CU}!$
$(\&$	$) \&($					
$(\&$	$) \&$.	$(\&$.	$* \&$,			
$(\&$	$+\&$.	$* \&($	$0 \&($	$-\&$.	$+\infty$,	
$(\&$	$)+\&$.	$)(\&($	$) / \&($	$1 \&($	$+\infty$,	$(\&($
$(\&$,$) \&$.	$* \&($	$+) \&$,	$)+\&$,		
$) \&$	$)() \&($	$-1 \&$,				

$\operatorname{KoZX} \quad f^{\prime}(x)=D f(x)=\frac{1}{h}\left(\Delta f(x)-\frac{\Delta^{2} f(x)}{2}+\frac{\Delta^{3} f(x)}{3}-\frac{\Delta^{4} f(x)}{4}+\ldots\right)$
h V` SeRZ

$$
f^{\prime}(0.2)=\frac{1}{0.2}\left[2.40-\frac{8.00}{2}+\frac{9.60}{3}-\frac{3.84}{4}\right]=3.2
$$

KoZX

$$
f^{\prime \prime}(x)=D^{2} f(x)=\frac{1}{h^{2}}\left(\Delta^{2} f(x)-\Delta^{3} f(x)+\frac{11}{12} \Delta^{4} f(x)-\ldots\right)
$$

h V SeRZ

$$
f^{\prime \prime}(0)=\frac{1}{(0.2)^{2}}\left[2.24-5.76+\frac{11}{12}(3.84)-\frac{5}{6}(0)\right]=0.0
$$

U	$) \&$	$) \&$	$) \&$	$* \&$	$* \&$
$C U$,$\&--^{*}$,$\&-+($	$. \&, 1$.	$/ \& 10)$	$1 \& *_{-}($

I Z_TVU5 *\& RaaVRcd ReerV V_U ` WerV eRSIN\$Z Zd Raac` acReV è f dV Wc^f JRV SRdM `
 URER ZED

U	CU!	$\nabla \mathrm{CU}!$	$\nabla^{*} \mathrm{CU}!$	$\nabla+\mathrm{CU}!$	$\nabla \cdot \mathrm{CU}!$
$) \&$,$\&-{ }^{*}$				
$) \&$,$\&-+$	$(\& 1 / 0$			
$) \&$	$. \&, 1$.	$) \& 1 .$.	$(\& 100$	$(\&)$,	
$* \&$	$/ \& 01)$	$) \&+1-$	$(\&, * 1$	$(\&,)$,	$(\&(1$,
$* \&$	$1 \& *-($	$) \&+1$	$(\& 1 .$,		

KdZX XYVSRTT h RdU UZWCV_TVWc^f]R

$$
f^{\prime}(x)=D f(x)=\frac{1}{h}\left(\nabla f(x)+\frac{\nabla^{2} f(x)}{2}+\frac{\nabla^{3} f(x)}{3}+\frac{\nabla^{4} f(x)}{4}+\ldots\right)
$$

h V SeRZ

$$
f^{\prime}(2.2)=\frac{1}{0.2}\left[1.6359+\frac{0.2964}{2}+\frac{0.0535}{3}+\frac{0.0094}{4}\right]=9.0215
$$

8 dd \$f dZ X SRTT h RcU UZWNC_TVWc^f JRWc/ * CU!\$太太\&

$$
f^{\prime \prime}(x)=D^{2} f(x)=\frac{1}{h^{2}}\left(\nabla^{2} f(x)+\nabla^{3} f(x)+\frac{11}{12} \nabla^{4} f(x)+\ldots\right)
$$

h V` SeRZ

$$
f^{\prime \prime}(2.2)=\frac{1}{(0.2)^{2}}\left[0.2964+0.0535+\frac{11}{12}(0.0094)\right]=8.9629
$$

x	$) \&$	$) \&$	$) \&$	$) \&$	$) \&$	$* \&$	$* \&$
y	$* \&) 0+$	$++^{*}()$,$\&--^{*}$,$\&-+$	$. \&, 1$.	$/ \& \not \& 1)$	$1 \& *_{-}($

J YVUZWNCV_TVERSJVZI

x	y	Δ	Δ^{2}	Δ^{3}	Δ^{4}	Δ^{5}	Δ^{6}
) \&	* \% $0+$	$(\&() 0$					
) $\&$	+\&t* ()						
) \&	, \&--*	(\& +)	(\&. */	($*^{*} 1$	(\& (1.1		
) \&	\&-+	($\otimes 1 / 0$	(\$100	(\& +)		$(\&()+(\&)$	
) \$1.		$\left(\&,{ }^{(}\right)$		(\&)	
) \otimes	. \& 1.) \& +1 -	(\&, *1	$\text { (\& } \alpha-+$	($\& 1$ (1		
* \&	/ \& 101		(\&1.				
\&	1\%-(\&+1					

? VcV $x=1.2, f(x)=3.3201$ R_U $h=0.2$. ? V_TV

$$
\begin{aligned}
& {\left[\frac{d y}{d x}\right]_{x=1.2}=f^{\prime}(1,2) } \\
&=\frac{1}{0.2}\left[0.7351-\frac{1}{2}(0.1627)+\frac{1}{3}(0.0361)-\frac{1}{4}(0.0080)+\frac{1}{5}(0.0014)\right]
\end{aligned}
$$

$$
=3.3205 \&
$$

I Z ZRclj \$ [$\left.\frac{d^{2} y}{d x^{2}}\right]_{x=1.2}=\frac{1}{0.04}\left[0.1627-0.0361+\frac{11}{12}(0.0080)-\frac{5}{6}(0.0014)\right]=3.318$.
Example: RITf]ReV erV VIrde R_U dVT_U UVçgRegVd `WerV VN_TeZ_ eRSf JReW Z erv

 ? V_TVSRTT h RdU UZWNCV_TVWc UVCZRegV XZgVd

$$
\left[\frac{d y}{d x}\right]_{x=2.2}=f^{\prime}(2.2)=\frac{1}{0.2}
$$

$$
\left[1.6359+\frac{1}{2}(0.2964)+\frac{1}{3}(0.0535)+\frac{1}{4}(0.0094)+\frac{1}{5}(0.0014)\right]
$$

$$
51 \& * * 0 \&
$$

$$
\left[\frac{d^{2} y}{d x^{2}}\right]_{x=2.2}=f^{\prime \prime}(2.2)=\frac{1}{0.04}
$$

$$
\left[0.2964+0.0535+\frac{11}{12}(0.0094)+\frac{5}{6}(0.0014)\right]=8.992
$$

8]d \$

$$
\begin{aligned}
& {\left[\frac{d y}{d x}\right]_{x=2.0}=f^{\prime}(2.2)=\frac{1}{0.2}} \\
& {\left[1.3395+\frac{1}{2}(0.2429)+\frac{1}{3}(0.0441)+\frac{1}{4}(0.0080)+\frac{1}{5}(0.0013) \frac{1}{6}(0.0001)\right]}
\end{aligned}
$$

$5 / \& 01 . \&$

- Derivative using Newton's Forward difference Formula

 j5W!\$ TcciVda`_UZX è eVV Vbf ZZZder_e gRlf Vd $x_{0}, x_{1}, x_{2}, \ldots, x_{n} \$ \quad \mathrm{~h} Y \mathrm{VCV}$

$$
\begin{aligned}
& f(x)=f\left(x_{0}+u h\right)=y_{0}+u\left[\Delta y_{0}\right]+\frac{u(u-1)}{2!}\left[\Delta^{2} y_{0}\right] \\
&+\frac{u(u-1)(u-2)}{3!}\left[\Delta^{3} y_{0}\right]+\ldots .+\frac{u(u-1)(u-2) \ldots(u-n+1)}{n!}\left[\Delta^{n} y_{0}\right]
\end{aligned}
$$

$\mathrm{h} \operatorname{YVCV} \$ u=\frac{x-x_{0}}{h} \&$
 Zd`SERZW RdW]J` h dZ

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d u} f(x) \times \frac{d u}{d x}, \text { by chain rule } \\
& =\frac{d}{d u} f(x) \times \frac{d}{d x}\left(\frac{\left(x-x_{0}\right)}{h}\right)=\frac{d}{d u} f(x) \times \frac{1}{h}
\end{aligned}
$$

$$
\Rightarrow \frac{d}{d x} f(x)=\frac{1}{h}\left[\Delta y_{0}+\frac{2 u-1}{2!}\left[\Delta^{2} y_{0}\right]+\frac{3 u^{2}-6 u+2}{3!}\left[\Delta^{3} y_{0}\right]+\frac{4 u^{3}-18 u^{2}+22 u-6}{24}\left[\Delta^{4} y_{0}\right]+\ldots . .\right]
$$

$M Y V_{-} x=x_{0} \$ \mathrm{~h}$ VXVef $5(\&) \mathrm{Yf} \mathrm{d} \$$

$$
\frac{d}{d x} f(x)=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{2}{6} \Delta^{3} y_{0}-\frac{6}{24} \Delta^{4} y_{0}+\ldots . .\right]
$$

J YVANT _U UVCZRRegV ${ }^{`} \mathbf{W} f(x)$ ZU

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} f(x) & =\frac{d}{d u}\left(\frac{d}{d x} f(x)\right) \times \frac{d u}{d x} \\
& =\frac{d}{d u}\left(\frac{1}{h}\left[\Delta y_{0}+\frac{2 u-1}{2!}\left[\Delta^{2} y_{0}\right]+\frac{3 u^{2}-6 u+2}{3!}\left[\Delta^{3} y_{0}\right]+\frac{4 u^{3}-18 u^{2}+22 u-6}{24}\left[\Delta^{4} y_{0}\right]+\ldots . .\right]\right) \times \frac{1}{h} \\
& =\frac{1}{h^{2}}\left[\frac{2}{2!}\left[\Delta^{2} y_{0}\right]+\frac{6 u-6}{3!}\left[\Delta^{3} y_{0}\right]+\frac{12 u^{2}-36 u+22}{24}\left[\Delta^{4} y_{0}\right]+\ldots . .\right] \\
& =\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(u-1)\left[\Delta^{3} y_{0}\right]+\frac{6 u^{2}-18 u+11}{12}\left[\Delta^{4} y_{0}\right]+\ldots . .\right]
\end{aligned}
$$

@ dZ ZRch Rj \$

$$
\frac{d^{3}}{d x^{3}} f(x)=\frac{d}{d u}\left[\frac{d^{2}}{d x^{2}} f(x)\right] \times \frac{d u}{d x}=\frac{1}{h^{3}}\left[\Delta^{3} y_{0}+\frac{12 u-18}{12}\left[\Delta^{4} y_{0}\right]+\ldots . .\right]
$$

$M Y V_{-} x=x_{0}$, and $u=0, h \mathrm{VYRgV}$

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}} f(x)=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\ldots . .\right] \text { R_U } \\
& \frac{d^{3}}{d x^{3}} f(x)=\frac{1}{h^{3}}\left[\Delta^{3} y_{0}-\frac{3}{2} \Delta^{4} y_{0}+\ldots . .\right]
\end{aligned}
$$

- Derivative using Newton's Backward difference Formula

J` VZ U EYV UVCZReZgV Re R a`Z
 UZWCV_TV = c^f JR $\mathbf{Z} \$$

$$
\begin{aligned}
f(x)=f\left(x_{n}+u h\right)= & y_{n}+u\left[\nabla y_{n}\right]+\frac{u(u+1)}{2!}\left[\nabla^{2} y_{n}\right] \\
& +\frac{u(u+1)(u+2)}{3!}\left[\nabla^{3} y_{n}\right]+\ldots .+\frac{u(u+1)(u+2) \ldots .(u+n-1)}{n!}\left[\nabla^{n} y_{n}\right]
\end{aligned}
$$

$\mathrm{h} \operatorname{YVCV}_{u}=\frac{x-x_{n}}{h}$

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{d}{d u} f(x) \times \frac{d u}{d x} \\
&=\frac{d}{d u} f(x) \times \frac{d}{d x}\left(\frac{\left(x-x_{n}\right)}{h}\right)=\frac{d}{d u} f(x) \times \frac{1}{h} \\
& \Rightarrow \frac{d}{d x} f(x)=\frac{1}{h}\left[\nabla y_{n}+\frac{2 u+1}{2!}\left[\nabla^{2} y_{n}\right]+\frac{3 u^{2}+6 u+2}{3!}\left[\nabla^{3} y_{n}\right]+\frac{4 u^{3}+18 u^{2}+22 u+6}{24}\left[\nabla^{4} y_{n}\right]+\ldots\right] \\
& \frac{d^{2}}{d x^{2}} f(x)=\frac{d}{d u}\left[\frac{d}{d x} f(x)\right] \times \frac{d u}{d x}=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+(u+1)\left[\nabla^{3} y_{n}\right]+\frac{6 u^{2}+18 u+11}{12}\left[\nabla^{4} y_{n}\right]+\ldots\right] \$ R-U \\
& \frac{d^{3}}{d x^{3}} f(x)=\frac{d}{d u}\left[\frac{d^{2}}{d x^{2}} f(x)\right] \times \frac{d u}{d x}=\frac{1}{h^{3}}\left[\nabla^{3} y_{n}+\frac{12 u+18}{12} \nabla^{4} y_{n}+\ldots\right]
\end{aligned}
$$

$8 \mathrm{e} x=x_{n}, u=0$. J YVRS' gVXZg^{2} V $\$$

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{1}{h}\left[\nabla y_{n}+\frac{1}{2} \nabla^{2} y_{n}+\frac{1}{3} \nabla^{3} y_{n}+\frac{1}{4} \nabla^{4} y_{n}+\ldots\right] \\
& \frac{d^{2}}{d x^{2}} f(x)=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}+\ldots\right] \text { R U } \\
& \frac{d^{3}}{d x^{3}} f(x)=\frac{1}{h^{3}}\left[\nabla^{3} y_{n}+\frac{3}{2} \nabla^{4} y_{n}+\ldots\right] \&
\end{aligned}
$$

U	$(\&$	$(\&$	$(\&$	$(\&$	$(\&$	$) \&$
$C U!$	$) \&($	$) \&$.	$+\&$.	$)+\&$.	,$) \&$.	$)() \&($

Solution:

I ZTVU5 (\& R_U (\& RaaVRc ReR_U_VRc SVXZ_ZX ` WerV eRS]N\$ZZXRaac` acReVè f dVWc^f JRVSRdW` _ Wch RdU UZWNcV_TVdè WZ U erVUVçRRegVd\&J YVWch RcU UZWNcV_TV eRSJNWcervXZgV_ UReRZD

U	$\mathrm{V}-\mathrm{CU}!$	$\Delta \mathrm{V}$	$\Delta^{*} \mathrm{~V}$	$\Delta^{+} \mathrm{V}$	$\Delta \cdot \mathrm{V}$	$\Delta^{-} \mathrm{V}$
$(\&$	$) \&($					
$(\&$	$) \&$.	$(\&$.	$* \&$,			
$(\&$	$+\&$.	$* \&($	$* \&($	$-\&$.	$+\otimes$,	
$(\&$	$)+\&$.	$)(\&($	$0 \&($	$1 \&($	$+\infty$,	$(\&($
$(\&$,$) \&$.	$* \&($	$) / \&($	$)+\&$,	$+\otimes$,	
$) \&$	$)() \&($	$-1 \&$,				

? VcV $x_{0}=0 \$$ R_UY5(\&\& 8e $x=0, u=\frac{\left(x-x_{0}\right)}{h}=0 \$$

$$
\begin{array}{r}
\frac{d^{2}}{d x^{2}} f(x)=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\ldots . .\right] \\
f^{\prime \prime}(0)=\frac{1}{(0.2)^{2}}\left[2.24-5.76+\frac{11}{24}(3.84)-\frac{5}{6}(0)\right]=0 \&
\end{array}
$$

$\stackrel{\text { ¿ }}{ }$ i $5\left(\$ \$ u=\frac{(0.2-0.0)}{0.2}=1 \&\right.$
9j E Vhè _qWWh RdU Wc^f]R\$h VYRgVerVUVçrgegV` WVN! ReRa`Zei Z $\mathbf{Z} \$$

$$
\frac{d}{d x} f(x)=\frac{1}{h}\left[\Delta y_{0}+\frac{2 u-1}{2!}\left[\Delta^{2} y_{0}\right]+\frac{3 u^{2}-6 u+2}{3!}\left[\Delta^{3} y_{0}\right]+\frac{4 u^{3}-18 u^{2}+22 u-6}{24}\left[\Delta^{4} y_{0}\right]+\ldots . .\right]
$$

? V_TV\$

$$
\begin{aligned}
& \left.\frac{d}{d x} f(x)\right|_{x=0.2}=\frac{1}{0.2}\left[0.16+\frac{2 \times 1-1}{2!}[2.24]+\frac{3 \times 1^{2}-6 \times 1+2}{3!}[5.76]+\frac{4 \times 1^{3}-18 \times 1^{2}+22 \times 1-6}{24}[3.84]\right]
\end{aligned}
$$

 eRSf JRc a`Zed Zd Wf_U Sj EVhèø UZgZMU UZWCV_TV Wc^f]R `c CRXCR_XVad

 J YVERSJN` WUZZZM UZWNCV_TVdZ $\$$

i	j	$=$ ZdeUZすZN UZWNCV TVd	I VT _U UZすZN UZWCV TVd	J YZU UZZZNU UZWCV TVd	$\begin{gathered} \text { = f cey UZgZUW } \\ \text { UZWNCV_TVd } \end{gathered}$
\%)*, -				+
		\%(,	1,	\%,	
\%	+				
		\% 0			
(-	*			
*	1	, ,*)(
-) +) +	
			00		

$$
\begin{aligned}
& f\left(x_{0}, x_{1}\right)=-404 ; \quad f\left(x_{0}, x_{1}, x_{2}\right)=94 ; \\
& f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=-14 \text { and } f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=3
\end{aligned}
$$

? V_TVerVZ

$$
\begin{aligned}
f(x)=1245+ & (x-(-4)) \times(-404)+(x-(-4))(x-(-1)) \times 94 \\
& +(x-(-4))(x-(-1))(x-0) \times(-14)+(x-(-4))(x-(-1))(x-0)(x-2) \times 3
\end{aligned}
$$

$\left.F_{-} d Z^{\wedge} a\right] Z \not \subset R \vec{Z}$ _\$ V VVe

$$
f(x)=3 x^{4}-5 x^{3}+6 x^{2}-14 x+5 \&
$$

J YV_\$

$$
f^{\prime}(x)=12 x^{3}-15 x^{2}+12 x-14
$$

? V_TV\$

$$
f^{\prime}(0)=-14 \&
$$

Exercises

U	$) \&($	$) \&-$	$) \&($	$) \&-$	$) \&($	$) \&-$
$f(x)$	$) \&((($	$) \& *, /$	$) \&, 00$	$) \& / *$,	$) \& 1_{-}$,	$) \&) O($

U	$(\&$	$(\&$	$(\&$	$(\&$
$C U!$	$) \&(-) /$	$\left.) \&^{*}\right),($	$) \&+10$.	$) \& 1) 0^{*}$

$$
\begin{array}{ccccccc}
\mathrm{Q} & (\& & (\& & (\& & (\& & (\& & (\& \\
\mathrm{U} & +\&)+ & +\& . * & +\circledast 0 & +\& t, & +\& \pm 1 & +\& 0) \\
+\& \&^{*},
\end{array}
$$

 erVgV` TZ R_UT ^aRcVerVcVof led\&

U)\&)\&)\&)\& $\& \& \quad * \&$

$$
\text { V *\&., } 0 \text { *\&-11 *\&H+)\&1**) \&, ,*) \&1. } 1
$$

10

NUMERICAL INTEGRATION

THE TRAPEZOIDAL RULE

 Raac`i Z゙REV eYV dXXZ_ SVeh W_ eYV Tf cgV R_U eYV UPRi Zł\& MV RUU eYV RcVRd`WerV

$$
\begin{aligned}
T & =\frac{1}{2}\left(y_{0}+y_{1}\right) h+\frac{1}{2}\left(y_{1}+y_{2}\right) h+\cdots+\frac{1}{2}\left(y_{n-2}+y_{n-1}\right) h+\frac{1}{2}\left(y_{n-1}+y_{n}\right) h \\
& =h\left(\frac{1}{2} y_{0}+y_{1}+y_{2}+\ldots+y_{n-1}+\frac{1}{2} y_{n}\right) \\
& =\frac{h}{2}\left(y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right)
\end{aligned}
$$

h YVcV

$$
y_{0}=f(a), \quad y_{1}=f\left(x_{1}\right), \ldots, \quad y_{n-1}=f\left(x_{n-1}\right), \quad y_{n}=f(b) \&
$$

The Trapezoidal Rule

J ' Raac` i $Z \mathbb{R E} / \int_{a}^{b} f(x) d x \$$

$$
\text { Wc K df SZ_EcgR]d } \left.{ }^{`} \mathrm{WN}_{-} \mathrm{Xer}_{h}=\frac{b-a}{n} \quad \text { and } \quad y_{j}=f\left(x_{j}\right)\right) .
$$

$\mathrm{f} d \mathrm{~V}$

$$
\begin{aligned}
& T
\end{aligned}=\frac{h}{2}\left(y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right)
$$

Example KdVerVeRaVk ZJR] of]Vh Ż্ $n=4$ è VdeZ ReV

$$
\int_{1}^{2} x^{2} d x \&
$$

 a`Zed\&

G	Us	$y_{j}=x_{j}{ }^{2}$	
$($) \$) \$((
)) \&-)\&.*-
*)\&(*\%-(1
+) \&-		+4. *-
,	* *	, \& (1	
	If ${ }^{\wedge}$	- \$ ()	(8) - -1

M ZY $n=4$ R_U $h=\frac{b-a}{n}=\frac{2-1}{4}=\frac{1}{4} 2$

$$
\begin{aligned}
T & =\frac{h}{2}\left[y_{0}+y_{4}+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& =\frac{1}{8}[1.4+2(6.875)] \\
& 5 * \&,+-
\end{aligned}
$$

J YVV RTegRIf V` VerVZ $\underset{\underline{\prime}}{ } \mathrm{EXCR}]$ Z

$$
\left.\int_{1}^{2} x^{2} d x=\frac{x^{3}}{3}\right]_{1}^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}=2.33334
$$

 T ccVda`_UZ X deZZ f _UVcerVTf cgV\&
 of SZ _eVcgR]d\&

Solution:

 Z ${ }^{\mathbf{W}}$

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{n-1}+y_{n}\right]
$$

? VcVè T_dZVcK-*\$

6 LT"

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+y_{4}\right]
$$

 of SZ

 ? V_TV\$

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x^{2}+6 x+10} d x= & \frac{0.25}{2}[0.10+2 \times 0.08649+2 \times 0.07547+2 \times 0.06639+0.05882] \\
& 5(\& / .1, \&
\end{aligned}
$$

Example K dVeYVecRaVk ZIR] cf JVh ZiY $n=4$ è VdzZ ReV

$$
\int_{1}^{2} \frac{1}{x} d x \&
$$

G	U_{G}	$y_{j}=\frac{1}{x_{j}}$	
$($	$) \&$	$) \&(((($	
$)$	$) \&-$		$(\&((()$
$*$	$) \&($		$(\& \ldots /$
+	$) \&-$		$(\& /),+$
,	$* \&($	$(\&(((($	
	If \wedge	$) \&(((($	$* \&+0)$

$\mathrm{M} \mathbb{E} \mathbf{Y} n=4$ and $h=\frac{b-a}{n}=\frac{2-1}{4}=\frac{1}{4}=0.252$

$$
\begin{aligned}
T & =\frac{h}{2}\left[y_{0}+y_{4}+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& =\frac{1}{8}[1.5+2(2.0381)] 5(\& 1 /(* \&
\end{aligned}
$$

$$
\left.\int_{1}^{2} \frac{1}{x} d x=\ln x\right]_{1}^{2}=\ln 2-\ln 1=0.69315
$$

$$
? \mathrm{VcV} h=\frac{b-a}{n}=\frac{1-0}{1}=0.1 \mathrm{R}_{-} \mathrm{U}
$$

$$
\int_{0}^{1} e^{-x^{2}} d x \approx T=\frac{0.1}{2}\left[y_{0}+y_{10}+2\left(y_{1}+y_{2}+\cdots+y_{9}\right)\right]
$$

\begin{tabular}{|c|c|c|c|c|}
\hline G \& U_{G} \& U* \& \multicolumn{2}{|r|}{$$
f\left(x_{j}\right)=e^{-x_{j}^{2}}
$$}

\hline $$
\begin{aligned}
& \text {) } \\
& * \\
& + \\
& , \\
& - \\
& \hline \\
& \hline \\
& 0 \\
& 1
\end{aligned}
$$
$$
\begin{aligned}
& \text {) } \\
& (
\end{aligned}
$$ \& $$
\begin{aligned}
& (\& \\
& (\& \\
& (\& \\
& 1 \& \\
& 1 \& \\
& 1 \& \\
& 1 \& \\
& (\& \\
& (\&) \\
& 1 \& \\
& (\& \\
&) \&
\end{aligned}
$$ \& $$
\begin{aligned}
& (\&) \\
& (\&) \\
& 1 \& \\
& 1 \& 1 \\
& 1 \& \\
& (\&- \\
& 1 \& t \\
& (\& 1 \\
& (\& 1
\end{aligned}
$$ \& $) \&(1()$

(\&

\hline \multicolumn{3}{|c|}{If ${ }^{\wedge} \mathrm{d}$} \&) \&t. / 0/ 1 \& . \&/0)./

\hline
\end{tabular}

? V_TV $\int_{0}^{1} e^{-x^{2}} d x \approx T=\frac{0.1}{2}[1.367879+2(6.778167)]=0.746211$

SIMPSON'S 1/3 RULE

 aRcRS`]ד RcTdZ deVRU` WIZ VdXX^V_ed\&

$$
\int_{-h}^{h}\left(A x^{2}+B x+C\right) d x=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

Algorithm: Simpson's 1/3 Rule

J ' Raac` i $\mathbb{Z} \operatorname{REV} \int_{a}^{b} f(x) d x \$ \mathrm{f} \mathrm{dV}$

$$
S=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) .
$$

$$
x_{0}=a, x_{1}=a+h, x_{2}=a+2 h, \ldots, x_{n-1}=a+(n-1) h, x_{n}=b
$$

$\mathrm{J} \mathrm{YV}_{-} \mathrm{f} \wedge$ SVC n Zleven $\$ h=\frac{b-a}{n}$ and $\left.y_{j}=f\left(x_{j}\right)\right)$.
Simpson's $1 / 3$ Rule given by (5) can be simplified as below:

$$
S=\frac{h}{3}\left(s_{0}+4 s_{1}+2 s_{2}\right), \quad \mathrm{t}-8!
$$

$\mathrm{h} \mathrm{YVCV} s_{0}=y_{0}+y_{n}, s_{1}=y_{1}+y_{3}+\ldots+y_{n-1}, s_{2}=y_{2}+y_{4}+\ldots+y_{n-2}$.

