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Abstract—The shallow water equation system was applied in this 

study to model the water flow over complex topography in the urban 

area. A finite volume method based on the first order well-balanced 

scheme was used to solve the model. In order to upgrade the capability 

of flood control in urban areas, we developed in this work the 

numerical software for simulation and visualization of flooding in the 

urban areas. The developed software was used for the flood simulation 

in Jakarta, Indonesia. The simulation results can show effects of 

building for the urban flooding. 

 

Keywords— Shallow water equations, Finite Volume Method, 

Simulation, Visualization. 

I. INTRODUCTION 

LOOD is one of the catastrophic events that can result to 

several effects such as loss of human life and loss of 

economics. Flood is the most common natural disaster 

which often occurs in almost countries all over the world. 

Flooding may be caused by several reasons, such as heavy rains, 

dam-break, flood embankments [10]. Previous studies have 

shown that the use of mathematical model can simulate 

flooding in urban areas, for example: [10], [9], and [3]. 

The shallow water equations (SWEs) are one of the 

mathematical models which describe the surface flow over 

complex topography and also used to simulate many 

phenomena of practical interest including river flood, tsunami 

propagation and dam break flow [5], [1], [13]. Solutions of 

shallow water equations are difficult to be solved analytically, 

and numerical methods are needed. 

There are many approaches of numerical methods that are 

widely used for solving the SWEs. They include the finite 

element method (FEM), the finite volume method (FVM) and 

the finite different method (FDM), etc. The most of researchers 

selected to use the finite volume method for the water flow 

simulation. For the finite volume method, [8] developed a 

robust, accurate and computationally efficient numerical model 

to solve shallow water equations, and finite volume method 

based on triangular grid is used, while [2] studied the finite 

volume method to solve shallow water equations and Godunov-
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type method based on the approximate Riemann solver is used 

to compute the flux function. 

For the numerical methods, the solutions obtained are always 

related to computer programing because numerical calculations 

are often repeated every time to calculate the solutions. 

Computer simulation based on software development is 

normally used to minimize fatalities and damage to public 

service facility for disaster preparation and prevention process. 

Computer programs were developed in previous works for 

flooding simulation. [4] Developed lizard software for 

simulation of flooding, while [1] simulated and visualized 

rainwater flow in the surface by developing the software. 

Moreover, numerical techniques were studied for improving 

the numerical model. [12], [11] and [7], provided two 

important factors for solving shallow water equations that are 

steady-state stationary and contact discontinuities. Both the 

completions are not always easy to be handled numerically 

using standard numerical schemes. This difficulty can be 

overcome by using the well-balanced schemes [7]. [12] used a 

second order scheme based on linear reconstruction for solving 

well-balanced scheme and prove the scheme can preserve the 

non-negativity water height. [11] Develop a first order scheme 

with hydrostatic reconstruction to solve well-balanced scheme. 

[6] proved that the first order based on hydrostatic 

reconstruction can preserve the computation in the wet-dry 

front area. 

In order to upgrade the capability of flood control in the 

urban areas, we developed in this work a numerical model and 

software for simulation and visualization of flooding in the 

urban area. The FVM based on the first order well-balanced 

scheme is used to solve the shallow water equations.  

The paper is organized as follows. Section 2 presents shallow 

water equations, while section 3 provides the details about the 

numerical method. Section 4, the application of city flood 

simulations with building and without building is shown. The 

results in application are given in section 5, and conclusion is 

presented in section 6. 

II.  SHALLOW WATER EQUATIONS 

The model in this work was developed based on shallow 

water equations for determining the behavior of water flow in 

the urban area. The model system is presented in vector form as 

follow: 
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where  Tvhuhhq 


 is the vector of dependent variables 

consisting of the water depth h, the discharge per unit width uh 

and vh with velocity component u and v in the x and y 

directions, and t is the time.  

The vector f


 and g


 can be expressed in terms of the 

primary variables u, v and h as 
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where  qf


 and  qg


 are the flux vectors of the system in 

the directions of the coordinate axis x and y, respectively. g is 

the acceleration due to gravity, R is the rate of river increased 

by rainfall. xS0  and yS0  are the bed slope in x and y 

directions, respectively. fxS  and fyS  are the friction terms in x 

and y directions, can be estimated by using the Manning 

resistance law. 
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In which n is the Manning resistance coefficient. 

III. NUMERICAL METHOD 

The finite volume methods based on the first order well-

balanced scheme is used to solve the model. The details can be 

shown as the followings. 

A. Finite Volume Discretization Over Structured 

For the finite volume method, the numerical domain is 

subdivided into rectangular (interval) grid cells of the form 
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    are the length of the 

cells. 