MV_`elre

$$
\int_{0}^{5} \frac{d x}{4 x+5}=\left[\frac{1}{4} \log (4 x+5)\right]_{0}^{5}=\frac{1}{4}[\log 25-\log 5]=\frac{1}{4} \log \frac{25}{5}=\frac{1}{4} \log 5 .
$$

G	ut	, U\#\#		$=f\left(x_{j}\right)=\frac{1}{4 x}$	+5
$($	(\&	-	($\$ 1$		
)	(\&	/		(\& , *1	
*) \&	1			(\&)))
+) \&))		(\& 1 1	
	* \&) +			(\$/. 1
-	*\&)-		(\& . .	
	+ $\$$)/			(\& - 00
1	+\&)1		(\&-*.	
0	, \&	*)			(\& , / .
1	, \&	*+		(\& , +	
)(- \&	*-	(\&		
If ${ }^{\wedge} \mathrm{d}$			P 5 (\& ,	P5 (\& $1 .+$	P*5(\$1,

? V_TV\$

$$
\int_{0}^{5} \frac{d x}{4 x+5} \approx S=\frac{0.5}{3}[0.24+4(0.3963)+2(0.2944)]=0.4023 .
$$

R_U

$$
]^{\prime} X_{B}-5,\left(\& (* + 5) \& \left(1^{*} \&\right.\right.
$$

Problem $2=Z \underline{U} \int_{0}^{10} \frac{1}{1+x^{2}} d x \mathrm{fd} \underline{Z} X I Z$ ad _qd _VeYZU of $\mathrm{N} \&$ I olution:

9j I Z ad _q_VeYZU đf $\mathbb{N} \$ \int_{a}^{b} f(x) d x=\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3}+\ldots\right)+2\left(y_{2}+y_{4}+\ldots.\right)+y_{n}\right]$

 VIN_Te $-\frac{1}{1+x^{2}}$ RCV]ZdAW SVJ h 2

i	$($	$)$	$*$	+	,	-	.	$/$	0	1	$)($
j	$)$	$(\&$	$(\&$	$(\&$	$(\&-00$	$(\&+0$	$(\& * /($	$(\& *$	$(\&)-$,	$(\&))^{*}$	$(\&(11$

J Yf d\$

$$
\begin{aligned}
\int_{0}^{10} \frac{1}{1+x^{2}} d x= & \frac{1}{3}[1+4(0.5+0.1+0.0385+0.02+0.0122)+2(0.2+0.0588+0.027+0.0154)+0.0099] \\
& =\frac{1}{3}[1.0099+4(0.6707)+2(0.3012)] \\
& =\frac{1}{3}[4.2951]=1.4317 \&
\end{aligned}
$$

Problem $2<\mathrm{gRff} \mathrm{Re} V \int_{0}^{6} \frac{1}{3+x^{2}} d x$ f $\underline{\underline{Z}} \mathbf{X I} \mathbb{Z}$ ad _qdeYcW VZXYecf $\mathrm{V} \&$

I olution:

9j IZCad_qdercWVZKYecf JN

$$
\int_{a}^{b} f(x) d x=\frac{3 h}{8}\left[y_{0}+3\left(y_{1}+y_{2}+y_{4}+\ldots .+y_{n-1}\right)+2\left(y_{3}+y_{6}+y_{9}+\ldots\right)+y_{n}\right]
$$

 RCV\$

i	$($	$)$	$*$	+	,	-	.
j	$(\&++$	$(\&-$	$(\&, * 1$	$(\&)$	$(\&-*$.	$(\&+/$	$\left(\&^{*}-\right.$.

J Yf d\$

$$
\int_{0}^{6} \frac{1}{3+x^{2}} d x=\frac{3 \times 1}{8}\left[y_{0}+3\left(y_{1}+y_{2}+y_{4}+\ldots .+y_{n-1}\right)+2\left(y_{3}+y_{6}+y_{9}+\ldots\right)+y_{n}\right]
$$

='c_5. \$

$$
\begin{gathered}
\int_{0}^{6} \frac{1}{3+x^{2}} d x=\frac{3 \times 1}{8}\left[y_{0}+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2 y_{3}+y_{6}\right] \\
\int_{0}^{6} \frac{1}{3+x^{2}} d x=\frac{3 \times 1}{8}[0.333+3(0.25+0.1429+0.0526+0.0357)+2(0.1)+0.0256] \\
=\frac{3}{8}[0.333+1.4436+0.2+0.0256]=\frac{3}{8}[2.0022] \\
\Rightarrow \int_{0}^{6} \frac{1}{3+x^{2}} d x=0.7508 \&
\end{gathered}
$$

? $\mathrm{Vc} \mathrm{V} h=\frac{b-a}{n}=\frac{1-0}{10}=0.1$

G	Ut	$y_{j}=f\left(x_{j}\right)=x_{j}^{2}$		
$($	(\&	(\& 1		
)	(\&		(\&)	
*	(\&			
+	(\&		(\$1	
,	(\&)			(\%).
-	(\&		(\&-	
	(\&			(\&t
1	(\&		(\&1	
0	(\&			
1	(\&		(©)	
)() \&) $\&($		
		P(5) \& ($\left.s_{1} 5\right) \&-$	P*5) \&(

? V_TV\$

$$
\int_{0}^{1} x^{2} d x \approx S=\frac{0.1}{3}[1.00+4(1.65)+2(1.20)]=0.3333
$$

8 Jd \$ \$erVV RTegR]f VZXXZgV_Sj

$$
\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1-0}{3}=0.3333 \&
$$

 VZ] EYVRcVR RIAV/cerVon R^a ZUUcRZ W7

 UZđłR_TVd^ VRdf cW RTc` dderVch R^a\$RddY` h_Z eYVRU[RTV_elzkf cV\&

$$
\begin{aligned}
S & =\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}\right) \\
& =\frac{20}{3}(146+488+152+216+80+120+13)=8100
\end{aligned}
$$

$\left.J Y V g^{`}\right] f{ }^{\wedge}$ VZXRS $f e(8100)(5)=40,500 \mathrm{ft}^{3}$ or $1500 \mathrm{yd}^{3} \&$

Horizontal spacing $=20 \mathrm{ft}$

Fig. 4
Example: ${ }^{\wedge}$ af $\mathrm{A} \mathrm{erV} \underline{\underline{Z} \mathrm{EXCR}]} I=\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-x^{2} / 2} d x \mathrm{fo} \underline{Z} \mathrm{X}$
I Z ad _qd)' +Cf JN

G	Ut	$f_{j}=f\left(x_{j}\right)=\sqrt{\frac{2}{\pi}} e^{-x_{j}^{2} / 2}$		
((\& (1	(\& 1/ 1		
)	(\& * ${ }^{\text {- }}$		(\& 1)/	
*	(\&-(($\% /+$
$+$	(\& H-		(\& , H	
,	(\& ($(\%)$
-	(\&*-		(\&-. +	
	(\& -			${ }_{(1)}{ }^{*}+$
1	($\varnothing /$ -		$(\&$, ,	
0	$) \&(($	(\& $0+1$		
		P5) \&0) 0	P5* $5^{*}+0$	P*5* / 1/

? V_{-}TV $I=\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-x^{2} / 2} d x \approx S=\frac{0.125}{3}[1.2818+4(2.7358)+2(2.0797)]$

$$
=0.6827
$$

Derivation of Trapezoidal and Simpson's $1 / 3$ rules of integration from Lagrangian Interpolation

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} L_{n}(x) d x=\sum_{k=0}^{n} \frac{f_{k}}{l_{k}\left(x_{k}\right)} \int_{a}^{b} l_{k}(x) d x
$$

=' cK 5 * \$h VYRgVeh of SZ EVcgR]d PU \$UQR_U PU\$UQ VKbf R] h ZUeY E of TY eYRe>

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right) \$
$$

$$
=\text { = cK } 5 \text { +eYVRS` gVZ }
$$

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{3}} f(x) d x \approx \frac{3}{8} h\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right) \$
$$

Simpson's three eight (3/8) rule

? V_TV\$

$$
\begin{aligned}
& \int_{x_{0}}^{x_{3}=x_{0}+3 h} f(x) d x=h\left[3 \times y_{0}+\frac{3^{2}}{2}\left[\Delta y_{0}\right]+\frac{1}{2}\left[\frac{3^{3}}{3}-\frac{3^{2}}{2}\right] \Delta^{2} y_{0}+\frac{1}{6}\left[\frac{3^{4}}{4}-3^{3}+3^{2}\right] \Delta^{3} y_{0}+0\right] \\
& \quad=h\left[3 y_{0}+\frac{9}{2}\left[y_{1}-y_{0}\right]+\frac{1}{2}\left[\frac{27}{3}-\frac{9}{2}\right]\left[y_{2}-2 y_{1}+y_{0}\right]+\frac{1}{6}\left[\frac{81}{4}-27+9\right]\left[y_{3}-3 y_{2}+3 y_{1}-y_{0}\right]\right] \\
& \quad=\frac{h}{24}\left[72 y_{0}+108\left[y_{1}-y_{0}\right]+54\left[y_{2}-2 y_{1}+y_{0}\right]+9\left[y_{3}-3 y_{2}+3 y_{1}-y_{0}\right]\right] \\
& \quad=\frac{h}{24}\left[9 y_{0}+27 y_{1}+27 y_{2}+9 y_{3}\right]
\end{aligned}
$$

$$
\Rightarrow \int_{x_{0}}^{x_{3}=x_{0}+3 h} f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]
$$

I Z ZRclj \$ $\int_{x_{3}}^{x_{6}=x_{0}+6 h} f(x) d x=\frac{3 h}{8}\left[y_{3}+3 y_{4}+3 y_{5}+y_{6}\right]$

$$
\int_{x_{n-3}}^{x_{n}=x_{0}+n h} f(x) d x=\frac{3 h}{8}\left[y_{n-3}+3 y_{n-2}+3 y_{n-1}+y_{n}\right]
$$

8 UUZ X elvaVZ

$$
\int_{x_{0}}^{x_{n}} f(x) d x=\frac{3 h}{8}\left[\left(y_{0}+3 y_{1}+3 y_{2}+y_{3}\right)+\left(y_{3}+3 y_{4}+3 y_{5}+y_{6}\right)+\ldots+\left(y_{n-3}+3 y_{n-2}+3 y_{n-1}+y_{n}\right)\right]
$$

J YReZ ${ }^{1} \$$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{3 h}{8}\left[\left(y_{0}+3 y_{1}+3 y_{2}+y_{3}\right)+\left(y_{3}+3 y_{4}+3 y_{5}+y_{6}\right)+\ldots+\left(y_{n-3}+3 y_{n-2}+3 y_{n-1}+y_{n}\right)\right] \\
& \int_{a}^{b} f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+2 y_{3}+3 y_{4}+3 y_{5}+2 y_{6}+3 y_{7}+\ldots+3 y_{n-1}+y_{n}\right] \\
& \quad \Rightarrow \int_{a}^{b} f(x) d x=\frac{3 h}{8}\left[y_{0}+3\left(y_{1}+y_{2}+y_{4}+\ldots .+y_{n-1}\right)+2\left(y_{3}+y_{6}+y_{9}+\ldots\right)+y_{n}\right]
\end{aligned}
$$

Exercises

) $\& \int_{1}^{2} \frac{1}{S^{2}} d s$
$* \& \int_{0}^{\pi} \sin t d t$
$+\& \int_{0}^{2} x^{3} d x$
,$\& \int_{1}^{2} x d x$
$-\& \int_{-1}^{1}\left(x^{2}+1\right) d x \quad . \& \int_{0}^{-2}\left(t^{3}+t\right) d t$
$/ \& \int_{0}^{1} \frac{\sin x}{x} d x$
$0 \& \int_{0}^{1} \frac{1}{1+x} d x$
$1 \& \int_{0}^{6} \frac{1}{1+x^{2}} d x$
$)\left(\& \ln 2=\int_{0}^{1} \frac{d x}{x}\right.$
$\left.)) \& \int_{1}^{7} \frac{1}{x} d x \quad\right) * \& \int_{1}^{3}(2 x-1) d x$

$$
)+K \int_{0}^{1} x \sqrt{1-x^{2}} d x
$$

x	$x \sqrt{1-x^{2}}$
$($	$(\&$
$\left(\&^{*}-\right.$	$\left(\&^{*}, l^{*}\right.$
$(\&-$	$(\&, *($.
$(\& \not-$	$(\&+/ .+$
$(\&$	$(\&++)$
$(\& *-$	$(\& 0 / 01$
$(\&-$	$(\& 1).(0$
$(\& /-$	$(\& *+)$
$) \&$	$($

$\left.\left.)-\& \int_{-2}^{0}\left(x^{2}-1\right) d x \quad\right) \cdot \& \int_{-1}^{1}\left(t^{3}+1\right) d t \quad\right) / \& \int_{2}^{4} \frac{1}{(S-1)^{2}} d s$
$) O \& \int_{0}^{1} \sin \pi t d t$

x	$/ \& /$	$/ \& 0$	$/ \& 1$	$/ \&($	$/ \&)$	$/ \& *$
$F(x)$	$) \&+$	$) \&-$	$) \& 0$	$*(\alpha)$	$* \&+$	$* \&$.

x	$) \&$	$) \&$	$) \&$	$) \&$	$) \&$
$f(x)=e^{-x^{2}}$	$(\&+$	$(\& 0-$	$(\&)$,	$(\&()$.	$(\& / /$

11

SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Solution of system of linear equations

 erVWc^
$\& \& \& \& \& \& ~ \&$
\rightarrow, U \# خ * U \# \& \& \& \# > к $\mathrm{U}_{\mathrm{K}} 5$? ر

 Vbf Re

$$
A x=b
$$

h YVCV erV coefficient matrix $A=\left[a_{i j}\right] Z \mathbb{Z} \mathrm{EVV} \mathrm{J} \times \mathrm{K} \wedge$ RecZ R_U x R_U b RcV erVT $]^{\wedge}{ }^{\wedge}$ ${ }^{\wedge}$ RecZVd gVTè cd! XZgV_Sj 2

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots . & a_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \quad \$ \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] \quad \mathbf{R} \mathbf{U} \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{m}
\end{array}\right]
$$

 VIでZREZ_\&

Gauss Elimination Method

Example I` $] g V E Y V d$ da/^

$$
\begin{array}{lc}
2 x_{1}+x_{2}+2 x_{3}+x_{4}=6 & \mathrm{t})! \\
6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36 & \mathrm{t} *! \\
4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=-1 & \mathrm{t}+! \\
2 x_{1}+2 x_{2}-x_{3}+x_{4}=10 & \mathrm{t},!
\end{array}
$$

*!-+.)! $\rightarrow \quad-1 \mathrm{U}$ \#(U+\#1U, 5) 0
t - !
$+-*.)!\rightarrow \quad$ U $\left.-U_{+}--U 5-\right)+\quad t .!$
$,!-) \cdot)!\rightarrow \quad$ Ut- + + \# \# U 5 5 ,
 XVeerVW]]' h Z Z Xd deV ' WWbf Rę _dZ

$$
\begin{array}{ll}
\left.\left.!-\%_{1}!-!\rightarrow-U_{+}-, \text {U } 5-\right)\right) & \text { t } 0! \\
I!-\% 1!-!\rightarrow-+U_{+} \# U 5 . & \text { t } 1!
\end{array}
$$

$$
)+U 5+1 \quad \mathrm{t} \text {)(! }
$$

 Vbf Rę_dTR_SVh czev_ Rd

$$
A \mathrm{x}=b
$$

$$
\left[\begin{array}{rrrrr}
2 & 1 & 2 & 1 & 6 \\
6 & -6 & 6 & 12 & 36 \\
4 & 3 & 3 & -3 & -1 \\
2 & 2 & -1 & 1 & 10
\end{array}\right]
$$

h YZY ` _ df TTVdZZgVc` h eR_dVc^Rę _dXZgV

$$
\left[\begin{array}{rrrrr}
2 & 1 & 2 & 1 & 6 \\
0 & -9 & 0 & 9 & 18 \\
0 & 0 & -1 & -4 & -11 \\
0 & 0 & 0 & 13 & 39
\end{array}\right] \&
$$

? V_TV

$$
\left[\begin{array}{rrrr}
2 & 1 & 2 & 1 \\
0 & -9 & 0 & 9 \\
0 & 0 & -1 & -4 \\
0 & 0 & 0 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
6 \\
18 \\
-11 \\
39
\end{array}\right]
$$

9RTI of Sdezf $\overrightarrow{\text { ᄅ }}$ _ XZgVd

$$
x_{1}=2 \$ \quad x_{2}=1 \$ \quad x_{3}=-1 \$ x_{4}=3
$$

 YRgV è dV dUVcerV Vof Rę_d R_U aVCYRad VgV_erVf_I_`h_dZ VRTY Vbf Rę_! Z R
 W]J $h \underline{Z} X$ ব $\left.R^{\wedge} a\right]$ V\&
Example $\mathrm{KoZ} \underset{-}{ } \times \mathrm{Rf} \mathrm{ddV} \mathrm{VZ} \underset{\underline{Z}}{\mathrm{Z}} \overrightarrow{\mathrm{Z}}_{-} \mathrm{d}^{\prime} \mathrm{ggV} 2$

$$
\begin{aligned}
y+3 z & =9 \\
2 x+2 y-z & =8 \\
-x+5 z & =8
\end{aligned}
$$

$$
\begin{array}{rrr}
* U!* V-W-0 & t \quad)! \\
V & t+W-1 & t \quad *! \\
-U!-W & -0 & t \quad+
\end{array}
$$

$$
\begin{array}{r}
* U!* V-W-0 \\
V!+W-1
\end{array}
$$

$\left.+\# \frac{1}{2}\right)!\rightarrow \quad$ V! $\left.\frac{9}{2} \mathrm{~W}-\right)^{*}$

$$
\begin{array}{r}
* \mathrm{U}!* \mathrm{~V}-\mathrm{W}-0 \\
\mathrm{~V}!+\mathrm{W}-1
\end{array}
$$

,$!-*!\rightarrow \quad \frac{3}{2} \mathrm{~W}-+\quad \mathrm{t}-!$
? V_TV W- *" V-1o. $5+{ }^{+\prime}$ U- *\&
? V_TV

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right] .
$$

Partial and Full Pivoting

 VIZ Z
 : YR_XZXeYV`dVC` VWbf Rę_dZITR]M pivoting\&

Example I` $] g V E Y V d d^{\wedge}$

$$
\begin{array}{ll}
0.0004 x_{1}+1.402 x_{2}=1.406 & \mathrm{t} \quad! \\
0.4003 x_{1}-1.502 x_{2}=2.501 & \mathrm{t} *!
\end{array}
$$

$$
0.0004 x_{1}+1.402 x_{2}=1.406 \quad \mathrm{t} \quad \gg
$$

(2) $-\frac{0.40031}{0.0001} \times(1 a) \rightarrow-1405 x_{2}=-1404 \quad \mathrm{t} \quad * \mathrm{R}!$

R_Ud

$$
x_{2}=\frac{1404}{1405}=0.9993
$$

R_UYV_TVVA ^) \ggg

$$
x_{1}=\frac{1}{0.0004}(1.406-1.402 \times 0.9993)=\frac{0.005}{0.0004}=12.5
$$

$$
\begin{array}{ll}
0.4003 x_{1}-1.502 x_{2}=2.501 & \mathrm{t}+\mathrm{t} \\
0.0004 x_{1}+1.402 x_{2}=1.406 & \mathrm{t},!
\end{array}
$$

$0.4003 x_{1}-1.502 x_{2}=2.501$
$t+>$
(4) $-\frac{.0004}{.4003}$
(3) $1.404 x_{2}=1.404$
t , >

R_Ud

$$
x_{2}=\frac{1.404}{1.404}=1
$$

R_UVA ${ }^{\wedge}+\underset{ }{+}$

$$
x_{1}=\frac{1}{0.4003}(2.501+1.502 \times 1)=10
$$

$$
\begin{array}{ll}
0.0002 x+0.3003 y=0.1002 & \text { S\&\&) ! } \\
2.0000 x+3.0000 y=2.0000 . & \text { S\&\&*!}
\end{array}
$$

$$
0.0002 x+0.3003 y=0.1002
$$

$$
(2)-\frac{2}{.0002}(1) \rightarrow\left(3.000-\frac{0.3003 \times 2}{0.0002}\right) y=2.0000-\frac{0.1002 \times 2}{0.0002}
$$

《/\$

$$
1498.5 y=499
$$

 Z M Z

 cVRccR_XVEYVXZgV_ d da/^ RdW]]’ h dZ

$$
\begin{array}{ll}
2.0000 x+3.0000 y=2.0000 & \text { \&\&\& + } \\
0.0002 x+0.3003 y=0.1002 & \text { \&\&\&,! }
\end{array}
$$

(4) $-\frac{.0002}{2}(3) \rightarrow\left(0.3003-\frac{3.0000 \times 0.0002}{2}\right) y=0.1002-\frac{2 \times 0.0002}{2}$
h YZY $d \mathbb{Z}$ a]ZX/dè

$$
0.3000 y=0.1000
$$

$$
y=\frac{1}{3} \quad \text { R_U } \quad x=\frac{1}{2} .
$$

 eYc` f XY elVWJ]’ h Z XV R^a]Nd\&

U \#*U \# + +4),

* U \# + $\#$, U +5 *

H \#, U \# U 5),

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 1
\end{array}\right] \quad \begin{array}{ll}
R_{2} \rightarrow R_{2}+(-2) R_{1} & m_{21}=-2 \\
R_{3} \rightarrow R_{3}+(-3) R_{1} & m_{31}=-3
\end{array} \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & -2 & -8
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & -4
\end{array}\right] \quad R_{3} \rightarrow R_{3}+(-2) R_{2} \quad m_{32}=-3
\end{aligned}
$$

M V eRl V $U=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & -4\end{array}\right]$ RderVf aaVcecR_Xf]Rc \wedge Reç \&
 W]] h dZ

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-m_{21} & 1 & 0 \\
-m_{31} & -m_{32} & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right] \&
$$

9பRQLK LCCFBPPP

J YVXZgV_d da/^ ' WWbf Rë_ dTR_SVh ceev_ Rd

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] 5\left[\begin{array}{l}
14 \\
20 \\
14
\end{array}\right]
$$

8\&\&)!

J YVRS` gVTR_ SVh cred_ Rd

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] 5\left[\begin{array}{c}
14 \\
20 \\
14
\end{array}\right]
$$

8S\&*!
h YVcV

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] 5\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

\& $\& \&+$

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] 5\left[\begin{array}{r}
14 \\
-8 \\
-12
\end{array}\right]
$$

 `SERZ

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] 5\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Example I` $] g V e r V V b f R e \vec{Z} _d$

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

Sj LU UVT^a`dZ尹彐_\& Gc` TMUZ $\underset{X}{ } \times \operatorname{RdZ}$ erVRS` $\left.g V V R^{\wedge} a\right] \$$

$$
U=\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right] \quad \operatorname{R} \cup L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right]
$$

9பRCZK LCCEBPPPA)!

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 2 & -7 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & 1 / 2 & 5 / 2 \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right] \quad \mathrm{t} \quad \boldsymbol{Z}!
$$

` $\operatorname{c\$ Rd}\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & 1 & 0 \\ 3 / 2 & -7 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 8\end{array}\right]$,
t g!
h YVCV $\left[\begin{array}{ccc}2 & 3 & 1 \\ 0 & 1 / 2 & 5 / 2 \\ 0 & 0 & 18\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$.
t gZ

$$
y_{1}=9, \quad y_{2}=\frac{3}{2}, \quad y_{3}=5 \&
$$

 R_Uh V`SeRZ

$$
x=\frac{35}{18}, \quad y=\frac{29}{18}, \quad z=\frac{5}{18} .
$$

Gauss Jordan Method

 $\left.\mathrm{d}^{\prime}\right] \mathrm{f} \underset{\mathcal{Z}}{\mathbf{Z}} \mathrm{Rd} x=A^{-1} b \&$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{2}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{2}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

Zdh crev_ Rd

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]--(*)
$$

8 VAVc d` ^V]ZZVRcecR_dVc^Rę_d\$h V`SeRZ eYV +m+d dAV^Rd

$$
\left[\begin{array}{lll}
1 & 0 & 0 \tag{**}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

Zdh cred_ Rd\$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & d_{1} \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 1 & d_{3}
\end{array}\right]--(* * *) \$ \text { eYZd YV]ad fd è h çV erV XZgV_ }
$$

 $x_{1}=d_{1}, x_{2}=d_{2}$ and $x_{3}=d_{3} \&$

Elimination procedure, J YVVZdedヨa ZddR^VRdZ >Rf ddV]Z Z ReZ_ ^VA` U\$h YZY Z\$h V

 VIZてZRZ_\&

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& 4 x_{1}+3 x_{2}-x_{3}=6 \\
& 3 x_{1}+5 x_{2}+3 x_{3}=4
\end{aligned}
$$

Solution:

M VYRgVEYV^RecZ Wc^ Rd

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
6 \\
4
\end{array}\right] \& J \mathrm{Y} V_{-} \text {eYVRf } \mathrm{X}^{\wedge} \mathrm{V}_{-} \mathrm{EN} \wedge \operatorname{RecZ} Z \mathbf{Z} \$ \mathbf{~}} \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
4 & 3 & -1 & 6 \\
3 & 5 & 3 & 4
\end{array}\right]}
\end{aligned}
$$

R J ` U' eYVVJZ Z ZREZ_dW]J`h eYV`aVcRę_d\$

8*5 8* 0,8) \$R_UH+5 8+o +8) \&J YZdXZgVd\$

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -5 & 2 \\
0 & 2 & 0 & 1
\end{array}\right]
$$

: EBK" 8) 58) \#8* R_U 8+58+\#*8* XZgVd\$

$$
\left[\begin{array}{cccc}
1 & 0 & -4 & 3 \\
0 & -1 & -5 & 2 \\
0 & 0 & -10 & 5
\end{array}\right]
$$

8) 58) ○, ' $)(!8) \$ 8 * 58 * 0-1)(!8+X Z g V d \$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & -\frac{1}{2} \\
0 & 0 & -10 & 5
\end{array}\right]
$$

E`h \$^R\ZXerVaZ刁` edRd)\$8*5 o8*! R_U8+5 8+'o)(!!!\$hVXVe

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right]
$$

$$
\mathbf{?} \mathbf{V} \mathbf{T V} \$\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]
$$

$$
x_{1}=1, x_{2}=\frac{1}{2}, x_{3}=-\frac{1}{2} \&
$$

U \#*V \# W 50
t)!
*U \# +V \#, W 5 *(
, U \# +V \#*W5).
t *!
t +

U \#*V \# W 50
t) $>$

- V \#*W 5 ,
t *
$--\mathrm{V}-* W 5-)$.
$t+>$

$\begin{array}{ccc}\text { U-W 5). } & \mathrm{t} & \text {)?! } \\ -\mathrm{V} \# * \mathrm{~W} 5, & \mathrm{t} & * ?! \\ -\quad \text {)*W5-+. } & \mathrm{t} & +?!\end{array}$
POIF $\mathbb{K}>$ (QLKLCWCD)) ?! *A *?!\$f $\mathrm{ZZ} X+?!\mathrm{Q}$
U5)
t) @
- V 5 -*
t * (d
-)*W5 - +
t +
? V_TV\$ U5) \$V5 *\$V5 +\&
8 dZZX_へ_ed

$$
\begin{array}{r}
2 x+3 y-z=5 \\
4 x+4 y-3 z=3 \\
-2 x+3 y-z=1
\end{array}
$$

$$
\begin{aligned}
3 x_{1}+6 x_{2}+x_{3} & =16 \\
2 x_{1}+4 x_{2}+3 x_{3} & =13 \\
x_{1}+3 x_{2}+2 x_{3} & =9
\end{aligned}
$$

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& 2 x+20 y-2 z=-44 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

$$
\begin{gathered}
x+y+z=10 \\
2 x+y+2 z=17 \\
3 x+2 y+z=17
\end{gathered}
$$

$$
\begin{aligned}
& 5 x_{1}+x_{2}+x_{3}+x_{4}=4 \\
& x_{1}+7 x_{2}+x_{3}+x_{4}=12 \\
& x_{1}+x_{2}+6 x_{3}+x_{4}=-5 \\
& x_{1}+x_{2}+x_{3}+4 x_{4}=-6
\end{aligned}
$$

$$
\begin{aligned}
& x+4 y-z=-5 \\
& x+y-6 z=-12 \\
& 3 x+y-z=4
\end{aligned}
$$

$$
\begin{aligned}
10 x+y+z & =12 \\
2 x+10 y+z & =13 \\
2 x+2 y-10 z & =14
\end{aligned}
$$

$$
\begin{array}{r}
2 x+3 y-z=5 \\
4 x+4 y-3 z=3 \\
-2 x+3 y-z=1
\end{array}
$$

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

$$
\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 2 & 2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
4
\end{array}\right] .
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & 4 \\
1 & 2 & 2
\end{array}\right] .
$$

$$
\begin{aligned}
& 2 x-3 y+z=-1 \\
& x+4 y+5 z=25 \\
& 3 x-4 y+z=2
\end{aligned}
$$

$$
\begin{aligned}
& 2 x-3 y+4 z=7 \\
& 5 x-2 y+2 z=7 \\
& 6 x-3 y+10 z=23
\end{aligned}
$$

$$
\begin{equation*}
A X=I, \tag{1}
\end{equation*}
$$

For the third order matrices, (1) may be written as

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

: JMRcjj erVRS` gVVbf Rę_ ZXVbf ZgRIV_eè eYVeYcWVbf Rę_d

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21} \\
x_{31}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{12} \\
x_{22} \\
x_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{13} \\
x_{23} \\
x_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
1 & 4 & 9
\end{array}\right] .
$$

@ eYZd^Ver` U\$h Va]RTVR_ZV_e

 ^ Ver' U\&

$\left[\begin{array}{lll:lll}2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1\end{array}\right] \cup\left[\begin{array}{ccc:ccc}2 & 1 & 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 1 & 0 \\ 0 & \frac{7}{2} & \frac{17}{2} & -\frac{1}{2} & 0 & 1\end{array}\right] \begin{aligned} & \text { by } R_{2} \rightarrow R_{2}-\frac{3}{2} R_{1} \\ & \text { by } R_{3} \rightarrow R_{3}-\frac{1}{2} R_{1}\end{aligned}$

$$
\sqcup\left[\begin{array}{rrr:rrr}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 1 & 0 \\
0 & 0 & -2 & 10 & -7 & 1
\end{array}\right] \text { by } R_{3} \rightarrow R_{3}-7 R_{21}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr:r}
2 & 1 & 1 & 1 \\
0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} \\
0 & 0 & -2 & 10
\end{array}\right]} \\
& {\left[\begin{array}{rrr:r}
2 & 1 & 1 & 0 \\
0 & \frac{1}{2} & \frac{3}{2} & 1 \\
0 & 0 & -2 & -7
\end{array}\right]} \\
& {\left[\begin{array}{rrr:r}
2 & 1 & 1 & 0 \\
0 & \frac{1}{2} & \frac{3}{2} & 1 \\
0 & 0 & -2 & \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & \frac{1}{2} & \frac{3}{2} \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{11} \\
x_{21} \\
x_{31}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
10
\end{array}\right]
$$

h YZY' _ SRTI of Sdazf $\overrightarrow{\mathcal{Z}} _$XZgVd $x_{31}=-5, x_{21}=12, x_{11}=-3$.
I Z ZRclj f dZXXeYV`erVceh` d deV^d`erVc UgRIf VdRcVUVEVC^Z W R_UYV_TVerVZ_gVcaV ZXXZGV_S

$$
A^{-1}=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & \frac{5}{2} & -\frac{1}{2} \\
12 & -\frac{17}{2} & \frac{3}{2} \\
-5 & \frac{7}{2} & -\frac{1}{2}
\end{array}\right] .
$$

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right] \&
$$

$$
\left.\left[\begin{array}{rrr:rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \quad \quad \delta \& \&\right)!
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrr:lrr}
4 & 3 & -1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right]} \\
& \square\left[\begin{array}{rrrrrrr}
1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \text { by } R_{1} \rightarrow \frac{1}{4} R_{1} \\
& \sim\left[\begin{array}{rrr|r|l}
1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} \\
0 & \frac{11}{4} & \frac{15}{4} & 0 & -\frac{3}{4} \\
1
\end{array}\right] \begin{array}{l}
\text { by } R_{2} \rightarrow R_{2}-R_{1} \\
\text { by } R_{3} \rightarrow R_{3}-3 R_{1}
\end{array}
\end{aligned}
$$

M V_`h dVRcTY Wc R_ RSd` ff ellj JRcXVdeT wvix_e

 RS` gV\&

$$
\left[\begin{array}{rrr:rrr}
1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{11}{4} & \frac{15}{4} & 0 & -\frac{3}{4} & 1 \\
0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrr:rrr}
1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\
0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrr:rrr}
1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\
0 & 0 & \frac{10}{11} & 1 & -\frac{2}{11} & -\frac{1}{11}
\end{array}\right]
$$

J YZIZXVbf ZgRIV_eè erVW]j’h ZXXeYW^RecדVd

$$
\left[\begin{array}{rrr:l}
1 & \frac{3}{4} & -\frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11} & 0 \\
0 & 0 & \frac{10}{11} & 1
\end{array}\right] 3\left[\begin{array}{rrr:r}
1 & \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\
0 & 1 & \frac{15}{10} & -\frac{3}{11} \\
0 & 0 & \frac{10}{11} & -\frac{2}{11}
\end{array}\right] 3\left[\begin{array}{rrr:r}
1 & \frac{3}{4} & -\frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11} & \frac{4}{11} \\
0 & 0 & \frac{10}{11} & -\frac{1}{11}
\end{array}\right]
$$

J Yf dh VYRgV

$$
A^{-1}=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]=\left[\begin{array}{rrr}
\frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
\frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right]
$$

Matrix Inversion using Gauss-Jordan method

$$
A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right]
$$

J YVRf X^V_eW ^ Recス ZlXZgV_Sj

$$
\begin{aligned}
& {\left[\begin{array}{rrr:rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] } \\
\sim & {\left[\begin{array}{rrr:rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -5 & -4 & 1 & 0 \\
0 & 2 & 0 & -3 & 0 & 1
\end{array}\right] \begin{array}{l}
\text { by } R_{2} \rightarrow R_{2}-4 R_{1} \\
\text { by } R_{3} \rightarrow R_{3}-3 R_{1}
\end{array} } \\
\sim & \sim\left[\begin{array}{rrr:rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & 4 & -1 & 0 \\
0 & 2 & 0 & -3 & 0 & 1
\end{array}\right] \text { by } R_{2} \rightarrow-R_{2} \\
\sim & {\left[\begin{array}{rrrrrr}
1 & 0 & -4 & -3 & 1 & 0 \\
0 & 1 & 5 & 4 & -1 & 0 \\
0 & 0 & -10 & -11 & 2 & 1
\end{array}\right] \begin{array}{l}
\text { by } R_{1} \rightarrow R_{1}-R_{2} \\
\text { by } R_{3} \rightarrow R_{3}-2 R_{2}
\end{array} } \\
\sim & {\left[\begin{array}{rrrrrr}
1 & 0 & -4 & -3 & 1 & 0 \\
0 & 1 & 5 & & 4 & -1 \\
0 & 0 & 1 & 11 / 10 & -1 / 5 & 0 \\
-1 / 10
\end{array}\right] \text { by } R_{3} \rightarrow-\frac{1}{10} R_{3} } \\
\sim & {\left[\begin{array}{rrr:rrr}
1 & 0 & 0 & 7 / 5 & 1 / 5 & -2 / 5 \\
0 & 1 & 0 & -3 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 11 / 10 & -1 / 5 & -1 / 10
\end{array}\right] \begin{array}{l}
\text { by } R_{1} \rightarrow R_{1}+4 R_{3} \\
\text { by } R_{2} \rightarrow R_{2}-5 R_{1}
\end{array} }
\end{aligned}
$$

J Yf dh VYRgV

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
\frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right] .
$$

- Triangulation Method (LU Decomposition Method):

 $W_{c}{ }^{\wedge}$

85CK

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

J YZすTR_SVh crev_ Z erVWc^\$

8i5S\$

$\mathrm{hYVCV} \quad A=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ \$ $\quad x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \dot{x_{n}}\end{array}\right] \quad$ R-U $\quad b=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \cdot \\ \dot{b_{m}}\end{array}\right]$
 h YVCV\$

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

J YZIXZgVd\$

CKi 5 S\&
CVeKi 5j \& J YZZZ a]Z/d\$ Cj 5S\&

J YReZ ${ }^{2} \$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$\mathrm{J} Y \mathrm{Yf} \mathrm{d}$

$$
\begin{aligned}
y_{1} & =b_{1} \\
l_{21} y_{1}+y_{2} & =b_{2} \\
l_{31} y_{1}+l_{32} y_{2}+y_{3} & =b_{3}
\end{aligned}
$$

 y_{1} and $y_{2} \underline{Z}$ erVerzu R_Ud${ }^{\prime} \operatorname{lgV}_{y_{3}} \&$

$$
U x=y \text {; that is }\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

 Vbf Rę _dSj SRTI h RdU off Sdezf $\overrightarrow{\mathcal{Z}}$ _\&

$$
\begin{aligned}
& u_{11}=a_{11} ; \quad u_{12}=a_{12} ; \quad u_{13}=a_{13} \\
& l_{21} u_{11}=a_{21} \Rightarrow l_{21}=\frac{a_{21}}{u_{11}} ; \quad l_{31} u_{11}=a_{31} \Rightarrow l_{31}=\frac{a_{31}}{u_{11}} \\
& l_{21} u_{12}+u_{22}=a_{22} \Rightarrow u_{22}=a_{22}-l_{21} u_{12} ; \\
& l_{21} u_{13}+u_{23}=a_{23} \Rightarrow u_{23}=a_{23}-l_{21} u_{13} ; \\
& \text { simililarly, } \\
& l_{31} u_{12}+l_{32} u_{22}=a_{32}, \quad l_{31} u_{13}+l_{32} u_{23}+u_{33}=a_{33} \text { gives } l_{32} \text { and } u_{33}
\end{aligned}
$$

$$
\&
$$

$$
\begin{aligned}
& \text { J ` UVT ^a`dVR^Rect } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \$ \underline{Z} \operatorname{erVWc} \wedge \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] \text { \$h Vac` TWW RdW]] h d\& }} \\
& \left.\left.F_{-} \wedge_{\mathrm{f}}\right] \text { 臽 }\right] \mathrm{j} \geqq \mathrm{ZX}\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \text { and }\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] \text { \$h VXV } \$ \\
& {\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
l_{21} u_{11} & l_{21} u_{12}+u_{22} & l_{21} u_{13}+u_{23} \\
l_{31} u_{11} & l_{31} u_{12}+l_{32} u_{22} & l_{31} u_{13}+l_{32} u_{23}+u_{33}
\end{array}\right]}
\end{aligned}
$$

*i \#+ \# ${ }^{2} 51$
i \#*j \#\# ${ }^{\text {H }}$.
-i \# \#*k50\&

Solution:

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]} \\
\text { J`UVT ^a`dVerV^RecZ}\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right] \underline{Z} \text { erVWc^ `WCK \$h VVbf ReVerVT ccVda`_UZXX }
\end{gathered}
$$

EVC^d` VB R_UCK RdR]cVRUj Z]f decReN\$R_U`SeRZ

$$
\begin{gathered}
u_{11}=2 ; \quad u_{12}=3 ; \quad u_{13}=1 \\
l_{21}=\frac{a_{21}}{u_{11}}=\frac{1}{2} ; \quad l_{31}=\frac{a_{31}}{u_{11}}=\frac{3}{2} \\
u_{22}=a_{22}-l_{21} u_{12}=2-\frac{1}{2} \times 3=\frac{1}{2} ; \\
u_{23}=a_{23}-l_{21} u_{13}=3-\frac{1}{2} \times 1=\frac{5}{2} ; \\
l_{32}=\frac{a_{32}-l_{31} u_{12}}{u_{22}}=\frac{1-\frac{3}{2} \times 3}{\frac{1}{2}}=-7 \quad \text { and } \\
u_{33}=u_{33}=a_{33}-\left(l_{31} u_{13}+l_{32} u_{23}\right)=2-\left(\frac{3}{2} \times 1+(-7) \times \frac{5}{2}\right)=2-\left(\frac{3}{2}-\frac{35}{2}\right)=18
\end{gathered}
$$

? V_TV\$

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right]
$$

J YZZZ $a] \mathbb{d} d \$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]
$$

: ` _d

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \$ \operatorname{erV}_{-}\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right] \$
$$

I ` lgZXX erVaV\$h VXVe $\$\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}9 \\ \frac{3}{2} \\ 5\end{array}\right]$
J YReZ ${ }^{2} \$$

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
\frac{3}{2} \\
5
\end{array}\right]
$$

 `VerV XZgV_ d daV^` WKbf Rę_dRa\$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{35}{18} \\
\frac{29}{18} \\
\frac{5}{18}
\end{array}\right] \&
$$

Assignments

$$
\mathbb{Z} \quad A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right] \quad \mathbb{Z} B=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 4 \\
2 & 4 & 7
\end{array}\right]
$$

$$
\boldsymbol{Z} \quad A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right] \quad \mathbb{Z} B=\left[\begin{array}{rrr}
2 & 0 & 1 \\
3 & 2 & 5 \\
1 & -1 & 0
\end{array}\right]
$$

12

SOLUTION BY ITERATIONS

SOLUTION BY ITERATION: Jacobi's iteration method and Gauss Seidel iteration method

J YV ^ Ver` Ud UZIIf daM Z R^`f_e`VT' ^af eRŻ_deYReTR_ SVdaVIXXUZ Z RUgR_TV\& cVaVReV Rd` VAN_ Rd ^Rj SV _VIVdbRcj \$Wc RTYZ/gZXX R cVbf ZWU RITf cRTj \$ d` eYReerV

Jacobi's iteration method and Gauss Seidel iteration method

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3}
\end{array}
$$

(8\&)!

Z h Y
E `h erVd daß^) ! TR_SVh cied_ Rd

$$
\begin{gathered}
x_{1}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2}-\frac{a_{13}}{a_{11}} x_{3}-\cdots \\
\cdots
\end{gathered}-\frac{a_{1 n}}{a_{11}} x_{n} .
$$

t *!

 ^ VeY' UdR
(i) Jacobi's iteration method

$$
\begin{aligned}
& x_{1}^{(1)}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2}^{(0)}-\frac{a_{13}}{a_{11}} x_{3}^{(0)}-\cdots-\frac{a_{1 n}}{a_{11}} x_{n}^{(0)} \\
& x_{2}^{(1)}=\frac{b_{2}}{a_{22}}-\frac{a_{21}}{a_{22}} x_{1}^{(0)}-\frac{a_{23}}{a_{22}} x_{3}^{(0)}-\cdots-\frac{a_{2 n}}{a_{22}} x_{n}^{(0)} \\
& x_{3}^{(1)}=\frac{b_{3}}{a_{33}}-\frac{a_{31}}{a_{33}} x_{1}^{(0)}-\frac{a_{32}}{a_{33}} x_{2}^{(0)}-\cdots-\frac{a_{2 n}}{a_{33}} x_{n}^{(0)} \\
& x_{n}^{(1)}=\frac{b_{n}}{a_{n n}}-\frac{a_{n 1}}{a_{n n}} x_{1}^{(0)}-\frac{a_{n 2}}{a_{n n}} x_{2}^{(0)}-\cdots-\frac{a_{n, n-1}}{a_{n n}} x_{n-1}^{(0)} \\
& t+
\end{aligned}
$$

 $\mathrm{d} \backslash \mathrm{VdVbf} \operatorname{Rez} \quad \mathrm{d} \underline{Z}+\mathrm{Sj} x_{r}^{(1)} \&$
 Raac｀iZへReZ＿ZXXZV＿SjerVWc＾f］R

$$
\left.\begin{array}{c}
x_{1}^{(n+1)}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2}^{(n)}-\frac{a_{13}}{a_{11}} x_{3}^{(n)}-\cdots-\frac{a_{1 n}}{a_{11}} x_{n}^{(n)} \\
x_{2}^{(n+1)}=\frac{b_{2}}{a_{22}}-\frac{a_{21}}{a_{22}} x_{1}^{(n)}-\frac{a_{23}}{a_{22}} x_{3}^{(n)}-\cdots \\
-\frac{a_{2 n}}{a_{22}} x_{n}^{(n)} \\
x_{3}^{(n+1)}=\frac{b_{3}}{a_{33}}-\frac{a_{31}}{a_{33}} x_{1}^{(n)}-\frac{a_{32}}{a_{33}} x_{2}^{(n)}-\cdots \\
\vdots \\
\vdots \\
x_{n}^{(n+1)}=\frac{b_{n}}{a_{22}} x_{n}^{(n)} \\
a_{n n} \\
a_{n 1} \\
a_{n 1}
\end{array} x_{1}^{(n)}-\frac{a_{n 2}}{a_{n n}} x_{2}^{(n)}-\cdots \quad-\frac{a_{n, n-1}}{a_{n n}} x_{n-1}^{(n)}\right)
$$

$$
x_{i}^{(r+1)}=\frac{b_{i}}{a_{i i}}-\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{(r)} \quad(r=0,1,2, \ldots, \quad i=1,2, \ldots, n)
$$

 U｀へZR＿TV\＄

む／\＄

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j}, \quad i=1,2, \ldots, n
$$

(ii) Gauss Seidel iteration method

 $x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)} \&$

$$
\begin{gathered}
x_{1}^{(1)}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2}^{(0)}-\frac{a_{13}}{a_{11}} x_{3}^{(0)}-\cdots \\
x_{2}^{(1)}=\frac{b_{2}}{a_{22}}-\frac{a_{21}}{a_{21}} x_{n}^{(1)}-\frac{a_{23}}{a_{22}} x_{3}^{(0)}-\cdots \\
x_{3}^{(1)}=\frac{a_{2 n}}{a_{22}} x_{n}^{(0)} \\
a_{33}
\end{gathered}-\frac{a_{31}}{a_{33}} x_{1}^{(1)}-\frac{a_{32}}{a_{33}} x_{2}^{(1)}-\cdots \quad-\frac{a_{2 n}}{a_{33}} x_{n}^{(0)} .
$$