 
Fig. 1 The notation used for a Cartesian 2D grid (a) and typical 

structured grids (b) 

 

Integrating the conservation law in (1) over each grid cell, 

and by applying Gauss divergent theorem to the second and 

third terns, we obtain: 
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where jiC ,  is the control volume,    is the boundary of the 

jiC , .     qgqfF
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,  is the flux vectors at each interface of 

the cell boundary. Dividing with the cell area 
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average of q
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where subscripts i, j denote spatial index of the cell.  

The line integral in (4) can be calculated by the sum of the 

fluxes over the four walls around the cell as shown in Fig. 1 (b). 

By using the first order well-balanced scheme in [11], the 

gravity force ,i jZ  can be distributed to the numerical fluxes for 

each sub-interface, and Euler's method can be used for 

approximation of the time derivative, so we can write the finite 

volume formulation as 
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 where *

,
2

1 ji
f



 and *

,
2

1ji
g


 are the numerical fluxes function 

depending upon the chosen scheme. ,

n

i jQ represents the cell 

average value over the (i,j)  grid cell at time  tn. 

B. Interface Fluxes Calculation 

The fluxes calculation based on the first order well-balanced 

scheme was used in this work. The fluxes with gravity force at 

each interface are computed based on the Harten, Lax and Van 

Leer (HLL) Riemann solver with good robustness and accuracy 
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where HLLf


 and  HLLg


 are approximate Riemann solver 

based on Harten, Lax and Van Leer (HLL) and can be defined 

by 
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They are  computed with the hydrostatic reconstruction state 

by  ThvhuhU ˆˆˆ


 when ĥ  is a particular value based on 

Audusse’s scheme for preserving the lake-at-rest condition and 

guarantee that water depth is nonnegative. The formulas for ĥ  

are given by 
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In order to completely determine the numerical flux in HLL 

Riemann solver, there is need to estimate the wave speeds 

ULR SSS ,,  and DS . The wave speeds are assigned based on 

the work of [14] as follows: 
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eigenvalues of Jacobian matrix 
 f q

x




 and for 

 g q

y




 gives 
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C. Source Terms Computation 

The source term vectors ,i jS  in (2) consists of the rate of 

river increased by rainfall and the friction force, For the first 

one, because this one is water depth that is vertically added to 

control volume per unit time, we update a new value of
1

,
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(6), as 
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Where ,

n

i jR  is the average rate of river increased by rainfall, 

in each cell (i ,j) in the range of time step for n to n+1. For the 

second one, the friction forces can be computed by the semi  

implicit method as showed in [1]. It update a new value of 
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 in (6) as follows: 
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Similarly, 1
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The semi implicit method allows to preserve stability and 

steady state at rest. 

D. Stability Condition 

The Courant Friedrich Lewy (CFL) condition, which is the 

stability criterion of explicit numerical schemes is used to 

define the time step t  where 

 

max

min5.0


A
t


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In the (21)  min , ,min ,i j i jA x y    , for all (i,j) D, 

where D is the computational domain, while max  is the 

maximum absolute value of all the wave speeds in the 
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E. Boundary Condition 

This study used open boundary conditions, and can be given 

by 
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where 1,0,,,0 ,,, iijmxj qqqq
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and myiq ,


are the vector of 

dependent variables for the boundary cells. 

F. Topography Interpolation 

In this work, Shuttle Radar Topography Mission (SRTM) 

topography data is used, and the data represent in the form of a 

data grid cells for each 90 meter. Topography data is better 

modeled by the smaller distance. Therefore, the topography 

interpolation is needed. In this study, we used the bilinear 

interpolation technique for obtaining the interpolated data of 

topography. 

 
Fig. 2 The bilinear interpolation 

 

Our purpose is to find the value of  as shown in Fig. 2, 

before we find the value of , we have to find value of 

 and  by using the linear interpolation. ,and 

then the approximated value of  is obtained by the linear 

interpolation  and . The formula for  can 

be written as 
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where  is the position of the topographic data grid cell 

used for approximation with  and  when 
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are the mapped indicates of the computational grid cell 

position  to the topographic data grid.  and  are 

numbers of columns and rows of the topographic data grid, 

while  and  are number of columns and rows of the 

computational grid. 

G. Algorithm Overview 

    The developed algorithm consists of several steps describing 

the calculation procedures, as illustrated in Fig. 3, the detail for 

each step is described in the following steps: 
 

o Step  1: Read data and topography interpolation. 

o Step 2: Make initial data and create building (the 

details of the creating building will be shown in the 

next section). 

o Step  3: Set boundary condition. 

o Step 4: Calculate the flux by using the first order well-

balanced scheme, and find the max wave speed. 

 

 
 

Fig. 3 The algorithm overview 

 

o Step 5: Calculate , and compute the source term. 

o Step 6: Visualize the simulation results in 3D by 

OpenGL. 

o Repeat steps 3-6 until the simulation is finished. 