 Raac`iZへReZ_ZIXZgV_SjerVWc^f]R

$$
\left.\left.\begin{array}{l}
x_{1}^{(n+1)}=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2}^{(n)}-\frac{a_{13}}{a_{11}} x_{3}^{(n)}-\cdots \\
x_{2}^{(n+1)}=\frac{b_{2}}{a_{21}}-\frac{a_{21}}{a_{22}} x_{1}^{(n+1)}-\frac{a_{23}}{a_{22}} x_{3}^{(n)}-\cdots \\
\cdots
\end{array}\right)-\frac{a_{2 n} x_{n}^{(n)}}{a_{22}} x_{3}^{(n+1)}=\frac{b_{3}}{a_{33}}-\frac{a_{31}}{a_{33}} x_{1}^{(n+1)}-\frac{a_{32}}{a_{33}} x_{2}^{(n+1)}-\cdots \quad-\frac{a_{2 n}}{a_{33}} x_{n}^{(n)} \begin{array}{ccc}
\vdots \\
x_{n}^{(n+1)}=\frac{b_{n}}{a_{n n}}-\frac{a_{n 1}}{a_{n n}} x_{1}^{(n+1)}-\frac{a_{n 2}}{a_{n n}} x_{2}^{(n+1)}-\cdots & -\frac{a_{n, n-1}}{a_{n n}} x_{n-1}^{(n+1)}
\end{array}\right\} \quad \mathrm{t} \quad .
$$

.! TR SVScZMJ UVdTCSW RdW]J h dR
$x_{i}^{(r+1)}=\frac{b_{i}}{a_{i i}}-\sum_{j=1}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{(r+1)}-\sum_{j=i+1}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{(r)} \quad(r=0,1,2, \ldots, \quad i=1,2, \ldots, n)$.

 off Sdezf $\mathrm{EV} x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}$ R_U TR]] erV cVof]e Rd $x_{3}^{(1)}$. J YV ac TVdd Zd cVaVReW Z erZd ${ }^{\wedge}$ R__VC\&
 $x_{2}^{(0)}, \ldots, x_{n}^{(0)}$ Z è eYV cZAYe\%R_U dZVR_U UV_`eV eYV cVff leRd \(x_{1}^{(1)}\). @ erV dVT_U Vbf Rę_\$ h V of Sdezf \(\mathrm{EV} x_{1}^{(1)}, x_{3}^{(0)}, \ldots, x_{n}^{(0)}\) R_U UV_` V erV cVaff le Rd $x_{2}^{(1)}$ 。@ e $x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{n}^{(0)}$ R_U TR]] eYV cVof]e Rd $x_{3}^{(1)}$ 。J YV ac TVdd Zd VaVReW Z eYZd ^R__Vc R_U Z]ff decReW SV] h 2

$$
\begin{aligned}
& 10 x_{1}-2 x_{2}-x_{3}-x_{4}=3 \\
& -2 x_{1}+10 x_{2}-x_{3}-x_{4}=15 \\
& -x_{1}-x_{2}+10 x_{3}-2 x_{4}=27 \\
& -x_{1}-x_{2}-2 x_{3}+10 x_{4}=-9 \&
\end{aligned}
$$

9URQLK

$$
\begin{aligned}
& x_{1}=0.3+0.2 x_{2}+0.1 x_{3}+0.1 x_{4} \\
& x_{2}=1.5+0.2 x_{1}+0.1 x_{3}+0.1 x_{4} \\
& x_{3}=2.7+0.1 x_{1}+0.1 x_{2}+0.2 x_{4} \\
& x_{4}=-0.9+0.1 x_{1}+0.1 x_{2}+0.2 x_{3}
\end{aligned}
$$

 ac` TVddR_U XZgV_Z EYVW]J h Z XJJ RSJVd\&

n	x_{1}	x_{2}	x_{3}	x_{4}
1	0.3	1.56	2.886	-0.1368
2	0.8869	1.9523	2.9566	-0.0248
3	0.9836	1.9899	2.9924	-0.0042
4	0.9968	1.9982	2.9987	-0.0008
5	0.9994	1.9997	2.9998	-0.0001
6	0.9999	1.9999	3.0	0.0
7	1.0	2.0	3.0	0.0

Table 2. >Rf ddYoVZV] ^Ver` U

n	x_{1}	x_{2}	x_{3}	x_{4}
1	0.3	1. 5	2.7	- 0.9
2	0.78	1.74	2.7	-0.18
3	0.9	1.908	2.916	-0.108
4	0.9624	1.9608	2.9592	-0.036
5	0.9845	1.9848	2.9851	-0.0158
6	0.9939	1.9938	2.9938	-0.006
7	0.9975	1.9975	2.9976	-0.0025
8	0.9990	1.9990	2.9990	-0.0010
9	0.9996	1.9996	2.9996	-0.0004
10	0.9998	1.9998	2.9998	-0.0002
11	0.9999	1.9999	2.9999	-0.0001
12	1.0	2.0	3.0	0.0

 RTYZ/gVeYVdR^VRTIf cRTj RddVgV_ >Rf do\%VZVI] ZV/REZ _d\&

$$
\begin{aligned}
& 20 x_{1}+x_{2}-7 x_{3}=17 \\
& 3 x_{1}+20 x_{2}-x_{3}=-18 \\
& 2 x_{1}-3 x_{2}+20 x_{3}=25
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{1}=\frac{17}{20}-\frac{1}{20} x_{2}+\frac{7}{20} x_{3} \\
x_{2}=-\frac{18}{20}-\frac{3}{20} x_{1}+\frac{1}{20} x_{3} \\
x_{3}=\frac{25}{20}-\frac{2}{20} x_{1}+\frac{3}{20} x_{2}
\end{array}\right\}
$$

 $x_{1}^{(1)}=\frac{17}{20}=0.85 \$ x_{2}^{(1)}=-\frac{18}{20}=-0.90 \mathrm{R} \mathbf{U} x_{3}^{(1)}=\frac{25}{20}=1.25$
 Raac` i Z R R
 $x_{1}^{(4)}=1.000475 \$ x_{2}^{(4)}=-0.9999875$ R_U $x_{3}^{(4)}=0.99965 \& @ T R _$SV dV_ el Re erV gRjf Vd Raac RTY eYV V RTed]f $\underset{\mathcal{E}}{2} \quad x_{1}=1 \$ x_{2}=-1 \$ x_{3}=1 \&$

U \% (\&-U. \% (\&-U U $\quad 5-($
\% $\&-$ U $\# \quad$ U $\&-$ U, $5-($

$$
\begin{aligned}
& \text { \% } \% \text {-U \# } \\
& U_{+} \%\left(\$-U,{ }^{*}\right. \\
& \% \text { \% U \% \% \&-U+ \# U 5 *- }
\end{aligned}
$$

9URQLK

J YVXZgV_ d d\& ${ }^{\wedge}$ ` WKbf Rę_dTR_SVh ceev_Rd

$$
\left.\begin{array}{l}
x_{1}=50+0.25 x_{2}+0.25 x_{3} \\
x_{2}=50+0.25 x_{1}+0.25 x_{4} \\
x_{3}=25+0.25 x_{1}+0.25 x_{4} \\
x_{4}=25+0.25 x_{2}+0.25 x_{3}
\end{array}\right\} \quad \mathrm{t} *!
$$

 Raac` i Ž Rę_ gRIf VdRdW]J’ h dZ

$$
\begin{aligned}
& x_{1}^{(1)}=50+0.25 x_{2}^{(0)}+0.25 x_{3}^{(0)}=100.00 \\
& x_{2}^{(1)}=50+0.25 x_{1}^{(1)}+0.25 x_{4}^{(0)}=100.00 \quad x_{3}^{(1)}=50+0.25 x_{1}^{(1)}+0.25 x_{4}^{(0)}=75.00 \\
& x_{4}^{(1)}=25+0.25 x_{2}^{(1)}+0.25 x_{3}^{(1)}=68.75
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{(2)}=50+0.25 x_{2}^{(1)}+0.25 x_{3}^{(1)}=93.75 \\
& x_{2}^{(2)}=50+0.25 x_{1}^{(2)}+0.25 x_{4}^{(1)}=90.62 \quad x_{3}^{(2)}=50+0.25 x_{1}^{(2)}+0.25 x_{4}^{(1)}=65.62 \\
& x_{4}^{(2)}=25+0.25 x_{2}^{(2)}+0.25 x_{3}^{(2)}=64.06 \&
\end{aligned}
$$

$$
x_{1}=x_{2}=87.5, x_{3}=x_{4}=62.5
$$

 devaddAceZ

$$
\begin{aligned}
& 10 x+y+z=6 \\
& x+10 y+z=6 \\
& x+y+10 z=6
\end{aligned}
$$

Solution

$$
\begin{aligned}
& x=0.6-0.1 y-0.1 z \\
& y=0.6-0.1 x-0.1 z \\
& z=0.6-0.1 x-0.1 y
\end{aligned}
$$

Step 1 KdZXU (! 5 V (! $5 \mathrm{~W}!5$) \$h VYRgV

$$
\begin{aligned}
& U)!-(\&-(\& V)-(\& W!5(\&-(\&-(\& 5) \& \\
& V)!-(\&-(\& U)!-(\& W!5(\&-(\& \times(\&-(\& 5) \\
& W!-(\&-(\& U)!-(\& V)!5(\&-(\& \times(\&-(\& \times(\&) 5(\&)
\end{aligned}
$$

Step $2 K d \underline{X U})!5(\& \$ \mathrm{~V})!5(\& . \$ W!5(\&), \$ h \mathrm{VYRg} V$

$$
\begin{aligned}
& \mathrm{U}^{*!}-(\&-(\& \mathrm{~V})!-(\& \mathrm{~W}!5(\&-(\& \times(\& .-(\& \times(\&), 5(\&) \text {. } \\
& V^{*!}-\left(\&-\left(\& U^{*!}-(\& W) 5\left(\&-\left(\& \times(\&){ }^{*} .-(\& \times(\&), 5(\&) 10+,\right.\right.\right.\right. \\
& W^{*}!-\left(\&-\left(\& U^{*!}-\left(\& V^{*}!\right.\right.\right.
\end{aligned}
$$

$\mathrm{U}^{+}-\left(\&-\left(\& \mathrm{~V}^{*!}-\left(\& \mathrm{~W}^{*}!5(\&-(\& \times(\& 10+,-(\& \times(\& 111(.5(\&()) /-\right.\right.\right.$,
$\mathrm{V}^{+}-\left(\&-\left(\& \mathrm{U}^{+}-\left(\& \mathrm{~W}^{+}!\right.\right.\right.$
$5(\&-(\& \times(\&)() /-,-(\& \times(\& 111(.5(\& 1111) 0$.
Wh - (\& - (\&) $U^{+}-(\&) V^{+}$
$5\left(\&-\left(\& \times(\&)() /-,-\left(\& \times\left(\&() /-, 5\left(\& 111 ., 1^{*}\right.\right.\right.\right.\right.$

OLBCRAPBP

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& 2 x+20 y-2 z=-44 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

$$
\begin{aligned}
& 1.2 x+2.1 y+4.2 z=9.9 \\
& 5.3 x+6.1 y+4.7 z=21.6 \\
& 9.2 x+8.3 y+z=15.2
\end{aligned}
$$

$$
\begin{aligned}
& 5 x-y+z=10 \\
& 2 x-y+z=10 \\
& x+y+5 z=-1
\end{aligned}
$$

$$
\begin{aligned}
5 x+2 y+z & =12 \\
x+4 y+2 z & =15 \\
x+2 y+5 z & =20
\end{aligned}
$$

Answers

1. $x=1.013, y=-1.996, z=3.001$
2. $x=2, y=3, z=4 \quad 8$ aac` $\mathrm{i} Z \mathrm{RE} / \mathrm{j}$!
3. $x=-13.223, y=16.766, z=-2.306$
4. $x=2.556, y=1.722, z=-1.005$
5. $x=1.08, y=1.95, z=3.16$

13

EIGEN VALUES

Eigen Values

Definitions If aa`dVXSVR_ZUVEVC^ZReV\&:` _dZVcerVK mK ^ Reç

$$
\left.A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]=\left[a_{i j}\right]_{n \times n} \quad \quad \delta \& \&\right)!
$$

 characteristic matrix of . R_UZXXZV_S

$$
A-\lambda I=\left[\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & \cdot . & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdot & \cdot & a_{2 n} \\
& \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & a_{n n}-\lambda
\end{array}\right] . \quad \delta \& \& *!
$$

 è SV

$$
?_{(}!?_{)} X!?_{*} X^{*}!\$ \$ \$!?_{\mathrm{K}_{-}} \mathrm{X}^{\left.K^{-}\right)}!?_{\mathrm{K}} \mathrm{X}^{K} \quad \delta \& \&+
$$

$$
|.-X Z| \& \quad \delta \& \&+!
$$

J YVVbf Rë

$$
\text { |. }-X 2 \mid 5(
$$

Z $\mathbb{M} \$$ erVVbf Rë _

$$
\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
& \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right|=0 \quad \mathrm{t} \quad,!
$$

ZdTR]]M erVcharacteristic equation of the matrix . \$

$$
A=\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right] .
$$

9URQLK

む $/ \& \quad\left|\begin{array}{rrr}8-\lambda & -6 & 2 \\ -6 & 7-\lambda & -4 \\ 2 & -4 & 3-\lambda\end{array}\right|=0$
$\left.F_{-} d \mathbb{C} a\right] \backslash X R \vec{Z}$ _ $\mathrm{h} V \mathrm{XVe}$

$$
0 \mathrm{X}+\#) 0 \mathrm{X}^{*}-,-\mathrm{X} 5(\$
$$

h YZY XZgVderVVZXV_ gRjf Vd n5 (3 n 5 +3 n 5) - \&
/ B

$\boxed{Z} / \$ S j{ }^{\prime} \lg \underline{Z} X$

$$
\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

$$
\begin{array}{r}
8 x_{1}-6 x_{2}+2 x_{3}=0 \\
-6 x_{1}+7 x_{2}-4 x_{3}=0 \\
2 x_{1}-4 x_{2}+3 x_{3}=0 \tag{3}
\end{array}
$$

E`h)! R_U + TR_SVhceind

$$
4 x_{1}-3 x_{2}+x_{3}=0
$$

R_U $2 x_{1}-4 x_{2}+3 x_{3}=0$.

$$
\frac{x_{1}}{-3 \cdot 3-1 \cdot(-4)}=\frac{x_{2}}{1 \cdot 2-4 \cdot 3}=\frac{x_{3}}{4 \cdot(-4)-3 \cdot 2}
$$

` C

$$
\frac{x_{1}}{-5}=\frac{x_{2}}{-10}=\frac{x_{3}}{-10} \&
$$

`C \(\quad \frac{x_{1}}{1}=\frac{x_{2}}{2}=\frac{x_{3}}{2} \&\) ? V_TV \(\quad \frac{x_{1}}{1}=\frac{x_{2}}{2}=\frac{x_{3}}{2}=k\), h YVCVHZXRCSZeRg \& \(\therefore \quad x_{1}=k, x_{2}=2 k, x_{3}=2 k . \quad\) S\&\&, \(\therefore\) VZXV_ gVTè cT' ccVda`_UZXXè X5 (Z X XZgV_Sj $\quad X=\left[\begin{array}{c}k \\ 2 k \\ 2 k\end{array}\right] \&$
8 aRceปI JRc VZXV_ gRIf VZX h Z्Y $k=1$! Zd $X=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$.

 . $Y+2=-\&$
Z $\mathbf{Z} / \$ \mathrm{Sj}^{\mathrm{d}} \mathrm{lg} \mathrm{Z} X$

$$
\left[\begin{array}{rrr}
5 & -6 & 2 \\
-6 & 4 & -4 \\
2 & -4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

 ${ }^{\wedge}$ Recス Vbf Rē

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

: Y'`dZX \(x_{3}=k\), RCSZergi \$h VYRgV \(x_{1}+x_{3}=0, x_{2}+\frac{1}{2} x_{3}=0 \&\) ? V_TV \(\quad X=\left[\begin{array}{c}-k \\ -\frac{1}{2} k \\ k\end{array}\right]\) ZIR_ VZXV_ gVTè cT'ccVda`_UZXXe eYVVZXV_ gRjf Vn5 +\&
8 aRceचf]Rc VZXV_ gRff VZd h Z्C $k=2$! Zd $X=\left[\begin{array}{r}-2 \\ -1 \\ 2\end{array}\right]$.

$\mathbb{Z} / \$$ Sj d ${ }^{\prime} \mathrm{lgZ} \mathrm{X}$. Y) $-2=-\&$
Z $\$ \$ \mathrm{Sj}^{\mathrm{d}} \mathrm{lg} \mathrm{Z} X$

$$
\left[\begin{array}{rrr}
-7 & -6 & 2 \\
-6 & -8 & -4 \\
2 & -4 & -12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

? V_TV $\quad X=\left[\begin{array}{c}2 a \\ -2 a \\ a\end{array}\right]$
ZXR_VZXV_ gVTè cT'ccVda`_UZXè erVVZKV_gRjf Vn5)-\& Example \(=\underline{Z} U\) eYV VZKV_ gRff Vd R_U eYV VZZV_ gVTè c T' coVda`_UZX è eYV JRcXVde VZXV_ gRIf V WerV ^Recス

$$
A=\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] .
$$

9பRQEK
@TR_SVdV_ eYReerVVZZV_gRIf VdRdV*\$* R_U O\&
E `h h VUVEVc^ZVerVVZZV_ gVTè cT ccVda`_uZ Xè eYV]RcXVdeVZXV_ gRff V02
 $d^{\prime} \operatorname{lgZX}$ P. Y02Q=-\&
$\mathbb{Z} / \$ \mathrm{Sj}^{\mathrm{d}} \mathrm{Jg} \mathrm{Z} X$

$$
\left[\begin{array}{rrr}
6-8 & -2 & 2 \\
-2 & 3-8 & -1 \\
2 & -1 & 3-8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

$$
\left[\begin{array}{rrr}
2 & -2 & 2 \\
-2 & -4 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

J YVT' coVda`_UZ X d daV ` WIZ VRc Vbf ReZ _dZd

$$
\begin{array}{r}
2 x_{1}-2 x_{2}+2 x_{3}=0 \\
-2 x_{1}-5 x_{2}-x_{3}=0 \\
2 x_{1}-x_{2}-5 x_{3}=0 \tag{3}
\end{array}
$$

E `h)! R_U + TR_SVh ceev_ Rd

$$
x_{1}-x_{2}+x_{3}=0
$$

R_U

$$
2 x_{1}-x_{2}-5 x_{3}=0 .
$$

$$
\frac{x_{1}}{-1 \cdot(-5)-1 \cdot(-1)}=\frac{x_{2}}{1 \cdot 2-(1) \cdot(-5)}=\frac{x_{3}}{(-1) \cdot(-1)-(-1) \cdot 2}
$$

'c

$$
\frac{x_{1}}{6}=\frac{x_{2}}{-3}=\frac{x_{3}}{3} \&
$$

'c

$$
\frac{x_{1}}{2}=\frac{x_{2}}{-1}=\frac{x_{3}}{1} \&
$$

? V_TV

$$
\frac{x_{1}}{2}=\frac{x_{2}}{-1}=\frac{x_{3}}{1}=k .
$$

$\therefore \quad x_{1}=2 k, x_{2}=-k, x_{3}=k . \quad$ SS\&,!

$$
X=\left[\begin{array}{c}
2 k \\
-k \\
k
\end{array}\right] .
$$

8 aRcēf JRc VZXV_ gRIf VZd h Z $k=1$! $\mathbb{Z d} X=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$.

$$
A=\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]
$$

$$
\left|\begin{array}{lll}
5-\lambda & 0 & 1 \\
0 & -2-\lambda & 0 \\
1 & 0 & 5-\lambda
\end{array}\right|=0
$$

$\mathrm{h} Y$ YY XZgVd $\lambda_{1}=-2, \lambda_{2}=4 \operatorname{R_ U} \lambda_{3}=6 \&$
; VEVC^ZREZ _ VWZXV _gVTè cdT ccVda`_UZXXè $\lambda_{1}=-2$ \&CVeerVVZXV_gVTè cSV

$$
X_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

J YV_h VYRgV2

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=-2\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \$
$$

h YZY XZgVderVVbf Rę_d

$$
\begin{aligned}
& \quad 7 x_{1}+x_{3}=0 \\
& \text { and } x_{1}+7 x_{3}=0
\end{aligned}
$$

 Z

$$
X_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

$$
X_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

ZXR_ VZXV_gVTè c\$erVVbf Rę _dRcV

$$
x_{1}+x_{3}=0
$$

R_U $-6 x_{2}=0$
Vd ^ h YZY h V` SARZ

$$
x_{1}=-x_{3} \text { R_U } x_{2}=0 .
$$

 VZXV_gVTè c TY`dV_ Z eYZdh Rj ZldRZISV_` $\left.C^{\wedge} R\right] \mathbb{K} W \& M$ VerVcWVCVYRgV $X_{2}=\left[\begin{array}{r}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$.

$$
X_{3}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

ZlerVchbf ZWVVZV_gVTè c\$erV_erVVbf Rę_dRcV

$$
\begin{aligned}
-x_{1}+x_{3} & =0 \\
-8 x_{2} & =0 \\
x_{1}-x_{3} & =0
\end{aligned}
$$

h YZY XZgV $x_{1}=x_{3}$ R_U $x_{2}=0$ \&

$$
X_{3}=\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]
$$

Example ; VeVc^Z ${ }^{\wedge}$ Reç̉

$$
A=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

CVeerVZ Z ZR] VZXV_gVTè c SV

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=X^{(0)} \&
$$

J YV_h VYRgV

$$
A X^{(0)}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

 R_ Raac` i Z REVVZXV_gVTè cZI $X^{(1)} \mathbb{Q}$ Z V_TVh VYRgV

$$
A X^{(1)}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
0
\end{array}\right]=3\left[\begin{array}{l}
2.3 \\
9 \\
0
\end{array}\right]
$$

V $\mathrm{N}^{\wedge} \mathrm{h}$ YZY h VaWerRe

$$
X^{(2)}=\left[\begin{array}{l}
2.3 \\
1 \\
0
\end{array}\right]
$$

R_U eYReR_ Raac i \mathbb{Z} ReVVZXV_ gRff VZす $+\&$
HVaVRe_ XerVRS` gVac` TMf cV\$h Voff TIVdoZgVj ` SeRZ

$$
4\left[\begin{array}{l}
2.1 \\
1.1 \\
0
\end{array}\right] ; 4\left[\begin{array}{l}
2.2 \\
1.1 \\
0
\end{array}\right] ; \quad 4.4\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] ; \quad 4\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] ; \quad 4\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

$@$ @]j’ h deYReerV]RcXVdeVZZV_ gR]f VZZ, R_UerVT coVda`_UZ XVZXV_gVTè c Z

$$
\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \&
$$

Eigenvalues of a Symmetric Tridiagonal Matrix

 : _ _ ZZVcerVtridiagonal matrix

$$
A_{1}=\left[\begin{array}{lll}
a_{11} & a_{12} & 0 \\
a_{12} & a_{22} & a_{23} \\
0 & a_{23} & a_{33}
\end{array}\right] \&
$$

J ` 'SeRZ eYVVZKV_gRff Vd $W A_{1} \$ h V W c^{\wedge}$ erVUVEVc^ Z R_eVbf Rez_

$$
\left|A_{1}-\lambda\right|=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & 0 \\
a_{12} & a_{22}-\lambda & a_{23} \\
0 & a_{23} & a_{33}-\lambda
\end{array}\right|=0 .
$$

I f aa` dVeYReerVRS` gVVbf Rę_ Zodh crev_ Z erVWc^

$$
\phi_{3}(\lambda)=0
$$

$$
\begin{aligned}
\phi_{3}(\lambda) & =\left(a_{33}-\lambda\right)\left|\begin{array}{ll}
a_{11}-\lambda & a_{12} \\
a_{12} & a_{22}-\lambda
\end{array}\right|-a_{23}\left|\begin{array}{ll}
a_{11}-\lambda & 0 \\
a_{12} & a_{23}
\end{array}\right| \\
& =\left(a_{33}-\lambda\right) \phi_{2}(\lambda)-a_{23}\left(a_{11}-\lambda\right) a_{23} \$
\end{aligned}
$$

$$
\mathrm{h} \mathrm{YVCV} \phi_{2}(\lambda)=\left|\begin{array}{rrr}
a_{11}-\lambda & a_{12} \\
a_{12} & a_{22}-\lambda
\end{array}\right|
$$

$$
=\left(a_{33}-\lambda\right) \phi_{2}(\lambda)-a_{23}{ }^{2} \phi_{1}(\lambda) \$ \operatorname{hVVV}_{\phi_{1}}(\lambda)=\left(a_{11}-\lambda\right)
$$

? V_TV)! Z a]Z/d\$

$$
\left(a_{33}-\lambda\right) \phi_{2}(\lambda)-a_{23}^{2} \phi_{1}(\lambda)=0 \&
$$

M Velf d`SeRZ eYVcVIf coZ_ Wc^f]R
@ XV_VCR]\$ZN

$$
\phi_{k}(\lambda)=\left|\begin{array}{lllll}
a_{11}-\lambda & a_{12} & 0 & \ldots & 0 \\
a_{12} & a_{22}-\lambda & a_{23} & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & a_{k-1}, k & a_{k k}-\lambda
\end{array}\right| \$(2 \leq k \leq n),
$$

$$
\phi_{k}(\lambda)=\left(a_{k k}-\lambda\right) \phi_{k-1}(\lambda)-a_{k-1, k}^{2} \phi_{k-2}(\lambda) \$(2 \leq k \leq n)
$$

 UZIIf doM Z TRJIf JREN\&

Exercises

$\mathrm{R}\left[\begin{array}{cc}-3 & 0 \\ 5 & -1\end{array}\right]$
$\mathrm{S}!\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$

$$
\begin{aligned}
& \phi_{0}(\lambda)=1 \\
& \phi_{1}(\lambda)=a_{11}-\lambda \\
& =\left(a_{11}-\lambda\right) \phi_{0}(\lambda) \\
& \phi_{2}(\lambda)=\left|\begin{array}{ll}
a_{11}-\lambda & a_{12} \\
a_{12} & a_{22}-\lambda
\end{array}\right| \\
& =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12}^{2} \\
& =\phi_{1}(\lambda)\left(a_{22}-\lambda\right)-a_{12}^{2} \phi_{0}(\lambda) \\
& \phi_{3}(\lambda)=\phi_{2}(\lambda)\left(a_{33}-\lambda\right)-a_{23}^{2} \phi_{1}(\lambda) \&
\end{aligned}
$$

$\mathrm{T}!\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$
$\mathbf{U !}\left[\begin{array}{rrr}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$
$\mathrm{V}!\left[\begin{array}{lll}3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1\end{array}\right]$
$\mathbf{W}\left[\begin{array}{ccc}5 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$
$(g)\left[\begin{array}{rrr}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$
(h) $\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$
(i) $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
(j) $\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$
$(k)\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3\end{array}\right]$
(l) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 1
\end{array}\right] \&
$$

 $\mathrm{erV} \wedge \operatorname{ReC} \mathbb{Z} A=\left[\begin{array}{rrr}-6 & -6 & 2 \\ -6 & -1 & -4 \\ 2 & -4 & 3\end{array}\right]$.

$$
A=\left[\begin{array}{rrr}
- & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] .
$$

 gVIè c ` Verv ^ RecZ

$$
A=\left[\begin{array}{cccc}
5 & 2 & 1 & -2 \\
2 & 6 & 3 & -4 \\
1 & 3 & 19 & 2 \\
-2 & -4 & 2 & 1
\end{array}\right]
$$

14

TAYLOR SERIES METHOD

METHODS FOR NUMERCIAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

 Sj UZZVTedf Sdezf $\underset{\mathcal{Z}}{\text { _ \& }}$

J YV ^Ver`Ud`W Rj] c R_U GZRcU SV`_Xè T]Rdd R.\$h YVCVRd eY dV`WKf Jc\$Hf _XV\%
 J Rj J cl VCZ/d

The Taylor series generated by f at $x=a$ is

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}==f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\ldots \\
+\frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+\frac{(x-a)^{n}}{n!} f^{(n)}(a)+\ldots
\end{gathered}
$$

In most of the cases, the Taylor's series converges to $f(x)$ at every x and we often write the J Ri] copdNCZ/dat $x=a$ as
$f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\ldots$
t)!
Instead of $f(x)$ and a, we prefer $y(x)$ and x_{0}, and in that case (1) becomes
$y(x)=y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\ldots$

Solution of First Order IVP by Taylor Series Method

E`h T_dUVcerVZZER] gRff Vac` SJN^

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} . \quad \mathrm{t}+\mathrm{t}
$$

$$
\begin{equation*}
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\ldots \tag{4}
\end{equation*}
$$

$$
y^{\prime \prime}=f^{\prime}=\frac{d f}{d x}=\frac{\partial f}{\partial x}+\left(\frac{\partial f}{\partial x}\right) y^{\prime} \quad \mathrm{t}-!
$$

IZて ZRclj \$YZYYc UVCZRegVd` WWTR_ SVV acVdowUZ EVc^d` W\&
 a]RTVd\&
? VcV $x_{0}=0 ; y_{0}=y(0)=1 . \quad$? $V_{-} T V,!$ R $\mathbb{V d e r} \mathrm{VWC}^{\wedge}$

$$
y(x)=y_{0}+\frac{x}{1!} y_{0}^{\prime}+\frac{x^{3}}{2!} y_{0}^{\prime \prime}+\frac{x^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{x^{4}}{4!} y_{0}^{(4)}+\frac{x^{5}}{5!} y_{0}^{(5)}+\cdots \quad \mathrm{t} .!
$$

M VYRgV

$$
\begin{aligned}
& y^{\prime}=x-y^{2}, \quad y_{0}^{\prime}=y^{\prime}\left(x=x_{0}, y=y_{0}\right)=x_{0}-y_{0}^{2}=0-1^{2}=-1 . \\
& y^{\prime \prime}=1-2 y y^{\prime}, \quad y_{0}^{\prime \prime}=y^{\prime \prime \prime}\left(x=x_{0}, y=y_{0}\right)=1-2 y_{0} y_{0}^{\prime}=1-2(1)(-1)=3 . \\
& y^{\prime \prime \prime}=-2 y y^{\prime}-2\left(y^{\prime}\right)^{2}, \quad y_{0}^{\prime \prime \prime}=y^{\prime \prime \prime}\left(x=x_{0}, y=y_{0}\right)=-2 y_{0} y_{0}^{\prime}-2\left(y_{0}^{\prime}\right)^{2}=-8 . \\
& y^{(4)}=-2 y y^{\prime \prime \prime}-6 y^{\prime} y^{\prime \prime},
\end{aligned}
$$

$$
y_{0}^{(4)}=y^{(4)}\left(x=x_{0}, y=y_{0}\right)=-2 y_{0} y_{0}^{\prime \prime \prime}-6 y_{0}^{\prime} y_{0}^{\prime \prime}=34 .
$$

$y^{(5)}=-2 y y^{(4)}-8 y^{\prime} y^{\prime \prime \prime}-6\left(y^{\prime}\right)^{2}$,

$$
y_{0}^{(5)}=y^{(5)}\left(x=x_{0}, y=y_{0}\right)=-2 y_{0} y_{0}^{(4)}-8 y_{0}^{\prime} y_{0}^{\prime \prime \prime}-6\left(y_{0}^{\prime}\right)^{2}=-186 .
$$

$$
y(x)=1-x+\frac{3}{2} x^{2}-\frac{4}{3} x^{3}+\frac{17}{12} x^{4}-\frac{31}{20} x^{5}+\ldots \quad \mathrm{t} /!
$$

 $x=0.1, \mathrm{~h}$ V` SeRZ

$$
y(0.1)=0.9138
$$

Remark to the Example : ©RK@QZK KA OKDBLC U If aa` dV eYRehVh ZOY è VZ U eYV TR_SVfoM è T ^^af eVerVgRIf Vd`WV T ccVTeè Wf c UVIL R] a]RTVd\&MV_WU __lj è h c低

$$
\frac{31}{20} x^{5} \leq 0.00005
$$

$d^{\prime} \mathrm{el}^{\prime} \mathrm{Re}$

$$
x \leq 0.126 \text {. }
$$

 8]d V \mathbf{Z} U V Re $x=1.1$.
? VcV $x_{0}=1 ; y_{0}=y(1)=0$. ? V_TV ,! ©R VderVWc^

$$
y(x)=y_{0}+(x-1) y_{0}^{\prime}+\frac{(x-1)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(x-1)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{(x-1)^{4}}{4!} y_{0}^{(4)}+\ldots \quad \text { t } /!
$$

? VcV

$$
\begin{array}{lrl}
y^{\prime}=x+y 3 & y_{0}^{\prime}=y^{\prime}\left(x=x_{0}, y=y_{0}\right)=x_{0}+y_{0}=1+0=1 \quad y^{\prime \prime}=\frac{d}{d x}(x+y)=1+y^{\prime} 3 \\
y_{0}^{\prime \prime}=y^{\prime \prime}\left(x=x_{0}, y=y_{0}\right)=1+y_{0}^{\prime}=1+1=2 \\
y^{\prime \prime \prime}=y^{\prime \prime} 3 & y_{0}^{\prime \prime \prime}=y^{\prime \prime}\left(x=x_{0}, y=y_{0}\right)=y_{0}^{\prime \prime}=2 . \\
y^{(4)}=y^{\prime \prime \prime} & 3 y_{0}^{(4)}=y^{\prime \prime \prime}\left(x=x_{0}, y=y_{0}\right)=y_{0}^{\prime \prime \prime}=2 .
\end{array}
$$

$$
y(x)=(x-1)+(x-1)^{2}+\frac{(x-1)^{3}}{3}+\frac{(x-1)^{4}}{12}+\ldots
$$

 U! h VXVe

$$
y(1.1)=0.1+(0.1)^{2}+\frac{(0.1)^{3}}{3}+\frac{(0.1)^{4}}{12} \quad 5(\&) \&
$$

$$
y=-x-1+2 e^{x-1}
$$

R_UYV_TVeYVV RTegRIf V` Wy Re $x=1.1$ Z

$$
\text { V) \& ! } 5(\&)(+, \&
$$

Example KdZXJ Rj I` codvcZ/d\$ơ lgV

$$
5 x y^{\prime}+y^{2}-2=0, y(4)=1 .
$$

? VcV $x_{0}=4 ; y_{0}=y(4)=1 . \quad$? V_TV , ! eR VderVWc^

$$
y(x)=y_{0}+(x-4) y_{0}^{\prime}+\frac{(x-4)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(x-4)^{3}}{3!} y_{0}^{\prime \prime \prime}+\frac{(x-4)^{4}}{4!} y_{0}^{(4)}+\ldots \quad \mathrm{t} \quad 0!
$$

: ` _dZVcerVUZWCV_eR] Vbf R尹Z_

$$
5 x y^{\prime}+y^{2}-2=0
$$

$$
\left.5 x y^{\prime \prime}+5 y^{\prime}+2 y y^{\prime}=0 \& \quad \mathrm{t}\right)(!
$$

$$
\begin{array}{r}
\left.-W^{\prime \prime}!\right)\left(V^{\prime}!* W^{\prime}!* V^{*} 5(\mathrm{t})\right)! \\
\left.-\mathrm{U}^{\prime \prime \prime}!\right)-V^{\prime \prime}!* W^{\prime \prime}!. V^{\prime} 5(\mathrm{t}) *! \\
-W^{\prime \prime \prime \prime}!*\left(V^{\prime \prime \prime}!* W^{\prime \prime \prime}!0 V V^{\prime \prime}!. V^{\prime}!^{*} 5(t)+4\right.
\end{array}
$$

$\operatorname{KoZX} x_{0}=4 ; y_{0}=1, \quad 1!\mathbf{X Z V V d} 5 x_{0} y_{0}^{\prime}+y_{0}^{2}-2=0 \quad$ 'C $\quad 5 \cdot 4 \cdot y_{0}^{\prime}+1^{2}-2=0 \quad \mathrm{~h}$ YZY XZgVd $y_{0}^{\prime}=0.05$ \&) (! XZgVd

$$
5 x_{0} y_{0}^{\prime \prime}+5 y_{0}^{\prime}+2 y_{0} y_{0}^{\prime}=0 \quad \text { 'C } 5 \times 4 y_{0}^{\prime \prime} \times 5 \times 0.05+2 \times 1 \times 0.05=0
$$

R_UXZVVd $y_{0}^{\prime \prime}=-0.0175$.
I Z ZRC] \$ $y_{0}^{\prime \prime \prime}=(\$)\left(*-\$ y_{0}^{(4)}=-\left(\$\left(0,-\$ y_{0}^{(5)}=\left(\$(0110){ }^{*}-"\right.\right.\right.\right.$
? V_TV O! XZgVd
$y(x)=1+(x-4)(0.05)+\frac{(x-4)^{2}}{2!}(-0.0175)+\frac{(x-4)^{3}}{3!}(0.01025)$

$$
+\frac{(x-4)^{4}}{4!}(-0.00845)+\frac{(x-4)^{5}}{5!}(0.008998125)
$$

Gf $\notin \underline{Z}$ X U5, \&\$h VXVe

$$
y(4.1)=1+(0.1)(0.05)+\frac{(0.1)^{2}}{2!}(-0.0175)+\frac{(0.1)^{3}}{3!}(0.01025)
$$

$$
+\frac{(0.1)^{4}}{4!}(-0.00845)+\frac{(0.1)^{5}}{5!}(0.008998125)
$$

$5) \&(1$

$$
\left.y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=l_{0} . \quad \mathrm{t} \quad\right),!
$$

$$
\left.p^{\prime}=f(x, y, p) \quad \mathrm{t}\right)-!
$$

h ZXY EYVZZZR]T _UZAZ_d

$$
\left.y\left(x_{0}\right)=y_{0} \quad \mathrm{t}\right) .!
$$

R_U

$$
p\left(x_{0}\right)=p_{0}=l_{0} .
$$

t)/!

$$
\begin{equation*}
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\ldots \tag{18}
\end{equation*}
$$

Example KdZXJ Rj J` caVcZ/d^Ver` U\$ac`gVerReervd ff \(\overrightarrow{\mathcal{L}}\) _`W

$$
\frac{d^{2} y}{d x^{2}}+x y=0
$$

$$
y(x)=d\left[1-\frac{1}{3!} x^{3}+\frac{4}{6!} x^{6}-\frac{28}{9!} x^{9}+\ldots\right] \quad 1!
$$

I Ve

$$
y^{\prime}=p .
$$

J YV_\$

$$
y^{\prime \prime}=p^{\prime},
$$

R_UerV $X Z V_{-}$UZWNCV_eR] Vbf Rę_ SVT ^Vd

$$
p^{\prime}+x y=0 . \quad \mathrm{t} *(!
$$

$$
\begin{equation*}
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\ldots \tag{21}
\end{equation*}
$$

Here $x_{0}=0, \quad y_{0}=y\left(x_{0}\right)=y(0)=d, \quad y_{0}^{\prime}=y^{\prime}\left(x_{0}\right)=y^{\prime}(0)=0$.
From (20), $\quad p^{\prime}=-x y$,
so

$$
\begin{array}{ll}
y^{\prime \prime}=p^{\prime}=-x y, & y_{0}^{\prime \prime}=-x_{0} y_{0}=0 ; \\
y^{\prime \prime \prime}=p^{\prime \prime}=-y-x y^{\prime}, & y_{0}^{\prime \prime \prime}=-y_{0}-x_{0} y_{0}^{\prime}=-d ; \\
y^{(4)}=-2 y^{\prime}-x y^{\prime \prime}, & y_{0}^{(4)}=-2 y_{0}^{\prime}-x_{0} y_{0}^{\prime \prime}=0 ; \\
y^{(5)}=-3 y^{\prime \prime}-x y^{\prime \prime \prime}, & y_{0}^{(5)}=-3 y_{0}^{\prime \prime}-x_{0} y_{0}^{\prime \prime \prime}=0 ; \\
y^{(6)}=-4 y^{\prime \prime \prime}-x y^{(4)}, & y_{0}^{(6)}=-4 y_{0}^{\prime \prime \prime}-x_{0} y_{0}^{(4)}=-4 d ; \\
y^{(7)}=-5 y^{(4)}-x y^{(5)}, & y^{(7)}=-5 y_{0}^{(4)}-x_{0} y_{0}^{(5)}=0 ; \\
y^{(8)}=-6 y^{(5)}-x y^{(6)}, & y_{0}^{(8)}=-6 y_{0}^{(5)}-x_{0} y_{0}^{(6)}=0 ; \\
y^{(9)}=-7 y^{(6)}-x y^{(7)}, & y_{0}^{(9)}=-7 y_{0}^{(6)}-x_{0} y_{0}^{(7)}=-7 \times 4 d=-28 d .
\end{array}
$$

Gf $ఱ \underline{Z}$ XeYVaVgR]f VdZ *)!\$h V`SARZ) 1!\&

$$
y^{\prime \prime}-x\left(y^{\prime}\right)^{2}+y^{2}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

9பRQLK

I Ve

$$
y^{\prime}=p .
$$

J YV_\$

$$
y^{\prime \prime}=p^{\prime},
$$

R_U E VVXZV_ UZWNCV_eR] Vbf Rę_ SVT ${ }^{\wedge} \mathrm{Vd}$

$$
p^{\prime}-x p^{2}+y^{2}=0 . \quad \mathrm{t} * *!
$$

$$
\begin{equation*}
y(x)=y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\ldots \tag{23}
\end{equation*}
$$

Here $x_{0}=0, \quad y_{0}=y\left(x_{0}\right)=y(0)=1, \quad p_{0}=y_{0}^{\prime}=y^{\prime}\left(x_{0}\right)=y^{\prime}(0)=0$.
From (22), $\quad p^{\prime}=x p^{2}-y^{2}$,

$$
\begin{array}{rlrl}
\text { so } \quad y^{\prime \prime} & =p^{\prime}=x p^{2}-y^{2}, & y_{0}^{\prime \prime}=x_{0} p_{0}{ }^{2}-y_{0}{ }^{2}=0-1=-1 ; \\
y^{\prime \prime \prime}=p^{\prime \prime}=p^{2}+2 x p p^{\prime}-2 y y^{\prime}, & y_{0}^{\prime \prime \prime}=p_{0}{ }^{2}+2 x_{0} p_{0} p_{0}^{\prime}-2 y_{0} y_{0}^{\prime}=0 ;
\end{array}
$$

$y^{\prime \prime \prime}=p^{\prime \prime}=p^{2}+2 x p p^{\prime}-2 y y^{\prime}, \quad y_{0}^{\prime \prime \prime}=p_{0}^{2}+2 x_{0} p_{0} p_{0}^{\prime}-2 y_{0} y_{0}^{\prime}=0$;
Putting these values in (23), we obtain

$$
\begin{equation*}
y(x)=1-\frac{x^{2}}{2!}+\ldots \tag{24}
\end{equation*}
$$

Putting $x=0.1$ in (24), neglecting higher powers of x, we obtain

$$
y(0.1) \approx 1-\frac{(0.1)^{2}}{2!}=1-0.005=0.995 .
$$

Exercises

 VZ UerVgRIf V` WW WcerVXZgV_ U\&

1. $\frac{d y}{d x}-1=x y, \quad y(0)=1$. 8$]$ do $\underline{\underline{Z x}} \mathrm{U} y(0.1)$.
2. $\left.\frac{d y}{d x}=x^{2}+y^{2}-2, \quad y=1 \operatorname{Re} x=0.8\right] \mathbb{X} \mathbb{U} y(0.1)$.
3. $\left.\frac{d y}{d x}=y^{2}+1, \quad y(0)=0 . \quad 8\right] d^{\top} \underline{X} \cup y(0.1) \quad \mathrm{R} \cup y(0.2)$.

4. $y^{\prime}=x+y^{2}, y(0)=0$. F S\&RZ_f $\left.{ }^{\wedge} \mathrm{V} \subset \widehat{\mathrm{R}}\right] \mathrm{gRIf} \mathrm{VdWc}$

U5 (\& (\& ! (\&\&
6. $\left.y^{\prime}=x^{2}+y^{2}, y(1)=0 .=Z \mathrm{UV}\right) \&+\&$

10. I` \(\left.\lg \mathrm{V} \frac{d y}{d x}=x y^{1 / 3}, y(1)=1.8\right] d^{`} \mathbb{Z} \mathbf{U} y(1.1)\) R $\mathrm{U} y(1.2)$.
11. $\mathrm{`}^{`} \lg \mathrm{~V} \frac{d y}{d x}=x^{2}-y, y(0)=1$. 8$] d{ }^{\prime} \underline{X} \mathrm{U} y \operatorname{Re} x=0.1(0.1) 0.4$.

 ^Ver' U\&8 dd' VZ UeYVgRjf V` WW WcerVXZgV_ U\&
13. $\frac{d^{2} y}{d x^{2}}=y+x \frac{d y}{d x}, y(0)=1, y^{\prime}(0)=0.8 \mathrm{~d} d^{\wedge} \mathrm{U} y(0.1)$.
14. $\frac{d^{2} y}{d x^{2}}+x y=0, y(0)=1, y^{\prime}(0)=0.5$. 8]d $\underline{\text { VI }} \mathbf{U} y(0.1)$ R-U $y(0.2)$.
15. $\left.\frac{d^{2} y}{d x^{2}}=x^{2}-x y, y(0)=1, y^{\prime}(0)=0.8\right] d^{N} \underline{\mathbb{X}} \mathrm{U} y(0.1)$ R_U $y(0.2)$.

15

PICARDS ITERATION METHOD

$$
\left.y^{\prime}=f(x, y) \$ y\left(x_{0}\right)=y_{0} . \quad \mathrm{t}\right) "!
$$

 gRcRSJVa\$erVUZWNcV_eR] Vbf Rę_ Z) ! SVT ^ Vd

$$
d y=f(x, y) d x .
$$

 $y!\mathrm{h}$ VXVe

$$
\begin{array}{cc}
\qquad \int_{y_{0}}^{y} d y=\int_{x_{0}}^{x} f(x, y) d x \\
\text { `С } & y(x)-y_{0}=\int_{x_{0}}^{x} f(x, y) d x \\
\text { `с } & y(x)=y_{0}+\int_{x_{0}}^{x} f(x, y) d x
\end{array}
$$

 T_UZ尹_Z) ! \&

 Raac` i Z Rez_{-}

$$
y^{(1)}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) d x \quad \mathrm{t}+\mathrm{+}
$$

$$
y^{(2)}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(1)}(x)\right) d x \$ \quad \mathrm{t},!
$$

$$
y^{(n)}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(n-1)}(x)\right) d x \quad \mathrm{t}-!
$$

@ eYZdh Rj h V` SeRZ_ RdMbf V_TV` WRaac` i Z Rę_d

$$
y^{(1)}(x), y^{(2)}(x), \ldots, y^{(n)}(x), \ldots
$$

Working Rule

: `_dZVcerVZ ZBR] gRIf Vac` SJN^

$$
y^{\prime}=f(x, y) \$ y\left(x_{0}\right)=y_{0} .
$$

$$
y^{(n)}=y_{0}+\int_{x_{0}}^{x} f\left(x, y^{(n-1)}\right) d x \quad(n=1,2,3, \ldots) \quad \quad!
$$

$\mathrm{h} \mathbb{Z} y^{(0)}=y_{0}$.