IV. APPLICATION CITY FLOOD SIMULATION WITH BUILDING 

AND WITHOUT BUILDING 

This section will present how to set up the simulation of 

flooding in urban area by using our software developed in this 

work, including how to make the building, river and road data 

in the software. The software was developed by Lazarus. 
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A. Characteristics 

Fig. 4 shows the user interface of the software. Before we 

start the simulation, we have to know the step of the creating 

simulation. This software starts from the creation of topography 

by using the interpolating the SRTM data and creation urban 

data (shown in subsection B). Next, it computes and creates the 

information which is needed, such as velocity field, water 

depth, water level, arrival time and so on. 

 
 

Fig. 4 The user interface of the developed software 
 

B. Creating Building, River and the Road Data 

For the flood simulation in urban, the creating of urban data 

which are building, rivers, and road data is very essential. 

Before we create the urban data, we have to know their 

respective positions in the real world. By using the Google 

earth map we can know the precise position that we want (river, 

road, and building) and we can also know the latitude and 

longitude the area for the respective data. Fig. 5 shows the 

input pictures from Google earth map (right) where the latitude 

and longitude was considered for creating the road, rivers, and 

buildings. 

 
Fig. 5 The 3D represent of creating river, road, and Building data 

(left) with consider map by using Google Earth (right) 

 

V.  RESULT IN APPLICATION 

For this application, the simulation area used in this paper is 

in some part of North Jakarta in Indonesia. The original 

topography data obtained from SRTM data. We make the depth 

of river 6 meter and using the initial water depth in the river 5 

meter, and assume the river increase by rain 0.1 m3/s. The size 

of cell grid is 781 x 669. We defined four points, P1, P2, P3, 

and P4, to measure the results. The points are shown in Fig. 5, 

the positions of P1, P2, P3 and P4 are (636,609), (403,664), 

(501,386) and (269,359), respectively. The simulation used the 

Maning’s coefficient is 0.01 (1/s), with the duration of the 

simulation is 1800 s. The simulation results consist of: 

A. Flood Maps 

  

840 .t s  

  

3360 .t s  

  

7560 .t s  
Fig. 6 The 3D represent of flood simulation by considering building 

(left) and without building (right) at t=840, 3360, and 7560s (from top 

to bottom) 

 

In Fig. 6 at t=840s, indicates that the initial flow has 

exceeded the river.  At t=3360s, the water that has flowed into 

the surface and will soak in some areas of the surface. And at 

t=7560s, the water already soaking at some point. 

B. Arrival Time 
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Fig. 7 The 3D representation of each point evaluated the arrival times 

 

Fig. 7 shows the arrival time for each points of the flood 

simulation with building and without building. Fig. 8 shows 

that at the point 3, the arrival time of water flow in the urban 

area without building is faster than when a building is involved. 

This is because when a building is involved, once the water 

flows from the river; it is blocked by this building and the water 

coming from the river will collide back in opposite direction, 

thus making the flow of water very slow. The general results in 

the Fig. 8 shows that (blue diamond with building and red 

rectangle without building) the arrival time without building is 

faster than arrival time with building; and this it is caused by 

the influence of the collision flow of water to the building. 

 

 
 

Fig. 8 The arrival time for each points of the flood simulation with 

building and without building 

 

C. Water Depth 
 

  

  
 

Fig 9. The depths of water for the flood simulation with buildings and 

without buildings, evaluated at P1, P2, P3 and P4, respectively (from 

left to right and top to bottom) 

 

Fig. 9 shows the water depth results for each points. The 

results show that the water depth without building deeper than 

the depth of waters that building. Because we set up the 

evaluated points that has building block the water flow. In the 

point 2 where the position of the point is (403, 664), the flow of 

water that crashed into the building on the right side a little 

deeper than the flat water flow. 

D. Velocities Vector Field 
 

  

  
 

Fig. 10 The velocities of water for the flood simulation with buildings 

and without buildings, evaluated at P1, P2, P3 and P4, respectively 

(from left to right and top to bottom) 

 

Fig. 10 shows the velocities of the flood simulation when we 

consider area with building and without building. The results 

show that the water flow rate will be faster flowing in the free 

surface without interruption, but when there are have 

distractions such as building, the water flow will more slowly 

after hit the building, because that the water hit the building 

will be in the opposite direction which causes the speed to be 

slow. 
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VI. DISCUSSION AND CONCLUSION 

In this paper, we applied shallow water equations to simulate 

and visualize water flow in urban area. The finite volume 

method based on the first order well-balanced scheme is used to 

approximate the solutions. The results obtained show that the 

water flow rate is more faster when the simulation is carried out 

without the involvement of buildings. Furthermore this is more 

efficient as the water moves much faster without any 

interruption. 
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