 ${ }^{`} \mathrm{~W} y \operatorname{Re} x=0.1$ R_U $x=0.2$ \&

@ eYZlac` S]N^

$$
f(x, y)=1+y^{2} 3 x_{0}=0, \quad y^{(0)}=y_{0}=y\left(x_{0}\right)=y(0)=0,
$$

R_UYV_TV

$$
f\left(x, y^{(n-1)}\right)=1+\left(y^{(n-1)}\right)^{2}
$$

If SdeZf e_Z XerVaVgRff VdZ . !\$

$$
y^{(n)}=0+\int_{0}^{x}\left[1+\left(y^{(n-1)}\right)^{2}\right] d x \quad(n=1,2,3, \ldots)
$$

《/\$

$$
\begin{aligned}
& y^{(n)}=x+\int_{0}^{x}\left(y^{(n-1)}\right)^{2} d x \quad(n=1,2,3, \ldots) \\
& y^{(1)}=x+\int_{0}^{x}\left(y^{(0)}\right)^{2} d x
\end{aligned}
$$

Gf $\oplus \underset{Z}{Z} y^{(0)}=0$,

$$
\begin{aligned}
& y^{(1)}=x+\int_{0}^{x} 0^{2} d x=x . \\
& y^{(2)}=x+\int_{0}^{x}\left(y^{(1)}\right)^{2} d x
\end{aligned}
$$

$\mathrm{Gf} \oplus \underline{Z} \mathbf{X} y^{(1)}=x$,

$$
y^{(2)}=x+\int_{0}^{x} x^{2} d x=x+\frac{1}{3} x^{3} .
$$

$$
y^{(3)}=x+\int_{0}^{x}\left(y^{(2)}\right)^{2} d x
$$

$\mathrm{Gf} \underset{\underline{Z}}{\underline{Z}} \mathrm{X} y^{(2)}=x+\frac{1}{3} x^{3}$,

$$
\begin{aligned}
y^{(3)} & =x+\int_{0}^{x}\left(x+\frac{1}{3} x^{3}\right)^{2} d x \\
& =x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{1}{63} x^{7} .
\end{aligned}
$$

$$
y=y(x)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{1}{63} x^{7} . \quad \mathrm{t} /!
$$

If Sdezf E_X U- (\$\$R_UU- (\$\$Z /!\$h V`SeRZ

$$
y(0.1)=(\&)((++,
$$

R_U

$$
y(0.2)=(\nless(* /(1 \&
$$

J YVRS` gVRcV_`eV RTegRIf VdWc y ReerVXZgV_ x a`Z ed\$Sf eerVRaac` i Z ReVgRIf Vd\&

`Wy Wc $x=0.2$ R_U $x=1$.
? VCV $f(x, y)=x+y 3 x_{0}=0, y^{(0)}=y_{0}=y\left(x_{0}\right)=y(0)=1$, R_UYV_TVfoZX.!

$$
y^{(n)}=1+\int_{0}^{x}\left(x+y^{(n-1)}\right) d x
$$

《/\$

$$
\begin{aligned}
& y^{(n)}=1+\frac{x^{2}}{2}+\int_{0}^{x} y^{(n-1)} d x \\
& y^{(1)}=1+\frac{x^{2}}{2}+\int_{0}^{x} y^{(0)} d x
\end{aligned}
$$

Gf $\left.e \underline{Z} \mathrm{X} y^{(0)} 5\right) \$ \mathrm{~h}$ V $\mathrm{SeR} \underline{Z}$

$$
\begin{gathered}
y^{(1)}=1+\frac{x^{2}}{2}+\int_{0}^{x} d x=1+x+\frac{x^{2}}{2} . \\
y^{(2)}=1+\frac{x^{2}}{2}+\int_{0}^{x} y^{(1)} d x
\end{gathered}
$$

Gf eqZ $y^{(1)}=1+x+\frac{x^{2}}{2}, \mathrm{~h} V `$ S $\notin \underline{Z}$

$$
\begin{aligned}
y^{(2)} & =1+\frac{x^{2}}{2}+\int_{0}^{x}\left(1+x+\frac{x^{2}}{2}\right) d x \\
& =1+x+x^{2}+\frac{x^{3}}{6} \\
y^{(3)} & =1+\frac{x^{2}}{2}+\int_{0}^{x} y^{(2)} d x
\end{aligned}
$$

$\mathrm{Gf} ఱ \underline{\underline{Z}} \mathbf{X} y^{(2)}=1+x+x^{2}+\frac{x^{3}}{6}, \quad h V ` \mathrm{~S} \in \underline{Z}$

$$
\begin{aligned}
y^{(3)} & =1+\frac{x^{2}}{2}+\int_{0}^{x}\left(1+x+x^{2}+\frac{x^{3}}{6}\right) d x \\
& =1+x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{24}
\end{aligned}
$$

M V RITVae

$$
y=1+x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{24}
$$

MYV_U5 (\$\$h VYRgV

$$
y(0.2)=1+0.2+(0.2)^{2}+\frac{(0.2)^{3}}{3}+\frac{(0.2)^{4}}{24}=1.2427 .
$$

MYV_ U5) \& \$h VYRgV

$$
y(0.2)=1+1+1+\frac{1}{3}+\frac{1}{24}=3.3751 .
$$

\section*{Example $\mathrm{I}^{`} \mathrm{lgVSj}$ GURd $\mathrm{Iq}^{\wedge}{ }^{\wedge} \mathrm{VE} \mathrm{Y}^{`} \mathrm{U}$}

$$
y^{\prime}-x y=1, \text { XZgV_}_{-} y=0 \$ \mathrm{Y} \mathrm{Y}_{-} x=2 .
$$

? VCV $\quad y^{\prime}=1+x y$.
? V_TV

$$
f(x, y)=1+x y 3 x_{0}=2, \quad y^{(0)}=y_{0}=y\left(x_{0}\right)=y(2)=0,
$$

R_UYV_TV

$$
f\left(x, y^{(n-1)}\right)=1+x y^{(n-1)} .
$$

I f SdeZf $\underset{\underline{Z}}{ } \underline{X}$ erVaVgR]f VdZ - !\$h V`SARZ

$$
y^{(n)}=0+\int_{2}^{x}\left(1+x y^{(n-1)}\right) d x \quad(n=1,2,3, \ldots)
$$

《/\$

$$
\begin{aligned}
& y^{(n)}=x-2+\int_{2}^{x} x y^{(n-1)} d x \quad(n=1,2,3, \ldots) \\
& y^{(1)}=x-2+\int_{2}^{x} x y^{(0)} d x
\end{aligned}
$$

Gf ęZ X $y^{(0)}=0, \mathrm{~h} \mathrm{~V}^{\prime} \mathrm{SeR} \underline{Z}$

$$
y^{(1)}=x-2+\int_{2}^{x} x \cdot 0 d x
$$

《

$$
y^{(1)}=x-2
$$

$$
y^{(2)}=x-2+\int_{2}^{x} x y^{(1)} d x
$$

Gf $ఱ \underline{Z} \mathrm{X} y^{(1)}=x-2, \mathrm{~h} V{ }^{`} \mathrm{~S} \in \underline{Z}$

$$
\begin{aligned}
y^{(2)} & =x-2+\int_{2}^{x} x(x-2) d x \\
& =-\frac{2}{3}+x-x^{2}+\frac{x^{3}}{3} \\
& y^{(3)}=x-2+\int_{2}^{x} x y^{(2)} d x
\end{aligned}
$$

Gf $\propto \underset{Z}{\boldsymbol{Z}} \boldsymbol{y}^{(2)}=-\frac{2}{3}+x-x^{2}+\frac{x^{3}}{3}, \mathrm{~h} V `$ SeRZ

$$
\begin{aligned}
y^{(3)} & =x-2+\int_{2}^{x} x\left(-\frac{2}{3}+x-x^{2}+\frac{x^{3}}{3}\right) d x \\
& =-\frac{22}{15}+x-\frac{x^{2}}{3}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{15} .
\end{aligned}
$$

MVT_dZVc

$$
y=-\frac{22}{15}+x-\frac{x^{2}}{3}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{15}
$$

$$
V * \&-!\approx(\&-* . \&
$$

 (\& Raac` i \mathbb{Z} Relj $\&$

$$
? \mathrm{VCV} f(x, y)=\frac{y-x}{y+x} 3 x_{0}=0, y^{(0)}=y_{0}=y\left(x_{0}\right)=y(0)=1, \text { R_UYV_TVSj }^{2} .!\$
$$

$$
\begin{aligned}
& y^{(n)}=1+\int_{0}^{x} \frac{y^{(n-1)}-x}{y^{(n-1)}+x} d x \\
& y^{(1)}=1+\int_{0}^{x} \frac{y^{(0)}-x}{y^{(0)}+x} d x
\end{aligned}
$$

$$
y^{(1)}=1+\int_{0}^{x} \frac{1-x}{1+x} d x
$$

9j RTf R] UZGZZ _\$

$$
\frac{1-x}{1+x}=-1+\frac{2}{1+x}
$$

R_UYV_TVEYVRS ${ }^{\prime}$ gVTR_ SVh ckev_ Rd

$$
\begin{aligned}
y^{(1)} & =1+\int_{0}^{x}\left(-1+\frac{2}{1+x}\right) d x \\
& =1-x+2 \ln (1+x) .
\end{aligned}
$$

 (\& h Z

$$
y(0.1) \approx 1-0.1+2 \ln (1+0.1)=0.9+2 \ln 1.1=1.0906 \text {. }
$$

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}
$$

 R_U)\&T coVTeè eYcWUVIZ R]a]RTVd\&

$$
\begin{aligned}
? \mathrm{Vc} V(x, y)=\frac{x^{2}}{y^{2}+1} 3 & x_{0}=0, y^{(0)}=y_{0}= \\
y^{(n)} & =\int_{0}^{x} \frac{x^{2}}{\left(y^{(n-1)}\right)^{2}+1} d x \\
y^{(1)} & =\int_{0}^{x} \frac{x^{2}}{\left(y^{(0)}\right)^{2}+1} d x
\end{aligned}
$$

$$
\begin{aligned}
& y^{(1)}=\int_{0}^{x} x^{2} d x=\frac{1}{3} x^{3} \\
& y^{(2)}=\int_{0}^{x} \frac{x^{2}}{\left(y^{(1)}\right)^{2}+1} d x
\end{aligned}
$$

Gf $e \underset{Z}{Z} \mathrm{X} y^{(1)}=\frac{1}{3} x^{3}, \mathrm{~h} V `$ SeRZ

$$
\begin{aligned}
& y^{(2)}=\int_{0}^{x} \frac{x^{2}}{(1 / 9) x^{6}+1} d x=\int_{0}^{x} \frac{d\left(\frac{1}{3} x^{3}\right)}{\left(\frac{1}{3} x^{3}\right)^{2}+1} d x \\
& =\tan ^{-1}\left(\frac{1}{3} x^{3}\right)=\frac{1}{3} x^{3}-\frac{1}{81} x^{9}+\cdots
\end{aligned}
$$

 a]RTVd\$h Vaf e

$$
\frac{1}{81} x^{9} \leq 0.0005
$$

h YZY j ZJUd

$$
x \leq 0.7
$$

? V_TV

$$
\begin{aligned}
& y(0.25)=\frac{1}{3}(0.25)^{3}=0.005 \\
& y(0.5)=\frac{1}{3}(0.5)^{3}=0.042
\end{aligned}
$$

 T _dZVCReZ _ R_UXVe

$$
y(1.0)=\frac{1}{3}-\frac{1}{81}=0.321 .
$$

Exercises

 d\&Vad!\&

$$
\begin{array}{ll}
) \& y^{\prime}=y, y(0)=1 . & * \& y^{\prime}=x+y, y(0)=-1 . \\
+\& y^{\prime}=x y+2 x-x^{3}, y(0)=0 . & , \& y^{\prime}=y-y^{2}, y(0)=\frac{1}{2} . \\
-\& y^{\prime}=y^{2}, y(0)=1 . & . \& y^{\prime}=2 \sqrt{y}, y(1)=0 .
\end{array}
$$

$/ \& y^{\prime}=\frac{3 y}{x}, \quad y(1)=1$.

$$
\left.0 \& y^{\prime}=2 x-y, y(1)=3.8\right]{ }^{\top} \underline{\underline{Z}} \cup y(1.1) .
$$

$$
\left.1 \& y^{\prime}=x-y, y(0)=1 . \quad 8\right] d \underline{\mathbb{Z}} \cup y(0.2) .
$$

$)\left(\& y^{\prime}=x^{2} y, y(1)=2.8\right]{ }^{\top} \mathbb{Z} \cup y(1.2)$.
$\left.)) \& y^{\prime}=3 x+y^{2}, y(0)=1.8\right]{ }^{\top}$ V $\underline{X} U y(0.1)$.
$\left.) * \& y^{\prime}=2 x+3 y, \quad y(0)=1.8\right] d^{\top} \underline{X} U y(0.25)$.
$\left.)+\& 2 \frac{d y}{d x}=x+y, y(0)=2.8\right] d$ VX $U y(0.1)$.
$\left.), \& \frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}, y(1)=1.8\right] d{ }^{\mathcal{Z}} \underline{U} y(1.1)$.
$\left.)-\& \frac{d y}{d x}-1=x y, y(0)=1.8\right] d \underline{\underline{Z}} \mathbf{U} y(0.1)$.
). $\left.\& \frac{d y}{d x}=x\left(1+x^{3} y\right), y(0)=3.8\right] d^{\mathbf{X}} \mathbb{U} y(0.1) R \underline{\mathrm{R}} y(0.2)$.

$$
\frac{d y}{d x}=x+x^{4} y, y(0)=3
$$

16

EULER METHODS

$$
\left.y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} . \quad t \quad\right)!
$$

I ARcę

《/\$

$$
x_{1}=x_{0}+h, \quad x_{2}=x_{1}+h, \ldots
$$

8]d UV_`EV $y_{0}=y\left(x_{0}\right), y_{1}=y\left(x_{1}\right), y_{2}=y\left(x_{2}\right), \ldots$

$$
d y=f(x, y) d x
$$

 y_{1} ! h VXVe

$$
\int_{y_{0}}^{y_{1}} d y=\int_{x_{0}}^{x_{1}} f(x, y) d x
$$

`C \(\quad y_{1}-y_{0}=\int_{x_{0}}^{x_{1}} f(x, y) d x\) ` $\quad y_{1}=y_{0}+\int_{x_{0}}^{x_{1}} f(x, y) d x$

$$
\begin{gathered}
y_{1} \approx y_{0}+f\left(x_{0}, y_{0}\right)\left(x_{1}-x_{0}\right) \\
y_{1} \approx y_{0}+h f\left(x_{0}, y_{0}\right) .
\end{gathered}
$$

I Z ZRclj \$WcerVcR_XV $x_{1} \leq x \leq x_{2}$, h VYRgV

$$
y_{2}=y_{1}+\int_{x_{1}}^{x_{2}} f(x, y) d x
$$

8 ddf $\wedge \underset{Z}{Z} \operatorname{Xer} \operatorname{Re} f(x, y) \approx f\left(x_{1}, y_{1}\right) \underline{Z} x_{1} \leq x \leq x_{2}, \quad+\mathrm{XZ} \mathrm{XVd}$

$$
y_{2} \approx y_{1}+h f\left(x_{1}, y_{1}\right) .
$$

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad(n=0,1, \cdots) \quad \mathrm{t},!
$$

J YVRS`gVZTTR]]W erV Euler method`c Euler-Cauchy method.

Working Rule (Euler method)

 J YV_ erVZEVCRegVVCc^f JR` VEuler method ZD

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad(n=0,1, \cdots) \quad \mathrm{t}-!
$$

$$
\frac{d y}{d x}=x^{2}+y^{2} \mathrm{~h} \text { 区్Y } y(0)=0 \quad \underline{Z} \text { erVcR_XV } 0 \leq x \leq 0.5 .
$$

$? \mathrm{VCV} f(x, y)=x^{2}+y^{2}, x_{0}=0, y_{0}=0, h=0.1$.
? V_TV

$$
x_{1}=x_{0}+h=0.2, \quad x_{2}=x_{1}+h=0.2, \quad x_{3}=x_{2}+h=0.3, \quad x_{4}=x_{3}+h=0.4, \quad x_{5}=x_{4}+h=0.5 .
$$

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

h V` SeRZ

$$
\begin{gathered}
y_{n+1}=y_{n}+0.1\left(x_{n}^{2}+y_{n}^{2}\right) \quad(n=0,1, \cdots) \\
y_{1}=y_{0}+0.1\left(x_{0}^{2}+y_{0}^{2}\right)=0+0.1(0+0)=0 \\
y_{2}=y_{1}+0.1\left(x_{1}^{2}+y_{1}^{2}\right)=0+0.1\left[(0.1)^{2}+0^{2}\right]=0.001 \\
y_{3}=y_{2}+0.1\left(x_{2}^{2}+y_{2}^{2}\right)=0.001+0.1\left[(0.2)^{2}+(0.001)^{2}\right]=0.005 \\
y_{4}=y_{3}+0.1\left(x_{3}^{2}+y_{3}^{2}\right)=0.005+0.1\left[(0.3)^{2}+(0.005)^{2}\right]=0.014 \\
y_{5}=y_{4}+0.1\left(x_{4}^{2}+y_{4}^{2}\right)=0.014+0.1\left[(0.4)^{2}+(0.014)^{2}\right]=0.0300196
\end{gathered}
$$

? V_TV

$$
\begin{array}{lll}
y(0)=0 & y(0.1)=0 & y(0.2)=0.001 \\
y(0.3)=0.005 & y(0.4)=0.014 & y(0.5)=0.0300196
\end{array}
$$

 $x=0.1$.
? VCV $f(x, y)=2 x y+1, x_{0}=0, y_{0}=0, h=0.02$. ? V_TV

$$
x_{1}=x_{0}+h=0.02, \quad x_{2}=x_{1}+h=0.04, \quad x_{3}=x_{2}+h=0.06, \quad x_{4}=x_{3}+h=0.08, \quad x_{5}=x_{4}+h=0.1 .
$$

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

h V` SARZ

$$
\begin{gathered}
y_{n+1}=y_{n}+0.02\left(2 x_{n} y_{n}+1\right) \quad(n=0,1, \cdots) \\
y_{1}=y_{0}+0.02\left(2 x_{0} y_{0}+1\right)=0+0.02(0+1)=0.02 . \\
y_{2}=y_{1}+0.02\left(2 x_{1} y_{1}+1\right)=0.02+0.02(2 \times 0.02 \times 0.02+1)=0.04 \$
\end{gathered}
$$

$$
\begin{gathered}
y_{3}=y_{2}+0.02\left(2 x_{2} y_{2}+1\right)=0.04+0.02(2 \times 0.04 \times 0.04+1)=0.06 \\
y_{4}=y_{3}+0.02\left(2 x_{3} y_{3}+1\right)=0.06+0.02(2 \times 0.06 \times 0.06+1)=0.08 \\
y_{5}=y_{4}+0.02\left(2 x_{4} y_{4}+1\right)=0.08+0.02(2 \times 0.08 \times 0.08+1)=0.1
\end{gathered}
$$

? V_TV

$$
\begin{array}{lll}
y(0)=0 & y(0.02)=0.02 & y(0.04)=0.04 \\
y(0.06)=0.06 & y(0.08)=0.08 & y(0.1)=0.1 .
\end{array}
$$

 gRIf V\&
? VcV $f(x, y)=x+y, \quad x_{0}=0, \quad y_{0}=y\left(x_{0}\right) y(0)=0 . \quad 8 \mathrm{dh} V$ YRgV è TRJIf JReV eVV gRIf V`Wy \underline{Z} VZgVdEVad\$h VYRgVè eRi V $h=\frac{x_{n}-x_{0}}{n}=\frac{1-0}{5}=0.2$.? V_TV

$$
x_{1}=x_{0}+h=0.2, \quad x_{2}=x_{1}+h=0.4, \quad x_{3}=x_{2}+h=0.6, \quad x_{4}=x_{3}+h=0.8, \quad x_{5}=x_{4}+h=1.0 .
$$

 -!\$h V` SeRZ

$$
y_{n+1}=y_{n}+0.2\left(x_{n}+y_{n}\right) \quad(n=0,1, \cdots)
$$

J YV daVadRcVXZgV_Z eYVW]J h Z XJ RSJN\&
 T _ UZ尹Z _ $y(0)=0$ TR_SVWf _U`feè SV

$$
y=e^{x}-x-1 . \quad \mathrm{t} .!
$$

 gRff Vd\$Z aRceचf]Rc\$

$$
y_{1}=y\left(x_{1}\right)=e^{x_{1}}-x_{1}-1=e^{0.2}-0.2-1=0.000, \text { Raač i } Z \text { ReV } \sqrt{j} \&
$$

n	x_{n}	Raac i Z ^REV gRJf V W y_{n}	$0.2\left(x_{n}+y_{n}\right)$	ব RTe gRJf Vd	$8 \mathrm{Sd}{ }^{\circ} \mathrm{ff} \mathrm{eV}$ gRJf V ' WKcc' c
$($	(\&	(\& (1	(\$ ${ }^{(1)}$	(\$1)	(\& (${ }^{\text {c }}$
)	(\&	(\& (1	(\& , 1	(\& * ${ }^{*}$	(\& * ${ }^{*}$
*	(\&)	(\& , 1	(\$00	(\&1*	(\$-*
+	(\&	($*^{*} 0$	(\& , .	(\$**	(\$1,
,	(\otimes)	(\$/,	(\$)-	(\&*.	($\chi_{\text {k-* }}$
-) \&	(\&01		(\&) 0	(\&*1

Exercises

$$
\begin{aligned}
& \left.\mathcal{E}^{d} \frac{d y}{d x}=1-y, y(0)=0 \quad \text { ReerVa`Z } \mathrm{e} x=0.2 \quad h=0.1\right) . \\
& \left.* \& \frac{d y}{d x}=\frac{y-x}{1+x}, y(0)=1 \quad \text { ReerVa`Z } \mathrm{e} x=0.1 \quad h=0.02\right) . \\
& \left.+\& y y^{\prime}=x, y(0)=1.5 \quad \text { ReerVa` } \underline{Z} \mathrm{e} x=0.2 \quad h=0.1\right) . \\
& \left., \& \frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1 \quad \text { ReerVa` } \underline{Z} \mathrm{e} x=0.2 \quad h=0.05\right) . \\
& \left.-\& y^{\prime}=x+y+x y, y(0)=1 \quad \text { ReerVa` } \underline{Z} \mathrm{e} x=0.1 \quad h=0.02\right) .
\end{aligned}
$$

$. \delta_{d x}^{d y}=1+y^{2}, y(0)=0$ ReerVa`Z \(/ \& \frac{d y}{d x}=x y, y(0)=1\) ReerVa`Zᅳᅳ e $\left.x=0.4 \quad h=0.2\right)$.
$0 \mathcal{K}_{d x}^{d y}=1+\ln (x+y), y(0)=1 \quad$ ReerVa`Z \(\left.\mathbf{e} x=0.2 \quad h=0.1\right)\). \(1 \& y^{\prime}=x^{2}+y, y(0)=1\) ReerVa`Z $\left.\mathrm{e} x=0.1 \quad h=0.05\right)$.
$)\left(\& y^{\prime}=2 x y, y(0)=1\right.$ ReerVa`Ze \(\left.x=0.5 \quad h=0.1\right)\).)) \(\& y^{\prime}=-y, y(0)=1\) ReerVa`Z $\mathrm{e} x=0.04 \quad h=0.01$).
@ < VCTZANd) *o

$$
\begin{aligned}
&) * \& y^{\prime}+0.1 y=0, \quad y(0)=2, h=0.1 \\
&)+\& y^{\prime}=\frac{1}{2} \pi \sqrt{1-y^{2}}, y(0)=0, h=0.1 \\
&), \& y^{\prime}+5 x^{4} y^{2}=0, y(0)=1, h=0.2 \\
&)-\& y^{\prime}=(y+x)^{2}, \quad y(0)=1, h=0.1
\end{aligned}
$$

 $[0,1]$.
 AR\ZX $h=0.1$.
 gRIf $\mathrm{Vac}^{\prime} \operatorname{SJV} \wedge \frac{d y}{d x}=2+\sqrt{x y}, y(1)=1 \&$

Modified Euler Method

D `UZXXU <f]Vc^Ver` UZIXZgV_Sj EYVZEVRe己_ Wc^f]R

$$
y_{1}^{(n+1)}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(n)}\right)\right], \quad n=0,1,2, \cdots
$$

$$
y_{1}^{(0)}=y_{0}+h f\left(x_{0}, y_{0}\right)
$$

 eYRe

$$
\left.y^{\prime}=x^{2}+y ; y(0)=1 . \quad \text { J R } \backslash h=0.05\right)
$$

$? \operatorname{VcV} f(x, y)=x^{2}+y ; x_{0}=0, y_{0}=1$.
$y_{1}{ }^{(0)}=y_{0}+h f\left(x_{0}, y_{0}\right)=1+0.05(1)=1.05$

$$
\begin{aligned}
y_{1}{ }^{(1)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{(0)}\right)\right] \\
& =1+\frac{0.05}{2}[f(0,1)+f(0.05,1.05)] \\
& =1+0.025\left[1+(0.05)^{2}+1.05\right] \\
& =1.0513 \\
y_{1}^{(2)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(1)}\right)\right] \\
& =1+\frac{0.05}{2}[f(0,1)+f(0.05,1.0513)] \\
& =1+0.025\left[1+(0.05)^{2}+1.0513\right] \\
& =1.0513
\end{aligned}
$$

? V_TVh VeR V $y_{1}=1.0513$, h YZY ZdT coVTeè Wf c UVIC R] a]RTVd\&
$\left.=c^{\wedge} f\right] R \in \mathbb{V d e r V W c}{ }^{\wedge}$

$$
y_{2}^{(n+1)}=y_{1}+\frac{h}{2}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}{ }^{(n)}\right)\right] \quad n=0,1,2, \cdots
$$

$$
\begin{aligned}
y_{2}{ }^{(0)} & =y_{1}+h f\left(x_{1}, y_{1}\right) . \\
& =1.0513+0.05\left[(0.05)^{2}+1.0513\right]=1.1040 \\
y_{2}{ }^{(1)} & =y_{1}+\frac{h}{2}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}{ }^{(0)}\right)\right] \\
& =1+\frac{0.05}{2}\left\{\left[(0.05)^{2}+1.0513\right]+\left[(0.1)^{2}+1.1040\right]\right\} \\
& =1.1055
\end{aligned}
$$

$$
\begin{aligned}
y_{2}^{(2)} & =y_{1}+\frac{h}{2}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}{ }^{(1)}\right)\right] \\
& =1+\frac{0.05}{2}\left\{\left[(0.05)^{2}+1.0513\right]+\left[(0.1)^{2}+1.1055\right]\right\} \\
& =1.1055
\end{aligned}
$$

? V_TVh VeRi V $y_{2}=1.1055$ \&
? V_TV eYVgRIf V ${ }^{`}$ Wy h YV_ $x=0.1$ Zd 1.1055 T' colVee` Wf c UVIZ R] a]RTVd\&
 eYRe
$$
\left.\frac{d y}{d x}=x+\sqrt{y} ; \quad y(0)=1 . \quad \mathrm{J} \mathbb{R} \vee h=0.2\right)
$$
$? \mathrm{Vc} \mathrm{V} f(x, y)=x+\sqrt{y} ; x_{0}=0, y_{0}=1$.

$$
\begin{aligned}
y_{1}^{(0)} & =y_{0}+h f\left(x_{0}, y_{0}\right)=1+0.2(0+1)=1.2 \\
y_{1}^{(1)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(0)}\right)\right] \\
& =1+\frac{0.2}{2}[1+(0.2+\sqrt{1.2}]=1.2295 . \\
y_{1}^{(2)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(1)}\right)\right] \\
& =1+\frac{0.2}{2}[1+(0.2+\sqrt{1.2295}]=1.2309 . \\
y_{1}^{(3)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(2)}\right)\right] \\
& =1+\frac{0.2}{2}[1+(0.2+\sqrt{1.2309}]=1.2309 .
\end{aligned}
$$

? V_TVh VeR V $y(0.2)=y_{1}=1.2309$. \&

Exercises

$$
\left.\mathcal{K}_{d x}^{d y}=1-y, y(0)=0 \text { ReerVa`Z } \mathrm{e} x=0.2 \quad h=0.1\right)
$$

$$
\left.* \mathcal{Q}_{d x}^{d y}=\frac{y-x}{1+x}, y(0)=1 \quad \text { ReerVa`Ze } x=0.1 \quad h=0.02\right)
$$

$$
\begin{aligned}
& \left.+\& y y^{\prime}=x, y(0)=1.5 \text { ReerVa`Ze } x=0.2 \quad h=0.1\right) \text {. } \\
& \left., \mathcal{E}_{d x}^{d y}=3 x+\frac{1}{2} y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.2 \quad h=0.05\right) . \\
& \left.-\& y^{\prime}=x+y+x y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.1 \quad h=0.02\right) \text {. } \\
& \left.. \delta \frac{d y}{d x}=1+y^{2}, y(0)=0 \quad \text { ReerVa`Z } \mathrm{e} x=0.4 \quad h=0.2\right) \text {. } \\
& \left./ \mathcal{K}_{d x}^{d y}=x y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.4 \quad h=0.2\right) . \\
& 0 \mathcal{E}_{\frac{d y}{d x}}^{d x}=1+\ln (x+y), y(0)=1 \quad \text { ReerVa`Z } \\
& \left.1 \& y^{\prime}=x^{2}+y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.1 \quad h=0.05\right) \text {. } \\
&)\left(\& y^{\prime}=2 x y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.5 \quad h=0.1\right) \text {. } \\
& \text {)) } \& y^{\prime}=-y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.04 \quad h=0.01 \text {). }
\end{aligned}
$$

17

RUNGE KUTTA METHODS

 UVCZRRZgVdh Z

 RMQ © $\mathbb{F} \subset$ PLC h^{r}.

Second Order Runge-Kutta Method

 dVT _ U R_U Wf cer ` dVc Ho \({ }^{\circ}{ }^{\wedge}\) Ver` Ud\&
 erv^\&

Working Method (Second Order Runge-Kutta Method)

$$
x_{1}=x_{0}+h, \quad x_{2}=x_{1}+h, \ldots
$$

$8 \mathrm{dd} \mathrm{UV}^{2}$ - $\mathrm{dV} \quad y_{0}=y\left(x_{0}\right), y_{1}=y\left(x_{1}\right), y_{2}=y\left(x_{2}\right), \ldots$

$$
\begin{aligned}
& x_{n+1}=x_{n}+h \\
& k_{n}=h f\left(x_{n}, y_{n}\right) \quad \mathrm{t} 0 \text { ! } \\
& l_{n}=h f\left(x_{n+1}, y_{n}+k_{n}\right) \quad \mathrm{t} 1! \\
& \left.y_{n+1}=y_{n}+\frac{1}{2}\left(k_{n}+l_{n}\right) \quad \mathrm{t}\right)(!
\end{aligned}
$$

 XZ﹎﹎Sj) (!\&
 $\frac{d y}{d x}=x^{2}+y^{2} \mathrm{~h}$ Z్Y $y(0)=0$.
? $\operatorname{VcV} f(x, y)=x^{2}+y^{2}, x_{0}=0, y_{0}=0, h=0.1 . ? \bigvee _T V$

$$
x_{1}=x_{0}+h=0.1, \quad x_{2}=x_{1}+h=0.2 .
$$

$$
\begin{aligned}
& k_{n}=h f\left(x_{n}, y_{n}\right)=0.1\left(x_{n}^{2}+y_{n}^{2}\right) \\
& l_{n}=h f\left(x_{n+1}, y_{n}+k_{n}\right)=0.1\left[x_{n+1}^{2}+\left(y_{n}+k_{n}\right)^{2}\right]
\end{aligned}
$$

R_U $\quad y_{n+1}=y_{n}+\frac{1}{2}\left(k_{n}+l_{n}\right)$

$$
\begin{aligned}
& k_{0}=0.2\left(x_{0}^{2}+y_{0}^{2}\right)=0.1\left(0^{2}+0^{2}\right)=0 . \\
& \left.l_{0}=0.2\left(x_{1}^{2}+\left(y_{0}+k_{0}\right)^{2}\right)=0.1\left[(0.1)^{2}+(0+0)^{2}\right)\right]=0.001
\end{aligned}
$$

R_U $\quad y_{1}=y_{0}+\frac{1}{2}\left(k_{0}+k_{0}\right)=0+\frac{1}{2}(0+0.001)=0.0005$.
$k_{1}=0.2\left(x_{1}^{2}+y_{1}^{2}\right)=0.1\left[(0.1)^{2}+(0.0005)^{2}\right]=0.001$, T` ccVTeè ercWa $]$ RTVd \mathbf{W} WVIZ R]d\&

$$
\left.l_{1}=0.2\left(x_{2}^{2}+\left(y_{1}+k_{1}\right)^{2}\right)=0.1\left[(0.2)^{2}+(0.0015)^{2}\right)\right]=0.004
$$

R_U $\quad y_{2}=y_{1}+\frac{1}{2}\left(k_{1}+l_{1}\right)=0.0005+\frac{1}{2}(0.001+0.004)=0.003$.
? V_TV $y(0.1)=0.0005, \quad y(0.2)=0.003$.

 cVof leh Z्Y erVV RTegRff V\&
 d\&Vad\$h VYRgVè RIV $h=\frac{x_{n}-x_{0}}{n}=\frac{1-0}{5}=0.2$? ? V_TV

$$
x_{1}=x_{0}+h=0.2, \quad x_{2}=x_{1}+h=0.4, \quad x_{3}=x_{2}+h=0.6, \quad x_{4}=x_{3}+h=0.8, \quad x_{5}=x_{4}+h=1.0 .
$$

$$
\begin{aligned}
& k_{n}=h f\left(x_{n}, y_{n}\right)=0.2\left(x_{n}+y_{n}\right) \\
& l_{n}=h f\left(x_{n+1}, y_{n}+k_{1}\right)=0.2\left(x_{n+1}+\left(y_{n}+k_{n}\right)\right) \\
& =0.2\left[x_{n}+0.2+y_{n}+0.2\left(x_{n}+y_{n}\right)\right] \$ \operatorname{Rd} x_{n+1}=x_{n}+h=x_{n}+a_{2} \text { R_U } \quad y_{n+1}=y_{n}+\frac{1}{2}\left(k_{n}+l_{n}\right) \\
& \quad=y_{n}+\frac{1}{2}\left\{0.2\left(x_{n}+y_{n}\right)+0.2\left[x_{n}+0.2+y_{n}+0.2\left(x_{n}+y_{n}\right)\right]\right\} \\
& \quad=y_{n}+0.22\left(x_{n}+y_{n}\right)+0.02
\end{aligned}
$$

n	x_{n}	Raac i でREV gRIf V ${ }^{`} W_{y_{n}}$	$x_{n}+y_{n}$	$0.22\left(x_{n}+y_{n}\right)+0.02$	y_{n+1}
((\%	(\& (1	(\&)(($*^{*}$ ($($	(\&*) (
)	(\$	($*^{*}$ ($($	(\&*) ((\&. 0 ,	(\$00,
*	(\&)	(\& 00,	(\&00,	(\& * / ,	(\$) -0
+	(\&	(\&) -0	(©) -0	(\$11-	(\&) - +
,	(\&	(\&) - +) \%)-+	(\$0) ,	($\& 1 * /$
-) \&	(\& ${ }^{*}$ *			

Exercises

$$
\begin{aligned}
&) \mathcal{C}_{\frac{d y}{d x}}=1-y, y(0)=0 \text { ReerVa` } \underline{Z} \mathbf{e} x=0.2 \quad \text { J R } \mathrm{V} h=0.1\right) . \\
& \left.* \&_{d x}^{d y}=\frac{y-x}{1+x}, y(0)=1 \quad \text { ReerVa` Z e } x=0.1 \quad \mathrm{~J} \mathrm{R} \backslash \mathrm{~V} h=0.02\right) . \\
& \left.+\& y y^{\prime}=x, y(0)=1.5 \text { ReerVa`Z } \mathrm{e} x=0.2 \text { J R| V } h=0.1\right) . \\
& \left., \varepsilon_{d x}^{d y}=x-y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.2 \text { J R } \backslash \vee h=0.1\right) . \\
& \left.-\& y^{\prime}=x+y+x y, y(0)=1 \text { ReerVa` } \underline{Z} \mathrm{e} x=0.1 \mathrm{~J} \text { R } \mathrm{V} h=0.02\right) . \\
& . \mathcal{C}_{d x}^{d y}=1+y^{2}, y(0)=0 \text { ReerVa` } \underline{Z} \mathrm{e} x=0.4 \quad \text { J R } \backslash(h=0.2) . \\
& \left./ \delta_{d x}^{d y}=x y, y(0)=1 \text { ReerVa` } \underline{Z} \mathrm{e} x=0.4 \quad \mathrm{JR} \mid \vee h=0.2\right) . \\
& 0 \mathcal{C}_{d x}^{d y}=1+\ln (x+y), y(0)=1 \quad \text { ReerVa`Z } \\
& \left.1 \& y^{\prime}=x^{2}+y, y(0)=1 \text { ReerVa`Z } \mathrm{e} x=0.1 \quad \text { J R } V h=0.05\right) . \\
&)\left(\& y^{\prime}=2 x y, y(0)=1 \text { ReerVa`Ze } x=0.5 \quad \mathrm{~J} \mathrm{R} \mid \vee h=0.1\right) \text {. }
\end{aligned}
$$

)) $\& y^{\prime}=y, y(0)=1, h=0.1$
$) * \& y^{\prime}=y-y^{2}, \quad y(0)=0.5, h=0.1$
$)+\& y^{\prime}=2\left(1+y^{2}\right), y(0)=0, h=0.05$
), $\& y^{\prime}+2 x y^{2}=0, y(0)=1, h=0.2$
 cR_XV 0.00(0.02)0.06.
 $h=0.5$ _ \quad erVZ $\underset{Z}{ } / \operatorname{cgR}][0,1]$.
 $y^{\prime}=x+2 y, y(0)=1, \quad \in \mathbb{R} Z \mathbf{X} h=0.1$.
 deVad` Wo. 2 ' VerVZZ \(\bar{Z}\) R] gRIf Vac` SJN^ $\frac{d y}{d x}=2+\sqrt{x y}, y(1)=1 \&$

Fourth Order Runge-Kutta method

Algorithm (The Runge-Kutta method)

 Z $\operatorname{EV} / \mathrm{cgR]} h$. $\mathbb{Z} / \$$

$$
\begin{aligned}
& x_{1}=x_{0}+h, \quad x_{2}=x_{1}+h, \ldots \\
& 8 \text { Jd UV_EV } \quad y_{0}=y\left(x_{0}\right), y_{1}=y\left(x_{1}\right), y_{2}=y\left(x_{2}\right), \ldots
\end{aligned}
$$

$$
\begin{aligned}
& x_{n+1}=x_{n}+h \\
& \left.\left.A_{n}=h f\left(x_{n}, y_{n}\right) \quad \mathrm{t}\right)\right)! \\
& \left.B_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} A_{n}\right) \quad \mathrm{t}\right) *! \\
& \left.C_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} B_{n}\right) \quad \mathrm{t} \quad\right)+ \\
& \left.D_{n}=h f\left(x_{n}+h, y_{n}+C_{n}\right) \quad \mathrm{t}\right),! \\
& \left.y_{n+1}=y_{n}+\frac{1}{6}\left(A_{n}+2 B_{n}+2 C_{n}+D_{n}\right) \quad \mathrm{t}\right)-!
\end{aligned}
$$

 $y(0)=0$.
$? \mathrm{VcV} f(x, y)=x^{2}+y^{2}, x_{0}=0, y_{0}=0, h=0.1 . \quad ? \mathrm{~V}$ TV

$$
x_{1}=x_{0}+h=0.1, \quad x_{2}=x_{1}+h=0.2 .
$$

$$
x_{n+1}=x_{n}+h=x_{n}+0.1
$$

$$
\begin{aligned}
& A_{n}=h f\left(x_{n}, y_{n}\right)=0.1\left(x_{n}^{2}+y_{n}^{2}\right) \\
& B_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} A_{n}\right)=0.1\left[\left(x_{n}+0.05\right)^{2}+\left(y_{n}+\frac{1}{2} A_{n}\right)^{2}\right] \\
& C_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} B_{n}\right)=0.1\left[\left(x_{n}+0.05\right)^{2}+\left(y_{n}+\frac{1}{2} B_{n}\right)^{2}\right] \\
& D_{n}=h f\left(x_{n}+h, y_{n}+C_{n}\right)=0.1\left[x_{n+1}^{2}+\left(y_{n}+C_{n}\right)^{2}\right] \\
& y_{n+1}=y_{n}+\frac{1}{6}\left(A_{n}+2 B_{n}+2 C_{n}+D_{n}\right) \\
& x_{1}=x_{0}+0.1=0+0.1=0.1 \\
& A_{0}=0.1\left(x_{0}^{2}+y_{0}^{2}\right)=0.1\left(0^{2}+0^{2}\right)=0 \\
& B_{0}=0.1\left[\left(x_{0}+0.05\right)^{2}+\left(y_{0}+\frac{1}{2} A_{0}\right)^{2}\right] \\
& =0.1\left[(0.05)^{2}+0^{2}\right]=0.00025 \text {. } \\
& C_{0}=0.1\left[\left(x_{0}+0.05\right)^{2}+\left(y_{0}+\frac{1}{2} B_{0}\right)^{2}\right] \\
& =0.1\left[(0.05)^{2}+(0.000125)^{2}\right]=0.00025 \text {. } \\
& D_{0}=0.1\left[x_{1}^{2}+\left(y_{0}+C_{0}\right)^{2}\right] \\
& =0.1\left[(0.1)^{2}+(0.00025)^{2}\right]=0.001 \text {. } \\
& y_{1}=y_{0}+\frac{1}{6}\left(A_{0}+2 B_{0}+2 C_{0}+D_{0}\right) \\
& =0+\frac{1}{6}(0+2 \times 0.00025+2 \times 0.00025+0.001)=0.00033 \text {. } \\
& x_{2}=x_{1}+0.1=0.1+0.1=0.2 \\
& A_{1}=0.1\left(x_{1}^{2}+y_{1}^{2}\right)=0.1\left[(0.1)^{2}+(0.00033)^{2}\right]=0.001 \\
& B_{1}=0.1\left[\left(x_{1}+0.05\right)^{2}+\left(y_{1}+\frac{1}{2} A_{1}\right)^{2}\right] \\
& =0.1\left[(0.15)^{2}+(0.00083)^{2}\right]=0.00225 \text {. } \\
& C_{1}=0.1\left[\left(x_{1}+0.05\right)^{2}+\left(y_{1}+\frac{1}{2} B_{1}\right)^{2}\right] \\
& =0.1\left[(0.15)^{2}+(0.001455)^{2}\right]=0.00025 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
D_{1} & =0.1\left[x_{2}^{2}+\left(y_{1}+C_{1}\right)^{2}\right] \\
& =0.1\left[(0.2)^{2}+(0.0058)^{2}\right]=0.004 . \\
y_{2} & =y_{1}+\frac{1}{6}\left(A_{1}+2 B_{1}+2 C_{1}+D_{1}\right) \\
& =0.00033+\frac{1}{6}(0.014)=0.002663 .
\end{aligned}
$$

 R_U $x=0.6, \mathbf{X Z g} \mathbf{V}_{-} \frac{d y}{d x}=1+y^{2}, y(0)=0$.
? VcV $f(x, y)=1+y^{2}, x_{0}=0, y_{0}=0, h=0.2 . \quad$? \quad _TV

$$
x_{1}=x_{0}+h=0.2, \quad x_{2}=x_{1}+h=0.4 .
$$

$$
\begin{aligned}
& \quad x_{n+1}=x_{n}+h=x_{n}+0.2 \\
& A_{n}=h f\left(x_{n}, y_{n}\right)=0.2\left(1+y_{n}^{2}\right) \\
& B_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} A_{n}\right)=0.2\left[1+\left(y_{n}+\frac{1}{2} A_{n}\right)^{2}\right] \\
& C_{n}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} B_{n}\right)=0.2\left[1+\left(y_{n}+\frac{1}{2} B_{n}\right)^{2}\right] \\
& D_{n}=h f\left(x_{n}+h, y_{n}+C_{n}\right)=0.2\left[1+\left(y_{n}+C_{n}\right)^{2}\right] \\
& \quad y_{n+1}=y_{n}+\frac{1}{6}\left(A_{n}+2 B_{n}+2 C_{n}+D_{n}\right) \\
& \quad x_{1}=x_{0}+0.2=0+0.2=0.2 \\
& A_{0}=0.2\left(1+y_{0}^{2}\right)=0.2\left(1+0^{2}\right)=0.2 \\
& B_{0}=0.2\left[1+\left(y_{0}+\frac{1}{2} A_{0}\right)^{2}\right]=0.2\left[1+(0.1)^{2}\right]=0.202 . \\
& C_{0}=0.2\left[1+\left(y_{0}+\frac{1}{2} B_{0}\right)^{2}\right]=0.2\left[1+(0.101)^{2}\right]=0.20204 . \\
& D_{0}=0.2\left[1+\left(y_{0}+C_{0}\right)^{2}\right] \\
& = \\
& =0.2\left[1+(0.20204)^{2}\right]=0.20816 .
\end{aligned}
$$

$$
\begin{aligned}
y_{1} & =y_{0}+\frac{1}{6}\left(A_{0}+2 B_{0}+2 C_{0}+D_{0}\right) \\
& =0+\frac{1}{6}(0.2+2 \times 0.202+2 \times 0.20204+0.20816)=0.2027
\end{aligned}
$$

$\mathbb{\mathbb { S }} \$ y(0.2)=0.2027$.

$$
\begin{aligned}
& x_{2}=x_{1}+0.1=0.2+0.2=0.4 \\
& A_{1}=0.2\left(1+y_{1}^{2}\right)=0.2\left[1+(0.2027)^{2}\right]=0.2082 \\
& B_{1}=0.2\left[1+\left(y_{1}+\frac{1}{2} A_{1}\right)^{2}\right]=0.2\left[1+(0.3068)^{2}\right]=0.2188 . \\
& C_{1}=0.2\left[1+\left(y_{1}+\frac{1}{2} B_{1}\right)^{2}\right]=0.2\left[1+(0.3121)^{2}\right]=0.2195 . D_{1}=0.2\left[1+\left(y_{1}+C_{1}\right)^{2}\right] \\
&=0.2\left[1+(0.4222)^{2}\right]=0.2356 . \\
& y_{2}=y_{1}+\frac{1}{6}\left(A_{1}+2 B_{1}+2 C_{1}+D_{1}\right) \\
&=0.00033+\frac{1}{6}(0.2082+2 \times 0.2195+2 \times 0.2195+0.2356) \\
&=0.4228 .
\end{aligned}
$$

ד/\$ $\$ \quad y(0.4)=0.4228$, T coVTeè Wf c UVIZ R] a]RTVd\&

$$
x_{3}=x_{2}+0.1=0.4+0.2=0.6
$$

$$
\begin{array}{ll}
A_{2}=0.2\left(1+y_{2}^{2}\right) ; & B_{2}=0.2\left[1+\left(y_{2}+\frac{1}{2} A_{2}\right)^{2}\right] \\
C_{2}=0.2\left[1+\left(y_{2}+\frac{1}{2} B_{2}\right)^{2}\right] ; & D_{2}=0.2\left[1+\left(y_{2}+C_{2}\right)^{2}\right]
\end{array}
$$

I f SdeZf e_ZXerVgRff Vo\$R_Uf dZX

$$
y_{3}=y_{2}+\frac{1}{6}\left(A_{2}+2 B_{2}+2 C_{2}+D_{2}\right)
$$

h V SeRZ $y(0.6)=y_{3}=0.6841$, T ccVTeè Wf c UVIZ R] a]RTVd\&
 Raac` i Z゙ ReVjj Wc \(x=1 \mathrm{Sj}\) Hf _XVBf \(\oplus R\) ^Ver` UZ V RTegRIf V\&
 deVad\$h VYRgVè eRl V $h=\frac{x_{n}-x_{0}}{n}=\frac{1-0}{5}=0.2$? ? V_TV

$$
x_{1}=x_{0}+h=0.2, \quad x_{2}=x_{1}+h=0.4, \quad x_{3}=x_{2}+h=0.6, \quad x_{4}=x_{3}+h=0.8, \quad x_{5}=x_{4}+h=1.0 .
$$

$$
\begin{aligned}
& x_{n+1}=x_{n}+h=x_{n}+0.2 \\
A_{n}= & h f\left(x_{n}, y_{n}\right)=0.2\left(x_{n}+y_{n}\right) \\
B_{n}= & h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} A_{n}\right)=0.2\left[x_{n}+0.1+y_{n}+0.1\left(x_{n}+y_{n}\right)\right] \\
= & 0.22\left(x_{n}+y_{n}\right)+0.02 \\
C_{n}= & h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} B_{n}\right) \\
= & 0.2\left[x_{n}+0.1+y_{n}+0.11\left(x_{n}+y_{n}\right)+0.01\right] \\
= & 0.222\left(x_{n}+y_{n}\right)+0.022 \\
D_{n}= & h f\left(x_{n}+h, y_{n}+C_{n}\right) \\
= & 0.2\left[x_{n}+0.2+y_{n}+0.222\left(x_{n}+y_{n}\right)+0.022\right] \\
= & 0.2444\left(x_{n}+y_{n}\right)+0.0444 \\
y_{n+1}= & y_{n}+\frac{1}{6}\left(A_{n}+2 B_{n}+2 C_{n}+D_{n}\right)
\end{aligned}
$$

$\mathbb{Z} \mathbb{\$} \$ \quad y_{n+1}=y_{n}+0.2214\left(x_{n}+y_{n}\right)+0.0214$.

n	x_{n}	Raač i Z ReV gR]f ${ }^{{f5c9f1409-8bb8-4a75-9ce2-5d96dab5533c}}{ }^{\prime} y_{n}$	$x_{n}+y_{n}$	$0.2214\left(x_{n}+y_{n}\right)$	$0.2214\left(x_{n}+y_{n}\right)+0.0214$
$($	(\$	(\& ($1($	(\& ${ }_{\text {(}}(1$	(\& (1	($*^{*}$) , ($($
)	($\%$	(\& * ${ }^{*}$) ($($	(\& *) , ((\& , 1 () 0	$(\$ / 2)$,
*	(\&)	(\$1) 0) 0	(\&1) 0) 0	(\& (0001	($)^{+}+{ }^{*} 01$
+	(\&	(\&**) (/	($\otimes^{* *}$) (/		(\& (+ ,) ,
,	(\otimes	(\& *- -*)) \&*- -*)	(\%/) +	(\& $1^{*} /+$
-) \&	(\&) 0 *-)			

Table:

| x_{n} | ব RTe gRIf V | {8 aac` i て ReVgRIf Vdè V ‘SARZWS} & \multicolumn{3}{\|l|}{} \\ \hline & & \[\begin{aligned} & \text { f J Nc } \\ & \text { ^ Ver' U } \end{aligned} \] & \[\begin{aligned} & \text { H\% } \\ & \text { I VT } T^{\prime} \text { U } \\ & \text { F dUVC } \end{aligned} \] & & \[\begin{aligned} & \quad 千 \mathrm{JVc} \\ & \text { ^Ver` } \mathrm{U}\end{aligned}\] | | | H\%
 IVT U
 F dUVc | $\begin{gathered} \mathrm{HOB} \\ =\mathrm{f} \mathrm{cer} \\ \mathrm{~F} \mathrm{CUVC} \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | (\$) 1 | (χ^{*} ($(1$ | (\& *) , (| (\& * | (\& () , | (\& ($(1)+$ |
| (\&) | (\& 1) 0^{*} - | (\& , (| (\& 00, | (\$1) 0) 0 | (\$-* | (\& (+ , | (\& (${ }^{\text {(}}$ (/) |
| (\& | $\left.\left(\&^{* *}\right)\right)^{1}$ | ($*^{*}$ * | (\$)-0 | $\left(\$^{* *}\right)(/$ | (\& 1, | (\$1. + | ($\&\left(\begin{array}{l}())\end{array}\right.$ |
| (\otimes | (\& ${ }^{*}--$,) | (\$/, | (\&) - + | ($\otimes^{*}-{ }^{*}$) | ($\chi^{\text {-* }}$ | $(\&){ }^{*}$ | ($\& 1(1$ (1 |
|) \& | (\&) $0^{*} 0^{*}$ | (\&01 | (\& ${ }^{*}$ / | $\left.(\&) 0^{*}-\right)$ | ($*^{*} 1$ | (\&)-. | ($\&(1(+)$ |

Exercises

$) \& \frac{d y}{d x}=y, y(0)=1 \quad$ ReerVa` Z e \(x=1 \quad(h=0.5)\) \(* \& \frac{d y}{d x}=1-y, y(0)=0\) ReerVa`Z $\left.\mathrm{e} x=0.2 \quad h=0.1\right)$.
$+\&_{d x}^{d x}=y-x, y(0)=2$ ReerVa`Z \(\left.\mathrm{e} x=0.2 \quad h=0.1\right)\). \(, \mathcal{E}_{2 y} y^{\prime}=x, y(0)=1.5\) ReerVa`Z $\left.\mathrm{e} x=0.2 \quad h=0.1\right)$.
$-\& \frac{d y}{d x}=x-y, y(1)=0.4$ ReerVa`Z \(\left.\mathbf{Z} \mathrm{e} x=1.6 \quad \mathrm{~V} h=0.6\right)\). . \(\& y^{\prime}=x+y+x y, y(0)=1\) ReerVa`Z $\left.\mathrm{e} x=0.1 \quad h=0.02\right)$.
$/ \& \frac{d y}{d x}=\frac{y-x}{1+x}, y(0)=1$ ReerVa`Z \(\left.\mathrm{e} x=0.1 \quad h=0.02\right)\). \(0 \delta_{\frac{d y}{d x}}^{d x}=x y, y(1)=2\) ReerVa`ZZe $x=1.6 \quad h=0.2$).
$1 \& \frac{d y}{d x}=1+\ln (x+y), y(0)=1 \quad$ ReerVa`Z \()\left(\& y^{\prime}=x^{2}+y, y(0)=1\right.\) ReerVa`Z $\left.\mathrm{e} x=0.1 \quad h=0.05\right)$.
)) $\& y^{\prime}=2 x y, y(0)=1$ ReerVa`Z \(\left.\mathrm{e} x=0.5 \quad h=0.1\right)\). \() * \& y^{\prime}=3 x+\frac{1}{2}, y(0)=1\) ReerVa`ZZ e $\left.x=0.2 \quad h=0.05\right)$.
 0.00(0.02)0.06.
 AR\ZX $h=0.2$.
 Z Z®R] gR]f Vac`SJ^^ \(\frac{d y}{d x}=2+\sqrt{x y}, y(1)=1 \&\) \(Z \underline{Z} \operatorname{VcgR}][0,1]\).) O\&` $] g V y^{\prime}=2 x^{-1} \sqrt{y-\ln x}+x^{-1}, y(1)=0$ Wc $1 \leq x \leq 1.8$
RI Sj $<\mathrm{f}$ Nc ${ }^{\wedge}$ Ver ${ }^{\prime}$ Uh Zer $h=0.1$.
$\mathrm{S}!\mathrm{Sj}$ Z ac` gW <f]Vc^Ver` Uh ZXY $h=0.2$.

18

PREDICTOR CORRECTOR METHODS

Introduction

 Žac` gVerVgRff V` ${ }^{\prime} y_{n+1}$ \&

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

 acWUオè c\% ccVTè caRZ G\%! Rd

$$
\begin{aligned}
& P: \quad y_{n+1}{ }^{(0)}=y_{n}+h f\left(x_{n}, y_{n}\right) . \\
& C: \quad y_{n+1}^{(1)}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(0)}\right)\right] .
\end{aligned}
$$

 ZEVCREXVIj RdUWZ WUSV` h 2

$$
y_{n+1}^{(r)}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(r-1)}\right)\right] \quad(r=1,2, \ldots)
$$

 x_{n+1}.

Adams-Moulton Method

: `_dZVcerVZ ZER] gR]f Vac` $S \mathrm{~N}^{\wedge}$

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

 $x_{1}=x_{0}+h, x_{-1}=x_{0}-h, x_{-2}=x_{0}-2 h, \quad$ R_U $\quad x_{-3}=x_{0}-3 h \& \quad$ MV UV_`E \(f_{0}=f\left(x_{0}, y_{0}\right), \quad f_{1}=f\left(x_{1}, y_{1}\right), f_{-1}=f\left(x_{-1}, y_{-1}\right), \quad f_{-2}=f\left(x_{-2}, y_{-2}\right), \quad\) R_U \(f_{-3}=f\left(x_{-3}, y_{-3}\right)\). @ 8 UR^ dPD`f lè _ D Ver` U\$h VacWZeSj

$$
\left.y_{1}^{P}=y_{0}+\frac{h}{24}\left(55 f_{0}-59 f_{-1}+37 f_{-2}-9 f_{-3}\right) \quad \mathrm{t}\right)!
$$

R_UT coVTeSj

$$
y_{1}^{C}=y_{0}+\frac{h}{24}\left(9 f_{1}^{p}+19 f_{0}-5 f_{-1}+f_{-2}\right), \quad \quad \mathrm{t} \quad *!
$$

$\mathrm{h} \operatorname{YVCV} f_{1}^{p}=f\left(x_{1}, y_{1}^{P}\right)$.
J YVXV_VcR] Wc^dWc Wc^f $] R V)!R _U *!R c V X Z V V_{-} S$

$$
\left.y_{n+1}^{P}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right) \quad \mathrm{t} \quad\right)!
$$

h Zer T c CVTE

$$
y_{n+1}^{C}=y_{n}+\frac{h}{24}\left(9 f_{n+1}^{p}+19 f_{n}-5 f_{n-1}+f_{n-2}\right), \quad \mathrm{t} \quad *!
$$

$\mathrm{h} \operatorname{YVCV} f_{n+1}^{p}=f\left(x_{n+1}, y_{n+1}^{P}\right)$.
 VI acVdoMZ ` cUZ ReVWc^\& ? VcV \(x_{1}=0.8, h=0.2\) ? ? VTV \(\quad x_{0}=x_{1}-h=0.8-0.2=0.6\), \(x_{-1}=x_{0}-h=0.4, x_{-2}=x_{0}-2 h=0.2\), R_U \(x_{-3}=x_{0}-3 h=0\). J YV d\&Rcelc gRff Vd RcV \(y(0.6), y(0.4)\) R_U \(y(0.2) \& K d \underline{X}\) Wf ceY\%cuVc Hf _XVBf eer ^ Ver` U HW\&< R^a]V/ Z erVadgZ f dTYRaeVc!\$erVgRff VdRcVWf _Uè SV2

$$
y(0.6)=0.6841, \quad y(0.4)=0.4228, \quad y(0.2)=0.2027 .
$$

? V_TV $y_{0}=y\left(x_{0}\right)=y(0.6)=0.6841, \quad y_{-1}=y\left(x_{-1}\right)=y(0.4)=0.4228$,

$$
y_{-2}=0.2027 \quad \text { R_U } \quad y_{-3}=y\left(x_{-3}\right)=y(0)=0 .
$$

$8 \mathrm{Jd} \$ \quad f_{0}=f\left(x_{0}, y_{0}\right)=1+y_{0}^{2}=1+(0.6841)^{2} 3$

$$
f_{-1}=f\left(x_{-1}, y_{-1}\right)=1+y_{-1}^{2}=1+(0.4228)^{2} 3
$$

R_U d` `_\&MVeRSf JREVEY^ SV` h 2

x	y	$f(x)=1+y^{2}$
$x_{-3}=0.0$	$y_{-3}=(\&((1$	$\left.f_{-3}=\right) \&((($
$x_{-2}=0.2$	$y_{-2}=(\&(* /$	$\left.\left.\left.f_{-2}=\right) \&,\right)\right)$
$x_{-1}=0.4$	$y_{-1}=(\& * * 0$	$\left.f_{-1}=\right) \& / 0 /$
$x_{0}=0.6$	$y_{0}=(\& 0)$,	$\left.\left.f_{0}=\right) \& .0\right)$

$$
\begin{aligned}
& y_{1}^{P}=0.6841+\frac{0.2}{24}\left\{55\left[1+(0.6841)^{2}\right]-59\left[1+(0.4228)^{2}\right]\right. \\
& \left.+37\left[1+(0.4228)^{2}\right]-9\right\}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}^{c}=0.6841+\frac{0.2}{24}\left\{9\left[1+(0.0233)^{2}\right]+19\left[1+(0.6841)^{2}\right]\right. \\
& \left.-5\left[1+(0.4228)^{2}\right]+\left[1+(0.2027)^{2}\right]\right\}
\end{aligned}
$$

Exercises

 eYVUZWCV_eR] Vaf Rë_

$$
5 x \frac{d y}{d x}+y^{2}=2
$$

XZgV_ erRe

x	4.0	4.1	4.2	4.3
y	1.0000	1.0049	1.0097	1.0143

 $x=1.0$ 'VEYVZZZR] gRIf Vac` SJN^

$$
\frac{d y}{d x}=y-x^{2}, \quad y(0)=1
$$

$\mathrm{J} \mid \mathbb{R} \vee h=0.2$.

$$
x^{2} y^{\prime}+x y=1, \quad y(1)=1.0
$$

$$
y^{\prime}=y^{2} \sin t, \quad y(0)=1
$$

$$
y(0.05)=1.00125, \quad y(0.1)=1.00502, y(0.15)=1.01136 .
$$

Milne's Method

$$
\left.y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} . \quad \mathrm{t}\right)!
$$

 $x_{1}=x_{0}+h, x_{-1}=x_{0}-h, x_{-2}=x_{0}-2 h, \quad$ R_U $\quad x_{-3}=x_{0}-3 h \& \quad$ MV UV_'eV $f_{0}=f\left(x_{0}, y_{0}\right), \quad f_{1}=f\left(x_{1}, y_{1}\right), f_{-1}=f\left(x_{-1}, y_{-1}\right), \quad f_{-2}=f\left(x_{-2}, y_{-2}\right), \quad$ RU $U f_{-3}=f\left(x_{-3}, y_{-3}\right)$.
@ D Z__Vop D Ver` U\$h VacWZeSj

$$
\left.y_{1}^{P}=y_{-3}+\frac{4 h}{3}\left(2 f_{-2}-f_{-1}+2 f_{0}\right) \quad \mathrm{t}\right)!
$$

R_UT ccVTeSj

$$
y_{1}^{C}=y_{-1}+\frac{h}{3}\left(f_{-1}+4 f_{0}+f_{1}^{P}\right), \quad \quad \mathrm{t} \quad *!
$$

$\mathrm{h} \operatorname{YVCV} f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)$.
J YVXV_VCR] Wc^dWc Wc^f JRV)! R_U *! RcV XZgV_Sj

$$
y_{n+1}^{P}=y_{n-3}+\frac{4 h}{3}\left(2 f_{n-2}-f_{n-1}+2 f_{n}\right)
$$

t +

R_UT' coVTeSj

$$
y_{n+1}^{C}=y_{n-1}+\frac{h}{3}\left(f_{n-1}+4 f_{n}+f_{n+1}^{P}\right),
$$

$\mathrm{h} \operatorname{YVCV} f_{n+1}^{P}=f\left(x_{n+1}, y_{n+1}^{P}\right)$.
 V acVdoMUZ `dUZ ReVWc^\& 9பRQUK ; \(\mathrm{Ve} / \mathrm{C}^{\wedge} \underline{Z} \mathrm{Re}_{-}\)_ \({ }^{`} \mathrm{~W}_{y}(0.8):\)
? VcV ©R| V $x_{1}=0.8, h=0.2$? $V_{-} T V$

$$
x_{0}=x_{1}-h=0.8-0.2=0.6, \quad x_{-1}=0.4, \quad x_{-2}=0.2, \quad x_{-3}=0 .
$$

 erVgRIf W RcVWf _Uè SV2

$$
y(0.6)=0.6841, \quad y(0.4)=0.4228, \quad y(0.2)=0.2027
$$

? V_TV

$$
\begin{aligned}
& y_{0}=0.6841, \quad y_{-1}=0.4228, \quad y_{-2}=0.2027 \quad \mathrm{R}_{-} \mathrm{U} \\
& y_{-3}=y\left(x_{-3}\right)=y(0)=0 .
\end{aligned}
$$

8]d $\$ \quad f_{0}=f\left(x_{0}, y_{0}\right)=1+y_{0}^{2}=1+(0.6841)^{2} 3$

$$
f_{-1}=1+y_{-1}^{2}=1+(0.4228)^{2} 3
$$

R_U d ` _\&M VeRSf JREVEYV SV` h 2

x	y	$f(x)=1+y^{2}$
$x_{-3}=0.0$	$y_{-3}=(\&((1$	$\left.f_{-3}=\right) \&((()$
$x_{-2}=0.2$	$y_{-2}=(\&(* /$	$\left.\left.\left.f_{-2}=\right) \&,\right)\right)$
$x_{-1}=0.4$	$y_{-1}=(\& * * 0$	$\left.f_{-1}=\right) \& / 0 /$
$x_{0}=0.6$	$y_{0}=(\& 0)$,	$\left.\left.f_{0}=\right) \& .0\right)$

$$
y_{1}^{P}=0+\frac{0.8}{3}[2(1.0411)-1.1787+2(1.4681)]=1.0239
$$

? V_TV

$$
f_{1}=1+\left(y_{1}^{P}\right)^{2}=1+(1.0239)^{2}=2.0480
$$

R_UYV_TVerVT coVTeW gRIf V` W \(y_{1} \operatorname{Re} x_{1}=0.8\) Zd` SeRZ W f dZXX *! RdSV` h 2

$$
y_{1}^{c}=0.4228+\frac{0.2}{3}[1.1787+4(1.4681)+2.0480]=1.0294 .
$$

? V_TV $y(0.8)=1.0294$, T coVTeè Wf ca]RTVd` WUVIZ R]\& ; \(\mathrm{V}=\mathrm{C}^{\wedge} \underline{Z}_{\underline{Z}}^{\mathrm{R}} \vec{Z}_{-}{ }^{`} \mathrm{~W} y(1.0):\)
? VcV ©R| V $x_{1}=1.0, h=0.2$? $V_{-} T V$

$$
x_{0}=x_{1}-h=1.0-0.2=0.8, \quad x_{-1}=0.6, \quad x_{-2}=0.4, \quad x_{-3}=0.2 .
$$

J YVd\&RceVcgR]f VdRdV $y(0.8), y(0.6), \operatorname{R} U y(0.4) \& M$ VYRgVerVgRff Vd

$$
y(0.8)=1.0294, \quad y(0.6)=0.6841, \quad y(0.4)=0.4228 .
$$

? V_TV

$$
y_{0}=1.0294, \quad y_{-1}=0.6841, \quad y_{-2}=0.4228 \quad \text { R } \cup y_{-3}=0 .
$$

$8 \mathrm{Jd}{ }^{\prime} \$ f_{0}=1+y_{0}^{2}=1+(1.0294)^{2} 3 f_{-1}=1+y_{-1}^{2}=1+(0.6841)^{2} 3 R _U$ d $^{\text {- }}$ _ \&

x	y	$f(x)=1+y^{2}$
$x_{-3}=0.2$	$y_{-3}=(\&(* /$	$\left.\left.\left.f_{-3}=\right) \&,\right)\right)$
$x_{-2}=0.4$	$y_{-2}=(\& * * 0$	$\left.f_{-2}=\right) \& / 0 /$
$x_{-1}=0.6$	$y_{-1}=(\& 0)$,	$\left.\left.f_{-1}=\right) \& .0\right)$
$x_{0}=0.8$	$y_{0}=1.0294$	$f_{0}=* \&-1 /$

$$
y_{1}^{P}=1.5384
$$

? V_TV

$$
f_{1}=1+\left(y_{1}^{P}\right)^{2}=3.3667
$$

$$
y_{1}^{C}=1.5557 \text {. }
$$

$$
\frac{d y}{d x}=\frac{x+y}{2}
$$

Rdff ${ }^{\wedge} \underline{Z} X y(0)=2 . \quad y(0.5)=2.636, y(1.0)=3.595$ R_U $y(1.5)=4.968$.
$? \mathrm{VcV} \in \mathbb{V} \mid x_{1}=2.0, h=0.5$? V_{-}TV

$$
x_{0}=x_{1}-h=2.0-0.5=1.5, \quad x_{-1}=1, \quad x_{-2}=0.5, \quad x_{-3}=0 .
$$

$$
y_{0}=4.968, \quad y_{-1}=3.595, \quad y_{-2}=2.636 \quad \mathrm{R} \cup y_{-3}=2 .
$$

$8 \mathrm{~d} f(x, y)=\frac{x+y}{2}, \mathrm{~h} V \mathrm{YRg} \mathrm{V}$

$$
\begin{aligned}
& f_{0}=f\left(x_{0}, y_{0}\right)=\frac{x_{0}+y_{0}}{2}=\frac{1.5+4.968}{2}=3.2340 .3 \\
& f_{-1}=f\left(x_{-1}, y_{-1}\right)=\frac{x_{-1}+y_{-1}}{2}=\frac{1.0+3.595}{2}=2.2975 .3 \\
& f_{-2}=f\left(x_{-2}, y_{-2}\right)=\frac{x_{-2}+y_{-2}}{2}=\frac{0.5+2.636}{2}=1.5680 .3
\end{aligned}
$$

$$
\begin{aligned}
y_{1}^{P} & =y_{-3}+\frac{4 h}{3}\left(2 f_{-2}-f_{-1}+2 f_{0}\right) \\
& =2+\frac{4(0.5)}{3}[2(1.5680)-2.2975+2(3.2340)]=6.8710 .
\end{aligned}
$$

 $\left.W c^{\wedge} f\right]$

$$
y_{1}^{C}=y_{-1}+\frac{h}{3}\left(f_{-1}+4 f_{0}+f_{1}^{P}\right),
$$

$\mathrm{h} \operatorname{YVCV} f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)$.

$$
f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)=\frac{x_{1}+y_{1}^{P}}{2}=\frac{2+6.871}{2}=4.4355 .
$$

J Yf derV T covTew gRif VZXXZI_ Sj

$$
y_{1}^{c}=3.595+\frac{0.5}{3}[2.2975+4(3.234)+4.4355]=6.8731667 .
$$

? V_TVR_Raac` i Z ReVgRIf V` Wy Re $x=2$ ZleRl V_Rd $y(2)=y_{1}^{c}=6.8731667$.

$$
\frac{d y}{d x}=x+y ; \quad y(0)=1
$$

 WUerVgRjf V` Wy ReerVacVgZ f dWf ca`Zed $\quad x{0}=x_{1}-h=0.4-0.1=0.3, \quad x_{-1}=0.2$,

 $y_{0}=y\left(x_{0}\right)=y(0.3)=1.3997, \quad y_{-1}=y\left(x_{-1}\right)=y(0.2)=1.2428, \quad y_{-2}=y\left(x_{-2}\right)=y(0.1)=1.1103$.

$$
\begin{aligned}
& f_{0}=f\left(x_{0}, y_{0}\right)=x_{0}+y_{0}=0.3+1.3997=1.6997 \\
& f_{-1}=f\left(x_{-1}, y_{-1}\right)=x_{-1}+y_{-1}=0.2+1.2428=1.4428 \\
& f_{-2}=f\left(x_{-2}, y_{-2}\right)=x_{-2}+y_{-2}=0.1+1.1103=1.2103 .
\end{aligned}
$$

$$
\begin{aligned}
y_{1}^{P} & =y_{-3}+\frac{4 h}{3}\left(2 f_{-2}-f_{-1}+2 f_{0}\right) \\
& =1+\frac{4(0.5)}{3}[2(1.2103)-1.4428+2(1.6997)]=1.58363
\end{aligned}
$$

9WVdVf dZXeYVT ccVTè c Wc^f $] R$

$$
y_{1}^{C}=y_{-1}+\frac{h}{3}\left(f_{-1}+4 f_{0}+f_{1}^{P}\right), \quad \mathrm{t} \quad *!
$$

h VT ^af EV

$$
f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)=x_{1}+y_{1}^{P}=0.4+1.5836=1.9836 .
$$

? V_TV

$$
y_{1}^{c}=1.2428+\frac{0.1}{3}[1.4428+4(1.6997)+1.9836]=1.5836 \text {. }
$$

i	$($	$(\&)$	$(\&$	$(\&$	$(\&$
j	$) \&((() \&)(+) \&, * 0$	$) \& 11 /$	$) \& 0+$		

 $\frac{d y}{d x}=\frac{x+y}{2} \operatorname{Rddf} \wedge \underline{Z} X(0)=2 . y(0.5)=2.636, y(1.0)=3.595 \operatorname{RZ} \cup y(1.5)=4.968$.
? VcVARIV $x_{1}=2.0, h=0.5 . ? ~ V-T V$

$$
x_{0}=x_{1}-h=2.0-0.5=1.5, x_{-1}=1, x_{-2}=0.5, x_{-3}=0 .
$$

$$
y_{0}=4.968, \quad y_{-1}=3.595, \quad y_{-2}=2.636 \mathrm{R} \cup y_{-3}=2 .
$$

$8 \mathrm{~d} f(x, y)=\frac{x+y}{2}, \mathrm{~h} V \mathrm{YRg} \mathrm{V}$

$$
\begin{aligned}
& f_{0}=f\left(x_{0}, y_{0}\right)=\frac{x_{0}+y_{0}}{2}=\frac{1.5+4.968}{2}=3.2340 .3 \\
& f_{-1}=f\left(x_{-1}, y_{-1}\right)=\frac{x_{-1}+y_{-1}}{2}=\frac{1.0+3.595}{2}=2.2975 .3 \\
& f_{-2}=f\left(x_{-2}, y_{-2}\right)=\frac{x_{-2}+y_{-2}}{2}=\frac{0.5+2.636}{2}=1.5680 .3
\end{aligned}
$$

$$
\begin{aligned}
y_{1}^{P} & =y_{-3}+\frac{4 h}{3}\left(2 f_{-2}-f_{-1}+2 f_{0}\right) \\
& =2+\frac{4(0.5)}{3}[2(1.5680)-2.2975+2(3.2340)]=6.8710 .
\end{aligned}
$$

 $\left.W c^{\wedge} f\right]$

$$
y_{1}^{C}=y_{-1}+\frac{h}{3}\left(f_{-1}+4 f_{0}+f_{1}^{P}\right),
$$

$\mathrm{h} \operatorname{YVCV} f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)$.

$$
f_{1}^{P}=f\left(x_{1}, y_{1}^{P}\right)=\frac{x_{1}+y_{1}^{P}}{2}=\frac{2+6.871}{2}=4.4355 .
$$

J Yf derVT ccVTeW gRff VZIXZgV_ Sj

$$
y_{1}^{C}=3.595+\frac{0.5}{3}[2.2975+4(3.234)+4.4355]=6.8731667
$$

? V_TVR_Raac` i \(\mathbb{Z}\) ReVgRIf V` Wy Re $x=2$ ZleRl V_Rd $y(2)=y_{1}^{c}=6.8731667$.

Exercises

$$
\frac{d y}{d x}=-x y^{2} ; \quad y(0)=2
$$

$$
\frac{d y}{d x}=y(x+y), \quad y(0)=1
$$

f dZXD Z_V¢plG\% ^ Ve`` U\$Re $x=0.4$ given that

$$
y(0.1)=1.11689, y(0.2)=1.27739 \text { and } y(0.3)=1.50412 .
$$

[^0]:

